
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1996

Terrain Representation And Reasoning In Computer Generated Terrain Representation And Reasoning In Computer Generated

Forces : A Survey Of Computer Generated Forces Systems And Forces : A Survey Of Computer Generated Forces Systems And

How They Represent And Reason About Terrain How They Represent And Reason About Terrain

Mikel D. Petty

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Petty, Mikel D., "Terrain Representation And Reasoning In Computer Generated Forces : A Survey Of
Computer Generated Forces Systems And How They Represent And Reason About Terrain" (1996).
Institute for Simulation and Training. 220.
https://stars.library.ucf.edu/istlibrary/220

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/220?utm_source=stars.library.ucf.edu%2Fistlibrary%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I

• ----,
-,
I ,
I
o~

a

INSTITUTE FOR SIMULATION & TRAINING

Terrain Representation and Reasoning
in Computer Generated Forces

,lersion 2

December 11, 1996

Mikel D. Petty

Institute for Shnulation and '!'raining
Uni versity of Cfntral Florida ~uniVerSity o f

Central
Florida

IST-TR-96-S0

I
I "
I
I
I
I
I

Terrain Representati'on and Reasoning
in Computer Generated Forces .

A Survey Of Computer Generated Forces Systems
and how they Represent and Reason about Terrain

Mikel D. Petty
Institute for Simulation and Training

3280 Progress Drive, Orlando FL 32826-0544
407-658-5022 mpetty@ist.ucfedu

Technical Report IST-TR-96-50
Version 2, December 11 1996

I

-
-
I

-
I

-
I ,

I
I
I
I
I
I
I

I

I
I

-

Terrain Representation and Reasoning in Computer Generated Forces
Technical Report 1ST -TR-96-50

Table of Contents (Part 1 of2)

1. Introduction.......................... 1
1. 1 Abstract............. 1
1.2 An informal motivation 2
1.3 Purpose and structure of this document 4
1.4 Background 6

1.4.1 Analytical and descriptive models 6
1.4.2 Real-time simulation , 6
1.4.3 Networked virtual simulation and DiS ... 7
1.4.4 Definitions 9

2. Computer Generated Forces 11
2. 1 CGF tutorial 11

2.1.1 Role of Computer Generated Forces 11
2.1.2 CGF system characteristics 12
2.1. 3 Behavior specification and generation for CGF 15
2.1.4 Verification, validation, and accreditation ofCGF 31
2.1.5 Key research directions in CGF 43

2.2 Existing CGF systems 44
2.2.1 A compendium of CGF systems 44
2.2.2 CGF Testbed 61
2.2.3 ModSAF 65
2.2.4 SoarlIFOR 74
2.2.5 CCTT SAF 76
2.2.6 SIMNET SAF 79
2.2.7 Semi-Automated Forces Dismounted Infantry 80
2.2.8 Action/Cognition Behavior ModeL 81
2.2.9 Non-military CGF systems 82

3. Terrain representation in CGF 83
3.1 Terrain representation preliminaries 83
3.2 Elevation posts and gridded terrain 85
3.3 Polygonal terrain 93
3.4 Quadtrees 99
3.5 Graphs 104
3.6 Other terrain representations l 06
3.7 Summary of CGF terrain representations l 08
3.8 Terrain representation comments 115

I
I
I
I
I
I
I ,
I
~
I
I

I
I

Table of Contents (Part 2 of2)

4. Terrain reasoning in CGF 119
4.1 Terrain reasoning in military tactics 119
4.2 Terrain reasoning definitions 120
4.3 Route planning 122
4.4 Intervisibility determination 140
4.5 Finding cover and concealment 146
4.6 Other terrain reasoning algorithms 159

5. Conclusions , 160

6. Acknowledgments 160

7. References 161

8. Appendices 198
8. 1 List of acronyms and abbreviations 198
8.2 Some constructive CGF systems 200

I
I
I
I
I
I
I

-
I
I

I

I
I
I
I

1. Introduction

lIDs section begins with an abstract for the overall document, then presents an informal
motivation of Computer Generated Forces, states the purpose and structure of the document, and
explains some essential background concepts.

1.1 Abstract

Distributed Interactive Simulation is an architecture for building large-scale simulation systems
from a set of independent simulator nodes communicating via a common network protocol. DIS
is most often used to create a simulated battlefield for military training. DIS simulations are real­
time.

Computer Generated Forces (CGF) systems control multiple autonomous battlefield entities in a
DIS simulation using computer equipment and software rather than humans in simulators. CGF
entities serve as both enemy forces and supplemental fiiendly forces in a DIS simulation run. A
number of different CGF systems have been implemented. They have been used for both research
and training. Three important CGF systems are the 1ST CGF Testbed, the Loral ADS ModSAF
system, and the CCTT SAF.

Specifying and generating realistic tactical behavior in CGF systems is an ongoing research topic.
A number of different approaches, including many from artificial intelligence, have been applied to
CGF behavior generation. One commonly used technique is based on finite state machines.

Effective use of terrain is a crucial element of military tactical decision making. In order to
realistically simulate military forces, CGF systems must represent the battlefield terrain and reason
about it. A variety of different terrain representation formats have been used in CGF systems.
Those formats include gridded, polygonal, quadtrees, graphs, and others. Each of the formats has
strengths and weaknesses in the context of CGF systems. Some CGF systems use multiple
representations of the same terrain in different formats and perform each terrain task on the
representation format that best suits that task.

Low-level tactical behavior, in real-world military units and in CGF systems, is highly dependent
on the terrain. Therefore terrain reasoning is an essential part of CGF behavior generation. CGF
algorithms exist for a number of terrain reasoning tasks, including intervisibility, route planning,
and finding cover and concealment. Given the number of different terrain reasoning tasks,
different terrain representations, and different algorithmic paradigms, it should be no surprise that
there are a wide variety of terrain reasoning algorithms with varying degrees of robustness,
performance, and tactical realism Intervisibility algorithms based on polygon traversal, route
planning algorithms based on A * search, and cover-and-concealment-finding algorithms based on
geometric analysis of terrain elevation have all been implemented.

1

I
I
I
I

I

1.2 An informal motivation

This smvey is intended to be a serious treatise. However, before beginning the scholarly business
of defining terms and explaining system capabilities, it may be useful to describe in an informal
way two examples of autonomous entities in simulation that will help serve to motivate the
survey.

Consider the following scene: a young man sits in front of a personal computer, staring intently at
the monitor before him. He grips a joystick, which he moves constantly, sometimes gently and
sometimes with abrupt suddenness. He is playing Wing Commander, a best-selling space combat
simulation game produced by Origin. The program places him in the cockpit of a simulated space
fighter ship, equipped with rocket engines, afterburners, navigation systems, shields, energy and
projectile blasters, and guided missiles. He must maneuver his fighter around interstellar terrain
such as asteroid belts and space stations. His goal is to use his fighter's weapons to destroy
enemy fighters and to avoid being destroyed by them

Through his cockpit window, he can see the enemy fighters. The actions and maneuvers of the
enemy fighters are generated by the game software. They turn towards him and fire, attempt to
get onto his tail, use afterburners and evasive maneuvers to escape his fire, lock on and fire their
guided missiles, and lure him away from the friendly ships the player is protecting. The actions
for each enemy fighter are generated based upon the fighter's location relative to the player's
fighter, the class or type of the enemy fighter, its damage state, and the combat style and
aggressiveness of the particular fictional enemy pilot who ostensibly controls the fighter
[Harrison, 1992].

The simulation program is presented as entertainment, and it has succeeded. The player is
completely engaged in the simulation. His entire attention is focused on the simulated control
panel of his fighter and the violently maneuvering enemy fighters visible through the cockpit
windows.

Now consider a second scene: four U.S. Army soldiers sit at the controls ofa training simulator.
The simulator is about the size of a garden shed; from the outside, it appears to be a connected set
of computers, monitors, and large green fiberglass enclosures. From the inside, the simulator is a
simplified but easily recognizable re-creation of the interior of a MIA! Abrams tank.

The four soldiers are the MIAl's crew. They manipulate the simulator's controls as they would in
an actual tank, driving the simulated tank through a simulated battlefield which they can view
through the vision blocks of their tank. A computer image generator and monitor for each of the
vision blocks shows a view of the battlefield as it would be seen from that location. The
battlefield terrain is comprised of the terrain surface as well as features such as treelines, roads,
bridges, buildings, and canopies; it is constructed from polygons.

A second crew is at the controls of another MIAI simulator. That simulator may be adjacent to
the first , or it may be hundreds of miles away. However, the two are connected by a computer

2

I
I
I
I
.1
I

network, and in the simulated battlefield the second tank is following the first, about 30 meters
behind.

The commander of the lead MIAI is warily surveying the terrain from his vantage point in the
cupola, atop the turret, searching for the enemy tanks that are likely to be nearby. Suddenly, as
the tank crests a ridge, he spots two enemy tanks emerging from behind a treeline about 1500
meters away. The enemy tanks are generated in the battlefield by another simulator node,
attached to the MIAI simulator via the network. However, they are not controlled by human
crews; rather, computer software is generating their behavior, and that of many other vehicles in
the simulated battlefield.

The tank commander radios the commander of the second MIAI, who cannot yet see the enemy
tanks, and warns him. of the threat. Then, over the simulator's intercom the tank commander
orders the driver to turn the simulated MIAl to face its frontal armor towards the enemy tanks
and to stop so as to provide the gunner an easier firing problem The commander's feeling of
urgency is easily heard in his voice as he tells the gunner where the enemy tanks are, which one to
engage first, and what ammunition to use. As quickly as his skills allow, the gunner rotates the
MlAI's turret and elevates the main gun to align the aiming reticle with the first target. In quick
succession he thumbs the laser rangefinder button and squeezes the main gun trigger; the target
bursts into flames.

The commander urges him to immediately engage the second tank, but it is too late. The driver of
the second MIAI, in his haste to reach a location from which to fire, has crested the ridge right
behind the stopped lead tank and collides with it. Both of the simulated tanks are abruptly jostled
by the collision, and some damage is suffered by both. Before either crew can reorient
themselves, the enemy tank sights the lead MIAl, turns towards it, and stops. Its turret swings
around and the enemy tank fires. The sound system of the MIAI simulator produces an
unpleasantly loud crashing sound, and the screens of the simulator turn black; the lead MIAl has
been destroyed by the enemy tank. The tank commander pounds his controls in frustration.

The first scene described a simulation program used for amusement, the second a program used
for the deadly serious job of training U.S. Army soldiers, yet the two scenes have at least two
crucial elements in common. First, they both succeed in creating an environment with enough
intensity and urgency to draw their users entirely into the simulated world. Second, they both
include autonomous entities that oppose the simulation users, attempting to thwart and even
destroy (in simulation!) those users. In a real sense, the first characteristic, i. e. the simulation
intensity, and the resulting usefulness of the simulation system, is produced by the second
characteristic, the autonomous opposition entities.

In both cases, the behavior of the automated opposing entities is produced algorithmically, with a
computer hardware and software system; such a system is referred to as a Computer Generated
Forces (CGF) system In both cases the CGF system that generates the behavior must reason
about the simulated terrain of the battlefield in order to generate realistic behavior.

3

I
I
I
I
I
I
I

I
I
I
I
I
J

I

1.3 Purpose and structure of this document

This document is a survey of computer systems used to produce realistic or intelligent behavior by
autonomous entities in simulation systems, i.e. ofCGF systems. In particular, it will be concerned
with the data structures used by CGF systems to represent terrain and the algorithmic approaches
used by those systems to reason about terrain.

The reader of this document is assumed to possess a general familiarity with computer science,
including data structures, algorithm design, simulation, and artificial intelligence. A detailed
knowledge of simulation or artificial intelligence is not assumed, as the particular terms and ideas
in those areas will be explained as needed.

The next subsection defines and explains a number of background terms and cO.ncepts that are
conceptual prerequisites to understanding the issues of behavior generation and terrain reasoning
for CGF systems. They include real-time simulation, networked virtual simulation, and DIS.
Following that, the three main sections of this document survey CGF systems, terrain
representation in CGF, and terrain reasoning in CGF. In particular, section 2 first presents a
structural overview of a typical generic CGF system and discusses CGF system architecture, and a
number of existing CGF systems. A few of the most important CGF systems (in the author's
opinion) are explained in some detail, and many others are identified and discussed more briefly.

Section 3 moves from CGF systems in general to terrain representation in CGF systems. First,
background concepts of terrain representation are introduced. Then terrain representation
formats used by existing CGF systems and other related systems are surveyed and explained. The
explanations discuss the data structures for each of the representational formats and compare their
strengths and weaknesses in the CGF context.

Finally, in section 4 CGF terrain reasoning algorithms are examined. In order to organize the
exposition, special attention will be given to terrain reasoning algorithms for three crucial CGF
terrain reasoning tasks: route planning, intervisibility, and finding cover and concealment. In
each case the task is defined and then the existing CGF terrain reasoning algorithms for the task
are presented.

Figure 1. 1 is a graphical representation of the subject matter domain of this document.

4

I
,I
I
I
I
I

I
I

I
t

I

2, Survey of Computer Generated Forces systems

3. Terrain representation data structures
used in CGF systems

4. Terrain reasoning algorithms
used' in CGF systems

Figure 1.1 Subject domain a/the sections a/this document.

I
I
I
I
I
[
,
\

------------------.............
1.4 Background

This subsection defines background terms and concepts that will be needed in order to discuss
CGF systems and terrain reasoning algorithms.

1.4.1 Analytical and descriptive models

For the purposes of this survey, a model is a description, generally mathematical, of some existing
or potential real-world object, process, or system A simulation is a realization or implementation
of a model (or more than one), generally done using computer software and hardware. An
execution of a simulation is an exercise, run, or trial, depending on the context. While a
simulation is executing, the events, activities, and state transitions that occur within the model
have a correspondence, defined by the model, with events and activities that may occur in the
modeled system A set of connected or linked simulations operating cooperatively is a simulation
system; an individual simulation within a simulation system is a simulation (or Simulator) node.
Models implemented as simulations are often symbolic, in that symbols within the model are used
to represent objeds, relationships, actions, and processes. Within the category of symbolic
simulations, [Kreutzer, 1986] identifies two types of models. Analytical models are based on
some strong mathematical theory and are deductive. They allow the use of mathematical methods
to find a desired state of the modeled system and provide general solutions to classes of systems.
However, analytical models often depend on extensive simplifYing assumptions to make them
mathematically tractable.

In contrast, descriptive models symbolically represent the possible states of the modeled system
(i.e. the problem space), without providing any analytical methods for finding particular states of
interest. Because they do not need to be amenable to mathematical analysis, the system being
simulated can be modeled in much more detail. Using a descriptive simulation (ie. an
implementation of a descriptive model) is an inductive experiment.

1.4.2 Real-time simulation

The simulations to be considered in this survey all fall into the descriptive category. However,
this categorization is not narrow enough. Time-stepped simulations model time by advancing the
simulation's internal clock a fixed interval and determining what events, if any, have occurred
during that interval Event-driven simulations instead determine when the next event will occur
and advance the simulation clock to that time. This survey will focus on time-stepped simulations
where the time interval is set small enough to produce a quasi-continuous simulation (as defined
in [Kreutzer,1986]). Furthermore, the topic of interest will primarily be simulations where the
time-slice advances of the simulation clock occur at a rate that causes the simulation clock to
match the real-world clock of the simulation's human user; that is, events in the simulation occur
at the same speed as the modeled events do in the system being modeled. Such a simulation is
usually called real-time.

The intended use of a simulation determines whether it will run in real-time, faster than real-time,
or slower than real-time. Faster than real-time simulations compress time, so that a future state of

6

I
I .
I
I
I
I
I

a system can be found in less time than the modeled system would take to reach that state. This
permits many different system futures to be produced and analyzed. Slower than real-time
simulations stretch time, so that experimenters may examine in detail simulated events that may
occur too quickly to study in real-time.

The primary reason for a simulation to run in real-time is to realistically model the passage of time
for the user of such a simulation. This survey is considering simulations used primarily for
training, where the user(s) learns or improves some skill set as a result of interacting with the
simulation; such a change is called training effect. If the user is interacting with or participating in
the execution of the simulation, it is generally assumed that the maximum value of that
participation, i.e. the maximum training effect, will be derived from the user experiencing the
simulated events at the same rate he or she would experience the events in the system being
modeL.ed.

It is possible, of course, that training effect may in fact be maximized by having simulated time
pass faster or slower than real-time. [Guckenberger,1992] describes an experiment in which
trainees who were trained in a tank gunnery simulation with time progressing at an accelerated or
"above real-time" rate showed a greater training effect than those trained at real-time.
Nevertheless, the generally accepted practice is that the best training environment is real-time until
proven otherwise for a specific application. The CGF systems to be surveyed later all are
intended to operate at real-time.

1.4.3 Networked virtual simulation and DIS

The combination of computer simulation technology and computer networking technology creates
a wide range of new simulation architectures. Networked computers running simulations may
share processing or data access workload among nodes, allow specialized hardware architectures
to perform specific simulation computations for which they are suited, or facilitate simultaneous
use of a simulation by multiple users at remote sites. [Goldiez, 1995] reviews the history of
networked simulation.

One particular networked simulation architecture provides the context for many of the simulations
being considered in this survey. Distributed Interactive Simulation (DIS) is an architecture for
building large-scale simulation systems from a set of independent simulator nodes communicating
via a common network protocol [DIS,1994] [Loper,1995b]. The simulator nodes each
independently simulate the activities of one (or more) entities in the simulated environment, and
report their attributes and actions of interest via the network to other simulator nodes. In a
typical DIS simulation system, the simulated entities coexist in a common environment, (e.g. a
terrain database) and can interact in real-time by exchanging network packets [Loper, 1991]. An
important characteristic of DIS simulation systems is that they are real-time; events in the
simulation systems occur at the same rate as their real-world counterparts.

7

I
I.
I
I,
I
I,
I
I
I
I
I
I
I

-
-
-,
J ,

DIS systems are being used for [DIS, 1994]:
1. Training in a realistic and large scale synthetic environment
2. Planning and rehearsal of actual military missions
3. Development of tactical and operational doctrine
4. Testing of new weapons systems early in their development cycle.

Because it is distributed and interactive, DIS exercises allow "testing of group-level operations or
procedures that require cooperation" [papelis,1994].

The ARPAIUS Army SIMNET system is the prototypical example ofa DIS-style simulation.
SIMNET is used to train tank and vehicle crews in cooperative and team tactics. (The SIMNET
literature is extensive; [Thorpe, 1987], [Nelms,1988], [pope,1989], and [Cosby, 1995] are good
examples). In SIMNET, the simulator nodes typically represent single vehicles, such as tanks or
armored personnel carriers. SIMNET simulator nodes are substantial devices consisting of a
simulation computer, a computer image generator, and a physical re-creation of the vehicle
interior; they are operated by three or four human trainees. During the execution of a scenario,
each simulator node's simulation computer continuously tracks the location of the vehicle relative
to a terrain database common to all vehicles in the scenario. The trainees maneuver their vehicle
over the terrain and interact with (e.g. fire their weapons at) other vehicles. All simulator nodes
in the simulation are linked by the SIMNET network, which carries the packets needed to mediate
inter-vehicle interaction.

By exchanging these packets, actions taken by one simulator node are made known to other
simulator nodes in real time. Each vehicle broadcasts location report packets, which are used by
other vehicles to generate visual images, and fire and impact packets, which are used to signal and
adjudicate fire combat.

A DIS-type system depends on two areas of agreement between the networked simulators. The
first is the shared "playing field", or simulated environment. All entities in the simulation must
have identical or isomorphic simulated environments in which to operate, or events and actions
that are valid for one simulator node may be invalid for another. For example, if two tank
simulators share terrain databases which are identical except that a bridge present in the first is
omitted in the second, when the first tank traverses the bridge it will appear to be floating on air
or water to the second.

The second required area of agreement is the network protocol. A DIS protocol specifies the
various types and formats of network packets which the simulator nodes will exchange to support
the simulation system Additionally, the protocol defines the precise circumstances under which
each packet type should be sent by a simulator node, and the interpretation that should be
performed when each packet type is received.

Currently, the DIS protocol standard defines a specific set offixed format packets, or protocol
data units (PDUs). The standard precisely defines the content of each PDU at a bit-by-bit level of
detail as well as specifying the circumstances under which each PDU type should be sent and what
action should be taken upon its receipt. Recently however, DIS researchers have begun to
consider a more flexible DIS protocol composed of a set of optional PDU components that are

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J ,
J
J

assembled as needed for a particular simulation application or exercise [Bouwens,1995]. The
different combinations ofPDU components are referred to as profiles.

D IS exercises (an exercise is a simulation session, or a single run of a scenario) are often recorded
for later replay and analysis. The recording is done by reading and storing as a data file the .
network packets (PDUs) that are sent on the network during the exercise. The PDUs are
timestamped as they are recorded so that the playback can be properly timed. A data file of
recorded DIS PDUs is often called a log, and a utility program to record and playback the PDUs
is a logger.

An important large-scale use of the DIS concept and standards is the U.S. Army's Close Combat
Tactical Training (CCTT) program. CCTT will provide a synthetic environment for training in
armor and infantry combat; see [pope, 1995b] for an overview of the CCTT program
[Pope,1995a] discusses how CCTT development has helped drive the evolution of the DIS
standard and architecture.

For the most part, DIS-type systems have been used primarily for training, as opposed to more
analytical uses such as weapons systems testing and tactics development. The training may be
general tactical and team training, where the terrain database used is generic or representative and
the trainer sets the scenario [Byers, 1988], or it may be mission rehearsal, where a specific military
operation is practiced on a terrain database created for that purpose [Branch, 1989]
[Donovan, 1990].

Some non-training military uses of DIS exist; for examples see [Nelms,1988], [Karr,1993b], or
[Courtemanche,1994] for descriptions of some analytic uses of SIMNET and DIS. Additionally,
attention has been given to extending DIS to non-military applications [Loper,1994]
[Loper,1995a]. However, unless otherwise stated this document will focus on military training
applications.

1.4.4 Definitions

Before proceeding, several key terms and concepts should be defined. First, the terms entity and
unit will be used throughout this document.

Entity. An entity is most often a single battlefield object; a tank, a helicopter, an airplane, a truck,
and a infantry fighting vehicle are all entities. Sometimes a small aggregation of real-world
objects that are simulated and controlled as a single simulation object can be an entity; the most
common example of this is a squad or fireteam of soldiers. Note that entity has a specific meaning
in the context of DIS; an entity is the item or object for which Entity State PDUs are sent, and
each entity is assigned a unique identifYing number. An entity is the "atom" of simulation in DIS.

Unit. A unit is a military organization, such as a platoon, company, or battalion. Units are
collections of entities, usually organized hierarchically into subunits and units.

9

I
I
I
I
I
I
I

Simulation systems are often categorized as virtual, constructive, or live. The definitions given
here for those terms are adapted from [Franceschini, 1995b].

Virtual simulation. Virtual simulations represent each vehicle or infantryman as a distinct entity.
A virtual simulation entity may be controlled by a simulator with a human crew or a CGF system.
Humans in a simulator perceive the simulation as a type of virtual reality, and virtual simulation is
almost always real-time. All necessary state information for each simulated entity is maintained,
each entity is capable of independent action, and combat results are computed at the entity level.
SIMNET, BDS-D, and CCTT are examples of virtual simulation systems. DIS is an architecture
for constructing virtual simulation systems. In this document, we are concerned almost
exclusively with virtual simulations and, in particular, DIS.

Constructive sim!llation. Constructive simulations represent a military unit (e.g. a tank company)
as an aggregate without simulating each individual entity (e.g. tank) within the unit. The position,
movement speed and direction, status, and composition of an aggregate unit are maintained for
the unit as a whole, and are often computed as the result of statistical analysis of the unit's actions.
BBS, CBS, and Eagle are examples of constructive simulations. Constructive simulations are
sometimes referred to as "wargames". They are usually not real-time.

Live simulation. In a live simulation, human trainees participate in a simulated battle using actual
military equipment. For example, the National Training Center, where Army units fight battles
using real tanks and other vehicles (though laser senders and sensors are used instead of live
ammunition) is a live simulation.

Three terms that are similar in meaning in common usage will be used in very specific ways in this
document with important differences in meaning. They are point, location, and position.

Point. A mathematical point, identified by coordinates. Most often in this document points will
be located in 3-space relative to a terrain database.

Location. A point in a terrain database where an entity is or might be located. An entity's
location or potential locations are assumed to be appropriate for that entity, e.g. ground vehicle
locations are assumed to be on the surface of the terrain rather than in mid-air.

Position. A geographical region of known extent that is the area in which a military unit (e.g. a
company) is to deploy. A position will often be a simple polygon when projected onto the X,Y
plane. The individual entities that make up the unit will be at locations that are within the unit's
position.

10

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I ,
I
r

2. Computer Generated Forces

This section provides a tutorial on CGF in general and surveys existing CGF systems.

2.1 CGF tutorial

This subsection contains a tutorial on CGF systems. It explains the role of CGF systems in a
battlefield simulation and the software architecture of a CGF system It also surveys how
behavior is generated and specified within a CGF system, how artificial intelligence is used in a
CGF system, how CGF systems are validated, and what research directions are crucial to
continued progress in CGF system development. [petty,1992c], [petty,1995b], and
[Pickett, 1995] are also CGF tutorials; [Brooks,1989], [Bailey,1989], and [Booker,1993] are CGF
surveys.

2.1.1 Role of Computer Generated Forces

In the case of DIS (and its SIMNET predecessor), the system is intended to provide a simulated
battlefield which is used for training military personnel. In such a battlefield, the trainees need an
opposing force against which to train. There are at least three ways to provide the simulated
opposing forces (see Figure 2.1).

In the first method, two groups of trainees in simulators may oppose each other. For example, it
is possible to configure SIMNET simulators during startup so that the computer image generators
in each force's simulators display their own force's vehicles as US vehicles (M1 Abrams and M2
Bradleys) and the opposing force's vehicles as enemy vehicles (T -72s and BMPs). Thus both
sides see themselves as US forces and their opponents as the enemy. This method is often used,
and the soldiers enjoy the competitive aspects of the arrangement, but it has several
disadvantages. First, it increases the number of expensive simulators needed at a training site.
Second, it requires that to train any given military unit a second unit be available to provide the
opposition. Finally, the trainees are faced with opponents who, despite the appearance of their
vehicles in the video screens, use U. S. Army tactical doctrine because U. S. Army soldiers are
controlling the vehicles. It would be preferable to provide the trainees with opponents who use
the tactical doctrine of the actual or anticipated enemy.

A second method is to use human instructors who are trained to behave in a way that mimics the
desired enemy doctrine. Doing so does not reduce the need for simulators and is expensive in
manpower costs because large numbers of trained instructors may be required. Furthermore, the
instructors must be retrained for each new enemy's doctrine. This method is seldom used.

The third technique is to use a computer system that generates and controls multiple simulation
entities using software and possibly a human operator. Such a system is known as a
semi-automated force (SAF or SAFOR) or a computer generated force (CGF).

CGF systems are important for several reasons. First, they lower the cost of a DIS system by
reducing the number of standard simulators that must be purchased and maintained and by

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I
J

reducing the number of humans required to operate the system for a given scenario size. Second,
a CGF system can be programmed, in theory, to behave according to the tactical doctrine of any
desired opposing force, and so eIiminate the need to train and retrain human operators to behave
like the current enemy. Finally, because a CGF system can be easier to control by a single person
than an opposing force made up of many human operators, it may give the training instructor
greater control over the training experience [Fishwick, 1991]. With all of this in mind,
[Oswalt, 1993] identifies the development ofCGF capabilities as a trend with "significant impact"
on military simulation and gaming.

Note the assumption that CGF systems operate at the entity level, i.e. a single virtual entity is
either controlled by a CGF system or by humans in a simulator, but not both. This assumption is
in fact true for all existing CGF systems of note, but some work is starting on replacing individual
crew members within a crewed simulator with CGF-like algorithms; e.g. see [Gagne,1995]. This
document will not consider those systems.

2.1.2 CGF system characteristics

Certain characteristics are common to all existing CGF systems, and are essentially inherent in the
context in which those systems are used. Some of the most important of those characteristics are
listed here; each will be described in turn.

1. Network connection and protocol
2. Battlefield environment simulation
3. Support for multiple entities
4. Operator control of behavior
5. Representation of the military organizational hierarchy
6. Autonomous behavior generation

Network connection and protocol. Clearly, because DIS-type simulations are networked, a CGF
system needs both a physical connection to the network and the appropriate software to send and
receive network packets. Furthermore, the system must conform to the network protocol that has
been defined for the simulation. It needs to correctly interpret the data in the packets it receives
and format the data in the packet it sends. A CGF system is required to send network packets
when specified by the protocol; such actions may be time or event triggered. Finally, the arrival
of incoming network packets sent by other simulation entities should be handled correctly, as per
the protocol. For example, if a CGF system receives a packet that signifies that one of its
controlled entities has been hit by an anti-tank missile, it should assess the damage that may result
from that impact. [Cheung, 1994] analyzes the characteristics of the network packet stream
typically produced by some CGF systems and compares it to that of crewed simulators.

12

-- -- ____ ___ _ r ~1 ____ ~ - -

Trainees Simulated Battlefield Trainees

Simulator

Blue

2.1 Opposingforces options.

I
I
I
I
I
I

I

I
I

I
I
J

I

Battlefield environment simulation. The entities controlled by the CGP system exist in a
battlefield which is a simulated subset of the real-world battlefield. As such, the CGP controlled
entities should obey the laws of physics relevant to the activities occurring in the battlefield.
Often, this means that one must use physical laws to model such behavior [Barr,1989], although
lower-cost solutions may sometimes be appropriate (i.e. simplified kinematics instead of physical
modeling). Using physics, the vehicle dynamics of the CGP entities can be modeled, including
acceleration, deceleration, turn rates, and vehicle performance characteristics. (Por an example of
vehicle dynamics modeling, see [Cimini, 1992] for a presentation of a flight dynamics model used
for CGP aircraft.)

The CGF system usually includes a terrain database that provides the terrain over which the battle
will be fought; it may be a detailed representation of an actual piece of terrain, or a large
featureless plane corresponding to the surface of the ocean. The effects of the terrain op. the
simulation events should be modeled, including terrain effects on movement and observation.

Because the world being simulated is a battlefield, combat interactions need to be modeled in
accordance with the physics of weapon and armor performance characteristics. Por example, in
both DIS and SIMNET, a CGP tank that fires on a hostile vehicle determines if a hit was achieved
using a set of factors that include range, exposure of the target, and performance of the tank's
weapon and sighting systems. If a hit is inflicted, the impacted vehicle considers munition type,
range, impact angle, and armor protection to assess the damage it suffers.· The accuracy of these
calculations is of central importance to the validity of the simulation.

Support for multiple entities. CGP systems typically provide support for multiple entities
simultaneously. Their usefulness is due in large part to this characteristic. The CGP system's
architecture must provide a means to allocate processing resources to all of its supported entities.

Operator control of behavior. In addition to the autonomous behavior, every production CGP
system should include an operator interface that allows a human operator to control the CGP
entities. The operator may override autonomously generated behavior, or he or she may initiate
and control behavior in situations that are beyond the CGP system's capabilities. Existing CGF
systems typically provide a map display of the battlefield that shows the battlefield terrain and the
simulated entities on it, together with a human command interface.

Representation of the military organizational hierarchy. Military units have hierarchical
organizations. As CGP systems are designed to control larger numbers of entities, it becomes
increasingly important to represent the military hierarchy of those entities in the system With the
representation of the hierarchy in place, the operator can give orders to higher level units, or the
CGF system can autonomously generate behavior for a unit. Then, the unit level order could be
automatically interpreted and passed down to the constituent entities for execution.

A utonomous behavior generatiOn. A CGP system will use built-in behavior to react
autonomously to the simulation situation or to carry out orders given by its operator. Its behavior
may be encoded as algorithms, production rules, formal behavior specifications, or some other
form. The intent is for the CGP system's behavior to be autonomous (i. e. not requiring human

L4

I
I
I
I
I

I

I
I
J
I
I
I
I
I
I
I

control) and realistic (i.e. true to doctrine, physics, and human responses) to the greatest extent
possible.

Figure 2.2 shows a notional decision making process for a CGF system

It is in the area of autonomous behavior generation that most current CGF research is focused.
The Institute for Simulation and Training (1ST) and other research laboratories are attempting to
increase the level of autonomy of CGF systems. This area will be reviewed in more detail later.

2.1.3 Behavior specification and generation for CGF systems

Behavior refers to actions or reactions by an entity that are the result of a cognitive or decision
making process; this is contrasted with actions by an entity that are governed by the laws of
physics and have no cognitive involvement.

Of course, as mentioned earlier, the laws ofphysics must operate in a realistic way in a simulated
environment (at least in one that purports to simulate reality). However, simulating behavior, i.e.
the intentions, goals, and intelligence of autonomous agents, within simulation is a separate and
more uncertain matter. There has arguably been less progress made in representing and specifying
intentional, intelligent behavior than physical behavior, and there is certainly much less agreement
among researchers on how best to generate such behavior [Wallich,1991], at least in the general
case. However, in the more focused area of CGF systems there has been more agreement and
progress.

CGF systems produce autonomous behavior for the simulation entities they control. To do so,
the desired behavior must be specified and generated. Behavior specification is the encoding, in a
form usable by the CGF system, of the specific behaviors that CGF system is expected to be able
to produce. Most often, the behavior specified for a CGF system reflects military tactical
doctrine, and behavior specification for CGF systems is a process of encoding tactics in a form
useful to algorithms. Behavior specification is a knowledge engineering problem Behavior
generation is the run-time execution of the specified behavior so as to produce useful tactical
behavior in real-time that is responsive to the battlefield situation.

2.1.3.1 Behavior specification

The notion of separating the specification of behavior from the generation or execution of
behavior is familiar; it is analogous, for example, to a production rule system where behavior (or
knowledge) is specified in the form of rules, and the execution of the behavior is performed by an
inference engine. Similarly, a robot's movements might be specified with a English-like scripting
language which is interpreted at run-time to generate the behavior [Boume,1982]. However, the
degree to which behavior specification and generation are actually separated is quite variable in
CGF systems, and none fully succeed in separating them completely in a satisfactory way.

15

- - - - - ------------
Terrain

Terrain Database

Terrain Reasoning

• .---Gtuational Awarenev

~

----I... Data flow

- - - - - -~ Control

- - - - - - --~

--

Figure 2.2 CGFautonomous behavior generation ..

Entities, Communications
(Netv.ork packets)

~ironmental MonitOriy

Internal State
(Data Structures) ,

Behavior Repertoire

Go To
Fire Main Gun

•
•
•

,
Behavior

(Netv.ork Packets)

~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Work has been done on encoding general autonomous behavior in various forms; these include
production rules [Zisman,1978], structured English text [Bourne,1982] [Stevens,1989], and Petri
nets [D'Angelo, 1983] [Blitz,1988]. Prototype and production CGF systems have used expert
system rules [SOGlTEC, 1989], map overlay symbols and battle drills [Crooks,1990], Petri nets
[Madni,1987] [Moshell, 1989], and contingent hierarchical scripts [Lockheed, 1990].

The three most commonly used methods of CGF behavior specification are:
1. Algorithms and finite state machines
2. Behavior specification languages
3. Combat instruction sets

Algorithms andfinite state machines. Typically, CGF systems are written in programming
languages such as C, Lisp, or Ada [Bailey, 1989] [Booker, 1993] [petty,1995b]. For some CGF
systems, the patterns and rules of behavior for CGF entities are essentially encoded directly in the
algorithms of the CGF system One example is the 1ST CGF Testbed, where CGF behavior is
specified in C code, organized with a technique referred to as Finite State Machines, which will
be explained later. Clearly, in this case the behavior specification and behavior generation
mechanisms have not been separated.

Behavior specified directly in a programming language is almost always inaccessible to subject
matter experts (SMEs). Specifying doctrine, or general behavior, for implementation as program
code in a CGF system requires both a SME and a skilled programmer [Lattimore, 1993]. It is a
classical knowledge engineering task, which can potentially be quite difficult [Sargeant,1990].
Furthermore, because the SME cannot read the behavioral descriptions, he or she must validate
them by observing the generated behavior of the CGF entities in the simulation, a time consuming
and unreliable procedure.

Behavior specification languages. A formal language that is precise enough to specify CGF
behavior, translatable into machine executable form, and also understandable by SMEs would be
very useful [Kornell,1987]. Such a language has been called a behavior specification language.

Military doctrine for combat units is usually recorded as text in a training manual; doctrine for
other domains and entities may not even be documented to that extent. [Fishwick, 1991] asserts
that "An ideal solution with respect to automatic control over [CGF entities] is one where
commands may be expressed directly in language specified within the training doctrine
documentation." For example, a doctrine that specifies a tank platoon to "move at slow speed to
the edge of the mine field" would then be translated automatically into an intermediate language
for planning and execution. This process, termed by him as "doctrinal language processing", is a
subset of the more general natural language processing problem in artificial intelligence. It is clear
that some SME accessible language for expressing CGF behavior is desirable.

A survey of eight formal behavior specification languages designed with the intent of expressing
tactical doctrine is found in [petty, 1993]. (Three of the languages surveyed are documented in
more detail elsewhere in [Smith, 1993], [Moshell,1989], and [Smith,1992c].) Unfortunately, the
conclusion of that survey was that none of the designs were completely satisfactory. The survey

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

relates the difficulties that are seemingly inherent in designing a behavior specification language
that both has sufficient expressive power to specify complex tactics in an unambiguous way and
that remains accessible to SMEs (i.e. to non-programmers). For example, Figure 2.3 gives an
example ofVBL (Virtual Battlespace Language), a CGF behavior specification language used in
the ACBM family of systems (to be described later), and Figure 2.4 shows ILLISH (Intermediate
Level Language, Interpreted, for Script Handling), a language designed for use in the 1ST CGF
Testbed. Both VBL and ILLISH are powerful enough to specify CGF behavior, and ILLISH was
selected as the best all-around behavior specification language design surveyed in [petty, 1993],
but neither are accessible to SMEs. As might have been expected, the languages studied in
[petty, 1993] that were most SME accessible were least powerful and the most powerful
languages were least SME accessible. This problem remains unsolved.

Combat instruction sets . . A Combat InstructIon Set (CIS) is a functional element ofCGF tactical
behavior. The term CIS can variously refer to :

1. A tactical behavior at the entity or small unit leve~ i. e. the behavior itself
2. A written structured English description of that basic element of behavior
3. A computer representation of that behavior (i.e. program code that executes that

behavior).
Note that these three forms are ostensibly different representations of the same thing; which one
of the three fors is meant by the term CIS should be clear from the context of its usage.

As a basic element of behavior, a CIS can be a maneuver, battle drill, or a patterned response to a
condition. Example CIS-level behaviors include an entity planning a route, a platoon changing to
column formation, or a company dispersing in response to an air raid. CISs can be defined for
entities, platoons, companies, and battalions, though typically the majority of CISs are at the
platoon and company level. According to [McEnany, 1994], company and especially battalion
level CISs are most often assembled from lower level CISs.

CISs are often used as the unit of CGF behavior specification. A CIS in the first form, a basic
element of tactical behavior, is written out explicitly by 1m SME in the second form, a structured
English description of the tactical behavior. That structured English CIS is then encoded by a
Software Engineer in the third form, computer program code, and compiled into a CGF system
Figure 2.5 suggests the process. Formal procedures for the transformations labeled (A) and (B)
in Figure 2.5 are documented in [McEnany, 1994] and [Ourston,1995] respectively.

CISs typically have names, such as Execute_Column_Formation. A CIS consists in essence of
three components:

I . Initiating conditions; A set of conditions that must exist for the CIS to become active.
2. Steps; A sequence of detailed steps to be taken to perform the task.

These steps are either subordinate CISs or primitive actions. Primitive actions are atomic
(i.e. not decomposable), executable by individual entities, and do not require any decision
making. Each primitive action is an entity action in one of four categories: move, shoot,
communicate, or search/observe.

3. Terminating conditions; A set of conditions which if present terminate the CIS.

18

I
I
I
I
I
11

I
I
I
I

FIRING-START low on ammo
TGT-TYPE tank

WPN-TYPE main_gun
USE CANDIDATES FOR FILTER 1

2D-DISTANCE < 1200. METERS
AND ORDNANCE > 3 ROUNDS OF-TYPE heat

OR
2D-DISTANCE < 1000. METERS
AND REL-TGT-HDG > 25. DEGREES
AND ORDNANCE > 2 ROUNDS OF-TYPE heat

USE FILTER 1 SELECTIONS FOR FILTER 2
2D-DISTANCE < 850. METERS

CHOOSE FROM FILTER 2 SELECTIONS
FIRE 1 ROUND
SELECT AT-MOST 2 main_gun

END FIRING-START low on ammo

Figure 2.3 Example behavior specification language: VEL [Lattimore, 1993}.

DEFINE TARGET;
REMEMBER SELF:CURRENT THREAT;
SUBSCRIBE SELF:CURRENT THREAT
TELL SELF AWAKEN THIS SCRIPT
GOTO FOUND ONE WITH SELF:CURRENT_THREAT;
TELL SELF BEGIN SCAN FOR THREATS
POST SELF: CURRENT_THREAT;
REMEMBER SELF:ARRIVED;
SUBSCRIBE SELF:ARRIVED AWAKEN THIS_SCRIPT AT NOW_THERE;

LETSGO:
TELL SELF BEGIN PLAN AND GO 1438 2234 POST SELF:ARRIVED;
SUSPEND;

NOW THERE:
TELL SELF END SCAN_FOR_THREATS ;
POST INPUT SUCCESS;
END;

FOUND ONE:
ASSIGN TARGET INPUT;
TELL SELF END PLAN_AND_GO;
REMEMBER SELF: TARGET_DEAD;
SUBSCRIBE SELF:TARGET DEAD RESUME THIS SCRIPT AT LETSGO;
TELL SELF ATTACK TARGET SELF:TARGET_DEAD;
SUSPEND;

Figure 2.4 Example behavior specification language: ILLISH [Smith, 1993}.

19

- - - -

,

(A)

Subject Matter Expert

- - -

............ ~
,~;, ,...........
.......................... -W' ,...,...
.. ~ &; Il - --.... ~., '-...........,, ~
::.~t':;;:=---t:..~ -==
I,~ --.... ~, 01;.........., ~ ~
_ ' : 111 ' --.... - ~'" ~~
ItI: ~l ,........,-..
................... c:-~Il-..-... ~-...-, -..-...-.

Combat Instruction Set
(English)

Figure 2. 5 CIS development process.

- - - -

,

(8)

Software Engineer

~ - - -

,

Combat Instruction Set
(FSM and code)

- -

I
I
I
I
I
I:

I
I
I
I
I
I
I
I
~

~
J
I
I

A CGF unit's operations order can be constructed and expressed as a sequence or set of CISs.
Associated with the CISs of the mission are triggers for the invocation of each CIS in the mission.
Those triggers might be:

1. Completion of another CIS
2. Arrival by the unit at a particular geographical control measure, such as an objective

or phase line
3. A specified time
4. The existence of a particular battlefield condition.

CISs were originally used in the first production CGF system, the SIMNET SAF, and are being
used presently in ModSAF and the CCTT SAF, two of the three most important existing CGF
systems. [McEnany,1993] defines CISs and the structure of a structured English CIS in some
detail and gives example CISs in tha~ form.

2.1.3.2 Behavior generation

The most common single paradigm for organizing and controlling behavior generation within
simulation has been the Finite State Ma~hine (FSM). (It is assumed that the reader is familiar
with FSMs as they are defined in automata theory; if necessary, see [Hopcroft,1979] or
[Lewis, 1981] for good introductions.) The simulation behavior generation techniques, though
referred to as FSMs, always include capabilities outside the bounds of formal automata theory
FSMs. Hereinafter "FSMs" refers to the behavior generation paradigm rather than the automata
theory construct.

Many FSM variants have been used in simulations of various types; often the researchers reinvent
the idea quite unaware of other similar applications (e.g. [petty, 1988a]). The popularity and
repeated use of this idea suggests its intuitive appeal and effectiveness.

The common idea is that a simulation entity's behavior is decomposed into a finite set of behavior
patterns or states, with identifiable and discrete conditions for transitioning between the states.
Typically the FSMs are used as an organizing mechanism for structuring or encapsulating
procedures or functions written in a lower level programming language. Associated with each
state is an implementation (e.g. a function or procedure in the underlying language) of that state's
behavior; while in the state, that implementation is executed. The current state of the FSM
therefore determines what behavior the simulation entity executes. Transitions between states are
triggered by events or conditions in the simulation.

FSMs have been used in both CGF and non-CGF applications. Representative examples ofFSM
use in non-CGF systems include a wide range of applications; three examples will be given. First,
[Maruichi, 1987] describes how the behavior of fish in an ocean environment simulation was
defined using FSMs. The underlying implementation language is Lisp. Second, The Zaroff
planning system selects behaviors for players in a "hide and seek" game; the behaviors are then
animated by Jack, a human modeling and simulation program [Badler, 1993]. Once selected, the
behaviors' execution is controlled by FSMs [Moore, 1995]. Each state corresponds to and
controls a distinct temporal component of the behavior. Finally, the Iowa Driving Simulator is a

21

I
I
I
I
I
I
I
I
I

high-fidelity driving simulator [Cremer,1994] [papelis, 1994]. The operator's station, built around
the cab of an actual automobile, includes a motion platform, force feedback controls, and high­
resolution image generation. The operator is faced with driving scenarios that include other
vehicular traffic. As explained in [Ahmad, 1994], the other vehicles in the simulation are
controlled by "hierarchical concurrent state machines", a variant ofFSMs that allow states to be
defined as sets of subordinate states and permits more than one state to be simultaneously active.
The implementation language is C.

[Fishwick, 1993] describes the use of hierarchically organized FSMs to control simulated behavior
in the context of multimodeling. In multimodeling a system is modeled at different levels of
abstraction and different modeling formalisms, such as FSMs, may be used at each level. In
[Fishwick, 1993], the states of an FSM are represented as either more detailed FSMs or low-level
continuous models implemented as sets of equations.

As for CGF-type applications, FSMs have been used often. [petty,1988a] and [petty,1988b]
report on a project where FSMs were used to generate the behavior of combat aircraft in the
vicinity of an aircraft carrier. Defensive fighters (F-14 Tomcat) and attacking bombers (Tu-95
Bear), each with different behaviors, were controlled with FSMs. The underlying language was·
Lisp and the FSM states corresponded to Lisp functions. Although this application (air combat)
is one that might be ordinarily associated with a CGF system, the system was developed to test an
animated graphics programming environment and lacked several of the characteristics of a CGF
system as defined earlier (e.g. a network interface).

FSMs were used to both specify and generate entity-level behavior in SAlC's SimCore simulation,
which is an analytic-style simulation interfaced with DIS [Aronson,1994]. The SimCore
"HierarchicaL Concurrent Finite State Machines" can be organized hierarchically, with each FSM
state containing either one or more sub-FSMs, algorithmic procedural code, a rule-based system,
or a linear program Multiple FSMs can be active concurrently for a single entity.

Though it is a constructive wargame and not a CGF system as defined in this document, it is
worth mentioning that FSMs are also used to control entity-level behavior in the U. S. Marine
Corps' MWARS simulation [parsons, 1994].

FSMs are used to specify and generate the behavior ofCGF entities in all three of the most
important CGF systems: the 1ST CGF Testbed, ModSAF, and the CCTT SAF. These three CGF
systems will be examined in some detail later; as an example, the use of the FSM mechanism in
the 1ST CGF Testbed will be presented in some detail here.

In the 1ST CGF Testbed, the primary means of behavior specification and generation is a code
structuring technique based on FSMs. Behavior in the CGF Testbed is ultimately encoded as
algorithms written in C. However, the C code is organized using the FSM mechanism The basic
idea is that atomic units of behavior, implemented as C functions, become states in an FSM. In
other words, each state in an FSM corresponds to either a C function or another, lower-level
FSM. FSMs exist as actual data structures in the CGF Testbed, with each state containing a
pointer to the function corresponding to the state. When, an FSM enters a particular state, one of

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

two actions may occur. If that state corresponds to a function, that function is called. If the state
corresponds to a FSM, that FSM is started.

Each state determines the next state to be entered by testing simulation conditions; thus
transitions may be triggered indirectly by simulation events. The C function for a state in an FSM
contains code for both the behavior associated with that state and the conditions for selecting the
next state. The transition conditions associated with each state, expressed as C conditions, test
conditions in the simulation to determine the next state to be entered. Time delays may be
associated with the transitions in the FSM to produce realistically timed behavior.

A simulation entity may have multiple independent FSMs controlling various aspects of its
behavior executing concurrently in an asynchronous fashion. However, it is the responsibility of
the programmer to ensure that FSMs that may execute concurrently do not interfere with each
other. This is sometimes a problematic task.

More complex behavior can be constructed, bottom up, by combining simpler FSMs. The FSM
mechanism has been extensively used to build up a variety of complex autonomous behavior
patterns for CGF entities.

Figure 2.7 gives an example of an FSM from the 1ST CGF Testbed. The notation used in the
example is first defined in Figure 2.6. Both Figure 2.6 and Figure 2.7 are drawn from
[Smith,1992c]; it, as well as [petty,1992c] and [Karr,1992b], contains additional example FSMs
from the 1ST CGF Testbed.

The 1ST CGF Testbed has the capability to support multiple CGF entities. To do so, it was built
around an executive that provides a non-preemptive task scheduling capability. The executive
maintains a message queue that identifies entity processes waiting to execute. It gives control to a
process on that queue, which executes. Upon completion, that process must identify the next
process to execute for its entity and add that process to the executive's message queue before
returning control to the executive. The process, i.e. the unit of execution, is an FSM state. That
is, when an entity gains control of the processor, it executes one state of one of its currently active
FSMs. The state performs its computations by calling its associated function. That function
either includes a determination of the next state to execute for the entity or the FSM will become
dormant when the current state completes its execution. That next state's identity is placed on the
executive's message queue. See [Danisas,1990] and [Smith,1992b] for more details on the 1ST
CGF Testbed's executive; its FSM mechanism is described in detail in [Smith,1992c].

As mentioned earlier, FSMs are also used for behavior generation and control in ModSAF
[Calder, 1993] [Pratt,1995a] and the CCTT SAF [Marshall, 1994]. Those mechanisms will be
discussed later.

23

I
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Symbol

> > II FSM name II

state name

---->

---> >

--->X

I

~»
X

I

Meaning

The entry state of an FSM.
The name of the FSM is shown in the box. If this symbol
appears in an FSM diagram as other than the first state , it
implies the invocation of another FSM.

State within an FSM. The name of the
state is enclosed in the box.

Transition to another state within the
same FSM. Flow is from top to bottom.

Transition to another state within the
same FSM. Flow is left to right.

Start an FSM.

Send an AWAKEN _FSM message to sleeping FSM.

FSM makes a transition from the upper state
to the lower state, starts a new FSM, and
goes to sleep awaiting an AWAKEN FSM message
from the new FSM. -

FSM makes a transition in direction of the
arrow, starts a new FSM, and goes to sleep
awaiting an AWAKEN FSM message from the
new FSM. -

Labels on the transition arrows describe transition conditions . Time labels , e . g. "1 second" ,
give delays between states . Only one transition from a state may be taken.

Figure 2.6 1ST CGF Testbed FSM diagram notation [Smith,1992c].

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

»\1 di_open_fire_atgm II<lno >
I

ammunition

.25 seconds
< I di_awai t_atgrn_target I <1

second I I 1

oldfire targ~~11 face target I~ -
not facing

<
h >

I 1<1 1

sto
di_stop_and_kneel

I I
second

p

<
h oldfire setup time

I I
target lost (5 seconds)

di_fire_atgm
I >

I

»11 II oldfire fire missile -

<
h

x<----------------------------~

di_reload_atgm ~----------------------------->
still loaded

reload time seconds

.25 seconds

When a CaF infantry fireteam is given permission to fire antitank missiles, the
di_open_fire_atgm FSM is started. The start state, di_openJire_atgm immediately
transitions to the di _await _ atgm _target state. The di _await _ atgm _target state performs target
acquisition and selection. The di await atgm target state repeats every second until a target is
found . When a target is found, dl_awali_atgm_target has two actions. First, it starts the
face target FSM which causes the fIreteam to face the intended target. Second, the FSM
tranSitions to the di stop and kneel state, which brings the fireteam to a halt and then
transitions to the next state after a delay corresponding to the weapon setup time . The
di Jire _ atgm state launches a missile the target is still visible and if the fireteam is not
suppressed. The missile is launched by starting the fire missile FSM; that FSM generates the
missile launch flash, controls the missile in flight, and handles the impact at the end of the
missile's flight. The di _open_fire _ atgm FSM sleeps until fire_missile reports that the missile
flight is finished, whereupon the di reload atgm state is awakened. The di reload atgm state
reloads the fireteam and transitions to the di await atgm target state for another cycle. - - -

Figure 2. 7 Example 1ST CGF Testbed FSM [Smith, 1992c].

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Although the idea of using FSMs as a behavior control mechanism has been repeatedly
reinvented and widely applied, notably in the most important CGF systems, there have been a few
dissenting opinions expressed regarding them For examples, see [Harmon, 1991] and
[Harmon, 1994] for criticisms of their use or [Ahmad, 1994] for an expression of their limits
(though the latter simply proposes an enhanced version ofFSMs). Other behavior generation
techniques have been used in some CGF systems; those will be identified later.

2.1.3.3 Artificial intelligence in CGF systems

As might be expected, many researchers have applied artificial intelligence (AI) techniques to the
problems of behavior specification and generation, or tactical decision making, in CGF systems.
CGF would seem to be a natural application for AI techniques.

As an example, one interesting way to view an autonomously behaving entity is as an active
version of an expert system Expert systems encode knowledge in a way that could be considered
passive, in that such systems typically wait for a user to consult the knowledge [Harmon, 1986].
Computer generated forces entities instead use their encoded knowledge to act and react to
situations in the simulated battlefield, in an active or goal-seeking manner. This difference is a
matter of how the knowledge is accessed and triggered; some systems for controlling autonomous
entities use behavioral knowledge encoded in forms, such as production rules, that are very much
like the knowledge bases of expert systems.

Many other AI techniques have been applied as well. However, a thorough survey of that work is
beyond the scope of this document. Instead, Table 2.1 lists many of those efforts.

In spite of the intuitively reasonableness of applying AI to CGF, the results of these applications
of AI to CGF have been decidedly mixed. Two problems bedevil the straightforward application
of AI to CGF. The first problem, mentioned earlier, is the real-time aspect of CGF systems. CGF
systems must make tactical decisions in very short time frames; classical AI techniques can require
too much processing time. [petty, 1995b] identifies this problem for general CGF processing and
[Hayslip, 1988] makes the same comment in regards to AI techniques for terrain reasoning.

The second problem is that the tactical situation, or more precisely the data representing the
tactical situation that a CGF decision making algorithm must process, is rather "messy"; i. e.
voluminous, continuous, and represented in several different formats. The decision making
algorithm must consider the terrain, the other entities in the battlefield, the military mission, and
tactical doctrine of the forces it is simulating. The terrain might be made up of thousands of
polygons or elevation posts supplemented with linked li&ts offeatures such as buildings or trees,
aU located continuously in three dimensional space. The other entities are represented by a set of
attributes that include location, orientation, velocities, damage status, equipment type, and force
alignment. The military mission, if organized as Operations Orders, might be a frame-like
structure with slots for objectives, phase lines, and intelligence objectives, encoded in a structured
English text. The tactical doctrine could be encoded in any of the forms described earlier.

26

------- - -- - - - - - - - - -
AI Technique CGFSystem CGF Application Reference(s)
Search (A *, Iterative Deepening A *) None (proposed application) Entity route planning (cross country) [Holmes, 1992]

[Marti,1994]

CGF Testbed Unit route planning (cross country) [Rajput, 1994b]
[Karr, 1995d]
[Karr,1995e]

None (proposed application) Unit route planning (cross country) [Cunningham, 1993]

None (proposed application) Unit route planning (road nets) [Benton, 1987]

SIMNET SAF Unit route planning (road nets) [Stanzione, 1989]

ODIN SAF Unit route planning (road nets) [Stanzione, 1993]

ModSAF Concealed route planning [Longtin, 1995]

CCIT SAF Entity and unit route planning (road nets) [Campbell,1995]
Behavior-based control CAAT Air combat maneuvering [Keirsey, 1994]

SIMNET SAF Entity driving, resolution between conflicting goals [Harmon, 1991]
[Harmon, 19941

Blackboard Command Decision System Blackboard used to integrate results of disparate [Gates, 1990]
"knowledge sources", i.e. CGF behavior modules [Braudaway, 1992]
implemented as rule-based expert systems or [BraudawaY,1993
procedural algorithms

Fuzzy sets MWARS Unit command decision making; selection among [Parsons, 1994]
tactical actions given by human during scenario setup

- --- -- --- -
,---M9<iSAF

-- ---- --- - - ---- ---
J'(lr~et threat evaluation J~isI1er~,ly9~

Table 2.1 (part 1 of 4) Some CCF applications of AI techniques.

AI Technique CGF System CGF Application Reference(s)
Neural networks Air Combat Maneuvering I-vs-I air combat maneuvering [Crowe, I 990]

Expert System (ACMES)

DeSim Generic military decision making; all decisions at [Weaver, 1994]
all scales, with parametric inputs to the net

None (proposed application) Tactical decision making for entities and units, [Jaszlics,1993]
based on abstracted physical information [Jaszlics, 1994]

Planning (Optimization) VCom Entity and unit route planning [Cunningham, 1994]

Planning (Simulation based) None (proposed application) Unit mission planning (Lee, 1994a]
(Lee, 1994b]
(Lee, 1994c]

Planning (Simulation based) ModSAF Unit mission planning [Karr,1995b]

Planning (State-space search) Captain Selecting subunit defensive positions [Hille, 1994]
i

[Hieb,1995]
[Hille, 1995]

SoarIIFOR Planning air combat maneuver and action sequences [Jones, 1993b]
[Johnson, 1994]
[Jones, 1994b]
[Jones, 1994c]
(Laird, 1994]
[Rosenbloom, 1994]
[Tambe,1994]
(Laird, 1995]
[Nielsen,1995]
[Tambe,1995a]
[Tambe,1995b]

Planning (Universal plans) MAXIM Aircraft and missile maneuvering in air combat [Dyer, 1993]

Table 2.1 (part 2 of 4) Some CCF applications of AI techniques.

AI Technique CGFSystem CGF Application Reference(s)
Rule-based expert system Command Decision System Cavalry platoon commander for reconnaissance [Braudaway,1992]

mission (total of38 rules) [Braudaway,1993]

CCIT SAF Platoon and company unit command [Bimson, 1994]
[Ourston, 1994]

CGF Testbed Single entity control during reconnaissance operation [Gonzalez, 1991]

ITEMS Several aspects of entity and small unit behavior, [Siksik, 1993]
including air combat maneuvers and weapons use, [Kocabas,1995]
and unit (company and battalion) command and
control

None (proposed application) Target identification [Vrba,1988]

Piastre Tactical movement of platoons of target vehicles [SOGITEC,1989]
[Huon, 1989]
jKada, 1994]

Game-tree lookahead Game Commander Unit command and control designed for ModSAF [Katz, 1994]

Intelligent Player Controlling helicopter movement in air combat [Katz, 1989]
[Katz, 1991]
[Katz, 1992]
[Katz, 1993]
[Schaper, 1994]
[Pandari,1995]

Table 2. 1 (part 3 of 4) Some CGF applications of AI techniques.

AI Technique CGF System CGF Application Reference(s)
Learning (Case-based) CAAT Air combat maneuvering [Keirsey, 1994]

Learning (Explanation-based) ITEMS l-vs-1 air combat maneuvering [Kocabas, I 995]

Learning (Multi strategy) Captain Company and battalion command agents that learn [Hille, 1994]
tactical rules and behaviors based on both SME [Hieb,1995]
and autonomous performance in simulation [Hille, 1995]

Natural language processing Soar/IFOR Communication between CGF entities and humans [Rubinoff, 1994]
[Lehman, 1995]

Backward reasoning from goals ModSAF Prolog-based backward reasoning for unit control [KWcik, 1995]
Semantic net None (proposed application) Tactical state representation in unit command entity [Mall,1995]
Distributed AI None (proposed application) Distributed tactical decision making [Le,199Q] I

Table 2.1 (part 4 of 4) Some CGF applications of AI techniques.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 2.8 shows the CGF decision making process in the context of the transformations that
must occur. In order to apply a typical AI technique, the data describing the tactical situation
must be transformed into the format that the technique can process; e.g. input vectors for neural
nets, states and operators for search, or facts and rules for a rule-based system This
transformation is an abstraction process, where the large amounts of raw data are abstracted into
a classification of the tactical situation, with key aspects of the situation identified and irrelevant
ones discarded. This abstraction process is sometimes called Situational Awareness.

The center process in Figure 2.8, Tactical Decision Making, is where most AI techniques are
applied to CGF systems. The techniques operate reasonably well in a conceptual decision space
to produce conceptual decisions.

Then, once a conceptual tactical decision has been made, it must again be transformed from the
output format of the AI technique into specific commands and actions for the CGF entities; e.g. a
decision for a unit to attack an objective must be transformed into a set of specific routes for the
unit's component entities to follow. This transformation is referred to as Order Generation.

The input and output transformations, especially the fonner, can be quite difficult. It is often the
input transformation task that limits the success of applying a particular AI technique. Direct
application of AI techniques is frequently most successful in domains where the tactical situation
is closest to the abstract representation used by the AI technique. For example, state-space search
(Soar/IFOR, [Laird,1995]) and game-tree generation (Intelligent Player, [Katz, 1993]) have been
applied to the domain of air combat, where the small numbers of entities and minimal terrain
interaction make the input transformation easier. As another example, an effective use of the A *
search algorithm for unit route planning described in [Rajput, 1994b] [Karr,1995d] depends on an
input transformation wherein the essentially continuous polygonal terrain database is cleverly
discretized into an array of abstract terrain cell types. The underlying A * search algorithm is
defined in [Nilsson,1980] and [Winston, 1984].

Other attempts to use AI techniques for CGF that did not understand the importance of the
transformations, especially Situational Awareness, have been less successful. The point of this
discussion is to emphasize the importance of the transformations. Given an effective
transformation, AI can be applied to CGF successfully.

2.1.4 Verification, validation, and accreditation of CGF systems

The process of evaluating a simulation or simulation system and certifying it for use is known as
verification, validation, and accreditation (W&A). [Goldiez,1991] provides a general
introduction to the W &A of simulation systems. Those terms are defined as follows:
Verification; determining if a simulation performs as specified and designed.
Validation; determining if a simulation has sufficient fidelity for its intended purpose.
Accreditation; certification by an authorizing organization that a simulation may be used for its
intended purpose.

31

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Physical Information Space

Terrain; polygons, elevation posts, quadtrees, feature lists
Entities; type, location, orientation, velocities
Events; weapons detonations, communications
Mission; goals, plan, constraints, intelligence data

Input transformation:
Situation Awareness

~ ~
Conceptual Information Space

Classification of situation: e.g.
"Close range threat on left flank." or
"Likelihood of reaching objective is lo~
Identification of key aspects of situation e.g.
location of enemy entity covering objective

Tactical Decision Making

~ ~
Conceptual Decision Space

Selected tactical action(s); e.g.
"Frequent indirect fire" and/or
"Conduct hasty attack" and/or
"Move to objective using bounding ovelWCltcH'

Output transformation:
Order Generation

~ ~

Physical Execution Space

Corresponding ph~sical actions; e.g.
Entity movement routes
Weapon utilization commands
Subordinate units' orders

Figure 2.8 CGFdecision making in context (adoptedfrom [Jaszlics,J993]J.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The first requirement of CGF systems is that they work; i. e. that they generate plausibly human
and tactically reasonable behavior in real-time situations in the virtual battlefield. Until recently,
the difficulty of meeting that basic requirement has held the attention of CGF system developers.
However, though building a working CGF system is a challenging task, simply doing so is not
enough. To be useful a CGF system must meet standards of quality.

Because the attention of CGF developers had been focused on producing working systems,
W &A of the behavior and capabilities of CGF systems had often been haphazard or informal
(with a few exceptions). However, as CGF systems become more important to the utility of
current and planned simulation systems a more methodical and quantitative approach to W &A of
CGF systems is needed. In the last few years some preliminary efforts to VV &A CGF systems in
a more organized manner have been performed.

This sub subsection will informally present some CGF VV &A issues. It first outlines some CGF
fidelity requirements. Following that, several CGF VV &A experiences are described and
commented on. Finally, one VV &A method, specifically the Turing Test as applied to CGF
systems, is discussed at some length.

2.1.4.1 CGF fidelity requirements

The claimed benefits of a CGF system in DIS are all based on the assumption that the CGF
entities can be made to behave in a usefully realistic manner. Ifhuman trainees are to experience
positive training from interacting with a CGF opponent, that force must provide valid and useful
opposition. To do so, the CGF entities must act in a manner that meets three criteria:

1. Physical realism
2. Behavioral intelligence
3. Doctrinal accuracy

Physical realism. The behavior generated for a CGF must be physically realistic in the sense that
it provides a level of realism appreciated by the trainee. This requirement was discussed earlier.

Behavioral intelligence. The second and most problematic criterion of CGF behavior is
reasonable behavioral intelligence. This means that the CGF controlled entities must react to a
given situation in a manner similar to the entities being simulated. Because the simulated entities
are often controlled by humans, the CGF behavior must appear to be similar to, and thus as
intelligent as, human behavior in each situation. Of course, the intelligence requirement is easier
to meet if the CGF is simulating entities that consist of non-human entities such as pilotless drone
aircraft. Note that the granularity and fidelity level of the simulation normally keep the intelligent
behavior requirement from becoming as difficult as the general AI problem In the DIS world the
repertoire of behaviors available to humans who are acting as members of a tank crew is much
smaller than the repertoire of general human behavior, so intelligent behavior by a CGF tank is
easier to generate than intelligent human behavior. Even so, producing intelligent behavior in a
CGF is still a formidable task and the subject of much research.

33

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In the area of reasonable intelligence, the real-time aspect of DIS becomes particularly relevant.
Many AI techniques exist that may be able to contribute to the process producing the desired level
of intelligence, but that do not execute with enough speed.

Doctrinal accuracy. CGF behavior must be doctrinally correct in the sense that the actions of the
CGF should be believable in terms of the . entities the CGF is simulating. Consider the SIMNET
SAF; it is often used to control tanks and other vehicles intended to represent those of an army
equipped and trained by the former Soviet Union. For the SIMNET SAF vehicles to be accepted
by SIMNET trainees as elements of such an army, they must maneuver and act according to
Soviet tactical doctrine. The issue in this example goes beyond simple believability; an important
goal of SIMNET as a training system is to give the trainees an opportunity to engage an opponent
that uses Soviet tactics.

In other simulation domains, doctrinal correctness, where doctrine is defined as the behavioral
norms for the class of entities being simulated, remains important. In an air traffic control
simulation that includes aircraft controlled by a CGF system, for the simulation to be useful those
aircraft should in most cases re-create the behavior of aircraft flown by actual commercial pilots.
Fidelity to doctrine is a significant goal to be addressed by the results discussed later in this
survey.

Interestingly, [Hunter,1991] asserts that CGF fidelity requirements can be seen as variable
depending on the simulation situation. According to [Hunter, 1991], CGF entities remote from
and not involved with human participants can safely be simulated with a lower degree of fidelity
(and therefore with less computational overhead). For example, a simple and inexpensive
probabilistic calculation could be used to resolve CGF-vs-CGF missile combat instead of the
complex and costly missile flyout process currently used by CGF systems. However, difficulties
arise with this idea, for example, in determining whether another entity is in fact CGF controlled
or in analytical uses of the CGF system where high fidelity is needed even when humans are not
involved. For these and other reasons few CGF developers take this viewpoint and there has been
little or no attempt to vary representational fidelity within existing CGF systems.

2.1.4.2 Some CGF W&A experiences

Here a number of CGF W &A experiences are briefly recounted; this material follows
[petty, 1995f]. The experiences reviewed fall into several categories. Each will be described in
turn, followed by a summary of CGF W &A lessons learned.

1. SME observation
2. Turing test
3. Measured comparison
4. Statistical comparison
5. DIS testing
6. ~hertechniques
7. Common factors

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SME observation. Perhaps the most commonly used VV &A method for CGF systems is
observation ofCGF entities' behavior by subject matter experts (SMEs), who are typically military
officers (either active or retired). In this technique, SMEs would simply observe the CGF entities
in a test exercise and intuitively decide, based on their expertise, that the behaviors were (or were
not) good enough.

This classical method is applied informally by every CGF developer, but it can be done in a more
formal fashion. A particularly well organized and thorough example of this method was the
evaluation conducted at the U.S. Army Infantry School of the 1ST's SAFDI system At the
Infantry School's SIMNET facility the SAFDI system "fought" with and against a U.S. Army unit
in a series of three carefully de~igned battles that were observed and analyzed by an invited panel
of SMEs. The SMEs had prepared in advance specific sets of performance criteria that they
wished to observe and evaluate. The results of the evaluation are reported in [Chervenak, 1993]
and [D'Errico, 1994].

[Jones, 1993a] asserts that using a CGF system in a training environment is a useful means of
informal validation, in that the trainees and instructors will necessarily observe the behavior and
performance of the CGF entities and are likely to provide feedback on problems.

Turing Test. One particular form ofSME observation is the CGF Turing Test. Because of the
large amount of attention the CGF Turing Test has received in the CGF literature, it will be
discussed separately; it is listed here for completeness.

Measured comparison. The measured comparison CGF VV &A technique involves the
measurement of some set of quantifiable aspects, or metrics, of CGF behavior and the comparison
of the measured values for those metrics with values for the same metrics derived from a different
source that is assumed to be valid.

An experiment to evaluate the effectiveness of a behavior-based driver module that had been
added to the SIMNET SAF is detailed in [Harmon, 1991]. To conduct the evaluation twenty
different movement scenarios were designed so as to test the new driver module under many
different circumstances. The scenarios were organized as a taxonomy of driving situations, a
method that helped to develop a more complete set of scenarios. The scenarios were run 10 times
each with both the baseline and the modified versions of the SIMNET SAF. The results of each
exercise were logged. Specific performance metrics, such as vehicle collisions and route
efficiency, were defined and calculated from the exercise logs and compared between the two
versions. Though this experiment was a comparison of two versions rather than a VV &A effort
as such, it is a useful example of the measured comparison technique.

The Unit Performance Assessment System (UPAS) is a personal computer-based system for
collecting and analyzing SIMNET network traffic (i.e. PDUs) [Meliza, 1991] [Meliza,1995]. It
was developed with the intent of measuring how well vehicle crews perform cooperatively as part
of a unit. UPAS calculates various performance metrics by analyzing exercise logs.
[Vaden, 1994] describes how UPAS was used in 1993 to evaluate ModSAF by comparing the
actions ofModSAF entities with the actions of entities controlled by humans in crewed

35

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

simulators. A series of 10 company sized exercises were logged and then analyzed by UPAS with
two goals: first, to evaluate control ofModSAF behavior by physical parameter, such as line of
sight and range, and second, to identify specific behaviors that could be used to distinguish
between human-controlled and ModSAF-controlled entities. ModSAFs performance was found
to differ from the humans' in several areas, including firing range, firing strategies, and scanning
(turret azimuth movement).

In 1994 the same methodology, UPAS analysis of network traffic logs, was used to compare
ModSAF and the SIMNET SAF in order to select one for the Army's Synthetic Theater of War­
Europe (STOW-E) exercise. In a rather critical evaluation, [Meliza,1995] indicates that both
CGF systems displayed "inadequate sensitivity" to factors such as mission, enemy, time, terrain,
and troops. The UPAS analysis also revealed unrealistic engagement ranges, rates offire, and
firing ranges for direct fire actio~s, as well as no use of cover and concealment. ModSAF has
been improved substantially since these evaluations were conducted (see [Courtemanche, 1995aD.

Statistical comparison. Statistical comparison techniques for CGF VV &A attempt to apply
proven statistical methods, such as hypothesis testing, to data representing CGF behavior.

Algorithms which planned military reconnaissance routes were implemented in the 1ST CGF
Testbed. The algorithms were given as input a defined area of a polygonal terrain database and
produced as output a series ofwaypoints that defined effective reconnaissance routes for that
terrain. Independent of the algorithms, human SMEs chose locations in the input terrain areas for
enemy vehicles in defensive positions. The goal for the reconnaissance route planning algorithms
was to plan routes based on the terrain that would allow a reconnaissance vehicle following the
route to sight as many enemy vehicles as quickly as possible.

The algorithms were validated by statistically comparing their performance with that of human
SMEs (military officers) performing the same task. Reconnaissance vehicles followed routes
produced by the algorithms and by the SMEs. The time at which each enemy vehicle was sighted
was recorded. A statistical hypothesis test was used to compare the sighting times resulting from
the algorithms' routes with those resulting from the SMEs' routes. The specific test used was the
Wilcoxon Signed-Rank Test, a non-parametric test useful for comparing paired observations. The
vehicle sighting times were compared in a pairwise fashion, first-sighted to first sighted, second­
sighted to second-sighted, and so on. The best of the algorithms performed at a level comparable
to the human SMEs. This effort is documented in [Van Brackle,1993a], [Van Brackle,1993b],
and [petty,1994a].

A similar method was used to VV &A the Security Exercise Evaluation System (SEES), a variant
of the U.S. Army's Janus entity-level constructive simulation. Though SEES has limited CGF
functionality (most entity behavior is controlled by operators), the technique used is nonetheless
instructive. A scenario involving an attempt by a well-armed terrorist group to steal a nuclear
warhead from a warhead storage facility at Wurtsmith Air Force Base was defined. The scenario
was run a number of times as a live simulation with human soldiers equipped with MILES laser
training weapons attacking and defending the actual warhead storage facility. Field instruments

36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

recorded key simulation events. The same scenario was then run repeatedly in SEES and the
results logged.

The results of the SEES simulation and the live simulation, including force ratios and the times of
key events, were then compared statistically. The Kolmogorov-Smirnov (K-S) statistic was used
to determine if the live simulation results and the SEES simulation results came from the same
underlying distribution. The formulation of the test used assumed (had as the null hypothesis) that
they did. K-S values were computed for the attacker-defender force ratio, which changed over
time as soldiers were "killed", at 30 second time intervals for the duration of the exercise. The
computed K-S statistics would not support rejection of the null hypothesis for most time intervals.
The SEES analysis is reported in [Friedman, 1993 a] and [Friedman, 1993b].

DIS testing. CGF systems and the DIS networked simulation protocol are closely bound, not
because CGF systems are only relevant to DIS, but because most existing CGF systems have been
developed for use within DIS. The special characteristics of CGF systems affect the way they are
tested, i.e. validated, for DIS compliance. Test procedures specific to CGF systems when testing
for DIS compliance are given in [Vanzant-Hodge, 1994a], where advantages and disadvantages
specific to testing CGF systems are identified. The converse operation, using a CGF system as a
tool in DIS compliance testing, is discussed in both [Loper, 1993] and [Vanzant-Hodge, 1994b].
The former reference observes that at the 1992 DIS Interoperability Demonstration the CGF
systems tended to pass the DIS compliance tests more readily than the other simulator types.

Other techniques. A CGF system can be incrementally or partially validated through the inclusion
of separately validated component models. As part of the Anti-Armor Advanced Technology
Demonstration (A2ATD), a set of component models accredited by the Army Material Systems
Analysis Activity (AMSAA) were incorporated into ModSAF. Those models were:
1. Direct fire delivery accuracy
2. Direct fire rate offire
3. Direct fire vulnerability
4. Indirect fire vulnerability
5. Target acquisition
6. Mobility
[Courtemanche,1994] explains the models themselves and their incorporation into ModSAF. The
model validation process is described in [Thomas, 1995a] and [Thomas,1995b].

After the physical models were incorporated, ModSAF was further validated for A2A TD with a
series of comparison trials. Two company-sized scenarios (a hasty attack and a hasty defense)
were run 24 times each using ModSAF and the results were logged. The exercise outcomes were
compared with the outcomes of the same scenarios produced earlier during the MIA2 Initial
Operational Test and Evaluation (IOT&E), a live simulation test of a new variant of the Ml tank.
The ModSAF outcomes were also compared to exercise outcomes from CASTFOREM
(Combined Arms Support and Task Force Evaluation Model), a constructive force-on-force
combat simulation that has been used by the Army for years. The comparisons showed some
discrepancies, especially in ModSAFs tactical behavior, which were overcome via operator

37

I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I

workarounds. ModSAF was eventually validated for use in A2ATD. This experiment is
discussed in [Harkrider,1995], [Thomas,1995a], and [Thomas, 1995b].

[Monday, 1995] reports on automated test procedures for ModSAF. The procedures are of two
types: regression testing, which is determining if new changes have compromised existing
functionality, and VV&A testing, which is determining if the system conforms to specific
modeling criteria. The later testing involves logging test runs and analyzing the logs for events of
interest.

Common factors. The first attempts at formal VV &A of CGF systems are of interest because
they provide guidelines and lessons that contribute to the design of an overall VV &A
methodology for CGF systems. From those experiences, three common factors of general
applicability to CGF VV &A can be discerned. First, note that in almost every case, the VV &A
process proceeds by logging and then analyzing network traffic (DIS or SIMNET PDUs). This
technique appears to be fundamenta1. Second, the CGF system's behavior is usually being
compared with something else; either the behavior of humans, humans in a simulation, or some
other simulation. The choice of what to compare the CGF system with seems to depend on the
goal of the VV &A. Finally, all of these efforts are essentially "black box" validations, in that the
CGF behavior is recorded and analyzed from the outside. Almost no organized CGF VV &A is
done by validating the behavior specifications or the performance parameters which are input to
the CGF system

2.1.4.3 The CGF Turing Test

As alluded to earlier, it is important that the users of virtual battlefield simulation, i.e. the trainees
who face CGF opponents, accept the behavior of those opponents as plausibly human and
reasonably close to the doctrine of the enemy force being simulated. For that reason, many CGF
researchers have suggested or assumed a CGF equivalent of the Turing test as a measure of CGF
system quality or realism The issue of the usefulness of a CGF Turing Test is examined in detail
in [Petty,1994c] and [petty, 1995c]; those arguments are summarized here.

In [Turing,1950], Alan Turing proposed his now famous test of intelligence for non-human
systems. The essential idea of the test, as it is commonly reformulated, is that a system is said to
be intelligent if an observer can not reliably determine if its observed behavior is produced by the
system or by a human. Whether or not the Turing Test is actually a valid test of intelligence is still
hotly debated (e.g., see [Johnson,1992], [Harnad,1992], and [Shapiro,1992]); luckily, that
question need not be answered here. Instead, we are concerned with a version of the Turing Test
applied to CGF systems: Can observers of entities in a simulated battlefield reliably determine
whether any given entity is controlled by humans or by a CCF system? (See Figure 2.9.) Like
the original Turing Test, the CGF Turing Test is purely operational in that it deliberately ignores
the question of how the CGF behavior is generated; it is interested only in the quality of the
generated behavior. .

38

I I· .
I I

CI)
c:::
ca
e

I
::s
:t:

I I I
~

'b

Q
)

It::
CD

I
Q

)
a::

i: ca
£Xl

I
"0
Q

)
.... .!!

I
::s

CD
.S

~

C
I)

I
III

I I
~

L
.

....;

I
~

0
~

Q
)

.... ca
~

.5
-:::l

.-
e

E

:...

I
~

~

.-t/)
~

C
j

u

I
~

~

0
,

f'i

I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I·
I

Who are the "observers" in this context? [petty, 1994c] and [petty,1995c] define the trainees in
the simulated environment as the observers, for two reasons. First, because the goal of a CGF
system in a training simulation is to produce positive training benefits in its participants, a test for
quality of the CGF system should be based on the participants. Second, the simulation
participants are the observers most often identified by CGF researchers with invoking the CGF
Turing Test.

An experimental application of the CGF Turing Test is described in [potomac,1990] and
summarized in [Wise, 1991]. In the experiment, two platoons of soldiers fought a series of tank
battles in the SIMNET simulation. In the battles, one of the platoons defended a position against
an attack; the attacking tanks were controlled by either the other platoon of soldiers, a CGF
system (the SIMNET SAF system, described later) or a combination of the two. Each platoon
fought in two different scenarios against each of the three attacking forces, for a total of twelve
engagements. The two platoons of soldiers had no contact with each other before or during the
experiment outside of their simulated battlefield encounters. They were not able to correctly
identifY the attackers at a rate significantly different from random chance. Thus the CGF system
of the experiment (the SIMNET SAF) appears to have passed the CGF Turing Test. The authors
of [Wise, 1991] seem to think so; they describe the experiment as evidence that" .. . it is plausible
to conduct the Turing Test for computer generated forces, not just individual vehicles, and further
that it is now possible to pass it. "

Passing the CGF Turing Test is considerably easier than passing the original Turing Test, for at
least three reasons. First, the domain of interactions between the observers and the CGF system
is more limited; questions and answers are replaced by tactical actions and responses. Second,
participants in battlefield simulation typically have a restricted view of the battlefield, severely
compromising their ability to evaluate their opponents' actions for plausibility. For example,
soldiers inside a simulated tank can only see the portion of the battlefield visible from their
location through the narrow vision blocks of the tank. Aggravating the situation is that the enemy
entities that the trainees might observe are normally doing their best to remain hidden! Finally,
because the observer is a simulation participant, he or she is likely to be more intent on some
battlefield activity, such as survival or destroying the opponent, than on observing the opponents'
behavior for signs of artificiality.

Nevertheless, many CGF researchers argue or assert that it is sufficient, or at least necessary, for a
useful CGF system to be able to pass the CGF Turing Test. A few examples from recent CGF
research literature will illustrate this. [Wise, 1991] asserts that "In designing computer generated
forces, the ultimate goal is to simulate plausible human behavior, ... ". According to
[Bockstahler,1991], " ... manned simulators and computer driven forces should be able to interact
without the human operators being able to distinguish between manned or automated forces."
[Harrnon,1991] criticizes an existing CGF system because " ... its performance falls far short of the
goal of exhibiting behavior which is indistinguishable from that of humans for a wide range of
common situations." One of the architects of the original CGF system, the SIMNET SAF, asserts
in [Downes-Martin,1992] that the CGF forces are " ... required to be indistinguishable from
manned simulators." [Smith, 1992b] says that" ... simulated entities should be indistinguishable
from manned simulators." [Braudaway, 1993] states that "One challenge of these computer

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

generated forces is to emulate human behavior so that the human controlled and computer
controlled entities are indistinguishable." [Marti, 1994] praises paths generated by a route­
planning algorithm by asserting that they " ... are reasonably difficult to distinguish from human
generated plans." [Katz, 1994] uses the indistinguishability criterion in evaluating a CGF system
In [Weaver, 1993], passing the Turing Test is presented as an "Underlying Principle" ofCGF; the
statement "The behavior of the CGF, as seen through the network, should be indistinguishable
from that of human participants" is the first such principle listed. [Jones,1993b] ties CGF
performance to the Turing Test as directly as possible. In that paper, the assertion " ... automated
agents should be indistinguishable from other human pilots taking part in the simulation." is
immediately followed by the phrase "To construct such intelligent, automated agents ... "; thus the
authors not only advance the Turing Test as valid for a CGF system, but also attribute intelligence
to a CGF system that passes the test. [Deutsch,1993] and [Webber,1993] also emphasize the
.importance of realistic, human-like behavior by CGF entities, as perceived by users of the
simulation. Additional examples are available, but this should be enough; many CGF researchers
believe that the Turing Test is relevant, even central, to evaluating CGF systems. Looking at
these statements another way, the authors are implying that passing the Turing Test strongly
suggests, or even demonstrates, the quality of a CGF system

Despite the cited opinions of the majority of CGF researchers, the position taken in [petty, 1994c]
and [petty, 1995c] is that the CGF Turing Test is neither necessary nor sufficient to establish the
quality of a CGF system To show that this is so, two points must be made; first, that a CGF
system that does pass the Turing Test might not produce positive training benefits (i.e. not
sufficient), and second, that a CGF system that does not pass the CGF Turing Test can produce
positive training (i.e. not necessary).

As for the question of sufficiency, consider two arguments. First, different armies use observably
different tactical doctrines. For useful training benefit from a battlefield simulation, it is not
enough that the opponent must behave like humans; it should act like humans that are employing
the tactical doctrine of the enemy the soldiers are training to defeat. A CGF system that used
generic tactics might not improve the training of soldiers who were to face a specific distinctive
enemy. Second, consider the case of two groups'offriendly soldiers opposing each other in a
simulated battlefield. The soldiers would pass the CGF Turing Test by definition, but the
resulting training experience would be suboptimal, and possibly negative, because each group of
soldiers faced opponents who used friendly doctrine. Such training could be negative because the
behaviors the soldiers might learn to defeat friendly tactics could be detrimental against the
enemy's tactics.

As for the question of necessity, consider three examples of CGF systems that do not pass the
CGF Turing Test but do produce positive training benefit. The first is in the area of "above real­
time training" . [Guckenberger,1992] describes an experiment in which subjects conducted tank
gunnery in simulations that had varying levels of time acceleration (either Ix, 1.6x, or 2x real
time). The targets in the simulations were produced by a simple CGF system The subjects'
gunnery skills at standard real-time were measured before and after the training. The accelerated
conditions produced better training and transfer of the gunnery task than the standard real-time
conditions. What does this have to do with the CGF Turing Test? Gunnery targets moving at 2x

41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

real-time will not pass the CGF Turing Test, yet they did produce a positive training effect.
Hence it is possible to produce positive training without passing the test.

A second example is the U. S. Army's Platoon Gunnery Trainer (PGT) training system The PGT
trains platoon gunnery and battle command skills. For several reasons, including the repetitive
standardized scenarios, the PGT system's targets would not pass the CGF Turing Test. In spite of
that, a careful study reported in [Sterling, 1994] shows that improved performance in PGT
scenarios is "substantially related" to performance in the U.S. Army's tank gunnery proficiency
tests. In other words, though the PGT would not pass the CGF Turing Test, it does produce
positive training.

A final example is the 1ST Semi-Automated Forces Dismounted Infantry (SAFDI) system The
SAFDI system is a version ofISTs Computer Generate4 Forces Testbed that has been enhanced
with capabilities and behaviors specialized for dismounted infantry fireteams [Franceschini, 1994a]
[Franceschini,1994b]. The SAFDI system was evaluated at the U.S. Army Infantry School's
SIMNET site (at Ft. Benning, Columbus GA) by an independent team of experts in a series of
training scenarios that included SAFDI-generated entities fighting with and against soldiers of the
U.S. Army (A Company 1129 Infantry) [Chervenak, 1993] [D'Errico,1994]. While the evaluation
did not include a formal CGF Turing Test, it is quite obvious that the SAFDI system would not
have passed that test. The reasons include a visual fireteam icon that represents a five man
fireteam with a single human icon, a lack of self-preservation on the part of the SAFDI entities,
and blind adherence by SAFDI entities to doctrinal firing priorities regardless of available targets.
Nevertheless, in spite of its inability to pass the CGF Turing Test the SAFDI system did produce
positive training benefits. Those benefits are detailed in [Chervenak, 1993] and [D'Errico,1994].
A telling evaluation was made by the commander of A Company 1129 Infantry in an unsolicited
memorandum that is included in the evaluation report; he said that" ... the SAFDI greatly
increased my unit's training. "

From these examples it appears to be demonstrably possible to produce positive training benefits
using a CGF system that does not pass the CGF Turing Test; i.e. passing the Turing Test is not
necessary for CGF system quality. Taken with the previous arguments that passing the CGF
Turing Test is not sufficient, the conclusion is that the test is neither necessary nor sufficient in
training applications.

42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ;.
I
I

2.1.5 Key research directions for CGF

With the preceding comments in mind, it is now possible to ask directly: What are the key
research areas upon which CGF technology depends? They include:

1. Planning of CGF actions
2. Model networks and variable granularity simulation
3. Knowledge base representation
4. Autonomous agent modeling
5. System and network architecture
6. Validation
7. CGF operator interface
8. Terrain representation and reasoning
9. Situational awareness and environmental monitoring

10. Advanced route planning, including formation movement
11. Real-time coordination of cooperative behavior
12. mtelligent target acquisition and selection
13 . Adaptive (learning) behavior by CGF entities
14. Modeling fear, self-preservation, and fallibility in CGF
15. Behavior specification for CGF

The first seven topics are discussed in [Fishwick, 1991]; some are first identified in
[McKeown, I990l One item on the list, terrain representation and reasoning, is the specific focus
of this survey.

43

I

I "
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2 Existing CGF systems

This subsection lists and describes existing CGF systems. It begins with a compendium, or brief
descriptions, of a set of CGF systems. The set is intended to be complete, though there may be
CGF systems not included here. Following the compendium are detailed descriptions of some of
the most important or interesting CGF systems.

Many constructive simulations include automated opponents. This document focuses on CGF
systems for virtual environments, so those constructive systems are not included here. A partial
list of constructive systems with automated opponents is given in the appendices.

2.2.1 A compendium of CGF systems

The CGF systems in the compendium are listed alphabetically by CGF system name. A set of data
fields are given for each CGF system in the compendium; they are defined as follows:

Field
Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:
Reference(s):

Dermition
CGF system name
Agency or company that is developing/developed the system
Year work began
Current development status
Programming language used for implementation
Operating system under with the CGF system runs
Computer platform(s) upon which the CGF system runs
Combat domain (ground, air, sea) of generated entities
Number of entities that can be generated in real-time
Network protocols (DIS and/or SIMNET) that the system can use
Uses of the system
Does the system run real-time?
Mechanism or formalism used to specify CGF behavior
Mechanism or algorithm used to generate CGF behavior
Format of the terrain database
Major terrain reasoning capabilities of the system
Remarks describing the system
References for more detail

A data field is given as "na" (not available) if information for that field could not be obtained.

44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:

Reference(s):

A-6/A-14 Aircrew Trainer Suite
AAI
na
na
na
na
na
Air combat
120 "threats" which may be platforms, sensors, or weapons
None
Training system component
Yes
Expert system rules
Expert system rules
na
na
Current status not known. Generates both aircraft and
surface-based anti-aircraft radar and weapons systems. The threat
model evaluates the distance and involvement of a threat with the
trainees' aircraft and varies the simulation fidelity of the threats as
needed. Threat behavior is encoded as "reaction algorithms",
which consist of production rule-like statements.
System overview [Hunter,199lJ

45

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:

Reference(s):

Action/Cognition Behavior Model (ACBM)
BDMFederal
1973
Active
Various, recently C++
na
na
Air and ground combat
Over 200
DIS
Analysis system component
Yes
Virtual Battlespace Language
Action/Cognition Behavior Model
Polygonal (SIFIHDI)
na
ACBM, SWEG (Simulated Warfare Environment Generator), and
CIMUL8 (among others) are members of a family of simulations
developed by BDM since 1973 and used for a wide range of
military analysis projects. They include complete battlefield
simulation capabilities, not just CGF functions.
See 2.2.8

46

Automated Force (AF)
Naval Postgraduate School
1993
Inactive
C and CLIPS
na
na
Ground combat
12
DIS
Research testbed
Yes
Expert system rules
Expert system rules
na
Route planning
Naval Postgraduate School CGF work has moved to ModSAF.
1. . NPSNET oveIView [Zyda,1992]
2. Description of AF reasoning capabilities [Pratt,1994a]

47

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:

Comments:
Reference(s):

CCTfSAF
Loral ADS, SAiC
1993
Under development
Ada
AIX
mM RISC Systeml6000
Ground combat, some air combat
60
DIS
Training system component
Yes
Combat Instruction Sets and Expert System rules
Finite State Machines
Gridded and quadtree (Model Reference Terrain Database)
Route planning
Obstacle avoidance
Intervisibility
Cover and concealment
Production CGF system
See 2.2.5

48

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):

CGFTestbed
Institute for Simulation and Training
1989
Active
C
MSDOS
ffiM-compatible personal computers
Ground and air combat, with some sea combat and electronic
warfare capabilities

Capacity: 36-40
Protocols supported: SIMNET and DIS
Primary use(s): Research testbed, DIS testing
Real-time: Yes
Behavior specification: Finite State Machines
Behavior generation: Finite State Machines
Terrain database: Polygonal (SIMNET SAF)
Terrain reasoning: Entity route planning

Unit route planning
Intervisibility

Comments:

Reference(s):

Helicopter terrain avoidance
The 1ST CGF Testbed is the only personal computer-based CGF
system It is widely used outside 1ST for DIS testing.
See 2.2.2

49

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:

Terrain database:
Terrain reasoning:
Comments:

Reference(s):

Command Decision System
mM Federal Systems
1992
Inactive
C, Lisp
AIX
mM RISC System 6000
Ground combat
na
None
Research prototype
No
Rules, C and Lisp procedural code
A blackboard controller integrates results of disparate "knowledge
sources", i.e. CGF behavior modules implemented as rule-based
expert systems, Lisp functions, or C procedures.
na
Route planning
This system was a research prototype to test applicability of
blackboard paradigm to CGF control It was linked to mM's
Combined Arms Combat Simulator, a self-contained entity level
simulation that performed simulation functions.
l. System overview [Braudaway,1992]
2. Blackboard for CGF behavior control [Braudaway, 1993]

50

I
I
I
I
I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:

Reference(s):

Intelligent Player (IP)
University of Alabama, East Tennessee State University
1989
Active
C
AIX
mM RISC Systeml6000
Air combat (helicopter)
2
None
Research prototype
Yes
C code
Game tree lookahead
Quadtree
Terrain avoidance
This system is a research prototype to test the applicability of game
tree lookahead to movement control of a CGF helicopter in
air combat.
1. System overview [Katz, 1989] [Katz,1991] [Katz,1992]
2. Details of game tree lookahead mechanism [Katz, 1993]
3. Using game tree lookahead in real-time [Schaper,1994]
4. Terrain reasoning with game tree lookahead [pandari,1995]

51

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name: Interactive Tactical Environment Management System
(ITEMS)

Developer: CAE Electronics
Started: na
Status: Active
Language: FORTRAN
Operating system: IRIX
Computer: SGI Onyx:
Domain(s): Air, ground, and sea combat
Capacity: 100+ entities
Protocols supported: SIMNET and DIS
Primary use(s): Training system component, research testbed
Real-time: na
Behavior specification: Expert system rules
Behavior generation: Expert system rules
Terrain database: na
Terrain reasoning: . Terrain following and avoidance during flight

Road following
Intervisibility

Comments: ITEMS emphasizes air entities and behaviors.
Reference(s): 1. System overview and expert system [Siksik,1993]

2. Explanation based learning within ITEMS [Kocabas,1995]

52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:
Reference(s):

MAXIM
Air Force Institute of Technology
1992
na
Lisp (CLOS)
Unix
Sun SPARCstation 2
Air to air combat
na
DIS
Research testbed, training system component
Yes
Universal plans expressed in Lisp
Universal plan selection
None
None
Current status unknown.
Universal planning applied to air combat (Dyer, 1993]

53

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:

Comments:
Reference(s):

ModSAF (Modular Semi-Automated Forces)
Loral Advanced Distributed Systems (LADS)
1992
Active
C
Unix
Various; includes SGI, Mips, Sun Sparc, mM RISC System 6000
Ground combat and air combat
36-80
DIS and SIMNET
Training system component, research testbed
Yes
Combat Instruction Sets
Finite State Machines
Gridded and quadtree (Compact Terrain Database)
Route planning
Intervisibility
Probably the most widely distributed and used CGF system.
See 2.2.3

54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:

Comments:

Reference(s):

Piastre
SOGITEC
1989
Active
Kee Lisp
Unix
Sun 3/160
Ground combat
8
DIS
Training system component
Yes
Expert system rules
Expert system rules
"Object oriented"
Intervisibility
Route planning
Road following
This system controls opposing force targets for the French army's
Leclerc tank turret simulator.
1. System overview [SOGITEC, 1989] [Kada,1994]
2. Expert system to generate CGF behavior [Huon, 1989]

55

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:

Semi-Automated Forces Dismounted Infantry (SAFDI)
Institute for Simulation and Training
1992

Status: Development complete, delivered to training sites
Language: C
Operating system: MS DOS
Computer: ffiM-compatible personal computers
Domain(s): Ground and air combat
Capacity: 12
Protocols supported: SIMNET
Primary use(s): Training system component
Real-time: Yes
Behavior specification: Finite State Machines
Behavior generation: Finite State Machines
Terrain database: Polygonal (SIMNET SAF)
Terrain reasoning: Entity route planning

Unit route planning
Intervisibility
Helicopter terrain avoidance

Comments: A specialized version of the 1ST CGF Testbed with enhanced and
extended dismounted infantry capabilities. Delivered for use to
SIMNET training sites to complement the existing SIMNET SAF.

Reference(s): See 2.2.7

56

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:
Comments:

Reference(s):

8imCore Tactics
Science Application International Corporation
na
na
na
na
na
Ground and air combat
na
DIS
Analytical system component
Yes
Finite State Machines
Finite State Machines
na
na
SimCore is an analytical-style simulation linked to DIS. It was
used for the DARPA Warbreaker project.
System overview [Aronson,1994]

57

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:
Behavior specification:
Behavior generation:
Terrain database:
Terrain reasoning:

Comments:

Reference(s):

SIMNETSAF
Bolt, Beranek, and Newman Systems and Technologies
1986
In use as training system component, no further development
Lisp and C
Unix
Symbolics and Masscomp
Ground combat, with some air combat
40
SIMNET
Training system component
Yes
Combat Instruction Sets
Finite State Machines
Polygonal and quadtree (SIMNET SAF)
Vehicle level obstacle avoidance
Entity and unit route planning
Intervisibility
Concealment location
This was the first production CGF system It is still used daily at
SIMNET training sites. Considerable operator control can be
required for typical training scenarios. The ODIN SAF is an
enhanced version of the SIMNET SAF.
See 2.2.6

58

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:
Developer:
Started:
Status:
Language:
Operating system:
Computer:
Domain(s):
Capacity:
Protocols supported:
Primary use(s):
Real-time:

SoarllFOR
University of Michigan
1993
Active
C
Unix
SGI Indy 4400
Air combat
4-10 aircraft
DIS (via ModSAF)
Research testbed, training system component
Yes

Behavior specification: Search operators and rules
Behavior generation: State space search and rule firing
Terrain database: Gridded
Terrain reasoning:
Comments:
Reference(s):

Terrain avoidance
A general AI system applied to air combat.
See 2.2.4

59

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name:

Developer:
Started:

Team Target Engagement System
Computer ControUed Hostiles (TIES CCH)
Institute for Simulation and Training
1993

Status: Active
Language: C
Operating system: OSI2
Computer: ffiM-compatible personal computers
Domain(s): Ground combat; specifically individual combatants in urban terrain
Capacity: 12
Protocols supported: DIS
Primary use(s): . Training system component
Real-time: Yes
Behavior specification: Finite State Machines
Behavior generation: Finite State Machines
Terrain database: Polygonal
Terrain reasoning: Entity route planning

Intervisibility
Comments: TTES is a US. Marine Corps system for training individual

Marines in both marksmanship and urban combat tactics. The
CCR component provides individual combatants as opponents and
neutrals. It is a development of the 1ST CGF Testbed. It has been
extensively enhanced to generate individual combatants in urban
combat.

Reference(s): 1. TTES overview and CCR requirements [Wysocki, 1994]
2. Need for individual combatant simulation [OTA,1994]
3. Individual human figures in DIS [Reece, 1994a] [Pratt, 1994b]

60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.2 CGF Testbed

2.2.2.1 Overview

Under the sponsorship of ARPA and STRICOM, 1ST has been conducting research in the area of
CGF systems, seeking to increase the realism and autonomy of CGF behavior. A key product of
that sponsorship is the 1ST CGF Testbed. The 1ST CGF Testbed is a low-cost CGF system that
provides an environment for testing CGF behavioral control algorithms. It is documented in
[Danisas, 1990], [Gonzalez,1990], [petty,1992c], [Smith,1992b], [Smith,1992c], and
[Reece, 1994b], and critiqued in [Booker, 1993].

1ST's research into Computer Generated Forces has had two primary goals: first, to increase the
realism and autonomy of Computer Generated Forces (CGF) behavior through the application of
artificial intelligence techniques, and second, the development and testing of efficient algorithms
for CGF behavior generation and physical modeling.

2.2.2.2 System architecture

Because one of the goals of this research project was to demonstrate the feasibility oflow-cost
CGF systems, the 1ST CGF Testbed was developed and runs on ffiM-compatible personal
computers. A basic 1ST CGF Testbed installation consists of two standard ffiM-compatible
personal computers. Each runs one of the two software components of the CGF Testbed; those
components are the "Simulator" and the "Operator Interface" (or 01).

The Simulator performs the computations for vehicle dynamics, battlefield environment
simulation, and behavior generation for the computer controlled CGF entities. The 01 provides
an operator interface to the CGF system which consists of a plan view display battlefield map and
a menu-based mouse and keyboard input system. The CGF operator enters commands for the
CGF entities using the 01, which passes those commands to the Simulator, where they are
executed by the CGF entities. The 01 and the Simulator communicate via the main simulation
network, exchanging packets which are sent point-to-point and are not part of the DIS or
SIMNET protocol.

The basic configuration of one 01 and one simulator can support approximately 40 CGF entities,
which is roughly the number ofvehic1es in a military unit of battalion size. The simulation
network is used for communication between the Simulator and the 01 so as to permit easy scaling
ofthe CGF Testbed. Ifmore than 40 entities or more than one 01 is required, additional personal
computers may be attached to the network. The Simulator and 01 software both adjust
automatically to the presence of more than one of either component.

The Testbed software is written in ANSI C but is compiled with a C++ compiler to take
advantage of the stronger type checking in that language. The 1ST CGF Testbed can be compiled
so as to communicate on the simulation network using either the DIS or SIMNET network
protocols.

61

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.2.3 Behavior generation

Like most other CGF systems, the 1ST CGF Testbed depends on the operator to perform high
level planning and mission control. However, the 1ST CGF Testbed contains a range offlexible
intermediate level behaviors that operate automatically and realistically.

One example of such intermediate level behavior is the Testbed's Fire_Weapons behavior for
infantry fighting vehicles (IFVs). IFVs, such as the M2 Bradley or the BMP, typically have a
variety of weapons systems, each suited to a particular type of target and tactical situation. M2
Bradleys are armed with a coaxial machinegun, used against infantry at short range, a 25mm
cannon, used against infantry at longer range and vehicles other than tanks at short and medium
range, and TOW anti-tank missiles, used against vehicles other than tanks at long range and tanks
at all ranges. The IFV Fire_Weapons behavior performs the following actions without operator
intervention:

(1) Scan the terrain for visible enemy targets.
(2) Select the most threatening enemy target from among those visible, based on threat

analysis rules encoded in the behavior.
(3) If more than one enemy target falls into the same threat category, select one from among

those available based on a fire distribution scheme that considers nearby friendly entities.
(4) Select the appropriate weapon for that target.
(5) Prepare the weapon for firing (aim the turret and possibly raise the TOW launcher).
(6) Fire the weapon and determine if a hit was scored.
(7) Reload the weapon.

For low level behavior, the CGF Testbed includes several excellent algorithms. For example, the
route planner is fast and effective and will find routes around terrain obstacles. The primary
means of behavior specification of the 1ST CGF Testbed is a code structuring technique based on
finite state machines (FSMs). Behavior in the Testbed is encoded as algorithms, written in C.
However, that C code is given structure using the FSM mechanism The essential idea is that
atomic units of behavior, implemented as C functions, become states in a FSM. The CGF
Testbed's FSM mechanism was described in more detail earlier.

2.2.2.4 Status and applications

The 1ST CGF Testbed has been used as both an environment in which to conduct CGF research
and as a basis or component of other systems. It continues to be actively used for both purposes.

Examples of the latter use include the Semi-Automated Forces Dismounted Infantry (SAFDI)
system and the Team Target Engagement Simulation Computer Controlled Hostiles (TTES CCH)
system., where the 1ST CGF Testbed was enhanced to produce specialized CGF systems, and the
Integrated EagleIBDS-D systems, where the Testbed serves as a crucial component in the linkage
between a constructive and a virtual simulation.

Table 2.2 lists applications of the 1ST CGF Testbed. The SAFDI and TTES CCH systems are
also described separately in this document.

62

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

System! Application Application or Experiment
CGF Testbed Low cost CGF testbed

CGF behavior generation techniques

Behavior specification languages for CGF tactics

Terrain reasoning for reconnaissance planning

Execution control schemes for CGF systems

Computational geometry algorithms for
intervisibility determination

Heuristics to reduce number of required
intervisibility determinations

CGF aircraft flight dynamics

Weapons system evaluation

Verification of CGF behavior

.'

Entity route planning in the presence of
dynamic (moving) obstacles

Unit route planning that considers terrain and
enemy positions

Comparison of A· and Iterative Deepening A·

Precision gunnery target generation

Table 2.2 (part 1 of 2) 1ST CGF Testbed applications.

References
[Danisas,1990]
[Gonzalez, 1990]
[petty, 1992c]
[Smith, 1992b]
[Smith, 1992c]

[Coleman, 1990]
[Gonzalez, 1991]
[Clarke, 1991]
[F ishwick, 1991]

[Smith,1993]
[petty,1993]

[Van Brackle,1993a]
[Van Brackle,1993b]
[petty, 1994b]

[Reece, 1993]

[petty, 1992a]
[petty, 1992b]

[Rajput,1994a]
[Rajput,1995a]
[Rajput,1995b]

[Cimini, 1992]

[Karr, 1993b]

[petty, 1994c]
[petty, 1995c]

[Craft 1994b]
[Karr,1995a]
[Karr,1995c]

[Raj put, 1994b]
[Karr, 1995d]

[Karr,1995e]

[Krecker, 1994]

63

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

S ystemi Application Description
CGF Testbed (continued) Experimental evaluation of the Ada programming

language for CGF system implementation

Development of DIS standards for
Electronic Warfare PDUs

Semi-Automated Forces Specialized CGF system for dismounted infantry
Dismounted Infantry
(SAFDI)

Integrated EaglefBDS-D Integration of constructive and virtual simulations

Terrain avoidance algorithms for CGF helicopters

Performance metrics for CGF systems
Team Target Engagement CGF systems for individual combatants
Simulation in urban terrain
Computer Controlled Hostiles
(TIES CCR)
DIS Testbed DIS compliance testing

DIS standards for Simulation Management PDUs

DIS standards for Laser PDUs

Table 2.2 (part 20/2) 1ST CGF Testbed applications.

References
[Craft, 1994a]
[Craft, 1995a]

[McDonald, 1993]
[Wood, 1994]
[Wood, 1995]
[petty, 1991]
[Karr,1992a]
[Petty, 1992d]
[Franceschini, 1993a]
[Franceschini,1993b]
[Chervenak, 1993]
[Petty, 1994a]
[F ranceschini, 1994a]
[Franceschini, 1994b]
[D'Errico,1994]
[Parra, 1994]
[Karr, 1992b]
[F ranceschini, 1992]
[powell, 1993]
[Karr,1993a]
[Karr,1994a]
[Karr, 1994b]
[Root, 1994]
[Franceschini, 1995a]
[Franceschini, 1995b]
[Franceschini, 1995c]
[Franceschini, 1995d]
[Stober, 1995]
[Petty, 1995d]

[Schricker, 1995a]

[Schricker, 1995b]
[Wysocki, 1994]
[Reece, 1994a]

[Loper, 1993]
[Vanzant-Hodge, 1994a]
[Vanzant-Hodge, 1994b]

[Cox,1995]

[Giroux, 1995]

64

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.3 ModSAF

2.2.3.1 Overview and capabilities

ModSAF (for Modular Semi-Automated Forces) is being developed by Loral Advanced
Distributed Systems (Loral ADS) under the sponsorship of ARPA and STRICOM. ModSAF is
the intellectual descendant of earlier CGF systems developed by the Loral ADS Semi-Automated
Forces group (previously part of Bolt, Beranek, and Newman) including the SIMNET SAF and
the ODIN SAF. ModSAF serves as both a working CGF system, capable ofpopulating a virtual
DIS battlefield with large numbers of computer controlled entities, and as a tool and framework
for CGF research. [BBN,1992], [Booker,1993], [Ceranowicz,1994a], and [Ceranowicz,1994b]
give overviews ofModSAFs structure and capabilities. [Courtemanche,1995a] reports on the
recent ModSAF developments, including several new platoon and company level behaviors.

According to [Ceranowicz,1994b], version 1.2 ofModSAF can generate any of24 different DIS
entity types, including fixed and rotary wing aircraft, tanks, infantry fighting vehicles, other
vehicles, and groups of dismounted infantry. ModSAF can also control platoon and company
sized units.

The ModSAF software is written in C. It runs on Unix workstations, typically Silicon Graphics
and Sun systems. [Vrablik,1994] estimates the capacity to simulate entities ofa single SAFsim on
such a workstation at between 36 and 80 vehicles, depending on system configuration and
network load.

2.2.3.2 System architecture

ModSAF has three primary software components: the "SAFstation", which is an operator
interface allowing a human operator to direct the ModSAF entities; the "SAFsim", which
simulates the entities, units, and environmental processes; and the "SAFlogger", which logs,
compresses, and plays back exercise network traffic. The SAFstation and SAFsim will be
discussed in more detail later.

The ModSAF SAFsim component simulates alI of the vehicles and units generated by ModSAF.
For entities, it performs both physical simulation (e.g. vehicle dynamics and weapons effects) and
behavioral simulation (e.g. route planning and mission execution). For units, only behavioral
simulation is required. The SAFsim is a "real-time time-stepped simulation" [Ceranowicz,1994b].
This means that ModSAF does not attempt to enforce a constant update rate for its generated
entities; rather, the update rate varies depending on simulation load. The DIS protocol's remote
entity approximation helps to make this approach possible.

Two significant features ofModSAFs architecture distinguish it from its predecessors; the first ,
its modular software structure, makes ModSAF useful as a CGF research tool and DIS system
component; the second, the Persistent Object ProtocoL provides important performance,
checkpointing, and fault-tolerance capabilities. Each will be discussed in turn.

65

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Nearly all of the ModSAF software is implemented as library modules. The modules have
precisely defined and documented public interfaces and access to the data structures and routines
of the modules is through those interfaces. Software layering techniques are used to reduce
module interdependence and binding. Sets of related modules are grouped into libraries, each of
which provides a service such as vector math utilities, network interface, map drawing, physical
simulation, or behavior simulation [Ceranowicz, I 994b]. The goal of this structure is that the
ModSAF libraries constitute a "repository of useful capabilities" that can be used in different ways
in different DIS and CGF systems, and easily replaced by researchers experimenting with different
or improved ways to provide CGF functionality.

The modular structure is exploited to make it easy to add new entity types (e.g. a new tank) to
ModSAF's repertoire. It is possible to define in a parameter file which ofModSAFs set of entity
simulation modules will be used for the new entity. A variety of entity simulation modules are
available in several categories: dynamics models, turret models, weapons models, sensor models,
and damage models. If a new entity type cannot be assembled from the existing modules, new
ones can be developed and linked in using the parameter file.

The Persistent Object (PO) Protocol is used by ModSAF to transmit information about entities it
is controlling on the network. The PO Protoco~ which is not part of the DIS protoco~
supplements the physical state data normally present in the DIS packets. It includes information
about the entities' behavioral state, including the entities' missions, tasks, and status. The PO
Protocol packets also describe in a similar fashion the state ofModSAF units.

The ModSAF SAFsims on a network all maintain PO databases that contain the information
received from the network about the ModSAF entities and units via the PO Protocol. Because of
this, if a SAFsim should fail during the exercise, other SAFsims on the network can take over
simulation of the entities previously simulated on the failed node. Load balancing of simulated
entities between SAFsims is automatic, both at scenario start-up and during execution.

ModSAF uses the Compact Terrain Database (CTDB) format to represent the battlefield terrain.
CTDB is a compressed representation based on elevation posts for most of the terrain surface,
supplemented with explicit polygons in areas where greater detail is needed (microterrain)
[Smith, 1992a]. The CTDB also includes terrain features such as buildings, roads, rivers, trees,
treelines, and so on. It is used by ModSAF for point elevation lookup, vehicle orientation,
intervisibility calculation, and generation of graphic representations of the terrain
[Stanzione,1993]. (The reference actually presents the terrain representation and reasoning
approaches in the ODIN SAF system, a predecessor ofModSAF; most of the content also applies
to ModSAF.) An updated description of the CTDB format and capabilities can be found in
[Smith, 1995b]. The CTDB format will be covered in considerably more detail later in this
document.

ModSAF relies on a human operator for two functions; first, to set up preplanned missions for
ModSAF entities and units, and second, to provide supervisory control of the simulated entities.
The SAFstation component allows the operator to perform those functions. The SAFstation
software is written in C using X-Windows and Motif It provides a 2-dimensional on-screen map

66

I
I ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

of the virtual battlefield that shows the terrain and the entities. Terrain analysis tools for
intervisibility evaluation and terrain cross-section display are available on the map. Drawing tools
permit the operator to create movement routes and military control measures, such as phase lines,
control points, and battle positions, and associate them with specific locations in the terrain.

Using the SAFstation, the operator can create preplanned missions for ModSAF vehicles and
units. A mission is divided into a number of phases; for each phase the operator defines the tasks
a unit is to perform and the criteria for a transition to the next phase. The transition criteria may
involve the geographic control measures. This data is entered into an execution matrix. (Tasks
and missions and how they control unit and vehicle behavior will be explained later.)

The operator can also give commands for immediate execution by entities and units via the
SAFstation interface. Such intervention may be necessary when ModSAFs automated decision
logic is not handling a situation correctly or when a scenario calls for a specific event that must be
arranged by the operator. The operator may modify executing preplanned missions or replace
them with new tasks. [Ceranowicz,1994c] presents ModSAFs operator command capabilities
and the execution matrix in more detail.

2.2.3.3 Behavior generation

A stated goal of the ModSAF behavior specification and generation mechanism, described in
[Calder,1993], is to provide a framework for expansion by the developers ofModSAF and an
environment for research by other CGF researchers. The mechanism is intended to give a useful
structure in which to place behavior generation algorithms without overly constraining the
implementation of those algorithms. The presentation of the mechanism given here is based on
[BBN, 1992] and [Calder,1993].

ModSAF processes each of the entities it is generating in a cyclical fashion, continuously looping
through its entity list and processing each one. Going through the entity list once is referred to as
a tick, and performing the computation needed for a single entity is called ticking the entity. As
each entity on the list is ticked, all of the processing needed for that entity is completed. If the
entity is very busy, e.g. moving, scanning for targets, and handling incoming events, the
processing associated with its tick may be large. If it is not busy, as would be the case for a
destroyed tank, its tick will be small. Because ModSAFs scheduler is non-preemptive each
entity's tick takes as long as needed. The frequency at which an entity is ticked is an indication of
run-time load in ModSAF [Vrablik, 1994].

Figure 2.10 shows the processing steps for a single entity tick. First, the entity's movement
dynamics are computed. Second, incoming event PDUs associated with the entity (e.g. a
weapons impact) are resolved. Then the entity's sensor scans (e.g. intervisibility determinations)
are processed.

67

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vehicle Tick

Dynamics Processing
(Entity State Update)

Incoming Event Packet Processing
(Entity Update if required)

Asynchronous

Exec~ion

Sensor Processing 1---~~91!~~~~ --
~ ____________ ~~ ____________ ~" Exec~ion

---1
I
I
I
I
I
I

Task Manager

Task Frame A
Active

Task Frame B
Interrupted

Actuator Processing (Event Packets)

(Orders to Subordinates)

I
0)
c:

"Cij
rn
Q)

e
a..
c:
0

~ «

------1

Task I
~~
Task I

CttJ
~

Task I
Task

Task

Vehicle Task Frame Stack

,

Unit Leader Task Frame Stack

Next Vehicle Tick

Figure 2.10 MODSAF entity processing [BBN, J 992].

0)
c:

"Cij
rn
Q)

e a..
(ij
~ -a.
Q) e
Q)

a..

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Following those steps the entity's behavior is generated in two parts; first, the task manager
determines what tasks are active for the entity, and second, the currently active tasks are executed
to generate the entity's behavior. The basic building block ofModSAFs behavior generation
mechanism is the task (which is not to be confused with a task as commonly defined in the context
of operating systems). A task is a single non-composite behavior performed by an entity or unit.
There are several types of tasks in ModSAF:

1. Entity tasks
2. Unit tasks
3. Reactive tasks
4. Enabling tasks
5. Arbitration tasks

Entity tasks. Behavioral tasks that an individual entity (vehicle or fireteam) will p~rform Entity
tasks often use information from and control the physical subsystems (sensors and weapons) of
the entity. Example entity tasks are Follow Route, Keep Formation, Avoid Collisions, and Spot
Enemy Vehicles.

Unit tasks. Behavioral tasks associated with military units. Units tasks often create, monitor, and
delete tasks for subordinate units and vehicles, following the hierarchical structure of military
units. Example unit tasks are Company Road March, Company Attack, and Platoon Bounding
Overwatch.

Reactive tasks. Behavioral tasks used to trigger reactions to battlefield events and situations.
Example reactive tasks are Air Raid Happening, Target Meets Commit Criteria, and Hasty Attack
Needed.

Enabling tasks. Behavioral tasks used to trigger mission contingencies. They are defined during
the construction of a mission by the operator and allow conditional response by a unit to events
during the mission. Example enabling tasks are Crossed Phase Line, Detected Enemy Unit, and
Reached H-Hour Time.

Arbitration tasks. Special tasks that arbitrate between differing behavioral recommendations from
multiple simultaneously active tasks. Example arbitration tasks are Vehicle Movement
Arbitration, Vehicle Sensor Arbitration, and Vehicle Targeting Arbitration.

Tasks take as input task parameters which control the execution of a task within a particular
mission. For example, the Follow Route task would have a route as a task parameter.

Tasks are implemented within ModSAF as augmented, asynchronous, finite state machines
(AAFSMs). An AAFSM realizes a task as a set of states, each encoding a component action of
the task, a set of transfer functions that determine and cause transitions between the states, and a
set of inputs and outputs for the task. The states and transfer functions are implemented as C
code.

69

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A given entity or unit may have more than one task active for it simultaneously; for example, a
tank might be executing both Follow Route and Spot Enemy Vehicles. A group of one or more
tasks which are to be run at the same time is referred to as a taskframe. Task frames are
assembled by the operator while defining a mission by picking from the available tasks. Each task
frame represents a phase of a mission. Specific task parameters for the tasks within a task frame
are connected to the tasks by the operator when the mission is assembled.

The task frame stack is a run-time data structure that represents the set of task frames assigned to
an entity or unit. The task frame at the top of the stack is the set of tasks that the entity or unit is
currently executing. As the entity or unit changes from one phase of a mission to the next the top
task frame is replaced with the task frame defined for the next phase (changes from one mission
phase to another are detected by enabling tasks).

In addition to replacing the top task frame, new task frames may be pushed onto the stack in two
ways; some battlefield condition may trigger a reactive task frame, or the operator may issue an
immediate command which is assigned to the entity or unit as a task frame. In those cases, the
previously executing task frame (and thus its component tasks) are suspended while the newly
pushed task frame executes. When it completes it is removed from the task frame stack and the
suspended task frame resumes.

The task frame stack also supports transparent task frames, which are task frames that, when
pushed onto a stack, do not suspend the entire task frame below it. Tasks in a transparent task
frame are merged with the tasks in the task frame below and all are executed simultaneously.

A mission is a set of task frames that are linked together in a sequence. A mission is divided into
phases, each of which is associated with a task frame. Each task frame specifies a task in the
previous task frame that must complete before it begins. Transitions from one phase to the next
may also be triggered by enabling tasks. Enabling tasks link the task frames that make up the
various alternate courses of action in the mission.

The task manager controls the execution of tasks within this structure. It determines which tasks
to run for an entity or unit each time that entity or unit is updated. It also manages the task frame
stack and handles the transitions between phases by pushing and popping tasks frames on the
stack.

Note how this behavior generation mechanism attempts to meet the goal of the ModSAF
developers to provide a framework for other CGF researchers and developers. An outside
researcher or developer may implement a new algorithm for a specific task and embed it in the
task and task frame control structure, thereby freeing the him or her from worrying about those
issues outside the task. On the other hand, a researcher interested in experimenting with some
other execution control scheme for CGF systems (e.g. [Reece, 1993]) would have a difficult time
doing so within ModSAF.

70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.3.4 Status and applications

More detailed descriptions of specific aspects ofModSAF are available:
1. Terrain representation format and capabilities [Smith,1992a] [Smith,1995b]
2. Finding cover and concealment [Longtin, 1994]
3. Algorithms to find and select concealed movement routes [Longtin,1995]
4. Other terrain reasoning functions [Stanzione,1993]
5. Near-term entity movement control [Smith, 1994]
6. Simulation of missiles in ModSAF [Courtemanche,1995b]
7. ModSAF system capacity in terms of entities [Vrablik,1994]
8. W&A ofModSAF [Courtemanche,1994] [Harkrider,1995] [Thomas,1995a]

[Thomas,1995b] [Vaden,1994] [Meliza,1995] [Courtemanche,1995a]
9. Op erator interface and execution matrix [Ceranowicz, 1994c]

10. Automated testing and VV &A for ModSAF software integrations [Monday, 1995]
[Courtemanche, 1995a]

11. Application ofModSAFs FSM mechanism to company control [Pratt,1995a]
12. An incomplete automatic company order generation capability [Pratt,1995b]

ModSAF has reached a level of maturity and stability that makes it a useful basis for CGF
research or a component of other projects. Consequently, it has been widely distributed
throughout the DIS community and at least eleven different agencies have developed ModSAF
capabilities. The software development and integration process used to control and integrate the
code produced by those agencies is summarized in [Courtemanche, 1995a].

Table 2.3 lists a number ofModSAF applications and gives references for them One ModSAF
application, the SoarlIFOR project, is important enough that it is also described separately in this
survey.

71

I
I

System Application Reference(s)
ModSAF Prototyping environmental extensions to DIS [Schaffer, 1994]

such as atmospheric haze, battlefield obscurants, [Haque, 1995]
smoke, rain, and vehicular dust clouds [Robasky,1995]

I
Test environment for detailed verification of [Vaden, 1994]
CGF behavior and performance [Meliza,1995] I
Automated military mission planning [Sherman, 1994]

[Moho, 1994] I
Simulation-based unit mission planning [Karr,1995b]

Unit mission planning and run-time control using [Katz, 1994] I
~etreelookahead

CGF design prototype for CCIT SAF [pope, 1995a] I
[pope, 1995b]

Development environment for company and [Hille,1994]
battalion command agents that learn tactical rules [Hieb,1995]

I
[Hille, 1995]

Test environment for Prolog-based backward [Kwak,1995] I
reasoning from goals for unit control

I Incorporation of previously validated and [Courtemanche, 1994]
accreditated combat models

Test environment for case-based learning and [Keirsey, 1994]
behavior based control for air combat I
Baseline infrastructure layer for executing [Salisbury, 1995]
generated by Command Forces command entities I
Test environment for DIS based on multicast [Smith, 1995a]
instead of broadcast UDP/IP I
Test environment for target threat evaluation [Cisneros, 1995]
using fuzzy sets I
Test environment for methodologies to compare [Craft, 1995b]

I different vehicle variants using simulation

Test environment for a distributed control [Rajput, 199 5b]

I
architecture for cooperative behavior based on
formal finite state machines

I
Table 2.3 (part J 0/2) ModSAF applicatiOns.

I
I 72

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

S),stem Application
LeatherNet Implementation of Marine Corps individual

combatants (simulation and behavior)

DIS Common Database Training scenario development and testing
Toolset

Corps Level CGF Integration of constructive and virtual simulation

Anti-Armor Advanced Weapons system evaluation
Technology Demonstration
(A2ATD)

Soar/IFOR Integration of CGF with an AI system
for tactical behavior control

Table 2. 3 (part 2 of 2) ModSAF applications.

Reference(s)
[Howard, 1995]
[Hoff, 1995]

[Butler, 1995a]
[Butler, 1995b]

[Calder, 1994]
[Raytheon, 1994]
[Calder, 1995a]
[Calder, 1995b]
[Stober, 1995]

[Courtemanche, 1994]
[Harkrider, 1995]
[Thomas, 1995a]
[Thomas, 1995b]

[Jones, 1993b]
. [Johnson,1994]

[Jones, 1994b]
[Jones, 1994c]
[Koss, 1994]
[Laird, 1994]
[Rosenbloom, 1994]
[Rubinoff, 1994]
[Schwarnb, 1994]
[Tambe,1994]
[van Lent,1994]
[Laird, 1995]
[Lehman, 1995]
[Nielsen, 1995]
[Tambe,1995a]
[Tambe,1995b]

73

I
I
I
I
I
I
I
I
I
I
I
I
I,

I
I
I
I
I
I

2.2.4 Soar/lFOR

Soar is an integrated cognitive architecture based on heuristic state space search and automated
learning [Laird,1987]. ModSAF and Soar are being linked in the SoarlIFOR project. The project
is developing autonomous intelligent agents for air combat. The project originally was focused on
agents for naval air engagements beyond visual range (the system was known as TacAir-Soar at
that time); recently it has expanded its goals to include the development of agents for nearly all air
missions flown by the U.S. military [Laird, 1995].

In the SoarlIFOR system, ModSAF provides the DIS network interface, aircraft dynamics
simulation, and low-level behavior execution functions, while Soar provides high-level planning
and decision making for the ModSAF-controlled aircraft.

According to [Jones,1993b], the long-term intent of the SoarlIFOR project is to develop
capabilities that will:

1. Integrate planning and reactive behavior in real-time
2. Respond to unexpected situations
3. Learn from experience
4. Exhibit human-like cognitive limitations

The Soar/IFOR system can control 4-10 aircraft (depending on network load) operating alone, in
sections (2 aircraft), and in divisions (4 aircraft). They can fly a variety of formations and
missions including several types of air-to-air and air-to-ground missions.

Soar divides knowledge into problem spaces, which are the state spaces through which Soar
searches to find a plan (a sequence of operations to reach a goal state). In CGF terms, the
operators are the actions that the CGF entity might perform When Soar cannot find a plan, it
creates a subgoal and shifts to a new problem space, finer grained and more specific to the
subgoal, and searches that problem space. This subgoaling happens automatically. Note that this
produces a hierarchy of goals. In contrast to hierarchical goals, tactical behavior can often
produce conflicting goals (e.g. "destroy bogey" vs. "survive"). Soar is being modified to deal with
conflicting goals.

Soar's state space search is guided and supplemented by a rule based component. Soar's rules test
the current situation and propose operators, determine preferences between multiple proposed
operators, perform procedures associated with the operators, and test that all parts of an operator
have been executed. As part of the Soar/IFOR project, a body of search operators and rules for
air combat have been developed and encoded in the Soar system [Laird,1995] reports that 320
operators and 3100 rules have been developed to date.

74

I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The Soar/IFOR system has been extensively documented; numerous references are available
providing both project overviews and detailed explanations of specific aspects of the system
They include:

1. Project overview [Jones,1993b] [Rosenbloom,1994] [Laird,1995]
2. Autonomous agents that explain their actions [Johnson,1994]
3. Generating agent behavior in response to interacting, and possibly conflicting, goals

[Jones, 1994b]
4. Operator interface design and development [van Lent, 1994]
5. Natural language communication between SoarlIFOR agents (entities) and human

participants in an exercise [Rubinofl)994] [Lehman,1995]
6. Interfacing Soar with ModSAF [Schwamb,1994]
7. Integrating world state information from a variety of sources [Jones, 1994c]
8. Coordinating tactics .among multiple agents [Laird, 1994]
9. Tracking and inferring events from observable cues with internal models of other agents'

thought processes [Tambe, 1994] [Tambe, 199 5b]
10. Development ofa hypertext system for eliciting and communicating subject matter

expertise [Koss,1994]
11 . Development of operators and rules for rotary wing aircraft behaviors [Tambe, 199 5 a]
12. Command and control agents for air mission controllers of various types [Nielsen,1995]

75

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.2.5 CCTT SAF

2.2.5.1 Overview and capabilities

The U.S. Army's Close Combat Tactical Trainer (CCTT) project is a large simulation
development effort. CCTT is the first component and the technology base of the Army's
Combined Arms Tactical Training (CATT) system, a massive DIS-compatible simulation system
for training soldiers from several branches of the Army. CCTT will be a networked real-time
battlefield simulation that includes ground and air combat vehicles, dismounted infantry, other
weapons systems, and command and control elements. It will be a production system, intended
for daily use as a battlefield training environment. CCTT will be fully DIS compliant; in fact, the
needs ofCCTT are driving large parts of the DIS standardization efforts. [pope,1995a] and
[pope, 1995b] give technical overview of CCTT; the former also addresses how CCTTs
requirements are affecting the DIS standards.

CCTT will include a CGF system to serve the essential CGF function of populating the battlefield
with computer controlled enemy and supplemental friendly forces. The CCTT CGF system is
known as the "CCTT Semi-Automated Forces" or "CCTT SAF". Much of this presentation is
based on information in [Marshall, 1994].

It is important to observe that as a component of CCTT, the CCTT SAF is a production system,
with stringent requirements for performance, reliability, and behavioral fidelity that are not
necessarily applied to research oriented CGF systems. Table 2.4 lists some of the requirements
for the CCTT SAF.

Characteristic Requirement
Different entity types

Friendly forces 53
Opposing forces 47
Miscellaneous 117

Combat Instruction Sets
Friendly forces 700
Opposing forces 500

Terrain and environment
Features High density
Weather Rain, Haze, Fog, Cloud
Visibility effects Continuous time of day, Tactical smoke, Flare illumination

Tactical realism
Representational scope From entity to Friendly battalion and Opposing regiment
Traceability All entity models and unit behaviors
VV&A All entitymodels and unit behaviors

SAF Simulation features
Control options Autonomous, Operator, Command from simulator
Autonomous behaviors Obstacle avoidance, Detect opposing forces
Miscellaneous features Damage effects, Stochastic failures, Jamming, Logistics

Table 2.4 CCTT SAF requirements (adapted/rom [Marshall,1994J) .

76

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The CCTT SAF runs on IDM RISC System/6000 workstations under the AIX operating system.
One such workstation is planned to support approximately 60 simulated entities. As a
Department of Defense production system, the CCTT SAF software is written in Ada. The
reader interested in simulation software development in Ada is referred to:

1. General overview [Devlin,1990]
2. In-depth coverage ofa large Ada simulation project (the B-2 Aircrew Training Device)

[Gross, 1991] [Zink, 1991] [Bedford, 1991] [McMahon, 1991] [Weiss, 1991]
[Croucher, 1991]

3. CGF system development in Ada [Craft,1994a] [Craft,1995a]

2.2.5.2 System architecture

To a certain extent, the Loral ADS ModSAF system is serving as a design prototype for the
CCTT SAF. According to [pope, 1995a] and [pope, 1995b] the CCTT SAF is "based
fundamentally" on the ModSAF model and ModSAF architectural ideas and algorithms are being
adapted whenever possible for the CCTT SAF.

Like the 1ST CGF Testbed and ModSAF, the CCTT SAF consists of two main software
components. The "SAF Workstation" is an operator interface that allows the operator to monitor
and control the CCTT SAF generated entities and the "CGF Simulator" performs the dynamics
and behavioral simulation for those entities.

The SAF Workstation uses X-Windows and Motif as the basis for its operator interface. The
interface provides an electronic map of the battlefield and accepts keyboard and mouse input.
The designers of the SAF Workstation's User Computer Interface worked to consider the
expected demands on the operator (e.g. controlling up to 120 entities at one time) and the lessons
learned from previous CGF system operator interfaces. It includes a Unit Editor to create and
modify hierarchical unit relationships, an Overlay Editor to prepare geographic input to mission
plans using military overlay symbols, and an Exercise Editor to record preplanned behaviors for
mission phases.

The CGF Simulator is built around the CGF Application, a single AIX process. The CGF
Application is organized as five software modules: Terrain, Behaviors, Vehicle Simulation, DIS
Manager, and SEOD Manager.

The Terrain module processes the terrain database and provides information about the terrain to
the other modules. The CCTT SAF uses a terrain format known as the "Model Reference Terrain
Database" (MRTDB). The MRTDB is a further development ofModSAFs CTDB format
[Smith, 1992a], with extensions and enhancements designed to conserve space and add features
specifically required for CCTT. The MRTDB format is described in [Watkins, 1994] ; some of the
terrain reasoning challenges that the MR TDB was designed to address are defined in
[Campbell, 1994].

The Vehicle Simulation module performs physical modeling and vehicle dynamics simulation of
the CCTT SAF entities. The software design of this module depends on the use of generic data

77

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

driven models for common entity components. Entity models are composed of parameterized sets
of generic models for hulls, turrets, sensors, weapons, resources, and communications. The
physical models attempt to use a continuous simulation approach as much as possible.

The DIS Manager module sends DIS network packets for the CCTT SAF entities and receives
the packets for entities external to the system It also performs DIS interface functions such as
remote entity approximation.

The SAF Entity Object Database (SEOD) is a run-time database used by CCTT simulator nodes
(including the CCTT SAF) to "store, retrieve, modify, delete, and share CGF command and
control information among multiple simulation participants" [Horan,1994]. It is similar in intent
to ModSAFs Persistent Object Protocol. The simulator nodes maintain the SEOD's database
(each has an identical copy) by way of p.etwork traffic sent between nodes. The SEOD database
contains information about CGF entities and their behavior states. It can be thought of as both a
distributed entity database, with its content updated via SEOD network traffic, and an interface
through which applications share command and control information. The SEOD is the medium
used by the SAF Workstation and the CGF Simulator to communicate with each other; orders
assigned at the SAF Workstation for a unit are placed in the SEOD for that unit to respond to.
The SEOD module is the application program interface between the node and the SEOD. SEOD
data can be saved and used to restart CCTT scenarios.

The Behaviors module produces unit and vehicle level behavior. Its functioning will be described
in detail later.

2.2.5.3 Behavior generation

Because the CCTT SAF is a production system, the behavior generated by it for its controlled
entities must adhere to strict standards of tactical fidelity. Furthermore, each behavior generated
must be traceable, in the sense that it must be possible to establish the source of a behavior. In
response to these requirements, the CCTT SAF developers have instituted a methodical and
rigorous knowledge engineering process to identify, specify, and document the tactical behaviors
for the CCTT SAF that will be implemented within the system CCTT CISs include both low­
level (entity), doctrine-independent behaviors such as "Fire at target" and "Follow route" and
higher-level (platoon) doctrine-dependent behaviors such as "Execute bounding overwatch"
[Marshall, 1994].

Tactical behavior in the CCTT SAF is specified as CISs (defined earlier). The source data for the
CCTT SAF CISs for U.S. forces is the U.S. Army's Training Evaluation Program (ARTEP)
doctrine, and the derived CISs are traceable back to doctrinal elements expressed in the ARTEP
material. Enemy force CISs are based on Russian tactical doctrine, and Russian military manuals
and journals are used as source documents. Every CIS includes, in its structured English
representation, pointers to the source documents upon which the behavior is based.
[McEnany,1994] discusses the knowledge engineering process of translating CIS from source
document to structured English, and estimates the number of CISs to be documented and
implemented for the CCTT SAF at 1200 (700 U.S. and 500 enemy).

78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Once the CISs are expressed in structured English form, they must be translated into program
code. In the CCTT SAF, CISs at the vehicle level are implemented as Finite State Machines
(FSMs) within Ada packages. Both doctrine-independent and doctrine-dependent CISs are
implemented in this way. [Ourston,1995] elaborates on how the English CISs are implemented as
software.

At the platoon level and above, a different implementation technique is used. An expert system
and tactical rule database is used to select a CIS for execution by a platoon. CISs may be selected
based on an operations order (entered through the SAF Workstation), a direct command from the
operator, or a development in the battlefield situation. Once a CIS is selected for a platoon it is
executed by the FSM mechanism [Bimson, 1994] descnoes how the expert system makes the
selection and [Ourston, 1994] explains how the expert system is integrated with the algorithnric
CIS execution.

2.2.5.4 Status and applications

More detailed descriptions of specific aspects of the CCTT SAF are available:
l. CCTT SAF system architecture [Marshall,1994]
2. Current CCTT SAF terrain representation format [Watkins,1994] [Campbell,1994]
3. Relationship ofCCTT and the CCTT SAF to DIS standards [pope,1995a] [pope,1995b
3. Route planning [Campbell,1995]
4. SEOD [Horan,1994]
5. Behavior specification methodology [McEnany,1993] [McEnany,1994] [Ourston,1995]
6. Expert system for tactical decision making [Bimson,1994] [Ourston,1994]

Like the overall CCTT system, the CCTT SAF is still under development, and therefore the
information given is subject to change.

2.2.6 SIMNET SAF

As mentioned earlier, SIMNET was the first production version of a networked virtual battlefield
simulation. SIMNET included a CGF system developed by Bolt, Beranek, and Newman known
as the SIMNET SAF (Semi-Automated Forces).

The SIMNET SAF system uses two minicomputers and a single human operator to generate and
control up to approximately 40 vehicles. It connects to the SIMNET network, generates network
packets appropriate for the vehicles it is simulating, and processes incoming network packets for
other vehicles in the simulation. It uses a version of the SIMNET terrain database that correlates
to those used in the crewed simulators.

The SIMNET SAF system controls tanks (e.g. MIs and T-72s), infantry fighting vehicles (M2
Bradleys and BMPs), and other similar vehicles in the SIMNET battlefield. Those vehicles can
oppose or cooperate with the vehicles controlled by the human users of SIMNET. They have a
repertoire of autonomous behavior that includes following preplanned routes, simple route

79

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I

planning, automatic formation changes in response to geographic control measures or battlefield
events, target selection, and direct fire. However, the SIMNET SAF system has considerable
dependence on a human operator for both high-level behavior, such as mission planning, and very
low-level behavior, such as route planning across bridges.

The SIMNET SAF was a noteworthy accomplishment in its time, but its capabilities have been
surpassed by more recent CGF systems, including ModSAF, its direct descendant. Nevertheless,
it is used extensively for training purposes at U. S. Army SIMNET sites, such as Ft. Knox KY and
Ft. Rucker AL.

More information on the SIMNET SAF system is available; the references include:
1. System overview [Ceranowicz,1988] [Crooks,1990] [Downes-Martin,1990]

[Jacobs, 1990]
2. Terrain representation and reasoning capabilities [Stanzione,1989]
3. Evaluation of the CGF entities' behavior [potomac,1990]
4. Supplemental dismounted infantry workstations [Fraser,1990a] [Fraser,1990b]
5. CGF research using the SIMNET SAF as a testbed [Harmon,1991] [Harmon,1994]

The SIMNET SAF was enhanced for use in DARPA's Project ODIN; in that system it was known
as the ODIN SAF. The terrain reasoning capabilities of the ODIN SAF are given in
[Stanzione,1993] and an adaptation of the ODIN SAF to produce 10,000 entities is described in
[Vrablik,1993]. The SIMNET SAF also continues to be used for large simulation development
projects such as "Synthetic Theater of War-Europe", an attempt to combine elements from
virtual, live, and constructive simulation into an integrated networked brigade training system
[Johannesen, 1995].

2.2.7 Semi-Automated Forces Dismounted Infantry

Dismounted infantry, in useful numbers, is conspicuously absent from the SIMNET battlefield.
SIMNET contained only very limited dismounted infantry capabilities in the form of manned
workstations that permitted operator control of single fireteams [Fraser,1990a] [Fraser,1990b].
The SIMNET SAF system did not generate dismounted infantry entities. That absence created an
unrealistic, and possibly negative, training environment. Dismounted infantry, both in reality and
in SIMNET, is difficult to see and very dangerous to vehicles when armed with anti-tank missiles.
Tank crew trainees in SIMNET were not forced to consider this threat and consequently could
learn tactical behaviors that would increase their vulnerability to dismounted infantry.

In response to this need, 1ST developed a CGF system capable of generating useful numbers of
computer controlled dismounted infantry fireteams at minimal cost. This was done by making
extensive specialized enhancements to ISTs CGF Testbed. The resulting system, known as
Semi-Automated Forces Dismounted Infantry (SAFDI), can generate dismounted infantry
fireteams and their associated fighting vehicles in the SIMNET battlefield.

80

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The enhancements consisted of entity types, physical models, and behaviors specific to
dismounted infantry and supporting entities. More specifically, the infantry functionality
implemented for the SAFDI system includes:

1. Hybrid representation of fireteams and individual soldiers [petty,1991] [petty,1992d]
[petty, 1994a]

2. Infantry ATGM and small-arms weapons utilization behaviors [petty,1991]
[petty,1992d] [petty, 1994a]

3. Physical models of infantry movement and exhaustion [Karr,1992a]
4. Parametric composition offireteam size and weapons [parra,1994]
5. Forward observer behavior, including autonomous call for fire [Franceschini, 1994a]

[Franceschini, 1994b]
6. Use of man-portable air defense weapons [Franceschini,1994a] [Franceschini,1994b]
7. AMSAA-provided indirect fire damage resotution model [Franceschini,1994a]

[Franceschini, 1994b]

Extensive User and Systems documentation was provided with the SAFDI system at the sites
where it was installed [Franceschini, 1993a] [Franceschini, 1993b].

The SAFDI system has been delivered to U.s . Army sites for evaluation and experimental use in
training and development, where it has proven to be both useful and stable. The results of its
evaluation at the U.S. Army Infantry School at Ft. Benning are documented in [Chervenak,1993]
and [D'Errico, 1994].

2.2.8 Action/Cognition Behavior Model

The Action/Cognition Behavior Model (ACBM), Simulated Warfare Environment Generator
(SWEG), C++ SWEG (CSWEG), and CIMUL8 are all members of a family of simulations
developed by BDM Federal since 1973. A key common ancestor of these simulations is
Supressor. They have been used for a wide range of military analysis projects. A typical
application of these simulations is to test the effectiveness of new, modified, or proposed vehicle,
weapon, electronic warfare, or sensor systems. For example, according to [Jones,1993a] ACBM
has been recently used to test the military worth of the Advanced Self-Protection Jammer for
aircraft, an electronic support measure system for shipboard air defense, the Airborne
Survivability Suite for the RAH-66 light attack/reconnaissance helicopter, and the
Reconnaissance, Surveillance, and Target Acquisition aircraft.

The members of the ACBM family are complete simulations in that they include not only CGF
functions but full battlefield representation (at least those aspects of the battlefield needed for the
application). Over much of their existence these simulations have been used as stand-alone
analytic simulations. As is typical for that simulation type, they are event-driven. To make them
interoperable with DIS simulation, two enhancements have been made; first, their event handling
has been synchronized to a real-time clock to give real-time execution [Landweer, 1993b], and
second, a DIS protocol interface has been added [Landweer, 1994b]. With these enhancements
they have been linked into DIS networks and have participated in DIS scenarios in real-time
[Landweer, 1994a] [Landweer, 1994b] [Landweer, 1994c].

81

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ACBM uses a formal language (called VBL) of considerable power and complexity to specify
both performance and behavior for the entities and systems it is simulating [Lattimore, 1993] ; an
example ofVBL was given earlier. CGF entity behavior is generated by a model of cognition also
referred to as ACBM [Landweer, 1993b].

References to CGF aspects and applications of ACBM include:
1. Utility ofCGF systems for analysis purposes, with ACBM as an example [Jones,1993a]
2. Use ofSWEG in two tests of the effectiveness of various electronic counter measures and

E-2C communications systems involved in Navy air strike missions [Landweer,1993a]
3. Explanation of the ACBM model of cognition [Landweer,1993b]
4. Design of a formal language for expressing CGF performance and behavior, used as input

to ACBM [Lattimore,1993]
5. Participation by CIMUL8 in the 1993 lilT SEC DIS Interoperability Demonstration,

including the DIS conversion of CIMUL8 and the specific CGF behaviors implemented
[Landweer, 1994b]

6. Use ofCSWEG in a large scale (regiment-vs-regiment) scenario that included CGF
modeling of command and control entities [Jones, 1994a]

7. Integration of constructive, virtual, and live simulation via DIS with a CGF system
(CIMUL8) in a central role [Landweer, 1994a] [Landweer,1994c]

2.2.9 Non-military CGF systems

Simulations in other, non-military, domains also have their own computer generated entities.
Some interesting examples include predatory fish in an ocean simulation [Maruichi,1987], an
autonomous land vehicle on the surface of another planet in a simulation that provides the context
for a machine learning experiment [petty, 1990], and fire fighters and fire in a high-rise fire
incident command training system [Altman, 1991]. [Warren,1995] offers two examples of how
CGF systems that perform military functions (e.g. control adversary aircraft in an air combat
simulation) are used for entertainment purposes. In entertainment applications, presentation
fidelity is often more important than CGF behavioral fidelity.

[pettY,1995a] describes the adaptation ofa military constructive simulation (Janus) to Emergency
Management training and [Loper,1995a] examines how well DIS supports Emergency
Management simulation. With those ideas as background, [petty,1995e] explores how CGF
requirements for Emergency Management simulation differ from combat simulation.

82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3. Terrain representation in CGF

This section moves from CGF systems in general to terrain representation in CGF systems. First,
background concepts of terrain representation are introduced. Then terrain representation
formats used by existing CGF systems and other related systems are surveyed and explained in
detail. The explanations discuss the data structures for each of the representational formats and
compare their strengths and weaknesses in the CGF context.

3.1 Terrain representation preliminaries

Terrain representation is the representation of a piece ofterrain, either actual or imaginary, in a
digital computer-readable form. Theformat of a terrain representation defines what data is stored
for the terrain and how it is organized into data structures. A particular set or instance of data for
a terrain is a terrain database. If that terrain database represents an actual area on the earth, it is
geospecific; ifnot, it is notional.

A utomated terrain analysis is the automated analysis of a digitized terrain representation for the
purposes of making or assisting tactical decisions involving the terrain. Automated terrain
analysis is not necessarily connected to CGF systems. For example, [Benton,1991] surveys
several automated terrain analysis research tasks where the stated goal is to " .. .let the battlefield
commander make more effective use of the terrain through computer analysis ... ".
[Werkheiser, 1991] also surveys automated terrain analysis methods.

Of course, terrain analysis algorithms may also be applicable to terrain reasoning within a CGF
systeIIL For CGF systems then, terrain reasoning is defined as automated analysis of a digitized
terrain representation for the purposes of making behavioral decisions involving the terrain
[petty, 1994b]. Hereinafter in this document, terrain reasoning will refer to terrain reasoning
within a CGF system unless otherwise stated. The reader should note that some sources use the
terms terrain analysis and terrain reasoning synonymously, without making the non-CGF vs. CGF
distinction made here. Another related distinction between terrain analysis and terrain reasoning
is that terrain analysis connotes a planning activity and as such has no real-time response
constraints, whereas terrain reasoning suggests real-time activity, usually done during the
execution of a simulation.

This survey will consider a set of terrain representations includes both those that have been used
for terrain reasoning within CGF systems and those used and proposed for automated terrain
analysis systems that are not a component of CGF systems. The latter are interesting in that they
may offer ideas for terrain reasoning that can be applied to CGF systems.

83

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

It is often the case that terrain databases designed for terrain reasoning have structures that differ
greatly from those designed for other uses (image generation, map display, and so on)
[Stanzione,1989]. The focus here is on terrain representations used for terrain reasoning.
Readers interested in broader issues of terrain representation are referred to:

1. Catalog of digitized terrain data available from the Defense Mapping Agency
[DMA,1995]

2. Survey of digital terrain formats and recommendations for a standard DIS terrain
representation format [Trott, 1995]

3. Generating terrain databases for image generators from source data in standard formats
[Roback, 1995]

Terrain reasoning algorithms operate on data structures that represent the terrain; those data
structures constitute a terrain database. It is intuitively clear that the terrain database used by
CGF systems "plays an important part in the efficiency and realism of their terrain reasoning
algorithms" [Stanzione,1994]. The terrain database must represent the 3D surface of the Earth,
referred to as the terrain surface, as well as the roads, bridges, buildings, trees, forests, rivers, and
so on that are present on the terrain, known as terrain features. Terrain features that are artificial
objects, such as buildings and roads, are sometimes referred to as cultural features or culture to
distinguish them from natural features.

The terrain itself may change during a simulation exercise due to the actions of agents in the
simulation (artillery shell bursts create craters, combat engineers blow bridges or construct
emplacements); the capability is known as dynamic terrain. Simulating dynamic terrain includes
the issues of computing the changes to the terrain, updating the terrain database to reflect those
changes, and communicating the changes among the nodes of a distnlmted simulation. Dynamic
terrain is largely beyond the scope of this document, though some terrain representations or
representational aspects intended to support dynamic terrain capabilities will be mentioned. A
reader interested in more information about dynamic terrain is referred to:

1. Survey of dynamic terrain issues and solutions [Moshell,1994]
2. Dynamic terrain server architecture for DIS [Lisle, 1994] [Kilby, 1994]
3. Dynamic terrain capabilities in the ODIN SAF, based on destructible entities

[Stanzione, 1993]
4. Dynamic terrain capabilities for CCTT, based on model placement and switching

[Campbell, 1994]
5. Dynamic terrain database design for image generators [Li, 1994]
6. Dynamic terrain approach using a variable resolution gridded terrain representation

[Kendall, 1995]
7. Server architecture and artillery shell cratering with parameterized hill shapes in the

variable resolution gridded terrain representation [Pumell,1995]
8. Representing entity knowledge about the state of dynamic terrain, e.g. "Should the CGF

unit know that the bridge has been blown?" [Watkins,1995]
9. Simulation offluid flow and terrain effects in DIS [Chen,1994] [Chen,1995]

84

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.2 Elevation posts and gridded terrain

3.2.1 Definition

In an elevation post terrain database, the elevation of the Earth's surface is measured relative to a
vertical origin at points uniformly spaced in two dimensions relative to a horizontal origin. The
vertical origin is typically mean sea level. The horizontal spacing may be at regular latitude­
longitude increments or based on meters from a given origin. The elevation values form and are
stored as a matrix; the values are called elevation posts as a mnemonic to suggest regularly spaced
posts extending from the vertical origin elevation up (or down) to the terrain surface at each .
measured point. The elevation of the terrain surface to be represented is specified at the elevation
posts by the data; the elevation of points between elevation posts must be interpolated.

Terrain surface data given as elevation posts is available in standard forms and resolution from
public sources. The Defense Mapping Agency (DMA) provides Digital Terrain Elevation Data
(DTED) at resolutions of3 arc seconds (90-meter spacing between posts) and 1 arc second (30-
meter spacing) for many parts of the world [Schiavone,1995]. Those resolutions are referred to
as Levelland Level 2, respectively. DMA DTED is often used as source data for terrain
databases. [DMA,1995] is a complete catalog of terrain data available from the DMA.

Gridded terrain is terrain that is represented as a regular array, or grid, of uniformly sized cells.
The cells of the grid are almost always squares and square cells will be assumed herein unless
otherwise stated. The grid cells are assigned attributes that are assumed to hold for the entire
grid. Elevation is usually only one of those attributes; the grid cells may have many additional
attributes, such as terrain surface type, traffic ability, features, and many others. See Table 3.1 for
a list of example grid cell attributes.

Attribute Values
Elevation Meters
Vegetation height Meters
Urban One of: None, Present
Hydrology One of: None, Fordable river, Non-fordable river, Lake
Soil type One of: Muskeg, Fine grained, Coarse grained, Heavy clay
Power lines One of: None, Present
Bridges One of: None, Present
Land use code One of: Open water, Cropland, Pasture, Coniferous forest, Deciduous forest,

Forest clearing, Orchard/vineyard, Dense brushland, Open brushland, Wetlands,
Peat cuttings, Abandoned agriculture, Bare ground or sand dunes, Urban

Road type One of: None, Autobahn, Primary, Secondary, Trail
Obstacles One of: None, Embankment or ditch, Wall or fence, Other manmade, Military

Table 3.1 Example terrain grid cell attributes [Powell, 1988b}.

Gridded terrain is often implemented as an extension of elevation post terrain data where the grid
cells are aligned with the elevation posts (often the post marks the southwest comer of the cell)
and each elevation post's elevation is the elevation of the corresponding grid cell. Of course,
there are elevation post terrain databases with no additional attn"butes and there are gridded

85

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

terrain databases that are not aligned with specific elevation posts, but the two representations are
so similar in concept and usage that the terms elevation post terrain and gridded terrain are
sometimes used synonymously. This document will also do so, referring to the terrain
representation format as gridded terrain, with elevation posts giving the elevation attribute of such
terrain. The x,y coordinates of the elevation posts in gridded terrain are sometimes referred to as
grid points.

3.2.2 Example

Because of its importance, one specific gridded terrain representation, the SIFIHDI format, will
be described in some detail; this description follows [Stanzione,1994]. The U.S. Air Force's
Project 2851 set out to develop a standard terrain database format to allow interchange of terrain
database data between image generator (lG) manufacturers. The scope of the project was then
expanded to include non-IG users of terrain databases, including CGF systems. The DMA set up
a Simulator Database Facility (SDBF) as a central repository for terrain database data. The
SDBF uses an internal terrain database format, known as the Standard Simulator Database
(SSDB), for its data. Three formats for data interchange have been developed for use in
collecting and disseminating data for the SDBF. One of them, the SSDB Interchange
FormatlHigh Detail Input/Output (SIFIHDI), will be described here.

The SIFIHDI format is important because it is often used as a common source data format for
simulators and CGF systems with different internal terrain database representations. For example,
a SIFIHDI format terrain database for Ft. Hunter-Liggett in California was used as the common
source data for the first DIS Interoperability Demonstration. That demonstration linked 39
different simulators, simulation nodes, and CGF systems from 20 different vendors and agencies
[Loper,1993]. (A historical aside; [Wever, 1989] describes a standard interchange format for
SIMNET terrain databases. It was superseded in importance by SIFIHDI as DIS replaced
SIMNET.)

The SIFIHDI format (it is often referred to simply as SIF) has three primary data types:
1. Gridded elevation data
2. Modellibraries
3. Cultural features

Gridded elevation data. SIFIHDI stores the terrain elevation as an array of elevation posts.
SIFIHDI uses resolutions (post spacings) of3, 1,0.3, and 0.03 arc seconds; a single SIFIHDI
terrain database may contain elevation data in one or more of those resolutions. Elevation values
are given to a precision of one millimeter.

Model libraries. The SIFIHDI model libraries contain models (detailed descriptions) offeatures
that might be located on the terrain. The models in the model libraries are archetypical, in that
they are examples or centralized descriptions of features that may exist at any location, or many
locations, on the terrain database. The 2D Static model library contains models of two­
dimensional (2D) terrain and cultural features that do not change during execution, including
roads, rivers, and railroads. The 3D Static model library contains models for unchanging three-

86

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

dimensional (3D) features, such as buildings, trees, and bridges. The 3D Dynamic model library
contains models for entities that can change or move during execution, such as artillery shell
craters and vehicles. The feature models can be defined as polygons, solid geometry, or both.
Each model may be given in up to nine levels of detail. The models use the Feature Attribute
Coding Standard (FACS), which encodes physica~ cultur~ and sensor-response data about the
feature being modeled. Model attributes include color, texture, and collision test points.

Cultural features. In the SIFIHDI format, cultural features are those features that are location
specific, such as a forest with its own unique shape, or are instances of the modeled features, such
as a bridge of a particular type (found in the model library) at a specific location. The SIFIHDI
format supports six classes of cultural features; they are defined in Table 3.2. [Stanzione,1994]
observes that the point light and point light string cultural feature classes are redundant; features
of those classes can be represented as point features with the addition of a light emittance
attribute. Features are located in the terrain database by latitude and longitude to a precision of
one ten-thousandth ofan arc second. The SIFIHDI format allows homogenous sets offeatures to
be aggregated into superfeatures, which can simplify terrain reasoning.

In a terrain database, topology refers to the spatial relationships between features and how the
terrain database organization represents those relationships; in contrast, geometry refers to the
precise location or shape of a feature. The SIFIHDI has some topological representation, in that
segments and vertices between adjacent features are shared, thereby implying adjacency.
However, there is no spatial organization to the feature data; features that appear sequentially in
the database need not be located in proximity in the terrain.

Feature class Representation Attributes Example(s)
Areal Line segments that describe a closed Layer Ponds

polygon, separated at intersections Inside segments Forests
with other features Direction

Linear Line segments, separated at intersections Layer Roads
with other segments Direction Walls

Point Vertex or non-connected vertices Power poles
Point light Vertex, assumed to be light source Searchlight
Point light string Non-connected vertices, assumed to be Runway lights

light sources
Model reference Vertex and pointer to model in model Orientation Buildings

in model libraries Scale Bri<iges
All classes Feature Descriptor Code

Predominant height
Bounding rectangle

Table 3.2 SIFIHDI cultural terrainfeatures.

There have been some criticisms leveled at SIFIHDI as a general purpose terrain database
interchange format. [Hardis,1994] and [pope, 1995a] give some of those. Along the same lines,
after surveying the range of available terrain representation formats, [Trott,1995] suggests certain
additions and updates to the SIFIHDI format which would make it, in the authors' opinion, "a
standard format that will be capable of addressing all DIS Synthetic Environment requirements".

87

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

While the suggested enhancements have merit, the reference does not discuss terrain reasoning,
and the recommended format is likely not the optimum solution in that area.

More specific to CGF systems, [Stanzione,1994] analyzes the applicability of the SIFIiIDI format
to CGF systems' terrain reasoning, concluding that the data needed for CGF terrain reasoning is
available in the SIFIHDI format but that additional feature attribute standardization and spatial
organization of the data is needed to efficiently support CGF terrain reasoning. Because SIFIHDI
is typically used as a source data format and converted to each CGF system's internal terrain
database format the needed spatial organization can be computed during the conversion process.

[pope,1995a] describes how CCTT visual databases are created from DMA formats. Once
created they are converted into SIFIHDI format; the SIFIHDI terrain data is then input to the
CCTT SAF terrain database compiler, which generates the CCTT SAPs MRTDB terrain
reasoning terrain database and Quadtree plan view display terrain database (both to be described
later) from it. The intent of this process is twofold: first, to increase correlation between the
CCTT visual database and the CCTT SAPs terrain reasoning terrain database (correlation is
further discussed later), and second, to insulate the CCTT system's visual terrain database and the
CCTT SAPs terrain databases from changes to each other. According to [pope,1995a], CCTT is
the first major DIS project to use the SIFIHDI format. In discussing the same process,
[Watkins, 1995] indicates that the intermediate form is actually SIFIHDI with some extensions. It
is not clear from the reference whether a strict SIFIHDI file would be readable by the CCTT SAF
terrain database compiler.

3.2.3 Additional applications

This sub sub section briefly presents additional gridded terrain representations. They are:
1. Eagle
2. PATHPLAN
3. JPL Mobile Robot
4. Martin Marietta SAFaR
5. Stealth terrain navigation
6. Compact Terrain Database
7. NASA Ames LOS attachment
8. Model Reference Terrain Database
9. Iowa Driving Simulator

10. RAND
11. ARL Variable Resolution Terrain

Eagle. In the Eagle constructive simulation, terrain gridded at 100 meter resolution, with 10
attributes associated with each grid, is used as input to a unit route planning algorithm
[Powell, 1987] [powell,1988a] [powell, 1988b] [powell, 1989] [Wright,1990].

PATH PLAN A simple terrain grid, with elevation and explicit obstacles as the only grid cell
attributes, is used to represent a portion of Ft. Hunter-Liggett to test a robot motion planning
algorithm [Ok, 1989].

88

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

JPL Mobile Robot. A terrain representation of uniformly sized square grid cells is used to receive
and fuse sensor information for a mobile robot [Slack,1989] [Ewing,1992]. The terrain grid cells'
attributes are elevation, slope, roughness, location and height of obstacles, presence or absence of
vegetation, and composition (grass, dirt, leaves). The terrain database is centered on the robot,
rather than being of fixed extent and location, so as the robot moves the terrain grid cells' attribute
values are updated by the sensors. The terrain data is supplied as input to an abstraction process
that computes a set of terrain features for use in the robot's route planning.

. Martin Marietta SAFaR Polygonal terrain (defined later) is discretized into a hexagonal grid.
Each hexagonal grid cell has three attributes: elevation, mobility, and exposure
[Bockstahler, 1991].

Stealth terrain navigation. A gridded terrain representation, with elevation as the sole attribute
of each grid cell, is used as a test environment for route planning, intervisibility, and bounding
overwatch terrain reasoning algorithms designed for a parallel machine architecture [Teng,1992].

Compact Terrain Database . . The Compact Terrain Database (CTDB) is a gridded terrain
database format used in the ODIN SAF and ModSAF [Smith, 1992a] [Stanzione,1993]. CTDB
elevation posts are spaced at 125m intervals. By using elevation posts over much of the database
extent the CTDB format achieves considerable terrain database size reduction over the polygonal
format of its predecessor (the SIMNET SAF terrain database, to be described later); hence its
"Compact" appellation. CTDB also uses fixed point numeric representations to save space.
[Smith, 1995b] observes that the compressed format positively affects run-time performance in
that more of the terrain database can be retained in memory. However, [Watkins,1994]
comments that some of the CTDB compression is at the cost of additional run-time processing as
compared to other formats. The CTDB does include some polygonal data as well; that will be
described later.

A polygonal (triangular) representation of the terrain surface is induced from the elevation posts
by assuming a diagonal bisecting each of the squares formed by the elevation posts in the x,y
plane; see Figure 3.1. In early CTDB terrain databases, the diagonal was always Northwest to
Southeast; in the current format, it may be either Northwest to Southeast or Northeast to
Southwest, though the direction is specifiable only for a database as a whole, not for individual
squares.

Microterrain and terrain features are represented in ModSAF as polygons; they will be discussed
later. The CTDB format continues to be actively enhanced; [Smith,1995b] presents recent
enhancements and a list of projected future capabilities.

NASA Ames LOS Attachment. The NASA Ames Research Center's Vertical Motion Simulator (a
flight simulator) uses a gridded terrain representation with elevation posts only to perform point­
to-point intervisibility determinations [Sansom, 1993]. The gridded representation is constructed
in a preprocessing step from the polygonal terrain database used in the flight simulator's image
generator.

89

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Elevation Posts

(a) NWto SE (b) NE to SW

(c) Variable

Figure 3.1 Inducing polygons from elevation posts.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Model Reference Terrain Database. The Model Reference Terrain Database (MRTDB) is a
gridded terrain database format used in the CCTT SAF (as well as other simulation nodes in the
CCTT system) [Watkins,1994] [Watkins,1995]. Driving the MRTDB database design are
CCTT's demanding terrain database requirements, which are well beyond those imposed on the
SIMNET or CTDB formats [Watkins, 1994]. A few CCTT requirements are:

1. Terrain database size; 100 Km x 150 Km
2. Elevation post spacing; 30 m
3. Feature density; 30,000 structures (10,000 destructible) and

10,000,000 individual trees
The MRTDB format improves upon the CTDB's already compact format with additional data
compression techniques in order to meet CCTT's large terrain database requirements. The
improved compression allows even more of the database to be retained in memory.

As in the CTDB format, the terrain surface in the MR TDB format is taken to be the triangular
surface induced by the elevation posts. However, in MRTDB, the diagonalization is variable; the
diagonal direction for each square is stored with the elevation post at the square's Southwest
comer.

The MRTDB design is object-oriented and it is implemented in Ada. It permits different elevation
post spacings within the format. The dominant feature of the MRTDB is its extensive use of
models to describe terrain features such as trees and buildings. A set of such features are
described in the MRTDB's Feature Model Library. Instances of those features are located in the
terrain by a reference to the library entry. This method avoids a detailed description of a feature,
such as a building, at every feature location in the database. Different versions of the features can
be defined in the Feature Model Library to represent the features in different states, such as
normal, damaged, and destroyed, and the database reference switched when a particular feature's
state is changed by exercise events [Campbell, 1994]. [pope,1995a] and [pope, 1995b] provide
lists of enhancements ofMRTDB relative to CTDB.

Terrain reasoning capabilities provided by the MRTDB include elevation, collision detection,
munition impact detection, intervisibility road route planning, static obstacle avoidance, area
intervisibility, and cover finding [Watkins,1995]. That reference also discusses three novel terrain
representation issues dealt with in the MR TDB. They are:

1. Bi-Ievel terrain; representing overpasses and bridges
2. Penetrable forests; representing very large numbers of individual trees without exceeding

space limits
3. Terrain awareness; representing the state of entity knowledge about dynamic terrain

Iowa Driving Simulator. A variable resolution gridded representation is used in the Iowa Driving
Simulator (IDS) [papelis,1994]. The IDS has sufficient fidelity in its vehicle dynamics models and
terrain representation to be applied to virtual prototyping [Kuhl, 1994]. The terrain database is
partitioned in the x,y plane into arbitrary rectangles, called datazones, whose sides are aligned
with the x and y axes. Within each datazone the terrain elevation (and other attributes) are given
by regularly spaced datasets, which are essentially elevation posts. The dataset spacing is
constant within a datazone, but variable among datazones; it may be set as needed to represent

91

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

arbitrarily high resolution terrain. The IDS terrain database format supports overlapping
datazones at a given x,y location (with different z values) to model bridges, overpasses, and
similar structures. Finally, the format includes a second partitioning of the terrain in the x,y plane
into square sectors, each one with a list of the datazones it overlays, so as to speed terrain query
access.

RAND. In a quantitative analysis of route planning algorithms reported in [Marti, 1994] a gridded
terrain representation is used, with elevation the only attribute of the elevation posts.

ARL Variable Resolution Terrain. Gridded terrain based on the idea that "terrain is built up of
many hills, each with its own set of shape parameters" is used to support dynamic terrain
[Purnell, 1995]. The elevation at a particular grid point is the sum of the heights of the hills that
are pres~nt at that grid point. The terrain is changed (e.g. artillery cratering) by adding additional
hills to the terrain database. [Kendall, 1995] goes on to describe how this gridded terrain format
can be mathematically manipulated to provide gridded terrain with variable resolution. The basic
idea of the technique, called adaptive grid generation, is that the grid resolution (spacing) varies
in space, with closer grid spacings around simulation entities, and in time, with the areas of
increased re.solution moving to follow the simulation entities. This dynamic respacing of the grid
is accomplished by using elliptical Poisson equations with entity locations as point attractor
source terms to calculate the x,y coordinates of the grid points prior to calculating the elevations
of those points by applying the parametric hills.

[Kendall, 1995] proposes adaptive grid generation as a standard terrain model for DIS. While
mathematically interesting, the adaptive grid generation method has a number of unresolved
problems that call into question its applicability to DIS. Two will be considered here:
computational expense and terrain correlation.

The computational expense of the adaptive grid generation method may be prohibitively high for
DIS. To find the grid points a system of partial differential equations must be solved. In
considering the problem of computation time, [Kendall, 1995] states: "The time between
distributed interactive simulation (DIS) entity state protocol data unit (PDU) updates,
approximately five seconds, is available for updating the locations of the grid points and the
corresponding terrain elevations." This statement is erroneous on several counts:

1. DIS Entity State (ES) PDUs for a single entity are typically sent five times per second,
not once every five seconds [Cheung,1994].

2. The DIS ES PDU sending rate is variable and unpredictable, and so no fixed amount of
time can be assumed to be available.

3. Entity locations must be dead reckoned between ES PDU arrivals and those entities may
be involved in intervisibility determinations during the interarrival periods, so the detailed
terrain recalculations may be needed even more often than ES PDUs arrive.

Furthermore, the grid recalculation times given in [Kendall, 1995] for four entities exceed five
seconds, and the given results appear to not include the calculation of the elevation at the grid
points. Nearly all DIS exercises will involve many more than four entities.

92

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Ensuring terrain database correlation is another problem area with adaptive grid generation. If
every node that may sight a particular entity does not perform the grid recalculations at exactly
the same time and with exactly the same entity locations, then slightly different terrain forms will
result, possibly giving different intervisibility results.

3.3 Polygonal terrain

3.3.1 Definition

Elevation posts approximate the terrain surface by giving its elevation at a set of fixed points.
[Schiavone,1995] asserts that "DIS resources that interact with and/or represent the terrain
require a common, exhaustive, unambiguous representation of the surface of the earth." By
exhaustive and unambiguous the reference is referring to the terrain surface between the elevation
posts. The most common method of providing such a continuous 3D terrain representation is
polygonal terrain. In polygonal terrain, the terrain surface is represented as a set of 3D polygons.
The polygon set is contiguous, in that adjacent polygons share edges, and complete, in that for
every x,y coordinate within the geographic extent of the terrain database there is a terrain surface
polygon that includes that point. The z coordinate of the polygon at .any given x,y coordinate is
the terrain elevation at that point. Figure 3.2 is an example.

Gridded terrain can be converted to polygonal terrain; this conversion is often done with SIFIHDI
data as input (e.g. see [Loper, 1993]). The obvious way to do so is by taking the elevation posts
as the vertices of polygons. Typically the polygons are triangles. However, naive application of
this simple procedure can produce certain problems. First, large regions with constant elevation
or constant slope can be converted into many coplanar polygons, needlessly increasing both
storage and processing requirements for the terrain database. Second, differing polygonalizations
may derive from identical elevation post data. An example is given in Figure 3.3. The four
elevation posts in (a) can be triangulated in two different ways, shown in (b) and (c); in the
absence of other information, both are equally valid. Such ambiguity can be avoided in at least
two ways. One is by adopting a convention that all terrain databases derived from the same
gridded data and that are intended to correlate be triangulated using the same procedure, either
(a) or (b); ModSAFs CTDB uses that method. The other is to explicitly indicate which is correct;
the CCTT MRTDB uses a bit indicator for that purpose [Watkins, 1994].

[Schiavone, 1995] discusses the creation of polygonal terrain from elevation posts in somewhat
more detail, indicating that a Delaunay triangulation algorithm is commonly used. The reference
also describes the process of manually editing and enhancing a terrain database that was originally
created from elevation posts using a triangulation algorithm. [Sundaram,1994] presents an
algorithm to generate polygonal terrain from arbitrary elevation posts in real-time.

93

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3.2 Polygonal terrain.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• •
z=40 z=

60
• •

z= z=
60 40

(a) Elevation Post Z values

(b) "Saddle"

(c) "Ridge"

Figure 3.3 Different polygonal sUrfaces (b) and (c)
derived from the same elevation posts (aj.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Polygonal terrain is also often converted to a gridded form. This is usually done to provide a
simpler, more regular data structure for a terrain reasoning algorithm For example,
[Sansom, 1993] details the process of constructing a gridded terrain representation from a
polygonal IG terrain database; the former is used for intervisibility determination. A simple grid
abstraction of polygonal terrain is fairly easy to compute from a terrain database using well­
known methods. See [Nagy, 1979b] for a general approach. The exact process used varies
considerably depending on the needs of the particular terrain reasoning algorithm; specific
examples will be given later when terrain reasoning algorithms are discussed.

A Triangulated Irregular Network (TIN) is a terrain sunace composed ofa set ofpolygons
(triangles) that was not derived from an initial grid of elevation posts. Consequently, the polygon
vertices in a TIN may be arbitrarily located in the x,y plane.

The term microterrain refers to high-resolution terrain formations such as valleys, gullies, ridges,
peaks, pits, and craters. As microterrain, these formations are formed from polygons that are
usually much smaller than the surface (or macroterrain) polygons resulting from triangulating
elevation posts. Furthermore, whereas the macroterrain polygons' vertices will be located in a
regular grid in the x,y plane because of their alignment with elevation posts, the vertices of
microterrain terrain polygons will typically be arbitrarily located. Table 3.3 compares the
characteristics of typical macroterrain polygons with microterrain polygons. (The values given
are notional and are not derived from a specific polygonal terrain representation format.) Clearly,
micro terrain and TINs are related, as microterrain is often constructed from TINs, simply because
representing microterrain in a gridded or elevation post format by closely spaced posts can be
extremely expensive in terms of memory requirements.

PolYl!ons Size Vertices Terrain Database Coveral!e
Surface, macroterrain l25 meters Grid-aligned in X,y plane 98% of hic extent
Microterrain 1 meter Arbitrary in x,y plane 2% of geographic extent

Table 3.3 Macroterrain and microterrain polygon characteristics.

3.3.2 Example

Although polygonal terrain is conceptually just a set of polygons with 3D coordinates for their
vertices, polygonal terrain databases almost always use some organizational scheme on the
polygon set so as to speed access to and processing of specific parts of the terrain sunace. As an
example, the polygonal terrain database format used in the SIMNET SAF and other SIMNET
simulators, as well as the 1ST CGF Testbed, will be examined. The CGF Testbed's polygonal
format was derived from the format used in SIMNET and is nearly identical to it. This discussion
follows [Smith,1992b]. (The SIMNET polygonal format is also known as libTDB, according to
[Smith, 1995b], but this document will refer to it as the SIMNET polygonal format.)

The SIMNET polygonal format superimposes a regular partitioning of the terrain onto the
polygons. The overall terrain area is first divided into patches, which are square areas 500 meters
on a side. Each patch is further divided into a 4x4 array of 16 grid cells, which are square areas

96

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

125 meters on a side. (A terminological note: the developers of the SIMNET format actually and
confusingly call the grid cells "grids", contrary to both normal usage and this document. In this
document the term "grid cells" will be used to avoid confusion, but the reader should be aware
that the SIMNET grid cells are called grids in the references.) The polygon for a given point, e.g.
for an entity elevation and orientation computation, can be foUnd by first performing arithmetic on
the x,y coordinates of the point to determine the patch and grid cell that contain the polygon and
then searching a list of the terrain surface polygons associated with the selected patch and grid
cell, performing a polygon inclusion test on the point for each polygon. (The reader familiar with
computational geometry will no doubt recognize this as a form of the point location problem~ see
[Prep arata, 1988].)

The terrain surface polygons within a patch are stored in three arrays, repeated for each patch.
Each vertex in the patch is an entry in the vertex array, which holds the x,y, z coordinates for the
vertices. Likewise, each polygon edge is an entry in the edge array; those entries contain the
indices of the edge's vertices in the vertex array. Finally, each polygon is an entry in the polygon
array, where the entries store the indices of the polygon's edges in the edge array. The polygon
entries also contain bit masks that indicate whether the polygon overlaps with each of the 16 grid
cells in the patch. Thus, once the grid cell containing a point is determined, the bit masks can be
used to reduce polygon inclusion tests to only those polygons that overlap that grid cell.

Features are also primarily represented as polygons in this format. Roads, rivers, and lakes are
polygons, with appropriate polygon type codes, that lie on the terrain surface polygons. Man­
made structures, such as buildings, trailers, and water towers, are closed sequences of polygons
with an associated type. Treelines are open sequences of polygons. Tree canopies are closed
treelines with additional polygons to form the canopy's "roof'. Individual trees are given as open
polygons with an associated radius [Smith, 1992b].

The SIMNET format includes several useful filters [Watkins,1994]. They are:
1. Grid cell masks; allow rapid filtering of features by grid cell, as mentioned earlier
2. Grid cell maps; provide direct access to certain features by grid cell and type
3. Minimum and maximum x,y, z values; quickly eliminate patches from consideration in

some algorithms, such as intervisibility determination
4. Patch guards; control caching of patches based on a summary of patch data.

Note that in the polygonal format there is no abstract or object representation of features. The
abstract notion of a road is represented as a set of triangles and quadrilaterals of a certain polygon
type that happen to be geographically adjacent, with no topological or object relationship between
them. [Stanzione,1989] criticizes this format for that reason, saying that it " ... is not suited for
either reasoning or drawing", correctly observing that because there is no connection between the
many individual polygons of terrain features, reasoning about them is problematic. Road
following, for example, is very difficult using this format because consecutive road polygons are
not linked or even necessarily closely stored in the terrain database.

The difficulty of reasoning on the polygonal terrain database led to the use of the supplementary
quadtree terrain database (described later) in the SIMNET SAF. However, the developers of the

97

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CGF Testbed chose to perform terrain reasoning on the polygonal terrain, in spite of its difficulty,
so as to avoid all possibility ofintemal terrain correlation errors (terrain correlation will be
defined later).

3.3.3 Additional applications

This sub subsection briefly presents additional polygonal terrain representations. They are:
1. Compact Terrain Database
2. Mesh
3. Integrated Computer Generated Forces Terrain Database

Compact Terrain Database. As mentioned earlier, the Compact Terrain Database (CTDB) is a
gridded terrain database format u~ed in the ODIN SAF and ModSAF [Smith,1992a]
[Stanzione,1993]. In the CTDB format, most of the terrain surface is represented with elevation
posts. However, polygons (squares and triangles) can be used for microterrain in areas where the
regular elevation post grid does not satisfactorily describe the desired terrain. That might be the
case for data not derived from a regular grid, such as TINs. In the CTDB format, microterrain
polygons can be used for terrain configurations such as river beds and multi-level terrain (e.g.
tunnels or bridges) [Smith, 1995b].

Polygons are also used in the CTDB format to represent many of the terrain features. Table 3.4
lists ModSAFs terrain feature types and identifies those which have a polygonal representation.

Feature category Feature Polygonal representation?
Terrain surface Ground Yes

Water Yes
Structures Buildings Yes

Pipelines No
Power pylons No
Other opaque, non-penetrable structures Yes

Trees Individual trees No
Tree lines Yes
Tree canopies Yes

Linear features Roads
Rivers

Table 3.4 CTDB terrainfeatures (adaptedfrom [Longtin, 1994]).

Mesh. An arbitrary polygonal terrain database can be converted into a specialized polygonal
format called a mesh [Cunningham,1993]. In the mesh format, all of the polygons are convex,
and all terrain features (such as rivers, tree canopies, and buildings) are embedded in the polygons
rather than being situated on top of surface polygons. An algorithm to produce a mesh from an
arbitrary polygonal terrain database is given in the reference.

Integrated Computer Generated Forces Terrain Database. The Integrated Computer Generated
Forces Terrain Database (lCTDB) is a terrain database project being conducted to satisfY the
CGF terrain and environmental reasoning requirements for ARPA's Synthetic Theater of War

98

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(STOW) program The ICTDB designers intend to address the perceived shortcomings in current
CGF terrain databases and to include a richer set of terrain features and terrain reasoning
attributes in their format. Presently the ICTDB project has completed requirements analysis, data
source investigation, and preliminary design, but development and demonstrations are just
beginning. The ICTDB design uses polygons, in the form of TINs, to represent the terrain
smface. Pointers are maintained from each polygon to topologically adjacent polygons. The
polygons are also organized into square patches, which are the units of storage. Each patch is
subdivided into a virtual grid with a variable number of rows and columns, dependent on the
number of polygons in the patch. In the patch data structure, each grid cell's entry contains a
pointer to the polygon that occupies the largest portion of that grid cell. The patch and virtual
grid structure is used to speed point location operations (i.e. determining the polygon that
includes a given x,y point). Terrain features are stored in a quadtree and graph structure, similar
to those used in the SIMNET SAF and ODIN SAF terrain databases. [Stanzione,1995] repQrts
the current status of the ICTDB project.

3.4 Quadtrees

3.4.1 Definition

As classically defined, a region quadtree (or simply a quadtree) is a hierarchical data structure for
representing a 2D surface, such as a terrain database (which is 2D when projected into the x,y
plane). The surface to be represented is to be square (without loss of generality, in that a non­
square surface can be enclosed in a square). Given a surface where each point is categorized into
one of two or more categories, a quadtree partitions the surface into four equally sized quadrants,
or quads, with the partition continuing recursively until each lowest-level quad is entirely of one
category. Alternatively, if the surface includes features or objects with known locations and non­
zero extent, the surface is recursively partitioned into quads until no lowest-level quad contains
more than one feature (although a feature may span more than one quad). The quads' sizes can
vary from the size of the entire surface down to the minimum resolution of the categorization.

Quadtrees can also be used to represent elevation. For elevation, the quads are recursively
subdivided until a quad is entirely at a single elevation, or alternately, is planar within a specified
tolerance.

Each node of the quadtree data structure correspond to a quad; leaf nodes of the quadtree
correspond to quads that are not further partitioned. The nodes of the quadtree contain data for
the quad such as its category or the feature it contains.

Figure 3.4 gives an example of a classical quadtree applied to terrain representation. In the figure,
(a) shows a gridded terrain area with each grid cell assigned one of two types of terrain, and (b)
shows a quadtree representation of that terrain. The example of Figure 3.4 is typical of quadtrees
derived from gridded terrain. The terrain grid cells partition the terrain at the highest level of
resolution, corresponding to the lowest level of the quadtree, thereby defining the smallest quad
size. In such a quadtree unpartitioned quads represent sets of grid cells with the same value for
the attribute that determines the quadtree partitioning. In some cases the quad partitioning is

99

I
I
I
I
I
,I
,I
I
I
I
I
I
I
I
I
I
I
I
I

performed at every level down to a predetermined quad size, without regard for any quad
attribute, to produce a complete quadtree.

[Antony, 1988] provides information about quadtree notation, operators for moving within a
quadtree, and quadtree memory requirements. More extensive information on the general topic of
quadtrees can be found in [Sarnat, 1984].

3.4.2 Example

The SIMNET SAF uses a complete quadtree, referred to as the lib Quad. It will be presented as
an example of quadtree use in CGF systems. This explanation is largely adapted from
[Stanzione, 1989].

As implemented, the SIMNET SAF libQuad quadtree is complete; that is, all of the quadtree
nodes are expanded at every level except the lowest, or equivalently, all of the leaf nodes are at
the same level of the tree and correspond to terrain quads of identical geographic size. The size
of the lowest level quads is 2500m x 2500m That quad size was determined by experimental
analysis weighing memory required for the quadtree, which increases for smaller quads, against
object search time, which increases for larger quads.

The nodes of the quadtree contain pointers to terrain objects that are located within the node's
corresponding quad. There are five classes of terrain objects; they are:

1. Network (e. g. roads, rail lines, bridges)
2. Area object (e.g. forests, bodies of water)
3. Linear object (e.g. treelines, contour lines)
4. Point objects (e.g. trees, buildings)
5. Dynamic terrain (e. g. battlefield control measures, minefields)

A terrain object is pointed to by the node corresponding to the smallest quad that contains the
object. The object pointers within a node point to the objects' representation, which are arrays
with a structure depending on object class. Figure 3.5 shows a an example of terrain represented
in this way.

100

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

D Go Terrain

II No-Go Terrain

(a) Simple terrain Yv1th ty..Q terrain types

• Non-leaf node,
both terrain types in quad

D Leaf node,
Go terrain in quad

• Leaf node,
No-Go terrain in quad

(b) Corresponding quadtree

Figure 3.4 Quadtree applied to terrain representation (adaptedfrom (Stanzione, 1989]).

- - - ;- - - - - - - - - - - - - - - -

Road
(NetYvOrk object)

'---- ...

o

NetYvOrk Object Array

~ Lake
~(Area Object)

Figure 3.5 Simnet SAF lib Quad quadree example (adaptedfrom [Stanzione, 1989]).

x3, y3

x1 , y1

x4, y4

Lake in quad 3

Area Object
Soundry Segments

(xl yl X2 '/2)

Triangles
«xl yl X2 '/2 ltI ~)

(X2'/2 x3 y3lt1~)

_butos:

Sol typo
Troo type (Forost)
Troo. (Foro. t)

Area Object Array

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.4.3 Additional applications

This sub sub section briefly presents additional quadtree terrain representations. They are:
I. Pyramid
2. REACT
3. QUILT
4. ODIN SAF libquad
5. Compact Terrain Database
6. Integrated Computer Generated Forces Terrain Database
7. Intelligent Player

Pyramid. A pyramid (complete quadtree) supplemented with a frame based object representation
is proposed as a spatial (terrain) database design [Antony,1988]. The objects, such as lakes,
roads, or entities, are bidirectionally linked to the quadtree nodes at each level that correspond to
the quad that includes the objects.

REA CT A quadtree is used to represent terrain for automated terrain analysis in a low-altitude
air-to.-air combat application called REACT [Hayslip, 1988]. The quads of the terrain are assigned
abstract terrain types (corridor, low flat, mountain, hilly, plateau) which are determined by
preprocessing DMA elevation post data. Each quad is subdivided if its subordinate quads do not
all have the same abstract type. The size of the smallest quads is determined by the variability of
the terrain.

QUILT A quadtree-based Geographic Information System (GIS) called QUILT is used in an
expert system designed to predict minefield sites [Doughty,1988]. The quadtree quads have four
attributes: proximity to nearest road, area, mobility type (go, restricted, slow, very slow, no go,
built up, and open water), and degree of canalization. The latter attribute measures how
restricted movement is through the area represented by the quad.

ODIN SAF libQuad. The same quadtree as described for the SIMNET SAF was also used in the
ODIN SAF, a further development of the SIMNET SAF [Stanzione,1993], as well as early
versions of the ModSAF CTDB [Smith, 1995b]. A list of specific quadtree terrain objects and
their classes is given in the reference.

Compact Terrain Database. The quadtree which was a separate database in the SIMNET SAF,
ODIN SAF, and early versions ofModSAF was eliminated in favor of a quadtree integrated into
the CTDB data structures in recent versions ofModSAF [Smith, 1995b]. The nodes of the
ModSAF quadtree may be expanded using any criteria, and are not all expanded to the same level,
as was the case for its SIMNET SAF and ODIN SAF predecessors. In addition to storing linear
features where topological information is of paramount importance, such as roads, the ModSAF
quadtree is a repository for abstract terrain features, such as tree canopies, areas of steep slope,
and political boundaries. The features may be stored at both interior nodes and leaf nodes; they
are accessed via iterative fetching [Smith, 1 995b].

103

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Integrated Computer Generated Forces Terrain Database. As in the SIMNET SAF libQuad, the
ODIN SAF lib Quad, and the early versions of the CTDB, the ICTDB database design uses a
quadtree to store terrain features [Stanzione,1995]. The ICTDB quadtree may contain features at
any level of the quadtree. The features are referenced both explicitly and implicitly; the explicit
reference is at the level of the quadtree whose corresponding quads' side dimension are closest to
the feature's size. The feature is implicitly referenced (by pointer to the explicit reference) at
lower levels of the quadtree in nodes that correspond to quads that overlap the feature. The
quadtree also contains aggregate features, which are features that exist as collections of other
features, that may themselves be aggregate features. For example, a group offeatures such as
buildings, may be grouped into · an aggregate feature like a village. Aggregate features are
intended to be used in terrain reasoning by units.

Intelligent Player. Intelligent Player is a research system that uses game tree lookahead to
perform real-time control and planning of movement for a CGF helicopter in air-to-air combat
[Katz, 1989] [Katz,1991] [Katz,1992] [Katz, 1993] [Schaper,1994]. Intelligent Player uses a
quadtree terrain representation. The quadtree is used for terrain elevation only; each quad is
recursively subdivided until all points in the quad fall within a single plane, within a predefined
tolerance level. The quadtree structure, its construction, and its use for terrain avoidance and
intervisibility determination is described in [pandari, 1995].

3.5 Graphs

3.5.1 Definition

Terrain may be represented as a graph. Typically, the vertices of the graph correspond to
significant features of the terrain, such as road intersections, junctions in mobility corridors, or
local elevation maxima. The edges connect vertices that are related in a way relevant to the
definition of the vertices; for example, in a road net graph, the vertices are road junctions and an
edge connects two vertices if and only if the corresponding road junctions are connected by a
road segment. Weights are often assigned to the edges to represent a quantity or attribute of
interest within the representation scheme. In the road net graph example, the edges might be
weighted with the length of the road segment they represent. Other possible attributes upon
which edge weights might be based are traffic ability, cover, and concealment.

Terrain graphs are usually searched to find a route or path, generally with standard graph search
algorithms such as A * [Nilsson,1980] [Winston, 1984].

3.5.2 Example

A route planner developed at the Swedish National Defence Research Establishment (FaA) uses a
connectivity graph [Holmes,1992]. Vertices in the connectivity graph represent traversable
regions in a digital map and edges signify adjacency. Subdividing the overall traversable area in
the map into distinct regions is done using a vertical scan algorithm. The separation of a single
traversable region into two regions occurs at a local minimum of a non-traversable obstacle. The

104

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

algorithm depends heavily on the binary nature (traversable or non-traversable) of the source map.
The route planner searches the resulting graph using an A * algorithm.

3.5.3 Additional applications

This subsubsection briefly presents additional graph terrain representations. They are:
1. Multiple route finder
2. Eagle
3. SIMNET SAF lib Quad
4 . Neighborhoods
5. ODIN SAF libQuad
6. Compact Terrain Database
7. CGF Testbed line of sight graph
8. Integrated Computer Generated Forces Terrain Database

Multiple route finder. A straightfolWard graph representation of a road network is searched to
find multiple road routes for unit route planning [Benton, 1987].

Eagle. A graph representing unit mobility corridors is produced from a Delaunay triangulation of
gridded source terrain data [powell, 1987] [powell,1988a] [powell,1988b] [powell,1989]
[Wright, 1990].

SIMNET SAF libQuad A graph representing a road network, with road segments and road
junctions represented separately, is embedded in a quadtree in the SIMNET SAF
[Stanzione, 1989].

Neighborhoods. A hierarchically organized set of graphs is used to represent urban terrain at
different scales in a format that is more symbolic than numeric [Goe1,1991]. At a high level, a
vertex is a neighborhood and edges are major roads or adjacency relationships. The
neighborhood vertices at the high level are expanded into more detailed graphs, with street
intersections as vertices and streets as edges. At the lowest level, individual buildings are vertices
and their connections to streets are edges. Graph search is used to find progressively more
detailed routes by descending into the hierarchy.

ODIN SAF libQuad. The same quadtree-embedded graph used for road route planning in the
SIMNET SAF is also used in the ODIN SAF [Stanzione, 1993].

Compact Terrain Database. The CTDB uses a graph to represent linear terrain features (roads
and rivers) [Smith,1992a] [Stanzione,1993] [Longtin,1994] [Smith, 1995b]. Edges are road or
river segments and vertices are intersections. In the latest version of the CTDB format, the graph
has been moved out of the supplemental quadtree of earlier CTDB versions and integrated into
the terrain data patches [Smith, 1995b].

105

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CGF Testbed line of sight graph. A graph where the vertices are terrain points of tactical
imp ortance (e. g. ridge crests, treeline endpoints) and the edges are unobstructed lines of sight is
used to plan reconnaissance routes [Van Brackle,1993a] [Van Brackle,1993b] [petty,1994b].

Integrated Computer Generated Forces Terrain Database. Roads and rivers are also represented
as graphs embedded in the feature quadtree in the ICTDB design [Stanzione,1995].

3.6 Other terrain representations

This subsection briefly presents additional terrain representation methods that do not fall into one
of the four primary categories. They are:

1. Scale-space filtering
2. JPL Mobil~ Robot
3. Run-Length-Code
4. Parameterized microterrain
5. Captain abstract geometric model and semantic net
6. Obstacle segment abstraction

Scale-space filtering. [Keirsey, 1988] describes the application of scale-space filtering, a signal
processing technique, to identify important terrain features (defined in the reference as local
elevation minima and maxima). The terrain elevation data is treated as a 2D signal and processed
using a gaussian filter. Varying the filter parameter produces representations of the significant
terrain features at different levels of abstraction as small variations in the terrain are smoothed and
merged.

JPL Mobile Robot. A gridded terrain representation containing robot sensor data is used as input
to an abstraction process that computes a set of abstract spatial terrain features for use in the
robot's route planning [Slack, 1989] [Ewing,1992]. The abstract terrain features can be primitive,
which are computed directly from the attributes of subsets of the terrain grid cells by filtering
functions, or composite, which are derived from combinations of primitive or other composite
features. The set of abstract features constitutes an alternate terrain representation. [Slack, 1989]
gives the average slope of the area under the robot as an example of a primitive feature and the
preferred escape direction as an example of a composite feature.

Run-Length-Code. Binary (traversable or non-traversable) 2D terrain represented in Run-Length­
Code format is used as source data for a entity route planner developed at the Swedish National
Defense Research Establishment (FOA) [Holmes, 1992]. In the RLC format the terrain is
pixelized, i.e. it consists of a rectangular grid of discrete x,y locations. The non-traversable areas
are defined using RLC lines, where each RLC line is given by its x,y coordinates and its length.
The RLC lines are assumed to run from their given coordinates parallel to the x axis for their
given length. Non-traversable areas with a size in the y direction greater than the width of one
RLC line are built up from a "stack" of such lines.

Parameterized microterrain. [O'Byme,1993] suggests representing microterrain (1 meter scale)
not explicitly as many small polygons or closely spaced elevation posts, but rather implicitly with

106

.. I

-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

numeric parameters as attributes of macroterrain polygons or grid cells. The reference proposes
wavelength and roughness (amplitude) parameters to represent the microterrain existing in the
macroterrain area (polygon or grid cell) with which they are associated. The specific models
potentially affected by microterrain, such as movement, intervisibility, and combat resolution,
would consider the implicit microterrain in their calculations. Though not stated in the reference,
it seems obvious that the microterrain parameters for a macroterrain area could be determined by
that area's terrain type; for example, a road polygon would have less microterrain than a brush
polygon.

Captain abstract geometric model and semantic net. Captain is an automated knowledge
acquisition system designed to allow a SME to teach an automated command agent tactical
behavior [Hille, 1994] [Hieb,1995]. Captain uses two internal terrain representations, creating
them in a process termed semantic terrain transformations by its developers [Hille,1995]. First, an
input CTDB terrain database is transformed into an abstract geometric model by applying
abstraction, generalization, aggregation, and simplification operators that are relevant to the
tactical context. The resulting abstract geometric model omits much of the specific detail
contained in a CTDB terrain database. Instead, terrain regions are created which have a discrete
value in one or more offive classes: relief: cover, mobility, avenue of approach, area of
responsibility, and subunit area of responsibility. The abstract geometric model is then
transformed into a semantic net, where the classified regions of the abstract geometric model
become named objects (e.g. hill-863, avenue-of-approach-2) in the net that are associated with
each other by relationships chosen from a predefined set of terrain object relationships (e.g. IN­
FRONT-OF, WITIDN). The semantic net is used by a set of inference rules in the automated
command agent.

Obstacle segment abstraction. [Rajput, 1994b] and [Karr,1995d] describe a hybrid terrain
representation combining elements of both gridded and graph representations. Cells of a regular
square grid overlaid on polygonal terrain are assigned obstacle segments, which are abstractions
of obstacles that block movement contained in the terrain underlying the grid cell. Each cell also
is overlaid with 8 to 12 points that become vertices of a graph representing movement routes in
the terrain; vertices on opposite sides of an obstacle segment are not connected by an edge in the
graph. The graph is searched with the A * algorithm to plan unit routes.

107

.. --

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.7 Summary of CGF terrain representations

Table 3.5 gives a summary of the terrain representations swveyed in this document. Each entry in
the table has six components:

1. Category; one of Gridded, Polygonal, Quadtree, Graph, or Other
2. Application; one of CGF system, Automated terrain analysis, or Other
3. SystemIFormat; name of system using the representation, e.g. ModSAF, or name of

the terrain representation, e.g. SIFIHDI
4. Desc~ption; comments elaborating on the Category to describe the representation
5. Reference(s); papers or other references describing the representation

Terrain representations that are used strictly as intermediate working representations in terrain
reasoning algorithms will only be listed if they are interestingly different from any of the described
representational formats.

108

...

Category Application System/Format Description Reference(s)
Gridded Automated terrain analysis Eagle Fixed size 100 meter square grid cells with several [powell ,1987]

attributes, including elevation. [powell,1988a]
[powell,1988b]
[powell,1989]
[Wright, 1990]

Other (Robotics) PATH PLAN Simple gridded terrain with elevation and explicit [Ok, 1989]
obstacles as attributes.

Other JPL Mobile Robot Gridded terrain is used to receive and fuse [Slack, 1989]
environmental data from the robot's sensors. [Ewing, 1992]

CGF system Martin Marietta SAFOR Polygonal data discretized into hexagons with elevation [Bockstahler, 1991]
mobility, and exposure attributes for each hexagon.

Other Stealth Terrain Navigation Gridded with elevation only attribute. [Teng, 1992]

CGF system ODIN SAF CTDB format achieves considerable database size [Smith,1992a]
ModSAF reduction by using elevation posts to implicitly [Stanzione, 1993]

define polygons over much of the database extent. [Longtin, 1994]
Microterrain and TIN polygons are given explicitly. [Smith,1995b]

Other (Flight simulator) NASA Ames LOS Gridded with elevation only attribute. [Sansom, 1993]

------------------------- ~ -

Table 3.5 (part 1 of6) Summary ofCGF and terrain reasoning terrain representations.

I ------- ------------
Category Application S ystemlFormat Description Ref e rence(s)
Gridded CGF system CCIT SAF MRTDB is even more compact than CTDB, due to [Watkins, 1994]
(cont'd) feature representation by reference to a library of [Campbell,1994]

archetypical features . [Watkins, 1995]
[pope, 1995a]
[pope, 1995b]

CGF system Iowa Driving Simulator Elevation post spacing may vary in different portions [Papelis, 1994]
of the database, and can be set arbitrarily small [Kuhl, 1994]
to represent high-resolution terrain.

Other (Algorithm analysis) RAND Gridded with elevation only attribute. [Marti,1994]

Other (Data interchange) SIFIHDI Gridded elevation with detailed associated feature data. [Stanzione, 1994]

Other (DIS server) ARL Variable Resolution Gridded terrain where elevation is found as sum of [Purnell, 1995]
parameterized hills. [Kendall,19951

Table 3.5 (part 20/6) Summary ofCGF and terrain reasoning terrain representations.

1-------------------
Category Application System/Format Description Reference(s)
Polygonal CGF system SIMNET SAF Polygons organized into regular square patches and [Stanzione, 1989]

CGF Testbed grid cells for faster access. [Smith,1992b]

CGF system ODIN SAF Though the CTDB is primarily a gridded format , [Smith,1992a]
ModSAF explicit polygons are used for microterrain and TINs. [Stanzione, 1993]

[Longtin, 1994]
[Smith,1995b]

CGF system VCom Polygons in mesh, where all polygons are convex and [Cunningham, 1993]
terrain features are embedded in the polygons.

CGF system None (proposed) ICTDB has TIN polygons organized into regular square [Stanzione, 1995]
patches and virtual grid cells for faster access.

Table 3.5 (part 3 of6) Summary ofCGF and terrain reasoning terrain representations.

Category Application System/Format Description Reference(s)
Quadtree Automated terrain analysis None (proposed) Complete quadtree with terrain object frames [Antony, 1988]

bidirectionally linked to nodes.

Automated terrain analysis REAer Quads are assigned abstract terrain types based on
OMA elevation data.

[Hayslip, 1988]

Automated terrain analysis MSPES Quads have several attributes, including terrain type. [Doughty, 1988]

CGF system SIMNET SAF Complete quadtree with fixed size quads. Nodes point [Stanzione, 1989]
ODIN SAF to arrays representing terrain objects, such as roads [Stanzione, I 993]

and buildings. Stored separately from associated
polygonal (SIMNET) or gridded (ODIN) database.

CGF system ModSAF erOB quadtree represents topological relationships of
linear features (e.g. roads) as well as enumerated

[Smith, 1995b]

abstract features . Quadtree is contained within
the erOB patch data structures.

CGF system None (proposed IerOB) ICTOB quadtree contains individual and aggregate [Stanzione, 1995]
features. Road and river networks are also stored as
graphs within the quadtree.

CGF system Intelligent Player Quadtree stores elevation only. [Pandari,1995]

Table 3.5 (part 4 of 6) Summary of CGF and terrain reasoning terrain representations.

Category Application S,)'stemiFormat Description Reference(s)

Graph Automated terrain analysis None (proposed) Edges are roads, vertices are intersections. [Benton, 1987]

Automated terrain analysis Eagle Vertices represent junctions of mobility corridors; [powell, 1987]
edges are weighted for tactical factors (distance, [powell,1988a]
traversal, time, cover, and concealment). [Powell, 1988b]

[powell, 1989]
[Wright, 1990]

CGF system SIMNET SAF Graph embedded in quadtree represents road and [Stanzione,1989]
ODIN SAF river networks. [Stanzione, 1993]

None (proposed) Neighborhoods Hierarchically organized graphs represent terrain. [Goel,1991]
Vertices are distinct locations, edges show adjacency.

CGF system ModSAF Graph embedded in quadtree represents road and [Smith, 1 992a]
river networks. [Stanzione, 1993]

[Longtin, 1994]
[Smith, 1995b]

Automated terrain analysis FOA Vertices represent traversable regions, edges represent [Holmes, 1992]
region adjacency.

CGF system CGF Testbed line of sight Vertices are terrain locations of tactical significance, [Van Brackle,1993a]
edges represent unobstructed lines of sight. [Van Brackle, 1 993b]

[Petty, 1994b]

CGF system ICTDB Graph embedded in quadtree represents road and [Stanzione, 1995]
river networks.

Table 3.5 (part 5 of 6) Summary of CGF and terrain reasoning terrain representations.

I - - - - - - - - - - - - - - - - - - -
Category Application System/Format Description Reference(s)
Other Automated terrain analysis None (proposed) Scale-space filtering reveals existence and structure [Keirsey, 1988]

of terrain features at different scales.

Other None (proposed) Abstract spatial feature set is derived from gridded [Slack, 1989]
terrain using filter functions . [Ewing, 1992]

Automated terrain analysis FOA Binary (traversable or non-traversable) 2D terrain is [Holmes, 1992]
represented in Run-Length-Code format ; it is converted
to a graph for terrain reasoning.

CGF system None (proposed) Microterrain is represented implicitly by numeric [O'Byrne,1993] ,

parameters (wavelength and roughness).

CGF system Captain Abstract geometric model classifies terrain into regions [Hieb,1995]
with discrete values for five terrain types.

CGF system Captain Semantic net relates named terrain objects with [Hieb, 1995]
predefined topological relationships.

CGF system CGF Testbed Terrain grid cells are assigned obstacle segments [Rajput, 1 994b]
representing impassable obstacles and points that serve [Karr, 1995d]
as vertices of a graph used for route planning.

Table 3.5 (part 6 0/6) Summary ofCGF and terrain reasoning terrain representations.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.8 Terrain representation comments

3.8.1 Geographic data processing

[N agy, 1979a] is an early survey of geographic data processing; it discusses issues relating to data
structures for terrain, geometric relations and operators for terrain objects, and coordinate
transformations between terrain representations, some of which is useful background for terrain
representation.

3.8.2 Ocean and littoral terrain

By intent, this section has dealt almost entirely with representing land terrain. What of water?
The Navy has had some success in modeling deep water, primarily for anti-submarine warfare
applications. However, a terrain modeling area which has yet to be fully understood is the ocean
littoral, or coastal, zone. [Donner, 1991] presents some methods for mathematical and polygonal
modeling of the ocean surfzone. [Haeger,1994] outlines some requirements for a littoral terrain
representation, but does not provide any terrain representation design. [Craft, 199 5b] lists some
enhancements to the CTDB format that would be useful to support amphibious vehicle operations
in littoral terrain.

3.8.3 Multiple representations and terrain correlation

CGF systems sometimes use multiple terrain representations (and these CGF terrain
representations are almost always different from the terrain database used by the image generators
in the simulation system). The intent is that each CGF terrain reasoning task is performed on the
representation that best supports that task. Table 3.7 shows how the tasks are assigned to the
different terrain databases in five CGF systems. Recall that each of the CGF systems in the table
has two components: a simulator, that simulates the dynamics and behavior of the CGF entities,
and an operator interface, that allows a human operator to control the CGF entities. For ease of
reference, Table 3.6 identifies those components for each of the CGF systems. Table 3.7 shows
the terrain representation formats used by the two components for each system The table is
meant to give examples of how different terrain reasoning tasks are performed using different
terrain representation formats, and is not an exhaustive list of terrain reasoning capabilities of any
of the CGF systems contained therein.

CGF System Sim = Simulator 01 = Operator Interface Reference
SIMNET SAF Simulation Host SAFaR Workstation [Downes-Martin, 1990]
CGF Testbed Simulator Operator Interface [Smith, 1992b]
ODIN SAF, ModSAF SAFsim SAFstation [Stanzione, 1989]
ModSAF SAFsim SAFstation [Ceranowicz, 1994a]
CCTT SAF CGF SAF Workstation [Marshall, 1994]

Table 3.6 CGF system component names.

115

- - - - - - - - - - - - - - -
CGF System Cmpnt "'1 Gridded PolY2onai Quadtree
SIMNET SAF Sim na Orientation and elevation Entity route planning

Intervisibility determination Obstacle avoidance

or na Unit route planning
Road route planning
2D map display

CGF Testbed Sim na Orientation and elevation na
Intervisibility determination
Ground collision detection
Entity route planning
Unit route planning
Reconnaissance route planning
Obstacle avoidance

or na 2D map display na
Contour line display

ODIN SAF Sim Elevation and orientation na Entity route planning
Intervisibility determination Finding cover and concealment
Vehicle mobility
Ground collision detection

01 Intervisibility display na Unit route planning
Contour line display Road route planning
Hypsometric elevation display Route checking
Shaded relief display 2D map display
Terrain cross-section display

* I Sim=Simulator component, OI=Operator Interface component; see Table 3.6 for system-specific names.
*2 In most of the instances listed in this table, the Graph representation is embedded in the Quadtree representation.
na = not applicable

Table 3.7 (part 1 of 2) Terrain reasoning task assignment by terrain reasoning format in CCF systems.

- - - -
Graph "'2
na

na

na

na

Vehicle route planning

Unit route planning
Road route planning
Route checking

- -- - - -- - - - - - - - -- - - -
CGF System Cmpnt *1 Gridded Polygonal Quadtree Graph *2
ModSAF Sim Elevation and orientation na Entity route planning Vehicle route planning

Intervisibility determination Finding cover and concealment
Vehicle mobility
Ground collision detection

01 Intervisibility display na Unit route planning Unit route planning
Contour line display Road route planning Road route planning
Hysometric elevation display Route checking Route checking
Shaded relief display 2D map display
Terrain cross-section display

ccrr SAF Sim Elevation and orientation na na na
Intervisibility determination
Entity route planning
Obstacle avoidance
Unit route planning
Area intervisibility
Finding cover and concealment

OJ na na 2D map display na - . 1

* 1 Sim=Simulator component, Ol=Operator Interface component; see Table 3.6 for system-specific names.
*2 In most of the instances listed in this table, the Graph representation is embedded in the Quadtree representation.

Table 3.7 (part 2 of 2) Terrain reasoning task assignment by terrain reasoningformat in CCF systems.

References for Table 3.7
SIMNET SAF [Stanzione, 1989]
CGF Testbed [Smith,1992b] [Petty,1994b]
ODIN SAF [Stanzione, 1993]
ModSAF [Stanzione,1993] [Smith,1995b]
ccrr SAF [Watkins,1994] [Campbell,1994]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Of course, having multiple representations introduces the possibility that the different
representations of the same terrain may be inconsistent; that possibility is observed in
[papelis, 1994] and [Schiavone,1995], for example. The potential for terrain inconsistencies also
exits between different simulator nodes that may use different terrain representation formats. The
issue of whether two terrain databases that purport to represent the same terrain are consistent is
known as terrain correlation, and inconsistencies are referred to as terrain correlation error.
Terrain correlation error can seriously erode the realism of a simulation. For example, a terrain
feature such as a treeline that is differently located in two terrain databases can result in an entity
concealed on one database and exposed to enemy direct fire on another, producing an unfair fight
situation.

The general terrain correlation problem, while important and interesting, is beyond the scope of
this document. The interested reader is referred to:

I . Survey and tutorial on terrain correlation [Schiavone, 1995]
2. Terrain correlation definitions and metrics [Zvolanek,1992] [Zvolanek,1993]
3. Mechanism through which correlation errors between the two complementary

representations in the ODIN SAF and ModSAF (CTDB gridded and quadtree) are
avoided [Stanzione, 1993]

4. Terrain correlation certification using statistical hypothesis testing
[Schiavone,1994] [Goldiez,1994]

5. Terrain correlation testing associated with the I1ITSEC DIS Interoperability
Demonstrations in 1993 [Goldiez,1994] and 1994 [Nelson,1995]

6. Early ideas on measures of terrain correlation [Wever, 1989]
7. Terrain correlation errors due to differences in terrain accessing and process algorithms,

rather than data discrepancies, and how those errors are avoided in the CCTT
terrain modules [Watkins, 1995]

8. Terrain correlation errors due to overly simplistic feature representations [Watkins,1995]
9 . Avoiding terrain correlation errors by using common source data for terrain databases

intended to correlate [Stanzione,1989] [Loper, 1993]
10. Recommendation for a standard terrain representation for DIS so as to avoid terrain

correlation errors [Trott, 1995]
11. Correlation of terrain databases for different sensor types [Fawcett, 1991]

118

--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4. Terrain reasoning in CGF

In this section CGF terrain reasoning algorithms are examined. In order to organize the
exposition, special attention will be given to terrain reasoning algorithms for three crucial CGF
terrain reasoning tasks: route planning, intervisibility, and finding cover and concealment. In
each case the task is defined and then the existing CGF terrain reasoning algorithms for the task
are presented. Finally, after route planning, intervisibility, and finding cover and concealment
have been examined, several other interesting terrain reasoning problems will also be briefly
surveyed.

4.1 Terrain reasoning in military tactics

Military terrain reasoning, which informally is the analysis and understanding of terrain so as to
increase tactical effectiveness, is of paramount importance in military operations, especially
ground operations. Historically, the military significance of terrain and terrain reasoning has been
observed by soldiers, historians, and military experts for centuries. Numerous examples could be
cited; three, arbitrarily chosen, will be mentioned here. First, Sun Tzu's timeless classic The Art of
War [Sun,600BC] devotes an entire chapter to terrain reasoning. Second, in their descriptions of
some of the first actions fought in World War I by units of the French Foreign Legion newly
transferred to France from Algeria, both [porch,1991] and [Reybaz,1932] identify lack of combat
experience in European terrain and a lack of training in "the utilization of terrain" as one reason
for the heavy losses suffered by those units. Finally, in [Keegan, 1994], which is a panoramic and
thematic overview of the entire history of human military conflict, the importance of the effective
tactical use of terrain is observed in discussions of the startling successes of the Arab armies
carrying Islam through the ancient world, the tactics of Renaissance-era Swiss pikeman versus
musketeers, and the victories of the Viet Minh against the French in Indochina.

Moving from military history to current military practice, the Gulf War made apparent the fact
that modern weapons are accurate and lethal to an unprecedented (and unexpected) degree
[Bonsignore,1992]. 1bis fact has made terrain reasoning even more crucial in that suboptimum
use of terrain can result in the abrupt destruction of a fighting force. The importance of terrain
reasoning is directly asserted in [Schmitt, 1988], a U. S. Marine Corps training manual for
company commanders:

"T errain has an immense influence on how the battle will be fought. Proper evaluation and
utilization of terrain may reduce the disadvantage of incomplete information of the enemy.
Terrain provides opportunities and imposes limitations, giving a decisive advantage to the
commander who uses it best. Many battles are won or lost by the way in which the commander
uses terrain to protect his force and to bring effective fire to bear on the enemy."

The corresponding U.S. Army manual [U.S. Army, 1988], echoes the admonition:

"Master the art of clever use of terrain. " "Proper use of terrain, ... is crucial to the company
team's survival on the battlefield. "

119

--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

With the understanding that terrain reasoning is essential for the success and survival of actual
military forces, it becomes clear that effective terrain reasoning by CGF systems for their CGF
entities is also important if the CGF systems are to usefully simulate their real-world counterparts.

4.2 Terrain reasoning definitions

A number of terms are used frequently in terrain analysis and terrain reasoning; they will be
defined here. Some (but not all) of these definitions are adapted from [powell, 1987] and
[Schmitt, 1988].

1. Terrain reasoning
2. Intervisibility
3. Observation
4. Field of fire
5. Cover
6. Concealment
7. Obstacles
8. Key terrain
9. Mobility corridor

10. Avenue of approach
11. OCOKA
12. No-go, Slow-go, and Go terrain
13. Chokepoint
14. Dynamic terrain

Terrain reasoning. As defined earlier, terrain reasoning in a CGF system is the automated
analysis of a digitized terrain representation for the purposes of making behavioral decisions
involving the terrain. The overall intent of CGF terrain reasoning is that the behavior of the CGF
entities be based on the terrain to the extent dictated by doctrine. The CGF terrain reasoning
problem is that of developing algorithms to perform terrain reasoning tasks that are
computationally efficient and that lead to CGF behavior that is realistic and tactically effective.
CGF terrain reasoning tasks include route planning, seeking cover and concealment, and finding
locations that maximize fields of fire.

lntervisibility. The fact of whether or not an unobstructed line of sight exists from one entity to
another, or the process of making that determination. Unobstructed means that the line of sight
does not intersect intervening terrain (surface or features) or entities.

Observation. The presence of an unobstructed line of sight from a given location to a location (or
set of locations, i.e. an area) in question. (Compare observation with intervisibility; observation
refers to location to location, while intervisibility is entity to entity.)

Field offire. The terrain area which, for a given entity and from a given location, is viSIble and
within effective weapon range.

120

--

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Cover. Protection by terrain from observation and direct fire. For example, a ridge might provide
cover to an entity behind it. Cover can be provided by ditches, defiles, river banks, craters,
buildings, and so on.

Concealment. Protection by terrain from observation (but not direct fire). For example, a treeline
obstructs observation, but can be fired through. Note that both cover and concealment are
relative to a direction (or range of directions); a treeline provides concealment from one direction,
but not the opposite direction. The direction for which cover and concealment are defined is
usually the direction of known or expected enemy forces.

Obstacles. Natural or man-made terrain features that slow, stop, or deflect movement. Examples
include rivers, embankments, and mine fields. An obstacle may also be simply an object to avoid
while moving, such as another entity.

Key terrain. A terrain area whose seizure or control offers significant advantage to the possessor.
Key terrain is typically characterized as having observation or fields of fire to nearby avenues of
approach (defined later). Key terrain areas are often final or intermediate mission objectives. It is
possible that a key terrain feature or area dominates the battlefield to such a degree that the
overall outcome of the battle depends on its control; such terrain is known as decisive terrain.

Mobility corridor. A relatively open terrain area through which a military unit can move.

Avenue of approach. A set of one or more mobility corridors of sufficient size for a given military
unit to move. Avenues of approach are often defined relative to a destination, an objective, or
key terrain. They must be broad enough to allow the unit to maneuver and bypass obstacles and
enemy centers of resistance. Clearly, larger units require larger avenues of approach (and mobility
corridors). Good avenues of approach offer both speed of movement and cover and concealment.

OCOKA . An acronym for the five characteristics for which military planners are trained to
analyze terrain: Observation and fields of fire, Cover and concealment, Obstacles, Key terrain,
and Avenues of approach. The terrain reasoning algorithms to be examined later should also
consider the OCOKA characteristics.

Chokepoint. A point or small area through which multiple alternate movement routes are forced
to pass due to obstacles or no-go terrain. A single bridge over an unfordable river is an obvious
example of a chokepoint.

Dynamic terrain. Terrain that may change during a simulation exercise due to the actions of
agents or environmental effects in the simulation. The terrain reasoning algorithms to be covered
in this section will usually treat dynamic terrain, which can change over time, as instantaneously
static. This means that the terrain may change between terrain reasoning computations, and the
changes to the terrain will be considered by the terrain reasoning algorithms when they are
invoked, but it is assumed that the terrain does not change during a single terrain reasoning
computation.

121

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

No-Go, Slow-Go, and Go terrain. Terrain which significantly hinders movement, somewhat
hinders movement, or does not hinder movement, respectively. Characteristics that are used to
categorize a given terrain area as No-Go, Slow-Go, or Go are given in Table 4.l.

Characteristic No-Go Slow-Go Go
Urban buildup Present, Present, None

> 500 meters wide < 500 meters wide
Rivers and waterways Present, Present, None; or Present,

fordable or spannable fordable or spannable fordable or spannable
nowhere in several places everywhere

Uphill slopes > 45% uphill 30% to 45% uphill < 30% uphill
Elevation variation > 200 meters 100 to 200 meters < 100 meters
per kilometer
Obstacles Man-made or military None None
Trees > 15 cm thick and 5 to 15 cm thick and < 5 cm thick or

< 6 meter spacing < 6 meter spacing > 6 meter spacing
Hard surface roads 0 1 2 or more
per kilometer

Table 4. 1 No-Go, Slow-Go, and Go terrain (adapted from [Powell, 1987]).

4.3 Route planning

This subsection examines route planning, which is perhaps the fundamental CGF terrain reasoning
task. It begins by defining route planning, describing the two basic approaches to route planning,
and commenting on how route planning problems and algorithms differ at different hierarchical
levels and geographical scales. Then route planning algorithms are surveyed in three categories:
entity route planning, unit route planning, and reconnaissance route planning.

The algorithms surveyed focus almost exclusively on ground vehicles; they plan routes that follow
the surface of the terrain. Throughout this subsection it should be assumed that the entities are
ground entities and the routes follow the terrain's surface unless stated otherwise.

4.3.1 Definition

In general terms, CGF route planning is the process of algorithmically generating a movement
path, or route, for a CGF entity or unit from a given starting location to a given destination
location across the surface of a given terrain database. The route as generated should avoid
obstacles, which may be impassable terrain features, no-go terrain areas, or other entities. A
waypoint is a point on a route. If given as input to a route planner, a waypoint is a point through
which the route is constrained to pass; if returned by a route planner, it is usually a point at which
the route changes direction. Route planners often return the routes they produce as a sequence of
waypoints, under the assumption that the route proceeds along a straight line from each waypoint
to the next waypoint in the sequence. The waypoint list is then handed over to a route follower,
which actually moves the simulated entity along the route over time. This subsection will focus
on route planning.

122

I
I .
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Route planning was chosen for examination in this survey because it is a ubiquitous terrain
reasoning problem for CGF systems, both essential to a CGF system's behavior generation and
closely linked to the terrain. Furthermore, route planning has been widely studied, as evidenced
by the large body of literature on the subject. This is likely true for several reasons; first, route
planning is important in several application areas, including CGF and robotics; second, route
planning is a primitive behavior for CGF entities, which must be available before higher level
cognitive behavior in the general category of movement planning can be built; and finally, the
route planning problem is often easily simplified or abstracted into a form amenable to solution
using precise algorithmic methods.

In regards to abstract route planning algorithms, [Mitchell, 1988] is an excellent theoretical and
analytical survey of route planning algorithms considered under idealized geometric
circumstances .. Several of the route planning algorithms used in CGF systems and described in
this subsection can be seen as based on those found in [Mitchell,1988] and adapted to the
particular terrain representations used by the CGF system. As for the suitability of the ideal
algorithms, [Karr,1995d] mentions two problems with applying the idealized algorithms to the
"gritty" details of an actual CGF system's terrain representation, which are typical of the type and
scope of such difficulties.

4.3.2 Route planning approaches

[Benton, 1991] separates route planning algorithms into two categories, grid-based and graph­
based, and nearly all route planning algorithms do in fact fall into those categories. In grid-based
route planning, the terrain is first discretized into a grid, ifit is not already in a grid or cellular
representation. Once the grid is available, its cells are then searched, usually by exploring all cells
adjacent to a partial route in a depth-first manner. When the cell containing the destination is
reached a route is constructed as a sequence of segments from one grid cell to another.

In contrast, in a graph-based route planner the terrain is first abstracted into a graph, as described
earlier, with the edges typically weighted to reflect parameters relevant to route planning, such as
length, trafficability, exposure to enemy fire, and so on. The graph is then searched (often using
an A* algorithm; for examples see [Benton, 1987], [powell,1988b], [Stanzione,1989],
[Holmes,1992], [Cunningham,1993], [Stanzione,1993], [Campbell,1995], [Longtin,1995] and
[Karr, 1995e]); when the destination is found by the search a route is returned as a sequence of
graph edges. Depending on what information is used to weight the edges, the graph may be
computed as a pre-processing operation and stored as an alternative or supplement to another
terrain database in a different format. Clearly, graph-based planning is more general; a terrain grid
representation is a special case of a terrain graph where the vertices correspond to the grid cells'
center points and the edges correspond adjacent grid cells. In [Marti, 1994], a terrain grid is
searched with an A * algorithm using precisely that interpretation.

A simple application of grid-based planning oflong routes can lead to two significant problems.
First, a grid sufficiently fine-grained to permit passage between narrowly spaced obstacles can
require excessive memory to store. Second, searching the grid in a simple breadth-first manner

123

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

can be prohibitively costly in terms of processor utilization. Hierarchical and hybrid methods are
often used to avoid those problems; they will be explained next.

4.3.3 Route planning levels

Route planning is often conducted at two different scales or organizational levels in CGF systems,
high-level and low-level. Generally speaking, high-level route planning algorithms are used to
plan routes that:

1. are long (> I Km)
2. follow roads over much of their length
3. are more often for units than entities
4. avoid large terrain obstacles, such as rivers, urban areas, and forests
5. do not consider small terrain obstacles, such as individual trees and buildings
6. do not consider dynamic obstacles, such as moving entities

On the other hand, low-level route planning algorithms plan routes that:
1. are short (11 1 Km)
2. seldom follow roads, are primarily cross-country
3. are more often for entities than units
4. avoid small terrain obstacles, such as individual trees and buildings
5. consider large terrain obstacles at the component level, i. e. a forest is a collection of

individual trees to be avoided
6. predict the movement of and avoid dynamic obstacles, such as moving entities

The high-level and low-level route planning problems differ fundamentally in physical scale; long
vs. short distances, large vs. small obstacles, units vs. entities moving: They also differ in time
scale, both in traversal time and planning time. High-level routes take longer to traverse than
low-level routes, simply as a function of their greater length. Additionally, there is almost always
more time available to plan a high-level route than a low-level route. A movement route for a
battalion-sized unit may be generated as part of a battalion plan which in reality can take minutes
or hours to produce, whereas a low-level route for a single entity must often be planned in less
than a second to preserve realistic CGF response times.

The difference between the two levels of route planning has resulted in something of a dichotomy
in route planning algorithms. Many route planning algorithms are specifically designed for either
low-level or high-level route planning. Some CGF systems use different algorithms at the
different levels; both ModSAF [Smith,1994] and the CCTI SAF [Campbell, 1995] operate in that
manner. A recurring (but not universal) theme is a highly structured algorithm, such as A *, used
for high-level route planning to produce high-level routes that are completely planned in advance,
combined with a low-level route planning scheme that either produces low-level plans for
segments of the high-level route as those segments are traversed or possibly even traverses the
segments in a reactive heuristic manner without detailed advance planning.

For example, in the 1ST CGF Testbed, long routes are partitioned into a series of segments, each
of which is assumed to be traversable. (Here a segment is defined as a portion of a route, rather

124

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

than having its geometric definition as a portion of a line.) A detailed route is planned for each
segment using the Testbed's grid-based route planner as the moving entity reaches the waypoint
that ends the previous segment and begins the next. If a segment turns out to be untraversable
due to an impassable obstacle (e.g. a river without bridges or fords) the route planning process
fails (and the CGF operator is so notified). As another example, the CCTT SAF also uses a high­
level route planner to plan to produce overall routes around large scale obstacles, such as rivers,
forests, and urban areas, and then applies a different low-level route planner to produce routes
that avoid individual trees, buildings, and entities [Campbell, 1995]. Finally, [Benton,1991]
describes the Hierarchic Route Planner, a route planner that combines a grid-based and a graph­
based route planner. A cross-country mobility graph is searched to produce the large scale route ·
and a grid-based planner finds precise paths and traversal times between the nodes of the graph.

Of course, algorithms have been designed that use the same route planning approach as both
levels; e.g. the unit route planner described in [Rajput, 1994b] and [Karr,1995d] can be applied to
entity level route planner by simply varying the algorithm's parameters.

The next two subsubsections will survey route planning algorithms for low-level route planning
and high-level route planning, respectively. Following the descriptive distinction most often made
in the literature between the two levels, they are referred to as entity route planning and unit
route planning respectively.

4.3.4 Entity route planning

Entity route planning is the simplest and most thoroughly studied form of the route planning
problem A obstacle-free route must be found from the given starting location (usually the entity's
current location) to the destination location on a given terrain database. The mobility capabilities
of the specific entity for which the route is being planned must be considered.

This sub subsection will describe several entity route planning algorithms. They are:
1. Potential fields
2. REACT
3. PATHPLAN
4. Martin Marietta SAFOR
5. Wavefront expansion
6. Stealth terrain navigation
7. FOA
8. RAND
9. ModSAF Near Term Navigation

Potential fields. Though it is more of a reactive route finding method than a route planning
algorithm, CGF movement control based on potential fields has been proposed repeatedly. The
potential field scheme was originally devised for robot movement control; for example, see
[Arkin, 1987] or [NASA, 1993]. [Le,1991a] and [Le,1991b] advance potential fields as
specifically applied to CGF. The idea is based on the notion of artificial charged force fields with
two possible charge polarities; like charges repel and opposite charges attract. Things a moving

125

I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I

CGF entity should avoid, such as terrain obstacles, areas exposed to enemy observation, and other
entities, are assigned a charge that matches the moving entity, and thus repel it. Things that the
moving entity should move towards, such as its movement goal or its place in a formation, are
given the opposite charge, and thus attract it. At each time step, the direction (based on location)
and force (based on assigned charge strength and distance) of each repeller and attracter are
summed to produce a total movement vector, which is assigned to the moving CGF entity.

The potential field scheme has appeal in that it unifies into one method a number of route planning
and movement control considerations, including movement towards a goal avoidance of terrain
obstacles, avoidance of terrain areas exposed to enemy observation, dynamic obstacle avoidance,
and formation keeping. However, the approach has not been applied in any production CGF
system due to several problems. First, determining the correct relative values for the potential
field strengths ofthe repellers and attr~cters is difficult. Second, it is computationally expensive,
requiring a recalculation of potential field values at each time step, as compared to a route planner
that generates a route once and saves it. Finally, it is quite posSIble for the moving entity to be
routed to a local maxima of the potential fields and become trapped, unable to make progress
towards its final destination [NASA, 1993].

REA CT The algorithm described in [Hayslip, 1988] plans movement direction for a single aircraft
using a table look up based on a quadtree of abstract terrain types.

PATH PLAN [Ok,1989] presents an entity route planning algorithm which searches gridded
terrain. It differs from classic search algorithms, such as A *, in several ways. No a priori
knowledge of the terrain is assumed; instead, the algorithm uses only terrain information acquired
by a short range sensor while the entity moves. If follows therefore that only local terrain data is
used in the search. The search (and the entity's movement) is guided by simple heuristics. While
the algorithm does not produce an optimum route, in the cases tested it did come close to the
optimum route found by A * while requiring much less computation.

lv/artin Marietta SAFOR In [Bockstahler,1991] vehicle routes are found by converting a
polygonal terrain database into a hexagonal grid, with the hexagons weighted for elevation,
mobility, and exposure. The hexagonal grid is searched with an A * algorithm to find a minimum
weighted route.

Wavefront expansion. The 1ST CGF Testbed route planner uses a wavefront expansion
algorithm, previously described in [Moore, 1959], to plan entity routes from a given starting
location to a given ending location. [Smith, 1992b] explains the process in detail. The algorithm
proceeds as follows (also see Figure 4.1):

(1) Create a route planning grid. Overlay a square array, or grid, on the underlying
SIMNET format polygonal terrain, with the size of the grid cells approximately equal to
the size of the entity for which the route is being planned. The grid boundaries are
oriented parallel with the north-south and east-west axes of the terrain and is large
enough to encompass the starting and ending locations. The cells of the grid are all
initially considered to be unobstructed.

(2) Access the terrain database's feature lists to find terrain features that fall within the

126

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

grid's boundaries. For features defined as obstacles to movement (rivers, buildings,
treelines, canopies, and others), their locations given in the terrain database are used to
determine the grid cell(s) they occupy. Mark those grid cells as obstructed. A diagonal
buffering process is used to fill in grid cells adjacent to diagonal obstacles to prevent
unintended passage through diagonal obstacles.

(3) Use Bresenham's algorithm [Foley, 1982] to traverse the grid from the starting location to
the ending location to determine if a direct route of unobstructed grid cells exists.
If so, return the starting and ending locations as waypoints and stop.

(4) Assign the grid cell containing the starting location the number l.
(5) Repeat until the grid cell containing the ending location has been assigned a number:

For every unnumbered grid cell adjacent to a numbered grid cell, assign the unnumbered
grid cell a number equal to the number of the lowest numbered adjacent grid cell plus l.

(6) Beginning with the grid cell containing the end location, track back from each grid cell to
an adjacent grid cell along decreasing numbered grid cells to the starting location. While
doing so, if there are more than one like numbered grid cells to choose from, select the
one closest in Euclidean distance to the grid cell containing the starting location. Record
the sequence of grid cells so chosen as a sequence.

(7) Eliminate from the sequence any grid cells that fall on a straight line between two other
grid cells in the sequence.

(8) Convert the list of grid cells to a waypoint sequence by taking as waypoints the point
corresponding to the center of the grid cells.

(9) To avoid "stair-stepping" in the route caused by grid granularity ([Mitchell, 1988] calls
the effect "digitization bias"), apply a route relaxation test to each sequence ofthree
waypoints on the list, removing the middle waypoint of the sequence if a direct
unobstructed path exists from the two endpoints of the sequence. Return the relaxed
waypoint sequence.

This algorithm is generally fast and effective, but it does have some limitations. First, as
mentioned earlier, it may be necessary to break long routes up into segments and plan the route
using the wavefront expansion algorithm along each segment; this is due to the potentially large
amount of memory required to store the route planning grid. The waypoints that are the ending
waypoint of one segment and the starting waypoint of the next may be given by the CGF operator
or determined by the algorithm. Second, it is possible that the grid granularity can result in small
passages between obstacles being missed by the algorithm; this problem may be exacerbated by
the diagonal buffering process. Bridges especially are prone to being overlooked. Nevertheless,
the algorithm has operated satisfactorily and reliably in practical application [Chervenak, 1993]
[D'Errico, 1994].

127

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

a

I.)

(a) Terrain

:
i i

X ~ 3 ,.x. ~i :

JY "X i?\. .A " A X X ~I
X4 X .~
I~ • !

IX\ ~~X l~i
X 0 ~ i~

.X' ~ i~ X ~ ~
X- : X IX X i !

! i :

(b) Terrain wth grid and obstruction cells marked.

:y-rx \ ~ A A A X ~i
X ~X _~

• \!
~X

X I\.X

XiX X

(c) Terrain wth grid, obstruction cells marked, and route.

Figure 4.1 Wavefront expansion algorithm example.

i

!hC
Ix

X

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Stealth terrain navigation. [Teng, 1992] details an entity route planning algorithm based on
dynamic programming that was designed for a parallel machine architecture. Within the context
of several simplifYing assumptions, the algorithm selects optimum routes that consider terrain
traversibility and exposure to enemy observation. The algorithm assumes a highly discretized
environment where the terrain is gridded, entities are located discretely in the terrain grid cells
(i.e. the location of an entity is specified precisely as a grid cell), entities move discretely from grid
cell to grid cell only in orthogonal directions, and time proceeds discretely in time steps that are
the minllnum amount of time an entity might require to move from one grid cell to another.

Given a starting position and a fixed time interval, the algorithm calculates the grid cells reachable
during that interval and assigns each grid cell a numeric evaluation of the best route to that grid
cell. The evaluation of a grid cell is the amount of time not exposed to enemy observation spent
moving along the best route to that grid cell. The expo~e to enemy observation is based on
projecting enemy entity movements over the time interval. The evaluation is calculated using a
dynamic programming approach. It examines for each grid cell (the subject grid cell) at each time
step within the interval the previously found best routes to each of the subject grid cell's
neighbors. Those best routes are considered at the previous time step corresponding to the length
of time required to move from the neighboring grid cell to the subject grid cell and the exposure
to enemy observation that would occur when moving from the neighboring grid cell to the subject
grid cell. It then extends the route from the neighbor to the subject grid cell that produces the
least total exposure, keeping grid cell-to-grid cell pointers so that the route can be followed. The
algorithm depends heavily on a parallel architecture for practicality; the route evaluation and the
exposure to enemy observation of a grid cell are both recalculated for every grid cell in the terrain
at every time step when planning a route, each by a separate (virtual) processor. This entity route
planning algorithm is used for both a unit route planning algorithm and a bounding overwatch
algorithm, both of which will be described later.

FDA. [Holmes, 1992] provides extensive details on an entity route planning algorithm developed
at the Swedish National Defence Research Establishment (FOA) that searches a graph terrain
representation using an A * algorithm. Vertices in the graph represent traversable regions rather
than points, so a route in the graph is a sequence of regions through which the entity must move.
Such a sequence is called a symbolic route and uses a rule-based inference process to classify and
describe the route in symbolic terms, e.g. "left turn". Because it consists of regions, the symbolic
route must be refined to give a specific sequence of points, i.e. a geometric route, for an entity to
follow; that refinement process is also described in the reference.

129

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RAND. The entity route planning algorithm described in [Marti, 1994] searches a terrain grid
using an A * algorithm. The cost function is a composite function of distance and slope between
elevation posts. This research is interesting because its intent was not to develop a new route
planning algorithm but to quantify the relations between terrain resolution, route planning
computation time, and route quality. The reference reports a nuniber of valuable results,
including the observation that using higher resolution terrain data (i.e. more closely spaced
elevation posts) provides a linear improvement in path quality for an exponential increase in data
space. The reference shows that for a route planning algorithm that uses an overlaid grid the grid
should be aligned with the line connecting the route's start and end locations rather than with the
coordinate axes of the terrain database; see Figure 4.2. [Marti,1994] also includes quantitative
values for optimum size and resolution of the route planning grid.

ModSAF Near Term Navigation. As mentioned, ModSAF partitions ''movement control", or
route planning, into unit-level (high-level) and entity-level (low-level) [Smith, 1994] planning.
Long-term route planning done at the unit level is not time critical and is performed with
traditional planning techniques. However, ModSAF's entity-level short-term route planning is
carried out with an interesting and impressive technique described in [Smith,1994]. The method
allows moving entities to avoid terrain obstacles (such as treelines, trees, lakes, rivers, and
buildings), to cross bridges, to avoid collision with other moving entities, and to keep their places
in a formation. Note that the method as described assumes that the moving entity is moving along
the surface of the terrain.

The method depends on the use of an internal representation of space and time, referred to as the
map, that combines all relevant movement constraints (such as obstacles and moving entities) and
goals (such as the destination location and roads). The map is a three dimensional representation
where the first two dimensions are spatial and the third is temporal. Points in the map are denoted
with the triple (x,y ,1) and represent a specific point (x,y) on the surface of the terrain at a specific
moment in time (I).

While obstacles are typically three dimensional objects in the simulated world, their third
dimension is not represented in the map. Instead they are represented by their 2D bounding
volume. Stationary obstacles form infinitely tall vertical "towers" in the map, corresponding to
occupying their 2D bounding volume in the x,y plane at all times in the map. Moving obstacles
form "leaning towers" in the map as their x,y locations change over time. A route is a curve
through the map that does not intersect any of the obstacles' volumes and connects the starting
and ending locations of the routes. Figure 4.3 suggests an example of the map with a stationary
obstacle, a moving obstacle, and a curve corresponding to a route that avoids those obstacles.

Unlike many route planning methods in which movement speed is represented in a way distinct
from the spatial route (if at all), the ModSAF method includes speed in the route representation
directly as the curve corresponding to the route slopes through the third dimension of the map .
Routes planned by this method use speed changes to avoid moving obstacles. A route that slows
down will increase its slope in the map relative to the x,y plane, whereas a route that speeds up
will decrease it.

130

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Terrain grid

Terrain grid

(a) Grid aligned ..-..;th coordinate axes

(b) Grid aligned "-";th start and end locations

Figure 4.2 Two different route planning grids for the same route
endpoints (adaptedfrom [Marti, 1994J).

I
I
I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I

t

Fixed
Obstacle

Figure 4.3 ModSAF route planning map [Smith, 1994].

y

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The route planner plans a route by finding a cUlVe in the map from the entity's current location to
its goal location. The initial CUlVe is the straight line connecting the current and goal locations.
The CUlVe is modified by adding control points (points through which the CUlVe must pass) to the
curve until it does not intersect any obstacles in the map. Control points that lead the CUlVe
around obstacles in the spatial dimensions are computed using cubic splines; in particular, a
generalized form of the Catmull-Rom spline, in which the derivative at each control point is
parallel to the line connecting the previous control point to the next one, is used. Obstacle
avoidance in the temporal dimension is performed by varying the entity's movement speed, and is
computed by integrating a series of successive speed-related derivatives. See [Smith, 1994] for
the equations.

Once an acceptable CUlVe (i.e. one that does not intersect any obstacles) has been found, it is
reexamined for violations of physical performance constraints of the moving entity. The
violations considered are excessive speed, excessive turn rate, excessive deceleration, excessive
acceleration, and sharp turns. Additional spatial and temporal control points are added as needed
to the CUlVe so as to remove the violations.

The goal location for each route planner execution is either the entity's final destination, or a
location corresponding to the location the entity should occupy along the previously planned high­
level route 2.5 seconds into the future. The 2.5 second interval is the planning horizon of the
route planner. The execution horizon of the route planner is 0.5 seconds. The route planner will
replan an entity's route as soon as either the execution horizon has elapsed since the last route
plan was produced for that entity or a new obstacle has appeared within the 2D area bounded by
the map. Using a planning horizon larger than the execution horizon provides smoothness and
continuity between successive routes.

The CUlVe that results from the planning process specifies a route completely, giving both the x,y
route to follow and the speed at which the entity should be as it follows the route. Once
calculated, the route is passed to the ModSAF vehicle dynamics routines, which move the entity
along the route.

As far as could be determined from the reference, the ModSAF route planning method ignores the
z coordinate (the elevation) of the terrain. Consequently, the effects ofterrain slope on entity
speed are neglected. Furthermore, areas of extreme slope that should thereby constitute obstacles
are not so treated by the method.

4.3.5 Unit route planning

Unit route planning differs from entity route planning in several ways. One is that width of the
route becomes an important consideration. A gap between two obstacles sufficient to allow
passage for an individual entity may be a tactically unacceptable chokepoint for a company. A
second is that units, more often than entities, are constrained to have all or part of their route on
roads. Finally, units normally move in formation and a route that permits the unit to maintain its
formation while moving is generally desirable.

133

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

This sub sub section will present several unit route planning algorithms, all of which account for
one or more of these special considerations. They are:

1. Multiple route finder
2. Eagle
3. SIl\1NETSAF
4. Stealth terrain navigation
5. Mesh
6. Obstacle segment abstraction
7. ModSAF concealed routes

Multiple route finder. [Benton,1987] describes a variation of the A* algorithm to perform unit
route planning in a road network. The A * algorithm was modified to find and return multiple
non-interfering routes t4rough the graph.

Eagle. [powell, 1988a], [powell,1988b], [powell,1989], and [Wright, 1990] explain an interesting
unit route planning algorithm used in an automated terrain analysis application. ([powell, 1987]
describes a less developed predecessor of the algorithm.) In summary, the algorithm proceeds as
follows:

(1) Given a gridded terrain database, categorize each grid cell as Go (passable) or No-Go
(impassable) based on grid cell attributes in the database.

(2) Aggregate the No-Go grid cells into No-Go regions, considering a parametric minimum
separation distance. The boundaries of the No-Go regions are given as points.

(3) Compute the Delaunay triangulation of the plane based on the No-Go regions' boundary
points. Triangles inside the No-Go regions are discarded.

(4) Create a graph based on the triangulation, with the circum-centers of the remaining
triangles as vertices and edges connecting adjacent triangles. The edges are weighted for
length and other factors of interest to route planning based on the triangles.

(5) Simplify the graph by discarding vertices with exactly two edges and replacing the
incident edges with a single edge connecting the two neighboring vertices.

(6) Find unit mobility corridors by searching the graph using an A * algorithm.
(7) Combine unit mobility corridors into unit avenues of approach using a simple

distance metric.

SIMNET SAF. The SIl\1NET SAF uses the A * algorithm to search road nets stored in a quadtree
to find unit routes [Stanzione, 1989]; this approach is also used in the ODIN SAF
[Stanzione,1993]. The references indicate that both the SIl\1NET SAF and the ODIN SAF
needed an avenue of approach generation capability; their developers were apparently unaware of
the avenue of approach algorithm, described earlier, given in [powell, 1988a], [powell, 1988b],
[powell,1989], and [Wright, 1990].

Stealth terrain navigation. The entity route planning algorithm presented in [Teng,1992] and
summarized earlier can be adapted to plan routes for small units such as platoons that move in
formation. A desired characteristic for a platoon route is that the entities of the platoon be able to
move in formation and maintain intervisibility with each other. Recall that the entity route
planning algorithm evaluated and extended partial routes based on the exposure to enemy

134

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

observation of the terrain grid cells. For the unit route planning version, formation mutual
intervisibility is also considered. As each grid cell is evaluated, the mutual intervisibility of a
platoon formation centered at that grid cell is calculated. A weighted sum of unexposed time and
formation mutual intervisibility is used to evaluate a grid cell for inclusion in the route. The route
found by this method is a sequence of grid cells, corresponding to the center of the formation ;
from it routes for the individual entities of the formation are found by simple formation offsets
from the center's route. .

Mesh. A unit route planner detailed in [Cunningham, 1993] also uses the A* algorithm, but the
routes are not confined to road nets. The A * algorithm searches a specialized polygonal terrain
database format known as a mesh (described earlier; in a mesh, all of the polygons are convex)
minimizing a cost function that considers factors important to movement, such as exposure to
enemy observation, distance travelled, or penetration of excluded areas. The veI1ices of the mesh
polygons are the vertices of the search, though movement is not constrained to be along the edges
of the mesh. Additional vertices may be interpolated as needed along the existing edges and
edges may be interpolated from such an interpolated vertex to a mesh vertex, thereby allowing the
movement route to traverse the interiors of the mesh polygons. The movement cost is assumed to
remain constant within a mesh polygon. Once a unit's route is found by searching the mesh with
A *, the entities of the unit follow the route by moving in formation.

Obstacle segment abstraction. [Rajput, 1994b] and [Karr,1995d] describe a route planner for
units that uses a hybrid terrain representation that combines elements of both gridded and graph
representations. The grid generation process is a sophisticated one; the grid cells are assigned
abstract terrain types that represent topological connectivity and traversibility relationships of the
terrain in the grid cell that affect unit route planning. The method proceeds as follows:

(1) Overlay (conceptually) a regular square grid on the polygonal terrain. The grid extent is
determined by the unit's boundaries, and oriented to include the route's starting and
destination points. The grid cell size is a function of the unit's size; 125m for platoons,
500m for companies, and 1000m for battalions.

(2) Analyze the terrain underlying each grid cell. Terrain features that constitute obstacles
to movement (rivers, treelines, canopies) are abstractly encoded by assigning zero or
more obstacle segments to the grid cell. Figure 4.4 (a) shows the different obstacle
segment types, (b) is a notional terrain example, and (c) gives the resulting obstacle
segment abstraction grid.

(3) Assign either 8 or 12 sample points to each grid cell (8 if the grid cell has no
tunnel obstacle segment, 12 ifit does). The sample points become vertices ofa graph
representing movement routes in the terrain; vertices on opposite sides of an obstacle
segment are not connected by an edge in the graph. Figure 4.4 (d) illustrates the
placement of the sample points in the grid cell.

(4) Search the resulting graph with the A * algorithm to plan a unit route. The route cost
of each edge in the graph considers distance, trafficability, and concealment. Distance is
calculated as the Euclidean length of the edge. Trafficability is found as a function of
the polygon type and average slope ofa 5x5 array of points around the edge's end
vertex. Concealment is the percentage of a circular area centered on the edge's end
vertex that is observable from known enemy locations.

135

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The obstacle segment abstraction unit route planner is both flexible and efficient. It's flexibility is
due to the scalability. The size of the terrain grid cells can be changed to make the algorithm
more or less sensitive to smaller obstacles; hence it can be used to plan routes for units of any size
or even entities. It is efficient in that the obstacle abstraction scheme captures the key topological
aspects of the terrain without retaining and processing unnecessary detail. Finally, the route
planner can plan multiple distinct routes in a given terrain area by increasing the cost of sample
points that have been used in previous routes.

ModSAF concealed routes. [Longtin, 1995] presents ModSAFs algorithm to plan unit routes that
take advantage of regions that are concealed from enemy observation. The algorithm will be
covered in detail later in the subsection on cover and concealment.

4.3.6 Reconnaissance route planning

The third and final variation of route planning to be surveyed is reconnaissance route planning.
The nature of the reconnaissance route planning task differs somewhat from entity and unit route
planning, where starting and ending points are given and the route planner generates a route
between them Instead, a reconnaissance route planner is given a starting point and an area of
terrain, and it must produce a militarily effective reconnaissance route for that terrain area. A
militarily effective reconnaissance route is one that enables a reconnaissance vehicle following it
to observe (i.e. have an unobstructed line of sight to), at some point on its route, as much of the
terrain area as possible, especially points that are likely to be locations ofhostile entities.

This subsubsection will present two reconnaissance route planning algorithms. They are:
1. Objects and rules
2. All-Points

Objects and rules. [Gonzalez, 1991] reports on an attempt to perform reconnaissance route
planning using expert systems rules that operate on terrain objects. A terrain object is an abstract
element or characteristic of the terrain, such as a "bill". Terrain objects are easily identified by
human terrain analysts, but are not explicitly represented in most terrain representations; e.g. in a
polygonal terrain representation, a bill is a set of contiguous polygons whose vertices' z
coordinates are greater than those of the polygons around the set. The approach encountered two
difficulties. First, it was much harder than expected to create a set of rules for reconnaissance
route planning, even given the ability to operate on objects instead of representational details such
as z coordinates, and second, it was extremely difficult to find meaningful terrain objects within
the underlying polygonal terrain. The latter problem, abstracting terrain objects from underlying
representations, is discussed in more detail later.

136

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

m:: D o HorizonraJ and veniC31 os

DO[JO Diagonal OS

§ T_IOS

(a) Obstacle segment types

, ,

1
, ' 1

--- -------- -;
1,

! --;---t- river OSA
,

" 1 , ,

2 , ·
2

, , ,
1

_---+- canopy OSA

,
2' ·, , .' ·2

(c) Obstacle segment obstruction grid

~-.l-'" ~---+- river

j--.-+- canopy
r--;r-~~--~~~-r--~

•
I

(b) Notional terrain

•
9

:

• ~-- sample point
2

::::: :i ;;•...... ~-- cell boundary
···11 :..: 12.··

· : 5 6: f---- Obstacle Segment

•
7 f··. 10 .··: 8

(d) Sample points

Figure 4.4 Obstacle segment abstraction (Karr, J995d).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

All-Points. In contrast, a geometric and algorithmic approach to the reconnaissance route
planning task was quite successful. In this effort, reported on in [Van Brackle, 1993a], [Van
Brackle, 1993b], and [petty, 1994b], three different reconnaissance route planning algorithms were
developed. Given an area of terrain, represented in a polygonal format (to be specific, the
SIMNET format), the algorithms produced a reconnaissance route, returned as a sequence of
waypoints for a reconnaissance vehicle to move through. The best of the three algorithms, known
as "All-Points", operates as follows:

(I) Identify a set of Important Points for the given terrain area. Important points are placed
at polygon vertices, at treeline endpoints and concavity changes, and centered on each
side of features such as buildings. The intent behind identifying Important Points is that
if a reconnaissance vehicle has observed all of the Important Points, it will have
observed essentially the entire terrain area.

(2) Identify a subset of the Important Points from which all of the Important Points can be .
observed; that subset is referred to as the Route Points.
(2.1) Construct a line of sight graph on the Important Points. Treat the Important Points

as vertices and place an edge in the graph between each pair of Important Points
if and only if an unobstructed line of sight exists between them.

(2.2) Find the vertex in the line of sight graph with the highest degree (i.e. the Important
Point that can see the most other Important Points); call it P. Add P to the Route
Point set.

(2.3) Given vertex P found in step (2.2), for each vertex Q such that (P,Q) is an edge in
the line of sight graph and for each vertex R such that (Q,R) is an edge in the line
of sight graph, remove the edge (Q,R) from the line of sight graph. The idea is
that because P has been added to the Route Point set, and the Important Points Q
have been seen from P, the algorithm no longer needs to be concerned with seeing
those points from other points (the Important Points R). Note that R may equal P.

(2.4) If any edges remain in the line of sight graph, go to step (2.2).
(3) Determine an efficient order for visiting the Route Point set. This is done by treating the

points in the Route Point set as the vertices of a complete graph, with the edges weighted
according to the Euclidean distances between them, and applying a Traveling
Salesperson approximation algorithm (NEARINSERT/ARBINSERT in
[Rosenkrantz, 1974]).

(4) Return the sequenced Route Point set as a series of waypoints.

Reconnaissance routes produced by the All-Points algorithm for three test terrain areas were
compared to routes planned by human SMEs, who were military officers trained in terrain
analysis, on the same terrain areas (see Figure 4.5). The comparison used both measured and
statistical comparison techniques, as descnoed earlier in the document in the review of CGF
W &A techniques. The All-Points algorithm performed at a level comparable with the human
SMEs.

138

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-.
.. ' ~ ' . ,

-, - -,

(a) SME1's route on the Clear terrain (b) All-Points' route on the Clear terrain

(c) SME1 's route on the Mixed terrain (d) All-Points' route on the Mixed terrain

(e) SME1's route on the Rough terrain (f) All-Points' route on the Rough terrain

Figure 4,5 Reconnaissance route planning (adaptedfrom [Petty, 1994]),

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4.3.7 Dynamic obstacle avoidance

Before leaving the topic of route planning, a closely related subject should be mentioned.
Obstacles are impediments to movement, so effective route planning algorithms must avoid
obstacles. Some obstacles are motionless, or static; examples include unfordable rivers, treelines,
and impassable slopes. Other obstacles can be moving, or dynamic; the most common examples
are other moving entities in the simulation. Presumably a moving tank should not collide with
another moving tank.

Moving obstacles are referred to as dynamic. Dynamic obstacle avoidance is an important aspect
of route planning, though it is not an aspect of terrain reasoning (terrain obstacles rarely move).
Sometimes a moving entity's route around static obstacles (such as individual trees and buildings)
is planned in advance, while moving obstacles are avoided by continuously considering their
positions during the movement; e.g. the CCTT SAF [Campbell, 1995]. ModSAF, on the other
hand, uses an obstacle representation that serves for both static and dynamic obstacles
[Smith, 1994].

[Roos, 1991] describes an algorithmic method, based on dynamic Voronoi diagrams, that could be
used for dynamic obstacle avoidance. [Craft,1994b], [Karr,1995a], and [Karr,1995c] analyze an
effective CGF dynamic obstacle avoidance algorithm in detail.

4.4 Intervisibility determination

4.4.1 Definition

Intervisibility, in its simplest form, is the task of determining if one entity can see another in the
simulated environment. Intervisibility also refers to related problems, such as determining what
portion of a region can be seen from a specific location, or what is the cumulative mutual visibility
between two regions. Intervisibility determination is of fundamental importance to behavior
generation in a CGF system because many important CGF actions and responses are conditional
on sighting a hostile entity (e.g. direct fire). Intervisibility is a terrain reasoning problem because
it is the terrain that most often obstructs visibility.

Though simple in concept, intervisibility is problematic in implementation simply because of the
demands it places on CGF systems' processing capacity. Each intervisibility determination can be
quite computationally expensive, and in a simulation exercise with n entities, O(n2) intervisibility
determinations maybe required each second [petty, 1992a] [petty,1992b], producing a serious
load on CGF system performance [Sansom, 1993] [Kada,1994]. In a CGF system, intervisibility
determination is almost always the single most computationally expensive operation, potentially
consuming so much of the system's computational resources that CGF entity behavior generation
is negatively effected [Rajput, 199 5 a] [Rajput, 199 5b].

140

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Sophisticated algorithms and terrain representation data structures have been developed to reduce
the computational cost ofintervisibility. This subsection will survey several of those algorithms.
Point-to-point, point-to-region, and region-to-region intervisibility algorithms will be mentioned;
each will be defined in turn.

4.4.2 Point-to-point intervisibility

Point-to-point intervisibility is the most basic of the intervisibility operations. Informally, it is the
process of determining if the line of sight from one entity to another is obstructed by intervening
terrain. More formally, point-to-point intervisibility is the process of determining if a line segment
connecting two 3D points in the simulated environment intersects any portion of the terrain
database.

Several terms, including a few used in the preceding discussion, should be defined.

Sighter. The entity on whose behalf an intervisibility determination is initiated; the determination
is performed to establish if the sighter has intervisibility to a target.

Target. The entity whose intervisibility status, relative to the sighter, is in question.

Line of Sight (LOS). A line segment in the simulated environment connecting two given 3D
points. The two points are defined as relative to the sighter and the target. Typically, the sighter's
LOS endpoint is defined at the point where the entity's commander's head would be, relative to
the sighter's location, and the target's LOS endpoint is the center of mass or volume of the entity.

Obstructed. A LOS is obstructed if it intersects an opaque terrain element.

In this formulation of point-to-point intervisibility, several assumptions are made. Two will be
identified here. First, it is assumed that only terrain may obstruct the LOS. Of course, that is not
in fact true; other entities, battlefield obscurants such as smoke [Bess, 1991] and environmental
characteristics such as fog may also obstruct the LOS. Many intervisibility algorithms neglect
those factors, and this document will do so also, simply because they are not components of
terrain representation or reasoning. Second, it is almost universally assumed in point-to-point
intervisibility algorithms that a LOS that passes under any part of the terrain is obstructed; while
that assumption does not hold true for terrain multi-level terrain features (such as bridges), the
assumption is true often enough to make its use nearly ubiquitous.

Numerous variations of point-to-point intervisibility algorithms exist, dependent on both terrain
representation and simulation requirements. Several will be described:

1. SIMNETSAF
2. CGF Testbed
3. Algorithms C and P
4. Stealth terrain navigation
5. NASA Ames LOS Attachment
6. Compact Terrain Database

141

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7. CCTT SAF
8. Integrated Computer Generated Forces Terrain Database
9. Intelligent Player

SIMNET SAF. In the SIMNET SAF, intervisibility is probabilistic; some terrain objects, such as
treelines, do not automatically obstruct a LOS that traverses them, instead reducing the
probability of a LOS existing [Stanzione,1989]. The result of an intervisibility determination is
probabilistically chosen from a discrete set of possibilities: visible, partially visible, not visible.

CGF Testbed The CGF Testbed uses a polygonal terrain representation that is nearly identical to
the SIMNET format terrain database, which was described earlier. Both the terrain surface and
features (treelines, canopies, and buildings) are constructed from polygons. The polygons are
organized spatially and stored in pa~ches, which are square areas in the x,y plane of the terrain
database, and grid cells, which are subsquares of the patches. Each patch has arrays that store the
surface and feature polygons that it contains. Bit maps associated with the polygon array entries
indicate which grid cells the polygons overlap.

The CGF Testbed's intervisibility algOljthm is described in some detail in [petty,1992a],
[Petty, 1992b], and [Smith, 1992b]. It operates in two basic steps: point location and traversal.
Point location determines the patches and grids containing the LOS endpoints. Because the
patches and grid cells are of known fixed size, point location can be performed with simple
arithmetic operations on the endpoints' coordinates.

In the traversal step it is necessary to determine which patches and grid cells to search for possible
intersections with the LOS. In this algorithm, the patch and grid cells through which the LOS
passes (in 2D, projected into the x,y plane) are found using a modification ofBresenham's
algorithm [Foley, 1982], moving from the sighter's grid cell to the target's grid cell. Within each
grid cell on the LOS the surface and feature polygons are checked for intersection with the LOS.

Each of the surface polygons that overlaps the grid cells through which the LOS passes is checked
to determine ifit obstructs the LOS. This is accomplished by testing each of the polygon's edges
within the current grid cell for intersection with the LOS. The line intersection is computed using
x,y coordinates only. Then, if the polygon edge and the LOS are found to intersect in 2D, the z
coordinates are calculated for the edge and the LOS at the intersection point. If the z value for
the polygon edge is greater than the z value for the LOS, the LOS is taken to be obstructed.

The feature polygons in the patches and grid cells are also checked; recall that arrays containing
the features are associated with each patch. After surface polygons have been checked, the
treelines and canopies within the patch and grid cell are checked to see whether they obstruct the
LOS. The treeline and canopy check proceeds in a manner very similar to the polygon edge
check, allowing for the additional height of the features.

A /gorithms C and P. [petty, 1992a] and [petty, 1992b] describe research into point-to-point
intervisibility algorithms; that research had the goal of producing more time efficient algorithms
for point-to-point intervisibility determination. Four point-to-point intervisibility algorithms were

142

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

compared experimentally: the CGF Testbed algorithm just described, the algorithm used in the
SIMNET Plan View Display (PVD) node, and two new algorithms developed at 1ST dubbed
Algorithms C and P. Both of the new algorithms were faster than both the CGF Testbed's
algorithm and the SIMNET PVD algorithm

Algorithm C stores the terrain polygons in two data structures: a doubly-connected-edge-list
(OCEL) and a slab list. Both the DCEL and the slab list are well known data structures
commonly used in computational geometry and are defined in [Prep arata, 1988]. The process of
creating the DCEL and the slab list data structures from terrain polygons is detailed in
[petty,1992a]. Given the endpoints of the LOS (i.e. the sighter's location and the target's
location), Algorithm C perfolIDS point location using the standard slab method operating on the
slab list data structure to identify the polygons containing the LOS endpoints. The slab method
used is given in [Prep arata, 1988].

Once the polygons containing the LOS endpoints have been identified, Algorithm C's LOS
traversal follows the LOS in 2D from polygon to polygon, starting with the sighter's endpoint. If
the LOS has been determined to pass through a given polygon, that polygon's edges are tested for
intersection with the LOS to determine through which edge the LOS leaves the polygon. The z .
coordinates of the LOS and the exit edge at the point of intersection are compared to determine if
the LOS is obstructed by that polygon; if the z coordinate of the exit edge is greater than that of
the LOS at the intersection point, the LOS is determined to be obstructed. If not, the polygon
connectivity information in the DCEL is used to identify the polygon that is adjacent through the
exit edge and is thereby the next polygon the LOS passes through. The traversal ends when the
polygon containing the LOS endpoint (found in the point location step) is reached.

Algorithm P triangulates the terrain polygons and creates a data structure that is a list of triangles.
Each triangle's entry in the list stores its vertices and the adjacent triangles. The triangles
containing the LOS endpoints are found using a variation of the slab method described in
[petty, 1992a] and [petty,1992b]. Algorithm P traverses the LOS from triangle to triangle
beginning with the sighter's endpoint. At each triangle on the LOS the edge through which the
LOS entered the triangle is known. The next triangle along the LOS is determined by computing
the 20 parametric equation of the LOS with the x,y coordinates of the triangle's vertex that is not
on the edge through which the LOS entered the triangle. As in Algorithm C, the z coordinates of
the LOS and the exit edge are intersected to determine if the triangle obstructs the LOS. The
traversal ends when the triangle containing the LOS endpoint is reached.

Empirical comparison, related in [petty, 1992a] and [petty,1992b], determined that Algorithm C
had the faster point location and Algorithm P the faster LOS traversal. Both of the algorithms
were faster than the CGF Testbed's algorithm and the SIMNET PVD algorithm

Stealth terrain navigation. [Teng, 1992] describes a point-to-point intervisibility algorithm for
gridded terrain and a parallel machine architecture. The LOS is converted to a set of terrain grid
cells by projecting the LOS into the x,y plane of the terrain. Then the viewing angle from the
sighter's grid cell to every other grid cell on the line is sight is computed based on the grid cells'
elevation attributes. The LOS is obstructed if and only if the viewing angle from the sighter's grid

143

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

cell to the target's grid cell is less than the viewing angle from the sighter's grid cell to any other
grid cell on the LOS. On a parallel machine, each grid cell's viewing angle is computed in parallel
on a separate processors; the comparison is done with a scan operation.

NASA Ames LOS Attachment. [Sansom, 1993] describes the intervisibility determination method
used for the NASA Ames Research Center's Vertical Motion Simulator. In a preprocessing
phase, the flight simulator's polygonal IG terrain database is converted to a gridded terrain
representation with elevation posts only. During run-time, intervisibility determinations are
performed using a Bresenham-like 2D digital differential analyzer traversal of the terrain grid
along the LOS. The terrain elevation of the elevation posts found by the traversal is compared to
the height of the LOS, which is computed by a 3D digital differential analyzer algorithm. If the
terrain height is greater than the LOS height, the LOS is obstructed by the terrain. Note that the
terrain height is taken to be that of the elevation posts; there is no interpolation between elevation
posts when a LOS passes between the posts.

Compact Terrain Database. Intervisibility determinations in the ODIN SAF and ModSAF return
a continuous value specifying the portion of the entity that is visible, i.e. that is not obstructed by
intervening terrain. Determining the portion of an entity visible requires performing several point­
to-point intervisibility determinations to different points on the target entity. Early versions of the
algorithm would then decrease the effective visible portion of the target entity to account for
cumulative light transmittance through intervening tree foliage [Stanzione, 1993] [Smith,1995b] ;
more recently, the light transmittance model was separated from the portion visible calculations
[Smith, 1995b]. The reference also mentions the CTDB intervisibility algorithm's assumption
regarding multi-level terrain; it assumes that all terrain elements other than the terrain surface are
transparent.

CCTT SAF. In CCTT, an intervisibility determination also computes the portion, given as a
percentage, of a target entity that is visible from a sighting point. Solid objects and features, such
as terrain surface or buildings, obstruct intervisibility, while non-solid objects, such as trees,
provide partial transmittance. The complicating effect of dynamic objects on intervisibility
determination in CCTT is discussed in [Campbell, 1994].

Integrated Compact Terrain Database. The intervisibility algorithm used in the ICTDB terrain
database, as given in [Stanzione, 1995], appears to be very much like Algorithm P from
[Petty, 1992a] and [petty, 1992b]. Recall that the ICTDB is a polygonal terrain database format
where the terrain surface is defined by triangles, and each terrain surface triangle is linked to its
three topologically adjacent neighbors with pointers. The ICTDB intervisibility algorithm uses
Algorithm P's traversal method, following the LOS from triangle to triangle. The LOS enters
each triangle through an edge of that triangle. Within each triangle it determines the next triangle
on the LOS by inserting the coordinates of the third vertex (the vertex that is not an endpoint of
the edge through which the LOS entered the triangle) into the equation of the LOS. Once the
next triangle is determined the pointer to that triangle is followed.

Intelligent Player. [pandari,1995] mentions intervisibility determination using a quadtree terrain
representation for terrain elevation.

l44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4.4.3 Point-to-region and region-to-region intervisibility

Point-to-region intervisibility detennines how much, or what parts, of a terrain region are visible
from a given point. Region-to-region intervisibility measures cumulative mutual visibility between
two given regions. Point-to-region and region-to-region intervisibility algorithms often operate
by systematically applying point-to-point detenninations.

The point-to-region and region-to-region algorithms to be presented are:
I. Stealth terrain navigation
2. Simulation based planner
3. Automated mission planner

Stealth terrain navigation. [Teng, 1992] proviqes considerable detail on two intervisibility
algorithms that provide point-to-region and region-to-region intervisibility results in gridded
terrain. In the point-to-region case, the result returned is a visibility map specifying whether each
grid cell in the region is visible from the sighter's grid cell. For the region-to-region case, the
algorithm finds for each grid cell in the sighter region the number of visible grid cells in the target
region. The algorithms are highly dependent on the gridded terrain representation and on the
parallel machine architecture for which they are designed.

Simulation based planner. The automated mission planner described in [Lee, 1994a],
[Lee, 1994b], and [Lee, 1994c] uses a region-to-region intervisibility detennination in its evaluation
of the suitability of unit positions. The region-to-region intervisibility determination is performed
on two circular regions. It calculates a probability of an entity in one region being seen from the
other region by performing a set of point-to-point intervisibility determinations from points within
the two regions.

A utomated mission planner. [Karr, 1995b] descnbes an automated mission planner implemented
in ModSAF. It includes a region-to-region intervisibility function called "Area Line of Sight". It
calculates a percentage of intervisibility between circular regions. Inputs to the function are the
centers, radii, and number of sample points to check within each region. If the number of sample
points in the two regions are n1 and nz, n1 points within the first region and nz points within the
second region are selected randomly. The function then performs point-to-point intervisibility
detenninations from each of the selected points in the first region to each of the selected points in
the second region, a total of n 1 X nz detenninations. The percentage of those that are
unobstructed is returned.

4.4.4 Other intervisibility algorithms

[petty, 1992a] and [petty, 1992b] are examples of research work to reduce the computational
expense of each intervisibility detennination in a CGF system Work has also been undertaken on
the complement of that problem, which is reducing the number ofintervisibility determinations
made by a CGF system The essential idea is to use heuristics that suggest when intervisibility
detenninations can be delayed or skipped in a CGF system without unduly affecting the generated
behavior of the generated CGF entities. Some surprisingly effective heuristics have been

145

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

developed that reduce intervisibility determinations by up to 50% while delaying first sighting
times by less than a second. See [Rajput,1994a], [Rajput,1995a], and [Rajput,1995b] for details.

4.5 Finding cover and concealment

4.5.1 Definition

Cover refers to terrain that protects an entity (or unit) from direct fire; concealment provides
protection from observation. Note that by definition, cover and concealment is always relative to
an enemy direction (or set or range of directions).

The process of finding and using cover and concealment is of paramount importance in military
tactical terrain reasoning. A U.S. Marine Corps field manual [Schmitt, 1988] states:

"In the offense, use of cover and concealment allow the attacker to close with the enemy with
fewer losses. In the defense, cover and concealment protect the force against enemy preparations
and fires in support of the attack and help to deceive the enemy as to the location of the main
defensive positions. In both cases, cover and concealment facilitate surprise."

As it is in real-world military tactics, so to for CGF. Realistic and convincing CGF behavior
requires effective use of cover and concealment. [Longtin, 1994] states that "The need to find
covered or concealed locations with respect to enemy locations arises frequently in CGF systems,
since there are many real-life tactics which require this ability, such as occupying a battle position
or performing a bounding overwatch maneuver." However, doing so is a difficult problem in
CGF terrain reasoning, and some CGF systems have not been able to use cover and concealment
effectively. [Stanzione,1989] admits that the SIMNET SAF does not use cover and concealment
while moving. [Vaden, 1994] and [Mengel, 1994] mention the failure of an early version of
ModSAF to use cover and concealment, except when individual entity positions were selected by
the CGF system operator. [Meliza, 1995] criticizes a more recent version ofModSAF for not
routing entities under its control to cover or concealment when they come under fire.
Considerable work remains to be done in this area.

When defining a particular cover and concealment problem or task, there are several important
aspects to be specified. Changing any of these aspects produces a different variation of the
general cover and concealment problem The aspects are:

1. Protection desired; cover, concealment, both.
2. Degree of protection; partial, defilade, complete.
3. Relative to; specific enemy location(s), direction (direction of travel, position facing),

range of directions.
4. Enemy location(s); stationary, moving projected to a single location, moving projected to

a regIOn.
5. Subject; entity, unit.
6. Subject movement; stationary (at a location), moving (along a route)

146

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In this subsection three variations of the cover and concealment problem, and algorithms that
address them, will be examined. They are:

1. Finding cover and concealment for one or more stationary entities with respect to a single
stationary enemy location.

2. Planning an entity or a unit's route to utilize cover and concealment with respect to
multiple stationary enemy locations.

3. Executing bounding overwatch, a combination of the first two.

4.5.2 Stationary cover and concealment

ModSAF includes algorithms to find cover and concealment locations for stationary entities. The
algorithms use terrain represented in ModSAFs CTDB terrain database format. Those algorithms
are reported in [Longtin, 1994] and will be presented in some detail here. The cover-finding
algorithm will be described first, followed by the concealment-finding algorithm.

The cover-finding algorithm attempts to find hull-defilade locations for entities. A hull-defilade
location is defined as a location such that a vehicle at that location has its hull protected from
direct fire by the terrain surface while its turret is exposed. Note that this definition is implicitly
relative to a specific direction; a ridge that provides cover for a location from one direction is
likely irrelevant from the opposite direction. In fact, the ModSAF cover-finding algorithm finds
cover relative to a specific enemy location.

Along with the enemy location, a number of other parameters are input to the cover-finding
algorithm. The complete list is:

1. enemy location
2. search area
3. grid spacing
4. hull height of cover-seeking vehicle
5. main gun orientation limits
6. tree opacity
7. minimum allowed visibility
8. hull coverage
9. search state data structure

10. cover locations found array
11 . main gun elevation angles array

The role of each of these parameters will be made clear as the algorithm is described.

The algorithm proceeds as follows:
(I) Define sample points along the left, back, and right sides of the search area. The search

area, given as input to the algorithm, must be a rectangle. The side of the search area
closest to the given enemy location is designated as the front. The distance between
consecutive sample points is given by the grid spacing parameter.

(2) Define a set of2D line segments from the enemy location to each of the sample points.
These segments are called profiles. Figure 4.6 shows an example enemy location,
search area, sample points, and profiles.

147

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(3) Construct profile arrays for each of the profiles. A profile array is a set of three
dimensional points that describes the profile, or shape, of the terrain surface along
a profile. Each point in the profile array is a point at which the slope of the terrain
surface changes along the profile. Each successive pair of points defines a 3D segment;
taken together, those segments describe the 3D shape of the terrain surface along the
profile, or line segment from the enemy location to the profile's sample point.
Figure 4.7 (a) shows a profile with the connecting segments added.

(4) For each segment of each profile, examine that segment (the current segment) for a
possible covered location on that segment.
(4. 1) Construct a vector from the enemy location to the endpoint of the current segment

closer to the enemy location. Compare the slope of that vector with the maximum
slope of the vectors similarly constructed for previous segments along the profile, and
save the greater as the maximum; the maximum. is the current segment's tangent line.

(4.2) Construct two line segments, one extending from each endpoint of the current
segment perpendicular in the upwards (increasing z) direction with a length of the
cover-seeking vehicle hull height. The line segment extending from the endpoint
closer to the enemy location is testline 1, and the other is testline 2.

(4.3) If the tangent line intersects testline 1 but not testline 2, then a candidate cover
location exists. Construct a line segment by connecting the upper ends of the
testlines. Note that this new line segment, called the vehicle height segment, is
parallel to the current segment and separated from it by a distance equal to the
cover-seeking vehicle hull height. Intersect the tangent line with the vehicle height
segment. Project that intersection point to the current segment to find the
candidate cover location. Figure 4.7 (b) includes the tangent line, testlines,
vehicle height segments, and candidate cover locations for an example profile.

(5) If a candidate cover location is found, test it against the following additional constraints:
(5 .1) Is the candidate cover location within the search area? Because part (or all) of the

profile may lie outside the search area, the candidate location is tested for inclusion
in the rectangular search area.

(5 .2) Does the slope of the terrain surface polygon at the candidate cover location allow
a vehicle located there to aim its main gun at the given enemy location, given the
main gun orientation limits provided as input?

(5 .3) Is the enemy location visible from the candidate cover location? As mentioned
earlier, the ModSAF CTDB point-to-point interviSlbility routines returns a value
indicating the portion of the target entity that is visible. Though the reference does
not make this clear, it seems reasonable that the minimum allowed visibility
parameter is applied to an enemy entity at the enemy location; the enemy location
is considered to be visible if and only if the portion of an entity at that location
exceeds the parameter. The tree opacity parameter is used in the point-to-point
intervisibility calculations to model the effects of trees, which are neither
completely transparent nor completely opaque.

If the candidate cover location passes all of these tests, it is added to the cover locations
found array. The main gun elevation required to aim the main gun at the enemy location
from the cover location is also stored in the corresponding entry in the main gun
elevation angles array.

148

I
I
I
I
I
I
I
I
I
I
I
I

Enemy .~
Location 4'

~
~",.qll'
~ WIll'

/~W;IIIII
// ij~ 'IIIIIR.

/ /11 fij;;/II/ 11/,
I II //;11 I 1/ 1110

Profiles / 1// //;11 I I / 1,,"

~
I 1/ III 11/

/ 1/ //; I I I /fill
II //; I I I / I flU.

/-1/ III/I
I I 1/ /111 I I / II/II

I I I /1 111/1.
/ I / //1 I I I I I 1/1'

samPle-==::::::::: I /1 // / / II I / / / / /In
Point ,I I / //1 I I I / I II/I

I / // I I I I I / I 11/
/ / I I I I I / 1/1

/ I II I / I / / / II
Grid I / I I I S~ar~h / I I

Spacing / I I I IAr,a / I I
I II I I I / I
I I I I / I

I I /

Figure 4.6 ModSAF cover and concealment search area with profile array segments I [Longtin, 1994].

I
I
I
I
I
I

I
I ·
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vehicle Height
Segment

(a) Profile for cover

c
testline 2

testline 1

Sample
Point

& B ~ ~
~ "-.... , - - - - -

~~~~: ··············t 
~~/ / ~ ~ / 

.... ~ / 
/ 

Tang"}, Line 

// Sample 
~ Point 

Enemy ~ ~ 

Location ~ ~ ~ ~ __ - -/~.. Vehicle Height 

~~
_~~~= -k- // ..... ~egment 

~ - /- 2·" .. ~<.. - ::::-- ••• "... •• 
- A;>CB ••••••• 

o 3 

1 ' ... 

(prOfile Segments 

(b) Profile for concealment 

Figure 4. 7 Example ModSAF profiles for cover and concealment [Longtin, 1994]. 



I 
I .. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The ModSAF concealment-finding algorithm attempts to find locations that are concealed by 
terrain features (treelines and buildings). It is very similar to the cover-finding algorithm As with 
cover, concealment is found relative to a given enemy location. The concealment-finding 
algorithm differs from the cover-finding algorithm given earlier only in step (4); that portion of the 
concealment-finding algorithm is given here. 

( 4) For each segment of each profile, examine that segment (the current segment) for a 
possible concealed location on that segment. 
(4.1) Construct a vector from the enemy location to the endpoint of the current segment 

closer to the enemy location. Compare the slope of that vector with the maximum 
slope of the vectors similarly constructed for previous segments along the profile, 
and save the greater as the maximum; that maximum is the tangent line of the 
current segment. 

(4 .2) Construct two line segments, each extending from the current segment 
perpendicular in the upwards (increasing z) direction with a length of the 
concealment-seeking vehicle hull height. One line segment, testline 1, extends 
from the current segment's endpoint closer to the enemy location. The other, 
testline 2, extends from the point on the current segment which is a perpendicular. 
projection of the point at which the distance between the tangent line and the 
current segment becomes greater than the vehicle height. Construct the vehicle 
height segment by connecting the upper endpoints oftestline 1 and testline 2. 

(4.3) Test the terrain features in the patch for intersection with vehicle height segment. 
If the vehicle height segment intersects a treeline or building, calculate a candidate 
concealment location just behind (relative to the given enemy location) the feature. 

The concealment-finding algorithm is otherwise identical to the cover-finding algorithm, including 
the application of the three additional constraints (search area inclusion, main gun elevation limits, 
and enemy location intervisibility). 

Note that cover, because it protects from both observation and direct fire, is normally to be 
preferred to concealment, which does not protect from direct fire. When ModSAF attempts to 
find locations for the entities of a unit, it will first search for covered locations. 

Because the time required to completely search the search area for cover and concealment 
locations could easily exceed the time available for a single entity's execution cycle ("tick") in 
ModSAF, the cover-finding algorithm is designed to partially execute and then save its state, 
performing a complete search over the course of several calls. The search state data structure 
contains the data needed for that capability. 

A few evaluative comments regarding these two ModSAF algorithms can be made. Both 
algorithms will miss cover or concealment locations that happen to fall between the profile array 
lines. This will occur unless that parameter is set to a fairly small value (such as a typical vehicle's 
length). Thus the algorithms' effectiveness can be highly dependent on the grid spacing 
parameter. Of course, a small grid spacing parameter will result in a longer search time. The user 

151 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

has some control over the fidelity and computation expense of the cover-and-concealment-finding 
algorithms by adjusting the parameter. 

Though the algorithms seem to be focused on vehicles, with their use of hull height, they are 
actually easily adaptable to dismounted infantry by treating the shoulder height of a standing 
soldier as the hull height, and the soldier's head as the turret. 

Both the cover-and-concealment-finding algorithms operate based on a single enemy location. 
[Longtin, 1994] acknowledges this as a problem, especially for finding cover. 

It is not clear why the search area test is not applied until after the considerable computational 
expense of finding cover or concealment locations along the profiles has been incurred, instead of 
simply terminating the search along a profile at the point it leaves the search area. 

4.5.3 Cover and concealment during movement 

Planning a route and executing movement to take advantage of cover and concealment is an 
important part ofCGF terrain reasoning; [Longtin, 1995] asserts that "A concealed-route 
algorithm is a vital component of CGF systems since it is a major contributor toward the realism 
of the generated forces. II 

U sing cover and concealment during movement can be more difficult than finding covered or 
concealed locations for stationary vehicles. However, there have been theoretical and practical 
CGF algorithms developed that use, in some form, cover and concealment during movement. 
Several will be described here. They are: 

1. Theoretical maximum concealment 
2. ODIN SAF cover during movement 
3. ODIN SAF cover under fire 
4. ModSAF concealed routes 
5. LeatherN et concealed routes 

Theoretical maximum concealment. [Mitchell, 1988] describes an algorithm, as a special case of 
the weighted regions shortest path problem, for finding a route that provides maximum 
concealment. However, the algorithm operates on a simplified terrain representation that is not 
found in any existing CGF system 

ODIN SAF cover during movement. [Stanzione,1993] describes, without providing a detailed 
algorithm, a procedure for use of cover in movement in the ODIN SAF system Infantry Fighting 
Vehicles (IFV s), while moving, can detect a sudden increase in its area of obsetvation. lbis 
would typically occur when the IFV is cresting a hill. (Note that in order to detect the change the 
IFV must be performing intervisibility calculations to determine its area of obsetvation on a 
periodic basis. Presumably the frequency at which the area of obsetvation is determined is related 
to the IFVs speed of movement, though the reference does not say so.) When the area of 
obsetvation increases suddenly the IFV will stop. By keeping track of slope of the terrain in front 
of the IFV, the algorithm can stop the IFV just short of the crest so that only the IFV's turret is 

152 



I 
,I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

exposed above the crest. From this defilade location the IFV can scan the surrounding area for 
enemy entities before moving further. 

ODIN SAF cover under fire . [Stanzione, 1993] also discusses the use of cover in the ODIN SAF 
system as a behavioral response to enemy fire. According to the reference, "SAF ground vehicles 
and Dr will move away from dropping artillery and look for trees to use for cover." The quadtree 
terrain database is consulted to find the closest tree to move towards. As described, this behavior 
does not make sense. First, a tree provides little or no protection from artillery damage. Second, 
trees are concealment (protection from observation), not cover. Thus, it is not clear why an entity 
should seek the concealment that a tree offers in response to an artillery barrage, which is usually 
indirect (i.e. unobserved) fire. 

ModSAF concealed routes. [Longtin, 1995J provides a focused description of a procedure used in 
ModSAF to plan a route from a given start point to a given goal location that uses concealment. 
The procedure operates on ModSAFs CTDB terrain database format. It takes as input the start 
and goal locations and a set of enemy descriptors. Enemy descriptors may be of three types: 

1. Enemy direction; 2D vector, giving the general direction of enemy entities. 
2. Enemy location; specific location of a known or suspected enemy entity. 
3. Enemy area; a 2D x,y polygon enclosing a terrain area expected to contain 

enemy entities. 
The input set of enemy descriptors may contain zero or more of each type. Note that the 
flexibility provided by the different types and arbitrary number of enemy descriptors allows the 
concealed route procedure to operate under circumstances of varying degrees of specificity with 
regard to information about enemy locations. 

The concealed route plan is divided into two main phases. First a map of concealed areas is 
found, and then an optimally concealed route is planned using that map. Given the start and goal 
locations, the procedure operates as follows: 

(1) Construct a concealed area map. 
( 1. 1) Define the search area, a 2D rectangle enclosing the start and goal locations in the 

x,y plane, and a grid oflocations within that rectangle; this data structure is the 
cumulative concealment map. The spacing of the grid locations is a parameter to 
the procedure. The grid locations correspond to locations in the terrain. 
Associated with each grid location is an exposure attribute that indicates whether it 
is exposed to enemy observation, with an exposure attribute value of one signi.fying 
concealed and a value of zero signi.fying exposed. All of the exposure attributes 
for the cumulative concealment map are initially set to one. 

( 1.2) For each enemy descriptor, calculate the concealed area relative to that descriptor 
and combine it with the concealment map. 
(1.2.1) Create a working concealment map for the enemy descriptor, setting all of 

the working concealment map's exposure attributes to zero. 
(1.2.2) Determine which of the grid locations are concealed relative to the 

enemy descriptor and set those exposure attributes to one. The manner in 
which this is done depends on the enemy descriptor's type. 
For enemy directions: Set the exposure attributes of grid locations 

153 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"behind" (relative to the direction) treeline, tree, and building features, for 
a fixed distance, to one. Elevation is not considered, because there is no 
elevation associated with the enemy direction descriptor. 
F or enemy locations: Perform an intervisibility determination from the 
enemy location to each grid location. If the line of sight is obstructed, set 
the exposure attribute to one. 
F or enemy areas: Compute the principal axis of the search area, and 
define a series of line segments within the enemy area, perpendicular (in 
the x,y plane) to that axis, and separated by a distance dependent on the 
grid spacing. Project each segment on the terrain surface, and find the 
point on that projection with the highest elevation. Find the concealed 
locations for each of those highest points as if it was an enemy location. 

(1.2.3) Intersect the working concealment map with the cumulative concealment 
map by performing a logical AND of the corresponding grid location's 
exposure attributes. 

(1 .3) Polygonalize the cumulative concealment map by computing polygons that enclose 
each disjoint cluster of adjacent grid locations with exposure attnlmtes of one. 
Provide the set of concealment polygons to the second phase of the procedure. 

(2) Plan a route that utilizes the concealed areas (see Figure 4.8). 
(2.1) Construct a graph from the polygonal concealment map. The vertices of the graph 

will correspond to x,y locations in the terrain and the edges to straight segments 
between those locations. The edges will be assigned weights representing their 
length exposed to enemy observation. 
(2.1.1) Convert the concealment polygons' vertices to a coordinate system with the 

x axis aligned with a line passing through the start and goal locations. 
(2.1.2) Add the start and goal locations to the graph's vertex set. 
(2.1.3) For each concealment polygon, add two vertices to the graph 

corresponding to the polygon's vertices with the minimum and maximum x 
coordinates. Add an edge to the graph connecting these two vertices. 
Assign that edge a weight of zero. 

(2.1.4) For each vertex in the graph's vertex set, add edges from that vertex to the 
three vertices closest to it that have greater x coordinates and that are not 
already connected to it. If there are fewer than three such vertices, than 
add only the allowed edges. Assign each added edge a weight 
corresponding to the 20 Euclidean distance along that edge. 

(2.2) Search the graph using the A* algorithm, minimizing edge weights, i.e. exposed 
distance. Use the Euclidean distance from the start location to the goal location as 
a pruning criteria. 

(2.3) For any edges of the optimum route that have weight zero but that are not entirely 
within a concealment polygon (this might happen for a non-convex concealment 
polygon), adjust the route by replacing that edge with a series of edges that remain 
within the concealment polygon. 

154 



I 
I · 
I 
I 
I 
I 
I 
I 
I 
I ' 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• • edge 

, concealed region 

goal vector 

/ 
Figure 4.8 ModSAF concealed route planning graph (adaptedfrom [Longtin,1995]). 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Just as in the cases ofModSAFs cover-and-concealment-finding algorithms described earlier, the 
concealed route planning algorithm may require more computational time than is available in a 
single ModSAF entity time-slice, or tick. The concealed route planner is designed to save its state 
and be resumed across multiple ticks. 

[Longin,1995] identifies several ways the concealed route planner might be improved. The most 
important deficiency is that the procedure ignores obstacles to movement such as rivers and steep 
slopes. Such obstacles are considered only after the concealed route has been planned; when 
found, the planned route is modified to bypass the obstacles. That modification process may lead 
to sub-optimal routes because the extra exposed movement added for obstacle avoidance was not 
considered by the route planner. 

LeatherNet concealed routes. LeatherNet is a version ofModSAF with specialized capabilities 
and behaviors for U.S. Marine Corps individual infantrymen [Howard, 1995]. LeatherNet includes 
a route planning algorithm that takes advantage of concealment [Hoff: 1995]. The algorithm 
applies the shortest-path paradigm (so denoted in [Mitchell, 1988]) wherein regions of terrain are 
weighted with non-negative costs per unit oftraversa~ the total cost of a route is computed by 
summing the cost incurred in each section traversed, and the route planning algorithm minimizes 
the route's cost. The cost values can be computed as a function of a number of different terrain 
characteristics. For example, higher cost values may be associated with movement obstacles and 
areas exposed to enemy observation, and lower cost values with passable terrain and concealed 
areas. Note that the shortest-path paradigm as described and as used in LeatherNet is essentially 
2D; terrain elevation is considered in route planning only indirectly, in that it contributes to 
determining concealed regions. 

The shortest-path paradigm allows the terrain representation to be either "grid-based", where the 
terrain regions are regular (typically square) and offixed size, or "weighted regions", where the 
overall terrain is partitioned into contiguous non-overlapping polygonal subdivisions of arbitrary 
size. The LeatherNet algorithm uses the weighted regions approach, primarily because the 
application's emphasis on individual combatants requires the ability to represent terrain features of 
small size relative to the overall terrain extent. Using a grid-based representation would require 
using a grid spacing as small as the smallest feature to be represented, which would result in a 
very large grid, expensive in both memory utilization and processing time. Using the weighted 
regions approach, small features of interest may be represented by small polygons, and large 
featureless regions may be represented by large polygons. In contrast, the ModSAF concealed 
route planner described earlier, which is primarily oriented towards units and vehicle-sized 
entities, determines concealed regions using a grid-based representation. 

The algorithm is given start and goal locations and the CTDB terrain database. As is typica~ a 
20 rectangular search area enclosing the start and goal locations is defined. Then, from the 
CTDB a weighted regions terrain representation, called the movemap, is developed. First, CTDB 
terrain features that are obstacles to movement are added to the movemap by transferring their 
polygonal footprint; those regions are assigned a high cost. Second, concealed regions defined as 
polygons are added to the movemap; they are assigned a low cost. (The source of the concealed 
region polygons will be addressed later.) Finally, the area of the movemap not enclosed in either 

156 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

obstacle or concealed region polygons is tessellated to produce a complete partition of the search 
area into convex polygons; the regions created in this step are assigned medium cost. 

Once the movemap is complete, it is passed to the weighted regions route planning algorithm, 
which is a direct implementation of the "Continuous Dijkstra" algorithm explained in detail in 
[Mitchell, 1991] and summarized in (Hoff: 1995]; those descriptions will not be repeated here. The 
algorithm has worst case complexity of O(nB) , where n is the number of vertices in the movemap, 
but often runs much faster than the worst case in practice. 

The greatest shortcoming in the LeatherNet concealed routes algorithm is that the concealed 
regions must be identified manually, i.e. by the CGF operator. The concealed regions polygons 
used to build the movemap are created by a human operator and input to the movemap generation 
process via a file. Clearly it would be preferable for the concealed regions to be identified 
automatically. [Hoff:1995] suggests a possible method to do so, and lists several other ways the 
algorithm could be improved. 

4.5.4 Bounding overwatch 

Bounding overwatch is a military tactic developed by the U.S. Army for movement by a unit when 
enemy contact is expected. If executed properly, it combines both the stationary and moving and 
the entity and unit aspects of the use of cover and concealment. 

When moving by bounding overwatch, a unit splits into two elements; the entities of an element 
operate together. Each element takes a role, either bounding or overwatch. The overwatch 
element remains motionless, watching the terrain ahead for enemy forces, and stands ready to 
protect the bounding element with fire if enemy forces are sighted. The bounding element moves 
forward as far as possible while still remaining within the area that can be protected by the 
overwatch element. The bounding element moves to a position from which it can survey the 
terrain in the direction the unit is to move. Once it reaches that position, the elements switch 
roles, with the former bounding element now performing overwatch and the former overwatch 
element bounding forward, moving past the overwatch element to the next position in the 
direction of advance. 

Controlling the cooperative behavior of bounding overwatch is a behavioral control problem; see 
[Rajput, 1995b]. However, finding a good overwatch position is clearly a problem in terrain 
reasoning. Ideally, an overwatch position provides both cover and concealment from most 
directions and good observation in the direction of advance, and the movement of an element to 
an overwatch position is along a route that is covered or concealed. 

157 



I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

lbree bounding ovelWatch algorithms will be mentioned. They are: 
1. Stealth terrain navigation 
2. ODIN SAF 
3. ModSAF 

Stealth terrain navigation. The entity route planning, unit route planning, and intervisibility 
algorithms presented in [Teng,1992] and described earlier are combined to produce a bounding 
ovetwatch algorithm that operates in gridded terrain. In the algorithm, two groups of two entities 
move from a common initial location to a common goal. The movement is divided in stages; at 
each stage one group moves while the other remains stationary in the ovelWatch role. 

Recall that the entity and unit route planning algorithms given in the reference find all of the 
terrain grid cells reachable in a tactically predetermined time interval and evaluate each reachable 
grid cell for exposure to enemy observation and formation mutual intervisibility along the route to 
that grid cell. At each bounding ovetwatch stage, the unit route planning algorithm is applied to 
the moving group to find the grid cells that it can reach during the given time interval. The 
moving group's destination is selected from among those candidate grid cells by applying the 
following criteria: 

I. Reachability; reachable at the end of the time interval. 
2. Configuration; ahead of the ovelWatching group by at least half the maximum distance a 

group can travel during the time interval and within a corridor predetermined relative to 
the overall movement direction. 

3. Route quality; good in terms of exposure to enemy observation and formation mutual 
intervisibility. 

4. Future safety; not exposed to enemy observation during the next time interval, when the 
moving group will become the ovelWatching group . 

5. Observability; nearby grid cells from which projected enemy movements can be 
observed. 

Evaluating the future safety and observability criteria require determining the intervisibility from 
the candidate grid cells to the projected locations of the enemy entities. That determination is 
done using the region-to-region intervisibility algorithm also described in [Teng,1992]. The final 
destination grid cell is chosen using a weighted sum and thresholds on these criteria and the 
moving group moves to the destination grid cell. Once that movement is completed, the two 
groups' roles (moving and ovelWatching) are reversed and the process is repeated. 

ODIN SAF. [Stanzione, 1993] briefly summarizes a bounding ovelWatch algorithm in the ODIN 
SAF system A Dismounted Infantry platoon will split into two parts, or sections. The two 
sections then move alternately (one section moves while the other remains motionless) from 
covered location to covered location. A covered location is considered to be one that is covered 
relative to the direction of movement or the direction of known enemy forces. Note that this is a 
simplified approximation of the actual bounding ovetwatch maneuver as performed by the U.S. 
military; in reality, the motionless "ovetwatching" section should be located where it can observe 
in the direction of enemy forces, rather than simply be under cover from that direction. 

158 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ModSAF. [Courtemanche, 1995a] briefly describes ModSAFs "Platoon Overwatch Movement" 
behavior. A platoon executing overwatch movement is split into two groups, with one group 
executing a "Hasty Occupy Position" task while the other group travels along a preplanned route. 
No details are given as to how the overwatclring positions are selected. A different bounding 
overwatch implementation in ModSAF is described in [Rajput,1995c], but that reference also 
omits description of the terrain reasoning aspects of the problem 

4.6 Other terrain reasoning algorithms 

Several other terrain reasoning algorithms will be mentioned in this subsection. They are: 
1. Terrain search queries 
2. Minefield site prediction 
3. Finding observation locations . 
4. Captain subunit positioning 

Terrain search queries. The hybrid quadtree and frame-based object terrain database proposed in 
[Antony,1988] seems to be particularly well suited for search queries, where the goal is to find all 
terrain objects of a given class that meet given selection criteria. 

Minefield site prediction. [Doughty,1988] describes a combination of a quadtree terrain 
representation with a rule-based expert system embodying military minefield doctrine that predicts 
minefield sites. 

Finding observation locations. [Keirsey, 1988] proposes a heuristic for finding good locations for 
general observation. Assuming that a uniformly space grid of points is superimposed on the 
terrain, a visibility metric, measuring the observation area of each point, is computed. The 
visibility metric is the number of points visible from each point, weighted for the range from the 
observing point to the observed point. Note that the metric provides no information as the 
whether a point is useful for observing any particular point. 

Cap tain subunit positioning. Captain is an automated knowledge acquisition system designed to 
allow a SME to teach an automated command agent tactical behavior [Hille,1994] [Rieb, 1995]. 
Captain transforms a CTDB terrain database into an abstract geometric model that is then 
transformed into a semantic net [Hille,1995]. The semantic net is input to the automated 
command agent where a set of inference rules are used to reason about placement and movement 
of a unit's subunits. A version space of plausible unit plans is generated by applying the inference 
rules to the semantic net. The generated plans are evaluated by a human SME. Based on the 
SME's evaluation, additional inference rules are learned by Captain. 

159 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5. Conclusions 

Computer Generated Forces systems control autonomous entities within virtual simulation 
systems. This survey began with a broad oveIView ofCGF systems as a group, provided a 
compendium of CGF systems, and examined several of the more important or interesting 
examples in some detail. From this review, it should be clear that CGF systems are extremely 
important to DIS-type virtual simulation. 

It then delved more deeply into the terrain representation formats used by CGF systems. A 
number of different terrain representation formats are in use in CGF systems, each with its own 
strengths and weaknesses. 

Finally, terrain reasoning algorithms were considered. Terrain reasoning is of central importanc.e 
to CGF systems' autonomous behavior generation. Algorithms to perform terrain reasoning are 
often heavily dependent on the details of the terrain representation format. Just as the application 
of AI techniques to CGF behavior generation in general has been hampered by the difficulties of 
the input transformation, so has the development of object-oriented terrain reasoning algorithms 
been troubled by the difficulties of finding tactically meaningful objects within the gridded or 
polygonal terrain representations common to CGF systems. However, effective terrain reasoning 
algorithms have been implemented based on geometric approaches. 

6. Acknowledgments 

I am pleased to acknowledge the assistance provided to me by the following people during the 
preparation of this document: 1. Michael Moshell for inspiring me to start it, Barbara 1. 
Schiavone for spurring me to complete it, Clark R. Karr, Robert W. Franceschini, Douglas D. 
Wood, and Mary P. Slepow for reviewing drafts of the document, and Daniel E. Mullally Jr. for 
providing subject matter expertise. Each of these people has my sincere thanks. 

160 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7. References 

Abellanas, M. , Garcia-Lopez, J., and Hurtado, F. (1994). "Consecutive guards", Proceedings of 
the Sixth Canadian Conference on Computational Geometry, Saskatoon Saskatchewan Canada, 
August 2-6 1995, pp. 393-398. 

Ahmad, 0., Cremer, J. , Kearney, J. , Willemsen, P., and Hansen, S. (1994). "HierarchicaL 
concurrent state machines for behavior modeling and scenario control", Proceedings of the Fifth 
Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, 
December 7-9 1994, pp. 36-42. 

Altman, M. , Frogge, M. A , and Huder, R. (1991). "Simulating Behaviors in the High-Rise Fire 
Incidient Command Training System", Proceedings of the Eurographics Workshop on Animation 
and Simulation, Vienna Austria, September 1-2 1991. 

Antony, R. (1988). "Representation Issues in the Design of a Spatial Database Management 
System", Proceedings of the U.S. Army Symposium on Artificial Intelligence Researchfor 
Exploitationfor the Battlefield Environment, EI Paso TX, November 15-16 1988, pp. 212-222. 

Arkin, R. C. (1987). "Motor Schema Based Navigation for a Mobile Robot: An Approach to 
Programming by Behavior", Proceedings of the 1987 IEEE International Conference on 
Robotics and Automation, Institute of Electrical and Electronics Engineers, Raleigh NC, March 
31-April3 1987, pp. 264-271. 

Aronson, J. (1994). "The SimCore Tactics Representation and Specification Language", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 187-193. 

Aurenhammer, F. (1991). "Voronoi diagrams - A Survey ofa Fundamental Geometric Data 
Structure", Computing Surveys, Vol. 23, No.3, pp. 345-405. 

Avis, D. and Bhattacharya, B. K (1983). "Algorithms for computing d-dimensional Voronoi 
diagrams and their duals", in Preparata, F. P. (Ed.), Advances in Computing Research, Vol. 1, 
JAI Press, pp. 159-180. 

Badler, N., Phillips, C., and Webber, B. (1993). Simulating Humans: Computer Graphics, 
Animation and Control, Oxford University Press, Oxford UK, 1993. 

'1:' Bailey, M. M. and Companion, M. A (1989). "State-of-the-Art Assessment for Simulated 
Forces", Technical Report IST-CR-89-18, Institute for Simulation and Training, 1988. 

Barr, A. H. (1989). "Introduction to Physically-Based Modeling", Course #30, ACM SIGGRAPH 
89, July 31-August 4 1989. 

161 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

BBN (1992). "ModSAF", Presentation, BBN Systems and Technologies Corporation, 
September 22 1992. 

Bedford, B. R. (1991). "Software Reliability Measurement on the B-2 Aircrew Training Device 
(A TD)", Proceedings of the 13th InterservicelIndustry Training Systems Conference, Orlando 
FL, December 2-5 1991, pp . 155-161. 

Belleville, P., Bose, P. , Czyzowicz, 1. , Urrutia, 1. , and Zaks, 1. (1994). "K-Guarding Polygons on 
The Plain", Proceedings of the Sixth Canadian Conference on Computational Geometry, 
Saskatoon Saskatchewan Canada, August 2-6 1995, pp. 381-386. 

Benton, 1. R. (1987). "Automated route finder for multiple tank columns", Report ETL-4080, 
U.S. Army Engineer Topographic Laboratories, September 1987. 

Benton, 1. R. (1991). "Automated Terrain Reasoning", AI Exchange, U.S. Military Academy, 
West Point NY, Vol. 5, No. 1, Winter 1991, pp. 8-9. 

Bess, R. D. and Soderberg, B. T. (1991). "Battlefield Smoke - A New Dimension in Networked 
Simulation", Proceedings of the 13th InterservicelIndustry Training Systems Conference, 
Orlando FL, December 2-5 1991, pp. 256-261. 

Bhattacharyya, G. K and Johnson, R. A. (1977). Statistical Concepts and Methods, John Wiley 
and Sons, New York NY, 1977. 

Bimson, K, Marsden, C., McKenzie, F., and Paz, N. (1994). "Knowledge-Based Tactical 
Decision Making in the CCTT SAF Prototype", Proceedings of the Fourth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 4-6 1994, pp. 293-303. 

Blitz, A. , Moore, K , Powell, W., and Vail, P. (1988). "A general purpose modeling and 
simulation tool exploiting the Petri Net paradigm", Toolsfor the Simulation Profession, The 
Society for Computer Simulation, pp. 21-25. 

Bockstahler, D. E. and Mowbray, T. 1. (1991). "Autonomous Navigation for Semi-Automated 
Forces", Proceedings of the 2nd Behavioral Representation and Computer Generated Forces 
Symposium, Institute for Simulation and Training, Orlando FL, May 6-7 1991, pp. A 1-4. 

Bonsignore, E. (1992). "Gulf Experience Raises Tank Survivability Issues", Military Technology, 
February 1992, pp. 64-70. 

Booker, L. B., Goldberg, D. E., and Holland, 1. H. (1989). "Classifier Systems and Genetic 
Algorithms", ArtifiCial Intelligence, Vol. 40, Nos. 1-3, September 1989, pp. 235-282. 

162 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Booker, L. , Brooks, P, Garrett, R. , Giddings, v. , Salisbury, M. , and Worley, R. (1993). "1993 
DMSO Survey of Semi-Automated Forces", Def ense Modeling and Simulation Office Report, 
July 30 1993. 

Bourne, D. A. (1982). "A Numberless, Tensed Language for Action Oriented Tasks", Technical 
Report CMV-Rl-TRB2-1 2, Carnegie Mellon University. 

Bouwens, C. L. , Matuso£: R. , and Loper, M. L. (1995). "Application Profiles of Distributed 
Interactive Simulation Standards for Synthetic Environments", Proceedings of the 6th 
international Training Equipment Conference, The Hague, The Netherlands, April 25-27 1995, 
pp. 165-172. 

Branch, G. (1989). "Simulation Technology: Special Forces Silent Partner", National Defense, 
January 1989, Vol. 73, No. 444, pp. 55-57. 

Brand, S. (1987). The Media Lab: Inventing the Future at MIT, Viking Penguin, New York 
NY, 1987. 

Brassard, G. and Bratley, P. (1988). Algorithmics: Theory and Practice, Prentice Hall, 
Englewood Cliffs NJ, 1988. 

Braudaway, W. (1992). "An Object Oriented, Subsumptive Task-Level Architecture for the 
Integration of Technology for the Control of Semi-Automated AirLand Battle Forces", Technical 
Report, mM Federal Systems Company, December II 1992. 

Braudaway, W. (1993). "A Blackboard Approach to Generated Forces", Proceedings of the 
Third Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, March 17-19 1993, pp. 11-20. 

Brooks, R. A. , Buchanan, B. G. , Lenat, D. B. , McKeown, D. M., and Fletcher, 1. D. (1989). 
"Panel Review of the Semi-Automated Forces", IDA Document D-661, Institute for Defense 
Analyses, 1989. 

Butler, B. E. and Weihagen, G. (1995a). "Common Database Toolset: Extending and 
Prototyping the Architecture for Distributed Interactive Simulation", Proceedings of the 1995 
Simulation MultiConference , Military, Government, and Aerospace Simulation, Phoenix AZ, 
April 9-13 1995, pp. 129-134. 

Butler, B. E. and Weihagen, G. (1995b). "Common Database Toolset: Extending and 
Prototyping the Architecture for Distributed Interactive Simulation", Proceedings of the 6th 
International Training EqUipment Conference, The Hague, The Netherlands, April 25-27 1995, 
pp . 151- 163 . 

Byers, D. (1988). "Simulator Networking: New Training Horizons", Military Forum, May 1988, 
pp . 46-50. 

163 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Calder, R. B., Smith, 1. E., Courtemanche, A 1., Mar, 1. M. F., and Ceranowicz, A Z. (1993). 
"ModSAF Behavior Simulation and Control", Proceedings of the Third Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, March 17-19 1993, pp. 347-356. 

Calder, R. B. and Evans, A B. (1994). "Construction of a Corps Level CGF", Proceedings of 
the Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 4-6 1994, pp. 487-496. 

Calder, R. B. , Peacock Jr., 1. C. , Panagos, 1., and Johnson, T. E. (1995a). "Integration of 
Constructive, Virtual, Live, and Engineering Simulations in the JPSD CLCGF", Proceedings of 
the Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 9-11 1995, pp. 71-82. 

Calder, R. B. , Peacock Jr., 1. C. , Wise, B. P., Stanzione, T. , Chamberlain, F., Panagos, 1. 
(1995b). "Implementation of a Dynamic AggregationlDeaggregation Process in the JPSD 
CLCGF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 83-91. 

Campbell, C. E. and McCulley, G. (1994). "Terrain Reasoning Challenges in the CCTT Dynamic 
Environment", Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in 
High Autonomy Systems, Gainesville FL, December 7-9 1994, pp. 55-61. 

Campbell, C., Hull, R , Root, E. , and Jackson, L. (1995). "Route Planning in CCTT", 
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 233-243 . 

Ceranowicz, A, Downes-Martin, S., and Saffi, M. (1988). "SIMNET Semi-Automated Forces 
3.0: A Functional Description (Revised)", Report No. 6939, BBN Systems and Technologies 
Corporation, October 27 1988. 

Ceranowicz, A (1994a). "ModSAF Capabilities", Proceedings of the Fourth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 4-6 1994, pp. 3-8. 

Ceranowicz, A (1994b). "Modular Semi-Automated Forces", Proceedings of the 1994 Winter 
Simulation Conference, Society for Computer Simulation, Orlando FL, December 11-14 1994, 
pp. 755-761. 

Ceranowicz, A, Coffin, D., Smith, 1., Gonzalez, R. , and Ladd, C. (1994c). "Operator Control of 
Behavior in ModSAF", Proceedings of the Fourth Conference on Computer Generated Forces 
and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 
1994, pp. 9-16. 

164 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Chazelle, B. and Guibas, L. 1. (1988). "Visibility and Intersection Problems in Plane Geometry", 
Technical Report CS-TR-J67-88, Princeton University, 1988. 

Chen, 1. and Sartor, M. (1994). "Fluids in a Distributed Interactive Simulation", Proceedings of 
the Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, 
Gainesville FL, December 7-9 1994, pp. 43-45 . 

Chen, 1. and Sartor, M. (1995). "An Approach to Implementing Fluids in a Distributed 
lnteractive Simulation", Proceedings of the 12th DIS Workshop on Standards for the 
1nteroperability of Defense Simulations, Institute for Simulation and Training, Orlando FL, 
March 13-171995, pp. 309-317. 

Cheng, S. (1994). "Widest Empty Corridor with Multiple Links and Right-angle Turns", 
Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon 
Saskatchewan Canada, August 2-6 1995, pp. 57-62. 

Chervenak, 1. and D'Errico, 1. (1993). "Advanced Warfighting Experiment, Evaluation of Semi­
Automated Forces Dismounted Infantry, Phase I", Dismounted Warfighting Battle Lab, 
November 1993. 

Cheung, S. E. and Loper, M. L. (1994). "Traffic Characterization of Manned-Simulators and 
Computer Generated Forces in DIS Exercises", Proceedings of the Fifth Annual Conference on 
AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, December 7-9 1994, 
pp. 70-76. 

Cimini, F. c., Campbell, C. E., and Petty, M. D. (1992). "A Simple Flight Dynamics Model for 
Computer Generated Forces", Proceedings of the Southeastern Simulation Conference 1992, The 
Society for Computer Simulation, Pensacola FL, October 22-23 1992, pp 41-47. 

Cisneros, 1. E. , Karr, C. R , and McCauley-Bell, P. (1995). Intelligent Targeting in ModSAF, 
Technical Report IST-CR-95-36, Institute for Simulation and Training, December 1 1995. 

Clarke, T. L. and Otte, 1. M. (1991). "Human Behavioral Modeling Using Catastrophe Theory", 
Proceedings of the 2nd Behavioral Representation and Computer Generated Forces Symposium, 
lnstitute for Simulation and Training, Orlando FL, May 6-7 1991, pp. C 1-8. 

Cole, R. and Sharir, M. (1989). "Visibility Problems for Polyhedral Terrains", Journal of 
Symbolic Computation, Vol. 7, pp. 11-30. 

Coleman, v., Gonzalez, G. L. , Petty, M. D., Smith, S. H , Vanzant-Hodge, A , Watkins, 1. E., 
and Wood, D. D. (1990). "Alternative Implementations of Knowledge Representation and 
Acquisition Methods in Distributed lnteractive Simulation: Investigations and Findings", 
Technical Report IST-TR-90-21 , Institute for Simulation and Training, University of Central 
Florida, 1990. 

165 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Cosby, L. N. (1995). "SIMNET: an insider's perspective", Distributed Interactive Simulation 
Systems for Simulation and Training in the Aerospace Environment, SPIE Critical Review 58, 
Orlando FL, April 19-20 1995, pp. 59-72. 

Courtemanche, A 1. and Monday, P. (1994). "The Incorporation of Validated Combat Models 
into ModSAF", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
129-140. 

Courtemanche, A 1. and Ceranowicz, A (1995a). "ModSAF Development Status", Proceedings 
of the Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 9-11 1995, pp. 3-13. 

Courtemanche, A 1., Hamilton, S. E., and Monday, P. (1995b). "Representation of Missiles in 
ModSAF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 267-274. 

Cox, A, Gibb, A , and Page, I. (1995). "Army Training and CGFs - A UK Perspective", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 353-363. 

Cox, A (1995). "Simulation Management Functionality in the 1ST CGF", Proceedings of the 
12th DIS Workshop on Standards for the Interoperability of Defense Simulations, Institute for 
Simulation and Training, Orlando FL, March 13-17 1995, pp. 335-341. 

Craft, M. A and Petty, M. D. (1994a). "Experimental Conversion of the 1ST Computer 
Generated Forces Simulator from C to Ada", Technical Report IST-TR-94-13, Institute for 
Simulation and Training, April 20 1994. 

Craft, M. A , Cisneros, 1. E., and Karr, C. R. (1994b). "Dynamic Obstacle Avoidance" , Technical 
Report IST-TR-94-41 , Institute for Simulation and Training, December 21 1994. 

Craft, M. A and Petty, M. D. (1995a). "Experimental Conversion of the 1ST Computer 
Generated Forces Simulator from C to Ada", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 433-442. 

Craft, M. A, Franceschini, D. 1. , Kraus, M. K , Mullally, D. E., Adkins, M. K, Albright, R. L. , 
Nida, 1. c., and N apravnik, L. 1. (199 5b). "Final Report, AAA V: Demonstrating the Feasibility 
of Using Virtual Simulation for Test and Evaluation", Technical Report IST-CR-95-32, Institute 
for Simulation and Training, October 9 1995. 

Cremer, 1., Kearney, 1., Papelis, Y., and Romano, R. (1994). "The Software Architecture for 
Scenario Control in the Iowa Driving Simulator", Proceedings of the Fourth Conference on 

166 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 4-6 1994, pp. 373-381. 

Crooks, W. H., Fraser, R. E., Herman, 1. A, Jacobs, R. S., McDonough, 1. G., Bonanni, P., 
Harrison, B. , Junot, A, and Kirk, 1. (1990). "SIMNET Semi-Automated Forces (Version 3.x) 
Functional Specification", Technical Report PTR-4043-15-0200-4190, Perceptronics, April 18 
1990. 

Cronin, T. M. (1988). "Allocating Sensor Envelope Patterns to a Map Partitioned by Territorial 
Contours", Proceedings of the u.s. Army Symposium on ArtifiCial Intelligence Researchfor 
Exploitationfor the Battlefield EnVironment, EI Paso TX, November 15-16 1988, pp. 65-78. 

Croucher, G. andLaw, D. (1991). "Using Parallel Ada in the Implementation of Simulation and 
Training Systems", Proceedings of the 13th InterservicelIndustry Training Systems Conference, 
Orlando FL, December 2-5 1991, pp. 196-204. 

Crowe, M. X. (1990). "The Application of Artificial Neural Systems to the Training of Air 
Combat Decision-Making Skills", Proceedings of the 12th Interservicellndustry Training Systems 
Conference, Orlando FL, November 6-8 1990, pp. 302-312. 

Cunningham, C. T. (1993). "Control of Movement in an Arbitrary Polygonal Terrain", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp . 307-
315. 

Cunningham, C. T. (1994). "Development of Intelligent Simulations at LLNL", Proceedings of 
the Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 4-6 1994, pp. 345-352. 

D'Angelo, G. 1. (1983). "Tutorial on Petri Nets", Simuletter, Vol. 14, Nos. 1-4, pp. 10-25. 

D'Errico,1. (1994). "Evaluation of the SAFDI System at the USAIS, Ft. Benning, GA SIMNET 
Site", Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 149-154. 

Danisas, K, Smith, S. H, and Wood, D. D. (1990). "SequencerlExecutive for Modular 
Simulator Design", Technical Report IST-TR-90-1, Institute for Simulation and Training, 1990. 

Devillers, 0., Golin, M., Kedem, K, and Schirra, S. (1994). "Revenge of the Dog: Queries on 
Voronoi Diagrams of Moving Points", Proceedings of the Sixth Canadian Conference on 
Computational Geometry, Saskatoon Saskatchewan Canada, August 2-6 1995, pp. 122-127. 

Devlin, M. 1. I. (1990). "Ada Technology for Simulation", National Defense, November 1990, 
Vol. 75, No. 462, pp. 41-43. 

167 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Deutsch, S. (1993). "Notes Taken on the Quest for Modeling Skilled Human Behavior", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 359-
365 . 

DIS Steering Committee (1994). "The DIS Vision: A Map to the Future of Distributed 
Simulation", Technical Report IST-SP-94-01 , Institute for Simulation and Training, May 1994. 

DMA (1995). Digitizing the Future, Fourth Edition, Defense Mapping Agency. 

Donovan, K B. (1990). "Real Time Mission Rehearsal: The Database Challenge", National 
Def ense, November 1990, Vol. 75, No. 462, pp. 21-24. 

Donner, M. E. (1991). "The Challenges of Simulating a Hovercraft Ocean Environment", 
Proceedings of the 13th lnterservicellndustry Training Systems Conference, Orlando FL, 
December 2-5 1991, pp. 301-313. 

Doughty, 1. W., Downs, A. L. , Gillotte, M. 1., and Hirsch, S. A. (1988). "An Expert System for 
Minefield Site Prediction", Proceedings of the u.s. Army Symposium on Artificial Intelligence 
Research for Exploitation for the Battlefield Environment, El Paso TX, November 15-16 1988, 
pp . 166-179. 

Downes-Martin, S. (1990). "Replacing the Exercise Controller with the Enemy: the SIMNET 
Semi-Automated Forces Approach", Proceedings of the 1st International Training EqUipment 
Conference, UK, April 1990. 

Downes-Martin, S. (1992). "Proposed Architecture for the Computer Generated Forces", 
Presentation, Loral ADS, January 30 1992. 

Dyer, D. E. and Gunsch, G. H. (1993). "Enlarging the Universal Plan for Air Combat 
Adversaries", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 255-26l. 

Edelsbrunner, H. and SeideL R. (1986). "Voronoi diagrams and arrangements", Discrete and 
Computational Geometry, Vol. 1, pp. 25-44. 

EI Gindy, H. and Avis, D . (1981). "A Linear Algorithm for Computing the Visibility Polygon 
from a Point" , Journal of Algorithms, Vol. 2, pp. 186-197. 

Everett, E. and Rivera-Campo, E. (1994). "Edge guarding a triangulated polyhedral terrain", 
Proceedings of the Sixth Canadian Conference on Computational Geometry, Saskatoon 
Saskatchewan Canada, August 2-6 1995, pp. 293-295 . 

168 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ewing, T. L. (1992). "Mathematical Modeling of the Terrain Around a Robot", NASA Tech 
Briefs , Vol. 16, No.6, June 1992, p. i 

Fawcett, D. H. (1991). "Sensor Data Base Correlation", Proceedings of the 13th 
Interservicellndustry Training Systems Conference, Orlando FL, December 2-5 1991, pp. 106-
112. 

Field, D. (1986). "Implementing Watson's algorithm in three dimensions", Proceedings of the 2nd 
Annual Symposium on Computational Geometry, Association for Computing Macmnery, pp. 
246-259. 

Fishwick, P. A , Petty, M. D. , and Mullally, D. E. (1991). "Key Research Directions in 
Behavioral Representation for Computer Generated Forces", Proceedings of the 2nd Behavioral 
Representation and Computer Generated Forces SympOSium, Institute for Simulation and 
Traiuing, Orlando FL, May 6-71991 , pp. E 1-14. 

Fishwick, P. A (1993). "A Simulation Environment for Multimodeling", Discrete Event Dynamic 
Systems: Theory and Applications 3, Kluwer, Boston MA, pp. 151-171. 

Foley, 1. D. and Van Dam, A (1982). Fundamentals of Interactive Computer Graphics, Addison­
Wesley, Reading MA, 1982. 

Fortune, S. (1987). "A sweepline algorithm for Voronoi diagrams", Algorithmica, Vol. 2, pp. 
153-174. 

Fortune, S. (1992). "Voronoi diagrams and Delaunay triangulations", Computing in Euclidean 
Geometry, Lecture Notes Series on Computing, Vol. 1, World Scientific, pp. 193-234. 

Franceschini, R. W. (1992). "Intelligent Placement of Dis aggregated Entities", Proceedings of 
the Southeastern Simulation Conference 1992, The Society for Computer Simulation, Pensacola 
FL, October 22-23 1992, pp. 20-26. 

Franceschini, R. W., Parra, F. R. , Watkins, 1. E. , and Nanda, S. (1993a). "SAFDI User's Guide", 
Technical Report IST-TR-93-23, Institute for Simulation and Training, University of Central 
Florida, August 31 1993. 

Franceschini, R. W. , Watkins, 1. E. , Parra, F. R. , McCulley, 1. E. , Lautenschlager, 1. A , Jackson, 
L. A , and Nanda, S. (1993b). "SAFDI Support Manual", Technical Report IST-TR-93-24, 
Institute for Simulation and Training, University of Central Florida, August 31 1993. 

Franceschini, R. W. and Petty, M. D. (1994a). "Dismounted Infantry in DIS Style Scenarios: A 
SAFDI Project Overview", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-61994, pp.155-167. 

169 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Franceschini, R. W. , Petty, M. D. , and Reece, D. A. (1994b). "Dismounted Infantry in 
Distributed Interactive Simulation", Proceedings of the 16th InterservicelIndustry Training 
Systems and Education Conference, Orlando FL, November 28-December 1 1994, pp . 4-20. 

Franceschini, R. W. and Petty, M. D. (1995a). "Status Report on the Development ofPDUs to 
Support Constructive+Virtual Linkages", Proceedings of the 12th DIS Workshop on Standards 
for the Interoperability of Defense Simulations, Institute for Simulation and Training, Orlando 
FL, March 13-17 1995, pp . 385-388. 

Franceschini, R. W. and Petty, M. D. (1995b). "Linking constructive and virtual simulation in 
DIS", Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace 
Environment, SPIE Critical Review 58, Orlando FL, April 19-20 1995, pp. 281-298. 

Franceschini, R. W. and Karr, C. R. (1995c). "Integrating Constructive and Virtual Simulation", 
Proceedings of the 6th International Training EqUipment Conference, The Hague, The 
Netherlands, April 25-27 1995, pp. 425-431. 

Franceschini, R. W. (1995d). "Integrated EagleIBDS-D: A Status Report", Proceedings of the 
Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 9-11 1995, pp. 21-25. 

Fraser, R. E. and Herman, 1. A. (1990a). "Integration ofSIMNET Dismounted Infantry 
Simulators with SAFOR Workstations, Functional Specification", Technical Report 
PTR-4043-06-0000-90190, Perceptronics, February 23 1990. 

Fraser, R. E. and Herman, 1. A. (1990b). "Integration of SIMNET Dismounted Infantry 
Simulators with SAFOR Workstations, Operator's Manual", Technical Report PTR-4043-06-
0000-90101 , Perceptronics, February 23 1990. 

Friedman, G. and Toms, R. (1993a). Security Exercise Evaluation System (SEES) V2.0 
Accreditation Project Final Report, Lawrence Livermore National Laboratory, March 1993. 

Friedman, G. (1993b). "The Security Exercise Evaluation System (SEES) V2.0 Accreditation 
Process" , Proceedings of the 1993 Summer Computer Simulation Conference, Boston MA, July 
19-21 1993, pp. 887-893. 

Gagne, D. (1995). "Training the Crew Concept via Multi-Agent Systems", Proceedings of the 
6th International Training Equipment Conference, The Hague, The Netherlands, April 25-27 
1995, pp. 175-184. 

Gat, E., Fearey, 1. , and Provenzano, 1. (1993). "Semi-Automated Forces for Corps Battle 
Simulation", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 69-74. 

170 



I 
I . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Gates, K and Frantz, F. (1990). "Semi-Automated Force Simulation using a Blackboard", 
Proceedings of the 12th InterservicelIndustry Training Systems Conference, Orlando FL, 
November 6-8 1990, pp. 295-301. 

Ghosh, S. K and Mount, D. M. (1987). "An Output Sensitive Algorithm for Computing 
Visibility Graphs", Proceedings of the 28th IEEE Symposium on Foundations of Computer 
Science, Institute of Electrical and Electronics Engineers, Los Angeles CA, 1987, pp. 11-19. 

Ghosh, S. K (1988). "On recognizing and characterizing visibility graphs of simple polygons", 
Lecture Notes in Computer Science 318, Springer-Verlag, New York NY, pp. 97-104. 

Giroux, R. (1995). "Laser PDU Lessons Learned", Proceedings of the 12th DIS Workshop on 
Standards for the Interoperability of Defense Simulations, Institute for Simulation and Training, 
Orlando FL, March 13-17 1995, pp. 455-458. 

GoeL A. K , Callantine, T. 1. , Shankar, M. , and Chandrasekaren, B. (1991). "Representation, 
Organization, and Use of Topograpbic Models of Physical Spaces for Route Planning", 
Proceedings of the Seventh Conference on ArtifiCial Intelligence Applications CAIA-92, Volume 
I: Technical Papers, Institute of Electrical and Electronics Engineers, Miami Beach FL, February 
1991 , pp. 308-314. 

Gold, C. M. (1994). "Persistent spatial relations - a systems design objective", Proceedings of the 
Sixth Canadian Conference on Computational Geometry, Saskatoon Saskatchewan Canada, 
August 2-6 1995, pp. 219-224. 

Goldiez, B. F. (1991). "The Impact of Verification, Validation, and Accreditation on Simulation 
and Training", Military Simulation & Training, April 1991, pp. 35-37. 

Goldiez, B. F. and Nelson, R. S. (1994). "Terrain Database Correlation", Proceedings of the 5th 
International Training EqUipment Conference, The Hague, The Netherlands, April 26-28 1994, 
pp. 337-346. 

Goldiez, B. F. (1995). "History of networked simulations", Distributed Interactive Simulation 
Systems for Simulation and Training in the Aerospace Environment, SPIE Critical Review 58, 
Orlando FL, April 19-20 1995, pp. 39-58. 

Gonzalez, A. 1., Mullally, D. E., and Gonzalez, G. L. (1991). "A Hierarchical Rule-Based 
Architecture for Implementing Intelligent Adversaries in a SIMNET Environment", Proceedings 
of the 13th InterservicelIndustry Training Systems Conference, Orlando FL, December 2-5 1991, 
pp . 339-346. 

Gonzalez, G., Mullally, D. E., Smith, S. H. , Vanzant-Hodge, A. F., Watkins, 1. E., and Wood, D. 
D. (1990). "A Testbed for Automated Entity Generation in Distributed Interactive Simulation", 
Technical Report IST-TR-90-15, Institute for Simulation and Training, August 15 1990. 

171 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Green, P. and Sibson, R (1977). "Computing Dirichlet tesselations in the plane", Computing 
Journal, Vol. 21, pp. 168-173. 

Gross, D. C. and Stuckey, L. D. (1991). "Ada Types: The Cornerstone of Simulation Models", 
Proceedings of the 13th InterservicelIndustry Training Systems Conference, Orlando FL, 
December 2-5 1991, pp. 8-18. 

Guckenberger, D., Uliano, K. C. , and Lane, N. E. (1992). "The Application of Above Real-Time 
Training (ARTT) for Simulators: Acquiring High Performance Skills", Proceedings of the 14th 
InterservicelIndustry Training Systems and Education Conference, San Antonio TX, November 
2-4 1992, pp. 928-935. 

Guibas, L. 1. , Hershberger, 1., Leven, D., Sharir, M., and TaIjan, R E. (1987). "Linear Time 
Algorithms for Visibility and Shortest Path Problems inside Simple Polygons", Algorithmica, Vol. 
2, pp. 209-233 . 

Guibas, L. 1. and Hershberger, 1. (1989). "Optimal Shortest Path Queries in a Simple Polygon", 
Journal of Computer and System SCiences, Vol. 39, pp. 126-152. 

Haeger, S. D. (1994). "Modeling the Littoral Ocean for Military Applications", Proceedings of 
the 16th InterservicelIndustry Training Systems and Education Conference, Orlando FL, 
November 28-December 1 1994, pp. 4-12. 

Haque, S., Gonzalez, R , and Schaffer, R (1995). "Environmental Simulation in DIS", 
Proceedings of the 6th International Training Equipment Conference, The Hague, The 
Netherlands, Apri125-27 1995, pp . 249-258. 

Hardis, K. C. (1994). "Resolving the Debate Over Standards for the Interchange of Simulator 
Databases", Proceedings of the 1 lth DIS Workshop on Standards for the Interoperability of 
Defense Simulations, Institute for Simulation and Training, Orlando FL, September 26-30 1994, 
pp. 89-93 . 

Harkrider, S. and Yeakel, W. P. (1995). "Anti-Armor Advanced Technology Demonstration 
(A2ATD) Experiment One Or What We Did On Our Summer Vacation", Proceedings of the 12th 
DIS Workshop on Standardsfor the Interoperability of Defense SimulatiOns, Institute for 
Simulation and Training, Orlando FL, March 13-17 1995, pp. 733-743 . 

Hannon, P. and King, D. (1986). Expert Systems, John Wiley and Sons, New York NY, 1986. 

Harmon, S. Y , Yang, S. C., Howard, M. D., and Tseng, D. Y (1991). "A Behavior-Based 
SAFOR and Its Preliminary Evaluation", Proceedings of the 2nd Behavioral Representation and 
Computer Generated Forces Symposium, Institute for Simulation and Training, Orlando FL, May 
6-7 1991 , pp. G 1-14. 

172 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Harmon, S. Y. , Yang, S. C., and Tseng, D. Y. (1994). "Command and Control Simulation for 
Computer Generated Forces", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 263-273. 

Hamad, S. (1992). "The Turing Test is not a trick: Turing indistinguishability is a scientific 
criterion", SIGART Bulletin, Vol. 3, No.4, October 1992, pp. 9-10. 

Harrison, M. (1992). Wing Commander I & II: The Ultimate Strategy Guide, Prima Publishing, 
Rocklin CA, 1992. 

Hayslip, I. C. and Gilmore, 1. F. (1988). "A Multi-Level Knowledge Representation for 
Reasoning about Terrain", Proceedings of the u.s. Army Symposium on ArtifiCial Intelligence 
Researchfor Exploitationfor the Battlefield EnVironment, El Paso TX, November 15-16 1988, 
pp. 123-137. 

Held, M. (1994). "On Computing Voronoi Diagrams of Convex Polyhedra by Means of 
Wavefront Propagation", Proceedings of the Sixth Canadian Conference on Computational 
Geometry, Saskatoon Saskatchewan Canada, August 2-6 1995, pp. 128-133. 

Hernandez-Pefialver, G. (1994). "Controlling Guards", Proceedings of the Sixth Canadian 
Conference on Computational Geometry, Saskatoon Saskatchewan Cnada, August 2-6 1995, pp. 
387-392. 

Hershberger, 1. (1989). "An Optimal Visbility Graph Algorithm for Triangulated Simple 
Polygons" , Algorithmica, Vol. 4, pp. 141-155. 

Hieb, M. R. , Tecuci, G., Pullen, 1. M. , Ceranowicz, A. , and Hille, D . (1995). "A Methodology 
and Tool for Constructing Adaptive Command Agents for Computer Generated Forces", 
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 135-146. 

Hille, D., Hieb, M. R. , and Tecuci, G. (1994). "CAPTAIN: Building Agents that Plan and 
Learn", Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 411-422. 

Hille, D., Hieb, M. R. , Tecuci, G. , and Pullen, 1. M. (1995). "Abstracting Terrain Data Through 
Semantic Terrain Transformations", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 355-365. 

Hoff: B. , Howard, M. D., and Tseng, D. Y. (1995). "Path Planning with Terrain Utilization in 
ModSAF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 255-263 . 

173 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Holmes, P. D. and Jungert, E. R. A. (1992). "Symbolic and Geometric Connectivity Graph 
Methods for Route Planning in Digitized Maps", IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 14, No.5, May 1992, pp. 549-565. 

Hopcroft, 1. E. and Ullman, 1. D. (1979). Introduction to Automata Theory, Languages, and 
Computation, Addison-Wesley, Reading MA, 1979. 

Horan, B. (1994). "A SEOD Sneak Preview (Coming Soon to a Simulator Near You", 
Proceedings of the 11th DIS Workshop on Standards for the Interoperability of Distributed 
Simulations, Institute for Simulation and Training, Orlando FL, September 26-30 1994, pp. 379-
388. 

Howard, M. D., Ho£I: B., and Tseng, D. Y. (1995). "Individual Combatant Developments in 
ModSAF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 479-486. 

Hunter, S. 1. and Puckett, H. R. (1991). "Modeling of the Intelligent Threat in a Dense Tactical 
Training Environment", Proceedings of the 13th Interservicellndustry Training Systems 
Conference, Orlando FL, December 2-5 1991, pp. 328-334. 

Huon, M. (1989). "Expert system for the simulation of tank platoon behavior in a synthetic 
scene", Unpublished report, SOGlTEC, 1989. 

Jacobs, R. S. , McDonough, 1. G., and Crooks, W. H. (1990). "Semi-Automated Forces in 
Distributed Simulation", Proceedings of the DARPA Conference on Behavioral Representation in 
Semi-Automated Forces, Ft. Knox KY, October 25 1990. 

Jaszlics, S. L. (1993). "Artificial Intelligence in Tactical Command and Control Applications: 
Architecture and Tools", Proceedings of the Third Conference on Computer Generated Forces 
and Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 367-373. 

Jaszlics, I. 1., Jaszlics, S. L. , and Jones, S. H. (1994). "Automated Battlefield Simulation 
Command and Control Using Artificial Neural Networks", Proceedings of the Fifth Annual 
Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, 
December 7-9 1994, pp. 100-10 5. 

Johannesen, N . P. (1995). "Synthetic Theater of War-Europe (STOW-E) A Brigade Training 
Environment", Proceedings of the 6th International Training EqUipment Conference, April 25-27 
1995, The Hague, The Netherlands, pp. 115-122. 

Johnson, W. L. (1992). "Needed: A New Test of Intelligence", SIGART Bulletin, Vol. 3, No. 4, 
October 1992, pp. 7-9. 

174 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Johnson, W. L. (1994). "Agents that Explain Their Own Actions", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 87-95. 

Jones, R. E. (1993a). "Using CGF for Analysis and Combat Development", Proceedings of the 
Third Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, March 17-19 1993, pp. 209-220. 

Jones, R. M. , Tambe, M. , Laird, 1. E. , and Rosenbloom, P. S. (1993b). "Intelligent Automated 
Agents for Flight Training Simulators", Proceedings of the Third Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, March 17-19 1993, pp. 33-42. 

Jones, R. E. and Lattimore, P. 1. (1 994a). "An Implementation of Battalion Level C31 for CGF", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 287-292. 

Jones, R. M., Laird, 1. E. , Tambe, M., and Rosenbloom P. S. (1994b). "Generating Behavior in 
Response to Interacting Goals", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 317-324. 

Jones, R. M. and Laird, 1. E. (1994c). "Multiple Information Sources and Multiple Participants: 
Managing Situational Awareness in an Autonomous Agent", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 511-517. 

Kada, A. (1994). "Smart Tactical Environments", Interactions, No. 10, November 1994, pp. 4-
5. 

Karr, C. R. , Petty, M. D. , Van Brackle, D. R. , Cross, D. D., Franceschini, R. W., Hull, R. D., 
Provost, M. H , and Smith, S. H (1992a). "The 1ST Semi-Automated Forces Dismounted 
Infantry System: Capabilities, Implementation, and Operation", Technical Report IST-TR-92-6, 
Insititute for Simulation and Training, University of Central Florida, 28 February 1992. 

Karr, C. R. , Franceschini, R. W. , Perumalla, K R. S. , and Petty, M. D. (1992b). "Integrating 
Battlefield Simulations of Different Granularity", Proceedings of the Southeastern Simulation 
Conference 1992, The Society for Computer Simulation, Pensacola FL, October 22-23 1992, pp. 
48-55 . 

Karr, C. R. , Franceschini, R. W. , Perumalla, K R. S. , and Petty, M. D. (1993a). "Integrating 
Aggregate and Vehicle Level Simulations", Proceedings of the Third Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, March 17-19 1993, pp. 231-242. 

175 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Karr, C. R. and Watkins, 1. E. (1993b). "Using Distributed Interactive Simulation and Computer 
Generated Forces to Evaluate and Refine New Weapon Systems", Proceedings of the 1993 
Summer Computer Simulation Conference, Boston MA, July 19-21 1993, pp. 852-857. 

Karr, C. R. and Root, E. D. (1994a). "Integrating Aggregate and Vehicle Level Simulations", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 425-435. 

Karr, C. R. and Franceschini, R. W. (1994b). "Status Report on the Integrated EagleIBDS-D 
Project", Proceedings of the 1994 Winter Simulation Conference, Society for Computer 
Simulation, Orlando FL, December 11-14 1994, pp. 762-769. 

Karr, C. R. , Craft, M. A, and Cisneros, 1. E. (199.5a). "Dynamic Obstacle Avoidance", 
Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace 
Environment, SPIE Critical Review 58, Orlando FL, April 19-20 1995, pp. 195-219. 

Karr, C. R. , Rajput, S., Cisneros, 1. E. , and Nee, H. (1995b). "Automated Mission Planning in 
ModSAF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 159-167. 

Karr, C. R. , Craft, M. A , and Cisneros, 1. E. (1995c). "Dynamic Obstacle Avoidance for 
Computer Generated Forces", Proceedings of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 245-253. 

Karr, C. R. and Rajput, S. (1995d). "Unit Route Planning", Proceedings of the Fifth Conference 
on Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp. 295-304. 

Karr, C. R. , Rajput, S. , and Breneman, L. 1. (1995e). "Comparison of the A* and Iterative 
Deepening A* Graph Search Techniques", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 443-449. 

Katz, A and Ross, A (1989). "One on one Helicopter Combat Simulated by Chess Type 
Lookahead", AIM Flight Simulation Technologies Conference, Boston MA, August 1989, p. 
357. 

Katz, A , Butler, B., and Allen, D. (1991). "A Computer Generated Helicopter for Air to Air 
Combat", AIAA Simulation Technologies Conference, New Orleans LA, August 1991, p. 82. 

Katz, A. and Butler, B. (1992). "A Flight Model for Unmanned Simulated Helicopters", Journal 
of Aircraft, Vol. 29, No.4., July-August 1992, p. 521. 

176 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Katz, A (1993). "Intelligent Player - First Principle Foundations", Proceedings of the Third 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, March 17-19 1993, pp. 329-334. 

Katz, A and Butler, B. (1994). "Game Commander - Applying an Architecture of Game Theory 
and Tree Lookahead to the Command and Control Process", Proceedings of the Fifth Annual 
Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, 
December 7-9 1994, pp. 106-112. 

Keegan, 1. (1994). A History of Warfare , Alfred A Knopf: New York NY, 1994. 

Keirsey, D. M., Krozel, 1., and Payton, D. W. (1988). "Scale-Space Representations for Flexible 
Automated Terrain Reasoning", Proceedings of the U.S. Army Symposium on Artificial 
Intelligence Researchfor Exploitationfor the Battlefield Environment, El Paso TX, November 
15-161988, pp.l08-118. 

Keirsey, D., Krozel, 1., Payton, D., and Tseng, D. (1994). "Case-Based Computer Generated 
Forces", Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 307-316. 

Kendall, T. M., Purnell, T. A, and Kaste, V. A (1995). "Adaptive Grid Generation for Variable 
Resolution Terrain", Proceedings of the 12th DIS Workshop on Standards for the 
Interoperability of Defense Simulations, Institute for Simulation and Training, Orlando FL, 
March 13-17 1995, pp. 513-519. 

Kilby, M., Lisle, C., Altman, M., and Sartor, M. (1994). "Dynamic Environment Simulation with 
DIS Technology", Proceedings of the 16th Interservicellndustry Training Systems and Education 
Conference, Orlando FL, November 28-December 1 1994, p. 4-18. 

Kocabas, S. , Oztemel, E. , Uldudag, M., and Koc, N. (1995). "Automated Agents that Learn and 
Explain Their Own Actions: A progress report", Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp. 63-68. 

Kornell, 1. (1987). "Reflections on using knowledge based systems for military simulation", 
Simulation, Vol. 48, No.4, April 1987, pp. 144-148. 

Koss, F. V. and Lehman, 1. F. (1994). "Knowledge Acquisition and Knowledge Use in a 
Distributed IFOR Project", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 541-544. 

Krecker, D. K (1994). "Enhancement and Use of the 1ST CGF Testbed for a Precision Gunnery 
Demonstration", Proceedings of the Fourth Conference on Computer Generated Forces and 

177 



I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
51-57. 

Kreutzer, W. (1986). System Simulation: Programming Languages and Styles, Addison­
Wesley, Sydney Australia, 1986. 

Kuhl, 1. G. and Wargo, 1. (1994). "High Fidelity Virtual Prototyping to Support Ground Vehicle 
Acquisition", Proceedings o/the 16th lnterservicellndustry Training Systems and Education 
Conf erence, Orlando FL, November 28-December 1 1994, pp. 4-21. 

Kwak, S. (1995). "A Comparison Study of Behavioral Representation Alternatives, Proceedings 
of the Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 9-11 1995, pp. 529-539. 

Laird, 1. E., Newell, A. , and Rosenbloom, P. S. (1987). "SOAR: An Architecture for General 
Intelligence", Artificial Intelligence, VoL 33, No. 1, 1987, pp. 1-64. 

Laird, 1. E. , Jones, R. M., Nielsen, P. E. (1994). "Coordinated Behavior of Computer Generated 
Forces in TacAir-Soar", Proceedings of the Fourth Conference on Computer Generated Forces 
and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 
1994, pp. 325-332. 

Laird, 1. E. , Johnson, W. L. , Jones, R. M., Koss, F. , Lehman, 1. F., Nielsen, P. E., Rosenbloom, 
P. S., Rubinoff: R. , Schwamb, K , Tambe, M., Van Dyke, 1., van Lent, M. , and Wray ill, R. E. 
( 1995). "Simulated Intelligent Forces for Air: The SoarlIFOR Project 1995", Proceedings of the 
Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 9-11 1995, pp. 27-36. 

Landweer, P. (1993a). "ACETEF Joint Aeronautical Commander's Group Demo and E-2C 
Tests", Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 145-
153. 

Landweer, P. (1993b). "Action/Cognition Behavior Model for Computer Generated Forces", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 335-
345 . 

Landweer, P. (1994a). "Integration ofCGF with Fielded Equipment Using DIS", Proceedings of 
the Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 4-6 1994, pp. 59-62. 

Landweer, P. (1994b). "Use ofan Interactive CGF as a Networked Partner with Local 
Simulators", Proceedings of the Fourth Conference on Computer Generated Forces and 

178 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
63-65 . 

Landweer, P. (1994c). "Integration ofCGF with Fielded Equipment Using DIS", Proceedings of 
the Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, 
Gainesville FL, December 7-9 1994, pp. 262-268. 

Lankester, H. (1995). "Multi-Application Command Agents", Proceedings of the Fifth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 9-11 1995, pp. 169-177. 

Lattimore, P. 1. and Riecken, M. E. (1993). "A Virtual Battlespace Language", Proceedings of 
the Third Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, March 17-19 1993, pp. 87-93. 

Le, H. T. (1990). "On the Role of Distributed AI in Large Scale Network Simulation", 
Proceedings of the 12th InterservicelIndustry Training Systems Conference, Orlando FL, 
November 6-8 1990, pp. 241-246. 

Le, H. T. (1991a). "Multiple Autonomous Combatants: Control and Navigation", Proceedings of 
the 2nd Behavioral Representation and Computer Generated Forces Symposium, Institute for 
Simulation and Training, Orlando FL, May 6-71991 , pp. D 1-12. 

Le, H. T. , Phinney, S. E. , and Seward, V. C. (1991b). "Semi-Automated Forces: A Behavioral 
Modeling Approach", Proceedings of the 13th InterservicelIndustry Training Systems 
Conference, Orlando FL, December 2-5 1991, pp. 321-327. 

Lee, D. T. (1980). "Two-Dimensional Voronoi Diagrams in the Lp-Metric", Journal of the 
Associationfor Computing Machinery, Vol. 27, No. 4, October 1980, pp. 604-618. 

Lee, 1. 1. and Fishwick, P. A. (1994a). "Simulation-Based Planning for Computer Generated 
Forces", Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 451-460. 

Lee, 1. 1. and Fishwick, P. A. (1994b). "Real-Time Simulation-Based Planning for Computer 
Generated Forces Simulation", Simulation, The Society for Computer Simulation, Vol. 63, No. 5, 
November 1994, pp. 299-315 . 

Lee, 1. 1. and Fishwick, P. A. (1994c). "Incorporating Simulation-Based Models into Planning 
Systems", Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in High 
Autonomy Systems, Gainesville FL, December 7-9 1994, pp. 113-119. 

Lehman, 1. F., Dyke, 1. V. , Rubinoff, R. (1995). "Natural Language Processing for IFORs: 
Comprehension and Generation in the Air Combat Domain", Proceedings of the Fifth Conference 

179 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

on Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp. 115-123. 

Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the Theory of Computation, Prentice­
Hall, Englewood Cliffs NJ 1981. 

Li, X., Miller, D. , llling, M. , Kenworthy, M. , and Heinen, M. (1994). "Dynamic Terrain Database 
Design for Real Time Image Generation", Proceedings of the 16th InterservicelIndustry Training 
Systems and Education Conference, Orlando FL, November 28-December 1 1994, pp. 6-3 . 

Lisle, C., Altman, M., Kilby, M. , and Sartor, M. ( 1994). "Architectures for Dynamic Terrain and 
Dynamic Environments in Distributed Interactive Simulation", Proceedings of the 10th Workshop 
on Standards for the Interoperability of Defense Simulations, Institute for Simulation and 
Training, Orlando FL, March 14-18 1994, pp. 89-105 . 

Lockheed (1990). "ALBM Detailed Design Plan Update", Technical Report LMSC F405841, 
Lockheed Missiles and Space Company. 

Longtin, M. 1. (1994). "Cover and Concealment in ModSAF", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 239-247. 

Longtin, M. 1. and Megherbi, D. (1995). "Concealed Routes in ModSAF", Proceedings of the 
Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 9-11 1995, pp. 305-313. 

Loper, M. L. , Thompson, 1. R. , and Williams, H. L. (199 1). "Simulator Networking: What Can 
It Offer The Training Community?", Military Simulation & Training, Issue 4 1991, pp. 11-14. 

Loper, M. L. and Petty, M. D. (1993). "Computer Generated Forces at the DIS Interoperability 
Demonstration", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 155-168. 

Loper, M. L. and Petty, M. D. (1994). "Simulator Networking for Medical Simulation", 
Proceedings of the 5th International Training Equipment Conference, The Hague, The 
Netherlands, April 26-28 1994, pp. 412-419. 

Loper, M. L. and Petty, M . D. (1995a). "Distributed Interactive Simulation and Emergency 
Management", Proceedings of the 1995 Simulation MultiConference, Simulation for Emergency 
Management, Society for Computer Simulation, Phoenix AZ, April 9-13 1995, pp. 326-321. 

Loper, M. L. (1995b). "Introduction to distributed interactive simulation", Distributed 
Interactive Simulation Systems for Simulation and Training in the Aerospace Environment, SPIE 
Critical Review 58, Orlando FL, April 19-20 1995, pp. 3-15. 

180 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Madni, A. M., Ahlers, R. , Chu, Y. (1987). "Knowledge-Based Simulation: An Approach to 
lntelligent Opponent Modeling for Training Tactical Decisionmaking", Proceedings of the 9th 
fnterservicellndustry Training Systems Conference, Washington DC, November 30-December 2 
1987, pp. 179-183. 

Mall, H. , Bimson, K , McCormack, 1. , and Ourston, D. (1995). "Command Entity Cognitive 
Behaviors for SAF and CGF", Proceedings of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 203-209. 

Marshall, H. , Anderson, C., Baran, T , Berggren, P., Bimson, K , Blanchard, D., Braudaway, W., 
Burch, B. , Colon, 1., Cosby, 1. , Glover, G., King, 1. , Ourston, D., ~d Watson, 1. (1994). "Close 
Combat Tactical Trainer Semi-Automated Forces (SAF) Design Overview", Presentation, 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, May 4 1994. 

Marti, 1. and Christophe, B. (1994). "Automated Path Planning for Simulation", Proceedings of 
the Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, 
Gainesville FL, December 7-9 1994, pp. 122-128. 

Maruichi, T , Uchiki, T , and Tokoro, M. (1987). "Behavioral Simulation Based on Knowledge 
Objects", Proceedings of the European Conference on Object Oriented Programming, Paris 
France, June 17-191987, pp. 213-222. 

McDonald, L. B. and Wood, D. D. (1993). "Standards Development for Distributed Interactive 
Simulation: Engineering Change Proposal Number 2, Continued Development of SIGINTIEW 
Capabilities for Distributed Interactive Simulation", Technical Proposal IST-PR-92-06, Institute 
for Simulation and Training. 

McEnany, B. R. , Jacobs, 1. M., and Fonda, G. R. (1993). "Close Combat Tactical Trainer 
(CCTT) Semi-Automated Forces (SAF) Combat Instruction Set (CIS) Development", 
Unpublished report, mM Federal Systems, October 21 1993 . 

McEnany, B. R. and Marshall, H. (1994). "CCTT SAF Functional Analysis", Proceedings of the 
Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 195-207. 

McKeown, Jr. , D. M. (1990). "Some Research Issues for Advance Simulation Technologies", 
Presentation (DARPA Conference on Behavioral Representation in Semi-Automated Forces), 
October 25 1990. 

McMahon, P. E. and Meehl, D. W. (1991). "Software Metrics, Ada, and the B-2 AID", 
Proceedings of the 13th Interservicellndustry Training Systems Conference, Orlando FL, 
December 2-5 1991, pp. 162-171. 

181 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Meliza, L. L. and Tan, S. C. (1991). "Application of the SIMNET Unit Performance Assessment 
System to After Action Review", Proceedings of the 13th Interservicellndustry Training Systems 
Conference, Orlando FL, December 2-5 1991, pp. l36-144. 

Meliza, L. L. and Vaden, E. A. (1995). "Measuring Entity and Group Behaviors of Semi­
Automated Forces", Proceedings of the Fifth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, 
pp . 181-192. 

Menge~ L. L. (1994). ModSAF Summer Exercise (SUMEX-I) Final Report. 

Mitchell, 1. S. B. (1988). "An Algorithmic Approach to Some Problems in Terrain Navigation", 
ArtiflcialIntelligence, Vol. 37, 1988, pp. 171-20l. 

Mitchell, 1. S. B. and Papadimitriou, C. H. (1991). "The Weighted Region Problem: Finding 
Shortest Paths Through a Weighted Planar Subdivision", Journal of the Associationfor 
Computing Machinery, Vol. 38, No. 1, pp. 18-7l. 

Mohn, H. L. , Pratt, D. R., and McGhee, R. B. (1994). "Meta-Level C2lMission Planning Tool 
for ModSAF", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
461-472. 

Monday, P. and Pemeski, 1. (1995). "The Use of Automated Regression and VV A Testing in 
ModSAF, Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 193-196. 

Moore, E. F. (1959). "The Shortest Path Through a Maze", Proceedings of the International 
Symposium on Switching Theory, Harvard University Press, Vol. 1, pp. 282-292. 

Moore, C. G. and Whiteley, D. I. (1995). "Generic Architectures for Intelligent Computer 
Generated Forces", Proceedings of the 6th International Training EqUipment Conference, The 
Hague, The Netherlands, April 25-27 1995, pp. 185-193. 

Moore, M. B. , Gieb, C., and Reich, B. D. (1995). "Planning for Reactive Behaviors in Hide and 
Seek", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 345-352. 

Moshell, 1. M., Hughes, C. E. , and Petty, M. D. (1989). "Constraints as a Specification 
Mechanism for Automated Opposing Forces in Networked Simulators", Proceedings of the 
Interactive Networked Simulationfor Training Conference, Institute for Simulation and Training, 
Orlando FL, April 26-27 1989, pp. 84-90. 

182 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Moshell, 1. M. , Blau, B., Li, X., and Lisle, C. (1994). "Dynamic Terrain", Simulation, Vol. 62, 
No. I , January 1994, pp. 29-42. 

Nagy, G. and Wagle, S. (1979a). "Geographic Data Processing", ACM Computer Surveys, Vol. 
II , No. 2, June 1979, pp. 139-181. 

Nagy, G. and Wagle, S. (1979b). "Approximation of Polygonal Maps by Cellular Maps", 
Communications of the ACM, Vol. 22, No.9, September 1979, pp. 518-525 . 

NASA (1993). "Potential-Field Scheme for Avoidance of Obstacles by a Robot", NASA Tech 
Briefs, Vol. 17, No. 4, April 1993, p. 80. 

Nelms, D. W. (1988). ".SIMNET II", National Defense, July/August 1988, pp. 68-69. 

Nelson, R. S. (1995). "A Review of Terrain Database Correlation Test Results for the 1994 
UITSEC DIS Demonstration", Proceedings of the 12th DIS Workshop on Standards for the 
Interoperability of Defense Simulations, Institute for Simulation and Training, Orlando FL, 
March 13-17 1995, pp. 405-410. 

Nielsen, P. E. (1995). "Intelligent Computer Generated Forces for Command and Control", 
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 211-218. 

Nilsson, N. 1. (1980). Principles of Artificial Intelligence, Tioga, Palo Alto CA, 1980. 

O'Byrne, E. C. (1993). "Dismounted Infantry: Indispensible to the Virtual Battlefield", 
Proceedings of the 15th InterservicelIndustry Training Systems and Education Conference, 
Orlando FL, November 29-December 2 1993, pp. 783-791. 

O'DUnlaing, C. and Yap, C. (1985). "A Retraction Method for Planning the Motion of a Disc", 
Journal of Algorithms, Vol. 6, 1985, pp. 104-111. 

O'Rourke, 1. (1987). Art Gallery Theorems and Algorithms, Oxford University Press, Oxford 
UK, 1987. 

O'Rourke, 1. (1994). Computational Geometry in C, Cambridge University Press, Cambridge 
UK, 1994. 

OT A ( 1994). "Virtual Reality and Technologies for Combat Simulation", Background Paper 
301-804814127414, Office of Technology Assessment, Congress of the United States, 1994 

Ok, D. K (1989). "A Computer Simulation Study of a Sensor-Based Heuristic Navigation for 
lbree-Dimensional Rough Terrain with Obstacles", MS. TheSiS, U.S. Naval Postgraduate School, 
June 1989. 

183 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

Okabe, A, Boots, B., and Sugihara, K (1992). Spatial Tessellations: Concepts and 
Applications of Voronoi Diagrams, John Wiley, Chichester England, 1992. 

Oswalt, I. (1993). "Current Applications, Trends, and Organizations in U.S. Military Simulation 
and Gaming", Simulation & Gaming, Vol. 24, No.2, June 1993, pp. 153-189. 

Ourston, D. and Bimson, K (1994). "Integrating Heterogenous Knowledge Processes in the SAF 
Behaviors Implementation", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 333-342. 

Ourston, D., Blanchard, D., Chandler, E. , and Loh, E. (1995). "From CIS to Software", 
Proceedings of the Fifth Conference on Computer Generated Forces and BehavJoral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 275-285. 

Page, I. and Kendall, G. (1995). "An Automated CBS OPFOR", Proceedings of the Fifth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 9-11 1995, pp. 149-158. 

Pandari, A and Schaper, G. A (1995). "Terrain Reasoning by Intelligent Player", Proceedings of 
the Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 9-11 1995, pp. 367-373. 

Papadopoulou, E. and Lee, D. T. (1994). "Shortest paths in a simple polygon in the presence of 
"forbidden" vertices", Proceedings of the Sixth Canadian Conference on Computational 
Geometry, Saskatoon Saskatchewan Canada, August 2-6 1995, pp. 110-115. 

Papelis, Y. E. (1994). "Terrain Modeling on High-Fidelity Ground Vehicle Simulation", 
Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy 
Systems, Gainesville FL, December 7-9 1994, pp. 48-54. 

Parra, F. R. , Franceschini, R. W., Jackson, L. A, Vemulapati, 1., and Xuxia, Y. (1994). 
"Parametric Fireteam Makeup for Semi-Automated Forces Dismounted Infantry", Proceedings of 
the Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 4-6 1994, pp. 169-174. 

Parsons, 1. D. (1994). "Using Fuzzy Logic Control Technology to Simulate Human Decision­
Making in Warfare Models", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 519-529. 

Petty, M. D. (1988a). "Tactical Simulation in an Object Oriented Animated Graphics 
Environment", MS. Thesis, Computer Science Department, University of Central Florida, April 
25 1988. 

184 



I 
I 
I 
I 
,I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

Petty, M. D., Moshell, 1 M ., and Hughes, C. E. (1988b). "Tactical Simulation in an Object­
Oriented Animated Graphics Environment", Simuletter, Vol. 19, No.2, June 1988, pp. 31-46. 

Petty, M. D. , Frederick, T. 1 , and Moshell, 1 M. (1990). "Experiments in routing an 
autonomous land vehicle with a weakly inductive learning algorithm", Proceedings of the Third 
Florida Artificial Intelligence Research Symposium, Cocoa Beach FL, April 3-6 1990, pp. 159-
163 . 

Petty, M. D., Karr, C. R., Van Brackle, D. R., Cross, D. D. , Franceschini, R. W ., and Gonzalez, 
G. L. (1991). "Functional Specification and Implemented Capabilities of the 1ST Semi­
Automated Forces Dismounted Infantry System", Technical Report IST-TR-91-20, Institute for 
Simulation and Training, 1991. 

Petty, M. D., Campbell, C. E., Franceschini, R. W. , Provost, M. H. , and Karr, C. R. (1992a). 
"Preliminary Investigations into Efficient Line of Sight Determination in Polygonal Terrain", 
Technical Report IST-TR-92-5, Institute for Simulation and Training, February 28 1992. 

Petty, M. D. , Campbell, C. E., Franceschini, R. W. , and Provost, M. H. (1992b). "Efficient Line 
of Sight Determination in Polygonal Terrain", Proceedings of the 1992 IMAGE VI Conference, 
Phoenix AZ, July 14-17 1992, pp. 239-252. 

Petty, M. D. (1992c). "Computer Generated Forces in Battlefield Simulation", Proceedings of 
the Southeastern Simulation Conference 1992, The Society for Computer Simulation, Pensacola 
FL, October 22-23 1992, pp. 56-7l. 

Petty, M. D., Karr, C. R. , and Smith, S. H. (1992d). "Semi-Automated Forces Dismounted 
Infantry in the SIMNET Battlefield", Proceedings of the 14th InterservicelIndustry Training 
Systems and Education Conference, San Antonio TX, November 2-5 1992, pp. 314-32l. 

Petty, M. D., Smith, S. H. , Reece, D. A , Karr, C. R. , Hull, R. D., and Mullally, D. E. (1993). "A 
Design Study of Behavior Specification Languages for Autonomous Entities in Battlefield 
Simulation", Technical Report IST-TR-93-J8, Institute for Simulation and Training, June 15 
1993 , 

Petty, M. D. and Franceschini, R. W. (1994a). "Dismounted Infantry in Distributed Interactive 
Simulation", Proceedings of the Individual Combatant Modeling and Simulation Symposium 
(lNCOMSS-94) , Ft. Benning GA, February 15-17 1994, pp. 288-305 . 

Petty, M. D. and Van Brackle, D. R. (1994b). "Reconnaissance Planning in Polygonal Terrain", 
Proceedings of the 5th International Training EqUipment Conference, The Hague, The 
Netherlands, April 26-28 1994, pp. 314-327. 

Petty, M. D. (1994c). "The Turing Test as an Evaluation Criterion for Computer Generated 
Forces", Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 107-116. 

185 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Petty, M. D. and West, P. A. (1995a). "Plowshares: Applying a Military Constructive Simulation 
Model to Emergency Management Training", Proceedings of the 1995 Simulation 
MultiConference, Simulation for Emergency Management, Society for Computer Simulation, 
Phoenix AZ, April 9-13 1995, pp. 326-331. 

Petty, M. D. (1995b). "Computer generated forces in Distributed Interactive Simulation", 
Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace 
Environment, SPIE Critical Review 58, Orlando FL, April 19-20 1995, pp. 251-280. 

Petty, M. D. (1995c). "Computer Generated Forces and the Turing Test", Proceedings of the 6th 
International Training EqUipment Conference, The Hague, The Netherlands, April 25-27 1995, 
pp . 195-204. 

Petty, M. D. and Franceschini, R. W. (1995d). "Disaggregation Overload and Spreading 
Disaggregation in Constructive+Virtual Linkages", Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp . . l03-111. 

Petty, M. D., Slepow, M. P. , and West, P. D. (1995e). "CGF Opportunities in Plowshares", 
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 337-334. 

Petty, M. D. (1995f). "Case Studies in Verification, Validation, and Accreditation for Computer 
Generated Forces", Proceedings of the ITEA "Modeling & Simulation: Today and Tomorrow" 
Workshop, Las Cruces NM, December 11-14 1995. 

Pickett, H. K and Petty, M. D. (1995). "Report on the State of Computer Generated Forces 
1994", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, 549-558. 

Pope, A. R. (1989). "The SIMNET Network and Protocols", Report No. 7102, BBN Systems 
and Technologies Corporation, July 1989. 

Pope, C. N. , Vuong, M., Moore, R. G. , and Cowser, S. S. (1995a). "Cost-Effective 
Interoperable Distributed Interactive Simulation for Large-Scale Tactical Warfare Simulation", 
Proceedings of the 6th International Training EqUipment Conference, The Hague, The 
Netherlands, April 25-27 1995, pp. 129-142. 

Pope, C. N., Vuong, M. , Moore, R. G. , and Cowser, S. S. (1995b). "A Whole New CCTT 
World", Military Simulation & Training, Issue 5 1995, pp. 6-19. 

Porch, D. (1991). The French Foreign Legion, Harper Collins, New York NY, 1991. 

186 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Potomac Systems Engineering ( 1990). "Report of the Evaluation of the Representation of Semi­
Automated Forces (SAF) in the SIMNET Model", Potomac Systems Engineering, Annandale 
VA, July 1990. 

Powell, D. R. (1987). "Computer Based Terrain Analysis for Operational Planning", Proceedings 
of 198 7 IEEE International Conference on Systems, Man, and Cy bernetics, Institute of Electrical 
and Electronics Engineers, pp. 1022-1026. 

Powell, D. R. and Storm, G. (1988a). "Avenue of Approach Generation", Proceedings of the 
u. s. Army Symposium on Artificial Intelligence Researchfor Exploitationfor the Battlefield 
Environment, EIPaso TX, November 15-161988, pp. 203-210. 

Powell, D. R. , Wright, 1. C., Slentz, G. , and Kundsen, P. (l988b). "Representations to Support 
Reasoning on Terrain", Proceedings of the u.s. Army Symposium on Artificial Intelligence 
Researchfor Exploitationfor the Battlefield Environment, El Paso TX, November 15-16 1988, 
pp. 212-222. 

Powell, D. R. (1989). "Object Oriented Terrain Analysis", LA-UR-89-3665, Los Alamos National 
Laboratory, October 1989. 

Powell, D. R. and Hutchinson, 1. L. (1993). "Eagle II: A Prototype for Multi-Resolution 
Combat Modeling", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 221-230. 

Pratt, D. R. , Bhargava, H. K , Culpepper, M. , and Locke 1. (1994a). "Collaborative Autonomous 
Agents in the NPSNET Virtual World", Proceedings of the Fourth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 4-6 1994, pp. 177-186. 

Pratt, D. R. , Barham, P. T. , Locke, 1. , Zyda, M. 1., Eastman, B. , Moore, T., Biggers, K , 
Douglass, R. , Jacobsen, S., Hollick, M. , Granieri, 1. , Ko, H. , Badler, N. I. (1994b). "Insertion of 
an Articulated Human into a Networked Virtual Environment", Proceedings of the Fifth Annual 
Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, 
December 7-9 1994, pp. 84-90. 

Pratt, D. R., McAndrews, G., and McGhee, R. (1995a). "Autonomous Agent Interactions in 
ModSAF", Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 219-229. 

Pratt, D. R. , Mohn, H. , and McGhee, R. (1995b). "Implementation Of A Tactical Order 
Generator For Computer Generated Forces", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 287-291. 

187 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Preparata, F. P. (1977). "Steps into computational geometry", Technical Report, Coordinated 
Science Laboratory, University oflllinois, 1977. 

Preparata, F. P. and Shamos, M. I. (1988). Computational Geometry: An Introduction, 2nd 
Edition, Springer-Verlag, New York NY, 1988. 

Purnell, T , Pearson, R , Kendall, T , Kaste, v., Zhou, W., and Qiu, M. (1995). "An Architecture 
for Dynamic Environments", Proceedings of the 12th DIS Workshop on Standards for the 
Interoperability of Defense Simulations, Institute for Simulation and Training, Orlando FL, 
March 13-17 1995, pp. 437-444. 

Rajput, S., Craft, M. A , Breneman, L. 1. , Petty, M. D., Holly, T P. , and Ng, 1. 1. (1994a) . 
. "InteIVisibility Heuristics for Computer Generated Forces", Technical Report IST-TR-94-22, 
Institute for Simulation and Training, May 16 1994. 

Rajput, S. and Karr, C. (1994b). "Unit Route Planning", Technical Report IST-TR-94-42, 
Institute for Simulation and Training, December 21 1994. 

Rajput, S. , Karr, C. R , Petty, M. D., and Craft, M. A ( 1995a). "InteIVisibility heuristics for 
CGF", Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace 
Environment, SPIE Critical Review 58, Orlando FL, April 19-20 1995, pp. 299-327. 

Rajput, S., Karr, C. R , Petty, M. D., and Craft, M. A (1995b). "InteIVisibility Heuristics for 
Computer Generated Forces", Proceedings of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 451-464. 

Rajput, S. and Karr, C. R (1995b). "Cooperative Behavior in ModSAF", Technical Report IST­
CR-95-35, Institute for Simulation and Training, November 20 1995. 

Raytheon (1994). "System Specification for the Corps Level Computer Generated Forces", 
CDRL Sequence No. A0011, Contract No. DACA76-93-D-0007, Raytheon Systems 
Development Company, July 22 1994. 

Reece, D. A (1993). "Execution Control for CPU-Sharing Agents", Proceedings of the Third 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, March 17-19 1993, pp. 75-84. 

Reece, D. A (1994a). "Extending DIS for Individual Combatants", Proceedings of the Fifth 
Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, Gainesville FL, 
December 7-9 1994, pp. 91-97. 

Reece, D. A. (1994b). "The Architecture of the CGF Testbed", Unpublished report, Institute for 
Simulation and Training, October 5 1994. 

188 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Reybaz, 1. (1932). Le l er Mysterieux: Souvenirs de guerre d'un legionnaire suisse, Andre 
Barry, Paris France, 1932. 

Rice, 1. A. (1995). Mathematical Statistics and Data Analysis, 2nd Edition, Duxbury Press, 
Belmont CA, 1995. 

Roback, C. A. and Lee, R. (1995). "Terrain Database Generation - Methodology and 
Procedure", Proceedings of the 12th DIS Workshop on Standardsfor the Interoperability of 
Defense Simulations, Institute for Simulation and Training, Orlando FL, March 13-17 1995, pp. 
301-307. 

Robasky, K 1., Schaffer, R. , Wilbert, D. , and Haque, S. (1995). "A Toolkit for Cost Estimating 
Rea] and Theoretical Protocols", Proceedings of the 12th DIS Workshop on Standards for the 
Interoperability of Defense Simulations, Institute for Simulation and Training, Orlando FL, 
March 13-17 1995, pp. 477-479. 

Roos, T. and Noltemeier, H. (1991). "Dynamic Voronoi Diagrams in Motion Planning", 
Computational Geometry: Methods, Algorithms, and Applications, Proceedings of the 
International Workshop on Computational Geometry, Springer-Verlag, Bern Switzerland, March 
1991 , pp. 227-236. 

Root, E. D. and Karr, C. R. (1994). "Displaying Aggregate Units in the Virtual Environment" , 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 497-502. 

Rosenbloom, P. S. , Johnson, W. L. , Jones, R. M. , Koss, F. , Laird, 1. E., Lehman, 1. F. , Rubinoff, 
R. , Schwamb, K B. , and Tambe, M. (1994). "Intelligent Automated Agents for Tactial Air 
Simulation: A Progress Report", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 69-78. 

Rosenkrantz, D. 1. , Steams, R. E., and Lewis, P. M. (1974). "Approximate Algorithms for the 
Traveling Salesperson Problem", Proceedings of the 15th Annual Symposium on Switching and 
Automata Theory, New Orleans LA, 1974, pp. 34-42. 

Rubinoff, R. and Lehman, 1. F. (1994). ''Natural Language Processing in an IFOR Pilot", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 97-104. 

Salisbury, M. and Tallis, H. (1993). "Automated Planning and Replanning for Battlefield 
Simulation", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 243-254. 

189 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Salisbury, M. R., Booker, L. B., SeideL D. W., and Dahmann, 1. S. (1995). "Implementation of 
Command Forces (CFOR) Simulation", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 423-430. 

Sarnat, H. (1984). "The Quadtree and Related Hierarchical Data Structures", Computing 
Surveys, Vol. 16, No. 2, 1984, pp. 187-260. 

Sansom, R. and Darling, D. (1993). "A Radar Altitude and Line of Sight Attachment", 
Proceedings fo the AIAA Flight Simulation Technologies Conference, Monterey C~ August 9-
11 1993, pp. 243-250. 

Sargeant, 1. M. and Schuerger, 1. M. (1990). "A Graphically Oriented Automated Knowledge 
Acquisition Tool", Proceedings of the Third Florida ArtifiCial Intelligence Research Symposium, 
Cocoa Beach FL, April 3-6 1990, pp. 107-111. 

Schaffer, R. L. (1994). "Environmental Extensions to ModSAF", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 17-23. 

Schaper, G. A, Pandari, S., and Singh, M. (1994). "Lookahead Limits of Intelligent Player", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 401-410. 

Schiavone, G. A, Nelson, R. S. , and Goldiez, B. (1994). "Statistical Certification of Terrain 
Databases", Proceedings of the 16th InterservicelIndustry Training Systems and Education 
Conference, Orlando FL, November 28-December 1 1994, pp. 4-9. 

Schiavone, G. A, Nelson, R. S., and Hardis, K C. (1995). "Interoperability Issues for Terrain 
Databases in Distributed Interactive Simulation", Distributed Interactive Simulation Systems for 
Simulation and Training in the Aerospace EnVironment, SPIE Critical Review 58, Orlando FL, 
April 19-20 1995, pp. 89-118. 

Schmitt, 1. F. and PowelL A W. (1988). Ground Combat OperatiOns, United States Marine 
Corps Operational Handbook 6-1, Marine Corps Combat Development Command, Quantico VA 

Schricker, S. A , Franceschini, R. W., Petty, M. D., and Tolley, T. R. (1995a). "Terrain 
A voidance for CGF Helicopters", Proceedings of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 315-325. 

Schricker, S. A, Tolley, T. R., and Franceschini, R. W. (1995b). "Benchmarking and 
Optimization of the 1ST CGF Testbed", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995 pp. 465-476. 

190 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Schwamb, K B. , Koss, F. v., and Keirsey, D. (1994). "Working with ModSAF: Interfaces for 
Programs and Users", Proceedings of the Fourth Conference on Computer Generated Forces 
and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 
1994, pp. 395-399. 

Seidel, R. (1982). "The complexity ofVoronoi diagrams in higher dimensions", Proceedings of 
the 20th Allerton Conference on Communications, Control, and Computing, pp. 94-95. 

Shamos, M. and Hoey, D. (1975). "Closest point problems", Proceedings of the 16th Annual 
IEEE Symposium on the Foundations of Computer SCience, Institute of Electrical and Electronics 
Engineers, pp. 151-162. 

Shapiro, S. C. (1992). "The Turing Test and The Economist", SIGART Bulletin, Vol. 3, No. 4, 
October 1992, pp. 10-11. 

Sherman, R. H. (1994). "Using Computer Generated Forces to Support Cooperative Mission 
Planning", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
37-49. 

Siksik, D. N. (1993). "Intelligent Computer Generated Forces Through Expert Systems", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 3-10. 

Slack, M. G. (1989). "Space-Time Modeling Using Environmental Constraints in a Mobile Robot 
System", Proceedings of SPIE '89 Sensor Fusion II: Human and Mechanical Strategies, Vol. 
1198, Philadelphia PA, November 6-9 1989, pp. 520-528. 

Smith, 1. E. (1992a). "Compact Terrain Database Library User Manual and Report", ODIN SAF 
Documentation, March 1992. 

Smith, S. H , Karr, C. R. , Petty, M. D., Franceschini R. W. , and Watkins, 1. E. (1992b). "The 
1ST Computer Generated Forces Testbed", Technical Report IST-TR-92-7, Institute for 
Simulation and Training, February 28 1992. 

Smith, S. H and Petty, M. D. (1992c). "Controlling Autonomous Behavior in Real-Time 
Simulation", Proceedings of the Southeastern Simulation Conference 1992, The Society for 
Computer Simulation, Pensacola FL, October 22-23 1992, pp. 27-40. 

Smith, S. H (1993). "ILLISH: Intermediate Level Language, Interpreted, for Script Handling", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 95-
106. 

191 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Smith, 1. E. (1994). "Near-term Movement Control in ModSAF", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 249-260. 

Smith, 1. E. , Russo, K L. , and Schuette, L. C. (1995a). "Prototype Multicast IP Implementation 
in ModSAF", Proceedings of the 12th DIS Workshop on Standards for the Interoperability of 
Def ense Simulations, Institute for Simulation and Training, Orlando FL, March 13-17 1995, pp. 
175-178. 

Smith, 1. E. (1995b). "Recent Developments in ModSAF Terrain Representation", Proceedings 
of the Fifth Conference on Computer Generated Forces and Behavioral Representation, Institute 
for Simulation and Training, Orlando FL, May 9-11 1995, pp. 375-381. 

SOGITEC (1989). "An Expert System for Tank Platoon Behavior", Interactions, No. 2, June 
1989, pp. 6-7. 

Stanzione, T (1989). "Terrain Reasoning in the SIMNET Semi-Automated Forces System", 
Geo'89 Symposium on Geographical Information Systems for Command. and Control, SHAPE 
Technical Centre, The Hague, The Netherlands, October 1989. 

Stanzione, T., Smith, 1. E., Brock, D. L., Mar, 1. M. F., and Calder, R. B. (1993). "Terrain 
Reasoning in the ODIN Semi-Automated Forces System", Proceedings of the Third Conference 
on Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, March 17-19 1993, pp. 317-326. 

Stanzione, T (1994). "Suitability of the Standard Simulator Database Interchange Format for 
Representation of Terrain for Computer Generated Forces", Proceedings of the Fourth 
Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 231-238. 

Stanzione, T , Chamberlin, F., Evans, A, and Buettner, C. (1995). "Integrated Computer 
Generated Forces Terrain Database", Proceedings of the Fifth Conference on Computer 
Generated Forces and Behavioral Representation, Institute for Simulation and Training, Orlando 
FL, May 9-11 1995, pp. 399-409. 

Sterling, B. (1994). "Conditions for Using Performance on Simulations as 'Gates' for Live Fire 
and Maneuver Training", Proceedings of the 5th International Training EqUipment Conference , 
The Hague, The Netherlands, April 26-28 1994, pp. 57-63. 

Stevens, S. M. (1989). "Intelligent Interactive Video Simulation ofa Code Inspection", 
Communications of the ACM, Vol. 32, No. 7, July 1989, pp. 832-843. 

Stober, D. R. , Kraus, M. K , Foss, W. F., Franceschini, R. W., and Petty, M. D. (1995). "Survey 
ofConstructive+Virtual Models", Proceedings of the Fifth Conference on Computer Generated 

192 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 93-102. 

Sun Tzu. (600BC). The Art of War, Translated by Cleary, T. , Shambhala, Boston MA, 600BC. 

Sundaram, R. , McArthur, D. , and Devarajan, V. (1994). "Incremental Real Time Delaunay 
Triangulation for Terrain Skin Generation", Proceedings of the 16th InterservicelIndustry 
Training Systems and Education Conference, Orlando FL, November 28-December 1 1994, pp. 
6-4. 

Tallis, H (1993). "Flexible Control of Military Subordinates in a Reactive Simulation", 
Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 109-
120. 

Tambe, M. and Rosenbloom, P. S. (1994). "Event Tracking in Complex Multi-Agent 
Environments", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
473-484. 

Tambe, M., Schwamb, K , and Rosenbloom, P. S. (1995a). "Building Intelligent Pilots for Rotary 
Wing Aircraft" , Proceedings of the Fifth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, 
pp. 39-44. 

Tambe, M. and Rosenbloom, P. S. (1995b). "Agent Tracking in Complex Multi-agent 
Environments: New Results", Proceedings of the Fifth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
9-11 1995, pp. 125-133. 

Teng, Y. A , DeMenthon, D., and Davis, L. S. (1992). "Stealth Terrain Navigation With 
Bounding Overwatch", Proceedings of the DARPA Image Understanding Workshop, Morgan­
Kaufinann, San Diego CA, January 26-29 1992, pp. 979-989. 

Thomas, 1. G. (1995a). "Verification and Validation of Modular Semi-Automated Forces 
(ModSAF) in Support of A2A TO Experiments", Proceedings of the 12th DIS Workshop on 
Standards for the Interoperability of Defense SimulatiOns, Institute for Simulation and Training, 
Orlando FL, March 13-17 1995, pp. 359-361. 

Thomas, 1. G. (1995b). "Verification and Validation of Modular Semi-Automated Forces 
(ModSAF) in Support of A2A TO Experiments", Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp. 197-200. 

193 



------------...................... .......... 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Thorpe, 1. A (1987). "The New Technology of Large Scale Simulator Networking: Implications 
for Mastering the Art of Warfighting" , Proceedings of the 9th InterservicelIndustry Training 
Systems Conference, Orlando FL, November 30-December 2 1987, pp. 492-501. 

Trott, K C. and Langevin, T. (1995). "DIS Terrain Database Exchange Format Analysis", 
Proceedings of the 12th DIS Workshop on Standardsfor the Interoperability of Defense 
Simulations, Institute for Simulation and Training, Orlando FL, March 13-17 1995, pp. 105-117. 

Turing, AM. (1950). "Computing machinery and intelligence", Mind, Vol. 59 No. 236, October 
1950, pp. 433-460. 

U.S. Army (1988). Tank and Mechanized Infantry Company Team, Field Manual 71-1, U.S. 
Army, November 22 1988. 

U.S. Army (1991). The Soviet Army: Troops, Organization, and EqUipment, Field Manual 100-
2-3, U.S. Army, June 6 1991. 

Vaden, E. A, Meliza, L., .and Johnson, W. R (1994). "Using the Unit Performance Assessment 
System (UPAS) to Measure Modular Semi-Automated Force Behavior", Proceedings of the 
Fourth Conference on Computer Generated Forces and Behavioral Representation, Institute for 
Simulation and Training, Orlando FL, May 4-6 1994, pp. 117-128. 

Van Brackle, D. R, Gouge, C. D., Hull, R D., and Petty, M. D. (1993a). "Terrain Reasoning for 
Reconnaissance Planning in Polygonal Terrain Cultural Features", Technical Report IST-TR-93-
03, Institute for Simulation and Training, 1993. 

Van Brackle, D. R, Petty, M. D., Gouge, C. D., and Hull, RD. (1993b). "Terrain Reasoning for 
Reconnaissance Planning in Polygonal Terrain", Proceedings of the Third Conference on -
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, March 17-19 1993, pp. 285-305. 

van Lent, M. and Wray, R (1994). "A Very Low Cost System for Direct Human Control of 
Simulated Vehicles", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 
79-85. 

Vanzant-Hodge, A F., Smith, S. H, Cheung, S., and Humphrey, D. (1994a). "Testing a CGF in 
a DIS Environment", Proceedings of the Fourth Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp . 
141-146. 

Vanzant-Hodge, A, Cheung, S., and Smith, S. (1994b). "Testing Conformance for Distributed 
lnteractive Simulation (DIS) Standards", Proceedings of the 16th InterservicelIndustry Training 
Systems and Education Conference, Orlando FL, November 28-December 1 1994, pp. 4-1. 

194 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Vrablik, R. and Wilbert, D. (1993). "The Use of Semi-Automated Forces to Simulate a 10,000 
Entity Exercise", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 169-178. 

Vrablik, R. and Richardson, W. (1994). "Benchmarking and Optimization ofModSAF", 
Proceedings of the Fourth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 4-6 1994, pp. 25-33. 

Vrba, 1. A. and Herrera, 1. A. (1988). "Improved Expert System Performance Through 
Knowledge Shaping", Proceedings of the u.s. Army Symposium on ArtifiCial Intelligence 
Researchfor Exploitationfor the Battlefield Environment, El Paso TX, November 15-16 1988, 
pp. 293-301. 

Wallich, P. (1991). "Silicon Babies", SCientific American, December 1991, pp. 124-134. 

Warren, R. , Crowe, M., Shillcutt, D. (1995). "Bi-Directional Technology Transfer Between 
Government Applications of Computer Generated Agents and Commercial Entertainment", 
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, May 9-11 1995, pp. 329-335. 

Watkins, 1. and Provost, M. (1994). "Design of Terrain Reasoning Database for CCTT", 
Proceedings of the Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy 
Systems, Gainesville FL, December 7-9 1994, pp. 62-68. 

Watkins, 1. (1995). "Terrain Capabilities in CCTT", Proceedings of the Fifth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 9-11 1995, pp. 411-419. 

Weaver, W. B. (1993). "Behavioral Representation Completeness in Computer Generated Forces 
Implementations", Proceedings of the Third Conference on Computer Generated Forces and 
Behavioral Representation, Institute for Simulation and Training, Orlando FL, March 17-19 
1993, pp. 375-386. 

Weaver, W. B. (1994). "Simulating Generic Military Decision Making with an Empirically­
Trained Neural Network", Proceedings of the Fourth Conference on Computer Generated 
Forces and Behavioral Representation, Institute for Simulation and Training, Orlando FL, May 
4-6 1994, pp. 531-540. 

Webber, B. and Badier, N. (1993). "Virtual Interactive Collaborators for Simulation and 
Training", Proceedings of the Third Conference on Computer Generated Forces and Behavioral 
Representation, Institute for Simulation and Training, Orlando FL, March 17-19 1993, pp. 199-
205 . 

195 



I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Weiss,1. M. and Korba, R E. (1991). "Advantages ofan Object-Oriented Design Approach to 
the Simulation of Lead ship Effects", Proceedings of the 13th InterservicelIndustry Training 
Systems Conference, Orlando FL, December 2-5 1991, pp. 314-320. 

Werkheiser, A (1991). "Automated Terrain Reasoning", Unpublished report, U.S. Army 
Topographic Engineering Center, 1991. 

Wever, P. and Lang, E. (1989). "SIMNET Database Interchange Specification", Report No. 
1108, BBN Systems and Technologies Corporation, July 1989. 

Winston, P. H. (1984). ArtifiCial Intelligence, Addison-Wesley, Reading MA, 1984. 

Wise, B. P., Miller, D., and Ceranowicz, A Z. (1991). "A Framework for Evaluating Computer 
Generated Forces", Proceedings of the 2nd Behavioral Representation and Computer Generated 
Forces Symposium, Institute for Simulation and Training, Orlando FL, May 6-7 1991, pp. H 1-7. 

Wood, D. D. and Petty, M. D. (1994). "Development of Signal IntelligencelElectronic Warfare 
Capabilities in a Computer Generated Forces Testbed", Proceedings of the Fourth Conference on 
Computer Generated Forces and Behavioral Representation, Institute for Simulation and 
Training, Orlando FL, May 4-6 1994, pp. 365-371. 

Wood, D. D. and Petty, M. D. (1995). "Electronic warfare and DIS", Distributed Interactive 
Simulation Systems for Simulation and Training in the Aerospace EnVironment, SPIE Critical 
Review 58, Orlando FL, April 19-20 1995, pp. 179-194. 

Wright, 1. C. and Powe11, D. R (1990). "Artificial Intelligence Technologies Applied to Terrain 
Analysis", Report LA-UR-90-123, Los Alamos National Laboratory, June 1990. 

Wysocki, F. and Fowlkes, D. (1994). "Team Target Engagement Simulator (TTES) Advanced 
Technology Demonstration", Proceedings of the Individual Combatant Modeling and Simulation 
Symposium 1994 (lNCOMSS-94j , Ft. Benning GA, February 15-17 1994, pp. 144-190. 

Yiu, S. M. and Choi, A (1994). "Edge Guards on a Fortress", Proceedings of the Sixth 
Canadian Conference on Computational Geometry, Saskatoon Saskatchewan Canada, August 2-
6 1995, pp. 296-301. 

Zhu, B. ( 1994). "Intersection detection and computation of Manhatten terrains", Proceedings of 
the Sixth Canadian Conference on Computational Geometry, Saskatoon Saskatchewan Canada, 
August 2-6 1995, pp. 256-262. 

Zink, W. E. and Neebe, 1. M. (1991). "The Challenges of Developing a Real-Time Environment 
in Ada", Proceedings of the 13th InterservicelIndustry Training Systems Conference, Orlando 
FL, December 2-5 1991, pp. 19-34. 

196 



I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Zisman, M. D. (1978). "Use of Production Systems for Modeling Asynchronous, Concurrent 
Process", in Waterman, D. A. and Hayes-Roth, F. (Eds.), Pattern-Directed Inference Systems, 
Academic Press, New York NY, pp. 53-68. 

Zvolanek, B. and Dillard, D. E. (1992). "Database Correlation Testing for Simulation 
. Environments", Proceedings of the 14th InterservicelIndustry Training Systems and Education 
Conference, San Antonio TX, November 2-4 1992, pp. 867-875. 

Zvolanek, B. , Dillard, D. E ., Stewart, 1. R. , and Baumann, E. W. (1993). "Quantitative 
Correlation Testing from DoD Project 2851 Standard Simulator Data Bases", Proceedings of the 
15th Interservicellndustry Training Systems and Education Conference, Orlando FL, November 
29-December 2 1993, pp. 829-836. 

Zyda, M. 1. , Pratt, D. 1., Monahan, 1. G. , and Wilson, K P. (1992). "NPSNET: Constructing a 
3D Virtual World", Proceedings of the 1992 Symposium on Interactive 3D Graphics, March 29-
April I 1992. 

197 



I 
I .. . ·· 8. Appendices 

I 8.1 List of acronyms and abbreviations 

A2ATD Anti-Armor Advanced Technology Demonstration 

I AAM Air-to-Air Missile 
ACBM Action/Cognition Behavior Model 
ACETEF Air Combat Environment Test and Evaluation Facility 

I ACM Association for Computing Machinery 
ADST Advanced Distributed Simulation Technology 
AF Automated Force 

I AI Artificial Intelligence 
AMSAA Army Materiel Systems Analysis Activity 

I 
ARL Army Research Laboratory 
ARPA Advanced Research Projects Agency 
ATGM Anti-Tank Guided Missile 

I 
ATR Anti-Tank Rocket 
BBN Bolt, Beranek, and Newman 
BBS Brigade Battle Simulation 

I 
BDS-D Battlefield Distributed Simulation - Developmental 
CASTFOREM Combined Arms Support and Task Force Evaluation Model 
CATT Combined Arms Tactical Training 

I CBS Corps Battle Simulation 
CCTT Close Combat Tactical Training 
CFOR Command Forces 

I CGF Computer Generated Forces 
cm Centimeter 
CTDB Compact Terrain Database 

I DARPA Defense Advanced Research Projects Agency 
DCEL Doubly Connected Edge List 
DI Dismounted Infantry 

I DIS Distributed Interactive Simulation 
DTED Digital Terrain Elevation Data 
FACS Feature Attnoute Coding Standard 

I FWA Fixed Winged Aircraft 
FZD Fire Zone Defense 

I 
GIS Geographic Information System 
HOI High Detail Input/Output 
HOBP Hasty Occupy Battle Position 

I 
IBM International Business Machines 
ICTDB Integrated Computer Generated Forces Terrain Database 
IDS Iowa Driving Simulator 

I iff If and only if 

• IFOR Intelligent Forces 
IFV Infantry Fighting Vehicle 

I 
I 198 



I 
1\ IG Image Generator 

lilT SEC InterservicelIndustry Training Systems and Equipment Conference 

I ll.,LISH Intermediate Level Language, Interpreted, for Script Handling 
IOT&E Initial Operations Test and Evaluation 
IP Intelligent Pilot or Intelligent Player 

I 1ST Institute for Simulation and Training 
JPL Jet Propulsion Laboratory 
Km Kilometer 

I LADS Loral Advanced Distributed Simulation 
LLNL Lawrence Livermore National Laboratory 
LOS Line of Sight 

I m Meter 
ModSAF Modular Semi-Automated Forces 

I 
MRTDB Model Reference Terrain Database 
NASA National Aeronautics and Space Administration 
NE Northeast 

I 
NW Northwest 
OCOKA Observation and fields of fire, Cover and concealment, Obstacles, 

Key terrain, and A venues of approach 

I PDU Protocol Data Unit 
RWA Rotary Winged Aircraft 
SAFDI Semi-Automated Forces Dismounted Infantry 

I SAF Semi-Automated Forces 
SAFOR Semi-Automated Forces 
SAM Surface-to-Air Missile 

I SDBF Simulator Database Facility 
SE Southeast 
SIF SSDB Interchange Format 

I SIMNET Simulator Networking 
SME Subject Matter Expert 
SSDB Standard Simulator Database 

I STOW Synthetic Theater of War 
STRICOM U. S. Army Simulation, Training, and Instrumentation Command 

I 
SW Southwest 
SWEG Simulated Warfare Environment Generator 
TDB Terrain Database 

I 
TIN Triangulated Irregular Network 
TRP Target Reference Point 
UPAS Unit Performance Assessment System 

I 
VBL Virtual Battlespace Language 
VMS Vertical Motion Simulator 
20 Two dimensions, or two-dimensional 

I 3D Three dimensions, or three-dimensional 
3 DAR Three-dimensional attack route 

I 
.. . ... 

I --
199 



I 
I ( 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

8.2 Some constructive CGF systems 

Name: Red Adversarial Gaming Environment (RAGE) 
Developer: MITRE 
Simulation: AirLand Battle Management 
Domain: Ground combat 
Scope: Corps 
Reference( s): [Tallis, 1993] 

Name: Adversarial Planner (AP) 
Developer: MITRE 
Simulation: Eagle 
Domain: Ground and air combat 
Scope: Division and brigade 
Reference( s): [Salisbury, 1993] 

Name: System to Automate Force Control Actions (STAFCA) 
Developer: Pathfinder Systems 
Simulation: BBS 
Domain: Ground combat 
Scope: Brigade 
Reference( s): [J aszlics, 1993] 

Name: Virtual Commander (VCom) 
Developer: Lawrence Livermore National Laboratory 
Simulation: Joint Conflict Model (JCM), a Janus variant 
Domain: Ground and air combat 
Scope: Battalion 
Reference(s): [Cunningham,1994] 

Name: GeKnoFlexE 
Developer: Defense Research Agency (UK) 
Simulation: Corps Battle Simulation 
Domain: Ground and air combat 
Scope: Corps and division 
Reference(s): [Cox,1994] [page,1995] [Lankester,1995] 

Name: SAFOR 
Developer: Jet Propulsion Laboratory 
Simulation: Corps Battle Simulation 
Domain: Ground and air combat 
Scope: Corps and division 
Reference(s): [Gat, 1993] 

200 



--------------------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



---------------------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 0000084 


	Terrain Representation And Reasoning In Computer Generated Forces : A Survey Of Computer Generated Forces Systems And How They Represent And Reason About Terrain
	Recommended Citation

	tmp.1440437765.pdf.KUvuL

