11 research outputs found

    Automated Scenario Generation Environment

    Get PDF
    Report describes IST\u27s investigation into the feasibility of automating the process of planning and scenario generation for large scale (joint level) simulation exercises and development of an architecture for that purpose

    MODELLING & SIMULATION HYBRID WARFARE Researches, Models and Tools for Hybrid Warfare and Population Simulation

    Get PDF
    The Hybrid Warfare phenomena, which is the subject of the current research, has been framed by the work of Professor Agostino Bruzzone (University of Genoa) and Professor Erdal Cayirci (University of Stavanger), that in June 2016 created in order to inquiry the subject a dedicated Exploratory Team, which was endorsed by NATO Modelling & Simulation Group (a panel of the NATO Science & Technology organization) and established with the participation as well of the author. The author brought his personal contribution within the ET43 by introducing meaningful insights coming from the lecture of \u201cFight by the minutes: Time and the Art of War (1994)\u201d, written by Lieutenant Colonel US Army (Rtd.) Robert Leonhard; in such work, Leonhard extensively developed the concept that \u201cTime\u201d, rather than geometry of the battlefield and/or firepower, is the critical factor to tackle in military operations and by extension in Hybrid Warfare. The critical reflection about the time - both in its quantitative and qualitative dimension - in a hybrid confrontation it is addressed and studied inside SIMCJOH, a software built around challenges that imposes literally to \u201cFight by the minutes\u201d, echoing the core concept expressed in the eponymous work. Hybrid Warfare \u2013 which, by definition and purpose, aims to keep the military commitment of both aggressor and defender at the lowest - can gain enormous profit by employing a wide variety of non-military tools, turning them into a weapon, as in the case of the phenomena of \u201cweaponization of mass migrations\u201d, as it is examined in the \u201cDies Irae\u201d simulation architecture. Currently, since migration it is a very sensitive and divisive issue among the public opinions of many European countries, cynically leveraging on a humanitarian emergency caused by an exogenous, inducted migration, could result in a high level of political and social destabilization, which indeed favours the concurrent actions carried on by other hybrid tools. Other kind of disruption however, are already available in the arsenal of Hybrid Warfare, such cyber threats, information campaigns lead by troll factories for the diffusion of fake/altered news, etc. From this perspective the author examines how the TREX (Threat network simulation for REactive eXperience) simulator is able to offer insights about a hybrid scenario characterized by an intense level of social disruption, brought by cyber-attacks and systemic faking of news. Furthermore, the rising discipline of \u201cStrategic Engineering\u201d, as envisaged by Professor Agostino Bruzzone, when matched with the operational requirements to fulfil in order to counter Hybrid Threats, it brings another innovative, as much as powerful tool, into the professional luggage of the military and the civilian employed in Defence and Homeland security sectors. Hybrid is not the New War. What is new is brought by globalization paired with the transition to the information age and rising geopolitical tensions, which have put new emphasis on hybrid hostilities that manifest themselves in a contemporary way. Hybrid Warfare is a deliberate choice of an aggressor. While militarily weak nations can resort to it in order to re-balance the odds, instead military strong nations appreciate its inherent effectiveness coupled with the denial of direct responsibility, thus circumventing the rules of the International Community (IC). In order to be successful, Hybrid Warfare should consist of a highly coordinated, sapient mix of diverse and dynamic combination of regular forces, irregular forces (even criminal elements), cyber disruption etc. all in order to achieve effects across the entire DIMEFIL/PMESII_PT spectrum. However, the owner of the strategy, i.e. the aggressor, by keeping the threshold of impunity as high as possible and decreasing the willingness of the defender, can maintain his Hybrid Warfare at a diplomatically feasible level; so the model of the capacity, willingness and threshold, as proposed by Cayirci, Bruzzone and Gunneriusson (2016), remains critical to comprehend Hybrid Warfare. Its dynamicity is able to capture the evanescent, blurring line between Hybrid Warfare and Conventional Warfare. In such contest time is the critical factor: this because it is hard to foreseen for the aggressor how long he can keep up with such strategy without risking either the retaliation from the International Community or the depletion of resources across its own DIMEFIL/PMESII_PT spectrum. Similar discourse affects the defender: if he isn\u2019t able to cope with Hybrid Threats (i.e. taking no action), time works against him; if he is, he can start to develop counter narrative and address physical countermeasures. However, this can lead, in the medium long period, to an unforeseen (both for the attacker and the defender) escalation into a large, conventional, armed conflict. The performance of operations that required more than kinetic effects drove the development of DIMEFIL/PMESII_PT models and in turn this drive the development of Human Social Culture Behavior Modelling (HCSB), which should stand at the core of the Hybrid Warfare modelling and simulation efforts. Multi Layers models are fundamental to evaluate Strategies and Support Decisions: currently there are favourable conditions to implement models of Hybrid Warfare, such as Dies Irae, SIMCJOH and TREX, in order to further develop tools and war-games for studying new tactics, execute collective training and to support decisions making and analysis planning. The proposed approach is based on the idea to create a mosaic made by HLA interoperable simulators able to be combined as tiles to cover an extensive part of the Hybrid Warfare, giving the users an interactive and intuitive environment based on the \u201cModelling interoperable Simulation and Serious Game\u201d (MS2G) approach. From this point of view, the impressive capabilities achieved by IA-CGF in human behavior modeling to support population simulation as well as their native HLA structure, suggests to adopt them as core engine in this application field. However, it necessary to highlight that, when modelling DIMEFIL/PMESII_PT domains, the researcher has to be aware of the bias introduced by the fact that especially Political and Social \u201cscience\u201d are accompanied and built around value judgement. From this perspective, the models proposed by Cayirci, Bruzzone, Guinnarson (2016) and by Balaban & Mileniczek (2018) are indeed a courageous tentative to import, into the domain of particularly poorly understood phenomena (social, politics, and to a lesser degree economics - Hartley, 2016), the mathematical and statistical instruments and the methodologies employed by the pure, hard sciences. Nevertheless, just using the instruments and the methodology of the hard sciences it is not enough to obtain the objectivity, and is such aspect the representations of Hybrid Warfare mechanics could meet their limit: this is posed by the fact that they use, as input for the equations that represents Hybrid Warfare, not physical data observed during a scientific experiment, but rather observation of the reality that assumes implicitly and explicitly a value judgment, which could lead to a biased output. Such value judgement it is subjective, and not objective like the mathematical and physical sciences; when this is not well understood and managed by the academic and the researcher, it can introduce distortions - which are unacceptable for the purpose of the Science - which could be used as well to enforce a narrative mainstream that contains a so called \u201ctruth\u201d, which lies inside the boundary of politics rather than Science. Those observations around subjectivity of social sciences vs objectivity of pure sciences, being nothing new, suggest however the need to examine the problem under a new perspective, less philosophical and more leaned toward the practical application. The suggestion that the author want make here is that the Verification and Validation process, in particular the methodology used by Professor Bruzzone in doing V&V for SIMCJOH (2016) and the one described in the Modelling & Simulation User Risk Methodology (MURM) developed by Pandolfini, Youngblood et all (2018), could be applied to evaluate if there is a bias and the extent of the it, or at least making clear the value judgment adopted in developing the DIMEFIL/PMESII_PT models. Such V&V research is however outside the scope of the present work, even though it is an offspring of it, and for such reason the author would like to make further inquiries on this particular subject in the future. Then, the theoretical discourse around Hybrid Warfare has been completed addressing the need to establish a new discipline, Strategic Engineering, very much necessary because of the current a political and economic environment which allocates diminishing resources to Defense and Homeland Security (at least in Europe). However, Strategic Engineering can successfully address its challenges when coupled with the understanding and the management of the fourth dimension of military and hybrid operations, Time. For the reasons above, and as elaborated by Leonhard and extensively discussed in the present work, addressing the concern posed by Time dimension is necessary for the success of any military or Hybrid confrontation. The SIMCJOH project, examined under the above perspective, proved that the simulator has the ability to address the fourth dimension of military and non-military confrontation. In operations, Time is the most critical factor during execution, and this was successfully transferred inside the simulator; as such, SIMCJOH can be viewed as a training tool and as well a dynamic generator of events for the MEL/MIL execution during any exercise. In conclusion, SIMCJOH Project successfully faces new challenging aspects, allowed to study and develop new simulation models in order to support decision makers, Commanders and their Staff. Finally, the question posed by Leonhard in terms of recognition of the importance of time management of military operations - nowadays Hybrid Conflict - has not been answered yet; however, the author believes that Modelling and Simulation tools and techniques can represent the safe \u201ctank\u201d where innovative and advanced scientific solutions can be tested, exploiting the advantage of doing it in a synthetic environment

    A Data Fusion System for Simulation of Critical Scenarios and Decision-Making

    Get PDF
    The decision-making (DM) process in critical environments is a complex process that can be simulated due to current telematic capabilities, which allow the real time interaction of large amounts of data. This document describes the proposed architecture from a research process, developed by the FAC Aerospace Technology Development Center (CETAD), where using computational and expert system tools, allowed to create a computational environment for decision maker evaluated his options to prepares for real events, simulating characteristics, resources and strategies in a real time environment. This document describes an investigation product resulted in a simulation system, based on a combination of fuzzy logic, genetic algorithms and decision trees which let modelled and simulated various entities and their automatic response according to simulated patterns and situations, in which, through operators, decision maker can modify entities behaviour, according to parameterized restrictions and physical conditions. Also based on business intelligence tools, reports are generated to evaluate the decisions made. This type of technologies improves planning capacity and facilitate the decision-making process. System allows simulating any media deployment in national security and critical events context. Thus, a case study was developed for implementation of a support in natural disaster scenario simulatio

    A Real-time Strategy Agent Framework and Strategy Classifier for Computer Generated Forces

    Get PDF
    This research effort is concerned with the advancement of computer generated forces AI for Department of Defense (DoD) military training and education. The vision of this work is agents capable of perceiving and intelligently responding to opponent strategies in real-time. Our research goal is to lay the foundations for such an agent. Six research objectives are defined: 1) Formulate a strategy definition schema effective in defining a range of RTS strategies. 2) Create eight strategy definitions via the schema. 3) Design a real-time agent framework that plays the game according to the given strategy definition. 4) Generate an RTS data set. 5) Create an accurate and fast executing strategy classifier. 6) Find the best counterstrategies for each strategy definition. The agent framework is used to play the eight strategies against each other and generate a data set of game observations. To classify the data, we first perform feature reduction using principal component analysis or linear discriminant analysis. Two classifier techniques are employed, k-means clustering with k-nearest neighbor and support vector machine. The resulting classifier is 94.1% accurate with an average classification execution speed of 7.14 us. Our research effort has successfully laid the foundations for a dynamic strategy agent

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Terrain Representation And Reasoning In Computer Generated Forces : A Survey Of Computer Generated Forces Systems And How They Represent And Reason About Terrain

    Get PDF
    Report on a survey of computer systems used to produce realistic or intelligent behavior by autonomous entities in simulation systems. In particular, it is concerned with the data structures used by computer generated forces systems to represent terrain and the algorithmic approaches used by those systems to reason about terrain

    Optimizing combat capabilities by modeling combat as a complex adaptive system

    Get PDF
    Procuring combat systems in the Department of Defense is a balancing act where many variables, only some under control of the department, shift simultaneously. Technology changes non-linearly, providing new opportunities and new challenges to the existing and potential force. Money available changes year over year to fit into the overall US Government budget. Numbers of employees change through political demands rather than by cost-effectiveness considerations. The intent is to provide the best mix of equipment to field the best force against an expected enemy while maintaining adequate capability against the unexpected. Confounding this desire is the inability of current simulations to dynamically model changing capabilities and the very large universe of potential combinations of equipment and tactics.;The problem can be characterized as a stochastic, mixed-integer, non-linear optimization problem. This dissertation proposes to combine an agent-based model developed to test solutions that constitute both equipment capabilities and tactics with a co-evolutionary genetic algorithm to search this hyper-dimensional solution space. In the process, the dissertation develops the theoretical underpinning for using agent-based simulations to model combat. It also provides the theoretical basis for improvement of search effectiveness by co-evolving multiple systems simultaneously, which increases exploitation of good schemata and widens exploration of new schemata. Further, it demonstrates the effectiveness of using agent-based models and co-evolution in this application confirming the theoretical results.;An open research issue is the value of increased information in a system. This dissertation uses the combination of an agent-based model with a co-evolutionary genetic algorithm to explore the value added by increasing information in a system. The result was an increased number of fit solutions, rather than an increase in the fitness of the best solutions. Formerly unfit solutions were improved by increasing the information available making them competitive with the most fit solutions whereas already fit solutions were not improved

    Journal of Telecommunications and Information Technology, 2003, nr 4

    Get PDF
    kwartalni

    ANALYZING NAVAL STRATEGY FOR COUNTER-PIRACY OPERATIONS, USING THE MASSIVE MULTIPLAYER ONLINE WAR GAME LEVERAGING THE INTERNET (MMOWGLI) AND DISCRETE EVENT SIMULATION (DES)

    Get PDF
    Combating piracy is an age-old mission for international navies, as piracy has troubled ocean-going vessels for centuries. Somali piracy, like all piracy uprisings in the past, is a land-based problem stemming from a dysfunctional government that cannot enforce the laws of the land. This lack of law enforcement is what provides pirates a safe harbor to operate, which allows the problem to trickle into international waters and become a maritime problem. However, in the case of Somali piracy, leaders from the U.S. State Department and the U.S. Navy have said there is too much water in the Indian Ocean for the coalition navies to effectively patrol. This thesis first demonstrates how the MMOWGLI platform can be used for crowd-sourced brainstorming of strategic options for counter-piracy, yielding valuable action plans that can be modeled, simulated, and analyzed to make strategic decisions. Three highly rated Action Plans from the 2012 Piracy MMOWGLI game were then modeled and simulated using Discrete Event Simulation (DES). Simulation analysis suggests that the amount of ocean is not a factor if coalition navies aggressively patrol the Somali coast, either directly off shore from active pirate camps or by the use of a naval quarantine. Strategy development for counter-piracy, like any other wicked strategic problem, is usually conducted by senior naval leaders in the upper echelons of specific commands. The MMOWGLI game-play from Piracy MMOWGLI and other MMOWGLI games suggests the U.S. Navy needs to consider utilizing a broader range of officers, enlisted personnel and civilians for brainstorming strategic options. There are an unprecedented number of enlisted sailors with degrees and junior officers educated in joint professional military education. It is time the military taps into this knowledge base for help in planning and implementing strategy.http://archive.org/details/analyzingnavalst1094532838Lieutenant, United States NavyApproved for public release; distribution is unlimited
    corecore