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1. Introduction 

lIDs section begins with an abstract for the overall document, then presents an informal 
motivation of Computer Generated Forces, states the purpose and structure of the document, and 
explains some essential background concepts. 

1.1 Abstract 

Distributed Interactive Simulation is an architecture for building large-scale simulation systems 
from a set of independent simulator nodes communicating via a common network protocol. DIS 
is most often used to create a simulated battlefield for military training. DIS simulations are real­
time. 

Computer Generated Forces (CGF) systems control multiple autonomous battlefield entities in a 
DIS simulation using computer equipment and software rather than humans in simulators. CGF 
entities serve as both enemy forces and supplemental fiiendly forces in a DIS simulation run. A 
number of different CGF systems have been implemented. They have been used for both research 
and training. Three important CGF systems are the 1ST CGF Testbed, the Loral ADS ModSAF 
system, and the CCTT SAF. 

Specifying and generating realistic tactical behavior in CGF systems is an ongoing research topic. 
A number of different approaches, including many from artificial intelligence, have been applied to 
CGF behavior generation. One commonly used technique is based on finite state machines. 

Effective use of terrain is a crucial element of military tactical decision making. In order to 
realistically simulate military forces, CGF systems must represent the battlefield terrain and reason 
about it. A variety of different terrain representation formats have been used in CGF systems. 
Those formats include gridded, polygonal, quadtrees, graphs, and others. Each of the formats has 
strengths and weaknesses in the context of CGF systems. Some CGF systems use multiple 
representations of the same terrain in different formats and perform each terrain task on the 
representation format that best suits that task. 

Low-level tactical behavior, in real-world military units and in CGF systems, is highly dependent 
on the terrain. Therefore terrain reasoning is an essential part of CGF behavior generation. CGF 
algorithms exist for a number of terrain reasoning tasks, including intervisibility, route planning, 
and finding cover and concealment. Given the number of different terrain reasoning tasks, 
different terrain representations, and different algorithmic paradigms, it should be no surprise that 
there are a wide variety of terrain reasoning algorithms with varying degrees of robustness, 
performance, and tactical realism Intervisibility algorithms based on polygon traversal, route 
planning algorithms based on A * search, and cover-and-concealment-finding algorithms based on 
geometric analysis of terrain elevation have all been implemented. 

1 
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1.2 An informal motivation 

This smvey is intended to be a serious treatise. However, before beginning the scholarly business 
of defining terms and explaining system capabilities, it may be useful to describe in an informal 
way two examples of autonomous entities in simulation that will help serve to motivate the 
survey. 

Consider the following scene: a young man sits in front of a personal computer, staring intently at 
the monitor before him. He grips a joystick, which he moves constantly, sometimes gently and 
sometimes with abrupt suddenness. He is playing Wing Commander, a best-selling space combat 
simulation game produced by Origin. The program places him in the cockpit of a simulated space 
fighter ship, equipped with rocket engines, afterburners, navigation systems, shields, energy and 
projectile blasters, and guided missiles. He must maneuver his fighter around interstellar terrain 
such as asteroid belts and space stations. His goal is to use his fighter's weapons to destroy 
enemy fighters and to avoid being destroyed by them 

Through his cockpit window, he can see the enemy fighters. The actions and maneuvers of the 
enemy fighters are generated by the game software. They turn towards him and fire, attempt to 
get onto his tail, use afterburners and evasive maneuvers to escape his fire, lock on and fire their 
guided missiles, and lure him away from the friendly ships the player is protecting. The actions 
for each enemy fighter are generated based upon the fighter's location relative to the player's 
fighter, the class or type of the enemy fighter, its damage state, and the combat style and 
aggressiveness of the particular fictional enemy pilot who ostensibly controls the fighter 
[Harrison, 1992]. 

The simulation program is presented as entertainment, and it has succeeded. The player is 
completely engaged in the simulation. His entire attention is focused on the simulated control 
panel of his fighter and the violently maneuvering enemy fighters visible through the cockpit 
windows. 

Now consider a second scene: four U.S. Army soldiers sit at the controls ofa training simulator. 
The simulator is about the size of a garden shed; from the outside, it appears to be a connected set 
of computers, monitors, and large green fiberglass enclosures. From the inside, the simulator is a 
simplified but easily recognizable re-creation of the interior of a MIA! Abrams tank. 

The four soldiers are the MIAl's crew. They manipulate the simulator's controls as they would in 
an actual tank, driving the simulated tank through a simulated battlefield which they can view 
through the vision blocks of their tank. A computer image generator and monitor for each of the 
vision blocks shows a view of the battlefield as it would be seen from that location. The 
battlefield terrain is comprised of the terrain surface as well as features such as treelines, roads, 
bridges, buildings, and canopies; it is constructed from polygons. 

A second crew is at the controls of another MIAI simulator. That simulator may be adjacent to 
the first , or it may be hundreds of miles away. However, the two are connected by a computer 
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network, and in the simulated battlefield the second tank is following the first, about 30 meters 
behind. 

The commander of the lead MIAI is warily surveying the terrain from his vantage point in the 
cupola, atop the turret, searching for the enemy tanks that are likely to be nearby. Suddenly, as 
the tank crests a ridge, he spots two enemy tanks emerging from behind a treeline about 1500 
meters away. The enemy tanks are generated in the battlefield by another simulator node, 
attached to the MIAI simulator via the network. However, they are not controlled by human 
crews; rather, computer software is generating their behavior, and that of many other vehicles in 
the simulated battlefield. 

The tank commander radios the commander of the second MIAI, who cannot yet see the enemy 
tanks, and warns him. of the threat. Then, over the simulator's intercom the tank commander 
orders the driver to turn the simulated MIAl to face its frontal armor towards the enemy tanks 
and to stop so as to provide the gunner an easier firing problem The commander's feeling of 
urgency is easily heard in his voice as he tells the gunner where the enemy tanks are, which one to 
engage first, and what ammunition to use. As quickly as his skills allow, the gunner rotates the 
MlAI's turret and elevates the main gun to align the aiming reticle with the first target. In quick 
succession he thumbs the laser rangefinder button and squeezes the main gun trigger; the target 
bursts into flames. 

The commander urges him to immediately engage the second tank, but it is too late. The driver of 
the second MIAI, in his haste to reach a location from which to fire, has crested the ridge right 
behind the stopped lead tank and collides with it. Both of the simulated tanks are abruptly jostled 
by the collision, and some damage is suffered by both. Before either crew can reorient 
themselves, the enemy tank sights the lead MIAl, turns towards it, and stops. Its turret swings 
around and the enemy tank fires. The sound system of the MIAI simulator produces an 
unpleasantly loud crashing sound, and the screens of the simulator turn black; the lead MIAl has 
been destroyed by the enemy tank. The tank commander pounds his controls in frustration. 

The first scene described a simulation program used for amusement, the second a program used 
for the deadly serious job of training U.S. Army soldiers, yet the two scenes have at least two 
crucial elements in common. First, they both succeed in creating an environment with enough 
intensity and urgency to draw their users entirely into the simulated world. Second, they both 
include autonomous entities that oppose the simulation users, attempting to thwart and even 
destroy (in simulation!) those users. In a real sense, the first characteristic, i. e. the simulation 
intensity, and the resulting usefulness of the simulation system, is produced by the second 
characteristic, the autonomous opposition entities. 

In both cases, the behavior of the automated opposing entities is produced algorithmically, with a 
computer hardware and software system; such a system is referred to as a Computer Generated 
Forces (CGF) system In both cases the CGF system that generates the behavior must reason 
about the simulated terrain of the battlefield in order to generate realistic behavior. 

3 
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1.3 Purpose and structure of this document 

This document is a survey of computer systems used to produce realistic or intelligent behavior by 
autonomous entities in simulation systems, i.e. ofCGF systems. In particular, it will be concerned 
with the data structures used by CGF systems to represent terrain and the algorithmic approaches 
used by those systems to reason about terrain. 

The reader of this document is assumed to possess a general familiarity with computer science, 
including data structures, algorithm design, simulation, and artificial intelligence. A detailed 
knowledge of simulation or artificial intelligence is not assumed, as the particular terms and ideas 
in those areas will be explained as needed. 

The next subsection defines and explains a number of background terms and cO.ncepts that are 
conceptual prerequisites to understanding the issues of behavior generation and terrain reasoning 
for CGF systems. They include real-time simulation, networked virtual simulation, and DIS. 
Following that, the three main sections of this document survey CGF systems, terrain 
representation in CGF, and terrain reasoning in CGF. In particular, section 2 first presents a 
structural overview of a typical generic CGF system and discusses CGF system architecture, and a 
number of existing CGF systems. A few of the most important CGF systems (in the author's 
opinion) are explained in some detail, and many others are identified and discussed more briefly. 

Section 3 moves from CGF systems in general to terrain representation in CGF systems. First, 
background concepts of terrain representation are introduced. Then terrain representation 
formats used by existing CGF systems and other related systems are surveyed and explained. The 
explanations discuss the data structures for each of the representational formats and compare their 
strengths and weaknesses in the CGF context. 

Finally, in section 4 CGF terrain reasoning algorithms are examined. In order to organize the 
exposition, special attention will be given to terrain reasoning algorithms for three crucial CGF 
terrain reasoning tasks: route planning, intervisibility, and finding cover and concealment. In 
each case the task is defined and then the existing CGF terrain reasoning algorithms for the task 
are presented. 

Figure 1. 1 is a graphical representation of the subject matter domain of this document. 
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used' in CGF systems 

Figure 1.1 Subject domain a/the sections a/this document. 
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1.4 Background 

This subsection defines background terms and concepts that will be needed in order to discuss 
CGF systems and terrain reasoning algorithms. 

1.4.1 Analytical and descriptive models 

For the purposes of this survey, a model is a description, generally mathematical, of some existing 
or potential real-world object, process, or system A simulation is a realization or implementation 
of a model (or more than one), generally done using computer software and hardware. An 
execution of a simulation is an exercise, run, or trial, depending on the context. While a 
simulation is executing, the events, activities, and state transitions that occur within the model 
have a correspondence, defined by the model, with events and activities that may occur in the 
modeled system A set of connected or linked simulations operating cooperatively is a simulation 
system; an individual simulation within a simulation system is a simulation (or Simulator) node. 
Models implemented as simulations are often symbolic, in that symbols within the model are used 
to represent objeds, relationships, actions, and processes. Within the category of symbolic 
simulations, [Kreutzer, 1986] identifies two types of models. Analytical models are based on 
some strong mathematical theory and are deductive. They allow the use of mathematical methods 
to find a desired state of the modeled system and provide general solutions to classes of systems. 
However, analytical models often depend on extensive simplifYing assumptions to make them 
mathematically tractable. 

In contrast, descriptive models symbolically represent the possible states of the modeled system 
(i.e. the problem space), without providing any analytical methods for finding particular states of 
interest. Because they do not need to be amenable to mathematical analysis, the system being 
simulated can be modeled in much more detail. Using a descriptive simulation (ie. an 
implementation of a descriptive model) is an inductive experiment. 

1.4.2 Real-time simulation 

The simulations to be considered in this survey all fall into the descriptive category. However, 
this categorization is not narrow enough. Time-stepped simulations model time by advancing the 
simulation's internal clock a fixed interval and determining what events, if any, have occurred 
during that interval Event-driven simulations instead determine when the next event will occur 
and advance the simulation clock to that time. This survey will focus on time-stepped simulations 
where the time interval is set small enough to produce a quasi-continuous simulation (as defined 
in [Kreutzer,1986]). Furthermore, the topic of interest will primarily be simulations where the 
time-slice advances of the simulation clock occur at a rate that causes the simulation clock to 
match the real-world clock of the simulation's human user; that is, events in the simulation occur 
at the same speed as the modeled events do in the system being modeled. Such a simulation is 
usually called real-time. 

The intended use of a simulation determines whether it will run in real-time, faster than real-time, 
or slower than real-time. Faster than real-time simulations compress time, so that a future state of 
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a system can be found in less time than the modeled system would take to reach that state. This 
permits many different system futures to be produced and analyzed. Slower than real-time 
simulations stretch time, so that experimenters may examine in detail simulated events that may 
occur too quickly to study in real-time. 

The primary reason for a simulation to run in real-time is to realistically model the passage of time 
for the user of such a simulation. This survey is considering simulations used primarily for 
training, where the user( s) learns or improves some skill set as a result of interacting with the 
simulation; such a change is called training effect. If the user is interacting with or participating in 
the execution of the simulation, it is generally assumed that the maximum value of that 
participation, i.e. the maximum training effect, will be derived from the user experiencing the 
simulated events at the same rate he or she would experience the events in the system being 
modeL.ed. 

It is possible, of course, that training effect may in fact be maximized by having simulated time 
pass faster or slower than real-time. [Guckenberger,1992] describes an experiment in which 
trainees who were trained in a tank gunnery simulation with time progressing at an accelerated or 
"above real-time" rate showed a greater training effect than those trained at real-time. 
Nevertheless, the generally accepted practice is that the best training environment is real-time until 
proven otherwise for a specific application. The CGF systems to be surveyed later all are 
intended to operate at real-time. 

1.4.3 Networked virtual simulation and DIS 

The combination of computer simulation technology and computer networking technology creates 
a wide range of new simulation architectures. Networked computers running simulations may 
share processing or data access workload among nodes, allow specialized hardware architectures 
to perform specific simulation computations for which they are suited, or facilitate simultaneous 
use of a simulation by multiple users at remote sites. [Goldiez, 1995] reviews the history of 
networked simulation. 

One particular networked simulation architecture provides the context for many of the simulations 
being considered in this survey. Distributed Interactive Simulation (DIS) is an architecture for 
building large-scale simulation systems from a set of independent simulator nodes communicating 
via a common network protocol [DIS,1994] [Loper,1995b]. The simulator nodes each 
independently simulate the activities of one (or more) entities in the simulated environment, and 
report their attributes and actions of interest via the network to other simulator nodes. In a 
typical DIS simulation system, the simulated entities coexist in a common environment, (e.g. a 
terrain database) and can interact in real-time by exchanging network packets [Loper, 1991]. An 
important characteristic of DIS simulation systems is that they are real-time; events in the 
simulation systems occur at the same rate as their real-world counterparts. 

7 
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DIS systems are being used for [DIS, 1994]: 
1. Training in a realistic and large scale synthetic environment 
2. Planning and rehearsal of actual military missions 
3. Development of tactical and operational doctrine 
4. Testing of new weapons systems early in their development cycle. 

Because it is distributed and interactive, DIS exercises allow "testing of group-level operations or 
procedures that require cooperation" [papelis,1994]. 

The ARPAIUS Army SIMNET system is the prototypical example ofa DIS-style simulation. 
SIMNET is used to train tank and vehicle crews in cooperative and team tactics. (The SIMNET 
literature is extensive; [Thorpe, 1987], [Nelms,1988], [pope,1989], and [Cosby, 1995] are good 
examples). In SIMNET, the simulator nodes typically represent single vehicles, such as tanks or 
armored personnel carriers. SIMNET simulator nodes are substantial devices consisting of a 
simulation computer, a computer image generator, and a physical re-creation of the vehicle 
interior; they are operated by three or four human trainees. During the execution of a scenario, 
each simulator node's simulation computer continuously tracks the location of the vehicle relative 
to a terrain database common to all vehicles in the scenario. The trainees maneuver their vehicle 
over the terrain and interact with (e.g. fire their weapons at) other vehicles. All simulator nodes 
in the simulation are linked by the SIMNET network, which carries the packets needed to mediate 
inter-vehicle interaction. 

By exchanging these packets, actions taken by one simulator node are made known to other 
simulator nodes in real time. Each vehicle broadcasts location report packets, which are used by 
other vehicles to generate visual images, and fire and impact packets, which are used to signal and 
adjudicate fire combat. 

A DIS-type system depends on two areas of agreement between the networked simulators. The 
first is the shared "playing field", or simulated environment. All entities in the simulation must 
have identical or isomorphic simulated environments in which to operate, or events and actions 
that are valid for one simulator node may be invalid for another. For example, if two tank 
simulators share terrain databases which are identical except that a bridge present in the first is 
omitted in the second, when the first tank traverses the bridge it will appear to be floating on air 
or water to the second. 

The second required area of agreement is the network protocol. A DIS protocol specifies the 
various types and formats of network packets which the simulator nodes will exchange to support 
the simulation system Additionally, the protocol defines the precise circumstances under which 
each packet type should be sent by a simulator node, and the interpretation that should be 
performed when each packet type is received. 

Currently, the DIS protocol standard defines a specific set offixed format packets, or protocol 
data units (PDUs). The standard precisely defines the content of each PDU at a bit-by-bit level of 
detail as well as specifying the circumstances under which each PDU type should be sent and what 
action should be taken upon its receipt. Recently however, DIS researchers have begun to 
consider a more flexible DIS protocol composed of a set of optional PDU components that are 
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assembled as needed for a particular simulation application or exercise [Bouwens,1995]. The 
different combinations ofPDU components are referred to as profiles. 

D IS exercises (an exercise is a simulation session, or a single run of a scenario) are often recorded 
for later replay and analysis. The recording is done by reading and storing as a data file the . 
network packets (PDUs) that are sent on the network during the exercise. The PDUs are 
timestamped as they are recorded so that the playback can be properly timed. A data file of 
recorded DIS PDUs is often called a log, and a utility program to record and playback the PDUs 
is a logger. 

An important large-scale use of the DIS concept and standards is the U.S. Army's Close Combat 
Tactical Training (CCTT) program. CCTT will provide a synthetic environment for training in 
armor and infantry combat; see [pope, 1995b] for an overview of the CCTT program 
[Pope,1995a] discusses how CCTT development has helped drive the evolution of the DIS 
standard and architecture. 

For the most part, DIS-type systems have been used primarily for training, as opposed to more 
analytical uses such as weapons systems testing and tactics development. The training may be 
general tactical and team training, where the terrain database used is generic or representative and 
the trainer sets the scenario [Byers, 1988], or it may be mission rehearsal, where a specific military 
operation is practiced on a terrain database created for that purpose [Branch, 1989] 
[Donovan, 1990]. 

Some non-training military uses of DIS exist; for examples see [Nelms,1988], [Karr,1993b], or 
[Courtemanche,1994] for descriptions of some analytic uses of SIMNET and DIS. Additionally, 
attention has been given to extending DIS to non-military applications [Loper,1994] 
[Loper,1995a]. However, unless otherwise stated this document will focus on military training 
applications. 

1.4.4 Definitions 

Before proceeding, several key terms and concepts should be defined. First, the terms entity and 
unit will be used throughout this document. 

Entity. An entity is most often a single battlefield object; a tank, a helicopter, an airplane, a truck, 
and a infantry fighting vehicle are all entities. Sometimes a small aggregation of real-world 
objects that are simulated and controlled as a single simulation object can be an entity; the most 
common example of this is a squad or fireteam of soldiers. Note that entity has a specific meaning 
in the context of DIS; an entity is the item or object for which Entity State PDUs are sent, and 
each entity is assigned a unique identifYing number. An entity is the "atom" of simulation in DIS. 

Unit. A unit is a military organization, such as a platoon, company, or battalion. Units are 
collections of entities, usually organized hierarchically into subunits and units. 
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Simulation systems are often categorized as virtual, constructive, or live. The definitions given 
here for those terms are adapted from [Franceschini, 1995b]. 

Virtual simulation. Virtual simulations represent each vehicle or infantryman as a distinct entity. 
A virtual simulation entity may be controlled by a simulator with a human crew or a CGF system. 
Humans in a simulator perceive the simulation as a type of virtual reality, and virtual simulation is 
almost always real-time. All necessary state information for each simulated entity is maintained, 
each entity is capable of independent action, and combat results are computed at the entity level. 
SIMNET, BDS-D, and CCTT are examples of virtual simulation systems. DIS is an architecture 
for constructing virtual simulation systems. In this document, we are concerned almost 
exclusively with virtual simulations and, in particular, DIS. 

Constructive sim!llation. Constructive simulations represent a military unit (e.g. a tank company) 
as an aggregate without simulating each individual entity (e.g. tank) within the unit. The position, 
movement speed and direction, status, and composition of an aggregate unit are maintained for 
the unit as a whole, and are often computed as the result of statistical analysis of the unit's actions. 
BBS, CBS, and Eagle are examples of constructive simulations. Constructive simulations are 
sometimes referred to as "wargames". They are usually not real-time. 

Live simulation. In a live simulation, human trainees participate in a simulated battle using actual 
military equipment. For example, the National Training Center, where Army units fight battles 
using real tanks and other vehicles (though laser senders and sensors are used instead of live 
ammunition) is a live simulation. 

Three terms that are similar in meaning in common usage will be used in very specific ways in this 
document with important differences in meaning. They are point, location, and position. 

Point. A mathematical point, identified by coordinates. Most often in this document points will 
be located in 3-space relative to a terrain database. 

Location. A point in a terrain database where an entity is or might be located. An entity's 
location or potential locations are assumed to be appropriate for that entity, e.g. ground vehicle 
locations are assumed to be on the surface of the terrain rather than in mid-air. 

Position. A geographical region of known extent that is the area in which a military unit (e.g. a 
company) is to deploy. A position will often be a simple polygon when projected onto the X,Y 
plane. The individual entities that make up the unit will be at locations that are within the unit's 
position. 

10 
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2. Computer Generated Forces 

This section provides a tutorial on CGF in general and surveys existing CGF systems. 

2.1 CGF tutorial 

This subsection contains a tutorial on CGF systems. It explains the role of CGF systems in a 
battlefield simulation and the software architecture of a CGF system It also surveys how 
behavior is generated and specified within a CGF system, how artificial intelligence is used in a 
CGF system, how CGF systems are validated, and what research directions are crucial to 
continued progress in CGF system development. [petty,1992c], [petty,1995b], and 
[Pickett, 1995] are also CGF tutorials; [Brooks,1989], [Bailey,1989], and [Booker,1993] are CGF 
surveys. 

2.1.1 Role of Computer Generated Forces 

In the case of DIS (and its SIMNET predecessor), the system is intended to provide a simulated 
battlefield which is used for training military personnel. In such a battlefield, the trainees need an 
opposing force against which to train. There are at least three ways to provide the simulated 
opposing forces (see Figure 2.1). 

In the first method, two groups of trainees in simulators may oppose each other. For example, it 
is possible to configure SIMNET simulators during startup so that the computer image generators 
in each force's simulators display their own force's vehicles as US vehicles (M1 Abrams and M2 
Bradleys) and the opposing force's vehicles as enemy vehicles (T -72s and BMPs). Thus both 
sides see themselves as US forces and their opponents as the enemy. This method is often used, 
and the soldiers enjoy the competitive aspects of the arrangement, but it has several 
disadvantages. First, it increases the number of expensive simulators needed at a training site. 
Second, it requires that to train any given military unit a second unit be available to provide the 
opposition. Finally, the trainees are faced with opponents who, despite the appearance of their 
vehicles in the video screens, use U. S. Army tactical doctrine because U. S. Army soldiers are 
controlling the vehicles. It would be preferable to provide the trainees with opponents who use 
the tactical doctrine of the actual or anticipated enemy. 

A second method is to use human instructors who are trained to behave in a way that mimics the 
desired enemy doctrine. Doing so does not reduce the need for simulators and is expensive in 
manpower costs because large numbers of trained instructors may be required. Furthermore, the 
instructors must be retrained for each new enemy's doctrine. This method is seldom used. 

The third technique is to use a computer system that generates and controls multiple simulation 
entities using software and possibly a human operator. Such a system is known as a 
semi-automated force (SAF or SAFOR) or a computer generated force (CGF). 

CGF systems are important for several reasons. First, they lower the cost of a DIS system by 
reducing the number of standard simulators that must be purchased and maintained and by 
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reducing the number of humans required to operate the system for a given scenario size. Second, 
a CGF system can be programmed, in theory, to behave according to the tactical doctrine of any 
desired opposing force, and so eIiminate the need to train and retrain human operators to behave 
like the current enemy. Finally, because a CGF system can be easier to control by a single person 
than an opposing force made up of many human operators, it may give the training instructor 
greater control over the training experience [Fishwick, 1991]. With all of this in mind, 
[Oswalt, 1993] identifies the development ofCGF capabilities as a trend with "significant impact" 
on military simulation and gaming. 

Note the assumption that CGF systems operate at the entity level, i.e. a single virtual entity is 
either controlled by a CGF system or by humans in a simulator, but not both. This assumption is 
in fact true for all existing CGF systems of note, but some work is starting on replacing individual 
crew members within a crewed simulator with CGF-like algorithms; e.g. see [Gagne,1995]. This 
document will not consider those systems. 

2.1.2 CGF system characteristics 

Certain characteristics are common to all existing CGF systems, and are essentially inherent in the 
context in which those systems are used. Some of the most important of those characteristics are 
listed here; each will be described in turn. 

1. Network connection and protocol 
2. Battlefield environment simulation 
3. Support for multiple entities 
4. Operator control of behavior 
5. Representation of the military organizational hierarchy 
6. Autonomous behavior generation 

Network connection and protocol. Clearly, because DIS-type simulations are networked, a CGF 
system needs both a physical connection to the network and the appropriate software to send and 
receive network packets. Furthermore, the system must conform to the network protocol that has 
been defined for the simulation. It needs to correctly interpret the data in the packets it receives 
and format the data in the packet it sends. A CGF system is required to send network packets 
when specified by the protocol; such actions may be time or event triggered. Finally, the arrival 
of incoming network packets sent by other simulation entities should be handled correctly, as per 
the protocol. For example, if a CGF system receives a packet that signifies that one of its 
controlled entities has been hit by an anti-tank missile, it should assess the damage that may result 
from that impact. [Cheung, 1994] analyzes the characteristics of the network packet stream 
typically produced by some CGF systems and compares it to that of crewed simulators. 

12 
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Battlefield environment simulation. The entities controlled by the CGP system exist in a 
battlefield which is a simulated subset of the real-world battlefield. As such, the CGP controlled 
entities should obey the laws of physics relevant to the activities occurring in the battlefield. 
Often, this means that one must use physical laws to model such behavior [Barr,1989], although 
lower-cost solutions may sometimes be appropriate (i.e. simplified kinematics instead of physical 
modeling). Using physics, the vehicle dynamics of the CGP entities can be modeled, including 
acceleration, deceleration, turn rates, and vehicle performance characteristics. (Por an example of 
vehicle dynamics modeling, see [Cimini, 1992] for a presentation of a flight dynamics model used 
for CGP aircraft.) 

The CGF system usually includes a terrain database that provides the terrain over which the battle 
will be fought; it may be a detailed representation of an actual piece of terrain, or a large 
featureless plane corresponding to the surface of the ocean. The effects of the terrain op. the 
simulation events should be modeled, including terrain effects on movement and observation. 

Because the world being simulated is a battlefield, combat interactions need to be modeled in 
accordance with the physics of weapon and armor performance characteristics. Por example, in 
both DIS and SIMNET, a CGP tank that fires on a hostile vehicle determines if a hit was achieved 
using a set of factors that include range, exposure of the target, and performance of the tank's 
weapon and sighting systems. If a hit is inflicted, the impacted vehicle considers munition type, 
range, impact angle, and armor protection to assess the damage it suffers.· The accuracy of these 
calculations is of central importance to the validity of the simulation. 

Support for multiple entities. CGP systems typically provide support for multiple entities 
simultaneously. Their usefulness is due in large part to this characteristic. The CGP system's 
architecture must provide a means to allocate processing resources to all of its supported entities. 

Operator control of behavior. In addition to the autonomous behavior, every production CGP 
system should include an operator interface that allows a human operator to control the CGP 
entities. The operator may override autonomously generated behavior, or he or she may initiate 
and control behavior in situations that are beyond the CGP system's capabilities. Existing CGF 
systems typically provide a map display of the battlefield that shows the battlefield terrain and the 
simulated entities on it, together with a human command interface. 

Representation of the military organizational hierarchy. Military units have hierarchical 
organizations. As CGP systems are designed to control larger numbers of entities, it becomes 
increasingly important to represent the military hierarchy of those entities in the system With the 
representation of the hierarchy in place, the operator can give orders to higher level units, or the 
CGF system can autonomously generate behavior for a unit. Then, the unit level order could be 
automatically interpreted and passed down to the constituent entities for execution. 

A utonomous behavior generatiOn. A CGP system will use built-in behavior to react 
autonomously to the simulation situation or to carry out orders given by its operator. Its behavior 
may be encoded as algorithms, production rules, formal behavior specifications, or some other 
form. The intent is for the CGP system's behavior to be autonomous (i. e. not requiring human 
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control) and realistic (i.e. true to doctrine, physics, and human responses) to the greatest extent 
possible. 

Figure 2.2 shows a notional decision making process for a CGF system 

It is in the area of autonomous behavior generation that most current CGF research is focused. 
The Institute for Simulation and Training (1ST) and other research laboratories are attempting to 
increase the level of autonomy of CGF systems. This area will be reviewed in more detail later. 

2.1.3 Behavior specification and generation for CGF systems 

Behavior refers to actions or reactions by an entity that are the result of a cognitive or decision 
making process; this is contrasted with actions by an entity that are governed by the laws of 
physics and have no cognitive involvement. 

Of course, as mentioned earlier, the laws ofphysics must operate in a realistic way in a simulated 
environment (at least in one that purports to simulate reality). However, simulating behavior, i.e. 
the intentions, goals, and intelligence of autonomous agents, within simulation is a separate and 
more uncertain matter. There has arguably been less progress made in representing and specifying 
intentional, intelligent behavior than physical behavior, and there is certainly much less agreement 
among researchers on how best to generate such behavior [Wallich,1991], at least in the general 
case. However, in the more focused area of CGF systems there has been more agreement and 
progress. 

CGF systems produce autonomous behavior for the simulation entities they control. To do so, 
the desired behavior must be specified and generated. Behavior specification is the encoding, in a 
form usable by the CGF system, of the specific behaviors that CGF system is expected to be able 
to produce. Most often, the behavior specified for a CGF system reflects military tactical 
doctrine, and behavior specification for CGF systems is a process of encoding tactics in a form 
useful to algorithms. Behavior specification is a knowledge engineering problem Behavior 
generation is the run-time execution of the specified behavior so as to produce useful tactical 
behavior in real-time that is responsive to the battlefield situation. 

2.1.3.1 Behavior specification 

The notion of separating the specification of behavior from the generation or execution of 
behavior is familiar; it is analogous, for example, to a production rule system where behavior (or 
knowledge) is specified in the form of rules, and the execution of the behavior is performed by an 
inference engine. Similarly, a robot's movements might be specified with a English-like scripting 
language which is interpreted at run-time to generate the behavior [Boume,1982]. However, the 
degree to which behavior specification and generation are actually separated is quite variable in 
CGF systems, and none fully succeed in separating them completely in a satisfactory way. 
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Work has been done on encoding general autonomous behavior in various forms; these include 
production rules [Zisman,1978], structured English text [Bourne,1982] [Stevens,1989], and Petri 
nets [D'Angelo, 1983] [Blitz,1988]. Prototype and production CGF systems have used expert 
system rules [SOGlTEC, 1989], map overlay symbols and battle drills [Crooks,1990], Petri nets 
[Madni,1987] [Moshell, 1989], and contingent hierarchical scripts [Lockheed, 1990]. 

The three most commonly used methods of CGF behavior specification are: 
1. Algorithms and finite state machines 
2. Behavior specification languages 
3. Combat instruction sets 

Algorithms andfinite state machines. Typically, CGF systems are written in programming 
languages such as C, Lisp, or Ada [Bailey, 1989] [Booker, 1993] [petty,1995b]. For some CGF 
systems, the patterns and rules of behavior for CGF entities are essentially encoded directly in the 
algorithms of the CGF system One example is the 1ST CGF Testbed, where CGF behavior is 
specified in C code, organized with a technique referred to as Finite State Machines, which will 
be explained later. Clearly, in this case the behavior specification and behavior generation 
mechanisms have not been separated. 

Behavior specified directly in a programming language is almost always inaccessible to subject 
matter experts (SMEs). Specifying doctrine, or general behavior, for implementation as program 
code in a CGF system requires both a SME and a skilled programmer [Lattimore, 1993]. It is a 
classical knowledge engineering task, which can potentially be quite difficult [Sargeant,1990]. 
Furthermore, because the SME cannot read the behavioral descriptions, he or she must validate 
them by observing the generated behavior of the CGF entities in the simulation, a time consuming 
and unreliable procedure. 

Behavior specification languages. A formal language that is precise enough to specify CGF 
behavior, translatable into machine executable form, and also understandable by SMEs would be 
very useful [Kornell,1987]. Such a language has been called a behavior specification language. 

Military doctrine for combat units is usually recorded as text in a training manual; doctrine for 
other domains and entities may not even be documented to that extent. [Fishwick, 1991] asserts 
that "An ideal solution with respect to automatic control over [CGF entities] is one where 
commands may be expressed directly in language specified within the training doctrine 
documentation." For example, a doctrine that specifies a tank platoon to "move at slow speed to 
the edge of the mine field" would then be translated automatically into an intermediate language 
for planning and execution. This process, termed by him as "doctrinal language processing", is a 
subset of the more general natural language processing problem in artificial intelligence. It is clear 
that some SME accessible language for expressing CGF behavior is desirable. 

A survey of eight formal behavior specification languages designed with the intent of expressing 
tactical doctrine is found in [petty, 1993]. (Three of the languages surveyed are documented in 
more detail elsewhere in [Smith, 1993], [Moshell,1989], and [Smith,1992c].) Unfortunately, the 
conclusion of that survey was that none of the designs were completely satisfactory. The survey 
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relates the difficulties that are seemingly inherent in designing a behavior specification language 
that both has sufficient expressive power to specify complex tactics in an unambiguous way and 
that remains accessible to SMEs (i.e. to non-programmers). For example, Figure 2.3 gives an 
example ofVBL (Virtual Battlespace Language), a CGF behavior specification language used in 
the ACBM family of systems (to be described later), and Figure 2.4 shows ILLISH (Intermediate 
Level Language, Interpreted, for Script Handling), a language designed for use in the 1ST CGF 
Testbed. Both VBL and ILLISH are powerful enough to specify CGF behavior, and ILLISH was 
selected as the best all-around behavior specification language design surveyed in [petty, 1993], 
but neither are accessible to SMEs. As might have been expected, the languages studied in 
[petty, 1993] that were most SME accessible were least powerful and the most powerful 
languages were least SME accessible. This problem remains unsolved. 

Combat instruction sets . . A Combat InstructIon Set (CIS) is a functional element ofCGF tactical 
behavior. The term CIS can variously refer to : 

1. A tactical behavior at the entity or small unit leve~ i. e. the behavior itself 
2. A written structured English description of that basic element of behavior 
3. A computer representation of that behavior (i.e. program code that executes that 

behavior). 
Note that these three forms are ostensibly different representations of the same thing; which one 
of the three fors is meant by the term CIS should be clear from the context of its usage. 

As a basic element of behavior, a CIS can be a maneuver, battle drill, or a patterned response to a 
condition. Example CIS-level behaviors include an entity planning a route, a platoon changing to 
column formation, or a company dispersing in response to an air raid. CISs can be defined for 
entities, platoons, companies, and battalions, though typically the majority of CISs are at the 
platoon and company level. According to [McEnany, 1994], company and especially battalion 
level CISs are most often assembled from lower level CISs. 

CISs are often used as the unit of CGF behavior specification. A CIS in the first form, a basic 
element of tactical behavior, is written out explicitly by 1m SME in the second form, a structured 
English description of the tactical behavior. That structured English CIS is then encoded by a 
Software Engineer in the third form, computer program code, and compiled into a CGF system 
Figure 2.5 suggests the process. Formal procedures for the transformations labeled (A) and (B) 
in Figure 2.5 are documented in [McEnany, 1994] and [Ourston,1995] respectively. 

CISs typically have names, such as Execute_Column_Formation. A CIS consists in essence of 
three components: 

I . Initiating conditions; A set of conditions that must exist for the CIS to become active. 
2. Steps; A sequence of detailed steps to be taken to perform the task. 

These steps are either subordinate CISs or primitive actions. Primitive actions are atomic 
(i.e. not decomposable), executable by individual entities, and do not require any decision 
making. Each primitive action is an entity action in one of four categories: move, shoot, 
communicate, or search/observe. 

3. Terminating conditions; A set of conditions which if present terminate the CIS. 
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FIRING-START low on ammo 
TGT-TYPE tank 

WPN-TYPE main_gun 
USE CANDIDATES FOR FILTER 1 

2D-DISTANCE < 1200. METERS 
AND ORDNANCE > 3 ROUNDS OF-TYPE heat 

OR 
2D-DISTANCE < 1000. METERS 
AND REL-TGT-HDG > 25. DEGREES 
AND ORDNANCE > 2 ROUNDS OF-TYPE heat 

USE FILTER 1 SELECTIONS FOR FILTER 2 
2D-DISTANCE < 850. METERS 

CHOOSE FROM FILTER 2 SELECTIONS 
FIRE 1 ROUND 
SELECT AT-MOST 2 main_gun 

END FIRING-START low on ammo 

Figure 2.3 Example behavior specification language: VEL [Lattimore, 1993}. 

DEFINE TARGET; 
REMEMBER SELF:CURRENT THREAT; 
SUBSCRIBE SELF:CURRENT THREAT 
TELL SELF AWAKEN THIS SCRIPT 
GOTO FOUND ONE WITH SELF:CURRENT_THREAT; 
TELL SELF BEGIN SCAN FOR THREATS 
POST SELF: CURRENT_THREAT; 
REMEMBER SELF:ARRIVED; 
SUBSCRIBE SELF:ARRIVED AWAKEN THIS_SCRIPT AT NOW_THERE; 

LETSGO: 
TELL SELF BEGIN PLAN AND GO 1438 2234 POST SELF:ARRIVED; 
SUSPEND; 

NOW THERE: 
TELL SELF END SCAN_FOR_THREATS ; 
POST INPUT SUCCESS; 
END; 

FOUND ONE: 
ASSIGN TARGET INPUT; 
TELL SELF END PLAN_AND_GO; 
REMEMBER SELF: TARGET_DEAD; 
SUBSCRIBE SELF:TARGET DEAD RESUME THIS SCRIPT AT LETSGO; 
TELL SELF ATTACK TARGET SELF:TARGET_DEAD; 
SUSPEND; 

Figure 2.4 Example behavior specification language: ILLISH [Smith, 1993}. 
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A CGF unit's operations order can be constructed and expressed as a sequence or set of CISs. 
Associated with the CISs of the mission are triggers for the invocation of each CIS in the mission. 
Those triggers might be: 

1. Completion of another CIS 
2. Arrival by the unit at a particular geographical control measure, such as an objective 

or phase line 
3. A specified time 
4. The existence of a particular battlefield condition. 

CISs were originally used in the first production CGF system, the SIMNET SAF, and are being 
used presently in ModSAF and the CCTT SAF, two of the three most important existing CGF 
systems. [McEnany,1993] defines CISs and the structure of a structured English CIS in some 
detail and gives example CISs in tha~ form. 

2.1.3.2 Behavior generation 

The most common single paradigm for organizing and controlling behavior generation within 
simulation has been the Finite State Ma~hine (FSM). (It is assumed that the reader is familiar 
with FSMs as they are defined in automata theory; if necessary, see [Hopcroft,1979] or 
[Lewis, 1981] for good introductions.) The simulation behavior generation techniques, though 
referred to as FSMs, always include capabilities outside the bounds of formal automata theory 
FSMs. Hereinafter "FSMs" refers to the behavior generation paradigm rather than the automata 
theory construct. 

Many FSM variants have been used in simulations of various types; often the researchers reinvent 
the idea quite unaware of other similar applications (e.g. [petty, 1988a]). The popularity and 
repeated use of this idea suggests its intuitive appeal and effectiveness. 

The common idea is that a simulation entity's behavior is decomposed into a finite set of behavior 
patterns or states, with identifiable and discrete conditions for transitioning between the states. 
Typically the FSMs are used as an organizing mechanism for structuring or encapsulating 
procedures or functions written in a lower level programming language. Associated with each 
state is an implementation (e.g. a function or procedure in the underlying language) of that state's 
behavior; while in the state, that implementation is executed. The current state of the FSM 
therefore determines what behavior the simulation entity executes. Transitions between states are 
triggered by events or conditions in the simulation. 

FSMs have been used in both CGF and non-CGF applications. Representative examples ofFSM 
use in non-CGF systems include a wide range of applications; three examples will be given. First, 
[Maruichi, 1987] describes how the behavior of fish in an ocean environment simulation was 
defined using FSMs. The underlying implementation language is Lisp. Second, The Zaroff 
planning system selects behaviors for players in a "hide and seek" game; the behaviors are then 
animated by Jack, a human modeling and simulation program [Badler, 1993]. Once selected, the 
behaviors' execution is controlled by FSMs [Moore, 1995]. Each state corresponds to and 
controls a distinct temporal component of the behavior. Finally, the Iowa Driving Simulator is a 
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high-fidelity driving simulator [Cremer,1994] [papelis, 1994]. The operator's station, built around 
the cab of an actual automobile, includes a motion platform, force feedback controls, and high­
resolution image generation. The operator is faced with driving scenarios that include other 
vehicular traffic. As explained in [Ahmad, 1994], the other vehicles in the simulation are 
controlled by "hierarchical concurrent state machines", a variant ofFSMs that allow states to be 
defined as sets of subordinate states and permits more than one state to be simultaneously active. 
The implementation language is C. 

[Fishwick, 1993] describes the use of hierarchically organized FSMs to control simulated behavior 
in the context of multimodeling. In multimodeling a system is modeled at different levels of 
abstraction and different modeling formalisms, such as FSMs, may be used at each level. In 
[Fishwick, 1993], the states of an FSM are represented as either more detailed FSMs or low-level 
continuous models implemented as sets of equations. 

As for CGF-type applications, FSMs have been used often. [petty,1988a] and [petty,1988b] 
report on a project where FSMs were used to generate the behavior of combat aircraft in the 
vicinity of an aircraft carrier. Defensive fighters (F-14 Tomcat) and attacking bombers (Tu-95 
Bear), each with different behaviors, were controlled with FSMs. The underlying language was· 
Lisp and the FSM states corresponded to Lisp functions. Although this application (air combat) 
is one that might be ordinarily associated with a CGF system, the system was developed to test an 
animated graphics programming environment and lacked several of the characteristics of a CGF 
system as defined earlier (e.g. a network interface). 

FSMs were used to both specify and generate entity-level behavior in SAlC's SimCore simulation, 
which is an analytic-style simulation interfaced with DIS [Aronson,1994]. The SimCore 
"HierarchicaL Concurrent Finite State Machines" can be organized hierarchically, with each FSM 
state containing either one or more sub-FSMs, algorithmic procedural code, a rule-based system, 
or a linear program Multiple FSMs can be active concurrently for a single entity. 

Though it is a constructive wargame and not a CGF system as defined in this document, it is 
worth mentioning that FSMs are also used to control entity-level behavior in the U. S. Marine 
Corps' MWARS simulation [parsons, 1994]. 

FSMs are used to specify and generate the behavior ofCGF entities in all three of the most 
important CGF systems: the 1ST CGF Testbed, ModSAF, and the CCTT SAF. These three CGF 
systems will be examined in some detail later; as an example, the use of the FSM mechanism in 
the 1ST CGF Testbed will be presented in some detail here. 

In the 1ST CGF Testbed, the primary means of behavior specification and generation is a code 
structuring technique based on FSMs. Behavior in the CGF Testbed is ultimately encoded as 
algorithms written in C. However, the C code is organized using the FSM mechanism The basic 
idea is that atomic units of behavior, implemented as C functions, become states in an FSM. In 
other words, each state in an FSM corresponds to either a C function or another, lower-level 
FSM. FSMs exist as actual data structures in the CGF Testbed, with each state containing a 
pointer to the function corresponding to the state. When, an FSM enters a particular state, one of 
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two actions may occur. If that state corresponds to a function, that function is called. If the state 
corresponds to a FSM, that FSM is started. 

Each state determines the next state to be entered by testing simulation conditions; thus 
transitions may be triggered indirectly by simulation events. The C function for a state in an FSM 
contains code for both the behavior associated with that state and the conditions for selecting the 
next state. The transition conditions associated with each state, expressed as C conditions, test 
conditions in the simulation to determine the next state to be entered. Time delays may be 
associated with the transitions in the FSM to produce realistically timed behavior. 

A simulation entity may have multiple independent FSMs controlling various aspects of its 
behavior executing concurrently in an asynchronous fashion. However, it is the responsibility of 
the programmer to ensure that FSMs that may execute concurrently do not interfere with each 
other. This is sometimes a problematic task. 

More complex behavior can be constructed, bottom up, by combining simpler FSMs. The FSM 
mechanism has been extensively used to build up a variety of complex autonomous behavior 
patterns for CGF entities. 

Figure 2.7 gives an example of an FSM from the 1ST CGF Testbed. The notation used in the 
example is first defined in Figure 2.6. Both Figure 2.6 and Figure 2.7 are drawn from 
[Smith,1992c]; it, as well as [petty,1992c] and [Karr,1992b], contains additional example FSMs 
from the 1ST CGF Testbed. 

The 1ST CGF Testbed has the capability to support multiple CGF entities. To do so, it was built 
around an executive that provides a non-preemptive task scheduling capability. The executive 
maintains a message queue that identifies entity processes waiting to execute. It gives control to a 
process on that queue, which executes. Upon completion, that process must identify the next 
process to execute for its entity and add that process to the executive's message queue before 
returning control to the executive. The process, i.e. the unit of execution, is an FSM state. That 
is, when an entity gains control of the processor, it executes one state of one of its currently active 
FSMs. The state performs its computations by calling its associated function. That function 
either includes a determination of the next state to execute for the entity or the FSM will become 
dormant when the current state completes its execution. That next state's identity is placed on the 
executive's message queue. See [Danisas,1990] and [Smith,1992b] for more details on the 1ST 
CGF Testbed's executive; its FSM mechanism is described in detail in [Smith,1992c]. 

As mentioned earlier, FSMs are also used for behavior generation and control in ModSAF 
[Calder, 1993] [Pratt,1995a] and the CCTT SAF [Marshall, 1994]. Those mechanisms will be 
discussed later. 
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Symbol 

> > II FSM name II 

state name 

----> 

---> > 

--->X 

I 

~» 
X 

I 

Meaning 

The entry state of an FSM. 
The name of the FSM is shown in the box. If this symbol 
appears in an FSM diagram as other than the first state , it 
implies the invocation of another FSM. 

State within an FSM. The name of the 
state is enclosed in the box. 

Transition to another state within the 
same FSM. Flow is from top to bottom. 

Transition to another state within the 
same FSM. Flow is left to right. 

Start an FSM. 

Send an AWAKEN _FSM message to sleeping FSM. 

FSM makes a transition from the upper state 
to the lower state, starts a new FSM, and 
goes to sleep awaiting an AWAKEN FSM message 
from the new FSM. -

FSM makes a transition in direction of the 
arrow, starts a new FSM, and goes to sleep 
awaiting an AWAKEN FSM message from the 
new FSM. -

Labels on the transition arrows describe transition conditions . Time labels , e . g. "1 second" , 
give delays between states . Only one transition from a state may be taken. 

Figure 2.6 1ST CGF Testbed FSM diagram notation [Smith,1992c]. 
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When a CaF infantry fireteam is given permission to fire antitank missiles, the 
di_open_fire_atgm FSM is started. The start state, di_openJire_atgm immediately 
transitions to the di _await _ atgm _target state. The di _await _ atgm _target state performs target 
acquisition and selection. The di await atgm target state repeats every second until a target is 
found . When a target is found, dl_awali_atgm_target has two actions. First, it starts the 
face target FSM which causes the fIreteam to face the intended target. Second, the FSM 
tranSitions to the di stop and kneel state, which brings the fireteam to a halt and then 
transitions to the next state after a delay corresponding to the weapon setup time . The 
di Jire _ atgm state launches a missile the target is still visible and if the fireteam is not 
suppressed. The missile is launched by starting the fire missile FSM; that FSM generates the 
missile launch flash, controls the missile in flight, and handles the impact at the end of the 
missile's flight. The di _open_fire _ atgm FSM sleeps until fire_missile reports that the missile 
flight is finished, whereupon the di reload atgm state is awakened. The di reload atgm state 
reloads the fireteam and transitions to the di await atgm target state for another cycle. - - -

Figure 2. 7 Example 1ST CGF Testbed FSM [Smith, 1992c]. 
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Although the idea of using FSMs as a behavior control mechanism has been repeatedly 
reinvented and widely applied, notably in the most important CGF systems, there have been a few 
dissenting opinions expressed regarding them For examples, see [Harmon, 1991] and 
[Harmon, 1994] for criticisms of their use or [Ahmad, 1994] for an expression of their limits 
(though the latter simply proposes an enhanced version ofFSMs). Other behavior generation 
techniques have been used in some CGF systems; those will be identified later. 

2.1.3.3 Artificial intelligence in CGF systems 

As might be expected, many researchers have applied artificial intelligence (AI) techniques to the 
problems of behavior specification and generation, or tactical decision making, in CGF systems. 
CGF would seem to be a natural application for AI techniques. 

As an example, one interesting way to view an autonomously behaving entity is as an active 
version of an expert system Expert systems encode knowledge in a way that could be considered 
passive, in that such systems typically wait for a user to consult the knowledge [Harmon, 1986]. 
Computer generated forces entities instead use their encoded knowledge to act and react to 
situations in the simulated battlefield, in an active or goal-seeking manner. This difference is a 
matter of how the knowledge is accessed and triggered; some systems for controlling autonomous 
entities use behavioral knowledge encoded in forms, such as production rules, that are very much 
like the knowledge bases of expert systems. 

Many other AI techniques have been applied as well. However, a thorough survey of that work is 
beyond the scope of this document. Instead, Table 2.1 lists many of those efforts. 

In spite of the intuitively reasonableness of applying AI to CGF, the results of these applications 
of AI to CGF have been decidedly mixed. Two problems bedevil the straightforward application 
of AI to CGF. The first problem, mentioned earlier, is the real-time aspect of CGF systems. CGF 
systems must make tactical decisions in very short time frames; classical AI techniques can require 
too much processing time. [petty, 1995b] identifies this problem for general CGF processing and 
[Hayslip, 1988] makes the same comment in regards to AI techniques for terrain reasoning. 

The second problem is that the tactical situation, or more precisely the data representing the 
tactical situation that a CGF decision making algorithm must process, is rather "messy"; i. e. 
voluminous, continuous, and represented in several different formats. The decision making 
algorithm must consider the terrain, the other entities in the battlefield, the military mission, and 
tactical doctrine of the forces it is simulating. The terrain might be made up of thousands of 
polygons or elevation posts supplemented with linked li&ts offeatures such as buildings or trees, 
aU located continuously in three dimensional space. The other entities are represented by a set of 
attributes that include location, orientation, velocities, damage status, equipment type, and force 
alignment. The military mission, if organized as Operations Orders, might be a frame-like 
structure with slots for objectives, phase lines, and intelligence objectives, encoded in a structured 
English text. The tactical doctrine could be encoded in any of the forms described earlier. 
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------- - -- - - - - - - - - -
AI Technique CGFSystem CGF Application Reference(s) 
Search (A *, Iterative Deepening A *) None (proposed application) Entity route planning (cross country) [Holmes, 1992] 

[Marti,1994] 

CGF Testbed Unit route planning (cross country) [Rajput, 1994b] 
[Karr, 1995d] 
[Karr,1995e] 

None (proposed application) Unit route planning (cross country) [Cunningham, 1993] 

None (proposed application) Unit route planning (road nets) [Benton, 1987] 

SIMNET SAF Unit route planning (road nets) [Stanzione, 1989] 

ODIN SAF Unit route planning (road nets) [Stanzione, 1993] 

ModSAF Concealed route planning [Longtin, 1995] 

CCIT SAF Entity and unit route planning (road nets) [Campbell,1995] 
Behavior-based control CAAT Air combat maneuvering [Keirsey, 1994] 

SIMNET SAF Entity driving, resolution between conflicting goals [Harmon, 1991 ] 
[Harmon, 19941 

Blackboard Command Decision System Blackboard used to integrate results of disparate [Gates, 1990] 
"knowledge sources", i.e. CGF behavior modules [Braudaway, 1992] 
implemented as rule-based expert systems or [BraudawaY,1993 
procedural algorithms 

Fuzzy sets MWARS Unit command decision making; selection among [Parsons, 1994] 
tactical actions given by human during scenario setup 

- --- -- --- -
,---M9<iSAF 

-- ---- --- - - ---- ---
J'(lr~et threat evaluation J~isI1er~,ly9~ 

Table 2.1 (part 1 of 4) Some CCF applications of AI techniques. 



-------------------
AI Technique CGF System CGF Application Reference(s) 
Neural networks Air Combat Maneuvering I-vs-I air combat maneuvering [Crowe, I 990] 

Expert System (ACMES) 

DeSim Generic military decision making; all decisions at [Weaver, 1994] 
all scales, with parametric inputs to the net 

None (proposed application) Tactical decision making for entities and units, [Jaszlics,1993] 
based on abstracted physical information [Jaszlics, 1994] 

Planning (Optimization) VCom Entity and unit route planning [Cunningham, 1994] 

Planning (Simulation based) None (proposed application) Unit mission planning (Lee, 1994a] 
(Lee, 1994b] 
(Lee, 1994c] 

Planning (Simulation based) ModSAF Unit mission planning [Karr,1995b] 

Planning (State-space search) Captain Selecting subunit defensive positions [Hille, 1994] 
i 

[Hieb,1995] 
[Hille, 1995] 

SoarIIFOR Planning air combat maneuver and action sequences [Jones, 1993b] 
[Johnson, 1994] 
[Jones, 1994b] 
[Jones, 1994c] 
(Laird, 1994] 
[Rosenbloom, 1994] 
[Tambe,1994] 
(Laird, 1995] 
[Nielsen,1995] 
[Tambe,1995a] 
[Tambe,1995b] 

Planning (Universal plans) MAXIM Aircraft and missile maneuvering in air combat [Dyer, 1993] 

Table 2.1 (part 2 of 4) Some CCF applications of AI techniques. 



-------------------
AI Technique CGFSystem CGF Application Reference(s) 
Rule-based expert system Command Decision System Cavalry platoon commander for reconnaissance [Braudaway,1992] 

mission (total of38 rules) [Braudaway,1993] 

CCIT SAF Platoon and company unit command [Bimson, 1994] 
[Ourston, 1994] 

CGF Testbed Single entity control during reconnaissance operation [Gonzalez, 1991 ] 

ITEMS Several aspects of entity and small unit behavior, [Siksik, 1993] 
including air combat maneuvers and weapons use, [Kocabas,1995] 
and unit (company and battalion) command and 
control 

None (proposed application) Target identification [Vrba,1988] 

Piastre Tactical movement of platoons of target vehicles [SOGITEC,1989] 
[Huon, 1989] 
jKada, 1994] 

Game-tree lookahead Game Commander Unit command and control designed for ModSAF [Katz, 1994] 

Intelligent Player Controlling helicopter movement in air combat [Katz, 1989] 
[Katz, 1991] 
[Katz, 1992] 
[Katz, 1993] 
[Schaper, 1994] 
[Pandari,1995] 

Table 2. 1 (part 3 of 4) Some CGF applications of AI techniques. 



-------------------
AI Technique CGF System CGF Application Reference(s) 
Learning (Case-based) CAAT Air combat maneuvering [Keirsey, 1994] 

Learning (Explanation-based) ITEMS l-vs-1 air combat maneuvering [Kocabas, I 995] 

Learning (Multi strategy) Captain Company and battalion command agents that learn [Hille, 1994] 
tactical rules and behaviors based on both SME [Hieb,1995] 
and autonomous performance in simulation [Hille, 1995] 

Natural language processing Soar/IFOR Communication between CGF entities and humans [Rubinoff, 1994] 
[Lehman, 1995] 

Backward reasoning from goals ModSAF Prolog-based backward reasoning for unit control [KWcik, 1995] 
Semantic net None (proposed application) Tactical state representation in unit command entity [Mall,1995] 
Distributed AI None (proposed application) Distributed tactical decision making [Le,199Q] I 

Table 2.1 (part 4 of 4) Some CGF applications of AI techniques. 
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Figure 2.8 shows the CGF decision making process in the context of the transformations that 
must occur. In order to apply a typical AI technique, the data describing the tactical situation 
must be transformed into the format that the technique can process; e.g. input vectors for neural 
nets, states and operators for search, or facts and rules for a rule-based system This 
transformation is an abstraction process, where the large amounts of raw data are abstracted into 
a classification of the tactical situation, with key aspects of the situation identified and irrelevant 
ones discarded. This abstraction process is sometimes called Situational Awareness. 

The center process in Figure 2.8, Tactical Decision Making, is where most AI techniques are 
applied to CGF systems. The techniques operate reasonably well in a conceptual decision space 
to produce conceptual decisions. 

Then, once a conceptual tactical decision has been made, it must again be transformed from the 
output format of the AI technique into specific commands and actions for the CGF entities; e.g. a 
decision for a unit to attack an objective must be transformed into a set of specific routes for the 
unit's component entities to follow. This transformation is referred to as Order Generation. 

The input and output transformations, especially the fonner, can be quite difficult. It is often the 
input transformation task that limits the success of applying a particular AI technique. Direct 
application of AI techniques is frequently most successful in domains where the tactical situation 
is closest to the abstract representation used by the AI technique. For example, state-space search 
(Soar/IFOR, [Laird,1995]) and game-tree generation (Intelligent Player, [Katz, 1993]) have been 
applied to the domain of air combat, where the small numbers of entities and minimal terrain 
interaction make the input transformation easier. As another example, an effective use of the A * 
search algorithm for unit route planning described in [Rajput, 1994b] [Karr,1995d] depends on an 
input transformation wherein the essentially continuous polygonal terrain database is cleverly 
discretized into an array of abstract terrain cell types. The underlying A * search algorithm is 
defined in [Nilsson,1980] and [Winston, 1984]. 

Other attempts to use AI techniques for CGF that did not understand the importance of the 
transformations, especially Situational Awareness, have been less successful. The point of this 
discussion is to emphasize the importance of the transformations. Given an effective 
transformation, AI can be applied to CGF successfully. 

2.1.4 Verification, validation, and accreditation of CGF systems 

The process of evaluating a simulation or simulation system and certifying it for use is known as 
verification, validation, and accreditation (W&A). [Goldiez,1991] provides a general 
introduction to the W &A of simulation systems. Those terms are defined as follows: 
Verification; determining if a simulation performs as specified and designed. 
Validation; determining if a simulation has sufficient fidelity for its intended purpose. 
Accreditation; certification by an authorizing organization that a simulation may be used for its 
intended purpose. 
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Physical Information Space 

Terrain; polygons, elevation posts, quadtrees, feature lists 
Entities; type, location, orientation, velocities 
Events; weapons detonations, communications 
Mission; goals, plan, constraints, intelligence data 

Input transformation: 
Situation Awareness 

~ ~ 
Conceptual Information Space 

Classification of situation: e.g. 
"Close range threat on left flank." or 
"Likelihood of reaching objective is lo~ 
Identification of key aspects of situation e.g. 
location of enemy entity covering objective 

Tactical Decision Making 

~ ~ 
Conceptual Decision Space 

Selected tactical action(s); e.g. 
"Frequent indirect fire" and/or 
"Conduct hasty attack" and/or 
"Move to objective using bounding ovelWCltcH' 

Output transformation: 
Order Generation 

~ ~ 

Physical Execution Space 

Corresponding ph~sical actions; e.g. 
Entity movement routes 
Weapon utilization commands 
Subordinate units' orders 

Figure 2.8 CGFdecision making in context (adoptedfrom [Jaszlics,J993]J. 
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The first requirement of CGF systems is that they work; i. e. that they generate plausibly human 
and tactically reasonable behavior in real-time situations in the virtual battlefield. Until recently, 
the difficulty of meeting that basic requirement has held the attention of CGF system developers. 
However, though building a working CGF system is a challenging task, simply doing so is not 
enough. To be useful a CGF system must meet standards of quality. 

Because the attention of CGF developers had been focused on producing working systems, 
W &A of the behavior and capabilities of CGF systems had often been haphazard or informal 
(with a few exceptions). However, as CGF systems become more important to the utility of 
current and planned simulation systems a more methodical and quantitative approach to W &A of 
CGF systems is needed. In the last few years some preliminary efforts to VV &A CGF systems in 
a more organized manner have been performed. 

This sub subsection will informally present some CGF VV &A issues. It first outlines some CGF 
fidelity requirements. Following that, several CGF VV &A experiences are described and 
commented on. Finally, one VV &A method, specifically the Turing Test as applied to CGF 
systems, is discussed at some length. 

2.1.4.1 CGF fidelity requirements 

The claimed benefits of a CGF system in DIS are all based on the assumption that the CGF 
entities can be made to behave in a usefully realistic manner. Ifhuman trainees are to experience 
positive training from interacting with a CGF opponent, that force must provide valid and useful 
opposition. To do so, the CGF entities must act in a manner that meets three criteria: 

1. Physical realism 
2. Behavioral intelligence 
3. Doctrinal accuracy 

Physical realism. The behavior generated for a CGF must be physically realistic in the sense that 
it provides a level of realism appreciated by the trainee. This requirement was discussed earlier. 

Behavioral intelligence. The second and most problematic criterion of CGF behavior is 
reasonable behavioral intelligence. This means that the CGF controlled entities must react to a 
given situation in a manner similar to the entities being simulated. Because the simulated entities 
are often controlled by humans, the CGF behavior must appear to be similar to, and thus as 
intelligent as, human behavior in each situation. Of course, the intelligence requirement is easier 
to meet if the CGF is simulating entities that consist of non-human entities such as pilotless drone 
aircraft. Note that the granularity and fidelity level of the simulation normally keep the intelligent 
behavior requirement from becoming as difficult as the general AI problem In the DIS world the 
repertoire of behaviors available to humans who are acting as members of a tank crew is much 
smaller than the repertoire of general human behavior, so intelligent behavior by a CGF tank is 
easier to generate than intelligent human behavior. Even so, producing intelligent behavior in a 
CGF is still a formidable task and the subject of much research. 
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In the area of reasonable intelligence, the real-time aspect of DIS becomes particularly relevant. 
Many AI techniques exist that may be able to contribute to the process producing the desired level 
of intelligence, but that do not execute with enough speed. 

Doctrinal accuracy. CGF behavior must be doctrinally correct in the sense that the actions of the 
CGF should be believable in terms of the . entities the CGF is simulating. Consider the SIMNET 
SAF; it is often used to control tanks and other vehicles intended to represent those of an army 
equipped and trained by the former Soviet Union. For the SIMNET SAF vehicles to be accepted 
by SIMNET trainees as elements of such an army, they must maneuver and act according to 
Soviet tactical doctrine. The issue in this example goes beyond simple believability; an important 
goal of SIMNET as a training system is to give the trainees an opportunity to engage an opponent 
that uses Soviet tactics. 

In other simulation domains, doctrinal correctness, where doctrine is defined as the behavioral 
norms for the class of entities being simulated, remains important. In an air traffic control 
simulation that includes aircraft controlled by a CGF system, for the simulation to be useful those 
aircraft should in most cases re-create the behavior of aircraft flown by actual commercial pilots. 
Fidelity to doctrine is a significant goal to be addressed by the results discussed later in this 
survey. 

Interestingly, [Hunter,1991] asserts that CGF fidelity requirements can be seen as variable 
depending on the simulation situation. According to [Hunter, 1991], CGF entities remote from 
and not involved with human participants can safely be simulated with a lower degree of fidelity 
(and therefore with less computational overhead). For example, a simple and inexpensive 
probabilistic calculation could be used to resolve CGF-vs-CGF missile combat instead of the 
complex and costly missile flyout process currently used by CGF systems. However, difficulties 
arise with this idea, for example, in determining whether another entity is in fact CGF controlled 
or in analytical uses of the CGF system where high fidelity is needed even when humans are not 
involved. For these and other reasons few CGF developers take this viewpoint and there has been 
little or no attempt to vary representational fidelity within existing CGF systems. 

2.1.4.2 Some CGF W&A experiences 

Here a number of CGF W &A experiences are briefly recounted; this material follows 
[petty, 1995f]. The experiences reviewed fall into several categories. Each will be described in 
turn, followed by a summary of CGF W &A lessons learned. 

1. SME observation 
2. Turing test 
3. Measured comparison 
4. Statistical comparison 
5. DIS testing 
6. ~hertechniques 
7. Common factors 

34 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SME observation. Perhaps the most commonly used VV &A method for CGF systems is 
observation ofCGF entities' behavior by subject matter experts (SMEs), who are typically military 
officers (either active or retired). In this technique, SMEs would simply observe the CGF entities 
in a test exercise and intuitively decide, based on their expertise, that the behaviors were (or were 
not) good enough. 

This classical method is applied informally by every CGF developer, but it can be done in a more 
formal fashion. A particularly well organized and thorough example of this method was the 
evaluation conducted at the U.S. Army Infantry School of the 1ST's SAFDI system At the 
Infantry School's SIMNET facility the SAFDI system "fought" with and against a U.S. Army unit 
in a series of three carefully de~igned battles that were observed and analyzed by an invited panel 
of SMEs. The SMEs had prepared in advance specific sets of performance criteria that they 
wished to observe and evaluate. The results of the evaluation are reported in [Chervenak, 1993] 
and [D'Errico, 1994]. 

[Jones, 1993a] asserts that using a CGF system in a training environment is a useful means of 
informal validation, in that the trainees and instructors will necessarily observe the behavior and 
performance of the CGF entities and are likely to provide feedback on problems. 

Turing Test. One particular form ofSME observation is the CGF Turing Test. Because of the 
large amount of attention the CGF Turing Test has received in the CGF literature, it will be 
discussed separately; it is listed here for completeness. 

Measured comparison. The measured comparison CGF VV &A technique involves the 
measurement of some set of quantifiable aspects, or metrics, of CGF behavior and the comparison 
of the measured values for those metrics with values for the same metrics derived from a different 
source that is assumed to be valid. 

An experiment to evaluate the effectiveness of a behavior-based driver module that had been 
added to the SIMNET SAF is detailed in [Harmon, 1991]. To conduct the evaluation twenty 
different movement scenarios were designed so as to test the new driver module under many 
different circumstances. The scenarios were organized as a taxonomy of driving situations, a 
method that helped to develop a more complete set of scenarios. The scenarios were run 10 times 
each with both the baseline and the modified versions of the SIMNET SAF. The results of each 
exercise were logged. Specific performance metrics, such as vehicle collisions and route 
efficiency, were defined and calculated from the exercise logs and compared between the two 
versions. Though this experiment was a comparison of two versions rather than a VV &A effort 
as such, it is a useful example of the measured comparison technique. 

The Unit Performance Assessment System (UPAS) is a personal computer-based system for 
collecting and analyzing SIMNET network traffic (i.e. PDUs) [Meliza, 1991] [Meliza,1995]. It 
was developed with the intent of measuring how well vehicle crews perform cooperatively as part 
of a unit. UPAS calculates various performance metrics by analyzing exercise logs. 
[Vaden, 1994] describes how UPAS was used in 1993 to evaluate ModSAF by comparing the 
actions ofModSAF entities with the actions of entities controlled by humans in crewed 
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simulators. A series of 10 company sized exercises were logged and then analyzed by UPAS with 
two goals: first, to evaluate control ofModSAF behavior by physical parameter, such as line of 
sight and range, and second, to identify specific behaviors that could be used to distinguish 
between human-controlled and ModSAF-controlled entities. ModSAFs performance was found 
to differ from the humans' in several areas, including firing range, firing strategies, and scanning 
(turret azimuth movement). 

In 1994 the same methodology, UPAS analysis of network traffic logs, was used to compare 
ModSAF and the SIMNET SAF in order to select one for the Army's Synthetic Theater of War­
Europe (STOW-E) exercise. In a rather critical evaluation, [Meliza,1995] indicates that both 
CGF systems displayed "inadequate sensitivity" to factors such as mission, enemy, time, terrain, 
and troops. The UPAS analysis also revealed unrealistic engagement ranges, rates offire, and 
firing ranges for direct fire actio~s, as well as no use of cover and concealment. ModSAF has 
been improved substantially since these evaluations were conducted (see [Courtemanche, 1995aD. 

Statistical comparison. Statistical comparison techniques for CGF VV &A attempt to apply 
proven statistical methods, such as hypothesis testing, to data representing CGF behavior. 

Algorithms which planned military reconnaissance routes were implemented in the 1ST CGF 
Testbed. The algorithms were given as input a defined area of a polygonal terrain database and 
produced as output a series ofwaypoints that defined effective reconnaissance routes for that 
terrain. Independent of the algorithms, human SMEs chose locations in the input terrain areas for 
enemy vehicles in defensive positions. The goal for the reconnaissance route planning algorithms 
was to plan routes based on the terrain that would allow a reconnaissance vehicle following the 
route to sight as many enemy vehicles as quickly as possible. 

The algorithms were validated by statistically comparing their performance with that of human 
SMEs ( military officers) performing the same task. Reconnaissance vehicles followed routes 
produced by the algorithms and by the SMEs. The time at which each enemy vehicle was sighted 
was recorded. A statistical hypothesis test was used to compare the sighting times resulting from 
the algorithms' routes with those resulting from the SMEs' routes. The specific test used was the 
Wilcoxon Signed-Rank Test, a non-parametric test useful for comparing paired observations. The 
vehicle sighting times were compared in a pairwise fashion, first-sighted to first sighted, second­
sighted to second-sighted, and so on. The best of the algorithms performed at a level comparable 
to the human SMEs. This effort is documented in [Van Brackle,1993a], [Van Brackle,1993b], 
and [petty,1994a]. 

A similar method was used to VV &A the Security Exercise Evaluation System (SEES), a variant 
of the U.S. Army's Janus entity-level constructive simulation. Though SEES has limited CGF 
functionality (most entity behavior is controlled by operators), the technique used is nonetheless 
instructive. A scenario involving an attempt by a well-armed terrorist group to steal a nuclear 
warhead from a warhead storage facility at Wurtsmith Air Force Base was defined. The scenario 
was run a number of times as a live simulation with human soldiers equipped with MILES laser 
training weapons attacking and defending the actual warhead storage facility. Field instruments 
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recorded key simulation events. The same scenario was then run repeatedly in SEES and the 
results logged. 

The results of the SEES simulation and the live simulation, including force ratios and the times of 
key events, were then compared statistically. The Kolmogorov-Smirnov (K-S) statistic was used 
to determine if the live simulation results and the SEES simulation results came from the same 
underlying distribution. The formulation of the test used assumed (had as the null hypothesis) that 
they did. K-S values were computed for the attacker-defender force ratio, which changed over 
time as soldiers were "killed", at 30 second time intervals for the duration of the exercise. The 
computed K-S statistics would not support rejection of the null hypothesis for most time intervals. 
The SEES analysis is reported in [Friedman, 1993 a] and [Friedman, 1993b]. 

DIS testing. CGF systems and the DIS networked simulation protocol are closely bound, not 
because CGF systems are only relevant to DIS, but because most existing CGF systems have been 
developed for use within DIS. The special characteristics of CGF systems affect the way they are 
tested, i.e. validated, for DIS compliance. Test procedures specific to CGF systems when testing 
for DIS compliance are given in [Vanzant-Hodge, 1994a], where advantages and disadvantages 
specific to testing CGF systems are identified. The converse operation, using a CGF system as a 
tool in DIS compliance testing, is discussed in both [Loper, 1993] and [Vanzant-Hodge, 1994b]. 
The former reference observes that at the 1992 DIS Interoperability Demonstration the CGF 
systems tended to pass the DIS compliance tests more readily than the other simulator types. 

Other techniques. A CGF system can be incrementally or partially validated through the inclusion 
of separately validated component models. As part of the Anti-Armor Advanced Technology 
Demonstration (A2ATD), a set of component models accredited by the Army Material Systems 
Analysis Activity (AMSAA) were incorporated into ModSAF. Those models were: 
1. Direct fire delivery accuracy 
2. Direct fire rate offire 
3. Direct fire vulnerability 
4. Indirect fire vulnerability 
5. Target acquisition 
6. Mobility 
[Courtemanche,1994] explains the models themselves and their incorporation into ModSAF. The 
model validation process is described in [Thomas, 1995a] and [Thomas,1995b]. 

After the physical models were incorporated, ModSAF was further validated for A2A TD with a 
series of comparison trials. Two company-sized scenarios (a hasty attack and a hasty defense) 
were run 24 times each using ModSAF and the results were logged. The exercise outcomes were 
compared with the outcomes of the same scenarios produced earlier during the MIA2 Initial 
Operational Test and Evaluation (IOT&E), a live simulation test of a new variant of the Ml tank. 
The ModSAF outcomes were also compared to exercise outcomes from CASTFOREM 
(Combined Arms Support and Task Force Evaluation Model), a constructive force-on-force 
combat simulation that has been used by the Army for years. The comparisons showed some 
discrepancies, especially in ModSAFs tactical behavior, which were overcome via operator 
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workarounds. ModSAF was eventually validated for use in A2ATD. This experiment is 
discussed in [Harkrider,1995], [Thomas,1995a], and [Thomas, 1995b]. 

[Monday, 1995] reports on automated test procedures for ModSAF. The procedures are of two 
types: regression testing, which is determining if new changes have compromised existing 
functionality, and VV&A testing, which is determining if the system conforms to specific 
modeling criteria. The later testing involves logging test runs and analyzing the logs for events of 
interest. 

Common factors. The first attempts at formal VV &A of CGF systems are of interest because 
they provide guidelines and lessons that contribute to the design of an overall VV &A 
methodology for CGF systems. From those experiences, three common factors of general 
applicability to CGF VV &A can be discerned. First, note that in almost every case, the VV &A 
process proceeds by logging and then analyzing network traffic (DIS or SIMNET PDUs). This 
technique appears to be fundamenta1. Second, the CGF system's behavior is usually being 
compared with something else; either the behavior of humans, humans in a simulation, or some 
other simulation. The choice of what to compare the CGF system with seems to depend on the 
goal of the VV &A. Finally, all of these efforts are essentially "black box" validations, in that the 
CGF behavior is recorded and analyzed from the outside. Almost no organized CGF VV &A is 
done by validating the behavior specifications or the performance parameters which are input to 
the CGF system 

2.1.4.3 The CGF Turing Test 

As alluded to earlier, it is important that the users of virtual battlefield simulation, i.e. the trainees 
who face CGF opponents, accept the behavior of those opponents as plausibly human and 
reasonably close to the doctrine of the enemy force being simulated. For that reason, many CGF 
researchers have suggested or assumed a CGF equivalent of the Turing test as a measure of CGF 
system quality or realism The issue of the usefulness of a CGF Turing Test is examined in detail 
in [Petty,1994c] and [petty, 1995c]; those arguments are summarized here. 

In [Turing,1950], Alan Turing proposed his now famous test of intelligence for non-human 
systems. The essential idea of the test, as it is commonly reformulated, is that a system is said to 
be intelligent if an observer can not reliably determine if its observed behavior is produced by the 
system or by a human. Whether or not the Turing Test is actually a valid test of intelligence is still 
hotly debated (e.g., see [Johnson,1992], [Harnad,1992], and [Shapiro,1992]); luckily, that 
question need not be answered here. Instead, we are concerned with a version of the Turing Test 
applied to CGF systems: Can observers of entities in a simulated battlefield reliably determine 
whether any given entity is controlled by humans or by a CCF system? (See Figure 2.9.) Like 
the original Turing Test, the CGF Turing Test is purely operational in that it deliberately ignores 
the question of how the CGF behavior is generated; it is interested only in the quality of the 
generated behavior. . 
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Who are the "observers" in this context? [petty, 1994c] and [petty,1995c] define the trainees in 
the simulated environment as the observers, for two reasons. First, because the goal of a CGF 
system in a training simulation is to produce positive training benefits in its participants, a test for 
quality of the CGF system should be based on the participants. Second, the simulation 
participants are the observers most often identified by CGF researchers with invoking the CGF 
Turing Test. 

An experimental application of the CGF Turing Test is described in [potomac,1990] and 
summarized in [Wise, 1991]. In the experiment, two platoons of soldiers fought a series of tank 
battles in the SIMNET simulation. In the battles, one of the platoons defended a position against 
an attack; the attacking tanks were controlled by either the other platoon of soldiers, a CGF 
system (the SIMNET SAF system, described later) or a combination of the two. Each platoon 
fought in two different scenarios against each of the three attacking forces, for a total of twelve 
engagements. The two platoons of soldiers had no contact with each other before or during the 
experiment outside of their simulated battlefield encounters. They were not able to correctly 
identifY the attackers at a rate significantly different from random chance. Thus the CGF system 
of the experiment (the SIMNET SAF) appears to have passed the CGF Turing Test. The authors 
of [Wise, 1991] seem to think so; they describe the experiment as evidence that" .. . it is plausible 
to conduct the Turing Test for computer generated forces, not just individual vehicles, and further 
that it is now possible to pass it. " 

Passing the CGF Turing Test is considerably easier than passing the original Turing Test, for at 
least three reasons. First, the domain of interactions between the observers and the CGF system 
is more limited; questions and answers are replaced by tactical actions and responses. Second, 
participants in battlefield simulation typically have a restricted view of the battlefield, severely 
compromising their ability to evaluate their opponents' actions for plausibility. For example, 
soldiers inside a simulated tank can only see the portion of the battlefield visible from their 
location through the narrow vision blocks of the tank. Aggravating the situation is that the enemy 
entities that the trainees might observe are normally doing their best to remain hidden! Finally, 
because the observer is a simulation participant, he or she is likely to be more intent on some 
battlefield activity, such as survival or destroying the opponent, than on observing the opponents' 
behavior for signs of artificiality. 

Nevertheless, many CGF researchers argue or assert that it is sufficient, or at least necessary, for a 
useful CGF system to be able to pass the CGF Turing Test. A few examples from recent CGF 
research literature will illustrate this. [Wise, 1991] asserts that "In designing computer generated 
forces, the ultimate goal is to simulate plausible human behavior, ... ". According to 
[Bockstahler,1991], " ... manned simulators and computer driven forces should be able to interact 
without the human operators being able to distinguish between manned or automated forces." 
[Harrnon,1991] criticizes an existing CGF system because " ... its performance falls far short of the 
goal of exhibiting behavior which is indistinguishable from that of humans for a wide range of 
common situations." One of the architects of the original CGF system, the SIMNET SAF, asserts 
in [Downes-Martin,1992] that the CGF forces are " ... required to be indistinguishable from 
manned simulators." [Smith, 1992b] says that" ... simulated entities should be indistinguishable 
from manned simulators." [Braudaway, 1993] states that "One challenge of these computer 
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generated forces is to emulate human behavior so that the human controlled and computer 
controlled entities are indistinguishable." [Marti, 1994] praises paths generated by a route­
planning algorithm by asserting that they " ... are reasonably difficult to distinguish from human 
generated plans." [Katz, 1994] uses the indistinguishability criterion in evaluating a CGF system 
In [Weaver, 1993], passing the Turing Test is presented as an "Underlying Principle" ofCGF; the 
statement "The behavior of the CGF, as seen through the network, should be indistinguishable 
from that of human participants" is the first such principle listed. [Jones,1993b] ties CGF 
performance to the Turing Test as directly as possible. In that paper, the assertion " ... automated 
agents should be indistinguishable from other human pilots taking part in the simulation." is 
immediately followed by the phrase "To construct such intelligent, automated agents ... "; thus the 
authors not only advance the Turing Test as valid for a CGF system, but also attribute intelligence 
to a CGF system that passes the test. [Deutsch,1993] and [Webber,1993] also emphasize the 
.importance of realistic, human-like behavior by CGF entities, as perceived by users of the 
simulation. Additional examples are available, but this should be enough; many CGF researchers 
believe that the Turing Test is relevant, even central, to evaluating CGF systems. Looking at 
these statements another way, the authors are implying that passing the Turing Test strongly 
suggests, or even demonstrates, the quality of a CGF system 

Despite the cited opinions of the majority of CGF researchers, the position taken in [petty, 1994c] 
and [petty, 1995c] is that the CGF Turing Test is neither necessary nor sufficient to establish the 
quality of a CGF system To show that this is so, two points must be made; first, that a CGF 
system that does pass the Turing Test might not produce positive training benefits (i.e. not 
sufficient), and second, that a CGF system that does not pass the CGF Turing Test can produce 
positive training (i.e. not necessary). 

As for the question of sufficiency, consider two arguments. First, different armies use observably 
different tactical doctrines. For useful training benefit from a battlefield simulation, it is not 
enough that the opponent must behave like humans; it should act like humans that are employing 
the tactical doctrine of the enemy the soldiers are training to defeat. A CGF system that used 
generic tactics might not improve the training of soldiers who were to face a specific distinctive 
enemy. Second, consider the case of two groups'offriendly soldiers opposing each other in a 
simulated battlefield. The soldiers would pass the CGF Turing Test by definition, but the 
resulting training experience would be suboptimal, and possibly negative, because each group of 
soldiers faced opponents who used friendly doctrine. Such training could be negative because the 
behaviors the soldiers might learn to defeat friendly tactics could be detrimental against the 
enemy's tactics. 

As for the question of necessity, consider three examples of CGF systems that do not pass the 
CGF Turing Test but do produce positive training benefit. The first is in the area of "above real­
time training" . [Guckenberger,1992] describes an experiment in which subjects conducted tank 
gunnery in simulations that had varying levels of time acceleration (either Ix, 1.6x, or 2x real 
time). The targets in the simulations were produced by a simple CGF system The subjects' 
gunnery skills at standard real-time were measured before and after the training. The accelerated 
conditions produced better training and transfer of the gunnery task than the standard real-time 
conditions. What does this have to do with the CGF Turing Test? Gunnery targets moving at 2x 
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real-time will not pass the CGF Turing Test, yet they did produce a positive training effect. 
Hence it is possible to produce positive training without passing the test. 

A second example is the U. S. Army's Platoon Gunnery Trainer (PGT) training system The PGT 
trains platoon gunnery and battle command skills. For several reasons, including the repetitive 
standardized scenarios, the PGT system's targets would not pass the CGF Turing Test. In spite of 
that, a careful study reported in [Sterling, 1994] shows that improved performance in PGT 
scenarios is "substantially related" to performance in the U.S. Army's tank gunnery proficiency 
tests. In other words, though the PGT would not pass the CGF Turing Test, it does produce 
positive training. 

A final example is the 1ST Semi-Automated Forces Dismounted Infantry (SAFDI) system The 
SAFDI system is a version ofISTs Computer Generate4 Forces Testbed that has been enhanced 
with capabilities and behaviors specialized for dismounted infantry fireteams [Franceschini, 1994a] 
[Franceschini,1994b]. The SAFDI system was evaluated at the U.S. Army Infantry School's 
SIMNET site (at Ft. Benning, Columbus GA) by an independent team of experts in a series of 
training scenarios that included SAFDI-generated entities fighting with and against soldiers of the 
U.S. Army (A Company 1129 Infantry) [Chervenak, 1993] [D'Errico,1994]. While the evaluation 
did not include a formal CGF Turing Test, it is quite obvious that the SAFDI system would not 
have passed that test. The reasons include a visual fireteam icon that represents a five man 
fireteam with a single human icon, a lack of self-preservation on the part of the SAFDI entities, 
and blind adherence by SAFDI entities to doctrinal firing priorities regardless of available targets. 
Nevertheless, in spite of its inability to pass the CGF Turing Test the SAFDI system did produce 
positive training benefits. Those benefits are detailed in [Chervenak, 1993] and [D'Errico,1994]. 
A telling evaluation was made by the commander of A Company 1129 Infantry in an unsolicited 
memorandum that is included in the evaluation report; he said that" ... the SAFDI greatly 
increased my unit's training. " 

From these examples it appears to be demonstrably possible to produce positive training benefits 
using a CGF system that does not pass the CGF Turing Test; i.e. passing the Turing Test is not 
necessary for CGF system quality. Taken with the previous arguments that passing the CGF 
Turing Test is not sufficient, the conclusion is that the test is neither necessary nor sufficient in 
training applications. 
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2.1.5 Key research directions for CGF 

With the preceding comments in mind, it is now possible to ask directly: What are the key 
research areas upon which CGF technology depends? They include: 

1. Planning of CGF actions 
2. Model networks and variable granularity simulation 
3. Knowledge base representation 
4. Autonomous agent modeling 
5. System and network architecture 
6. Validation 
7. CGF operator interface 
8. Terrain representation and reasoning 
9. Situational awareness and environmental monitoring 

10. Advanced route planning, including formation movement 
11. Real-time coordination of cooperative behavior 
12. mtelligent target acquisition and selection 
13 . Adaptive (learning) behavior by CGF entities 
14. Modeling fear, self-preservation, and fallibility in CGF 
15. Behavior specification for CGF 

The first seven topics are discussed in [Fishwick, 1991]; some are first identified in 
[McKeown, I990l One item on the list, terrain representation and reasoning, is the specific focus 
of this survey. 
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2.2 Existing CGF systems 

This subsection lists and describes existing CGF systems. It begins with a compendium, or brief 
descriptions, of a set of CGF systems. The set is intended to be complete, though there may be 
CGF systems not included here. Following the compendium are detailed descriptions of some of 
the most important or interesting CGF systems. 

Many constructive simulations include automated opponents. This document focuses on CGF 
systems for virtual environments, so those constructive systems are not included here. A partial 
list of constructive systems with automated opponents is given in the appendices. 

2.2.1 A compendium of CGF systems 

The CGF systems in the compendium are listed alphabetically by CGF system name. A set of data 
fields are given for each CGF system in the compendium; they are defined as follows: 

Field 
Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 
Reference( s): 

Dermition 
CGF system name 
Agency or company that is developing/developed the system 
Year work began 
Current development status 
Programming language used for implementation 
Operating system under with the CGF system runs 
Computer platform(s) upon which the CGF system runs 
Combat domain (ground, air, sea) of generated entities 
Number of entities that can be generated in real-time 
Network protocols (DIS and/or SIMNET) that the system can use 
Uses of the system 
Does the system run real-time? 
Mechanism or formalism used to specify CGF behavior 
Mechanism or algorithm used to generate CGF behavior 
Format of the terrain database 
Major terrain reasoning capabilities of the system 
Remarks describing the system 
References for more detail 

A data field is given as "na" (not available) if information for that field could not be obtained. 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 

Reference( s): 

A-6/A-14 Aircrew Trainer Suite 
AAI 
na 
na 
na 
na 
na 
Air combat 
120 "threats" which may be platforms, sensors, or weapons 
None 
Training system component 
Yes 
Expert system rules 
Expert system rules 
na 
na 
Current status not known. Generates both aircraft and 
surface-based anti-aircraft radar and weapons systems. The threat 
model evaluates the distance and involvement of a threat with the 
trainees' aircraft and varies the simulation fidelity of the threats as 
needed. Threat behavior is encoded as "reaction algorithms", 
which consist of production rule-like statements. 
System overview [Hunter,199lJ 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 

Reference( s): 

Action/Cognition Behavior Model (ACBM) 
BDMFederal 
1973 
Active 
Various, recently C++ 
na 
na 
Air and ground combat 
Over 200 
DIS 
Analysis system component 
Yes 
Virtual Battlespace Language 
Action/Cognition Behavior Model 
Polygonal (SIFIHDI) 
na 
ACBM, SWEG (Simulated Warfare Environment Generator), and 
CIMUL8 (among others) are members of a family of simulations 
developed by BDM since 1973 and used for a wide range of 
military analysis projects. They include complete battlefield 
simulation capabilities, not just CGF functions. 
See 2.2.8 
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Automated Force (AF) 
Naval Postgraduate School 
1993 
Inactive 
C and CLIPS 
na 
na 
Ground combat 
12 
DIS 
Research testbed 
Yes 
Expert system rules 
Expert system rules 
na 
Route planning 
Naval Postgraduate School CGF work has moved to ModSAF. 
1. . NPSNET oveIView [Zyda,1992] 
2. Description of AF reasoning capabilities [Pratt,1994a] 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use( s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 

Comments: 
Reference( s): 

CCTfSAF 
Loral ADS, SAiC 
1993 
Under development 
Ada 
AIX 
mM RISC Systeml6000 
Ground combat, some air combat 
60 
DIS 
Training system component 
Yes 
Combat Instruction Sets and Expert System rules 
Finite State Machines 
Gridded and quadtree (Model Reference Terrain Database) 
Route planning 
Obstacle avoidance 
Intervisibility 
Cover and concealment 
Production CGF system 
See 2.2.5 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 

CGFTestbed 
Institute for Simulation and Training 
1989 
Active 
C 
MSDOS 
ffiM-compatible personal computers 
Ground and air combat, with some sea combat and electronic 
warfare capabilities 

Capacity: 36-40 
Protocols supported: SIMNET and DIS 
Primary use(s): Research testbed, DIS testing 
Real-time: Yes 
Behavior specification: Finite State Machines 
Behavior generation: Finite State Machines 
Terrain database: Polygonal (SIMNET SAF) 
Terrain reasoning: Entity route planning 

Unit route planning 
Intervisibility 

Comments: 

Reference( s): 

Helicopter terrain avoidance 
The 1ST CGF Testbed is the only personal computer-based CGF 
system It is widely used outside 1ST for DIS testing. 
See 2.2.2 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 

Terrain database: 
Terrain reasoning: 
Comments: 

Reference( s): 

Command Decision System 
mM Federal Systems 
1992 
Inactive 
C, Lisp 
AIX 
mM RISC System 6000 
Ground combat 
na 
None 
Research prototype 
No 
Rules, C and Lisp procedural code 
A blackboard controller integrates results of disparate "knowledge 
sources", i.e. CGF behavior modules implemented as rule-based 
expert systems, Lisp functions, or C procedures. 
na 
Route planning 
This system was a research prototype to test applicability of 
blackboard paradigm to CGF control It was linked to mM's 
Combined Arms Combat Simulator, a self-contained entity level 
simulation that performed simulation functions. 
l. System overview [Braudaway,1992] 
2. Blackboard for CGF behavior control [Braudaway, 1993] 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 

Reference( s): 

Intelligent Player (IP) 
University of Alabama, East Tennessee State University 
1989 
Active 
C 
AIX 
mM RISC Systeml6000 
Air combat (helicopter) 
2 
None 
Research prototype 
Yes 
C code 
Game tree lookahead 
Quadtree 
Terrain avoidance 
This system is a research prototype to test the applicability of game 
tree lookahead to movement control of a CGF helicopter in 
air combat. 
1. System overview [Katz, 1989] [Katz,1991] [Katz,1992] 
2. Details of game tree lookahead mechanism [Katz, 1993] 
3. Using game tree lookahead in real-time [Schaper,1994] 
4. Terrain reasoning with game tree lookahead [pandari,1995] 
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Name: Interactive Tactical Environment Management System 
(ITEMS) 

Developer: CAE Electronics 
Started: na 
Status: Active 
Language: FORTRAN 
Operating system: IRIX 
Computer: SGI Onyx: 
Domain(s): Air, ground, and sea combat 
Capacity: 100+ entities 
Protocols supported: SIMNET and DIS 
Primary use(s): Training system component, research testbed 
Real-time: na 
Behavior specification: Expert system rules 
Behavior generation: Expert system rules 
Terrain database: na 
Terrain reasoning: . Terrain following and avoidance during flight 

Road following 
Intervisibility 

Comments: ITEMS emphasizes air entities and behaviors. 
Reference( s): 1. System overview and expert system [Siksik,1993] 

2. Explanation based learning within ITEMS [Kocabas,1995] 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use( s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 
Reference( s): 

MAXIM 
Air Force Institute of Technology 
1992 
na 
Lisp (CLOS) 
Unix 
Sun SPARCstation 2 
Air to air combat 
na 
DIS 
Research testbed, training system component 
Yes 
Universal plans expressed in Lisp 
Universal plan selection 
None 
None 
Current status unknown. 
Universal planning applied to air combat (Dyer, 1993] 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 

Comments: 
Reference( s): 

ModSAF (Modular Semi-Automated Forces) 
Loral Advanced Distributed Systems (LADS) 
1992 
Active 
C 
Unix 
Various; includes SGI, Mips, Sun Sparc, mM RISC System 6000 
Ground combat and air combat 
36-80 
DIS and SIMNET 
Training system component, research testbed 
Yes 
Combat Instruction Sets 
Finite State Machines 
Gridded and quadtree (Compact Terrain Database) 
Route planning 
Intervisibility 
Probably the most widely distributed and used CGF system. 
See 2.2.3 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 

Comments: 

Reference( s): 

Piastre 
SOGITEC 
1989 
Active 
Kee Lisp 
Unix 
Sun 3/160 
Ground combat 
8 
DIS 
Training system component 
Yes 
Expert system rules 
Expert system rules 
"Object oriented" 
Intervisibility 
Route planning 
Road following 
This system controls opposing force targets for the French army's 
Leclerc tank turret simulator. 
1. System overview [SOGITEC, 1989] [Kada,1994] 
2. Expert system to generate CGF behavior [Huon, 1989] 
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Name: 
Developer: 
Started: 

Semi-Automated Forces Dismounted Infantry (SAFDI) 
Institute for Simulation and Training 
1992 

Status: Development complete, delivered to training sites 
Language: C 
Operating system: MS DOS 
Computer: ffiM-compatible personal computers 
Domain(s): Ground and air combat 
Capacity: 12 
Protocols supported: SIMNET 
Primary use(s): Training system component 
Real-time: Yes 
Behavior specification: Finite State Machines 
Behavior generation: Finite State Machines 
Terrain database: Polygonal (SIMNET SAF) 
Terrain reasoning: Entity route planning 

Unit route planning 
Intervisibility 
Helicopter terrain avoidance 

Comments: A specialized version of the 1ST CGF Testbed with enhanced and 
extended dismounted infantry capabilities. Delivered for use to 
SIMNET training sites to complement the existing SIMNET SAF. 

Reference(s): See 2.2.7 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 
Comments: 

Reference( s): 

8imCore Tactics 
Science Application International Corporation 
na 
na 
na 
na 
na 
Ground and air combat 
na 
DIS 
Analytical system component 
Yes 
Finite State Machines 
Finite State Machines 
na 
na 
SimCore is an analytical-style simulation linked to DIS. It was 
used for the DARPA Warbreaker project. 
System overview [Aronson,1994] 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use(s): 
Real-time: 
Behavior specification: 
Behavior generation: 
Terrain database: 
Terrain reasoning: 

Comments: 

Reference( s): 

SIMNETSAF 
Bolt, Beranek, and Newman Systems and Technologies 
1986 
In use as training system component, no further development 
Lisp and C 
Unix 
Symbolics and Masscomp 
Ground combat, with some air combat 
40 
SIMNET 
Training system component 
Yes 
Combat Instruction Sets 
Finite State Machines 
Polygonal and quadtree (SIMNET SAF) 
Vehicle level obstacle avoidance 
Entity and unit route planning 
Intervisibility 
Concealment location 
This was the first production CGF system It is still used daily at 
SIMNET training sites. Considerable operator control can be 
required for typical training scenarios. The ODIN SAF is an 
enhanced version of the SIMNET SAF. 
See 2.2.6 
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Name: 
Developer: 
Started: 
Status: 
Language: 
Operating system: 
Computer: 
Domain(s): 
Capacity: 
Protocols supported: 
Primary use( s): 
Real-time: 

SoarllFOR 
University of Michigan 
1993 
Active 
C 
Unix 
SGI Indy 4400 
Air combat 
4-10 aircraft 
DIS (via ModSAF) 
Research testbed, training system component 
Yes 

Behavior specification: Search operators and rules 
Behavior generation: State space search and rule firing 
Terrain database: Gridded 
Terrain reasoning: 
Comments: 
Reference( s): 

Terrain avoidance 
A general AI system applied to air combat. 
See 2.2.4 
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Name: 

Developer: 
Started: 

Team Target Engagement System 
Computer ControUed Hostiles (TIES CCH) 
Institute for Simulation and Training 
1993 

Status: Active 
Language: C 
Operating system: OSI2 
Computer: ffiM-compatible personal computers 
Domain(s): Ground combat; specifically individual combatants in urban terrain 
Capacity: 12 
Protocols supported: DIS 
Primary use(s): . Training system component 
Real-time: Yes 
Behavior specification: Finite State Machines 
Behavior generation: Finite State Machines 
Terrain database: Polygonal 
Terrain reasoning: Entity route planning 

Intervisibility 
Comments: TTES is a US. Marine Corps system for training individual 

Marines in both marksmanship and urban combat tactics. The 
CCR component provides individual combatants as opponents and 
neutrals. It is a development of the 1ST CGF Testbed. It has been 
extensively enhanced to generate individual combatants in urban 
combat. 

Reference(s): 1. TTES overview and CCR requirements [Wysocki, 1994] 
2. Need for individual combatant simulation [OTA,1994] 
3. Individual human figures in DIS [Reece, 1994a] [Pratt, 1994b ] 
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2.2.2 CGF Testbed 

2.2.2.1 Overview 

Under the sponsorship of ARPA and STRICOM, 1ST has been conducting research in the area of 
CGF systems, seeking to increase the realism and autonomy of CGF behavior. A key product of 
that sponsorship is the 1ST CGF Testbed. The 1ST CGF Testbed is a low-cost CGF system that 
provides an environment for testing CGF behavioral control algorithms. It is documented in 
[Danisas, 1990], [Gonzalez,1990], [petty,1992c], [Smith,1992b], [Smith,1992c], and 
[Reece, 1994b], and critiqued in [Booker, 1993]. 

1ST's research into Computer Generated Forces has had two primary goals: first, to increase the 
realism and autonomy of Computer Generated Forces (CGF) behavior through the application of 
artificial intelligence techniques, and second, the development and testing of efficient algorithms 
for CGF behavior generation and physical modeling. 

2.2.2.2 System architecture 

Because one of the goals of this research project was to demonstrate the feasibility oflow-cost 
CGF systems, the 1ST CGF Testbed was developed and runs on ffiM-compatible personal 
computers. A basic 1ST CGF Testbed installation consists of two standard ffiM-compatible 
personal computers. Each runs one of the two software components of the CGF Testbed; those 
components are the "Simulator" and the "Operator Interface" (or 01). 

The Simulator performs the computations for vehicle dynamics, battlefield environment 
simulation, and behavior generation for the computer controlled CGF entities. The 01 provides 
an operator interface to the CGF system which consists of a plan view display battlefield map and 
a menu-based mouse and keyboard input system. The CGF operator enters commands for the 
CGF entities using the 01, which passes those commands to the Simulator, where they are 
executed by the CGF entities. The 01 and the Simulator communicate via the main simulation 
network, exchanging packets which are sent point-to-point and are not part of the DIS or 
SIMNET protocol. 

The basic configuration of one 01 and one simulator can support approximately 40 CGF entities, 
which is roughly the number ofvehic1es in a military unit of battalion size. The simulation 
network is used for communication between the Simulator and the 01 so as to permit easy scaling 
ofthe CGF Testbed. Ifmore than 40 entities or more than one 01 is required, additional personal 
computers may be attached to the network. The Simulator and 01 software both adjust 
automatically to the presence of more than one of either component. 

The Testbed software is written in ANSI C but is compiled with a C++ compiler to take 
advantage of the stronger type checking in that language. The 1ST CGF Testbed can be compiled 
so as to communicate on the simulation network using either the DIS or SIMNET network 
protocols. 
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2.2.2.3 Behavior generation 

Like most other CGF systems, the 1ST CGF Testbed depends on the operator to perform high 
level planning and mission control. However, the 1ST CGF Testbed contains a range offlexible 
intermediate level behaviors that operate automatically and realistically. 

One example of such intermediate level behavior is the Testbed's Fire_Weapons behavior for 
infantry fighting vehicles (IFVs). IFVs, such as the M2 Bradley or the BMP, typically have a 
variety of weapons systems, each suited to a particular type of target and tactical situation. M2 
Bradleys are armed with a coaxial machinegun, used against infantry at short range, a 25mm 
cannon, used against infantry at longer range and vehicles other than tanks at short and medium 
range, and TOW anti-tank missiles, used against vehicles other than tanks at long range and tanks 
at all ranges. The IFV Fire_Weapons behavior performs the following actions without operator 
intervention: 

( 1) Scan the terrain for visible enemy targets. 
(2) Select the most threatening enemy target from among those visible, based on threat 

analysis rules encoded in the behavior. 
(3) If more than one enemy target falls into the same threat category, select one from among 

those available based on a fire distribution scheme that considers nearby friendly entities. 
( 4) Select the appropriate weapon for that target. 
(5) Prepare the weapon for firing (aim the turret and possibly raise the TOW launcher). 
(6) Fire the weapon and determine if a hit was scored. 
(7) Reload the weapon. 

For low level behavior, the CGF Testbed includes several excellent algorithms. For example, the 
route planner is fast and effective and will find routes around terrain obstacles. The primary 
means of behavior specification of the 1ST CGF Testbed is a code structuring technique based on 
finite state machines (FSMs). Behavior in the Testbed is encoded as algorithms, written in C. 
However, that C code is given structure using the FSM mechanism The essential idea is that 
atomic units of behavior, implemented as C functions, become states in a FSM. The CGF 
Testbed's FSM mechanism was described in more detail earlier. 

2.2.2.4 Status and applications 

The 1ST CGF Testbed has been used as both an environment in which to conduct CGF research 
and as a basis or component of other systems. It continues to be actively used for both purposes. 

Examples of the latter use include the Semi-Automated Forces Dismounted Infantry (SAFDI) 
system and the Team Target Engagement Simulation Computer Controlled Hostiles (TTES CCH) 
system., where the 1ST CGF Testbed was enhanced to produce specialized CGF systems, and the 
Integrated EagleIBDS-D systems, where the Testbed serves as a crucial component in the linkage 
between a constructive and a virtual simulation. 

Table 2.2 lists applications of the 1ST CGF Testbed. The SAFDI and TTES CCH systems are 
also described separately in this document. 
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System! Application Application or Experiment 
CGF Testbed Low cost CGF testbed 

CGF behavior generation techniques 

Behavior specification languages for CGF tactics 

Terrain reasoning for reconnaissance planning 

Execution control schemes for CGF systems 

Computational geometry algorithms for 
intervisibility determination 

Heuristics to reduce number of required 
intervisibility determinations 

CGF aircraft flight dynamics 

Weapons system evaluation 

Verification of CGF behavior 

.' 

Entity route planning in the presence of 
dynamic (moving) obstacles 

Unit route planning that considers terrain and 
enemy positions 

Comparison of A· and Iterative Deepening A· 

Precision gunnery target generation 

Table 2.2 (part 1 of 2) 1ST CGF Testbed applications. 

References 
[Danisas,1990] 
[Gonzalez, 1990] 
[petty, 1992c] 
[Smith, 1992b] 
[Smith, 1992c] 

[Coleman, 1990] 
[Gonzalez, 1991] 
[Clarke, 1991 ] 
[F ishwick, 1991 ] 

[Smith,1993] 
[petty,1993] 

[Van Brackle,1993a] 
[Van Brackle,1993b] 
[petty, 1994b] 

[Reece, 1993] 

[petty, 1992a] 
[petty, 1992b] 

[Rajput,1994a] 
[Rajput,1995a] 
[Rajput,1995b] 

[Cimini, 1992] 

[Karr, 1993b] 

[petty, 1994c] 
[petty, 1995c] 

[Craft 1994b] 
[Karr,1995a] 
[Karr,1995c] 

[Raj put, 1994b] 
[Karr, 1995d] 

[Karr,1995e] 

[Krecker, 1994] 
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S ystemi Application Description 
CGF Testbed (continued) Experimental evaluation of the Ada programming 

language for CGF system implementation 

Development of DIS standards for 
Electronic Warfare PDUs 

Semi-Automated Forces Specialized CGF system for dismounted infantry 
Dismounted Infantry 
(SAFDI) 

Integrated EaglefBDS-D Integration of constructive and virtual simulations 

Terrain avoidance algorithms for CGF helicopters 

Performance metrics for CGF systems 
Team Target Engagement CGF systems for individual combatants 
Simulation in urban terrain 
Computer Controlled Hostiles 
(TIES CCR) 
DIS Testbed DIS compliance testing 

DIS standards for Simulation Management PDUs 

DIS standards for Laser PDUs 

Table 2.2 (part 20/2) 1ST CGF Testbed applications. 

References 
[Craft, 1994a] 
[Craft, 1995a] 

[McDonald, 1993] 
[Wood, 1994] 
[Wood, 1995] 
[petty, 1991] 
[Karr,1992a] 
[Petty, 1992d] 
[Franceschini, 1993a] 
[Franceschini,1993b] 
[Chervenak, 1993] 
[Petty, 1994a] 
[F ranceschini, 1994a] 
[Franceschini, 1994b] 
[D'Errico,1994] 
[Parra, 1994] 
[Karr, 1992b] 
[F ranceschini, 1992] 
[powell, 1993] 
[Karr,1993a] 
[Karr,1994a] 
[Karr, 1994b] 
[Root, 1994] 
[Franceschini, 1995a] 
[Franceschini, 1995b] 
[Franceschini, 1995c] 
[Franceschini, 1995d] 
[Stober, 1995] 
[Petty, 1995d] 

[Schricker, 1995a] 

[Schricker, 1995b] 
[Wysocki, 1994] 
[Reece, 1994a] 

[Loper, 1993] 
[Vanzant-Hodge, 1994a] 
[Vanzant-Hodge, 1994b] 

[Cox,1995] 

[Giroux, 1995] 
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2.2.3 ModSAF 

2.2.3.1 Overview and capabilities 

ModSAF (for Modular Semi-Automated Forces) is being developed by Loral Advanced 
Distributed Systems (Loral ADS) under the sponsorship of ARPA and STRICOM. ModSAF is 
the intellectual descendant of earlier CGF systems developed by the Loral ADS Semi-Automated 
Forces group (previously part of Bolt, Beranek, and Newman) including the SIMNET SAF and 
the ODIN SAF. ModSAF serves as both a working CGF system, capable ofpopulating a virtual 
DIS battlefield with large numbers of computer controlled entities, and as a tool and framework 
for CGF research. [BBN,1992], [Booker,1993], [Ceranowicz,1994a], and [Ceranowicz,1994b] 
give overviews ofModSAFs structure and capabilities. [Courtemanche,1995a] reports on the 
recent ModSAF developments, including several new platoon and company level behaviors. 

According to [Ceranowicz,1994b], version 1.2 ofModSAF can generate any of24 different DIS 
entity types, including fixed and rotary wing aircraft, tanks, infantry fighting vehicles, other 
vehicles, and groups of dismounted infantry. ModSAF can also control platoon and company 
sized units. 

The ModSAF software is written in C. It runs on Unix workstations, typically Silicon Graphics 
and Sun systems. [Vrablik,1994] estimates the capacity to simulate entities ofa single SAFsim on 
such a workstation at between 36 and 80 vehicles, depending on system configuration and 
network load. 

2.2.3.2 System architecture 

ModSAF has three primary software components: the "SAFstation", which is an operator 
interface allowing a human operator to direct the ModSAF entities; the "SAFsim", which 
simulates the entities, units, and environmental processes; and the "SAFlogger", which logs, 
compresses, and plays back exercise network traffic. The SAFstation and SAFsim will be 
discussed in more detail later. 

The ModSAF SAFsim component simulates alI of the vehicles and units generated by ModSAF. 
For entities, it performs both physical simulation (e.g. vehicle dynamics and weapons effects) and 
behavioral simulation (e.g. route planning and mission execution). For units, only behavioral 
simulation is required. The SAFsim is a "real-time time-stepped simulation" [Ceranowicz,1994b]. 
This means that ModSAF does not attempt to enforce a constant update rate for its generated 
entities; rather, the update rate varies depending on simulation load. The DIS protocol's remote 
entity approximation helps to make this approach possible. 

Two significant features ofModSAFs architecture distinguish it from its predecessors; the first , 
its modular software structure, makes ModSAF useful as a CGF research tool and DIS system 
component; the second, the Persistent Object ProtocoL provides important performance, 
checkpointing, and fault-tolerance capabilities. Each will be discussed in turn. 
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Nearly all of the ModSAF software is implemented as library modules. The modules have 
precisely defined and documented public interfaces and access to the data structures and routines 
of the modules is through those interfaces. Software layering techniques are used to reduce 
module interdependence and binding. Sets of related modules are grouped into libraries, each of 
which provides a service such as vector math utilities, network interface, map drawing, physical 
simulation, or behavior simulation [Ceranowicz, I 994b ]. The goal of this structure is that the 
ModSAF libraries constitute a "repository of useful capabilities" that can be used in different ways 
in different DIS and CGF systems, and easily replaced by researchers experimenting with different 
or improved ways to provide CGF functionality. 

The modular structure is exploited to make it easy to add new entity types (e.g. a new tank) to 
ModSAF's repertoire. It is possible to define in a parameter file which ofModSAFs set of entity 
simulation modules will be used for the new entity. A variety of entity simulation modules are 
available in several categories: dynamics models, turret models, weapons models, sensor models, 
and damage models. If a new entity type cannot be assembled from the existing modules, new 
ones can be developed and linked in using the parameter file. 

The Persistent Object (PO) Protocol is used by ModSAF to transmit information about entities it 
is controlling on the network. The PO Protoco~ which is not part of the DIS protoco~ 
supplements the physical state data normally present in the DIS packets. It includes information 
about the entities' behavioral state, including the entities' missions, tasks, and status. The PO 
Protocol packets also describe in a similar fashion the state ofModSAF units. 

The ModSAF SAFsims on a network all maintain PO databases that contain the information 
received from the network about the ModSAF entities and units via the PO Protocol. Because of 
this, if a SAFsim should fail during the exercise, other SAFsims on the network can take over 
simulation of the entities previously simulated on the failed node. Load balancing of simulated 
entities between SAFsims is automatic, both at scenario start-up and during execution. 

ModSAF uses the Compact Terrain Database (CTDB) format to represent the battlefield terrain. 
CTDB is a compressed representation based on elevation posts for most of the terrain surface, 
supplemented with explicit polygons in areas where greater detail is needed (microterrain) 
[Smith, 1992a]. The CTDB also includes terrain features such as buildings, roads, rivers, trees, 
treelines, and so on. It is used by ModSAF for point elevation lookup, vehicle orientation, 
intervisibility calculation, and generation of graphic representations of the terrain 
[Stanzione,1993]. (The reference actually presents the terrain representation and reasoning 
approaches in the ODIN SAF system, a predecessor ofModSAF; most of the content also applies 
to ModSAF.) An updated description of the CTDB format and capabilities can be found in 
[Smith, 1995b]. The CTDB format will be covered in considerably more detail later in this 
document. 

ModSAF relies on a human operator for two functions; first, to set up preplanned missions for 
ModSAF entities and units, and second, to provide supervisory control of the simulated entities. 
The SAFstation component allows the operator to perform those functions. The SAFstation 
software is written in C using X-Windows and Motif It provides a 2-dimensional on-screen map 
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of the virtual battlefield that shows the terrain and the entities. Terrain analysis tools for 
intervisibility evaluation and terrain cross-section display are available on the map. Drawing tools 
permit the operator to create movement routes and military control measures, such as phase lines, 
control points, and battle positions, and associate them with specific locations in the terrain. 

Using the SAFstation, the operator can create preplanned missions for ModSAF vehicles and 
units. A mission is divided into a number of phases; for each phase the operator defines the tasks 
a unit is to perform and the criteria for a transition to the next phase. The transition criteria may 
involve the geographic control measures. This data is entered into an execution matrix. (Tasks 
and missions and how they control unit and vehicle behavior will be explained later.) 

The operator can also give commands for immediate execution by entities and units via the 
SAFstation interface. Such intervention may be necessary when ModSAFs automated decision 
logic is not handling a situation correctly or when a scenario calls for a specific event that must be 
arranged by the operator. The operator may modify executing preplanned missions or replace 
them with new tasks. [Ceranowicz,1994c] presents ModSAFs operator command capabilities 
and the execution matrix in more detail. 

2.2.3.3 Behavior generation 

A stated goal of the ModSAF behavior specification and generation mechanism, described in 
[Calder,1993], is to provide a framework for expansion by the developers ofModSAF and an 
environment for research by other CGF researchers. The mechanism is intended to give a useful 
structure in which to place behavior generation algorithms without overly constraining the 
implementation of those algorithms. The presentation of the mechanism given here is based on 
[BBN, 1992] and [Calder,1993]. 

ModSAF processes each of the entities it is generating in a cyclical fashion, continuously looping 
through its entity list and processing each one. Going through the entity list once is referred to as 
a tick, and performing the computation needed for a single entity is called ticking the entity. As 
each entity on the list is ticked, all of the processing needed for that entity is completed. If the 
entity is very busy, e.g. moving, scanning for targets, and handling incoming events, the 
processing associated with its tick may be large. If it is not busy, as would be the case for a 
destroyed tank, its tick will be small. Because ModSAFs scheduler is non-preemptive each 
entity's tick takes as long as needed. The frequency at which an entity is ticked is an indication of 
run-time load in ModSAF [Vrablik, 1994]. 

Figure 2.10 shows the processing steps for a single entity tick. First, the entity's movement 
dynamics are computed. Second, incoming event PDUs associated with the entity (e.g. a 
weapons impact) are resolved. Then the entity's sensor scans (e.g. intervisibility determinations) 
are processed. 

67 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Vehicle Tick 

Dynamics Processing 
(Entity State Update) 

Incoming Event Packet Processing 
(Entity Update if required) 

Asynchronous 

Exec~ion 

Sensor Processing 1---~~91!~~~~ --
~ ____________ ~~ ____________ ~" Exec~ion 

---1 
I 
I 
I 
I 
I 
I 

Task Manager 

Task Frame A 
Active 

Task Frame B 
Interrupted 

Actuator Processing (Event Packets) 

(Orders to Subordinates) 

I 
0) 
c: 

"Cij 
rn 
Q) 

e 
a.. 
c: 
0 

~ « 

------1 

Task I 
~~ 
Task I 

CttJ 
~ 

Task I 
Task 

Task 

Vehicle Task Frame Stack 

, 

Unit Leader Task Frame Stack 

Next Vehicle Tick 
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Following those steps the entity's behavior is generated in two parts; first, the task manager 
determines what tasks are active for the entity, and second, the currently active tasks are executed 
to generate the entity's behavior. The basic building block ofModSAFs behavior generation 
mechanism is the task (which is not to be confused with a task as commonly defined in the context 
of operating systems). A task is a single non-composite behavior performed by an entity or unit. 
There are several types of tasks in ModSAF: 

1. Entity tasks 
2. Unit tasks 
3. Reactive tasks 
4. Enabling tasks 
5. Arbitration tasks 

Entity tasks. Behavioral tasks that an individual entity (vehicle or fireteam) will p~rform Entity 
tasks often use information from and control the physical subsystems (sensors and weapons) of 
the entity. Example entity tasks are Follow Route, Keep Formation, Avoid Collisions, and Spot 
Enemy Vehicles. 

Unit tasks. Behavioral tasks associated with military units. Units tasks often create, monitor, and 
delete tasks for subordinate units and vehicles, following the hierarchical structure of military 
units. Example unit tasks are Company Road March, Company Attack, and Platoon Bounding 
Overwatch. 

Reactive tasks. Behavioral tasks used to trigger reactions to battlefield events and situations. 
Example reactive tasks are Air Raid Happening, Target Meets Commit Criteria, and Hasty Attack 
Needed. 

Enabling tasks. Behavioral tasks used to trigger mission contingencies. They are defined during 
the construction of a mission by the operator and allow conditional response by a unit to events 
during the mission. Example enabling tasks are Crossed Phase Line, Detected Enemy Unit, and 
Reached H-Hour Time. 

Arbitration tasks. Special tasks that arbitrate between differing behavioral recommendations from 
multiple simultaneously active tasks. Example arbitration tasks are Vehicle Movement 
Arbitration, Vehicle Sensor Arbitration, and Vehicle Targeting Arbitration. 

Tasks take as input task parameters which control the execution of a task within a particular 
mission. For example, the Follow Route task would have a route as a task parameter. 

Tasks are implemented within ModSAF as augmented, asynchronous, finite state machines 
(AAFSMs). An AAFSM realizes a task as a set of states, each encoding a component action of 
the task, a set of transfer functions that determine and cause transitions between the states, and a 
set of inputs and outputs for the task. The states and transfer functions are implemented as C 
code. 
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A given entity or unit may have more than one task active for it simultaneously; for example, a 
tank might be executing both Follow Route and Spot Enemy Vehicles. A group of one or more 
tasks which are to be run at the same time is referred to as a taskframe. Task frames are 
assembled by the operator while defining a mission by picking from the available tasks. Each task 
frame represents a phase of a mission. Specific task parameters for the tasks within a task frame 
are connected to the tasks by the operator when the mission is assembled. 

The task frame stack is a run-time data structure that represents the set of task frames assigned to 
an entity or unit. The task frame at the top of the stack is the set of tasks that the entity or unit is 
currently executing. As the entity or unit changes from one phase of a mission to the next the top 
task frame is replaced with the task frame defined for the next phase (changes from one mission 
phase to another are detected by enabling tasks). 

In addition to replacing the top task frame, new task frames may be pushed onto the stack in two 
ways; some battlefield condition may trigger a reactive task frame, or the operator may issue an 
immediate command which is assigned to the entity or unit as a task frame. In those cases, the 
previously executing task frame (and thus its component tasks) are suspended while the newly 
pushed task frame executes. When it completes it is removed from the task frame stack and the 
suspended task frame resumes. 

The task frame stack also supports transparent task frames, which are task frames that, when 
pushed onto a stack, do not suspend the entire task frame below it. Tasks in a transparent task 
frame are merged with the tasks in the task frame below and all are executed simultaneously. 

A mission is a set of task frames that are linked together in a sequence. A mission is divided into 
phases, each of which is associated with a task frame. Each task frame specifies a task in the 
previous task frame that must complete before it begins. Transitions from one phase to the next 
may also be triggered by enabling tasks. Enabling tasks link the task frames that make up the 
various alternate courses of action in the mission. 

The task manager controls the execution of tasks within this structure. It determines which tasks 
to run for an entity or unit each time that entity or unit is updated. It also manages the task frame 
stack and handles the transitions between phases by pushing and popping tasks frames on the 
stack. 

Note how this behavior generation mechanism attempts to meet the goal of the ModSAF 
developers to provide a framework for other CGF researchers and developers. An outside 
researcher or developer may implement a new algorithm for a specific task and embed it in the 
task and task frame control structure, thereby freeing the him or her from worrying about those 
issues outside the task. On the other hand, a researcher interested in experimenting with some 
other execution control scheme for CGF systems (e.g. [Reece, 1993]) would have a difficult time 
doing so within ModSAF. 
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2.2.3.4 Status and applications 

More detailed descriptions of specific aspects ofModSAF are available: 
1. Terrain representation format and capabilities [Smith,1992a] [Smith,1995b] 
2. Finding cover and concealment [Longtin, 1994] 
3. Algorithms to find and select concealed movement routes [Longtin,1995] 
4. Other terrain reasoning functions [Stanzione,1993] 
5. Near-term entity movement control [Smith, 1994] 
6. Simulation of missiles in ModSAF [Courtemanche,1995b] 
7. ModSAF system capacity in terms of entities [Vrablik,1994] 
8. W&A ofModSAF [Courtemanche,1994] [Harkrider,1995] [Thomas,1995a] 

[Thomas,1995b] [Vaden,1994] [Meliza,1995] [Courtemanche,1995a] 
9. Op erator interface and execution matrix [Ceranowicz, 1994c] 

10. Automated testing and VV &A for ModSAF software integrations [Monday, 1995] 
[Courtemanche, 1995a] 

11. Application ofModSAFs FSM mechanism to company control [Pratt,1995a] 
12. An incomplete automatic company order generation capability [Pratt,1995b] 

ModSAF has reached a level of maturity and stability that makes it a useful basis for CGF 
research or a component of other projects. Consequently, it has been widely distributed 
throughout the DIS community and at least eleven different agencies have developed ModSAF 
capabilities. The software development and integration process used to control and integrate the 
code produced by those agencies is summarized in [Courtemanche, 1995a]. 

Table 2.3 lists a number ofModSAF applications and gives references for them One ModSAF 
application, the SoarlIFOR project, is important enough that it is also described separately in this 
survey. 
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System Application Reference(s) 
ModSAF Prototyping environmental extensions to DIS [Schaffer, 1994] 

such as atmospheric haze, battlefield obscurants, [Haque, 1995] 
smoke, rain, and vehicular dust clouds [Robasky,1995] 

I 
Test environment for detailed verification of [Vaden, 1994] 
CGF behavior and performance [Meliza,1995] I 
Automated military mission planning [Sherman, 1994] 

[Moho, 1994] I 
Simulation-based unit mission planning [Karr,1995b] 

Unit mission planning and run-time control using [Katz, 1994] I 
~etreelookahead 

CGF design prototype for CCIT SAF [pope, 1995a] I 
[pope, 1995b] 

Development environment for company and [Hille,1994] 
battalion command agents that learn tactical rules [Hieb,1995] 

I 
[Hille, 1995] 

Test environment for Prolog-based backward [Kwak,1995] I 
reasoning from goals for unit control 

I Incorporation of previously validated and [Courtemanche, 1994] 
accreditated combat models 

Test environment for case-based learning and [Keirsey, 1994] 
behavior based control for air combat I 
Baseline infrastructure layer for executing [Salisbury, 1995] 
generated by Command Forces command entities I 
Test environment for DIS based on multicast [Smith, 1995a] 
instead of broadcast UDP/IP I 
Test environment for target threat evaluation [Cisneros, 1995] 
using fuzzy sets I 
Test environment for methodologies to compare [Craft, 1995b] 

I different vehicle variants using simulation 

Test environment for a distributed control [Rajput, 199 5b] 

I 
architecture for cooperative behavior based on 
formal finite state machines 

I 
Table 2.3 (part J 0/2) ModSAF applicatiOns. 
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S),stem Application 
LeatherNet Implementation of Marine Corps individual 

combatants (simulation and behavior) 

DIS Common Database Training scenario development and testing 
Toolset 

Corps Level CGF Integration of constructive and virtual simulation 

Anti-Armor Advanced Weapons system evaluation 
Technology Demonstration 
(A2ATD) 

Soar/IFOR Integration of CGF with an AI system 
for tactical behavior control 

Table 2. 3 (part 2 of 2) ModSAF applications. 

Reference(s) 
[Howard, 1995] 
[Hoff, 1995] 

[Butler, 1995a] 
[Butler, 1995b] 

[Calder, 1994] 
[Raytheon, 1994] 
[Calder, 1995a] 
[Calder, 1995b] 
[Stober, 1995] 

[Courtemanche, 1994] 
[Harkrider, 1995] 
[Thomas, 1995a] 
[Thomas, 1995b] 

[Jones, 1993b] 
. [Johnson,1994] 

[Jones, 1994b] 
[Jones, 1994c] 
[Koss, 1994] 
[Laird, 1994] 
[Rosenbloom, 1994] 
[Rubinoff, 1994] 
[Schwarnb, 1994] 
[Tambe,1994] 
[van Lent,1994] 
[Laird, 1995] 
[Lehman, 1995] 
[Nielsen, 1995] 
[Tambe,1995a] 
[Tambe,1995b] 
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2.2.4 Soar/lFOR 

Soar is an integrated cognitive architecture based on heuristic state space search and automated 
learning [Laird,1987]. ModSAF and Soar are being linked in the SoarlIFOR project. The project 
is developing autonomous intelligent agents for air combat. The project originally was focused on 
agents for naval air engagements beyond visual range (the system was known as TacAir-Soar at 
that time); recently it has expanded its goals to include the development of agents for nearly all air 
missions flown by the U.S. military [Laird, 1995]. 

In the SoarlIFOR system, ModSAF provides the DIS network interface, aircraft dynamics 
simulation, and low-level behavior execution functions, while Soar provides high-level planning 
and decision making for the ModSAF-controlled aircraft. 

According to [Jones,1993b], the long-term intent of the SoarlIFOR project is to develop 
capabilities that will: 

1. Integrate planning and reactive behavior in real-time 
2. Respond to unexpected situations 
3. Learn from experience 
4. Exhibit human-like cognitive limitations 

The Soar/IFOR system can control 4-10 aircraft (depending on network load) operating alone, in 
sections (2 aircraft), and in divisions (4 aircraft). They can fly a variety of formations and 
missions including several types of air-to-air and air-to-ground missions. 

Soar divides knowledge into problem spaces, which are the state spaces through which Soar 
searches to find a plan (a sequence of operations to reach a goal state). In CGF terms, the 
operators are the actions that the CGF entity might perform When Soar cannot find a plan, it 
creates a subgoal and shifts to a new problem space, finer grained and more specific to the 
subgoal, and searches that problem space. This subgoaling happens automatically. Note that this 
produces a hierarchy of goals. In contrast to hierarchical goals, tactical behavior can often 
produce conflicting goals (e.g. "destroy bogey" vs. "survive"). Soar is being modified to deal with 
conflicting goals. 

Soar's state space search is guided and supplemented by a rule based component. Soar's rules test 
the current situation and propose operators, determine preferences between multiple proposed 
operators, perform procedures associated with the operators, and test that all parts of an operator 
have been executed. As part of the Soar/IFOR project, a body of search operators and rules for 
air combat have been developed and encoded in the Soar system [Laird,1995] reports that 320 
operators and 3100 rules have been developed to date. 
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The Soar/IFOR system has been extensively documented; numerous references are available 
providing both project overviews and detailed explanations of specific aspects of the system 
They include: 

1. Project overview [Jones,1993b] [Rosenbloom,1994] [Laird,1995] 
2. Autonomous agents that explain their actions [Johnson,1994] 
3. Generating agent behavior in response to interacting, and possibly conflicting, goals 

[Jones, 1994b] 
4. Operator interface design and development [van Lent, 1994] 
5. Natural language communication between SoarlIFOR agents (entities) and human 

participants in an exercise [Rubinofl)994] [Lehman,1995] 
6. Interfacing Soar with ModSAF [Schwamb,1994] 
7. Integrating world state information from a variety of sources [Jones, 1994c] 
8. Coordinating tactics .among multiple agents [Laird, 1994] 
9. Tracking and inferring events from observable cues with internal models of other agents' 

thought processes [Tambe, 1994] [Tambe, 199 5b ] 
10. Development ofa hypertext system for eliciting and communicating subject matter 

expertise [Koss,1994] 
11 . Development of operators and rules for rotary wing aircraft behaviors [Tambe, 199 5 a] 
12. Command and control agents for air mission controllers of various types [Nielsen,1995] 

75 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2.2.5 CCTT SAF 

2.2.5.1 Overview and capabilities 

The U.S. Army's Close Combat Tactical Trainer (CCTT) project is a large simulation 
development effort. CCTT is the first component and the technology base of the Army's 
Combined Arms Tactical Training (CATT) system, a massive DIS-compatible simulation system 
for training soldiers from several branches of the Army. CCTT will be a networked real-time 
battlefield simulation that includes ground and air combat vehicles, dismounted infantry, other 
weapons systems, and command and control elements. It will be a production system, intended 
for daily use as a battlefield training environment. CCTT will be fully DIS compliant; in fact, the 
needs ofCCTT are driving large parts of the DIS standardization efforts. [pope,1995a] and 
[pope, 1995b] give technical overview of CCTT; the former also addresses how CCTTs 
requirements are affecting the DIS standards. 

CCTT will include a CGF system to serve the essential CGF function of populating the battlefield 
with computer controlled enemy and supplemental friendly forces. The CCTT CGF system is 
known as the "CCTT Semi-Automated Forces" or "CCTT SAF". Much of this presentation is 
based on information in [Marshall, 1994]. 

It is important to observe that as a component of CCTT, the CCTT SAF is a production system, 
with stringent requirements for performance, reliability, and behavioral fidelity that are not 
necessarily applied to research oriented CGF systems. Table 2.4 lists some of the requirements 
for the CCTT SAF. 

Characteristic Requirement 
Different entity types 

Friendly forces 53 
Opposing forces 47 
Miscellaneous 117 

Combat Instruction Sets 
Friendly forces 700 
Opposing forces 500 

Terrain and environment 
Features High density 
Weather Rain, Haze, Fog, Cloud 
Visibility effects Continuous time of day, Tactical smoke, Flare illumination 

Tactical realism 
Representational scope From entity to Friendly battalion and Opposing regiment 
Traceability All entity models and unit behaviors 
VV&A All entitymodels and unit behaviors 

SAF Simulation features 
Control options Autonomous, Operator, Command from simulator 
Autonomous behaviors Obstacle avoidance, Detect opposing forces 
Miscellaneous features Damage effects, Stochastic failures, Jamming, Logistics 

Table 2.4 CCTT SAF requirements (adapted/rom [Marshall,1994J) . 
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The CCTT SAF runs on IDM RISC System/6000 workstations under the AIX operating system. 
One such workstation is planned to support approximately 60 simulated entities. As a 
Department of Defense production system, the CCTT SAF software is written in Ada. The 
reader interested in simulation software development in Ada is referred to: 

1. General overview [Devlin,1990] 
2. In-depth coverage ofa large Ada simulation project (the B-2 Aircrew Training Device) 

[Gross, 1991] [Zink, 1991] [Bedford, 1991] [McMahon, 1991 ] [Weiss, 1991] 
[Croucher, 1991] 

3. CGF system development in Ada [Craft,1994a] [Craft,1995a] 

2.2.5.2 System architecture 

To a certain extent, the Loral ADS ModSAF system is serving as a design prototype for the 
CCTT SAF. According to [pope, 1995a] and [pope, 1995b] the CCTT SAF is "based 
fundamentally" on the ModSAF model and ModSAF architectural ideas and algorithms are being 
adapted whenever possible for the CCTT SAF. 

Like the 1ST CGF Testbed and ModSAF, the CCTT SAF consists of two main software 
components. The "SAF Workstation" is an operator interface that allows the operator to monitor 
and control the CCTT SAF generated entities and the "CGF Simulator" performs the dynamics 
and behavioral simulation for those entities. 

The SAF Workstation uses X-Windows and Motif as the basis for its operator interface. The 
interface provides an electronic map of the battlefield and accepts keyboard and mouse input. 
The designers of the SAF Workstation's User Computer Interface worked to consider the 
expected demands on the operator (e.g. controlling up to 120 entities at one time) and the lessons 
learned from previous CGF system operator interfaces. It includes a Unit Editor to create and 
modify hierarchical unit relationships, an Overlay Editor to prepare geographic input to mission 
plans using military overlay symbols, and an Exercise Editor to record preplanned behaviors for 
mission phases. 

The CGF Simulator is built around the CGF Application, a single AIX process. The CGF 
Application is organized as five software modules: Terrain, Behaviors, Vehicle Simulation, DIS 
Manager, and SEOD Manager. 

The Terrain module processes the terrain database and provides information about the terrain to 
the other modules. The CCTT SAF uses a terrain format known as the "Model Reference Terrain 
Database" (MRTDB). The MRTDB is a further development ofModSAFs CTDB format 
[Smith, 1992a], with extensions and enhancements designed to conserve space and add features 
specifically required for CCTT. The MRTDB format is described in [Watkins, 1994] ; some of the 
terrain reasoning challenges that the MR TDB was designed to address are defined in 
[Campbell, 1994]. 

The Vehicle Simulation module performs physical modeling and vehicle dynamics simulation of 
the CCTT SAF entities. The software design of this module depends on the use of generic data 

77 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

driven models for common entity components. Entity models are composed of parameterized sets 
of generic models for hulls, turrets, sensors, weapons, resources, and communications. The 
physical models attempt to use a continuous simulation approach as much as possible. 

The DIS Manager module sends DIS network packets for the CCTT SAF entities and receives 
the packets for entities external to the system It also performs DIS interface functions such as 
remote entity approximation. 

The SAF Entity Object Database (SEOD) is a run-time database used by CCTT simulator nodes 
(including the CCTT SAF) to "store, retrieve, modify, delete, and share CGF command and 
control information among multiple simulation participants" [Horan,1994]. It is similar in intent 
to ModSAFs Persistent Object Protocol. The simulator nodes maintain the SEOD's database 
(each has an identical copy) by way of p.etwork traffic sent between nodes. The SEOD database 
contains information about CGF entities and their behavior states. It can be thought of as both a 
distributed entity database, with its content updated via SEOD network traffic, and an interface 
through which applications share command and control information. The SEOD is the medium 
used by the SAF Workstation and the CGF Simulator to communicate with each other; orders 
assigned at the SAF Workstation for a unit are placed in the SEOD for that unit to respond to. 
The SEOD module is the application program interface between the node and the SEOD. SEOD 
data can be saved and used to restart CCTT scenarios. 

The Behaviors module produces unit and vehicle level behavior. Its functioning will be described 
in detail later. 

2.2.5.3 Behavior generation 

Because the CCTT SAF is a production system, the behavior generated by it for its controlled 
entities must adhere to strict standards of tactical fidelity. Furthermore, each behavior generated 
must be traceable, in the sense that it must be possible to establish the source of a behavior. In 
response to these requirements, the CCTT SAF developers have instituted a methodical and 
rigorous knowledge engineering process to identify, specify, and document the tactical behaviors 
for the CCTT SAF that will be implemented within the system CCTT CISs include both low­
level (entity), doctrine-independent behaviors such as "Fire at target" and "Follow route" and 
higher-level (platoon) doctrine-dependent behaviors such as "Execute bounding overwatch" 
[Marshall, 1994]. 

Tactical behavior in the CCTT SAF is specified as CISs (defined earlier). The source data for the 
CCTT SAF CISs for U.S. forces is the U.S. Army's Training Evaluation Program (ARTEP) 
doctrine, and the derived CISs are traceable back to doctrinal elements expressed in the ARTEP 
material. Enemy force CISs are based on Russian tactical doctrine, and Russian military manuals 
and journals are used as source documents. Every CIS includes, in its structured English 
representation, pointers to the source documents upon which the behavior is based. 
[McEnany,1994] discusses the knowledge engineering process of translating CIS from source 
document to structured English, and estimates the number of CISs to be documented and 
implemented for the CCTT SAF at 1200 (700 U.S. and 500 enemy). 
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Once the CISs are expressed in structured English form, they must be translated into program 
code. In the CCTT SAF, CISs at the vehicle level are implemented as Finite State Machines 
(FSMs) within Ada packages. Both doctrine-independent and doctrine-dependent CISs are 
implemented in this way. [Ourston,1995] elaborates on how the English CISs are implemented as 
software. 

At the platoon level and above, a different implementation technique is used. An expert system 
and tactical rule database is used to select a CIS for execution by a platoon. CISs may be selected 
based on an operations order (entered through the SAF Workstation), a direct command from the 
operator, or a development in the battlefield situation. Once a CIS is selected for a platoon it is 
executed by the FSM mechanism [Bimson, 1994] descnoes how the expert system makes the 
selection and [Ourston, 1994] explains how the expert system is integrated with the algorithnric 
CIS execution. 

2.2.5.4 Status and applications 

More detailed descriptions of specific aspects of the CCTT SAF are available: 
l. CCTT SAF system architecture [Marshall,1994] 
2. Current CCTT SAF terrain representation format [Watkins,1994] [Campbell,1994] 
3. Relationship ofCCTT and the CCTT SAF to DIS standards [pope,1995a] [pope,1995b 
3. Route planning [Campbell,1995] 
4. SEOD [Horan,1994] 
5. Behavior specification methodology [McEnany,1993] [McEnany,1994] [Ourston,1995] 
6. Expert system for tactical decision making [Bimson,1994] [Ourston,1994] 

Like the overall CCTT system, the CCTT SAF is still under development, and therefore the 
information given is subject to change. 

2.2.6 SIMNET SAF 

As mentioned earlier, SIMNET was the first production version of a networked virtual battlefield 
simulation. SIMNET included a CGF system developed by Bolt, Beranek, and Newman known 
as the SIMNET SAF (Semi-Automated Forces). 

The SIMNET SAF system uses two minicomputers and a single human operator to generate and 
control up to approximately 40 vehicles. It connects to the SIMNET network, generates network 
packets appropriate for the vehicles it is simulating, and processes incoming network packets for 
other vehicles in the simulation. It uses a version of the SIMNET terrain database that correlates 
to those used in the crewed simulators. 

The SIMNET SAF system controls tanks (e.g. MIs and T-72s), infantry fighting vehicles (M2 
Bradleys and BMPs), and other similar vehicles in the SIMNET battlefield. Those vehicles can 
oppose or cooperate with the vehicles controlled by the human users of SIMNET. They have a 
repertoire of autonomous behavior that includes following preplanned routes, simple route 
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planning, automatic formation changes in response to geographic control measures or battlefield 
events, target selection, and direct fire. However, the SIMNET SAF system has considerable 
dependence on a human operator for both high-level behavior, such as mission planning, and very 
low-level behavior, such as route planning across bridges. 

The SIMNET SAF was a noteworthy accomplishment in its time, but its capabilities have been 
surpassed by more recent CGF systems, including ModSAF, its direct descendant. Nevertheless, 
it is used extensively for training purposes at U. S. Army SIMNET sites, such as Ft. Knox KY and 
Ft. Rucker AL. 

More information on the SIMNET SAF system is available; the references include: 
1. System overview [Ceranowicz,1988] [Crooks,1990] [Downes-Martin,1990] 

[Jacobs, 1990] 
2. Terrain representation and reasoning capabilities [Stanzione,1989] 
3. Evaluation of the CGF entities' behavior [potomac,1990] 
4. Supplemental dismounted infantry workstations [Fraser,1990a] [Fraser,1990b] 
5. CGF research using the SIMNET SAF as a testbed [Harmon,1991] [Harmon,1994] 

The SIMNET SAF was enhanced for use in DARPA's Project ODIN; in that system it was known 
as the ODIN SAF. The terrain reasoning capabilities of the ODIN SAF are given in 
[Stanzione,1993] and an adaptation of the ODIN SAF to produce 10,000 entities is described in 
[Vrablik,1993]. The SIMNET SAF also continues to be used for large simulation development 
projects such as "Synthetic Theater of War-Europe", an attempt to combine elements from 
virtual, live, and constructive simulation into an integrated networked brigade training system 
[Johannesen, 1995]. 

2.2.7 Semi-Automated Forces Dismounted Infantry 

Dismounted infantry, in useful numbers, is conspicuously absent from the SIMNET battlefield. 
SIMNET contained only very limited dismounted infantry capabilities in the form of manned 
workstations that permitted operator control of single fireteams [Fraser,1990a] [Fraser,1990b]. 
The SIMNET SAF system did not generate dismounted infantry entities. That absence created an 
unrealistic, and possibly negative, training environment. Dismounted infantry, both in reality and 
in SIMNET, is difficult to see and very dangerous to vehicles when armed with anti-tank missiles. 
Tank crew trainees in SIMNET were not forced to consider this threat and consequently could 
learn tactical behaviors that would increase their vulnerability to dismounted infantry. 

In response to this need, 1ST developed a CGF system capable of generating useful numbers of 
computer controlled dismounted infantry fireteams at minimal cost. This was done by making 
extensive specialized enhancements to ISTs CGF Testbed. The resulting system, known as 
Semi-Automated Forces Dismounted Infantry (SAFDI), can generate dismounted infantry 
fireteams and their associated fighting vehicles in the SIMNET battlefield. 
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The enhancements consisted of entity types, physical models, and behaviors specific to 
dismounted infantry and supporting entities. More specifically, the infantry functionality 
implemented for the SAFDI system includes: 

1. Hybrid representation of fireteams and individual soldiers [petty,1991] [petty,1992d] 
[petty, 1994a] 

2. Infantry ATGM and small-arms weapons utilization behaviors [petty,1991] 
[petty,1992d] [petty, 1994a] 

3. Physical models of infantry movement and exhaustion [Karr,1992a] 
4. Parametric composition offireteam size and weapons [parra,1994] 
5. Forward observer behavior, including autonomous call for fire [Franceschini, 1994a] 

[Franceschini, 1994b] 
6. Use of man-portable air defense weapons [Franceschini,1994a] [Franceschini,1994b] 
7. AMSAA-provided indirect fire damage resotution model [Franceschini,1994a] 

[Franceschini, 1994b] 

Extensive User and Systems documentation was provided with the SAFDI system at the sites 
where it was installed [Franceschini, 1993a] [Franceschini, 1993b]. 

The SAFDI system has been delivered to U.s . Army sites for evaluation and experimental use in 
training and development, where it has proven to be both useful and stable. The results of its 
evaluation at the U.S. Army Infantry School at Ft. Benning are documented in [Chervenak,1993] 
and [D'Errico, 1994]. 

2.2.8 Action/Cognition Behavior Model 

The Action/Cognition Behavior Model (ACBM), Simulated Warfare Environment Generator 
(SWEG), C++ SWEG (CSWEG), and CIMUL8 are all members of a family of simulations 
developed by BDM Federal since 1973. A key common ancestor of these simulations is 
Supressor. They have been used for a wide range of military analysis projects. A typical 
application of these simulations is to test the effectiveness of new, modified, or proposed vehicle, 
weapon, electronic warfare, or sensor systems. For example, according to [Jones,1993a] ACBM 
has been recently used to test the military worth of the Advanced Self-Protection Jammer for 
aircraft, an electronic support measure system for shipboard air defense, the Airborne 
Survivability Suite for the RAH-66 light attack/reconnaissance helicopter, and the 
Reconnaissance, Surveillance, and Target Acquisition aircraft. 

The members of the ACBM family are complete simulations in that they include not only CGF 
functions but full battlefield representation (at least those aspects of the battlefield needed for the 
application). Over much of their existence these simulations have been used as stand-alone 
analytic simulations. As is typical for that simulation type, they are event-driven. To make them 
interoperable with DIS simulation, two enhancements have been made; first, their event handling 
has been synchronized to a real-time clock to give real-time execution [Landweer, 1993b], and 
second, a DIS protocol interface has been added [Landweer, 1994b]. With these enhancements 
they have been linked into DIS networks and have participated in DIS scenarios in real-time 
[Landweer, 1994a] [Landweer, 1994b] [Landweer, 1994c]. 
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ACBM uses a formal language (called VBL) of considerable power and complexity to specify 
both performance and behavior for the entities and systems it is simulating [Lattimore, 1993] ; an 
example ofVBL was given earlier. CGF entity behavior is generated by a model of cognition also 
referred to as ACBM [Landweer, 1993b]. 

References to CGF aspects and applications of ACBM include: 
1. Utility ofCGF systems for analysis purposes, with ACBM as an example [Jones,1993a] 
2. Use ofSWEG in two tests of the effectiveness of various electronic counter measures and 

E-2C communications systems involved in Navy air strike missions [Landweer,1993a] 
3. Explanation of the ACBM model of cognition [Landweer,1993b] 
4. Design of a formal language for expressing CGF performance and behavior, used as input 

to ACBM [Lattimore,1993] 
5. Participation by CIMUL8 in the 1993 lilT SEC DIS Interoperability Demonstration, 

including the DIS conversion of CIMUL8 and the specific CGF behaviors implemented 
[Landweer, 1994b] 

6. Use ofCSWEG in a large scale (regiment-vs-regiment) scenario that included CGF 
modeling of command and control entities [Jones, 1994a] 

7. Integration of constructive, virtual, and live simulation via DIS with a CGF system 
(CIMUL8) in a central role [Landweer, 1994a] [Landweer,1994c] 

2.2.9 Non-military CGF systems 

Simulations in other, non-military, domains also have their own computer generated entities. 
Some interesting examples include predatory fish in an ocean simulation [Maruichi,1987], an 
autonomous land vehicle on the surface of another planet in a simulation that provides the context 
for a machine learning experiment [petty, 1990], and fire fighters and fire in a high-rise fire 
incident command training system [Altman, 1991]. [Warren,1995] offers two examples of how 
CGF systems that perform military functions (e.g. control adversary aircraft in an air combat 
simulation) are used for entertainment purposes. In entertainment applications, presentation 
fidelity is often more important than CGF behavioral fidelity. 

[pettY,1995a] describes the adaptation ofa military constructive simulation (Janus) to Emergency 
Management training and [Loper,1995a] examines how well DIS supports Emergency 
Management simulation. With those ideas as background, [petty,1995e] explores how CGF 
requirements for Emergency Management simulation differ from combat simulation. 
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3. Terrain representation in CGF 

This section moves from CGF systems in general to terrain representation in CGF systems. First, 
background concepts of terrain representation are introduced. Then terrain representation 
formats used by existing CGF systems and other related systems are surveyed and explained in 
detail. The explanations discuss the data structures for each of the representational formats and 
compare their strengths and weaknesses in the CGF context. 

3.1 Terrain representation preliminaries 

Terrain representation is the representation of a piece ofterrain, either actual or imaginary, in a 
digital computer-readable form. Theformat of a terrain representation defines what data is stored 
for the terrain and how it is organized into data structures. A particular set or instance of data for 
a terrain is a terrain database. If that terrain database represents an actual area on the earth, it is 
geospecific; ifnot, it is notional. 

A utomated terrain analysis is the automated analysis of a digitized terrain representation for the 
purposes of making or assisting tactical decisions involving the terrain. Automated terrain 
analysis is not necessarily connected to CGF systems. For example, [Benton,1991] surveys 
several automated terrain analysis research tasks where the stated goal is to " .. .let the battlefield 
commander make more effective use of the terrain through computer analysis ... ". 
[Werkheiser, 1991] also surveys automated terrain analysis methods. 

Of course, terrain analysis algorithms may also be applicable to terrain reasoning within a CGF 
systeIIL For CGF systems then, terrain reasoning is defined as automated analysis of a digitized 
terrain representation for the purposes of making behavioral decisions involving the terrain 
[petty, 1994b ]. Hereinafter in this document, terrain reasoning will refer to terrain reasoning 
within a CGF system unless otherwise stated. The reader should note that some sources use the 
terms terrain analysis and terrain reasoning synonymously, without making the non-CGF vs. CGF 
distinction made here. Another related distinction between terrain analysis and terrain reasoning 
is that terrain analysis connotes a planning activity and as such has no real-time response 
constraints, whereas terrain reasoning suggests real-time activity, usually done during the 
execution of a simulation. 

This survey will consider a set of terrain representations includes both those that have been used 
for terrain reasoning within CGF systems and those used and proposed for automated terrain 
analysis systems that are not a component of CGF systems. The latter are interesting in that they 
may offer ideas for terrain reasoning that can be applied to CGF systems. 
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It is often the case that terrain databases designed for terrain reasoning have structures that differ 
greatly from those designed for other uses (image generation, map display, and so on) 
[Stanzione,1989]. The focus here is on terrain representations used for terrain reasoning. 
Readers interested in broader issues of terrain representation are referred to: 

1. Catalog of digitized terrain data available from the Defense Mapping Agency 
[DMA,1995] 

2. Survey of digital terrain formats and recommendations for a standard DIS terrain 
representation format [Trott, 1995] 

3. Generating terrain databases for image generators from source data in standard formats 
[Roback, 1995] 

Terrain reasoning algorithms operate on data structures that represent the terrain; those data 
structures constitute a terrain database. It is intuitively clear that the terrain database used by 
CGF systems "plays an important part in the efficiency and realism of their terrain reasoning 
algorithms" [Stanzione,1994]. The terrain database must represent the 3D surface of the Earth, 
referred to as the terrain surface, as well as the roads, bridges, buildings, trees, forests, rivers, and 
so on that are present on the terrain, known as terrain features. Terrain features that are artificial 
objects, such as buildings and roads, are sometimes referred to as cultural features or culture to 
distinguish them from natural features. 

The terrain itself may change during a simulation exercise due to the actions of agents in the 
simulation (artillery shell bursts create craters, combat engineers blow bridges or construct 
emplacements); the capability is known as dynamic terrain. Simulating dynamic terrain includes 
the issues of computing the changes to the terrain, updating the terrain database to reflect those 
changes, and communicating the changes among the nodes of a distnlmted simulation. Dynamic 
terrain is largely beyond the scope of this document, though some terrain representations or 
representational aspects intended to support dynamic terrain capabilities will be mentioned. A 
reader interested in more information about dynamic terrain is referred to: 

1. Survey of dynamic terrain issues and solutions [Moshell,1994] 
2. Dynamic terrain server architecture for DIS [Lisle, 1994] [Kilby, 1994] 
3. Dynamic terrain capabilities in the ODIN SAF, based on destructible entities 

[Stanzione, 1993] 
4. Dynamic terrain capabilities for CCTT, based on model placement and switching 

[Campbell, 1994] 
5. Dynamic terrain database design for image generators [Li, 1994] 
6. Dynamic terrain approach using a variable resolution gridded terrain representation 

[Kendall, 1995] 
7. Server architecture and artillery shell cratering with parameterized hill shapes in the 

variable resolution gridded terrain representation [Pumell,1995] 
8. Representing entity knowledge about the state of dynamic terrain, e.g. "Should the CGF 

unit know that the bridge has been blown?" [Watkins,1995] 
9. Simulation offluid flow and terrain effects in DIS [Chen,1994] [Chen,1995] 
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3.2 Elevation posts and gridded terrain 

3.2.1 Definition 

In an elevation post terrain database, the elevation of the Earth's surface is measured relative to a 
vertical origin at points uniformly spaced in two dimensions relative to a horizontal origin. The 
vertical origin is typically mean sea level. The horizontal spacing may be at regular latitude­
longitude increments or based on meters from a given origin. The elevation values form and are 
stored as a matrix; the values are called elevation posts as a mnemonic to suggest regularly spaced 
posts extending from the vertical origin elevation up (or down) to the terrain surface at each . 
measured point. The elevation of the terrain surface to be represented is specified at the elevation 
posts by the data; the elevation of points between elevation posts must be interpolated. 

Terrain surface data given as elevation posts is available in standard forms and resolution from 
public sources. The Defense Mapping Agency (DMA) provides Digital Terrain Elevation Data 
(DTED) at resolutions of3 arc seconds (90-meter spacing between posts) and 1 arc second (30-
meter spacing) for many parts of the world [Schiavone,1995]. Those resolutions are referred to 
as Levelland Level 2, respectively. DMA DTED is often used as source data for terrain 
databases. [DMA,1995] is a complete catalog of terrain data available from the DMA. 

Gridded terrain is terrain that is represented as a regular array, or grid, of uniformly sized cells. 
The cells of the grid are almost always squares and square cells will be assumed herein unless 
otherwise stated. The grid cells are assigned attributes that are assumed to hold for the entire 
grid. Elevation is usually only one of those attributes; the grid cells may have many additional 
attributes, such as terrain surface type, traffic ability, features, and many others. See Table 3.1 for 
a list of example grid cell attributes. 

Attribute Values 
Elevation Meters 
Vegetation height Meters 
Urban One of: None, Present 
Hydrology One of: None, Fordable river, Non-fordable river, Lake 
Soil type One of: Muskeg, Fine grained, Coarse grained, Heavy clay 
Power lines One of: None, Present 
Bridges One of: None, Present 
Land use code One of: Open water, Cropland, Pasture, Coniferous forest, Deciduous forest, 

Forest clearing, Orchard/vineyard, Dense brushland, Open brushland, Wetlands, 
Peat cuttings, Abandoned agriculture, Bare ground or sand dunes, Urban 

Road type One of: None, Autobahn, Primary, Secondary, Trail 
Obstacles One of: None, Embankment or ditch, Wall or fence, Other manmade, Military 

Table 3.1 Example terrain grid cell attributes [Powell, 1988b}. 

Gridded terrain is often implemented as an extension of elevation post terrain data where the grid 
cells are aligned with the elevation posts (often the post marks the southwest comer of the cell) 
and each elevation post's elevation is the elevation of the corresponding grid cell. Of course, 
there are elevation post terrain databases with no additional attn"butes and there are gridded 
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terrain databases that are not aligned with specific elevation posts, but the two representations are 
so similar in concept and usage that the terms elevation post terrain and gridded terrain are 
sometimes used synonymously. This document will also do so, referring to the terrain 
representation format as gridded terrain, with elevation posts giving the elevation attribute of such 
terrain. The x,y coordinates of the elevation posts in gridded terrain are sometimes referred to as 
grid points. 

3.2.2 Example 

Because of its importance, one specific gridded terrain representation, the SIFIHDI format, will 
be described in some detail; this description follows [Stanzione,1994]. The U.S. Air Force's 
Project 2851 set out to develop a standard terrain database format to allow interchange of terrain 
database data between image generator (lG) manufacturers. The scope of the project was then 
expanded to include non-IG users of terrain databases, including CGF systems. The DMA set up 
a Simulator Database Facility (SDBF) as a central repository for terrain database data. The 
SDBF uses an internal terrain database format, known as the Standard Simulator Database 
(SSDB), for its data. Three formats for data interchange have been developed for use in 
collecting and disseminating data for the SDBF. One of them, the SSDB Interchange 
FormatlHigh Detail Input/Output (SIFIHDI), will be described here. 

The SIFIHDI format is important because it is often used as a common source data format for 
simulators and CGF systems with different internal terrain database representations. For example, 
a SIFIHDI format terrain database for Ft. Hunter-Liggett in California was used as the common 
source data for the first DIS Interoperability Demonstration. That demonstration linked 39 
different simulators, simulation nodes, and CGF systems from 20 different vendors and agencies 
[Loper,1993]. (A historical aside; [Wever, 1989] describes a standard interchange format for 
SIMNET terrain databases. It was superseded in importance by SIFIHDI as DIS replaced 
SIMNET.) 

The SIFIHDI format (it is often referred to simply as SIF) has three primary data types: 
1. Gridded elevation data 
2. Modellibraries 
3. Cultural features 

Gridded elevation data. SIFIHDI stores the terrain elevation as an array of elevation posts. 
SIFIHDI uses resolutions (post spacings) of3, 1,0.3, and 0.03 arc seconds; a single SIFIHDI 
terrain database may contain elevation data in one or more of those resolutions. Elevation values 
are given to a precision of one millimeter. 

Model libraries. The SIFIHDI model libraries contain models (detailed descriptions) offeatures 
that might be located on the terrain. The models in the model libraries are archetypical, in that 
they are examples or centralized descriptions of features that may exist at any location, or many 
locations, on the terrain database. The 2D Static model library contains models of two­
dimensional (2D) terrain and cultural features that do not change during execution, including 
roads, rivers, and railroads. The 3D Static model library contains models for unchanging three-
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dimensional (3D) features, such as buildings, trees, and bridges. The 3D Dynamic model library 
contains models for entities that can change or move during execution, such as artillery shell 
craters and vehicles. The feature models can be defined as polygons, solid geometry, or both. 
Each model may be given in up to nine levels of detail. The models use the Feature Attribute 
Coding Standard (FACS), which encodes physica~ cultur~ and sensor-response data about the 
feature being modeled. Model attributes include color, texture, and collision test points. 

Cultural features. In the SIFIHDI format, cultural features are those features that are location 
specific, such as a forest with its own unique shape, or are instances of the modeled features, such 
as a bridge of a particular type (found in the model library) at a specific location. The SIFIHDI 
format supports six classes of cultural features; they are defined in Table 3.2. [Stanzione,1994] 
observes that the point light and point light string cultural feature classes are redundant; features 
of those classes can be represented as point features with the addition of a light emittance 
attribute. Features are located in the terrain database by latitude and longitude to a precision of 
one ten-thousandth ofan arc second. The SIFIHDI format allows homogenous sets offeatures to 
be aggregated into superfeatures, which can simplify terrain reasoning. 

In a terrain database, topology refers to the spatial relationships between features and how the 
terrain database organization represents those relationships; in contrast, geometry refers to the 
precise location or shape of a feature. The SIFIHDI has some topological representation, in that 
segments and vertices between adjacent features are shared, thereby implying adjacency. 
However, there is no spatial organization to the feature data; features that appear sequentially in 
the database need not be located in proximity in the terrain. 

Feature class Representation Attributes Example(s) 
Areal Line segments that describe a closed Layer Ponds 

polygon, separated at intersections Inside segments Forests 
with other features Direction 

Linear Line segments, separated at intersections Layer Roads 
with other segments Direction Walls 

Point Vertex or non-connected vertices Power poles 
Point light Vertex, assumed to be light source Searchlight 
Point light string Non-connected vertices, assumed to be Runway lights 

light sources 
Model reference Vertex and pointer to model in model Orientation Buildings 

in model libraries Scale Bri<iges 
All classes Feature Descriptor Code 

Predominant height 
Bounding rectangle 

Table 3.2 SIFIHDI cultural terrainfeatures. 

There have been some criticisms leveled at SIFIHDI as a general purpose terrain database 
interchange format. [Hardis,1994] and [pope, 1995a] give some of those. Along the same lines, 
after surveying the range of available terrain representation formats, [Trott,1995] suggests certain 
additions and updates to the SIFIHDI format which would make it, in the authors' opinion, "a 
standard format that will be capable of addressing all DIS Synthetic Environment requirements". 
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While the suggested enhancements have merit, the reference does not discuss terrain reasoning, 
and the recommended format is likely not the optimum solution in that area. 

More specific to CGF systems, [Stanzione,1994] analyzes the applicability of the SIFIiIDI format 
to CGF systems' terrain reasoning, concluding that the data needed for CGF terrain reasoning is 
available in the SIFIHDI format but that additional feature attribute standardization and spatial 
organization of the data is needed to efficiently support CGF terrain reasoning. Because SIFIHDI 
is typically used as a source data format and converted to each CGF system's internal terrain 
database format the needed spatial organization can be computed during the conversion process. 

[pope,1995a] describes how CCTT visual databases are created from DMA formats. Once 
created they are converted into SIFIHDI format; the SIFIHDI terrain data is then input to the 
CCTT SAF terrain database compiler, which generates the CCTT SAPs MRTDB terrain 
reasoning terrain database and Quadtree plan view display terrain database (both to be described 
later) from it. The intent of this process is twofold: first, to increase correlation between the 
CCTT visual database and the CCTT SAPs terrain reasoning terrain database (correlation is 
further discussed later), and second, to insulate the CCTT system's visual terrain database and the 
CCTT SAPs terrain databases from changes to each other. According to [pope,1995a], CCTT is 
the first major DIS project to use the SIFIHDI format. In discussing the same process, 
[Watkins, 1995] indicates that the intermediate form is actually SIFIHDI with some extensions. It 
is not clear from the reference whether a strict SIFIHDI file would be readable by the CCTT SAF 
terrain database compiler. 

3.2.3 Additional applications 

This sub sub section briefly presents additional gridded terrain representations. They are: 
1. Eagle 
2. PATHPLAN 
3. JPL Mobile Robot 
4. Martin Marietta SAFaR 
5. Stealth terrain navigation 
6. Compact Terrain Database 
7. NASA Ames LOS attachment 
8. Model Reference Terrain Database 
9. Iowa Driving Simulator 

10. RAND 
11. ARL Variable Resolution Terrain 

Eagle. In the Eagle constructive simulation, terrain gridded at 100 meter resolution, with 10 
attributes associated with each grid, is used as input to a unit route planning algorithm 
[Powell, 1987] [powell,1988a] [powell, 1988b] [powell, 1989] [Wright,1990]. 

PATH PLAN A simple terrain grid, with elevation and explicit obstacles as the only grid cell 
attributes, is used to represent a portion of Ft. Hunter-Liggett to test a robot motion planning 
algorithm [Ok, 1989]. 
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JPL Mobile Robot. A terrain representation of uniformly sized square grid cells is used to receive 
and fuse sensor information for a mobile robot [Slack,1989] [Ewing,1992]. The terrain grid cells' 
attributes are elevation, slope, roughness, location and height of obstacles, presence or absence of 
vegetation, and composition (grass, dirt, leaves). The terrain database is centered on the robot, 
rather than being of fixed extent and location, so as the robot moves the terrain grid cells' attribute 
values are updated by the sensors. The terrain data is supplied as input to an abstraction process 
that computes a set of terrain features for use in the robot's route planning. 

. Martin Marietta SAFaR Polygonal terrain (defined later) is discretized into a hexagonal grid. 
Each hexagonal grid cell has three attributes: elevation, mobility, and exposure 
[Bockstahler, 1991]. 

Stealth terrain navigation. A gridded terrain representation, with elevation as the sole attribute 
of each grid cell, is used as a test environment for route planning, intervisibility, and bounding 
overwatch terrain reasoning algorithms designed for a parallel machine architecture [Teng,1992]. 

Compact Terrain Database . . The Compact Terrain Database (CTDB) is a gridded terrain 
database format used in the ODIN SAF and ModSAF [Smith, 1992a] [Stanzione,1993]. CTDB 
elevation posts are spaced at 125m intervals. By using elevation posts over much of the database 
extent the CTDB format achieves considerable terrain database size reduction over the polygonal 
format of its predecessor (the SIMNET SAF terrain database, to be described later); hence its 
"Compact" appellation. CTDB also uses fixed point numeric representations to save space. 
[Smith, 1995b] observes that the compressed format positively affects run-time performance in 
that more of the terrain database can be retained in memory. However, [Watkins,1994] 
comments that some of the CTDB compression is at the cost of additional run-time processing as 
compared to other formats. The CTDB does include some polygonal data as well; that will be 
described later. 

A polygonal (triangular) representation of the terrain surface is induced from the elevation posts 
by assuming a diagonal bisecting each of the squares formed by the elevation posts in the x,y 
plane; see Figure 3.1. In early CTDB terrain databases, the diagonal was always Northwest to 
Southeast; in the current format, it may be either Northwest to Southeast or Northeast to 
Southwest, though the direction is specifiable only for a database as a whole, not for individual 
squares. 

Microterrain and terrain features are represented in ModSAF as polygons; they will be discussed 
later. The CTDB format continues to be actively enhanced; [Smith,1995b] presents recent 
enhancements and a list of projected future capabilities. 

NASA Ames LOS Attachment. The NASA Ames Research Center's Vertical Motion Simulator (a 
flight simulator) uses a gridded terrain representation with elevation posts only to perform point­
to-point intervisibility determinations [Sansom, 1993]. The gridded representation is constructed 
in a preprocessing step from the polygonal terrain database used in the flight simulator's image 
generator. 
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Elevation Posts 

(a) NWto SE (b) NE to SW 

(c) Variable 

Figure 3.1 Inducing polygons from elevation posts. 
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Model Reference Terrain Database. The Model Reference Terrain Database (MRTDB) is a 
gridded terrain database format used in the CCTT SAF (as well as other simulation nodes in the 
CCTT system) [Watkins,1994] [Watkins,1995]. Driving the MRTDB database design are 
CCTT's demanding terrain database requirements, which are well beyond those imposed on the 
SIMNET or CTDB formats [Watkins, 1994]. A few CCTT requirements are: 

1. Terrain database size; 100 Km x 150 Km 
2. Elevation post spacing; 30 m 
3. Feature density; 30,000 structures (10,000 destructible) and 

10,000,000 individual trees 
The MRTDB format improves upon the CTDB's already compact format with additional data 
compression techniques in order to meet CCTT's large terrain database requirements. The 
improved compression allows even more of the database to be retained in memory. 

As in the CTDB format, the terrain surface in the MR TDB format is taken to be the triangular 
surface induced by the elevation posts. However, in MRTDB, the diagonalization is variable; the 
diagonal direction for each square is stored with the elevation post at the square's Southwest 
comer. 

The MRTDB design is object-oriented and it is implemented in Ada. It permits different elevation 
post spacings within the format. The dominant feature of the MRTDB is its extensive use of 
models to describe terrain features such as trees and buildings. A set of such features are 
described in the MRTDB's Feature Model Library. Instances of those features are located in the 
terrain by a reference to the library entry. This method avoids a detailed description of a feature, 
such as a building, at every feature location in the database. Different versions of the features can 
be defined in the Feature Model Library to represent the features in different states, such as 
normal, damaged, and destroyed, and the database reference switched when a particular feature's 
state is changed by exercise events [Campbell, 1994]. [pope,1995a] and [pope, 1995b] provide 
lists of enhancements ofMRTDB relative to CTDB. 

Terrain reasoning capabilities provided by the MRTDB include elevation, collision detection, 
munition impact detection, intervisibility road route planning, static obstacle avoidance, area 
intervisibility, and cover finding [Watkins,1995]. That reference also discusses three novel terrain 
representation issues dealt with in the MR TDB. They are: 

1. Bi-Ievel terrain; representing overpasses and bridges 
2. Penetrable forests; representing very large numbers of individual trees without exceeding 

space limits 
3. Terrain awareness; representing the state of entity knowledge about dynamic terrain 

Iowa Driving Simulator. A variable resolution gridded representation is used in the Iowa Driving 
Simulator (IDS) [papelis,1994]. The IDS has sufficient fidelity in its vehicle dynamics models and 
terrain representation to be applied to virtual prototyping [Kuhl, 1994]. The terrain database is 
partitioned in the x,y plane into arbitrary rectangles, called datazones, whose sides are aligned 
with the x and y axes. Within each datazone the terrain elevation (and other attributes) are given 
by regularly spaced datasets, which are essentially elevation posts. The dataset spacing is 
constant within a datazone, but variable among datazones; it may be set as needed to represent 
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arbitrarily high resolution terrain. The IDS terrain database format supports overlapping 
datazones at a given x,y location (with different z values) to model bridges, overpasses, and 
similar structures. Finally, the format includes a second partitioning of the terrain in the x,y plane 
into square sectors, each one with a list of the datazones it overlays, so as to speed terrain query 
access. 

RAND. In a quantitative analysis of route planning algorithms reported in [Marti, 1994] a gridded 
terrain representation is used, with elevation the only attribute of the elevation posts. 

ARL Variable Resolution Terrain. Gridded terrain based on the idea that "terrain is built up of 
many hills, each with its own set of shape parameters" is used to support dynamic terrain 
[Purnell, 1995]. The elevation at a particular grid point is the sum of the heights of the hills that 
are pres~nt at that grid point. The terrain is changed (e.g. artillery cratering) by adding additional 
hills to the terrain database. [Kendall, 1995] goes on to describe how this gridded terrain format 
can be mathematically manipulated to provide gridded terrain with variable resolution. The basic 
idea of the technique, called adaptive grid generation, is that the grid resolution (spacing) varies 
in space, with closer grid spacings around simulation entities, and in time, with the areas of 
increased re.solution moving to follow the simulation entities. This dynamic respacing of the grid 
is accomplished by using elliptical Poisson equations with entity locations as point attractor 
source terms to calculate the x,y coordinates of the grid points prior to calculating the elevations 
of those points by applying the parametric hills. 

[Kendall, 1995] proposes adaptive grid generation as a standard terrain model for DIS. While 
mathematically interesting, the adaptive grid generation method has a number of unresolved 
problems that call into question its applicability to DIS. Two will be considered here: 
computational expense and terrain correlation. 

The computational expense of the adaptive grid generation method may be prohibitively high for 
DIS. To find the grid points a system of partial differential equations must be solved. In 
considering the problem of computation time, [Kendall, 1995] states: "The time between 
distributed interactive simulation (DIS) entity state protocol data unit (PDU) updates, 
approximately five seconds, is available for updating the locations of the grid points and the 
corresponding terrain elevations." This statement is erroneous on several counts: 

1. DIS Entity State (ES) PDUs for a single entity are typically sent five times per second, 
not once every five seconds [Cheung,1994]. 

2. The DIS ES PDU sending rate is variable and unpredictable, and so no fixed amount of 
time can be assumed to be available. 

3. Entity locations must be dead reckoned between ES PDU arrivals and those entities may 
be involved in intervisibility determinations during the interarrival periods, so the detailed 
terrain recalculations may be needed even more often than ES PDUs arrive. 

Furthermore, the grid recalculation times given in [Kendall, 1995] for four entities exceed five 
seconds, and the given results appear to not include the calculation of the elevation at the grid 
points. Nearly all DIS exercises will involve many more than four entities. 
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Ensuring terrain database correlation is another problem area with adaptive grid generation. If 
every node that may sight a particular entity does not perform the grid recalculations at exactly 
the same time and with exactly the same entity locations, then slightly different terrain forms will 
result, possibly giving different intervisibility results. 

3.3 Polygonal terrain 

3.3.1 Definition 

Elevation posts approximate the terrain surface by giving its elevation at a set of fixed points. 
[Schiavone,1995] asserts that "DIS resources that interact with and/or represent the terrain 
require a common, exhaustive, unambiguous representation of the surface of the earth." By 
exhaustive and unambiguous the reference is referring to the terrain surface between the elevation 
posts. The most common method of providing such a continuous 3D terrain representation is 
polygonal terrain. In polygonal terrain, the terrain surface is represented as a set of 3D polygons. 
The polygon set is contiguous, in that adjacent polygons share edges, and complete, in that for 
every x,y coordinate within the geographic extent of the terrain database there is a terrain surface 
polygon that includes that point. The z coordinate of the polygon at .any given x,y coordinate is 
the terrain elevation at that point. Figure 3.2 is an example. 

Gridded terrain can be converted to polygonal terrain; this conversion is often done with SIFIHDI 
data as input (e.g. see [Loper, 1993]). The obvious way to do so is by taking the elevation posts 
as the vertices of polygons. Typically the polygons are triangles. However, naive application of 
this simple procedure can produce certain problems. First, large regions with constant elevation 
or constant slope can be converted into many coplanar polygons, needlessly increasing both 
storage and processing requirements for the terrain database. Second, differing polygonalizations 
may derive from identical elevation post data. An example is given in Figure 3.3. The four 
elevation posts in (a) can be triangulated in two different ways, shown in (b) and (c); in the 
absence of other information, both are equally valid. Such ambiguity can be avoided in at least 
two ways. One is by adopting a convention that all terrain databases derived from the same 
gridded data and that are intended to correlate be triangulated using the same procedure, either 
(a) or (b); ModSAFs CTDB uses that method. The other is to explicitly indicate which is correct; 
the CCTT MRTDB uses a bit indicator for that purpose [Watkins, 1994]. 

[Schiavone, 1995] discusses the creation of polygonal terrain from elevation posts in somewhat 
more detail, indicating that a Delaunay triangulation algorithm is commonly used. The reference 
also describes the process of manually editing and enhancing a terrain database that was originally 
created from elevation posts using a triangulation algorithm. [Sundaram,1994] presents an 
algorithm to generate polygonal terrain from arbitrary elevation posts in real-time. 

93 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 3.2 Polygonal terrain. 
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Polygonal terrain is also often converted to a gridded form. This is usually done to provide a 
simpler, more regular data structure for a terrain reasoning algorithm For example, 
[Sansom, 1993] details the process of constructing a gridded terrain representation from a 
polygonal IG terrain database; the former is used for intervisibility determination. A simple grid 
abstraction of polygonal terrain is fairly easy to compute from a terrain database using well­
known methods. See [Nagy, 1979b] for a general approach. The exact process used varies 
considerably depending on the needs of the particular terrain reasoning algorithm; specific 
examples will be given later when terrain reasoning algorithms are discussed. 

A Triangulated Irregular Network (TIN) is a terrain sunace composed ofa set ofpolygons 
(triangles) that was not derived from an initial grid of elevation posts. Consequently, the polygon 
vertices in a TIN may be arbitrarily located in the x,y plane. 

The term microterrain refers to high-resolution terrain formations such as valleys, gullies, ridges, 
peaks, pits, and craters. As microterrain, these formations are formed from polygons that are 
usually much smaller than the surface (or macroterrain) polygons resulting from triangulating 
elevation posts. Furthermore, whereas the macroterrain polygons' vertices will be located in a 
regular grid in the x,y plane because of their alignment with elevation posts, the vertices of 
microterrain terrain polygons will typically be arbitrarily located. Table 3.3 compares the 
characteristics of typical macroterrain polygons with microterrain polygons. (The values given 
are notional and are not derived from a specific polygonal terrain representation format.) Clearly, 
micro terrain and TINs are related, as microterrain is often constructed from TINs, simply because 
representing microterrain in a gridded or elevation post format by closely spaced posts can be 
extremely expensive in terms of memory requirements. 

PolYl!ons Size Vertices Terrain Database Coveral!e 
Surface, macroterrain l25 meters Grid-aligned in X,y plane 98% of hic extent 
Microterrain 1 meter Arbitrary in x,y plane 2% of geographic extent 

Table 3.3 Macroterrain and microterrain polygon characteristics. 

3.3.2 Example 

Although polygonal terrain is conceptually just a set of polygons with 3D coordinates for their 
vertices, polygonal terrain databases almost always use some organizational scheme on the 
polygon set so as to speed access to and processing of specific parts of the terrain sunace. As an 
example, the polygonal terrain database format used in the SIMNET SAF and other SIMNET 
simulators, as well as the 1ST CGF Testbed, will be examined. The CGF Testbed's polygonal 
format was derived from the format used in SIMNET and is nearly identical to it. This discussion 
follows [Smith,1992b]. (The SIMNET polygonal format is also known as libTDB, according to 
[Smith, 1995b], but this document will refer to it as the SIMNET polygonal format.) 

The SIMNET polygonal format superimposes a regular partitioning of the terrain onto the 
polygons. The overall terrain area is first divided into patches, which are square areas 500 meters 
on a side. Each patch is further divided into a 4x4 array of 16 grid cells, which are square areas 
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125 meters on a side. (A terminological note: the developers of the SIMNET format actually and 
confusingly call the grid cells "grids", contrary to both normal usage and this document. In this 
document the term "grid cells" will be used to avoid confusion, but the reader should be aware 
that the SIMNET grid cells are called grids in the references.) The polygon for a given point, e.g. 
for an entity elevation and orientation computation, can be foUnd by first performing arithmetic on 
the x,y coordinates of the point to determine the patch and grid cell that contain the polygon and 
then searching a list of the terrain surface polygons associated with the selected patch and grid 
cell, performing a polygon inclusion test on the point for each polygon. (The reader familiar with 
computational geometry will no doubt recognize this as a form of the point location problem~ see 
[Prep arata, 1988].) 

The terrain surface polygons within a patch are stored in three arrays, repeated for each patch. 
Each vertex in the patch is an entry in the vertex array, which holds the x,y, z coordinates for the 
vertices. Likewise, each polygon edge is an entry in the edge array; those entries contain the 
indices of the edge's vertices in the vertex array. Finally, each polygon is an entry in the polygon 
array, where the entries store the indices of the polygon's edges in the edge array. The polygon 
entries also contain bit masks that indicate whether the polygon overlaps with each of the 16 grid 
cells in the patch. Thus, once the grid cell containing a point is determined, the bit masks can be 
used to reduce polygon inclusion tests to only those polygons that overlap that grid cell. 

Features are also primarily represented as polygons in this format. Roads, rivers, and lakes are 
polygons, with appropriate polygon type codes, that lie on the terrain surface polygons. Man­
made structures, such as buildings, trailers, and water towers, are closed sequences of polygons 
with an associated type. Treelines are open sequences of polygons. Tree canopies are closed 
treelines with additional polygons to form the canopy's "roof'. Individual trees are given as open 
polygons with an associated radius [Smith, 1992b]. 

The SIMNET format includes several useful filters [Watkins,1994]. They are: 
1. Grid cell masks; allow rapid filtering of features by grid cell, as mentioned earlier 
2. Grid cell maps; provide direct access to certain features by grid cell and type 
3. Minimum and maximum x,y, z values; quickly eliminate patches from consideration in 

some algorithms, such as intervisibility determination 
4. Patch guards; control caching of patches based on a summary of patch data. 

Note that in the polygonal format there is no abstract or object representation of features. The 
abstract notion of a road is represented as a set of triangles and quadrilaterals of a certain polygon 
type that happen to be geographically adjacent, with no topological or object relationship between 
them. [Stanzione,1989] criticizes this format for that reason, saying that it " ... is not suited for 
either reasoning or drawing", correctly observing that because there is no connection between the 
many individual polygons of terrain features, reasoning about them is problematic. Road 
following, for example, is very difficult using this format because consecutive road polygons are 
not linked or even necessarily closely stored in the terrain database. 

The difficulty of reasoning on the polygonal terrain database led to the use of the supplementary 
quadtree terrain database (described later) in the SIMNET SAF. However, the developers of the 
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CGF Testbed chose to perform terrain reasoning on the polygonal terrain, in spite of its difficulty, 
so as to avoid all possibility ofintemal terrain correlation errors (terrain correlation will be 
defined later). 

3.3.3 Additional applications 

This sub subsection briefly presents additional polygonal terrain representations. They are: 
1. Compact Terrain Database 
2. Mesh 
3. Integrated Computer Generated Forces Terrain Database 

Compact Terrain Database. As mentioned earlier, the Compact Terrain Database (CTDB) is a 
gridded terrain database format u~ed in the ODIN SAF and ModSAF [Smith,1992a] 
[Stanzione,1993]. In the CTDB format, most of the terrain surface is represented with elevation 
posts. However, polygons (squares and triangles) can be used for microterrain in areas where the 
regular elevation post grid does not satisfactorily describe the desired terrain. That might be the 
case for data not derived from a regular grid, such as TINs. In the CTDB format, microterrain 
polygons can be used for terrain configurations such as river beds and multi-level terrain (e.g. 
tunnels or bridges) [Smith, 1995b]. 

Polygons are also used in the CTDB format to represent many of the terrain features. Table 3.4 
lists ModSAFs terrain feature types and identifies those which have a polygonal representation. 

Feature category Feature Polygonal representation? 
Terrain surface Ground Yes 

Water Yes 
Structures Buildings Yes 

Pipelines No 
Power pylons No 
Other opaque, non-penetrable structures Yes 

Trees Individual trees No 
Tree lines Yes 
Tree canopies Yes 

Linear features Roads 
Rivers 

Table 3.4 CTDB terrainfeatures (adaptedfrom [Longtin, 1994]). 

Mesh. An arbitrary polygonal terrain database can be converted into a specialized polygonal 
format called a mesh [Cunningham,1993]. In the mesh format, all of the polygons are convex, 
and all terrain features (such as rivers, tree canopies, and buildings) are embedded in the polygons 
rather than being situated on top of surface polygons. An algorithm to produce a mesh from an 
arbitrary polygonal terrain database is given in the reference. 

Integrated Computer Generated Forces Terrain Database. The Integrated Computer Generated 
Forces Terrain Database (lCTDB) is a terrain database project being conducted to satisfY the 
CGF terrain and environmental reasoning requirements for ARPA's Synthetic Theater of War 
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(STOW) program The ICTDB designers intend to address the perceived shortcomings in current 
CGF terrain databases and to include a richer set of terrain features and terrain reasoning 
attributes in their format. Presently the ICTDB project has completed requirements analysis, data 
source investigation, and preliminary design, but development and demonstrations are just 
beginning. The ICTDB design uses polygons, in the form of TINs, to represent the terrain 
smface. Pointers are maintained from each polygon to topologically adjacent polygons. The 
polygons are also organized into square patches, which are the units of storage. Each patch is 
subdivided into a virtual grid with a variable number of rows and columns, dependent on the 
number of polygons in the patch. In the patch data structure, each grid cell's entry contains a 
pointer to the polygon that occupies the largest portion of that grid cell. The patch and virtual 
grid structure is used to speed point location operations (i.e. determining the polygon that 
includes a given x,y point). Terrain features are stored in a quadtree and graph structure, similar 
to those used in the SIMNET SAF and ODIN SAF terrain databases. [Stanzione,1995] repQrts 
the current status of the ICTDB project. 

3.4 Quadtrees 

3.4.1 Definition 

As classically defined, a region quadtree (or simply a quadtree) is a hierarchical data structure for 
representing a 2D surface, such as a terrain database (which is 2D when projected into the x,y 
plane). The surface to be represented is to be square (without loss of generality, in that a non­
square surface can be enclosed in a square). Given a surface where each point is categorized into 
one of two or more categories, a quadtree partitions the surface into four equally sized quadrants, 
or quads, with the partition continuing recursively until each lowest-level quad is entirely of one 
category. Alternatively, if the surface includes features or objects with known locations and non­
zero extent, the surface is recursively partitioned into quads until no lowest-level quad contains 
more than one feature (although a feature may span more than one quad). The quads' sizes can 
vary from the size of the entire surface down to the minimum resolution of the categorization. 

Quadtrees can also be used to represent elevation. For elevation, the quads are recursively 
subdivided until a quad is entirely at a single elevation, or alternately, is planar within a specified 
tolerance. 

Each node of the quadtree data structure correspond to a quad; leaf nodes of the quadtree 
correspond to quads that are not further partitioned. The nodes of the quadtree contain data for 
the quad such as its category or the feature it contains. 

Figure 3.4 gives an example of a classical quadtree applied to terrain representation. In the figure, 
(a) shows a gridded terrain area with each grid cell assigned one of two types of terrain, and (b) 
shows a quadtree representation of that terrain. The example of Figure 3.4 is typical of quadtrees 
derived from gridded terrain. The terrain grid cells partition the terrain at the highest level of 
resolution, corresponding to the lowest level of the quadtree, thereby defining the smallest quad 
size. In such a quadtree unpartitioned quads represent sets of grid cells with the same value for 
the attribute that determines the quadtree partitioning. In some cases the quad partitioning is 
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performed at every level down to a predetermined quad size, without regard for any quad 
attribute, to produce a complete quadtree. 

[Antony, 1988] provides information about quadtree notation, operators for moving within a 
quadtree, and quadtree memory requirements. More extensive information on the general topic of 
quadtrees can be found in [Sarnat, 1984]. 

3.4.2 Example 

The SIMNET SAF uses a complete quadtree, referred to as the lib Quad. It will be presented as 
an example of quadtree use in CGF systems. This explanation is largely adapted from 
[Stanzione, 1989]. 

As implemented, the SIMNET SAF libQuad quadtree is complete; that is, all of the quadtree 
nodes are expanded at every level except the lowest, or equivalently, all of the leaf nodes are at 
the same level of the tree and correspond to terrain quads of identical geographic size. The size 
of the lowest level quads is 2500m x 2500m That quad size was determined by experimental 
analysis weighing memory required for the quadtree, which increases for smaller quads, against 
object search time, which increases for larger quads. 

The nodes of the quadtree contain pointers to terrain objects that are located within the node's 
corresponding quad. There are five classes of terrain objects; they are: 

1. Network (e. g. roads, rail lines, bridges) 
2. Area object (e.g. forests, bodies of water) 
3. Linear object (e.g. treelines, contour lines) 
4. Point objects (e.g. trees, buildings) 
5. Dynamic terrain (e. g. battlefield control measures, minefields) 

A terrain object is pointed to by the node corresponding to the smallest quad that contains the 
object. The object pointers within a node point to the objects' representation, which are arrays 
with a structure depending on object class. Figure 3.5 shows a an example of terrain represented 
in this way. 
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Figure 3.4 Quadtree applied to terrain representation (adaptedfrom (Stanzione, 1989]). 
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3.4.3 Additional applications 

This sub sub section briefly presents additional quadtree terrain representations. They are: 
I. Pyramid 
2. REACT 
3. QUILT 
4. ODIN SAF libquad 
5. Compact Terrain Database 
6. Integrated Computer Generated Forces Terrain Database 
7. Intelligent Player 

Pyramid. A pyramid (complete quadtree) supplemented with a frame based object representation 
is proposed as a spatial (terrain) database design [Antony,1988]. The objects, such as lakes, 
roads, or entities, are bidirectionally linked to the quadtree nodes at each level that correspond to 
the quad that includes the objects. 

REA CT A quadtree is used to represent terrain for automated terrain analysis in a low-altitude 
air-to.-air combat application called REACT [Hayslip, 1988]. The quads of the terrain are assigned 
abstract terrain types (corridor, low flat, mountain, hilly, plateau) which are determined by 
preprocessing DMA elevation post data. Each quad is subdivided if its subordinate quads do not 
all have the same abstract type. The size of the smallest quads is determined by the variability of 
the terrain. 

QUILT A quadtree-based Geographic Information System (GIS) called QUILT is used in an 
expert system designed to predict minefield sites [Doughty,1988]. The quadtree quads have four 
attributes: proximity to nearest road, area, mobility type (go, restricted, slow, very slow, no go, 
built up, and open water), and degree of canalization. The latter attribute measures how 
restricted movement is through the area represented by the quad. 

ODIN SAF libQuad. The same quadtree as described for the SIMNET SAF was also used in the 
ODIN SAF, a further development of the SIMNET SAF [Stanzione,1993], as well as early 
versions of the ModSAF CTDB [Smith, 1995b]. A list of specific quadtree terrain objects and 
their classes is given in the reference. 

Compact Terrain Database. The quadtree which was a separate database in the SIMNET SAF, 
ODIN SAF, and early versions ofModSAF was eliminated in favor of a quadtree integrated into 
the CTDB data structures in recent versions ofModSAF [Smith, 1995b]. The nodes of the 
ModSAF quadtree may be expanded using any criteria, and are not all expanded to the same level, 
as was the case for its SIMNET SAF and ODIN SAF predecessors. In addition to storing linear 
features where topological information is of paramount importance, such as roads, the ModSAF 
quadtree is a repository for abstract terrain features, such as tree canopies, areas of steep slope, 
and political boundaries. The features may be stored at both interior nodes and leaf nodes; they 
are accessed via iterative fetching [Smith, 1 995b]. 
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Integrated Computer Generated Forces Terrain Database. As in the SIMNET SAF libQuad, the 
ODIN SAF lib Quad, and the early versions of the CTDB, the ICTDB database design uses a 
quadtree to store terrain features [Stanzione,1995]. The ICTDB quadtree may contain features at 
any level of the quadtree. The features are referenced both explicitly and implicitly; the explicit 
reference is at the level of the quadtree whose corresponding quads' side dimension are closest to 
the feature's size. The feature is implicitly referenced (by pointer to the explicit reference) at 
lower levels of the quadtree in nodes that correspond to quads that overlap the feature. The 
quadtree also contains aggregate features, which are features that exist as collections of other 
features, that may themselves be aggregate features. For example, a group offeatures such as 
buildings, may be grouped into · an aggregate feature like a village. Aggregate features are 
intended to be used in terrain reasoning by units. 

Intelligent Player. Intelligent Player is a research system that uses game tree lookahead to 
perform real-time control and planning of movement for a CGF helicopter in air-to-air combat 
[Katz, 1989] [Katz,1991] [Katz,1992] [Katz, 1993] [Schaper,1994]. Intelligent Player uses a 
quadtree terrain representation. The quadtree is used for terrain elevation only; each quad is 
recursively subdivided until all points in the quad fall within a single plane, within a predefined 
tolerance level. The quadtree structure, its construction, and its use for terrain avoidance and 
intervisibility determination is described in [pandari, 1995]. 

3.5 Graphs 

3.5.1 Definition 

Terrain may be represented as a graph. Typically, the vertices of the graph correspond to 
significant features of the terrain, such as road intersections, junctions in mobility corridors, or 
local elevation maxima. The edges connect vertices that are related in a way relevant to the 
definition of the vertices; for example, in a road net graph, the vertices are road junctions and an 
edge connects two vertices if and only if the corresponding road junctions are connected by a 
road segment. Weights are often assigned to the edges to represent a quantity or attribute of 
interest within the representation scheme. In the road net graph example, the edges might be 
weighted with the length of the road segment they represent. Other possible attributes upon 
which edge weights might be based are traffic ability, cover, and concealment. 

Terrain graphs are usually searched to find a route or path, generally with standard graph search 
algorithms such as A * [Nilsson,1980] [Winston, 1984]. 

3.5.2 Example 

A route planner developed at the Swedish National Defence Research Establishment (FaA) uses a 
connectivity graph [Holmes,1992]. Vertices in the connectivity graph represent traversable 
regions in a digital map and edges signify adjacency. Subdividing the overall traversable area in 
the map into distinct regions is done using a vertical scan algorithm. The separation of a single 
traversable region into two regions occurs at a local minimum of a non-traversable obstacle. The 
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algorithm depends heavily on the binary nature (traversable or non-traversable) of the source map. 
The route planner searches the resulting graph using an A * algorithm. 

3.5.3 Additional applications 

This subsubsection briefly presents additional graph terrain representations. They are: 
1. Multiple route finder 
2. Eagle 
3. SIMNET SAF lib Quad 
4 . Neighborhoods 
5. ODIN SAF libQuad 
6. Compact Terrain Database 
7. CGF Testbed line of sight graph 
8. Integrated Computer Generated Forces Terrain Database 

Multiple route finder. A straightfolWard graph representation of a road network is searched to 
find multiple road routes for unit route planning [Benton, 1987]. 

Eagle. A graph representing unit mobility corridors is produced from a Delaunay triangulation of 
gridded source terrain data [powell, 1987] [powell,1988a] [powell,1988b] [powell,1989] 
[Wright, 1990]. 

SIMNET SAF libQuad A graph representing a road network, with road segments and road 
junctions represented separately, is embedded in a quadtree in the SIMNET SAF 
[Stanzione, 1989]. 

Neighborhoods. A hierarchically organized set of graphs is used to represent urban terrain at 
different scales in a format that is more symbolic than numeric [Goe1,1991]. At a high level, a 
vertex is a neighborhood and edges are major roads or adjacency relationships. The 
neighborhood vertices at the high level are expanded into more detailed graphs, with street 
intersections as vertices and streets as edges. At the lowest level, individual buildings are vertices 
and their connections to streets are edges. Graph search is used to find progressively more 
detailed routes by descending into the hierarchy. 

ODIN SAF libQuad. The same quadtree-embedded graph used for road route planning in the 
SIMNET SAF is also used in the ODIN SAF [Stanzione, 1993]. 

Compact Terrain Database. The CTDB uses a graph to represent linear terrain features (roads 
and rivers) [Smith,1992a] [Stanzione,1993] [Longtin,1994] [Smith, 1995b]. Edges are road or 
river segments and vertices are intersections. In the latest version of the CTDB format, the graph 
has been moved out of the supplemental quadtree of earlier CTDB versions and integrated into 
the terrain data patches [Smith, 1995b]. 
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CGF Testbed line of sight graph. A graph where the vertices are terrain points of tactical 
imp ortance (e. g. ridge crests, treeline endpoints) and the edges are unobstructed lines of sight is 
used to plan reconnaissance routes [Van Brackle,1993a] [Van Brackle,1993b] [petty,1994b]. 

Integrated Computer Generated Forces Terrain Database. Roads and rivers are also represented 
as graphs embedded in the feature quadtree in the ICTDB design [Stanzione,1995]. 

3.6 Other terrain representations 

This subsection briefly presents additional terrain representation methods that do not fall into one 
of the four primary categories. They are: 

1. Scale-space filtering 
2. JPL Mobil~ Robot 
3. Run-Length-Code 
4. Parameterized microterrain 
5. Captain abstract geometric model and semantic net 
6. Obstacle segment abstraction 

Scale-space filtering. [Keirsey, 1988] describes the application of scale-space filtering, a signal 
processing technique, to identify important terrain features (defined in the reference as local 
elevation minima and maxima). The terrain elevation data is treated as a 2D signal and processed 
using a gaussian filter. Varying the filter parameter produces representations of the significant 
terrain features at different levels of abstraction as small variations in the terrain are smoothed and 
merged. 

JPL Mobile Robot. A gridded terrain representation containing robot sensor data is used as input 
to an abstraction process that computes a set of abstract spatial terrain features for use in the 
robot's route planning [Slack, 1989] [Ewing,1992]. The abstract terrain features can be primitive, 
which are computed directly from the attributes of subsets of the terrain grid cells by filtering 
functions, or composite, which are derived from combinations of primitive or other composite 
features. The set of abstract features constitutes an alternate terrain representation. [Slack, 1989] 
gives the average slope of the area under the robot as an example of a primitive feature and the 
preferred escape direction as an example of a composite feature. 

Run-Length-Code. Binary (traversable or non-traversable) 2D terrain represented in Run-Length­
Code format is used as source data for a entity route planner developed at the Swedish National 
Defense Research Establishment (FOA) [Holmes, 1992]. In the RLC format the terrain is 
pixelized, i.e. it consists of a rectangular grid of discrete x,y locations. The non-traversable areas 
are defined using RLC lines, where each RLC line is given by its x,y coordinates and its length. 
The RLC lines are assumed to run from their given coordinates parallel to the x axis for their 
given length. Non-traversable areas with a size in the y direction greater than the width of one 
RLC line are built up from a "stack" of such lines. 

Parameterized microterrain. [O'Byme,1993] suggests representing microterrain (1 meter scale) 
not explicitly as many small polygons or closely spaced elevation posts, but rather implicitly with 
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numeric parameters as attributes of macroterrain polygons or grid cells. The reference proposes 
wavelength and roughness (amplitude) parameters to represent the microterrain existing in the 
macroterrain area (polygon or grid cell) with which they are associated. The specific models 
potentially affected by microterrain, such as movement, intervisibility, and combat resolution, 
would consider the implicit microterrain in their calculations. Though not stated in the reference, 
it seems obvious that the microterrain parameters for a macroterrain area could be determined by 
that area's terrain type; for example, a road polygon would have less microterrain than a brush 
polygon. 

Captain abstract geometric model and semantic net. Captain is an automated knowledge 
acquisition system designed to allow a SME to teach an automated command agent tactical 
behavior [Hille, 1994] [Hieb,1995]. Captain uses two internal terrain representations, creating 
them in a process termed semantic terrain transformations by its developers [Hille,1995]. First, an 
input CTDB terrain database is transformed into an abstract geometric model by applying 
abstraction, generalization, aggregation, and simplification operators that are relevant to the 
tactical context. The resulting abstract geometric model omits much of the specific detail 
contained in a CTDB terrain database. Instead, terrain regions are created which have a discrete 
value in one or more offive classes: relief: cover, mobility, avenue of approach, area of 
responsibility, and subunit area of responsibility. The abstract geometric model is then 
transformed into a semantic net, where the classified regions of the abstract geometric model 
become named objects (e.g. hill-863, avenue-of-approach-2) in the net that are associated with 
each other by relationships chosen from a predefined set of terrain object relationships (e.g. IN­
FRONT-OF, WITIDN). The semantic net is used by a set of inference rules in the automated 
command agent. 

Obstacle segment abstraction. [Rajput, 1994b] and [Karr,1995d] describe a hybrid terrain 
representation combining elements of both gridded and graph representations. Cells of a regular 
square grid overlaid on polygonal terrain are assigned obstacle segments, which are abstractions 
of obstacles that block movement contained in the terrain underlying the grid cell. Each cell also 
is overlaid with 8 to 12 points that become vertices of a graph representing movement routes in 
the terrain; vertices on opposite sides of an obstacle segment are not connected by an edge in the 
graph. The graph is searched with the A * algorithm to plan unit routes. 
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3.7 Summary of CGF terrain representations 

Table 3.5 gives a summary of the terrain representations swveyed in this document. Each entry in 
the table has six components: 

1. Category; one of Gridded, Polygonal, Quadtree, Graph, or Other 
2. Application; one of CGF system, Automated terrain analysis, or Other 
3. SystemIFormat; name of system using the representation, e.g. ModSAF, or name of 

the terrain representation, e.g. SIFIHDI 
4. Desc~ption; comments elaborating on the Category to describe the representation 
5. Reference(s); papers or other references describing the representation 

Terrain representations that are used strictly as intermediate working representations in terrain 
reasoning algorithms will only be listed if they are interestingly different from any of the described 
representational formats. 
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-------------------
Category Application System/Format Description Reference(s) 
Gridded Automated terrain analysis Eagle Fixed size 100 meter square grid cells with several [powell ,1987] 

attributes, including elevation. [powell,1988a] 
[powell,1988b] 
[powell,1989] 
[Wright, 1990] 

Other (Robotics) PATH PLAN Simple gridded terrain with elevation and explicit [Ok, 1989] 
obstacles as attributes. 

Other JPL Mobile Robot Gridded terrain is used to receive and fuse [Slack, 1989] 
environmental data from the robot's sensors. [Ewing, 1992] 

CGF system Martin Marietta SAFOR Polygonal data discretized into hexagons with elevation [Bockstahler, 1991] 
mobility, and exposure attributes for each hexagon. 

Other Stealth Terrain Navigation Gridded with elevation only attribute. [Teng, 1992] 

CGF system ODIN SAF CTDB format achieves considerable database size [Smith,1992a] 
ModSAF reduction by using elevation posts to implicitly [Stanzione, 1993] 

define polygons over much of the database extent. [Longtin, 1994] 
Microterrain and TIN polygons are given explicitly. [Smith,1995b] 

Other (Flight simulator) NASA Ames LOS Gridded with elevation only attribute. [Sansom, 1993] 

------------------------- ~ -

Table 3.5 (part 1 of6) Summary ofCGF and terrain reasoning terrain representations. 



I ------- ------------
Category Application S ystemlFormat Description Ref e rence( s) 
Gridded CGF system CCIT SAF MRTDB is even more compact than CTDB, due to [Watkins, 1994] 
(cont'd) feature representation by reference to a library of [Campbell,1994] 

archetypical features . [Watkins, 1995] 
[pope, 1995a] 
[pope, 1995b] 

CGF system Iowa Driving Simulator Elevation post spacing may vary in different portions [Papelis, 1994] 
of the database, and can be set arbitrarily small [Kuhl, 1994] 
to represent high-resolution terrain. 

Other (Algorithm analysis) RAND Gridded with elevation only attribute. [Marti,1994] 

Other (Data interchange) SIFIHDI Gridded elevation with detailed associated feature data. [Stanzione, 1994] 

Other (DIS server) ARL Variable Resolution Gridded terrain where elevation is found as sum of [Purnell, 1995] 
parameterized hills. [Kendall,19951 

Table 3.5 (part 20/6) Summary ofCGF and terrain reasoning terrain representations. 



1-------------------
Category Application System/Format Description Reference(s) 
Polygonal CGF system SIMNET SAF Polygons organized into regular square patches and [Stanzione, 1989] 

CGF Testbed grid cells for faster access. [Smith,1992b] 

CGF system ODIN SAF Though the CTDB is primarily a gridded format , [Smith,1992a] 
ModSAF explicit polygons are used for microterrain and TINs. [Stanzione, 1993] 

[Longtin, 1994] 
[Smith,1995b] 

CGF system VCom Polygons in mesh, where all polygons are convex and [Cunningham, 1993] 
terrain features are embedded in the polygons. 

CGF system None (proposed) ICTDB has TIN polygons organized into regular square [Stanzione, 1995] 
patches and virtual grid cells for faster access. 

Table 3.5 (part 3 of6) Summary ofCGF and terrain reasoning terrain representations. 



-------------------
Category Application System/Format Description Reference(s) 
Quadtree Automated terrain analysis None (proposed) Complete quadtree with terrain object frames [Antony, 1988] 

bidirectionally linked to nodes. 

Automated terrain analysis REAer Quads are assigned abstract terrain types based on 
OMA elevation data. 

[Hayslip, 1988] 

Automated terrain analysis MSPES Quads have several attributes, including terrain type. [Doughty, 1988] 

CGF system SIMNET SAF Complete quadtree with fixed size quads. Nodes point [Stanzione, 1989] 
ODIN SAF to arrays representing terrain objects, such as roads [Stanzione, I 993] 

and buildings. Stored separately from associated 
polygonal (SIMNET) or gridded (ODIN) database. 

CGF system ModSAF erOB quadtree represents topological relationships of 
linear features (e.g. roads) as well as enumerated 

[Smith, 1995b] 

abstract features . Quadtree is contained within 
the erOB patch data structures. 

CGF system None (proposed IerOB) ICTOB quadtree contains individual and aggregate [Stanzione, 1995] 
features. Road and river networks are also stored as 
graphs within the quadtree. 

CGF system Intelligent Player Quadtree stores elevation only. [Pandari,1995] 

Table 3.5 (part 4 of 6) Summary of CGF and terrain reasoning terrain representations. 
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Category Application S,)'stemiFormat Description Reference(s) 

Graph Automated terrain analysis None (proposed) Edges are roads, vertices are intersections. [Benton, 1987] 

Automated terrain analysis Eagle Vertices represent junctions of mobility corridors; [powell, 1987] 
edges are weighted for tactical factors (distance, [powell,1988a] 
traversal, time, cover, and concealment). [Powell, 1988b] 

[powell, 1989] 
[Wright, 1990] 

CGF system SIMNET SAF Graph embedded in quadtree represents road and [Stanzione,1989] 
ODIN SAF river networks. [Stanzione, 1993] 

None (proposed) Neighborhoods Hierarchically organized graphs represent terrain. [Goel,1991] 
Vertices are distinct locations, edges show adjacency. 

CGF system ModSAF Graph embedded in quadtree represents road and [Smith, 1 992a] 
river networks. [Stanzione, 1993] 

[Longtin, 1994] 
[Smith, 1995b] 

Automated terrain analysis FOA Vertices represent traversable regions, edges represent [Holmes, 1992] 
region adjacency. 

CGF system CGF Testbed line of sight Vertices are terrain locations of tactical significance, [Van Brackle,1993a] 
edges represent unobstructed lines of sight. [Van Brackle, 1 993b] 

[Petty, 1994b] 

CGF system ICTDB Graph embedded in quadtree represents road and [Stanzione, 1995] 
river networks. 

Table 3.5 (part 5 of 6) Summary of CGF and terrain reasoning terrain representations. 
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Category Application System/Format Description Reference(s) 
Other Automated terrain analysis None (proposed) Scale-space filtering reveals existence and structure [Keirsey, 1988] 

of terrain features at different scales. 

Other None (proposed) Abstract spatial feature set is derived from gridded [Slack, 1989] 
terrain using filter functions . [Ewing, 1992] 

Automated terrain analysis FOA Binary (traversable or non-traversable) 2D terrain is [Holmes, 1992] 
represented in Run-Length-Code format ; it is converted 
to a graph for terrain reasoning. 

CGF system None (proposed) Microterrain is represented implicitly by numeric [O'Byrne,1993] , 

parameters (wavelength and roughness). 

CGF system Captain Abstract geometric model classifies terrain into regions [Hieb,1995] 
with discrete values for five terrain types. 

CGF system Captain Semantic net relates named terrain objects with [Hieb, 1995] 
predefined topological relationships. 

CGF system CGF Testbed Terrain grid cells are assigned obstacle segments [Rajput, 1 994b ] 
representing impassable obstacles and points that serve [Karr, 1995d] 
as vertices of a graph used for route planning. 

Table 3.5 (part 6 0/6) Summary ofCGF and terrain reasoning terrain representations. 
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3.8 Terrain representation comments 

3.8.1 Geographic data processing 

[N agy, 1979a] is an early survey of geographic data processing; it discusses issues relating to data 
structures for terrain, geometric relations and operators for terrain objects, and coordinate 
transformations between terrain representations, some of which is useful background for terrain 
representation. 

3.8.2 Ocean and littoral terrain 

By intent, this section has dealt almost entirely with representing land terrain. What of water? 
The Navy has had some success in modeling deep water, primarily for anti-submarine warfare 
applications. However, a terrain modeling area which has yet to be fully understood is the ocean 
littoral, or coastal, zone. [Donner, 1991] presents some methods for mathematical and polygonal 
modeling of the ocean surfzone. [Haeger,1994] outlines some requirements for a littoral terrain 
representation, but does not provide any terrain representation design. [Craft, 199 5b] lists some 
enhancements to the CTDB format that would be useful to support amphibious vehicle operations 
in littoral terrain. 

3.8.3 Multiple representations and terrain correlation 

CGF systems sometimes use multiple terrain representations (and these CGF terrain 
representations are almost always different from the terrain database used by the image generators 
in the simulation system). The intent is that each CGF terrain reasoning task is performed on the 
representation that best supports that task. Table 3.7 shows how the tasks are assigned to the 
different terrain databases in five CGF systems. Recall that each of the CGF systems in the table 
has two components: a simulator, that simulates the dynamics and behavior of the CGF entities, 
and an operator interface, that allows a human operator to control the CGF entities. For ease of 
reference, Table 3.6 identifies those components for each of the CGF systems. Table 3.7 shows 
the terrain representation formats used by the two components for each system The table is 
meant to give examples of how different terrain reasoning tasks are performed using different 
terrain representation formats, and is not an exhaustive list of terrain reasoning capabilities of any 
of the CGF systems contained therein. 

CGF System Sim = Simulator 01 = Operator Interface Reference 
SIMNET SAF Simulation Host SAFaR Workstation [Downes-Martin, 1990] 
CGF Testbed Simulator Operator Interface [Smith, 1992b] 
ODIN SAF, ModSAF SAFsim SAFstation [Stanzione, 1989] 
ModSAF SAFsim SAFstation [Ceranowicz, 1994a] 
CCTT SAF CGF SAF Workstation [Marshall, 1994] 

Table 3.6 CGF system component names. 
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- - - - - - - - - - - - - - -
CGF System Cmpnt "'1 Gridded PolY2onai Quadtree 
SIMNET SAF Sim na Orientation and elevation Entity route planning 

Intervisibility determination Obstacle avoidance 

or na Unit route planning 
Road route planning 
2D map display 

CGF Testbed Sim na Orientation and elevation na 
Intervisibility determination 
Ground collision detection 
Entity route planning 
Unit route planning 
Reconnaissance route planning 
Obstacle avoidance 

or na 2D map display na 
Contour line display 

ODIN SAF Sim Elevation and orientation na Entity route planning 
Intervisibility determination Finding cover and concealment 
Vehicle mobility 
Ground collision detection 

01 Intervisibility display na Unit route planning 
Contour line display Road route planning 
Hypsometric elevation display Route checking 
Shaded relief display 2D map display 
Terrain cross-section display 

* I Sim=Simulator component, OI=Operator Interface component; see Table 3.6 for system-specific names. 
*2 In most of the instances listed in this table, the Graph representation is embedded in the Quadtree representation. 
na = not applicable 

Table 3.7 (part 1 of 2) Terrain reasoning task assignment by terrain reasoning format in CCF systems. 

- - - -
Graph "'2 
na 

na 

na 

na 

Vehicle route planning 

Unit route planning 
Road route planning 
Route checking 



- -- - - -- - - - - - - - -- - - -
CGF System Cmpnt *1 Gridded Polygonal Quadtree Graph *2 
ModSAF Sim Elevation and orientation na Entity route planning Vehicle route planning 

Intervisibility determination Finding cover and concealment 
Vehicle mobility 
Ground collision detection 

01 Intervisibility display na Unit route planning Unit route planning 
Contour line display Road route planning Road route planning 
Hysometric elevation display Route checking Route checking 
Shaded relief display 2D map display 
Terrain cross-section display 

ccrr SAF Sim Elevation and orientation na na na 
Intervisibility determination 
Entity route planning 
Obstacle avoidance 
Unit route planning 
Area intervisibility 
Finding cover and concealment 

OJ na na 2D map display na - . 1 

* 1 Sim=Simulator component, Ol=Operator Interface component; see Table 3.6 for system-specific names. 
*2 In most of the instances listed in this table, the Graph representation is embedded in the Quadtree representation. 

Table 3.7 (part 2 of 2) Terrain reasoning task assignment by terrain reasoningformat in CCF systems. 

References for Table 3.7 
SIMNET SAF [Stanzione, 1989] 
CGF Testbed [Smith,1992b] [Petty,1994b] 
ODIN SAF [Stanzione, 1993] 
ModSAF [Stanzione,1993] [Smith,1995b] 
ccrr SAF [Watkins,1994] [Campbell,1994] 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Of course, having multiple representations introduces the possibility that the different 
representations of the same terrain may be inconsistent; that possibility is observed in 
[papelis, 1994] and [Schiavone,1995], for example. The potential for terrain inconsistencies also 
exits between different simulator nodes that may use different terrain representation formats. The 
issue of whether two terrain databases that purport to represent the same terrain are consistent is 
known as terrain correlation, and inconsistencies are referred to as terrain correlation error. 
Terrain correlation error can seriously erode the realism of a simulation. For example, a terrain 
feature such as a treeline that is differently located in two terrain databases can result in an entity 
concealed on one database and exposed to enemy direct fire on another, producing an unfair fight 
situation. 

The general terrain correlation problem, while important and interesting, is beyond the scope of 
this document. The interested reader is referred to: 

I . Survey and tutorial on terrain correlation [Schiavone, 1995] 
2. Terrain correlation definitions and metrics [Zvolanek,1992] [Zvolanek,1993] 
3. Mechanism through which correlation errors between the two complementary 

representations in the ODIN SAF and ModSAF (CTDB gridded and quadtree) are 
avoided [Stanzione, 1993] 

4. Terrain correlation certification using statistical hypothesis testing 
[Schiavone,1994] [Goldiez,1994] 

5. Terrain correlation testing associated with the I1ITSEC DIS Interoperability 
Demonstrations in 1993 [Goldiez,1994] and 1994 [Nelson,1995] 

6. Early ideas on measures of terrain correlation [Wever, 1989] 
7. Terrain correlation errors due to differences in terrain accessing and process algorithms, 

rather than data discrepancies, and how those errors are avoided in the CCTT 
terrain modules [Watkins, 1995] 

8. Terrain correlation errors due to overly simplistic feature representations [Watkins,1995] 
9 . Avoiding terrain correlation errors by using common source data for terrain databases 

intended to correlate [Stanzione,1989] [Loper, 1993] 
10. Recommendation for a standard terrain representation for DIS so as to avoid terrain 

correlation errors [Trott, 1995] 
11. Correlation of terrain databases for different sensor types [Fawcett, 1991] 
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4. Terrain reasoning in CGF 

In this section CGF terrain reasoning algorithms are examined. In order to organize the 
exposition, special attention will be given to terrain reasoning algorithms for three crucial CGF 
terrain reasoning tasks: route planning, intervisibility, and finding cover and concealment. In 
each case the task is defined and then the existing CGF terrain reasoning algorithms for the task 
are presented. Finally, after route planning, intervisibility, and finding cover and concealment 
have been examined, several other interesting terrain reasoning problems will also be briefly 
surveyed. 

4.1 Terrain reasoning in military tactics 

Military terrain reasoning, which informally is the analysis and understanding of terrain so as to 
increase tactical effectiveness, is of paramount importance in military operations, especially 
ground operations. Historically, the military significance of terrain and terrain reasoning has been 
observed by soldiers, historians, and military experts for centuries. Numerous examples could be 
cited; three, arbitrarily chosen, will be mentioned here. First, Sun Tzu's timeless classic The Art of 
War [Sun,600BC] devotes an entire chapter to terrain reasoning. Second, in their descriptions of 
some of the first actions fought in World War I by units of the French Foreign Legion newly 
transferred to France from Algeria, both [porch,1991] and [Reybaz,1932] identify lack of combat 
experience in European terrain and a lack of training in "the utilization of terrain" as one reason 
for the heavy losses suffered by those units. Finally, in [Keegan, 1994], which is a panoramic and 
thematic overview of the entire history of human military conflict, the importance of the effective 
tactical use of terrain is observed in discussions of the startling successes of the Arab armies 
carrying Islam through the ancient world, the tactics of Renaissance-era Swiss pikeman versus 
musketeers, and the victories of the Viet Minh against the French in Indochina. 

Moving from military history to current military practice, the Gulf War made apparent the fact 
that modern weapons are accurate and lethal to an unprecedented (and unexpected) degree 
[Bonsignore,1992]. 1bis fact has made terrain reasoning even more crucial in that suboptimum 
use of terrain can result in the abrupt destruction of a fighting force. The importance of terrain 
reasoning is directly asserted in [Schmitt, 1988], a U. S. Marine Corps training manual for 
company commanders: 

"T errain has an immense influence on how the battle will be fought. Proper evaluation and 
utilization of terrain may reduce the disadvantage of incomplete information of the enemy. 
Terrain provides opportunities and imposes limitations, giving a decisive advantage to the 
commander who uses it best. Many battles are won or lost by the way in which the commander 
uses terrain to protect his force and to bring effective fire to bear on the enemy." 

The corresponding U.S. Army manual [U.S. Army, 1988], echoes the admonition: 

"Master the art of clever use of terrain. " "Proper use of terrain, ... is crucial to the company 
team's survival on the battlefield. " 
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With the understanding that terrain reasoning is essential for the success and survival of actual 
military forces, it becomes clear that effective terrain reasoning by CGF systems for their CGF 
entities is also important if the CGF systems are to usefully simulate their real-world counterparts. 

4.2 Terrain reasoning definitions 

A number of terms are used frequently in terrain analysis and terrain reasoning; they will be 
defined here. Some (but not all) of these definitions are adapted from [powell, 1987] and 
[Schmitt, 1988]. 

1. Terrain reasoning 
2. Intervisibility 
3. Observation 
4. Field of fire 
5. Cover 
6. Concealment 
7. Obstacles 
8. Key terrain 
9. Mobility corridor 

10. Avenue of approach 
11. OCOKA 
12. No-go, Slow-go, and Go terrain 
13. Chokepoint 
14. Dynamic terrain 

Terrain reasoning. As defined earlier, terrain reasoning in a CGF system is the automated 
analysis of a digitized terrain representation for the purposes of making behavioral decisions 
involving the terrain. The overall intent of CGF terrain reasoning is that the behavior of the CGF 
entities be based on the terrain to the extent dictated by doctrine. The CGF terrain reasoning 
problem is that of developing algorithms to perform terrain reasoning tasks that are 
computationally efficient and that lead to CGF behavior that is realistic and tactically effective. 
CGF terrain reasoning tasks include route planning, seeking cover and concealment, and finding 
locations that maximize fields of fire. 

lntervisibility. The fact of whether or not an unobstructed line of sight exists from one entity to 
another, or the process of making that determination. Unobstructed means that the line of sight 
does not intersect intervening terrain (surface or features) or entities. 

Observation. The presence of an unobstructed line of sight from a given location to a location (or 
set of locations, i.e. an area) in question. (Compare observation with intervisibility; observation 
refers to location to location, while intervisibility is entity to entity.) 

Field offire. The terrain area which, for a given entity and from a given location, is viSIble and 
within effective weapon range. 
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Cover. Protection by terrain from observation and direct fire. For example, a ridge might provide 
cover to an entity behind it. Cover can be provided by ditches, defiles, river banks, craters, 
buildings, and so on. 

Concealment. Protection by terrain from observation (but not direct fire). For example, a treeline 
obstructs observation, but can be fired through. Note that both cover and concealment are 
relative to a direction (or range of directions); a treeline provides concealment from one direction, 
but not the opposite direction. The direction for which cover and concealment are defined is 
usually the direction of known or expected enemy forces. 

Obstacles. Natural or man-made terrain features that slow, stop, or deflect movement. Examples 
include rivers, embankments, and mine fields. An obstacle may also be simply an object to avoid 
while moving, such as another entity. 

Key terrain. A terrain area whose seizure or control offers significant advantage to the possessor. 
Key terrain is typically characterized as having observation or fields of fire to nearby avenues of 
approach (defined later). Key terrain areas are often final or intermediate mission objectives. It is 
possible that a key terrain feature or area dominates the battlefield to such a degree that the 
overall outcome of the battle depends on its control; such terrain is known as decisive terrain. 

Mobility corridor. A relatively open terrain area through which a military unit can move. 

Avenue of approach. A set of one or more mobility corridors of sufficient size for a given military 
unit to move. Avenues of approach are often defined relative to a destination, an objective, or 
key terrain. They must be broad enough to allow the unit to maneuver and bypass obstacles and 
enemy centers of resistance. Clearly, larger units require larger avenues of approach (and mobility 
corridors). Good avenues of approach offer both speed of movement and cover and concealment. 

OCOKA . An acronym for the five characteristics for which military planners are trained to 
analyze terrain: Observation and fields of fire, Cover and concealment, Obstacles, Key terrain, 
and Avenues of approach. The terrain reasoning algorithms to be examined later should also 
consider the OCOKA characteristics. 

Chokepoint. A point or small area through which multiple alternate movement routes are forced 
to pass due to obstacles or no-go terrain. A single bridge over an unfordable river is an obvious 
example of a chokepoint. 

Dynamic terrain. Terrain that may change during a simulation exercise due to the actions of 
agents or environmental effects in the simulation. The terrain reasoning algorithms to be covered 
in this section will usually treat dynamic terrain, which can change over time, as instantaneously 
static. This means that the terrain may change between terrain reasoning computations, and the 
changes to the terrain will be considered by the terrain reasoning algorithms when they are 
invoked, but it is assumed that the terrain does not change during a single terrain reasoning 
computation. 
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No-Go, Slow-Go, and Go terrain. Terrain which significantly hinders movement, somewhat 
hinders movement, or does not hinder movement, respectively. Characteristics that are used to 
categorize a given terrain area as No-Go, Slow-Go, or Go are given in Table 4.l. 

Characteristic No-Go Slow-Go Go 
Urban buildup Present, Present, None 

> 500 meters wide < 500 meters wide 
Rivers and waterways Present, Present, None; or Present, 

fordable or spannable fordable or spannable fordable or spannable 
nowhere in several places everywhere 

Uphill slopes > 45% uphill 30% to 45% uphill < 30% uphill 
Elevation variation > 200 meters 100 to 200 meters < 100 meters 
per kilometer 
Obstacles Man-made or military None None 
Trees > 15 cm thick and 5 to 15 cm thick and < 5 cm thick or 

< 6 meter spacing < 6 meter spacing > 6 meter spacing 
Hard surface roads 0 1 2 or more 
per kilometer 

Table 4. 1 No-Go, Slow-Go, and Go terrain (adapted from [Powell, 1987]). 

4.3 Route planning 

This subsection examines route planning, which is perhaps the fundamental CGF terrain reasoning 
task. It begins by defining route planning, describing the two basic approaches to route planning, 
and commenting on how route planning problems and algorithms differ at different hierarchical 
levels and geographical scales. Then route planning algorithms are surveyed in three categories: 
entity route planning, unit route planning, and reconnaissance route planning. 

The algorithms surveyed focus almost exclusively on ground vehicles; they plan routes that follow 
the surface of the terrain. Throughout this subsection it should be assumed that the entities are 
ground entities and the routes follow the terrain's surface unless stated otherwise. 

4.3.1 Definition 

In general terms, CGF route planning is the process of algorithmically generating a movement 
path, or route, for a CGF entity or unit from a given starting location to a given destination 
location across the surface of a given terrain database. The route as generated should avoid 
obstacles, which may be impassable terrain features, no-go terrain areas, or other entities. A 
waypoint is a point on a route. If given as input to a route planner, a waypoint is a point through 
which the route is constrained to pass; if returned by a route planner, it is usually a point at which 
the route changes direction. Route planners often return the routes they produce as a sequence of 
waypoints, under the assumption that the route proceeds along a straight line from each waypoint 
to the next waypoint in the sequence. The waypoint list is then handed over to a route follower, 
which actually moves the simulated entity along the route over time. This subsection will focus 
on route planning. 
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Route planning was chosen for examination in this survey because it is a ubiquitous terrain 
reasoning problem for CGF systems, both essential to a CGF system's behavior generation and 
closely linked to the terrain. Furthermore, route planning has been widely studied, as evidenced 
by the large body of literature on the subject. This is likely true for several reasons; first, route 
planning is important in several application areas, including CGF and robotics; second, route 
planning is a primitive behavior for CGF entities, which must be available before higher level 
cognitive behavior in the general category of movement planning can be built; and finally, the 
route planning problem is often easily simplified or abstracted into a form amenable to solution 
using precise algorithmic methods. 

In regards to abstract route planning algorithms, [Mitchell, 1988] is an excellent theoretical and 
analytical survey of route planning algorithms considered under idealized geometric 
circumstances .. Several of the route planning algorithms used in CGF systems and described in 
this subsection can be seen as based on those found in [Mitchell,1988] and adapted to the 
particular terrain representations used by the CGF system. As for the suitability of the ideal 
algorithms, [Karr,1995d] mentions two problems with applying the idealized algorithms to the 
"gritty" details of an actual CGF system's terrain representation, which are typical of the type and 
scope of such difficulties. 

4.3.2 Route planning approaches 

[Benton, 1991] separates route planning algorithms into two categories, grid-based and graph­
based, and nearly all route planning algorithms do in fact fall into those categories. In grid-based 
route planning, the terrain is first discretized into a grid, ifit is not already in a grid or cellular 
representation. Once the grid is available, its cells are then searched, usually by exploring all cells 
adjacent to a partial route in a depth-first manner. When the cell containing the destination is 
reached a route is constructed as a sequence of segments from one grid cell to another. 

In contrast, in a graph-based route planner the terrain is first abstracted into a graph, as described 
earlier, with the edges typically weighted to reflect parameters relevant to route planning, such as 
length, trafficability, exposure to enemy fire, and so on. The graph is then searched (often using 
an A* algorithm; for examples see [Benton, 1987], [powell,1988b], [Stanzione,1989], 
[Holmes,1992], [Cunningham,1993], [Stanzione,1993], [Campbell,1995], [Longtin,1995] and 
[Karr, 1995e]); when the destination is found by the search a route is returned as a sequence of 
graph edges. Depending on what information is used to weight the edges, the graph may be 
computed as a pre-processing operation and stored as an alternative or supplement to another 
terrain database in a different format. Clearly, graph-based planning is more general; a terrain grid 
representation is a special case of a terrain graph where the vertices correspond to the grid cells' 
center points and the edges correspond adjacent grid cells. In [Marti, 1994], a terrain grid is 
searched with an A * algorithm using precisely that interpretation. 

A simple application of grid-based planning oflong routes can lead to two significant problems. 
First, a grid sufficiently fine-grained to permit passage between narrowly spaced obstacles can 
require excessive memory to store. Second, searching the grid in a simple breadth-first manner 
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can be prohibitively costly in terms of processor utilization. Hierarchical and hybrid methods are 
often used to avoid those problems; they will be explained next. 

4.3.3 Route planning levels 

Route planning is often conducted at two different scales or organizational levels in CGF systems, 
high-level and low-level. Generally speaking, high-level route planning algorithms are used to 
plan routes that: 

1. are long (> I Km) 
2. follow roads over much of their length 
3. are more often for units than entities 
4. avoid large terrain obstacles, such as rivers, urban areas, and forests 
5. do not consider small terrain obstacles, such as individual trees and buildings 
6. do not consider dynamic obstacles, such as moving entities 

On the other hand, low-level route planning algorithms plan routes that: 
1. are short (11 1 Km) 
2. seldom follow roads, are primarily cross-country 
3. are more often for entities than units 
4. avoid small terrain obstacles, such as individual trees and buildings 
5. consider large terrain obstacles at the component level, i. e. a forest is a collection of 

individual trees to be avoided 
6. predict the movement of and avoid dynamic obstacles, such as moving entities 

The high-level and low-level route planning problems differ fundamentally in physical scale; long 
vs. short distances, large vs. small obstacles, units vs. entities moving: They also differ in time 
scale, both in traversal time and planning time. High-level routes take longer to traverse than 
low-level routes, simply as a function of their greater length. Additionally, there is almost always 
more time available to plan a high-level route than a low-level route. A movement route for a 
battalion-sized unit may be generated as part of a battalion plan which in reality can take minutes 
or hours to produce, whereas a low-level route for a single entity must often be planned in less 
than a second to preserve realistic CGF response times. 

The difference between the two levels of route planning has resulted in something of a dichotomy 
in route planning algorithms. Many route planning algorithms are specifically designed for either 
low-level or high-level route planning. Some CGF systems use different algorithms at the 
different levels; both ModSAF [Smith,1994] and the CCTI SAF [Campbell, 1995] operate in that 
manner. A recurring (but not universal) theme is a highly structured algorithm, such as A *, used 
for high-level route planning to produce high-level routes that are completely planned in advance, 
combined with a low-level route planning scheme that either produces low-level plans for 
segments of the high-level route as those segments are traversed or possibly even traverses the 
segments in a reactive heuristic manner without detailed advance planning. 

For example, in the 1ST CGF Testbed, long routes are partitioned into a series of segments, each 
of which is assumed to be traversable. (Here a segment is defined as a portion of a route, rather 
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than having its geometric definition as a portion of a line.) A detailed route is planned for each 
segment using the Testbed's grid-based route planner as the moving entity reaches the waypoint 
that ends the previous segment and begins the next. If a segment turns out to be untraversable 
due to an impassable obstacle (e.g. a river without bridges or fords) the route planning process 
fails (and the CGF operator is so notified). As another example, the CCTT SAF also uses a high­
level route planner to plan to produce overall routes around large scale obstacles, such as rivers, 
forests, and urban areas, and then applies a different low-level route planner to produce routes 
that avoid individual trees, buildings, and entities [Campbell, 1995]. Finally, [Benton,1991] 
describes the Hierarchic Route Planner, a route planner that combines a grid-based and a graph­
based route planner. A cross-country mobility graph is searched to produce the large scale route · 
and a grid-based planner finds precise paths and traversal times between the nodes of the graph. 

Of course, algorithms have been designed that use the same route planning approach as both 
levels; e.g. the unit route planner described in [Rajput, 1994b] and [Karr,1995d] can be applied to 
entity level route planner by simply varying the algorithm's parameters. 

The next two subsubsections will survey route planning algorithms for low-level route planning 
and high-level route planning, respectively. Following the descriptive distinction most often made 
in the literature between the two levels, they are referred to as entity route planning and unit 
route planning respectively. 

4.3.4 Entity route planning 

Entity route planning is the simplest and most thoroughly studied form of the route planning 
problem A obstacle-free route must be found from the given starting location (usually the entity's 
current location) to the destination location on a given terrain database. The mobility capabilities 
of the specific entity for which the route is being planned must be considered. 

This sub subsection will describe several entity route planning algorithms. They are: 
1. Potential fields 
2. REACT 
3. PATHPLAN 
4. Martin Marietta SAFOR 
5. Wavefront expansion 
6. Stealth terrain navigation 
7. FOA 
8. RAND 
9. ModSAF Near Term Navigation 

Potential fields. Though it is more of a reactive route finding method than a route planning 
algorithm, CGF movement control based on potential fields has been proposed repeatedly. The 
potential field scheme was originally devised for robot movement control; for example, see 
[Arkin, 1987] or [NASA, 1993]. [Le,1991a] and [Le,1991b] advance potential fields as 
specifically applied to CGF. The idea is based on the notion of artificial charged force fields with 
two possible charge polarities; like charges repel and opposite charges attract. Things a moving 
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CGF entity should avoid, such as terrain obstacles, areas exposed to enemy observation, and other 
entities, are assigned a charge that matches the moving entity, and thus repel it. Things that the 
moving entity should move towards, such as its movement goal or its place in a formation, are 
given the opposite charge, and thus attract it. At each time step, the direction (based on location) 
and force (based on assigned charge strength and distance) of each repeller and attracter are 
summed to produce a total movement vector, which is assigned to the moving CGF entity. 

The potential field scheme has appeal in that it unifies into one method a number of route planning 
and movement control considerations, including movement towards a goal avoidance of terrain 
obstacles, avoidance of terrain areas exposed to enemy observation, dynamic obstacle avoidance, 
and formation keeping. However, the approach has not been applied in any production CGF 
system due to several problems. First, determining the correct relative values for the potential 
field strengths ofthe repellers and attr~cters is difficult. Second, it is computationally expensive, 
requiring a recalculation of potential field values at each time step, as compared to a route planner 
that generates a route once and saves it. Finally, it is quite posSIble for the moving entity to be 
routed to a local maxima of the potential fields and become trapped, unable to make progress 
towards its final destination [NASA, 1993]. 

REA CT The algorithm described in [Hayslip, 1988] plans movement direction for a single aircraft 
using a table look up based on a quadtree of abstract terrain types. 

PATH PLAN [Ok,1989] presents an entity route planning algorithm which searches gridded 
terrain. It differs from classic search algorithms, such as A *, in several ways. No a priori 
knowledge of the terrain is assumed; instead, the algorithm uses only terrain information acquired 
by a short range sensor while the entity moves. If follows therefore that only local terrain data is 
used in the search. The search (and the entity's movement) is guided by simple heuristics. While 
the algorithm does not produce an optimum route, in the cases tested it did come close to the 
optimum route found by A * while requiring much less computation. 

lv/artin Marietta SAFOR In [Bockstahler,1991] vehicle routes are found by converting a 
polygonal terrain database into a hexagonal grid, with the hexagons weighted for elevation, 
mobility, and exposure. The hexagonal grid is searched with an A * algorithm to find a minimum 
weighted route. 

Wavefront expansion. The 1ST CGF Testbed route planner uses a wavefront expansion 
algorithm, previously described in [Moore, 1959], to plan entity routes from a given starting 
location to a given ending location. [Smith, 1992b] explains the process in detail. The algorithm 
proceeds as follows (also see Figure 4.1): 

(1) Create a route planning grid. Overlay a square array, or grid, on the underlying 
SIMNET format polygonal terrain, with the size of the grid cells approximately equal to 
the size of the entity for which the route is being planned. The grid boundaries are 
oriented parallel with the north-south and east-west axes of the terrain and is large 
enough to encompass the starting and ending locations. The cells of the grid are all 
initially considered to be unobstructed. 

(2) Access the terrain database's feature lists to find terrain features that fall within the 
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grid's boundaries. For features defined as obstacles to movement (rivers, buildings, 
treelines, canopies, and others), their locations given in the terrain database are used to 
determine the grid cell(s) they occupy. Mark those grid cells as obstructed. A diagonal 
buffering process is used to fill in grid cells adjacent to diagonal obstacles to prevent 
unintended passage through diagonal obstacles. 

(3) Use Bresenham's algorithm [Foley, 1982] to traverse the grid from the starting location to 
the ending location to determine if a direct route of unobstructed grid cells exists. 
If so, return the starting and ending locations as waypoints and stop. 

( 4) Assign the grid cell containing the starting location the number l. 
(5) Repeat until the grid cell containing the ending location has been assigned a number: 

For every unnumbered grid cell adjacent to a numbered grid cell, assign the unnumbered 
grid cell a number equal to the number of the lowest numbered adjacent grid cell plus l. 

(6) Beginning with the grid cell containing the end location, track back from each grid cell to 
an adjacent grid cell along decreasing numbered grid cells to the starting location. While 
doing so, if there are more than one like numbered grid cells to choose from, select the 
one closest in Euclidean distance to the grid cell containing the starting location. Record 
the sequence of grid cells so chosen as a sequence. 

(7) Eliminate from the sequence any grid cells that fall on a straight line between two other 
grid cells in the sequence. 

(8) Convert the list of grid cells to a waypoint sequence by taking as waypoints the point 
corresponding to the center of the grid cells. 

(9) To avoid "stair-stepping" in the route caused by grid granularity ([Mitchell, 1988] calls 
the effect "digitization bias"), apply a route relaxation test to each sequence ofthree 
waypoints on the list, removing the middle waypoint of the sequence if a direct 
unobstructed path exists from the two endpoints of the sequence. Return the relaxed 
waypoint sequence. 

This algorithm is generally fast and effective, but it does have some limitations. First, as 
mentioned earlier, it may be necessary to break long routes up into segments and plan the route 
using the wavefront expansion algorithm along each segment; this is due to the potentially large 
amount of memory required to store the route planning grid. The waypoints that are the ending 
waypoint of one segment and the starting waypoint of the next may be given by the CGF operator 
or determined by the algorithm. Second, it is possible that the grid granularity can result in small 
passages between obstacles being missed by the algorithm; this problem may be exacerbated by 
the diagonal buffering process. Bridges especially are prone to being overlooked. Nevertheless, 
the algorithm has operated satisfactorily and reliably in practical application [Chervenak, 1993] 
[D'Errico, 1994]. 
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Stealth terrain navigation. [Teng, 1992] details an entity route planning algorithm based on 
dynamic programming that was designed for a parallel machine architecture. Within the context 
of several simplifYing assumptions, the algorithm selects optimum routes that consider terrain 
traversibility and exposure to enemy observation. The algorithm assumes a highly discretized 
environment where the terrain is gridded, entities are located discretely in the terrain grid cells 
(i.e. the location of an entity is specified precisely as a grid cell), entities move discretely from grid 
cell to grid cell only in orthogonal directions, and time proceeds discretely in time steps that are 
the minllnum amount of time an entity might require to move from one grid cell to another. 

Given a starting position and a fixed time interval, the algorithm calculates the grid cells reachable 
during that interval and assigns each grid cell a numeric evaluation of the best route to that grid 
cell. The evaluation of a grid cell is the amount of time not exposed to enemy observation spent 
moving along the best route to that grid cell. The expo~e to enemy observation is based on 
projecting enemy entity movements over the time interval. The evaluation is calculated using a 
dynamic programming approach. It examines for each grid cell (the subject grid cell) at each time 
step within the interval the previously found best routes to each of the subject grid cell's 
neighbors. Those best routes are considered at the previous time step corresponding to the length 
of time required to move from the neighboring grid cell to the subject grid cell and the exposure 
to enemy observation that would occur when moving from the neighboring grid cell to the subject 
grid cell. It then extends the route from the neighbor to the subject grid cell that produces the 
least total exposure, keeping grid cell-to-grid cell pointers so that the route can be followed. The 
algorithm depends heavily on a parallel architecture for practicality; the route evaluation and the 
exposure to enemy observation of a grid cell are both recalculated for every grid cell in the terrain 
at every time step when planning a route, each by a separate (virtual) processor. This entity route 
planning algorithm is used for both a unit route planning algorithm and a bounding overwatch 
algorithm, both of which will be described later. 

FDA. [Holmes, 1992] provides extensive details on an entity route planning algorithm developed 
at the Swedish National Defence Research Establishment (FOA) that searches a graph terrain 
representation using an A * algorithm. Vertices in the graph represent traversable regions rather 
than points, so a route in the graph is a sequence of regions through which the entity must move. 
Such a sequence is called a symbolic route and uses a rule-based inference process to classify and 
describe the route in symbolic terms, e.g. "left turn". Because it consists of regions, the symbolic 
route must be refined to give a specific sequence of points, i.e. a geometric route, for an entity to 
follow; that refinement process is also described in the reference. 
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RAND. The entity route planning algorithm described in [Marti, 1994] searches a terrain grid 
using an A * algorithm. The cost function is a composite function of distance and slope between 
elevation posts. This research is interesting because its intent was not to develop a new route 
planning algorithm but to quantify the relations between terrain resolution, route planning 
computation time, and route quality. The reference reports a nuniber of valuable results, 
including the observation that using higher resolution terrain data (i.e. more closely spaced 
elevation posts) provides a linear improvement in path quality for an exponential increase in data 
space. The reference shows that for a route planning algorithm that uses an overlaid grid the grid 
should be aligned with the line connecting the route's start and end locations rather than with the 
coordinate axes of the terrain database; see Figure 4.2. [Marti,1994] also includes quantitative 
values for optimum size and resolution of the route planning grid. 

ModSAF Near Term Navigation. As mentioned, ModSAF partitions ''movement control", or 
route planning, into unit-level (high-level) and entity-level (low-level) [Smith, 1994] planning. 
Long-term route planning done at the unit level is not time critical and is performed with 
traditional planning techniques. However, ModSAF's entity-level short-term route planning is 
carried out with an interesting and impressive technique described in [Smith,1994]. The method 
allows moving entities to avoid terrain obstacles (such as treelines, trees, lakes, rivers, and 
buildings), to cross bridges, to avoid collision with other moving entities, and to keep their places 
in a formation. Note that the method as described assumes that the moving entity is moving along 
the surface of the terrain. 

The method depends on the use of an internal representation of space and time, referred to as the 
map, that combines all relevant movement constraints (such as obstacles and moving entities) and 
goals (such as the destination location and roads). The map is a three dimensional representation 
where the first two dimensions are spatial and the third is temporal. Points in the map are denoted 
with the triple (x,y ,1) and represent a specific point (x,y) on the surface of the terrain at a specific 
moment in time (I). 

While obstacles are typically three dimensional objects in the simulated world, their third 
dimension is not represented in the map. Instead they are represented by their 2D bounding 
volume. Stationary obstacles form infinitely tall vertical "towers" in the map, corresponding to 
occupying their 2D bounding volume in the x,y plane at all times in the map. Moving obstacles 
form "leaning towers" in the map as their x,y locations change over time. A route is a curve 
through the map that does not intersect any of the obstacles' volumes and connects the starting 
and ending locations of the routes. Figure 4.3 suggests an example of the map with a stationary 
obstacle, a moving obstacle, and a curve corresponding to a route that avoids those obstacles. 

Unlike many route planning methods in which movement speed is represented in a way distinct 
from the spatial route (if at all), the ModSAF method includes speed in the route representation 
directly as the curve corresponding to the route slopes through the third dimension of the map . 
Routes planned by this method use speed changes to avoid moving obstacles. A route that slows 
down will increase its slope in the map relative to the x,y plane, whereas a route that speeds up 
will decrease it. 
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Figure 4.2 Two different route planning grids for the same route 
endpoints (adaptedfrom [Marti, 1994J). 
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The route planner plans a route by finding a cUlVe in the map from the entity's current location to 
its goal location. The initial CUlVe is the straight line connecting the current and goal locations. 
The CUlVe is modified by adding control points (points through which the CUlVe must pass) to the 
curve until it does not intersect any obstacles in the map. Control points that lead the CUlVe 
around obstacles in the spatial dimensions are computed using cubic splines; in particular, a 
generalized form of the Catmull-Rom spline, in which the derivative at each control point is 
parallel to the line connecting the previous control point to the next one, is used. Obstacle 
avoidance in the temporal dimension is performed by varying the entity's movement speed, and is 
computed by integrating a series of successive speed-related derivatives. See [Smith, 1994] for 
the equations. 

Once an acceptable CUlVe (i.e. one that does not intersect any obstacles) has been found, it is 
reexamined for violations of physical performance constraints of the moving entity. The 
violations considered are excessive speed, excessive turn rate, excessive deceleration, excessive 
acceleration, and sharp turns. Additional spatial and temporal control points are added as needed 
to the CUlVe so as to remove the violations. 

The goal location for each route planner execution is either the entity's final destination, or a 
location corresponding to the location the entity should occupy along the previously planned high­
level route 2.5 seconds into the future. The 2.5 second interval is the planning horizon of the 
route planner. The execution horizon of the route planner is 0.5 seconds. The route planner will 
replan an entity's route as soon as either the execution horizon has elapsed since the last route 
plan was produced for that entity or a new obstacle has appeared within the 2D area bounded by 
the map. Using a planning horizon larger than the execution horizon provides smoothness and 
continuity between successive routes. 

The CUlVe that results from the planning process specifies a route completely, giving both the x,y 
route to follow and the speed at which the entity should be as it follows the route. Once 
calculated, the route is passed to the ModSAF vehicle dynamics routines, which move the entity 
along the route. 

As far as could be determined from the reference, the ModSAF route planning method ignores the 
z coordinate (the elevation) of the terrain. Consequently, the effects ofterrain slope on entity 
speed are neglected. Furthermore, areas of extreme slope that should thereby constitute obstacles 
are not so treated by the method. 

4.3.5 Unit route planning 

Unit route planning differs from entity route planning in several ways. One is that width of the 
route becomes an important consideration. A gap between two obstacles sufficient to allow 
passage for an individual entity may be a tactically unacceptable chokepoint for a company. A 
second is that units, more often than entities, are constrained to have all or part of their route on 
roads. Finally, units normally move in formation and a route that permits the unit to maintain its 
formation while moving is generally desirable. 
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This sub sub section will present several unit route planning algorithms, all of which account for 
one or more of these special considerations. They are: 

1. Multiple route finder 
2. Eagle 
3. SIl\1NETSAF 
4. Stealth terrain navigation 
5. Mesh 
6. Obstacle segment abstraction 
7. ModSAF concealed routes 

Multiple route finder. [Benton,1987] describes a variation of the A* algorithm to perform unit 
route planning in a road network. The A * algorithm was modified to find and return multiple 
non-interfering routes t4rough the graph. 

Eagle. [powell, 1988a], [powell,1988b], [powell,1989], and [Wright, 1990] explain an interesting 
unit route planning algorithm used in an automated terrain analysis application. ([powell, 1987] 
describes a less developed predecessor of the algorithm.) In summary, the algorithm proceeds as 
follows: 

(1) Given a gridded terrain database, categorize each grid cell as Go (passable) or No-Go 
(impassable) based on grid cell attributes in the database. 

(2) Aggregate the No-Go grid cells into No-Go regions, considering a parametric minimum 
separation distance. The boundaries of the No-Go regions are given as points. 

(3) Compute the Delaunay triangulation of the plane based on the No-Go regions' boundary 
points. Triangles inside the No-Go regions are discarded. 

(4) Create a graph based on the triangulation, with the circum-centers of the remaining 
triangles as vertices and edges connecting adjacent triangles. The edges are weighted for 
length and other factors of interest to route planning based on the triangles. 

(5) Simplify the graph by discarding vertices with exactly two edges and replacing the 
incident edges with a single edge connecting the two neighboring vertices. 

(6) Find unit mobility corridors by searching the graph using an A * algorithm. 
(7) Combine unit mobility corridors into unit avenues of approach using a simple 

distance metric. 

SIMNET SAF. The SIl\1NET SAF uses the A * algorithm to search road nets stored in a quadtree 
to find unit routes [Stanzione, 1989]; this approach is also used in the ODIN SAF 
[Stanzione,1993]. The references indicate that both the SIl\1NET SAF and the ODIN SAF 
needed an avenue of approach generation capability; their developers were apparently unaware of 
the avenue of approach algorithm, described earlier, given in [powell, 1988a], [powell, 1988b], 
[powell,1989], and [Wright, 1990]. 

Stealth terrain navigation. The entity route planning algorithm presented in [Teng,1992] and 
summarized earlier can be adapted to plan routes for small units such as platoons that move in 
formation. A desired characteristic for a platoon route is that the entities of the platoon be able to 
move in formation and maintain intervisibility with each other. Recall that the entity route 
planning algorithm evaluated and extended partial routes based on the exposure to enemy 
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observation of the terrain grid cells. For the unit route planning version, formation mutual 
intervisibility is also considered. As each grid cell is evaluated, the mutual intervisibility of a 
platoon formation centered at that grid cell is calculated. A weighted sum of unexposed time and 
formation mutual intervisibility is used to evaluate a grid cell for inclusion in the route. The route 
found by this method is a sequence of grid cells, corresponding to the center of the formation ; 
from it routes for the individual entities of the formation are found by simple formation offsets 
from the center's route. . 

Mesh. A unit route planner detailed in [Cunningham, 1993] also uses the A* algorithm, but the 
routes are not confined to road nets. The A * algorithm searches a specialized polygonal terrain 
database format known as a mesh (described earlier; in a mesh, all of the polygons are convex) 
minimizing a cost function that considers factors important to movement, such as exposure to 
enemy observation, distance travelled, or penetration of excluded areas. The veI1ices of the mesh 
polygons are the vertices of the search, though movement is not constrained to be along the edges 
of the mesh. Additional vertices may be interpolated as needed along the existing edges and 
edges may be interpolated from such an interpolated vertex to a mesh vertex, thereby allowing the 
movement route to traverse the interiors of the mesh polygons. The movement cost is assumed to 
remain constant within a mesh polygon. Once a unit's route is found by searching the mesh with 
A *, the entities of the unit follow the route by moving in formation. 

Obstacle segment abstraction. [Rajput, 1994b] and [Karr,1995d] describe a route planner for 
units that uses a hybrid terrain representation that combines elements of both gridded and graph 
representations. The grid generation process is a sophisticated one; the grid cells are assigned 
abstract terrain types that represent topological connectivity and traversibility relationships of the 
terrain in the grid cell that affect unit route planning. The method proceeds as follows: 

(1) Overlay (conceptually) a regular square grid on the polygonal terrain. The grid extent is 
determined by the unit's boundaries, and oriented to include the route's starting and 
destination points. The grid cell size is a function of the unit's size; 125m for platoons, 
500m for companies, and 1000m for battalions. 

(2) Analyze the terrain underlying each grid cell. Terrain features that constitute obstacles 
to movement (rivers, treelines, canopies) are abstractly encoded by assigning zero or 
more obstacle segments to the grid cell. Figure 4.4 (a) shows the different obstacle 
segment types, (b) is a notional terrain example, and (c) gives the resulting obstacle 
segment abstraction grid. 

(3) Assign either 8 or 12 sample points to each grid cell (8 if the grid cell has no 
tunnel obstacle segment, 12 ifit does). The sample points become vertices ofa graph 
representing movement routes in the terrain; vertices on opposite sides of an obstacle 
segment are not connected by an edge in the graph. Figure 4.4 (d) illustrates the 
placement of the sample points in the grid cell. 

(4) Search the resulting graph with the A * algorithm to plan a unit route. The route cost 
of each edge in the graph considers distance, trafficability, and concealment. Distance is 
calculated as the Euclidean length of the edge. Trafficability is found as a function of 
the polygon type and average slope ofa 5x5 array of points around the edge's end 
vertex. Concealment is the percentage of a circular area centered on the edge's end 
vertex that is observable from known enemy locations. 
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The obstacle segment abstraction unit route planner is both flexible and efficient. It's flexibility is 
due to the scalability. The size of the terrain grid cells can be changed to make the algorithm 
more or less sensitive to smaller obstacles; hence it can be used to plan routes for units of any size 
or even entities. It is efficient in that the obstacle abstraction scheme captures the key topological 
aspects of the terrain without retaining and processing unnecessary detail. Finally, the route 
planner can plan multiple distinct routes in a given terrain area by increasing the cost of sample 
points that have been used in previous routes. 

ModSAF concealed routes. [Longtin, 1995] presents ModSAFs algorithm to plan unit routes that 
take advantage of regions that are concealed from enemy observation. The algorithm will be 
covered in detail later in the subsection on cover and concealment. 

4.3.6 Reconnaissance route planning 

The third and final variation of route planning to be surveyed is reconnaissance route planning. 
The nature of the reconnaissance route planning task differs somewhat from entity and unit route 
planning, where starting and ending points are given and the route planner generates a route 
between them Instead, a reconnaissance route planner is given a starting point and an area of 
terrain, and it must produce a militarily effective reconnaissance route for that terrain area. A 
militarily effective reconnaissance route is one that enables a reconnaissance vehicle following it 
to observe (i.e. have an unobstructed line of sight to), at some point on its route, as much of the 
terrain area as possible, especially points that are likely to be locations ofhostile entities. 

This subsubsection will present two reconnaissance route planning algorithms. They are: 
1. Objects and rules 
2. All-Points 

Objects and rules. [Gonzalez, 1991] reports on an attempt to perform reconnaissance route 
planning using expert systems rules that operate on terrain objects. A terrain object is an abstract 
element or characteristic of the terrain, such as a "bill". Terrain objects are easily identified by 
human terrain analysts, but are not explicitly represented in most terrain representations; e.g. in a 
polygonal terrain representation, a bill is a set of contiguous polygons whose vertices' z 
coordinates are greater than those of the polygons around the set. The approach encountered two 
difficulties. First, it was much harder than expected to create a set of rules for reconnaissance 
route planning, even given the ability to operate on objects instead of representational details such 
as z coordinates, and second, it was extremely difficult to find meaningful terrain objects within 
the underlying polygonal terrain. The latter problem, abstracting terrain objects from underlying 
representations, is discussed in more detail later. 
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All-Points. In contrast, a geometric and algorithmic approach to the reconnaissance route 
planning task was quite successful. In this effort, reported on in [Van Brackle, 1993a], [Van 
Brackle, 1993b], and [petty, 1994b], three different reconnaissance route planning algorithms were 
developed. Given an area of terrain, represented in a polygonal format (to be specific, the 
SIMNET format), the algorithms produced a reconnaissance route, returned as a sequence of 
waypoints for a reconnaissance vehicle to move through. The best of the three algorithms, known 
as "All-Points", operates as follows: 

( I) Identify a set of Important Points for the given terrain area. Important points are placed 
at polygon vertices, at treeline endpoints and concavity changes, and centered on each 
side of features such as buildings. The intent behind identifying Important Points is that 
if a reconnaissance vehicle has observed all of the Important Points, it will have 
observed essentially the entire terrain area. 

(2) Identify a subset of the Important Points from which all of the Important Points can be . 
observed; that subset is referred to as the Route Points. 
(2.1) Construct a line of sight graph on the Important Points. Treat the Important Points 

as vertices and place an edge in the graph between each pair of Important Points 
if and only if an unobstructed line of sight exists between them. 

(2.2) Find the vertex in the line of sight graph with the highest degree (i.e. the Important 
Point that can see the most other Important Points); call it P. Add P to the Route 
Point set. 

(2.3) Given vertex P found in step (2.2), for each vertex Q such that (P,Q) is an edge in 
the line of sight graph and for each vertex R such that (Q,R) is an edge in the line 
of sight graph, remove the edge (Q,R) from the line of sight graph. The idea is 
that because P has been added to the Route Point set, and the Important Points Q 
have been seen from P, the algorithm no longer needs to be concerned with seeing 
those points from other points (the Important Points R). Note that R may equal P. 

(2.4) If any edges remain in the line of sight graph, go to step (2.2). 
(3) Determine an efficient order for visiting the Route Point set. This is done by treating the 

points in the Route Point set as the vertices of a complete graph, with the edges weighted 
according to the Euclidean distances between them, and applying a Traveling 
Salesperson approximation algorithm (NEARINSERT/ARBINSERT in 
[Rosenkrantz, 1974]). 

( 4) Return the sequenced Route Point set as a series of waypoints. 

Reconnaissance routes produced by the All-Points algorithm for three test terrain areas were 
compared to routes planned by human SMEs, who were military officers trained in terrain 
analysis, on the same terrain areas (see Figure 4.5). The comparison used both measured and 
statistical comparison techniques, as descnoed earlier in the document in the review of CGF 
W &A techniques. The All-Points algorithm performed at a level comparable with the human 
SMEs. 
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Figure 4,5 Reconnaissance route planning (adaptedfrom [Petty, 1994]), 
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4.3.7 Dynamic obstacle avoidance 

Before leaving the topic of route planning, a closely related subject should be mentioned. 
Obstacles are impediments to movement, so effective route planning algorithms must avoid 
obstacles. Some obstacles are motionless, or static; examples include unfordable rivers, treelines, 
and impassable slopes. Other obstacles can be moving, or dynamic; the most common examples 
are other moving entities in the simulation. Presumably a moving tank should not collide with 
another moving tank. 

Moving obstacles are referred to as dynamic. Dynamic obstacle avoidance is an important aspect 
of route planning, though it is not an aspect of terrain reasoning (terrain obstacles rarely move). 
Sometimes a moving entity's route around static obstacles (such as individual trees and buildings) 
is planned in advance, while moving obstacles are avoided by continuously considering their 
positions during the movement; e.g. the CCTT SAF [Campbell, 1995]. ModSAF, on the other 
hand, uses an obstacle representation that serves for both static and dynamic obstacles 
[Smith, 1994]. 

[Roos, 1991] describes an algorithmic method, based on dynamic Voronoi diagrams, that could be 
used for dynamic obstacle avoidance. [Craft,1994b], [Karr,1995a], and [Karr,1995c] analyze an 
effective CGF dynamic obstacle avoidance algorithm in detail. 

4.4 Intervisibility determination 

4.4.1 Definition 

Intervisibility, in its simplest form, is the task of determining if one entity can see another in the 
simulated environment. Intervisibility also refers to related problems, such as determining what 
portion of a region can be seen from a specific location, or what is the cumulative mutual visibility 
between two regions. Intervisibility determination is of fundamental importance to behavior 
generation in a CGF system because many important CGF actions and responses are conditional 
on sighting a hostile entity (e.g. direct fire). Intervisibility is a terrain reasoning problem because 
it is the terrain that most often obstructs visibility. 

Though simple in concept, intervisibility is problematic in implementation simply because of the 
demands it places on CGF systems' processing capacity. Each intervisibility determination can be 
quite computationally expensive, and in a simulation exercise with n entities, O(n2) intervisibility 
determinations maybe required each second [petty, 1992a] [petty,1992b], producing a serious 
load on CGF system performance [Sansom, 1993] [Kada,1994]. In a CGF system, intervisibility 
determination is almost always the single most computationally expensive operation, potentially 
consuming so much of the system's computational resources that CGF entity behavior generation 
is negatively effected [Rajput, 199 5 a] [Rajput, 199 5b ]. 
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Sophisticated algorithms and terrain representation data structures have been developed to reduce 
the computational cost ofintervisibility. This subsection will survey several of those algorithms. 
Point-to-point, point-to-region, and region-to-region intervisibility algorithms will be mentioned; 
each will be defined in turn. 

4.4.2 Point-to-point intervisibility 

Point-to-point intervisibility is the most basic of the intervisibility operations. Informally, it is the 
process of determining if the line of sight from one entity to another is obstructed by intervening 
terrain. More formally, point-to-point intervisibility is the process of determining if a line segment 
connecting two 3D points in the simulated environment intersects any portion of the terrain 
database. 

Several terms, including a few used in the preceding discussion, should be defined. 

Sighter. The entity on whose behalf an intervisibility determination is initiated; the determination 
is performed to establish if the sighter has intervisibility to a target. 

Target. The entity whose intervisibility status, relative to the sighter, is in question. 

Line of Sight (LOS). A line segment in the simulated environment connecting two given 3D 
points. The two points are defined as relative to the sighter and the target. Typically, the sighter's 
LOS endpoint is defined at the point where the entity's commander's head would be, relative to 
the sighter's location, and the target's LOS endpoint is the center of mass or volume of the entity. 

Obstructed. A LOS is obstructed if it intersects an opaque terrain element. 

In this formulation of point-to-point intervisibility, several assumptions are made. Two will be 
identified here. First, it is assumed that only terrain may obstruct the LOS. Of course, that is not 
in fact true; other entities, battlefield obscurants such as smoke [Bess, 1991] and environmental 
characteristics such as fog may also obstruct the LOS. Many intervisibility algorithms neglect 
those factors, and this document will do so also, simply because they are not components of 
terrain representation or reasoning. Second, it is almost universally assumed in point-to-point 
intervisibility algorithms that a LOS that passes under any part of the terrain is obstructed; while 
that assumption does not hold true for terrain multi-level terrain features (such as bridges), the 
assumption is true often enough to make its use nearly ubiquitous. 

Numerous variations of point-to-point intervisibility algorithms exist, dependent on both terrain 
representation and simulation requirements. Several will be described: 

1. SIMNETSAF 
2. CGF Testbed 
3. Algorithms C and P 
4. Stealth terrain navigation 
5. NASA Ames LOS Attachment 
6. Compact Terrain Database 
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7. CCTT SAF 
8. Integrated Computer Generated Forces Terrain Database 
9. Intelligent Player 

SIMNET SAF. In the SIMNET SAF, intervisibility is probabilistic; some terrain objects, such as 
treelines, do not automatically obstruct a LOS that traverses them, instead reducing the 
probability of a LOS existing [Stanzione,1989]. The result of an intervisibility determination is 
probabilistically chosen from a discrete set of possibilities: visible, partially visible, not visible. 

CGF Testbed The CGF Testbed uses a polygonal terrain representation that is nearly identical to 
the SIMNET format terrain database, which was described earlier. Both the terrain surface and 
features (treelines, canopies, and buildings) are constructed from polygons. The polygons are 
organized spatially and stored in pa~ches, which are square areas in the x,y plane of the terrain 
database, and grid cells, which are subsquares of the patches. Each patch has arrays that store the 
surface and feature polygons that it contains. Bit maps associated with the polygon array entries 
indicate which grid cells the polygons overlap. 

The CGF Testbed's intervisibility algOljthm is described in some detail in [petty,1992a], 
[Petty, 1992b], and [Smith, 1992b]. It operates in two basic steps: point location and traversal. 
Point location determines the patches and grids containing the LOS endpoints. Because the 
patches and grid cells are of known fixed size, point location can be performed with simple 
arithmetic operations on the endpoints' coordinates. 

In the traversal step it is necessary to determine which patches and grid cells to search for possible 
intersections with the LOS. In this algorithm, the patch and grid cells through which the LOS 
passes (in 2D, projected into the x,y plane) are found using a modification ofBresenham's 
algorithm [Foley, 1982], moving from the sighter's grid cell to the target's grid cell. Within each 
grid cell on the LOS the surface and feature polygons are checked for intersection with the LOS. 

Each of the surface polygons that overlaps the grid cells through which the LOS passes is checked 
to determine ifit obstructs the LOS. This is accomplished by testing each of the polygon's edges 
within the current grid cell for intersection with the LOS. The line intersection is computed using 
x,y coordinates only. Then, if the polygon edge and the LOS are found to intersect in 2D, the z 
coordinates are calculated for the edge and the LOS at the intersection point. If the z value for 
the polygon edge is greater than the z value for the LOS, the LOS is taken to be obstructed. 

The feature polygons in the patches and grid cells are also checked; recall that arrays containing 
the features are associated with each patch. After surface polygons have been checked, the 
treelines and canopies within the patch and grid cell are checked to see whether they obstruct the 
LOS. The treeline and canopy check proceeds in a manner very similar to the polygon edge 
check, allowing for the additional height of the features. 

A /gorithms C and P. [petty, 1992a] and [petty, 1992b] describe research into point-to-point 
intervisibility algorithms; that research had the goal of producing more time efficient algorithms 
for point-to-point intervisibility determination. Four point-to-point intervisibility algorithms were 
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compared experimentally: the CGF Testbed algorithm just described, the algorithm used in the 
SIMNET Plan View Display (PVD) node, and two new algorithms developed at 1ST dubbed 
Algorithms C and P. Both of the new algorithms were faster than both the CGF Testbed's 
algorithm and the SIMNET PVD algorithm 

Algorithm C stores the terrain polygons in two data structures: a doubly-connected-edge-list 
(OCEL) and a slab list. Both the DCEL and the slab list are well known data structures 
commonly used in computational geometry and are defined in [Prep arata, 1988]. The process of 
creating the DCEL and the slab list data structures from terrain polygons is detailed in 
[petty,1992a]. Given the endpoints of the LOS (i.e. the sighter's location and the target's 
location), Algorithm C perfolIDS point location using the standard slab method operating on the 
slab list data structure to identify the polygons containing the LOS endpoints. The slab method 
used is given in [Prep arata, 1988]. 

Once the polygons containing the LOS endpoints have been identified, Algorithm C's LOS 
traversal follows the LOS in 2D from polygon to polygon, starting with the sighter's endpoint. If 
the LOS has been determined to pass through a given polygon, that polygon's edges are tested for 
intersection with the LOS to determine through which edge the LOS leaves the polygon. The z . 
coordinates of the LOS and the exit edge at the point of intersection are compared to determine if 
the LOS is obstructed by that polygon; if the z coordinate of the exit edge is greater than that of 
the LOS at the intersection point, the LOS is determined to be obstructed. If not, the polygon 
connectivity information in the DCEL is used to identify the polygon that is adjacent through the 
exit edge and is thereby the next polygon the LOS passes through. The traversal ends when the 
polygon containing the LOS endpoint (found in the point location step) is reached. 

Algorithm P triangulates the terrain polygons and creates a data structure that is a list of triangles. 
Each triangle's entry in the list stores its vertices and the adjacent triangles. The triangles 
containing the LOS endpoints are found using a variation of the slab method described in 
[petty, 1992a] and [petty,1992b]. Algorithm P traverses the LOS from triangle to triangle 
beginning with the sighter's endpoint. At each triangle on the LOS the edge through which the 
LOS entered the triangle is known. The next triangle along the LOS is determined by computing 
the 20 parametric equation of the LOS with the x,y coordinates of the triangle's vertex that is not 
on the edge through which the LOS entered the triangle. As in Algorithm C, the z coordinates of 
the LOS and the exit edge are intersected to determine if the triangle obstructs the LOS. The 
traversal ends when the triangle containing the LOS endpoint is reached. 

Empirical comparison, related in [petty, 1992a] and [petty,1992b], determined that Algorithm C 
had the faster point location and Algorithm P the faster LOS traversal. Both of the algorithms 
were faster than the CGF Testbed's algorithm and the SIMNET PVD algorithm 

Stealth terrain navigation. [Teng, 1992] describes a point-to-point intervisibility algorithm for 
gridded terrain and a parallel machine architecture. The LOS is converted to a set of terrain grid 
cells by projecting the LOS into the x,y plane of the terrain. Then the viewing angle from the 
sighter's grid cell to every other grid cell on the line is sight is computed based on the grid cells' 
elevation attributes. The LOS is obstructed if and only if the viewing angle from the sighter's grid 
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cell to the target's grid cell is less than the viewing angle from the sighter's grid cell to any other 
grid cell on the LOS. On a parallel machine, each grid cell's viewing angle is computed in parallel 
on a separate processors; the comparison is done with a scan operation. 

NASA Ames LOS Attachment. [Sansom, 1993] describes the intervisibility determination method 
used for the NASA Ames Research Center's Vertical Motion Simulator. In a preprocessing 
phase, the flight simulator's polygonal IG terrain database is converted to a gridded terrain 
representation with elevation posts only. During run-time, intervisibility determinations are 
performed using a Bresenham-like 2D digital differential analyzer traversal of the terrain grid 
along the LOS. The terrain elevation of the elevation posts found by the traversal is compared to 
the height of the LOS, which is computed by a 3D digital differential analyzer algorithm. If the 
terrain height is greater than the LOS height, the LOS is obstructed by the terrain. Note that the 
terrain height is taken to be that of the elevation posts; there is no interpolation between elevation 
posts when a LOS passes between the posts. 

Compact Terrain Database. Intervisibility determinations in the ODIN SAF and ModSAF return 
a continuous value specifying the portion of the entity that is visible, i.e. that is not obstructed by 
intervening terrain. Determining the portion of an entity visible requires performing several point­
to-point intervisibility determinations to different points on the target entity. Early versions of the 
algorithm would then decrease the effective visible portion of the target entity to account for 
cumulative light transmittance through intervening tree foliage [Stanzione, 1993] [Smith,1995b] ; 
more recently, the light transmittance model was separated from the portion visible calculations 
[Smith, 1995b]. The reference also mentions the CTDB intervisibility algorithm's assumption 
regarding multi-level terrain; it assumes that all terrain elements other than the terrain surface are 
transparent. 

CCTT SAF. In CCTT, an intervisibility determination also computes the portion, given as a 
percentage, of a target entity that is visible from a sighting point. Solid objects and features, such 
as terrain surface or buildings, obstruct intervisibility, while non-solid objects, such as trees, 
provide partial transmittance. The complicating effect of dynamic objects on intervisibility 
determination in CCTT is discussed in [Campbell, 1994]. 

Integrated Compact Terrain Database. The intervisibility algorithm used in the ICTDB terrain 
database, as given in [Stanzione, 1995], appears to be very much like Algorithm P from 
[Petty, 1992a] and [petty, 1992b]. Recall that the ICTDB is a polygonal terrain database format 
where the terrain surface is defined by triangles, and each terrain surface triangle is linked to its 
three topologically adjacent neighbors with pointers. The ICTDB intervisibility algorithm uses 
Algorithm P's traversal method, following the LOS from triangle to triangle. The LOS enters 
each triangle through an edge of that triangle. Within each triangle it determines the next triangle 
on the LOS by inserting the coordinates of the third vertex (the vertex that is not an endpoint of 
the edge through which the LOS entered the triangle) into the equation of the LOS. Once the 
next triangle is determined the pointer to that triangle is followed. 

Intelligent Player. [pandari,1995] mentions intervisibility determination using a quadtree terrain 
representation for terrain elevation. 
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4.4.3 Point-to-region and region-to-region intervisibility 

Point-to-region intervisibility detennines how much, or what parts, of a terrain region are visible 
from a given point. Region-to-region intervisibility measures cumulative mutual visibility between 
two given regions. Point-to-region and region-to-region intervisibility algorithms often operate 
by systematically applying point-to-point detenninations. 

The point-to-region and region-to-region algorithms to be presented are: 
I. Stealth terrain navigation 
2. Simulation based planner 
3. Automated mission planner 

Stealth terrain navigation. [Teng, 1992] proviqes considerable detail on two intervisibility 
algorithms that provide point-to-region and region-to-region intervisibility results in gridded 
terrain. In the point-to-region case, the result returned is a visibility map specifying whether each 
grid cell in the region is visible from the sighter's grid cell. For the region-to-region case, the 
algorithm finds for each grid cell in the sighter region the number of visible grid cells in the target 
region. The algorithms are highly dependent on the gridded terrain representation and on the 
parallel machine architecture for which they are designed. 

Simulation based planner. The automated mission planner described in [Lee, 1994a], 
[Lee, 1994b], and [Lee, 1994c] uses a region-to-region intervisibility detennination in its evaluation 
of the suitability of unit positions. The region-to-region intervisibility determination is performed 
on two circular regions. It calculates a probability of an entity in one region being seen from the 
other region by performing a set of point-to-point intervisibility determinations from points within 
the two regions. 

A utomated mission planner. [Karr, 1995b] descnbes an automated mission planner implemented 
in ModSAF. It includes a region-to-region intervisibility function called "Area Line of Sight". It 
calculates a percentage of intervisibility between circular regions. Inputs to the function are the 
centers, radii, and number of sample points to check within each region. If the number of sample 
points in the two regions are n1 and nz, n1 points within the first region and nz points within the 
second region are selected randomly. The function then performs point-to-point intervisibility 
detenninations from each of the selected points in the first region to each of the selected points in 
the second region, a total of n 1 X nz detenninations. The percentage of those that are 
unobstructed is returned. 

4.4.4 Other intervisibility algorithms 

[petty, 1992a] and [petty, 1992b] are examples of research work to reduce the computational 
expense of each intervisibility detennination in a CGF system Work has also been undertaken on 
the complement of that problem, which is reducing the number ofintervisibility determinations 
made by a CGF system The essential idea is to use heuristics that suggest when intervisibility 
detenninations can be delayed or skipped in a CGF system without unduly affecting the generated 
behavior of the generated CGF entities. Some surprisingly effective heuristics have been 

145 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

developed that reduce intervisibility determinations by up to 50% while delaying first sighting 
times by less than a second. See [Rajput,1994a], [Rajput,1995a], and [Rajput,1995b] for details. 

4.5 Finding cover and concealment 

4.5.1 Definition 

Cover refers to terrain that protects an entity (or unit) from direct fire; concealment provides 
protection from observation. Note that by definition, cover and concealment is always relative to 
an enemy direction (or set or range of directions). 

The process of finding and using cover and concealment is of paramount importance in military 
tactical terrain reasoning. A U.S. Marine Corps field manual [Schmitt, 1988] states: 

"In the offense, use of cover and concealment allow the attacker to close with the enemy with 
fewer losses. In the defense, cover and concealment protect the force against enemy preparations 
and fires in support of the attack and help to deceive the enemy as to the location of the main 
defensive positions. In both cases, cover and concealment facilitate surprise." 

As it is in real-world military tactics, so to for CGF. Realistic and convincing CGF behavior 
requires effective use of cover and concealment. [Longtin, 1994] states that "The need to find 
covered or concealed locations with respect to enemy locations arises frequently in CGF systems, 
since there are many real-life tactics which require this ability, such as occupying a battle position 
or performing a bounding overwatch maneuver." However, doing so is a difficult problem in 
CGF terrain reasoning, and some CGF systems have not been able to use cover and concealment 
effectively. [Stanzione,1989] admits that the SIMNET SAF does not use cover and concealment 
while moving. [Vaden, 1994] and [Mengel, 1994] mention the failure of an early version of 
ModSAF to use cover and concealment, except when individual entity positions were selected by 
the CGF system operator. [Meliza, 1995] criticizes a more recent version ofModSAF for not 
routing entities under its control to cover or concealment when they come under fire. 
Considerable work remains to be done in this area. 

When defining a particular cover and concealment problem or task, there are several important 
aspects to be specified. Changing any of these aspects produces a different variation of the 
general cover and concealment problem The aspects are: 

1. Protection desired; cover, concealment, both. 
2. Degree of protection; partial, defilade, complete. 
3. Relative to; specific enemy location(s), direction (direction of travel, position facing), 

range of directions. 
4. Enemy location(s); stationary, moving projected to a single location, moving projected to 

a regIOn. 
5. Subject; entity, unit. 
6. Subject movement; stationary (at a location), moving (along a route) 
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In this subsection three variations of the cover and concealment problem, and algorithms that 
address them, will be examined. They are: 

1. Finding cover and concealment for one or more stationary entities with respect to a single 
stationary enemy location. 

2. Planning an entity or a unit's route to utilize cover and concealment with respect to 
multiple stationary enemy locations. 

3. Executing bounding overwatch, a combination of the first two. 

4.5.2 Stationary cover and concealment 

ModSAF includes algorithms to find cover and concealment locations for stationary entities. The 
algorithms use terrain represented in ModSAFs CTDB terrain database format. Those algorithms 
are reported in [Longtin, 1994] and will be presented in some detail here. The cover-finding 
algorithm will be described first, followed by the concealment-finding algorithm. 

The cover-finding algorithm attempts to find hull-defilade locations for entities. A hull-defilade 
location is defined as a location such that a vehicle at that location has its hull protected from 
direct fire by the terrain surface while its turret is exposed. Note that this definition is implicitly 
relative to a specific direction; a ridge that provides cover for a location from one direction is 
likely irrelevant from the opposite direction. In fact, the ModSAF cover-finding algorithm finds 
cover relative to a specific enemy location. 

Along with the enemy location, a number of other parameters are input to the cover-finding 
algorithm. The complete list is: 

1. enemy location 
2. search area 
3. grid spacing 
4. hull height of cover-seeking vehicle 
5. main gun orientation limits 
6. tree opacity 
7. minimum allowed visibility 
8. hull coverage 
9. search state data structure 

10. cover locations found array 
11 . main gun elevation angles array 

The role of each of these parameters will be made clear as the algorithm is described. 

The algorithm proceeds as follows: 
( I) Define sample points along the left, back, and right sides of the search area. The search 

area, given as input to the algorithm, must be a rectangle. The side of the search area 
closest to the given enemy location is designated as the front. The distance between 
consecutive sample points is given by the grid spacing parameter. 

(2) Define a set of2D line segments from the enemy location to each of the sample points. 
These segments are called profiles. Figure 4.6 shows an example enemy location, 
search area, sample points, and profiles. 
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(3) Construct profile arrays for each of the profiles. A profile array is a set of three 
dimensional points that describes the profile, or shape, of the terrain surface along 
a profile. Each point in the profile array is a point at which the slope of the terrain 
surface changes along the profile. Each successive pair of points defines a 3D segment; 
taken together, those segments describe the 3D shape of the terrain surface along the 
profile, or line segment from the enemy location to the profile's sample point. 
Figure 4.7 (a) shows a profile with the connecting segments added. 

(4) For each segment of each profile, examine that segment (the current segment) for a 
possible covered location on that segment. 
( 4. 1) Construct a vector from the enemy location to the endpoint of the current segment 

closer to the enemy location. Compare the slope of that vector with the maximum 
slope of the vectors similarly constructed for previous segments along the profile, and 
save the greater as the maximum; the maximum. is the current segment's tangent line. 

( 4.2) Construct two line segments, one extending from each endpoint of the current 
segment perpendicular in the upwards (increasing z) direction with a length of the 
cover-seeking vehicle hull height. The line segment extending from the endpoint 
closer to the enemy location is testline 1, and the other is testline 2. 

( 4.3) If the tangent line intersects testline 1 but not testline 2, then a candidate cover 
location exists. Construct a line segment by connecting the upper ends of the 
testlines. Note that this new line segment, called the vehicle height segment, is 
parallel to the current segment and separated from it by a distance equal to the 
cover-seeking vehicle hull height. Intersect the tangent line with the vehicle height 
segment. Project that intersection point to the current segment to find the 
candidate cover location. Figure 4.7 (b) includes the tangent line, testlines, 
vehicle height segments, and candidate cover locations for an example profile. 

(5) If a candidate cover location is found, test it against the following additional constraints: 
(5 .1) Is the candidate cover location within the search area? Because part (or all) of the 

profile may lie outside the search area, the candidate location is tested for inclusion 
in the rectangular search area. 

(5 .2) Does the slope of the terrain surface polygon at the candidate cover location allow 
a vehicle located there to aim its main gun at the given enemy location, given the 
main gun orientation limits provided as input? 

(5 .3) Is the enemy location visible from the candidate cover location? As mentioned 
earlier, the ModSAF CTDB point-to-point interviSlbility routines returns a value 
indicating the portion of the target entity that is visible. Though the reference does 
not make this clear, it seems reasonable that the minimum allowed visibility 
parameter is applied to an enemy entity at the enemy location; the enemy location 
is considered to be visible if and only if the portion of an entity at that location 
exceeds the parameter. The tree opacity parameter is used in the point-to-point 
intervisibility calculations to model the effects of trees, which are neither 
completely transparent nor completely opaque. 

If the candidate cover location passes all of these tests, it is added to the cover locations 
found array. The main gun elevation required to aim the main gun at the enemy location 
from the cover location is also stored in the corresponding entry in the main gun 
elevation angles array. 
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The ModSAF concealment-finding algorithm attempts to find locations that are concealed by 
terrain features (treelines and buildings). It is very similar to the cover-finding algorithm As with 
cover, concealment is found relative to a given enemy location. The concealment-finding 
algorithm differs from the cover-finding algorithm given earlier only in step (4); that portion of the 
concealment-finding algorithm is given here. 

( 4) For each segment of each profile, examine that segment (the current segment) for a 
possible concealed location on that segment. 
(4.1) Construct a vector from the enemy location to the endpoint of the current segment 

closer to the enemy location. Compare the slope of that vector with the maximum 
slope of the vectors similarly constructed for previous segments along the profile, 
and save the greater as the maximum; that maximum is the tangent line of the 
current segment. 

(4 .2) Construct two line segments, each extending from the current segment 
perpendicular in the upwards (increasing z) direction with a length of the 
concealment-seeking vehicle hull height. One line segment, testline 1, extends 
from the current segment's endpoint closer to the enemy location. The other, 
testline 2, extends from the point on the current segment which is a perpendicular. 
projection of the point at which the distance between the tangent line and the 
current segment becomes greater than the vehicle height. Construct the vehicle 
height segment by connecting the upper endpoints oftestline 1 and testline 2. 

(4.3) Test the terrain features in the patch for intersection with vehicle height segment. 
If the vehicle height segment intersects a treeline or building, calculate a candidate 
concealment location just behind (relative to the given enemy location) the feature. 

The concealment-finding algorithm is otherwise identical to the cover-finding algorithm, including 
the application of the three additional constraints (search area inclusion, main gun elevation limits, 
and enemy location intervisibility). 

Note that cover, because it protects from both observation and direct fire, is normally to be 
preferred to concealment, which does not protect from direct fire. When ModSAF attempts to 
find locations for the entities of a unit, it will first search for covered locations. 

Because the time required to completely search the search area for cover and concealment 
locations could easily exceed the time available for a single entity's execution cycle ("tick") in 
ModSAF, the cover-finding algorithm is designed to partially execute and then save its state, 
performing a complete search over the course of several calls. The search state data structure 
contains the data needed for that capability. 

A few evaluative comments regarding these two ModSAF algorithms can be made. Both 
algorithms will miss cover or concealment locations that happen to fall between the profile array 
lines. This will occur unless that parameter is set to a fairly small value (such as a typical vehicle's 
length). Thus the algorithms' effectiveness can be highly dependent on the grid spacing 
parameter. Of course, a small grid spacing parameter will result in a longer search time. The user 
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has some control over the fidelity and computation expense of the cover-and-concealment-finding 
algorithms by adjusting the parameter. 

Though the algorithms seem to be focused on vehicles, with their use of hull height, they are 
actually easily adaptable to dismounted infantry by treating the shoulder height of a standing 
soldier as the hull height, and the soldier's head as the turret. 

Both the cover-and-concealment-finding algorithms operate based on a single enemy location. 
[Longtin, 1994] acknowledges this as a problem, especially for finding cover. 

It is not clear why the search area test is not applied until after the considerable computational 
expense of finding cover or concealment locations along the profiles has been incurred, instead of 
simply terminating the search along a profile at the point it leaves the search area. 

4.5.3 Cover and concealment during movement 

Planning a route and executing movement to take advantage of cover and concealment is an 
important part ofCGF terrain reasoning; [Longtin, 1995] asserts that "A concealed-route 
algorithm is a vital component of CGF systems since it is a major contributor toward the realism 
of the generated forces. II 

U sing cover and concealment during movement can be more difficult than finding covered or 
concealed locations for stationary vehicles. However, there have been theoretical and practical 
CGF algorithms developed that use, in some form, cover and concealment during movement. 
Several will be described here. They are: 

1. Theoretical maximum concealment 
2. ODIN SAF cover during movement 
3. ODIN SAF cover under fire 
4. ModSAF concealed routes 
5. LeatherN et concealed routes 

Theoretical maximum concealment. [Mitchell, 1988] describes an algorithm, as a special case of 
the weighted regions shortest path problem, for finding a route that provides maximum 
concealment. However, the algorithm operates on a simplified terrain representation that is not 
found in any existing CGF system 

ODIN SAF cover during movement. [Stanzione,1993] describes, without providing a detailed 
algorithm, a procedure for use of cover in movement in the ODIN SAF system Infantry Fighting 
Vehicles (IFV s), while moving, can detect a sudden increase in its area of obsetvation. lbis 
would typically occur when the IFV is cresting a hill. (Note that in order to detect the change the 
IFV must be performing intervisibility calculations to determine its area of obsetvation on a 
periodic basis. Presumably the frequency at which the area of obsetvation is determined is related 
to the IFVs speed of movement, though the reference does not say so.) When the area of 
obsetvation increases suddenly the IFV will stop. By keeping track of slope of the terrain in front 
of the IFV, the algorithm can stop the IFV just short of the crest so that only the IFV's turret is 
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exposed above the crest. From this defilade location the IFV can scan the surrounding area for 
enemy entities before moving further. 

ODIN SAF cover under fire . [Stanzione, 1993] also discusses the use of cover in the ODIN SAF 
system as a behavioral response to enemy fire. According to the reference, "SAF ground vehicles 
and Dr will move away from dropping artillery and look for trees to use for cover." The quadtree 
terrain database is consulted to find the closest tree to move towards. As described, this behavior 
does not make sense. First, a tree provides little or no protection from artillery damage. Second, 
trees are concealment (protection from observation), not cover. Thus, it is not clear why an entity 
should seek the concealment that a tree offers in response to an artillery barrage, which is usually 
indirect (i.e. unobserved) fire. 

ModSAF concealed routes. [Longtin, 1995J provides a focused description of a procedure used in 
ModSAF to plan a route from a given start point to a given goal location that uses concealment. 
The procedure operates on ModSAFs CTDB terrain database format. It takes as input the start 
and goal locations and a set of enemy descriptors. Enemy descriptors may be of three types: 

1. Enemy direction; 2D vector, giving the general direction of enemy entities. 
2. Enemy location; specific location of a known or suspected enemy entity. 
3. Enemy area; a 2D x,y polygon enclosing a terrain area expected to contain 

enemy entities. 
The input set of enemy descriptors may contain zero or more of each type. Note that the 
flexibility provided by the different types and arbitrary number of enemy descriptors allows the 
concealed route procedure to operate under circumstances of varying degrees of specificity with 
regard to information about enemy locations. 

The concealed route plan is divided into two main phases. First a map of concealed areas is 
found, and then an optimally concealed route is planned using that map. Given the start and goal 
locations, the procedure operates as follows: 

(1) Construct a concealed area map. 
( 1. 1) Define the search area, a 2D rectangle enclosing the start and goal locations in the 

x,y plane, and a grid oflocations within that rectangle; this data structure is the 
cumulative concealment map. The spacing of the grid locations is a parameter to 
the procedure. The grid locations correspond to locations in the terrain. 
Associated with each grid location is an exposure attribute that indicates whether it 
is exposed to enemy observation, with an exposure attribute value of one signi.fying 
concealed and a value of zero signi.fying exposed. All of the exposure attributes 
for the cumulative concealment map are initially set to one. 

( 1.2) For each enemy descriptor, calculate the concealed area relative to that descriptor 
and combine it with the concealment map. 
(1.2.1) Create a working concealment map for the enemy descriptor, setting all of 

the working concealment map's exposure attributes to zero. 
(1.2.2) Determine which of the grid locations are concealed relative to the 

enemy descriptor and set those exposure attributes to one. The manner in 
which this is done depends on the enemy descriptor's type. 
For enemy directions: Set the exposure attributes of grid locations 
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"behind" (relative to the direction) treeline, tree, and building features, for 
a fixed distance, to one. Elevation is not considered, because there is no 
elevation associated with the enemy direction descriptor. 
F or enemy locations: Perform an intervisibility determination from the 
enemy location to each grid location. If the line of sight is obstructed, set 
the exposure attribute to one. 
F or enemy areas: Compute the principal axis of the search area, and 
define a series of line segments within the enemy area, perpendicular (in 
the x,y plane) to that axis, and separated by a distance dependent on the 
grid spacing. Project each segment on the terrain surface, and find the 
point on that projection with the highest elevation. Find the concealed 
locations for each of those highest points as if it was an enemy location. 

(1.2.3) Intersect the working concealment map with the cumulative concealment 
map by performing a logical AND of the corresponding grid location's 
exposure attributes. 

(1 .3) Polygonalize the cumulative concealment map by computing polygons that enclose 
each disjoint cluster of adjacent grid locations with exposure attnlmtes of one. 
Provide the set of concealment polygons to the second phase of the procedure. 

(2) Plan a route that utilizes the concealed areas (see Figure 4.8). 
(2.1) Construct a graph from the polygonal concealment map. The vertices of the graph 

will correspond to x,y locations in the terrain and the edges to straight segments 
between those locations. The edges will be assigned weights representing their 
length exposed to enemy observation. 
(2.1.1) Convert the concealment polygons' vertices to a coordinate system with the 

x axis aligned with a line passing through the start and goal locations. 
(2.1.2) Add the start and goal locations to the graph's vertex set. 
(2.1.3) For each concealment polygon, add two vertices to the graph 

corresponding to the polygon's vertices with the minimum and maximum x 
coordinates. Add an edge to the graph connecting these two vertices. 
Assign that edge a weight of zero. 

(2.1.4) For each vertex in the graph's vertex set, add edges from that vertex to the 
three vertices closest to it that have greater x coordinates and that are not 
already connected to it. If there are fewer than three such vertices, than 
add only the allowed edges. Assign each added edge a weight 
corresponding to the 20 Euclidean distance along that edge. 

(2.2) Search the graph using the A* algorithm, minimizing edge weights, i.e. exposed 
distance. Use the Euclidean distance from the start location to the goal location as 
a pruning criteria. 

(2.3) For any edges of the optimum route that have weight zero but that are not entirely 
within a concealment polygon (this might happen for a non-convex concealment 
polygon), adjust the route by replacing that edge with a series of edges that remain 
within the concealment polygon. 
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Just as in the cases ofModSAFs cover-and-concealment-finding algorithms described earlier, the 
concealed route planning algorithm may require more computational time than is available in a 
single ModSAF entity time-slice, or tick. The concealed route planner is designed to save its state 
and be resumed across multiple ticks. 

[Longin,1995] identifies several ways the concealed route planner might be improved. The most 
important deficiency is that the procedure ignores obstacles to movement such as rivers and steep 
slopes. Such obstacles are considered only after the concealed route has been planned; when 
found, the planned route is modified to bypass the obstacles. That modification process may lead 
to sub-optimal routes because the extra exposed movement added for obstacle avoidance was not 
considered by the route planner. 

LeatherNet concealed routes. LeatherNet is a version ofModSAF with specialized capabilities 
and behaviors for U.S. Marine Corps individual infantrymen [Howard, 1995]. LeatherNet includes 
a route planning algorithm that takes advantage of concealment [Hoff: 1995]. The algorithm 
applies the shortest-path paradigm (so denoted in [Mitchell, 1988]) wherein regions of terrain are 
weighted with non-negative costs per unit oftraversa~ the total cost of a route is computed by 
summing the cost incurred in each section traversed, and the route planning algorithm minimizes 
the route's cost. The cost values can be computed as a function of a number of different terrain 
characteristics. For example, higher cost values may be associated with movement obstacles and 
areas exposed to enemy observation, and lower cost values with passable terrain and concealed 
areas. Note that the shortest-path paradigm as described and as used in LeatherNet is essentially 
2D; terrain elevation is considered in route planning only indirectly, in that it contributes to 
determining concealed regions. 

The shortest-path paradigm allows the terrain representation to be either "grid-based", where the 
terrain regions are regular (typically square) and offixed size, or "weighted regions", where the 
overall terrain is partitioned into contiguous non-overlapping polygonal subdivisions of arbitrary 
size. The LeatherNet algorithm uses the weighted regions approach, primarily because the 
application's emphasis on individual combatants requires the ability to represent terrain features of 
small size relative to the overall terrain extent. Using a grid-based representation would require 
using a grid spacing as small as the smallest feature to be represented, which would result in a 
very large grid, expensive in both memory utilization and processing time. Using the weighted 
regions approach, small features of interest may be represented by small polygons, and large 
featureless regions may be represented by large polygons. In contrast, the ModSAF concealed 
route planner described earlier, which is primarily oriented towards units and vehicle-sized 
entities, determines concealed regions using a grid-based representation. 

The algorithm is given start and goal locations and the CTDB terrain database. As is typica~ a 
20 rectangular search area enclosing the start and goal locations is defined. Then, from the 
CTDB a weighted regions terrain representation, called the movemap, is developed. First, CTDB 
terrain features that are obstacles to movement are added to the movemap by transferring their 
polygonal footprint; those regions are assigned a high cost. Second, concealed regions defined as 
polygons are added to the movemap; they are assigned a low cost. (The source of the concealed 
region polygons will be addressed later.) Finally, the area of the movemap not enclosed in either 
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obstacle or concealed region polygons is tessellated to produce a complete partition of the search 
area into convex polygons; the regions created in this step are assigned medium cost. 

Once the movemap is complete, it is passed to the weighted regions route planning algorithm, 
which is a direct implementation of the "Continuous Dijkstra" algorithm explained in detail in 
[Mitchell, 1991] and summarized in (Hoff: 1995]; those descriptions will not be repeated here. The 
algorithm has worst case complexity of O(nB) , where n is the number of vertices in the movemap, 
but often runs much faster than the worst case in practice. 

The greatest shortcoming in the LeatherNet concealed routes algorithm is that the concealed 
regions must be identified manually, i.e. by the CGF operator. The concealed regions polygons 
used to build the movemap are created by a human operator and input to the movemap generation 
process via a file. Clearly it would be preferable for the concealed regions to be identified 
automatically. [Hoff:1995] suggests a possible method to do so, and lists several other ways the 
algorithm could be improved. 

4.5.4 Bounding overwatch 

Bounding overwatch is a military tactic developed by the U.S. Army for movement by a unit when 
enemy contact is expected. If executed properly, it combines both the stationary and moving and 
the entity and unit aspects of the use of cover and concealment. 

When moving by bounding overwatch, a unit splits into two elements; the entities of an element 
operate together. Each element takes a role, either bounding or overwatch. The overwatch 
element remains motionless, watching the terrain ahead for enemy forces, and stands ready to 
protect the bounding element with fire if enemy forces are sighted. The bounding element moves 
forward as far as possible while still remaining within the area that can be protected by the 
overwatch element. The bounding element moves to a position from which it can survey the 
terrain in the direction the unit is to move. Once it reaches that position, the elements switch 
roles, with the former bounding element now performing overwatch and the former overwatch 
element bounding forward, moving past the overwatch element to the next position in the 
direction of advance. 

Controlling the cooperative behavior of bounding overwatch is a behavioral control problem; see 
[Rajput, 1995b]. However, finding a good overwatch position is clearly a problem in terrain 
reasoning. Ideally, an overwatch position provides both cover and concealment from most 
directions and good observation in the direction of advance, and the movement of an element to 
an overwatch position is along a route that is covered or concealed. 
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lbree bounding ovelWatch algorithms will be mentioned. They are: 
1. Stealth terrain navigation 
2. ODIN SAF 
3. ModSAF 

Stealth terrain navigation. The entity route planning, unit route planning, and intervisibility 
algorithms presented in [Teng,1992] and described earlier are combined to produce a bounding 
ovetwatch algorithm that operates in gridded terrain. In the algorithm, two groups of two entities 
move from a common initial location to a common goal. The movement is divided in stages; at 
each stage one group moves while the other remains stationary in the ovelWatch role. 

Recall that the entity and unit route planning algorithms given in the reference find all of the 
terrain grid cells reachable in a tactically predetermined time interval and evaluate each reachable 
grid cell for exposure to enemy observation and formation mutual intervisibility along the route to 
that grid cell. At each bounding ovetwatch stage, the unit route planning algorithm is applied to 
the moving group to find the grid cells that it can reach during the given time interval. The 
moving group's destination is selected from among those candidate grid cells by applying the 
following criteria: 

I. Reachability; reachable at the end of the time interval. 
2. Configuration; ahead of the ovelWatching group by at least half the maximum distance a 

group can travel during the time interval and within a corridor predetermined relative to 
the overall movement direction. 

3. Route quality; good in terms of exposure to enemy observation and formation mutual 
intervisibility. 

4. Future safety; not exposed to enemy observation during the next time interval, when the 
moving group will become the ovelWatching group . 

5. Observability; nearby grid cells from which projected enemy movements can be 
observed. 

Evaluating the future safety and observability criteria require determining the intervisibility from 
the candidate grid cells to the projected locations of the enemy entities. That determination is 
done using the region-to-region intervisibility algorithm also described in [Teng,1992]. The final 
destination grid cell is chosen using a weighted sum and thresholds on these criteria and the 
moving group moves to the destination grid cell. Once that movement is completed, the two 
groups' roles (moving and ovelWatching) are reversed and the process is repeated. 

ODIN SAF. [Stanzione, 1993] briefly summarizes a bounding ovelWatch algorithm in the ODIN 
SAF system A Dismounted Infantry platoon will split into two parts, or sections. The two 
sections then move alternately (one section moves while the other remains motionless) from 
covered location to covered location. A covered location is considered to be one that is covered 
relative to the direction of movement or the direction of known enemy forces. Note that this is a 
simplified approximation of the actual bounding ovetwatch maneuver as performed by the U.S. 
military; in reality, the motionless "ovetwatching" section should be located where it can observe 
in the direction of enemy forces, rather than simply be under cover from that direction. 
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ModSAF. [Courtemanche, 1995a] briefly describes ModSAFs "Platoon Overwatch Movement" 
behavior. A platoon executing overwatch movement is split into two groups, with one group 
executing a "Hasty Occupy Position" task while the other group travels along a preplanned route. 
No details are given as to how the overwatclring positions are selected. A different bounding 
overwatch implementation in ModSAF is described in [Rajput,1995c], but that reference also 
omits description of the terrain reasoning aspects of the problem 

4.6 Other terrain reasoning algorithms 

Several other terrain reasoning algorithms will be mentioned in this subsection. They are: 
1. Terrain search queries 
2. Minefield site prediction 
3. Finding observation locations . 
4. Captain subunit positioning 

Terrain search queries. The hybrid quadtree and frame-based object terrain database proposed in 
[Antony,1988] seems to be particularly well suited for search queries, where the goal is to find all 
terrain objects of a given class that meet given selection criteria. 

Minefield site prediction. [Doughty,1988] describes a combination of a quadtree terrain 
representation with a rule-based expert system embodying military minefield doctrine that predicts 
minefield sites. 

Finding observation locations. [Keirsey, 1988] proposes a heuristic for finding good locations for 
general observation. Assuming that a uniformly space grid of points is superimposed on the 
terrain, a visibility metric, measuring the observation area of each point, is computed. The 
visibility metric is the number of points visible from each point, weighted for the range from the 
observing point to the observed point. Note that the metric provides no information as the 
whether a point is useful for observing any particular point. 

Cap tain subunit positioning. Captain is an automated knowledge acquisition system designed to 
allow a SME to teach an automated command agent tactical behavior [Hille,1994] [Rieb, 1995]. 
Captain transforms a CTDB terrain database into an abstract geometric model that is then 
transformed into a semantic net [Hille,1995]. The semantic net is input to the automated 
command agent where a set of inference rules are used to reason about placement and movement 
of a unit's subunits. A version space of plausible unit plans is generated by applying the inference 
rules to the semantic net. The generated plans are evaluated by a human SME. Based on the 
SME's evaluation, additional inference rules are learned by Captain. 
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5. Conclusions 

Computer Generated Forces systems control autonomous entities within virtual simulation 
systems. This survey began with a broad oveIView ofCGF systems as a group, provided a 
compendium of CGF systems, and examined several of the more important or interesting 
examples in some detail. From this review, it should be clear that CGF systems are extremely 
important to DIS-type virtual simulation. 

It then delved more deeply into the terrain representation formats used by CGF systems. A 
number of different terrain representation formats are in use in CGF systems, each with its own 
strengths and weaknesses. 

Finally, terrain reasoning algorithms were considered. Terrain reasoning is of central importanc.e 
to CGF systems' autonomous behavior generation. Algorithms to perform terrain reasoning are 
often heavily dependent on the details of the terrain representation format. Just as the application 
of AI techniques to CGF behavior generation in general has been hampered by the difficulties of 
the input transformation, so has the development of object-oriented terrain reasoning algorithms 
been troubled by the difficulties of finding tactically meaningful objects within the gridded or 
polygonal terrain representations common to CGF systems. However, effective terrain reasoning 
algorithms have been implemented based on geometric approaches. 
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I .. . ·· 8. Appendices 

I 8.1 List of acronyms and abbreviations 

A2ATD Anti-Armor Advanced Technology Demonstration 

I AAM Air-to-Air Missile 
ACBM Action/Cognition Behavior Model 
ACETEF Air Combat Environment Test and Evaluation Facility 

I ACM Association for Computing Machinery 
ADST Advanced Distributed Simulation Technology 
AF Automated Force 

I AI Artificial Intelligence 
AMSAA Army Materiel Systems Analysis Activity 

I 
ARL Army Research Laboratory 
ARPA Advanced Research Projects Agency 
ATGM Anti-Tank Guided Missile 

I 
ATR Anti-Tank Rocket 
BBN Bolt, Beranek, and Newman 
BBS Brigade Battle Simulation 

I 
BDS-D Battlefield Distributed Simulation - Developmental 
CASTFOREM Combined Arms Support and Task Force Evaluation Model 
CATT Combined Arms Tactical Training 

I CBS Corps Battle Simulation 
CCTT Close Combat Tactical Training 
CFOR Command Forces 

I CGF Computer Generated Forces 
cm Centimeter 
CTDB Compact Terrain Database 

I DARPA Defense Advanced Research Projects Agency 
DCEL Doubly Connected Edge List 
DI Dismounted Infantry 

I DIS Distributed Interactive Simulation 
DTED Digital Terrain Elevation Data 
FACS Feature Attnoute Coding Standard 

I FWA Fixed Winged Aircraft 
FZD Fire Zone Defense 

I 
GIS Geographic Information System 
HOI High Detail Input/Output 
HOBP Hasty Occupy Battle Position 

I 
IBM International Business Machines 
ICTDB Integrated Computer Generated Forces Terrain Database 
IDS Iowa Driving Simulator 

I iff If and only if 

• IFOR Intelligent Forces 
IFV Infantry Fighting Vehicle 

I 
I 198 



I 
1\ IG Image Generator 

lilT SEC InterservicelIndustry Training Systems and Equipment Conference 

I ll.,LISH Intermediate Level Language, Interpreted, for Script Handling 
IOT&E Initial Operations Test and Evaluation 
IP Intelligent Pilot or Intelligent Player 

I 1ST Institute for Simulation and Training 
JPL Jet Propulsion Laboratory 
Km Kilometer 

I LADS Loral Advanced Distributed Simulation 
LLNL Lawrence Livermore National Laboratory 
LOS Line of Sight 

I m Meter 
ModSAF Modular Semi-Automated Forces 

I 
MRTDB Model Reference Terrain Database 
NASA National Aeronautics and Space Administration 
NE Northeast 

I 
NW Northwest 
OCOKA Observation and fields of fire, Cover and concealment, Obstacles, 

Key terrain, and A venues of approach 

I PDU Protocol Data Unit 
RWA Rotary Winged Aircraft 
SAFDI Semi-Automated Forces Dismounted Infantry 

I SAF Semi-Automated Forces 
SAFOR Semi-Automated Forces 
SAM Surface-to-Air Missile 

I SDBF Simulator Database Facility 
SE Southeast 
SIF SSDB Interchange Format 

I SIMNET Simulator Networking 
SME Subject Matter Expert 
SSDB Standard Simulator Database 

I STOW Synthetic Theater of War 
STRICOM U. S. Army Simulation, Training, and Instrumentation Command 

I 
SW Southwest 
SWEG Simulated Warfare Environment Generator 
TDB Terrain Database 

I 
TIN Triangulated Irregular Network 
TRP Target Reference Point 
UPAS Unit Performance Assessment System 

I 
VBL Virtual Battlespace Language 
VMS Vertical Motion Simulator 
20 Two dimensions, or two-dimensional 

I 3D Three dimensions, or three-dimensional 
3 DAR Three-dimensional attack route 

I 
.. . ... 

I --
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8.2 Some constructive CGF systems 

Name: Red Adversarial Gaming Environment (RAGE) 
Developer: MITRE 
Simulation: AirLand Battle Management 
Domain: Ground combat 
Scope: Corps 
Reference( s): [Tallis, 1993] 

Name: Adversarial Planner (AP) 
Developer: MITRE 
Simulation: Eagle 
Domain: Ground and air combat 
Scope: Division and brigade 
Reference( s): [Salisbury, 1993] 

Name: System to Automate Force Control Actions (STAFCA) 
Developer: Pathfinder Systems 
Simulation: BBS 
Domain: Ground combat 
Scope: Brigade 
Reference( s): [J aszlics, 1993] 

Name: Virtual Commander (VCom) 
Developer: Lawrence Livermore National Laboratory 
Simulation: Joint Conflict Model (JCM), a Janus variant 
Domain: Ground and air combat 
Scope: Battalion 
Reference(s): [Cunningham,1994] 

Name: GeKnoFlexE 
Developer: Defense Research Agency (UK) 
Simulation: Corps Battle Simulation 
Domain: Ground and air combat 
Scope: Corps and division 
Reference(s): [Cox,1994] [page,1995] [Lankester,1995] 

Name: SAFOR 
Developer: Jet Propulsion Laboratory 
Simulation: Corps Battle Simulation 
Domain: Ground and air combat 
Scope: Corps and division 
Reference(s): [Gat, 1993] 
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