
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Optimizing combat capabilities by modeling combat as a complex Optimizing combat capabilities by modeling combat as a complex

adaptive system adaptive system

Steven Mains
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons, Industrial Engineering Commons, and the Operational

Research Commons

Recommended Citation Recommended Citation
Mains, Steven, "Optimizing combat capabilities by modeling combat as a complex adaptive system"
(2004). Dissertations, Theses, and Masters Projects. Paper 1539623454.
https://dx.doi.org/doi:10.21220/s2-5bpz-c473

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.wm.edu%2Fetd%2F1539623454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.wm.edu%2Fetd%2F1539623454&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.wm.edu%2Fetd%2F1539623454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-5bpz-c473
mailto:scholarworks@wm.edu

Optimizing Combat Capabilities by Modeling Combat as a Complex

Adaptive System

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Steven Mains

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor >sophy

Steven Mains

Approved, November 2004

f ":C / s ' ' -

Stefan Feyock-'
Thesis Advisor

yOJju / K ju

Weizhen Mao

Andreas Stathopoulos

Rex Kincaid
Department of Mathematics

r / i
Andrew Loerch

George Mason University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Maureen, Peter and Caroline.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments ix

List of Tables xi

List of Figures xii

Abstract xiii

1 Introduction 2

1.1 Statement of the P ro b le m .. 2

1.1.1 Budgeting as a Balancing A c t ... 2

1.1.2 The Force Development Process ... 3

1.1.3 Non-linearity of C o m b a t... 6

1.1.4 The Tyranny of Multi-dimensionality ... 8

1.2 Requirements For Combat Development M odels... 10

1.3 Proposed A pproach... 11

1.4 C o n tr ib u tio n ... 12

1.5 Classification C oncerns.. 13

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Relevant Work 14

2.1 Attempts to Solve the Force Development P ro b le m ... 14

2.1.1 Modeling O rig in s .. 14

2.1.2 Simplification by E x c lu s io n .. 18

2.2 Current Combat M o d e ls ... 19

2.2.1 J a n u s ... 19

2.2.2 Modular Semi-Automated Forces (M O D SA F).. 21

2.2.3 S hortcom ings.. 22

3 M odeling Combat as a Complex Adaptive System 24

3.1 Definition of a Complex Adaptive S y s te m ... 25

3.2 Applicability .. 30

3.2.1 Multiple Agents .. 30

3.2.2 A d a p ta t io n ... 31

3.2.3 Self-organization.. 31

3.2.4 N o n -lin ea rity .. 32

3.3 Model D e sc r ip tio n ... 32

3.3.1 G e n e ra l .. 33

3.3.2 Conceptual M o d e l ... 34

3.3.3 Specification Model ... 35

3.3.3.1 Physical S ta te s .. 35

3.3.3.2 Tactical S ta t e s .. 37

3.3.4 Computational M o d e l .. 39

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 V erifica tion .. 45

3.5 V alidation ... 46

4 Searching the Space 47

4.1 Characterization of the Fitness Space... 48

4.2 Available Approaches .. 53

4.2.1 Derivative A pproaches.. 53

4.2.2 Frequency Domain M e th o d ... 54

4.2.3 Differential Qualitative Analysis ... 54

4.2.4 Response Surface M ethodology.. 55

4.2.5 Evolutionary (Derivative Free) A p p ro a c h e s ... 56

4.2.6 Evolution S tra te g ie s ... 57

4.2.7 Evolutionary P ro g ram m in g ... 57

4.2.8 Genetic A lgorithm s... 58

4.2.9 Genetic P ro g ram m in g .. 59

4.3 Artificial L i f e .. 60

4.3.1 D efin ition ... 60

4.3.2 Evolving S t r u c tu r e s .. 62

4.3.3 Evolving R u le s ... 62

4.3.4 Evolving Both Structures and R u le s .. 63

4.4 Ant Colony S im u la tio n s .. 63

4.5 Enhancement Through C o-evo lu tion .. 66

4.6 Co-evolutionary T h e o r y ... 70

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.1 Increased E x p lo ita tio n .. 71

4.6.2 Increased E x p lo ra tio n .. 75

4.7 The Genetic Algorithm A pproach .. 77

4.7.1 General A p p ro a c h ... 77

4.7.2 Selection of Solutions .. 78

5 M odeling Results 80

5.1 Improved S olu tions.. 81

5.2 Increased E x p lo ra tio n .. 82

5.3 Appropriate S o lu tio n s .. 84

5.3.1 G e n e ra l .. 85

5.3.2 S ig h ts .. 86

5.3.3 Armor P rotection.. 87

5.3.4 Weapon S y s te m s .. 87

5.3.5 E n g in e s .. 89

5.3.6 T actics.. 90

5.4 C onclusions... 91

6 The Value of Information 94

6.1 A p p ro a c h .. 96

6.2 R esu lts... 97

6.2.1 Increased F itn e ss .. 97

6.2.2 Information as a Substitute for C apab ilities... 99

6.3 Assessment of the Value of Information ... 100

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Assessment of the Validity of the A p p ro a c h .. 101

7 Further Work 102

8 Conclusion 104

8.1 Intent of the D is s e r ta t io n ... 104

8.2 Restatement of the Problem and A p p ro a c h .. 106

8.3 R esu lts .. 108

8.4 Measurement of the Value of In fo rm a tio n ... 109

8.5 Implications for Future W o r k .. 109

Appendix A Code for the Agent-based M odel 111

Appendix B Code for the Co-evolutionary Genetic Algorithm 228

Appendix C Chromosome Definitions 248

Bibliography 253

V ita 260

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I could not have completed this effort without the assistance and direction of my co
advisors, Professors Stefan Feyock and Rex Kincaid, at the College of William and Mary.
They have given me the freedom to explore while always being ready to provide encourage
ment and advice. I am indebted to them for their support, working around many deploy
ments. I would like to thank the Professors and Staff of the Computer Science Department,
and especially my committee and the Computational Operations Research Program, for
their encouragement and guidance.

I am indebted to my classmates, who taught me more than anyone at the College.

Most of all, however, I want to thank the men and women I have served with in 24 years
in the Army for their support and their contributions to allowing the pursuit of happiness
tha t we all enjoy.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Typical Rule Set Tuples... 38

4.1 Probability of Survival for d-order sc h e m a ta .. 75

5.1 Highest Fitness Found... 82

5.2 Objective Value Range of Solutions Found... 83

5.3 Sight System Capabilities and C o s t .. 86

5.4 Selected Weapon Systems Capabilities and C o s t... 88

5.5 Capabilities and Cost for Non-selected Weapons .. 89

5.6 Engine Cost and Parameters .. 89

5.7 Rule Predom inance... 90

6.1 Previous Runs v. Information Enhanced E xcursion ... 97

6.2 Fit Solutions C o m p a riso n ... 98

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Comparison of Information-Enhanced Solutions to Standard Information Level 98

C .l Tank Physical Gene Definitions... 248

C.2 Tank Tactical Gene Definitions.. 249

C.3 Tank Tactical Gene Definitions (cont’d).. 250

C.4 Artillery Physical Gene Definitions... 250

C.5 Artillery Tactical Gene Definitions... 251

C.6 Artillery Tactical Gene Definitions (cont’d)... 252

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.1 Two-dimensional Landscape Representation.. 51

4.2 Three-dimensional Landscape Representation.. 52

4.3 Close-up of a Portion of the Three-dimensional Landscape Representation. . 53

4.4 Comparison of One-step Range... 76

5.1 Effect of Overemphasis on Remaining Near Friendlies... 92

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Procuring combat systems in the Department of Defense is a balancing act where many
variables, only some under control of the department, shift simultaneously. Technology
changes non-linearly, providing new opportunities and new challenges to the existing and
potential force. Money available changes year over year to fit into the overall US Gov
ernment budget. Numbers of employees change through political demands rather than by
cost-effectiveness considerations. The intent is to provide the best mix of equipment to field
the best force against an expected enemy while maintaining adequate capability against
the unexpected. Confounding this desire is the inability of current simulations to dynami
cally model changing capabilities and the very large universe of potential combinations of
equipment and tactics.

The problem can be characterized as a stochastic, mixed-integer, non-linear optimiza
tion problem. This dissertation proposes to combine an agent-based model developed to
test solutions tha t constitute both equipment capabilities and tactics with a co-evolutionary
genetic algorithm to search this hyper-dimensional solution space. In the process, the dis
sertation develops the theoretical underpinning for using agent-based simulations to model
combat. It also provides the theoretical basis for improvement of search effectiveness by
co-evolving multiple systems simultaneously, which increases exploitation of good schemata
and widens exploration of new schemata. Further, it demonstrates the effectiveness of using
agent-based models and co-evolution in this application confirming the theoretical results.

An open research issue is the value of increased information in a system. This disserta
tion uses the combination of an agent-based model with a co-evolutionary genetic algorithm
to explore the value added by increasing information in a system. The result was an in
creased number of fit solutions, rather than an increase in the fitness of the best solutions.
Formerly unfit solutions were improved by increasing the information available making them
competitive with the most fit solutions whereas already fit solutions were not improved.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Optimizing Combat Capabilities by Modeling Combat as a Complex

Adaptive System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The most extensive computation known has been conducted over the last billion

years on a planet-wide scale: it is the evolution of life. The power of this compu

tation is illustrated by the complexity and beauty of its crowning achievement,

the human brain.

-David Rogers

1.1 Statem ent o f the Problem

1.1.1 B u d getin g as a B alancing A ct

Procuring combat systems in the Department of Defense is a balancing act where many

variables, only some under control of the department, shift simultaneously. Technology

changes non-linearly, providing new opportunities and new challenges to the existing and

potential force. Money available changes year over year to fit into the overall US Government

budget. Numbers of employees (soldiers, sailors, Department civilians, etc.) change as a

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

result of political forces1 rather than by an analysis of what is most cost-effective. The

intent is to provide the best mix of equipment and organizations in order to field the best

force against an expected enemy while maintaining a capability against the unexpected.

Armies seldom get it completely right when planning for an adversary. As British Historian

Michael Howard puts it, we don’t have to get it completely right but we must get it “less

wrong than the adversary” [29].

To find the best mix of technology and combat processes (tactics) in this very dynamic

environment, the Department of Defense has developed the Force Development process. As

will be seen, this system is hampered by a lack of modeling tools capable of capturing the

complexity of combat and a way to find the best set of technology and processes in an

extremely large solution space. This dissertation proposes a solution to these shortcomings.

1.1.2 T he Force D evelop m en t P rocess

The Force Development process consists of both top-down and bottom-up processes. The

top-down process consists of annual mission, capability and budget guidance developed by

the administration with input from Congress and passed through the Secretary of Defense

and Joint Chiefs of Staff.2 The Joint Chiefs model alternative force structure and capa

bility options against projected threats and issue guidance to the services regarding their

capability requirements and budget limitations.

1 “End strength,” or the number of troops in each service, is regulated by law. The services have input
into the number, but actual control over the number resides in the Congress. Ideally, upward changes in the
number of forces would be accompanied by corresponding funds to pay for the accession, training, salary
and benefits for those extra employees, but in practice increases may not be accompanied by funding.

2The Chairman of the Joint Chiefs of Staff and the uniformed heads of the Army, Navy, Marines and Air
Force.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

The bottom-up component is the result of changing threat capabilities, experience gained

in real operations (such as Operation Iraqi Freedom or Bosnia), lessons learned at train

ing centers such as the National Training Center (NTC)3 and technological breakthroughs.

As the threat evolves, services develop new ways to counter the changes. Technology pro

vides new opportunities th a t the services attem pt to incorporate. The Army has defined

the changes to be in one of five domains: Doctrine, Training, Leader Development, Orga

nization and Materiel [l].4 These domains are roughly listed in order of increasing cost.

Changing doctrine,5 aside from a nominal cost to change some field manuals and institu

tional training packages, is essentially without cost. Training and Leader Development6

changes are usually more expensive, as they may require new training devices, but the cost

pales in comparison to organizational changes, which may require changing the number of

people in the organization. This may require redistribution and retraining of people, as well

as recruiting and training more people with new skill sets.

The most expensive domain in terms of direct cost is Materiel, which entails developing,

buying and fielding new systems. Each new system requires extensive engineering and

testing to ensure tha t it can withstand the rigors of combat and operate in environments

as diverse as high mountains and barren deserts. There is a non-trivial cost to establish

a production facility at the beginning of a system’s cost learning curve, particularly for

3At Fort Irwin, CA. The NTC is a very large desert training facility where units up to Brigade-level
(3-4 Battalions or approximately 1500 soldiers) can operate a force-on-force exercise against an opposing
force. Each vehicle on both sides is instrumented to record vehicle location and actions over time so that
the reactions can be evaluated and to identify training shortcomings.

4Often these are abbreviated as DTLOM
5 Doctrine is defined as the “rule” that a force uses to defeat an enemy and to accomplish its mission.

For our purposes I will use the terms doctrine and tactics synonymously
®Meaning changing the way we assess, train and mature our leaders in institutional schools and unit

training.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

resource-intensive systems like 70-ton tanks that have no civilian counterparts. The units

receiving new equipment must be trained to use the equipment at not inconsiderable cost

and their old equipment must be demilitarized.7

Adding to the cost at each higher-level domain is the fact that a change at one domain

causes changes to the lesser-cost domains as well. A change of organization could require

not only more equipment and soldiers. It could also require development of more leaders to

command the new organizations. At the very least, it requires new training and doctrine.

Each service conducts extensive computer simulations followed by live testing of pro

posed solutions in an effort to find the least cost set of domain changes in response to

requirements. To complement this process, each service staff balances solutions with the

guidance received from the Joint Chiefs in an effort to develop coherent and effective one-

and five-year spending plans. These plans, along with the assumptions and models used in

their preparation, are in tu rn reviewed by the Secretary of Defense, the Joint Chiefs, and

Congress.8 Despite the amount of effort put into this process, analysis of combat systems is

inherently complex due to the non-linearities of combat and the huge number of alternatives

available to decision-makers.

7Usually the active forces receive new equipment first, so disposal includes moving their older displaced
equipment to the reserve forces and subsequent disposal of the reserves’ equipment. Due to the amount and
type of reserve forces, there may be a multiple cascade of equipment requiring movement to lower priority
units and disposal. This cascading cost is included when considering new pieces of equipment and in part
accounts for the high price tag of weapon systems.

8Not to mention every defense contractor whose system “lost” in the budget process and was not funded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

1.1 .3 N on -lin earity o f C om bat

Combat is a peculiarly human phenomenon. The outcome is the collective result of the

individual decisions of a large number of actors and their interaction with their fellow com

batants, the environment, the enemy, and their equipment. These “agents” act9 based on

their individual understanding of the mission, their knowledge of tactics and the perceived

threat. Although Generals can send orders to the front, or even deliver those orders per

sonally in order to influence the action by their personal leadership, the individual agent -

the tank commander10 or the infantryman - makes the final decision as to what action it

takes.11 The action of these agents can be intense, chaotic and, to an observer, inscrutable,

but it results in identifiable macro-level behavior in the overall system. Like the stock

market, which is often described anthropomorphically as being “jittery” or “advancing,”

defenses can be said to “buckle” or “strengthen” while assaults “sputter” or “overwhelm.”

The interaction of the agents is non-linear because of the concept of positive and negative

feedback [3] [4] [19]. Positive feedback provides rewards based on the results of actions.

Negative feedback penalizes the agent. In combat, as an attack progresses successfully, the

attackers become more confident of success and press the attack harder. Success provides

9For my purposes I will discuss agents here without a formal definition, which will come later. The
concept is evident enough for the purpose of description of the overall combat environment. For these
purposes, I define tank agents as the entire tank system, which includes the crew and the combat equipment
as if they are one entity. The same will be done with other types of agents.

10It is important to define tank commander as the sergeant or officer that commands an individual tank.
The term tank commander is sometimes used by historians when discussing skilled leaders of large tank
formations, like Rommel or Patton, to distinguish them from commanders who did not grasp how to use the
new tanks effectively. Tank commander is the official Army term for one who commands a single tank and
will be used throughout the dissertation as such.

11 Even Field Marshall Erwin Rommel found himself leading a one-man charge after ordering a squad to
attack in Italy in World Weir I [75]. The “agents” in the squad decided the risk was too great and remained
under cover.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

positive feedback, which increases the likelihood of further success. Similarly, local failure

instills and reinforces expectations of ultimate failure, thus increasing the likelihood of

failure.

Individual events and small units can have disproportionate effects. An example is the

experience of the French Army near Sedan, FYance at the outset of World War II [15]. On

May 13, 1940 inaccurate reports of the presence of German units nearby caused a French

artillery battalion to reposition. As the unit moved, other units surmised tha t a retreat was

occurring. W ithin two hours, the entire artillery support for the French 55th Division was

in headlong retreat, allowing the German attackers a relatively easy victory in tha t area.12

Similarly, only 10 of the 117 German divisions tha t attacked France in 1940 ever broke

free from their railway-based logistics systems. Those few divisions, even though they were

equipped with equipment that was at best equal, and in most cases inferior, to tha t of the

French and British forces, caused most of the collapse of the Allied Forces [76].

Effects of new capabilities13 on operations are also non-linear. In a large army, introduc

tion of a small quantity of some new piece of equipment generally has no effect on overall

effectiveness. Once a critical mass is reached, however, the new equipment improves combat

capability until reaching a point of diminishing returns where more of a particular type of

equipment is not helpful and may even become detrimental to effectiveness.14 Chapter 2

will review the current models and their shortcomings when addressing these non-linearities.

12This is not to imply that the German Army would not have been successful in their invasion of France
without this incident. It is merely one example of non-linear interactions in military operations.

13This might be a larger cannon, improved speed or reduced visual signature.
14At some point a new capability would begin to divert resources from other higher-payoff activities and

the effectiveness curve would turn downward.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

Chapter 3 will discuss how combat modeling can change to account for these non-linearities.

1.1.4 T h e T yranny o f M u lti-d im en sion a lity

A problem alluded to above is the combinatorial complexity caused by the very large number

of solutions possible when even a small number of systems and capabilities are considered.

This exponential explosion of possible combinations forces the investigator to limit the

number of candidate solutions either arbitrarily or through some sort of “Delphi Technique”

where subject m atter experts select the most promising of the systems under study to keep

the number of alternative solutions manageable.

To use a very simple example, consider the interactions between three types of weapon

systems with five system capabilities each. Say the three systems are a tank, an infantry

squad and an artillery piece and the five capabilities are speed, weapon range, vision dis

tance, survivability15 and fuel consumption. These parameters are continuous values, which

results in an infinite number of combinations unless discretized into, say, five values. Even

after such simplification of the problem by restricting the options, the solution space still

consists of 1010 combinations.

This solution space, however, is not fully representative of the actual problem. It assumes

that tactics are fixed across the solution space and tha t the numbers of equipment are static.

Cost constraints should, as systems become more capable (and expensive), decrease their

numbers in a force, inducing changes in the employment of that force. Clearly the tactics

15Quantified as millimeters of armor. More armor results in an increased probability of surviving a hit
from an enemy weapon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 9

would be very different if a force consisted of a large number of tanks and few infantry (as

the US forces in the Gulf War and Operation Iraqi Freedom) or large infantry formations

(as the Chinese Army in 1952). Including the different tactics tha t could be used with the

different types and amount of equipment would increase the dimensionality of the solution

space from its already daunting size.

Determining the appropriate tactics is surprisingly difficult without extensive analysis

especially when the capabilities under study are novel. Often the best tactics are not

obvious or are unacceptable to decision makers because of unconventionality or because

they challenge the status quo. A historical example will suffice to illuminate this point.

Brigadier General William “Billy” Mitchell was a great air power enthusiast in World War

I. After the war, he championed many uses for air power, but his most famous is the

proposed use of aircraft to defeat battleships. He theorized tha t an air fleet, operating from

land, could defeat a naval fleet.

He pressed for tests of his concept, which were staunchly opposed by the US Navy. Fear

of increasing inter-service rivalry caused even other Army Generals to support Mitchell’s

efforts only tepidly. He was finally able to get permission to test his concept on captured

German battleships and excess US battleships due to be scuttled off Norfolk, VA in 1921.

Mitchell’s pilots succeeded in sinking one of the largest and most heavily armored battleships

in the world, the Ostfriesland, followed by the battleships USS Alabama, Virginia and New

Jersey [26]. In doing so, Mitchell set conventional wisdom on its head and changed naval

tactics forever. To truly develop appropriate tactics, they must be developed alongside the

capabilities that they complement, rather than as an input variable or as an afterthought.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION

Chapter 4 will explore how to search this multidimensional solution space.

10

1.2 Requirem ents For Combat Developm ent M odels

Prom this discussion, four requirements for combat models can be discerned. They must

account for the non-linearity of combat. They must account for a myriad of potential tactics

to best support the equipment capabilities. They must be able to search large solution

spaces and they must do it quickly enough to be useful. The historical examples presented

emphasize the non-linearity. They clearly indicate tha t the effect of forces on the battlefield

can be disproportionate to the size and firepower of the force. This is because when a

force surprises the enemy, employs an unexpected weapon or tactic, is more skillfully led or

simply is more determined than the enemy, it will have more success than would normally

be expected. It is not sufficient to count force strengths and attem pt to draw conclusions

from an expected value derived from the force ratios. Although Werner Heisenberg said

“The equation knows best,” [25] for a combat model, there is no closed form equation.

The requirement for multiple tactics based on the equipment mix raises another require

ment for combat models - there must be a way to vary the tactics of the weapon systems

based on capabilities and numbers automatically in order to compare the best tactics for

one equipment mix to the best tactics for an alternate equipment mix.

The combinatorial complexity of the solution set requires searching extremely large

solution spaces where trade-offs in and between DOTLM domains must be made in order

to determine the best force for a given situation and against a particular enemy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

The stochastic nature of the interactions between the agents indicates tha t each alterna

tive must be run enough times to get some statistical certainty tha t one alternative is better

than another. This increases the computing time required to search the solution space. The

simulation must necessarily be fast16 and provide meaningful measures of combat capability

in order to support weapons procurement decisions.

1.3 Proposed Approach

The problem under study can be characterized as a mixed-integer, non-linear optimization

problem tha t lacks a closed-form representation but has an extremely large solution set. To

address this problem, the research described in this dissertation uses simulation optimization

combining an agent-based model to determine fitness of a selected solution with a genetic

algorithm to choose from the very large solution space. The model will consist of tank

and artillery agents that follow a rule set tha t can vary between generations along with

the capabilities of the systems. The agent’s capabilities and tactics will be represented

as a binary string formed into a “chromosome.” This chromosome defines the universe of

alternatives, which allows a genetic algorithm to search the solution space. To enhance

the genetic algorithm, the two systems will cooperatively coevolve. The overall fitness of

the set agent types, which follow the rule sets encoded in their chromosome along with the

physical characteristics, defines the fitness of the solution. Contribution of each type of

agent to the overall fitness will not be determined. Solutions will combine and continue to

16Fast is, of course, relative. The simulation must support searching the solution space sufficiently quickly
to be of use to a decision maker. This means that the solution space must be searched in a matter of days,
at most. Longer than that would make the model too cumbersome to use in any but the most deliberate
analyses of alternatives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 12

the next generation or be eliminated from the solution sample based only on the overall

fitness. Chapter 5 documents the results of this approach.

1.4 Contribution

This dissertation provides contributions to the corpus scientia in a number of areas. First

it proposes a model tha t adapts both system capabilities and rule sets to solve a real-

world problem. It provides proof tha t co-evolutionary genetic algorithms are superior to

evolutionary genetic algorithms, a proposition that has been shown empirically, but has

never been rigorously explained. In developing the model, this dissertation proposes a

standard categorization technique for fitness landscapes that can be used as a first check

as to whether a problem is suited to a particular solution method. In the discussion of

Complex Adaptive Systems, it synthesizes a definition for them from the many that have

been proposed and rigorously compares the characteristics of combat to the definition.

Lastly, much has been w ritten about the ability to measure the value of information in a

physical system, but the very issues of non-linearity and combinatorial complexity tha t have

limited combat simulations have limited efforts to measure information. As a result, much

of the measurement of the value of information has been inferential rather than direct. To

test the value of the modeling process to measure information directly, an excursion was

run and conclusions drawn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION

1.5 Classification Concerns

13

This dissertation is completely unclassified. All data used in this modeling effort was either

gathered from open source web sites, such as the Federation of American Scientists, or,

when not available, estimated by the author. The purpose was to explore an approach

rather than develop an empirical answer to the problem. The model can be easily recoded

with the classified data relevant to actual systems under study to develop a solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Relevant Work

To seek out the best through the whole Union, we must resort to the information

which from the best of men, acting disinterestedly and with the purest motives,

is sometimes incorrect.

-Thom as Jefferson

2.1 A ttem pts to Solve the Force Developm ent Problem

The problem described is not novel. It has been an area of interest for over 5000 years.

This chapter will review the efforts to solve two of the problems outlined in the previous

chapter - modeling combat dynamically and searching the large universe of solutions.

2.1.1 M odeling O rigins

Models or simulations typically are used when the system under study is unavailable or

too expensive to study directly in operation [6]. Likewise, simulation is often the only

way to model a system tha t is dynamic and evolves based on the attributes and actions

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 15

of the participants. Combat fits these criteria precisely. It requires a huge investment in

personnel, land, fuel and ammunition to conduct a meaningful, non-lethal wargame (i.e. a

live simulation) with actual troops and equipment. It is much more cost-effective to use

other (non-live) simulation techniques to develop equipment and tactics before fully testing

the concept with live troops in a realistic wargame. Confounding the problem of conducting

a realistic wargame against a projected enemy is tha t the very army or armies tha t would

be most useful as an opposing force would be unwilling to lend their expertise, manpower

and equipment to such an enterprise.

Before computers, physical representations of armies were used in simulations. Minia

ture soldiers have been found in the burial effects of kings in ancient Sumeria and Egypt

indicating that combat modeling may have occurred earlier, but combat modeling really

can be said to have started when the Chinese General Sun Tsu developed a game called

Wei Hai about 5000 years ago [67]. In the subsequent centuries, modeling was primarily

in the form of a two-sided board game with rules for movement and tactics, but no fixed

rules to adjudicate losses. In the Civil War Abraham Lincoln recognized that successful

attacks generally required a 3:1 advantage over an entrenched defender [16] and a simple,

quantitative rule-of-thumb for determining relative advantage was born.

This rule sufficed as a guide until the 1880’s when the Prussian Army devised Kriegspiel

- a board game played on a grand scale, filling the central square of the Kriegsakademie

[67]. Students were assigned to work out the rate of movement for each unit represented and

move those unit pieces tactically across a grid. The game board was configured with terrain

data in each square. A group of “umpires” adjudicated losses based on their professional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 16

judgment and ensured tha t players followed the movement and combat rules.

Combat modeling gained increased sophistication in 1914 when English mathematician

Frederick Lanchester [16] [36] proposed two sets of differential equations as the basis for

determining the outcome of a battle. The equations sought to relate force ratios (attacker:

defender) to loss rates. The first set of equations is called Lanchester’s Linear Law, or

sometimes his “unaimed fire” equations. They are:

dA
— = —nA D
dt

d D A n—— = —m A D
dt

where A is Attacker Strength, D is Defender Strength, t is time and n and m are rate

coefficients developed from subjective evaluations of relative merits of equipment and tactics

used by each side.

These equations relate the change of the attacker and defender strength in any time unit

to a fixed proportion of the aggregate number of troops on both sides. They fail to account

for positive feedbacks (such as increased aggressiveness caused by perceived success) or

negative feedbacks (such as fear or disorientation caused by being surprised by an enemy).

They also disregard the effects of terrain or unit movement during battle [19]. For instance,

if one unit spreads its forces across a wider front, it presents a more difficult target for an

enemy to fire at, so the proportion of soldiers killed in a time step should decrease. This

battlefield adjustment is not explicit in Lanchester’s equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 17

The second set of equations are called Lanchester’s Square Law, or sometimes his “aimed

fire” equations. Rather than losses being a proportion of the aggregate number of forces,

losses to each force are a proportion of the number of troops firing at tha t force. The

equations are

d4 = - kD
dt
dD
— = - c A
dt

where A and D are attacker and defender strengths and t is time as before, with k and

c being rate coefficients tha t are a function of the probability of the firing force hitting

its target. As in Lanchester’s Linear Law, there is no adjustment for dispersion of forces

across the battlefield. Nor are there benefits for movement, surprise, training or discipline.

Presumably, some attributes, such as training, discipline, and relative weapon effects, were

intended to be captured by n, m , k and c, but tha t assumes tha t these factors are somewhat

uniform across both armies and in some way quantifiable.

Modifications of Lanchester’s Equations, however flawed, as well as the venerable 3:1

rule, are at the heart of most combat models in use today. The accepted models remain

linear and attritional in their approach. Although some advantages are given for attacking

an enemy’s flanks or rear (usually in the form of a scalar increase in weapon effects), forces

generally do not surprise an enemy and drive it from the field. In most simulations, forces

fight to a predetermined threshold without regard to the way combat actually develops.

Also, forces fight at the maximum level of capability based on the characteristics of their

weapons, without regard to the intangible issues such as training, command, or fatigue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 18

The problem of this approach is tha t combat is treated as a set of fixed, linear equations

to be solved by Gaussian elimination. Combat is reduced from being the free-flowing result

of the millions of interactions between soldiers, the terrain and machines to a Newtonian

system where every action results in a predictable, deterministic reaction. But combat is

not a grandfather clock, it is dynamic. The agents not only react to their environment, but

their reactions adjust over time to the changing situation. Later in this chapter, the state

of the art for combat simulations will be compared against the requirement to be dynamic.

2.1 .2 S im plification by E xclusion

The other issue identified for force development is the combinatorial problem. To combat

this the approach is generally simplification through exclusion of what is deemed the “less

interesting” solutions. The alternative solutions are heuristically limited to a number that

can be evaluated with available resources while still satisfactorily searching the universe of

alternatives. An example of this process is when the M l “Abrams” tank began development;

the Study Director identified 128 potential capability combinations, which were whittled

down to 72 potential candidates. T hat number was, in turn, reduced to a smaller number

for actual analysis through a Delphi Process.[45] A problem with this technique was that

the heuristics used by the participants depended greatly on their combat experience which,

even when extensive in terms of time in combat, was generally narrow measured across

the spectrum of conflict. The veterans of W WII, for instance, had years of experience in

combat against a conventional, armored force, whereas Korean War veterans had experience

against a conventional, infantry force. The Viet Nam veterans had experience against

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 19

an unconventional, infantry-based force. Few had combat experience across the range of

conflict. The WW II veterans insisted the tank be designed primarily for anti-tank warfare.

The Viet Nam veterans insisted on emphasizing the anti-personnel capabilities. The tank

loader was given a machine gun simply because the Study Director felt it was a good idea.

Although there still is not a better system to reduce the number of potential candidates to

a manageable number, this method strikes the author as distinctly unscientific a t best and

potentially damaging to the force at worst.

2.2 Current Combat M odels

A review of the current models in use in the Department of Defense for ground combat

follows. A description of the major models is presented then reviewed for adequacy against

the requirements outlined in Chapter 1.

2.2.1 Janus

The most widely used combat development simulation used by the US Army is Janus. It is

a two-sided, real-time, “man-in-the-loop,” interactive model tha t uses players to command

individual units. JANUS is completely free-play. Human players can adopt any tactics and

form any plan. Players set paths for their vehicles to follow while the game progresses,

attacking and defending against an enemy controlled by other players. The players react to

situations by applying their military judgment in order to replicate actual combat. Neither

side can see forces on the other side, except where intelligence assets have detected the enemy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 20

or where units are in physical contact, in order to realistically portray the commanders’

picture of the battlefield and elicit realistic reactions.

A “man-out-of-the-loop” approach has been attem pted in order to get the high volume

of runs required to draw statistically valid conclusions about alternatives. The concept is to

play a scenario until all participants agree it is representative of how a battle should unfold

given the relative capabilities and tactics of the two sides. The computer then iterates the

scenario to approximate the mean for selected measures of effectiveness. The approach does

not take into account tha t the combat action will evolve differently if conditions change. For

instance, if a unit is unlucky and draws multiple successive low (although random) numbers

and is wiped out early, the plans of the other units, and perhaps the overall force, should

change to adjust for the un it’s loss. In this use of JANUS, units continue on the paths and

timelines designated in the initial run, regardless of the altered situation.

In both the man-in-the-loop and man-out-of-the-loop techniques, changes in the number

or type of equipment requires changes of tactics tha t must be implemented by subject m atter

experts controlling the forces. The man-hours required for each changed situation precludes

most studies from including more than a handful of alternatives.

Janus also suffers from the effects of a learning curve. Players naturally become better

at playing the game as they perform runs. As a result, later runs generally receive higher

scores and are not directly comparable with those from earlier runs. Although much time is

spent designing the experiment to minimize these problems, they can never be eliminated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 21

2.2 .2 M odular S em i-A u tom ated Forces (M O D SA F)

Semi-Automated Forces (SAF) are computer-generated forces (CGF) that can respond to

specific battlefield occurrences [62], The US Army, in conjunction with the other services,

is pursuing the MODSAF program as a training device tha t allows military units to train

while minimizing the overhead required to portray adjacent and enemy units. The concept

is that friendly and enemy SAF can operate on the simulated battlefield with manned forces

so realistically tha t the players cannot distinguish manned forces from SAF. SAF can be

used as friendly forces beside the manned force on a flank or as enemy forces tailored to

look, act and perform as a chosen enemy army. Manned units use vehicle simulators to

replicate their combat vehicles and allow them to see and hear the adjacent forces as they

move in concert across simulated terrain.

SAF can be configured to behave in very realistic, but limited, ways. For instance if a

leader orders a unit to cross a bridge, the SAF vehicles line up and cross without the leader

having to micro-manage each vehicle. A parameter database contains behaviors required of

each SAF based on its capabilities and role. Rote actions, such as those to be taken upon

chance contact or actions required when under artillery attack, are automatically followed

by SAF. SAF do not make battle plans or change their tactics based on changes in the

equipment. The SAF commander must make those changes during initialization of the

wargame or dynamically, during play, as the situation develops.

MODSAF has been developed as a training device, and therefore is focused on providing

a realistic training environment. It runs in real-time, in order to allow training units to

become familiar with how long tasks take and practice synchronization of all elements of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 22

combat power.

2.2 .3 Shortcom ings

Both of these models, although useful in many ways, exhibit shortcomings. The inability

to automatically tailor the behavior of each agent to the situation in Janus results in the

exploration of a severely restricted universe of alternatives when new equipment or tactics

are proposed. Typically, a new combat system, such as a tank, replaces the old version

in a simulation and the effects are noted. Scenarios are artificially limited by the capabil

ities of the analysts to play and analyze them. This approach is unsatisfactory for many

reasons. Firstly, the new capability may require tactics to change. All efforts are made

to determine the best new tactics required using subject m atter experts, but the time and

manpower required for even simple changes can be prohibitive. If the change to equipment

or organization is novel, there may even be additional runs required to determine the best

tactics.

A new capability in one type of equipment may dictate a change in the number or qual

ity of other pieces of equipment. The combinatorial complexity caused by evaluating every

capability and quantity of each type of equipment tha t could bear on the situation prevents

this from being explored except in the crudest terms. Recalling the combinatorial complex

ity of the three combat system example used before indicates tha t Janus is inappropriate

to meaningfully explore this solution space since the man-hours alone would be prohibitive.

Even if an organization had the manpower and computing power to conduct an exhaus

tive search of the solution space, enumerating the solutions is not straightforward. There

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. RELEVANT WORK 23

are often both positive and negative interactions between capabilities. Determining the

net result is problematic. For instance, adding armor increases survivability against a hit.

The additional weight of the armor, however, negatively impacts the speed of the vehicle

making it an easier target to hit. The added weight also impacts fuel consumption poten

tially causing a change of unit capabilities and, by extension, its employment. Better vision

and weapon range improves survivability by allowing units to disperse over a larger area,

but requires more fuel to move increased distances and probably requires faster vehicles,

increasing the fuel requirement further. Assessing the net effects of all these changes and

determining the proper tactics to account for them is difficult and increases the modeling

time required.

MODSAF is designed for training, not combat development. As such, it replicates

combatants well enough tha t soldiers undergoing training cannot tell machine-assisted forces

from manned forces. It does not, however, run autonomously or change its plans based on a

changing situation without human intervention. It cannot be run much more quickly than

real-time since it relies on human players. This limits its ability to produce the runs required

to search large solution spaces and develop statistically significant data in a reasonable time.

I t is well suited for what it was designed to do, but it is not a combat development tool.

Combat presents a mixed-integer, non-linear stochastic optimization problem where the

interactions between agents are dynamic and must be dictated a t run-time. Current models

are linear. Their plans are static without the intervention of human players, forcing the

options to be artificially limited. Chapter 3 outlines some methods being proposed in

simulation optimization to mitigate these problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Modeling Combat as a Complex

Adaptive System

The Lord said to Gideon, “You have too many men for me to deliver Midian into

their hands” . .. So twenty-two thousand men left, while ten thousand remained.

But the Lord sa id ... “There are still too many men. Take them down to the

water, and I will sift them for you there” . . .T he Lord said to Gideon, “With

the[se] three hundred m en... I will save you and give the Midianites into your

hands. Let all the other men go, each to his own place.”

-Judges 7

It is enticing to rush headlong into modeling combat as a Complex Adaptive System

given the apparent applicability and quantity of interest. Ilachinski is credited with the

initial research into modeling combat as a Complex Adaptive System [34]. His modeling

environment, EINSTein, has been used in some theoretical studies to explore its applicability

to ground combat. Epstein, et al, used an agent-based model to explore civil disobedience

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 25

situations and the effects of policing and military action [20]. Many, like Czerwinski, have

theorized tha t we cannot understand the current form of combat without thinking about it

as a complex adaptive system [12]. Lesser, et al, Erlenbuch and Woodaman theorize tha t the

current conflict scenarios tha t the United States faces, terrorism and low-intensity conflict,

must be thought of as Complex Adaptive Systems and tha t combat must be modeled as such

for the modeling to be appropriate [55] [21] [92]. Kewley has succeeded developing tactical-

level orders by modeling small-unit combat as a Complex Adaptive System [46]. Goble has

theorized the applicability of modeling combat as an alternative to current linear approaches

[27]. Gill, et al, in New Zealand and Australia, have used agent-based distillations (as they

call them) to study the human dynamics of combat [57] [24]. It is im portant to note that,

despite the interest from many researchers, little formal analysis exists to show that combat

indeed fits the definition of a Complex Adaptive System. This is, no doubt, in no small

part due to the lack of an agreed definition for a Complex Adaptive System itself. This

section will examine the many definitions and synthesize them into one definition. It will

then compare combat to that definition to show the applicability of the approach. Finally,

it will explain the agent-based model developed to conduct the research.

3.1 Definition of a Com plex Adaptive System

Despite the widespread interest shown in many disparate fields, there is little agreement on

the precise definition for Complex Adaptive Systems. Researchers, it appears, have defined

Complex Adaptive Systems in ways tha t fits their research goals and methods, mixing con

cepts from other fields in with nomenclature of their own. This is not a criticism; defining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT AS A COMPLEX ADAPTIVE SYSTEM 26

Complex Adaptive Systems in the taxonomy of the field of research allows ready applica

tion in the field, bu t it is im portant to understand how these systems are viewed across the

relevant research in order to apply the concept to the problem under investigation. W ith

out establishing a framework, the assumption tha t combat can be modeled as a Complex

Adaptive System hangs unsupported in the air.

Holland [31] posited seven characteristics of Complex Adaptive Systems tha t have been

accepted as the “gold standard” in some form by most researchers. These seven character

istics are:

• Aggregation. Aggregation is used in two senses: First, that models are made

up of smaller components aggregated into the larger model. Second, and more

important, aggregation is the emergence of large-scale behaviors from the com

bined interactions of individual agents. This behavior may not be predictable,

but can be explained after the fact.

• Tagging. Tags are attributes of agents recognizable by other agents. These

might be size, shape or activity of ants tha t sends signals to other ants.

• Non-linearity. The relationship between system inputs and outputs is not

definable by a set ratio. Holland’s example is the lynx-hare populations captured

over time by the Hudson Bay Company. The populations oscillated between

times of feast or famine in a distinctly non-linear manner.

• Resource Flows. Flows refer to the transmission of information, energy, or

goods across a network. This is most evident in economic models, but has

analogues in other systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 27

• Diversity. Agents differentiate as they adapt to fill specific niches in the system.

Removal of an agent from a system will result in a number of adaptations where

the remaining agents seek to assume the role (or at least gain the resources) of

the missing agent.

• Internal Models. Agents operate on the basis of local knowledge, which drives

a set of assumptions about the general state of the system in order to make de

cisions. The quality of these models is directly related to the long-term viability

of the agent. If an agent is “wrong” enough about the state of its system it will

cease to exist.

• Building Blocks. Internal models rely on a limited sampling of the constantly

changing environment, but models can only be useful if situations are repeated

or the models will become inappropriate, and, therefore, inadequate for con

tinuation of the system. The component agents find themselves facing similar

situations but perhaps in different sequences making their experience continually

novel but, nonetheless, their models remain appropriate.

Other researchers, such as Voss [88], have reduced this number to just 5 requirements.

He agrees with Holland tha t Complex Adaptive Systems require Internal Models, Building

Blocks, and Emergence (like Holland’s Aggregation or Kauffman’s self-organization [42]).

He further posits tha t Complex Adaptive Systems have the ability to exhibit novel behavior

when subjected to a changed environment. Voss’ novel behavior requires systems to adapt

to meet the new challenge. Voss further proposes that Complex Adaptive Systems require

the presence of multiple agents exhibiting both diversity and complexity. Systems with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 28

small number of agents would become trivial to analyze and would limit the adaptability

of the system.

Steels, in his work on the nature of intelligence, focused on four attributes of systems:

self-maintenance, adaptivity, information preservation and spontaneous increase in com

plexity [82]. Steels’ self-maintenance refers to the property tha t these systems actively

establish and rebuild themselves by drawing materials from the environment. This has also

been called autopoiesis [58] [59]. Adaptivity, as for Holland and Voss, indicates an ability

to change structure or function in the face of environmental opportunities. Preservation of

information allows the system to be independent of the existence of individual agents. This

allows the elimination of agents without detriment to the existence of the system.

Spontaneous increase in complexity refers to the property tha t Complex Adaptive Sys

tems will develop an increasing number of parts, the interrelationships between these parts

will become more complex, behaviors will become more complex or parts of the system will

combine to operate as a component part of a higher-level, more complex system.

Dooley has distilled his definition to three behaviors and a description of the underlying

agents [14]. In his characterization of Complex Adaptive Systems, order is emergent rather

than predetermined, consistent with Holland. He further states tha t the system’s history is

irreversible and the future is often unpredictable. The agents operating in (or making up)

the system operate independently with schemata that determine how they view the world

and how they react to what they perceive.

Others have tried a different approach, making the definition simpler, and, as a re

sult, much broader. Bankes, working at Rand [7], has proposed the characterization of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 29

Complex Adaptive Systems such tha t “no model less complex than the system itself can

accurately predict in detail how the system will behave at future times.” Ilachinsky [33]

has proposed tha t they are “non-linear, dynamical systems composed of many interacting

semi-autonomous and hierarchically organized agents continuously adapting to a changing

environment.” .

If we compare these definitions to the real-world systems tha t spawned the research of

Complex Adaptive Systems, economies [3], ecologies [87], biologies [66], webs of corruption

[79], as well as the human brain [82], among others, we can see value in all these defini

tions. Although each confirms Gell-Mann’s observation that scientists would rather share

each other’s toothbrush before sharing their nomenclatures [23], each accepts implicitly or

explicitly tha t Complex Adaptive Systems share the following characteristics. They:

• Consist of multiple interacting agents where agents are defined as independent

acting entities that have attributes and operate on an internal model, or rule

set, tha t governs their actions and reactions.

• Adapt at the atomic (agent) and/or the system level. Adaptation can be

changes in the attributes of the agent or system or the rule set tha t they operate

under. As such, they develop novel responses to changing inputs.

• Self-organize and, as a result, achieve stability without external input. The

stable states are explainable, but not necessarily predictable.

• Exhibit interesting and complex behavior which implies non-linear, if not

chaotic, behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 30

This definition captures the essence of the definitions above and passes the acid test,

which is to take commonly accepted Complex Adaptive Systems and compare them to

the definition. W ithout belaboring each point, economic systems, biological and ecological

systems all seem to fit this definition. As a result, this will be used for the remainder of

this work.

3.2 Applicability

Based on this composite definition, the next step is to determine if combat can be said to

be a Complex Adaptive System. Each of the four parts of the definition will be addressed

in turn. Should combat fail any of these parts, it will be judged to not fit the definition of

a Complex Adaptive System, and a different modeling approach adopted.

3.2.1 M u ltip le A gen ts

Armies consist of large numbers of agents, from tank crews to artillery crews, infantrymen to

truck drivers. Each fits the description of agents in tha t they are independent, have physical

attributes, and act on internal models. T hat is, each tank crew and each infantryman must

perceive the situation and make a decision how (or even) to follow his orders because

he is often out of sight of the commander tha t gave them. As Major General Robert

Scales has noted, when the Captain of a ship orders a turn, everyone aboard turns. In

ground combat, each soldier is a freethinking actor tha t relies on his discipline, training,

camaraderie, intelligence, knowledge of the situation and courage to turn with his unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 31

These things he relies on are the internal models, or rule-sets, tha t he uses to sample his

environment and determine his actions.

3.2 .2 A d ap ta tion

Armies, and the agents tha t constitute them, adapt as their experience grows. Soldiers

adding armor protection to their vehicles to protect against experienced threats in Iraq is but

one example. The Department of Defense is currently undergoing a massive transformation

program to adapt to the threat from terrorism and so called “small wars.”1

Confronting new enemies, as when the Coalition in Iraqi Freedom shifted from fighting

the tanks of the Iraqi Republican Guard to fighting irregular forces, causes changes in tactics

from the individual- to Army-level. Physical changes, such as changing vehicle types and

organizations, are structural adaptation. Changes in tactics are adaptations of the internal

models tha t agents or groups of agents (units) use. Clearly, combat fits this part of the

definition.

3.2 .3 Self-organization

Self-organization, or emergence of stability, is apparent in combat. Forces flow and collide

in ways tha t belie the individual nature of the agents. It is commonplace for observers

and historians to describe the movement of armies as “waves” or as to attribute to them

anthropomorphic descriptions such as “brave,” “determined” or “ragged.” Despite the chaos

1To differentiate what is going on in Iraq today from, say, war with the old Soviet Union.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT AS A COMPLEX ADAPTIVE SYSTEM 32

often associated with direct combat, units form and disaggregate to accomplish missions and

as a result of action. Those tha t show more cohesion, that is, those tha t more often achieve

stability, are generally more successful. Armies achieve this stability without external input

and can then be said to be self-organizing.

3 .2 .4 N on-linearity

As shown in the first chapter, non-linearity is an intrinsic property in combat and the reason

that current modeling approaches are unhelpful. The examples of small forces causing

disproportionate effects are the norm rather than the exception, the explanation of which

has eluded historians and computer scientists alike.

As combat fits all four portions of the definition of a Complex Adaptive System, the

premise tha t it is, and can be modeled as one, is accepted and a model can be developed

accordingly.

3.3 M odel Description

The computer model has been developed using the methods recommended by Parks and

Leemis [65] in six phases.

• Description of the problem to be modeled in general terms.

• Development of a conceptual model of the problem.

• Conversion of a specification model based on the conceptual model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 33

• Development of a computational model.

• Verification tha t the computational model is in keeping with the specification

model.

• Validation that the computational model is consistent with the conceptual

model.

3.3 .1 G eneral

There is any number of aspects of combat tha t can be used to develop a model. This

research is focused on developing combat systems and is a proof of concept, so the problem

can be simplified to include two types of combat systems placed in a specific scenario.

The model will simulate the interaction between tanks and artillery. These systems

perform distinct battlefield functions. Tanks find enemy forces and engage them by direct

fire with their own weapons or call for indirect fire from other systems. Artillery pieces

position themselves out of range of enemy direct fire to provide tha t indirect fire. Tanks

move together with other tanks, balancing the weight of fire available from massed tanks

with the susceptibility tha t massing provides to enemy fire.

A realistic scenario tha t can be adopted is a battalion-level attack against a company

sized force in a prepared defense.2 The friendly, or Blue, battalion must capture an objective

where the Red company is located. Red is tasked to defend tha t objective. This scenario

has been chosen to focus the research on a manageable number of systems. As shown

2This initially places a set of 50 tanks and 18 artillery pieces attacking against 15 defending tanks
supported by 6 artillery systems. These numbers and the types of systems will change as the solution space
is searched, but this serves as an illustration of a starting point, or base case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 34

earlier, the dimensionality of even a small number of systems will cause the solution space

to become very large. This provides a sufficiently large solution space to search and yield

some useful results while providing a bounded problem for this concept exploration.

3 .3 .2 C on ceptu al M odel

As discussed earlier, when equipment capabilities change, the rules by which the equipment

is employed must change as well, so each system will exhibit physical as well as behavioral

attributes. Physical attributes will range from types of weapons to the power of sights.

Armor protection is a key defense mechanism, so many levels of protection will be available.

The addition or subtraction of armor affects the performance of other aspects of each system,

so speed and fuel requirements vary accordingly.

The forces are placed appropriately for an attack and a defense. Attacking forces are

positioned, initially, out of physical contact with the defender so as to allow them to ap

proach the objective and encounter the enemy. Placing them in immediate contact would

bias the results towards systems tha t acquire and fire at enemies quickly without allowing

any benefits from maneuver or the complementary use of multiple types of systems.

As forces come into contact, the sight system on board allows acquisition of the enemy

at a range consistent with its capabilities. The acquiring system then calls for indirect fire

and engages with direct fire within its capabilities.

Movement of the systems depends on their physical relationship to their fellows, the

enemy and the objective. Units approach their objective while they perceive a reasonable

probability of success and gain confidence from the presence (and nearness) of their fellow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 35

systems. The three priorities, movement to the objective, movement with friendlies and

attaining a proper position to attack (or avoid altogether) an enemy, constantly tug at each

system. The priorities change as the perceived threat to the system changes.

Based on the perception of the situation, forces can continue their attack or defense, or

break off the engagement. The action ends when attacker is in possession of the objective

or the defender has successfully defeated the attacker.

3.3 .3 Specification M odel

The specification model requires determination of the structures and the states tha t will be

modeled as well as the criteria for the state changes. In this model, there are two types of

systems. Each set of system types, tha t is each combination of a type of tank and a type of

artillery system, has a large number of potential states, which correspond to the number of

solutions available in the solution space. The type of equipment that makes up the system

governs the physical attributes of each system. The tactical attributes are made up of the

relative importance of the three movement priorities a t the perceived threat. These physical

and tactical states will be developed in the following sections.

3.3.3.1 Physical States

Only a portion of the many possible characteristics of each system need be available for

selection, because some characteristics are derivative of other physical attributes. Speed, for

instance, a key system attribute, is a result of interaction between protection (the weight of

the armor) and engine capability. Survivability is a combination of speed, protection, target

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 36

acquisition and weapon capability. As a result, the following list of attributes constitutes

the set of physical states for each system.

•Weapon Type

•Ammunition Type

•Engine

•Amount of armor protection

•Target acquisition system

•Ammunition capacity

For tanks, the possible weapon types are: missiles, smaller, faster-firing guns, and larger,

slower-firing guns. Ammunition is selected from missiles and conventional gun ammunition.

Five potential engines are available. Armor can vary between very thin (Om) and very thick

(1.5m) at 0.1m increments.

Each solution selects one of four target acquisition systems: direct view optical, infrared,

thermal, and millimeter wave radar. The ammunition capacity will be allowed to vary

between 20 and 70 rounds.3

For the artillery piece, the same set of capabilities is available. The weapon and ammu

nition types are tailored to reflect the purpose of artillery on the battlefield, but the options

are similar in number. The engine, armor, and target acquisition systems select from choices

similar to those available for the tank. Ammunition capacity will cover a larger range, from

3A round is defined as one missile or one bullet fired from a gun.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 37

20 rounds to 100, to reflect the higher ammunition usage of artillery compared to current

tanks.

3.3.3.2 Tactical States

The tactical states are a combination of the movement attributes and the perceived threat.

The movement rules are:

•Maintain formation with other friendly forces.4

•Move into an advantageous position in relation to the enemy.

•Move to the objective.

The priority of each rule will depend upon the agent’s mission and its perceived threat.

The threat perception is influenced only by what the agent can see, and can vary from

system to system based on their location relative to other friendly systems and the enemy.

The mission and threat environments are partitioned into nine combat levels. Each level

has a tuple tha t gives the relative priority of each of the three movement rules. For example,

as the threat increases, the priority for staying in formation could increase, decreasing the

priority of moving to the objective. The tuples will be different for tanks and for artillery in

order to allow the tactics of a tank and an artillery piece to be replicated accurately. The

Mission/Threat levels are:

• No threat.

4The appropriate distance between vehicles was coded in the chromosome and allowed to vary from 25m
to 200m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT AS A COMPLEX ADAPTIVE SYSTEM 38

• Attack, Low Threat.

• Attack, Medium Threat.

• Attack, High Threat.

• Attack, Panic.

• Defend, Low Threat.

• Defend, Medium Threat.

• Defend, High Threat.

• Defend, Panic.

A sample table of tuples is shown below:

Table 3.1: Typical Rule Set Tuples.
Rule 1 Rule 2 Rule 3

M ission/Threat Friendly Enemy Objective
No Threat 10 0 1

Atk, Lo 2 5 1
Atk, Med 3 10 1
Atk, Hi 1 10 0

Atk, Panic 0 10 0
Def, Lo 1 0 2

Def, Med 3 0 2
Def, Hi 1 1 1

Def, Panic 0 1 0

In this example, the nine M ission/Threat levels are shown with the relative weight of

the three movement rules. In the No Threat combat state, it is very important that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 39

tank get into formation with other friendly vehicles, so the value for “Rule 1: Friendly” in

the tuple is 10. There is no weight assigned to moving to a good location versus the enemy

since there is no threat. Moving to the objective rates a priority of 1.

Similarly, in the Atk, Lo state, maintaining formation is im portant, receiving a 2, but

not as im portant as moving against the enemy, which rates a 5. Moving to the objective

rates only a small value; in this case a 1.

These values are relative values, so a (1,1,1) is equivalent to (2,2,2). We can also say

tha t in Atk, Lo it is 40% as im portant to stay in formation as it is to attack the enemy, but

in Atk, Med it is 30% as important.

3 .3 .4 C om pu tation al M od el

The set of states defined in the specification model was turned into a computational model by

determining the simulation method, laying out the movement methods, and implementation

of the physical and tactical attributes available to each system.

The model is an agent-based model using Mobile Autonomous Agents (MAA)5 moving

on a two-dimensional lattice. The agent types are defined as tank and artillery systems.

Next-event simulation was used where events are scheduled discretely, as their movement

and actions dictate, in a global list. The update for each agent is asynchronous. Events are

either moves or shots. As an event occurs, the agent surveys its environment, determines

the next event, and schedules it. “Collisions” between agents are avoided by preventing

5 A full explanation of an MAA is contained in section 4.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 40

agents from occupying the same spot. If two agents select and are scheduled to move to the

same location, the earlier moving agent occupies it. The later-moving agent will divert to

a nearby location when it is his time to move.

The tank and artillery attributes were coded as genes in a chromosome. This convention

was adopted based on the work outlined in the next chapter, which allows searching the

solution space with a genetic algorithm.

There is no explicit commander on either side in the simulation. Like ant simulations,

tanks and artillery communicate through passive stigmergy-that is, through their actions

and interaction with the environment. The tactics embedded in each agent result in emer

gent overall action.

Each system scans the visible region by comparing its own location with the location of

other agents by scanning linked lists of friendly and enemy forces. If the distance is smaller

than the visual range of the system, the friendly or enemy is counted. This vision approach

was adopted over having each agent scanning its entire visual area for enemy to speed the

simulation without loss of fidelity. The number of agents will remain relatively small while

the size of the visual area increases as a square of the range. Scanning a visual area requires

0 (r 2) time where r is the visual range. This could bog the simulation down when visual

range becomes large, whereas the small number of agents (initially less than 100) can be

scanned in linear time relative to the number of agents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 41

The operational area is a 20,000-meter by 20,000-meter area represented by an 800x800

grid. Each lattice point is 25m away from its von Neumann neighbors.6 Movement is

allowed in the x and y planes. Changing the apparent height of the vehicles as they move

and become set in position simulates terrain. This “pseudo-terrain” allows full freedom of

movement for all agents, but gives credit to agents tha t stop to fire (or are defending) for

using all available local cover.

Threat is defined two ways, the force ratio of enemy to friendly agents and the distance

to the nearest enemy. If no enemy agents are in sight, the agent is in the No Threat state.

If the force ratio7 is below 0.3 and no enemy is within | of the enemy’s weapon range, the

state is “Attack, Low Threat.”

As the threat level rises, either by the force ratio increasing or by an enemy coming close

to the system, agents will enter a defensive combat state. When the force ratios improve

either through destruction of or retreat by the enemy or through increase in the number of

friendly agents in contact, the agents will adjust their Mission/Threat levels and return to

the attack.

Movement is performed like Craig Reynolds’ Boids [73]. Agents prioritize the movement

rules and select a move based on the most eminent rule. For instance, in Rule 1 (maintain

formation) the agent attem pts to move to a spot a t a 45deg angle from its two nearest

neighbors at a distance specified in the characteristics of the agent. Tanks normally move

in a wedge formation to present the maximum number of weapons toward an enemy while

6The von Neumann neighborhood contains the four positions at the cardinal directions from the lattice
point. The eight adjacent positions constitute a Moore neighborhood.

7Computed as number of enemy agents divided by number of friendly agents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 42

presenting the smallest target. In the simulation, the agent finds the best location relative

to the nearest two friendly agents and computes the distance to tha t location. The distance

multiplied by the Rule 1 priority value from the tactical tuple results in a priority value for

moving to tha t location.

The simulation then determines the priority of occupying a location relative to the

enemy. If any enemy is in sight, it determines the best firing location against the visible

enemy. The spot cannot be outside the range of the agent’s weapons (or he could not fire

at the enemy) but should not be so close tha t the enemy has a high probability of killing

the agent. The agent finds a location tha t best fits the criteria, computes the distance,

and multiplies the distance by the Rule 2 element from the tactical tuple to determine the

priority value for moving to engage the enemy.

In the same way, the tank computes the distance to the objective. The distance is

multiplied by the Rule 3 element of the tactical tuple to determine the priority of moving

to the objective. The highest priority value is the most eminent rule and the agent moves

in accordance with it. To smooth the movement of the agents and prevent agents jumping

to a distant location in a single event, each agent is limited to moving just one square in

its Moore neighborhood. The agent moves one grid toward the location dictated by the

most eminent rule. At each grid, the agent reevaluates the threat and its neighbors, then

determines and schedules the next move.

Both the Attack and Defend missions have a Panic state to allow agents in a high

threat environment to panic with a small probability. This is to allow forces to attem pt

to break off the attack or defense, and possibly abandon the mission. This was done to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT AS A COMPLEX ADAPTIVE SYSTEM 43

introduce the effect discussed in Chapter 1 where real soldiers, either through loss of nerve

or misunderstanding of their environment, react inappropriately.

If enemy agents are in range, a tank will shoot at the highest-threat enemy agent and

call artillery on the others. Tanks can shoot from stationary positions or on the move. If

they shoot on the move, a small accuracy penalty is assessed on the shot, however. Artillery

must be stationary in order to fire. Each event is scheduled and executed in turn. As each

event is complete, the vehicle determines and schedules the next event.

Probability of hit, P/t , is determined by the range and accuracy of the firing weapon and

the size of the target. Friendly and enemy movement degrades accuracy. A draw from a

uniform distribution compared to the Ph determines if the target is hit. Probability of kill

given a hit, P^\h, is determined from the amount of armor on the target and the attack angle

of the shot. Armored vehicles have their armor concentrated in the front 60° to protect the

crew from the majority of hits. P}.\h decreases if firing at the front of a vehicle. A draw

from a uniform distribution compared to the P^\h determines if the agent is killed. If so, it

is removed from the lattice.

When a vehicle is hit, but not destroyed, its capabilities are decreased by an arbitrary

value drawn from a uniform distribution.8 When the cumulative effect reaches 1, the vehicle

is destroyed and removed from the lattice.

The Red force agents will replicate forces using Soviet-designed equipment. Although

the Soviet Union is not in existence, many states around the world use its equipment and,

8No data is available on the most likely amount of damage a tank can expect if not killed, so this is a
simple way to assess a penalty for being hit. If more data becomes available, this penalty assessment can be
adjusted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 44

as a group, constitute a reasonable threat set. This also allows the system threat data to

be derived from open sources such as Jane’s Defence Publications.

The simulation stops when one side is defeated, defined as when Blue reaches the objec

tive, is destroyed or runs out of time. These criteria allow Blue to receive credit for mission

accomplishment by either destroying Red or driving Red from the objective, but require

mission accomplishment in a reasonable amount of time. This prevents giving credit solely

to attritional solutions, one of the critiques of current wargames. It also ensures that Blue

cannot simply avoid contact with the enemy and still receive a score.

The fitness function will require mission accomplishment (seizure of the objective) as

the first test before any fitness score is given. If a solution does not accomplish the mission,

its score will be 0. T hat is because the first test in combat is mission accomplishment. This

is analogous to retaining only solutions in the feasible region of a simplex search. Once the

mission accomplishment gate is passed, fitness will be scored with the following function:

2006 + T - t
oo

where b and r are the numbers of Blue and Red agents at the end of the simulation and bo

and tq the respective numbers at the start. T is the arbitrary cut-off time for the simulation

and t is the amount of time required to accomplish the mission.

This scoring system gives a solution two points for each percent of the friendly force that

survives and one point for each minute under an arbitrary time limit tha t blue accomplished

the mission. The scoring system is designed to reward accomplishing the mission as quickly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 45

as possible while protecting friendly forces. It uses percentages of Blue agents that survive

in order to allow comparison between solutions with differing numbers of vehicles.

This is intentionally a simple scoring system. More elaborate scoring systems could be

devised to take into account many other attributes, but the purpose of this dissertation is to

demonstrate a proof-of-principle tha t this modeling and optimization approach is a viable

alternative to the linear, attritional approaches available.

The full code for the computational model is not reproduced here, but is at Appendix

A of this dissertation.

3.4 Verification

To ensure that the computational model conformed to the specification model, extensive

test were performed to measure each agent’s movement priorities and its ability to shift

from one mission/threat state to another. The movement rule priorities were evaluated

off-line for a small number of agents and compared to those generated by the model.

When the agents successfully passed the movement tests, they were allowed into direct

and indirect fire contact where they had to not only move, but also evaluate their threat

levels and adjust their movement rules accordingly. Once successful, they were allowed to

generate direct fire shots and calls for indirect fire.

These shots were evaluated to ensure tha t agents were hit in the probability expected,

and tha t the effects of the shots were accurately recorded. If the agent was hit, but not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. MODELING COMBAT A S A COMPLEX ADAPTIVE SYSTEM 46

killed, the appropriate hit penalty was evaluated and compared to tha t produced in the

simulation. If killed, removal from the simulation was confirmed.

When the “mechanical” workings of the model were deemed to be satisfactory, it was

compared to the conceptual model in the final phase of model development.

3.5 Validation

Validation th a t the model accurately portrays the conceptual model is the most difficult

phase, given the emergent behavior of a Complex Adaptive System. Verification of individ

ual actions does not ensure tha t they will combine to replicate emergent behavior exhibited

in practice. Validation, then, has to take a top-down approach where the overall results are

compared to known situations to determine if the actions are reasonable and explainable.

To do this, a visual output module was added to the model to allow researchers to

watch the interactions of the agents and the flow of the simulation. Initial values for the

Blue and Red agents based on current systems9 were used to “calibrate” the initial runs.

W ith some trial and error for the tactical rules, the runs were recognizable as typical combat

formations and movement. Results from many runs were evaluated in order to ensure that

the observed results were typical. When the results were deemed satisfactory, the physical

and tactical attributes were varied to ensure tha t explainable results were developed in

multiple situations. Only after extensive testing was the simulation deemed sufficient and

runs made with solutions selected by the genetic algorithm.

9With data supplied by the Federation of American Scientists web site and Jane’s Defence Systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Searching the Space

It is an error to imagine tha t evolution signifies a constant tendency to increased

perfection. T hat process undoubtedly involves a constant remodeling of the

organism in adaptation to new conditions; bu t it depends on the nature of those

conditions whether the directions of the modifications effected shall be upward

or downward.

-Thom as H. Huxley

After addressing the issue of dynamic modeling in the last chapter, the next issue to be

addressed in this dissertation is searching the hyperdimensional solution space. First, the

nature of the solution space needs to be determined, and then a solution developed. In this

section, the fitness space will be explored and a framework for categorizing fitness landscapes

discussed. Once the state of the landscape is known, then existing search methods will be

discussed with one being adapted to use in this problem.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE

4.1 Characterization o f the Fitness Space

48

Many search techniques have been advanced to solve problems with high dimension hyper

planes and very large solution spaces. Absent in this discussion has been a standardized

representation of the landscapes themselves, although many authors have indicated tha t

the shape of the landscape is the most im portant factor in determining problem “hard

ness” given a particular solution technique. The literature refers to landscapes as “lumpy,”

“rough,” “noisy,” “deceptive” and even “porcupine-quilled,” [2] [68] but only general def

initions of these terms has been provided and even less has been discussed on how the

landscapes came to be categorized as such. Simple landscapes, tha t is, landscapes with

small dimensionality, can be graphed and categorized “by eye” but interesting landscapes

are, by their nature, high dimensional and resist simple visual categorization. I t appears

tha t this issue has been ignored for two reasons. First, the landscape metaphor, introduced

by genetic biologist Sewall Wright in 1932, is so strong that researchers in all fields grasp it

as a concept immediately without further study [37]. Second, exploration of the underlying

landscape has been foregone in favor of exploration of the solution methods themselves.

These reasons avoid the key factor affecting suitability of the selected solution method.

The shape of the fitness landscape results from two factors, the problem itself and its

abstraction for solution. The relationship between those two parts describes the resulting

shape of the landscape. An example can be y = x 2 which, when using real numbers, is a

smooth, continuous function [48]. If it is abstracted using binary notation and sorted by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 49

Hamming distance, it will provide a non-smooth landscape1.

Landscapes tha t result from binary representations are very common when using genetic

algorithms as a solution method, which makes it all the more surprising that there has been

no common way to characterize those landscapes. As the problem under study is a mixed-

integer, non-linear problem whose solution is represented by a binary string, this discussion

will limit itself to tha t class of problems.

Clearly the entire landscape cannot be mapped to determine the shape because of the

size and because the high dimensionality restricts visual mapping. Selected portions can

be mapped if the size and dimensionality are reduced sufficiently. To do this requires

selecting a point, defining its neighborhood, and providing a standard process by which the

neighborhood is to be represented. The point can be selected a t random, and, if done a

sufficient number of times, these multiple looks can allow a general characterization of the

overall landscape.

Defining the neighborhood is not as simple as selecting the stating point. One proposal

has been to map all the possible vertices tha t can be reached in one crossover function from

two solutions [49]. This is intuitively attractive, for two reasons. It limits the size of the

partial landscape to 2C(2, n — 1) where n is the number of genes in a single solution chro

mosome. The size remains manageable even for very large landscapes. The representation

of the neighborhood, however, is problematic. In what order do the solutions appear on

1 Kingdon and Decker used this example to show that landscapes were a result of the interaction between
the problem representation and the solution method. I propose here that many solution techniques could
be attempted given the problem and its abstraction, so the solution is not as important to the shape of the
landscape as the abstraction of the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 50

the x and y axes of the graph? The representational method greatly affects the perceived

shape of the landscape.

This dissertation proposes a different approach, defining the neighborhood as all points

that have a Hamming distance of either one or two from the randomly selected point. This

limits the size of the partial landscape to n — 1 and C (2, n — 1) respectively. It recommends

an obvious two or three-dimensional presentation of the resulting partial landscape. The

position of the genes “flipped” from the original solution can define the position on the x

or x and y-axes. The greatest benefit of this system is tha t it has wide applicability across

all landscapes tha t use binary strings.

Two examples follow th a t using this method to restrict the size and dimensionality of the

subject function. In the first, all solutions with a Hamming distance of one from a randomly

selected solution are evaluated and the resulting partial fitness landscape graphed. The x-

axis represents the position in the binary string tha t has been changed from the original

solution. The y-axis represents the fitness of the solution. This graph indicates that around

a given solution, the fitness landscape is generally flat, but is punctuated by spikes both of

both improved and degraded fitness. This can be done at several randomly selected points

across the landscape in order to gain an understanding of the shape of the landscape.

The following figures present the neighborhood of all points with a Hamming distance

of two away from a randomly chosen solution. This three-dimensional half-matrix provides

a wider view of the points around a solution and a more complete characterization of the

neighborhood. This graph shows tha t the landscape around this point is again flat with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE

F igure 4.1: Two-dimensional Landscape Representation.

51

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Flipped Position

distinct regions of increasing and decreasing fitness.

In order to focus on a sample of the partial landscape under study, the area corresponding

to flipping the binary value contained in the first 10 positions has been extracted. This allows

more detailed analysis of the areas tha t are sensitive to changes in the position values. In

this case, tha t analysis reveals tha t fitness is highly sensitive to the values contained in

the first 25 positions with a region of sensitivity between the 105t/l and 139th positions.

Although the actual results of the modeling will be covered in Chapter 5, the sensitivity

exhibited in the first 25 positions indicates tha t fitness is sensitive to the physical capabilities

of the tank and tactics used when threat is low. The sensitivity between the 105t/l and 139t/l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE

F igure 4.2: Three-dimensional Landscape Representation.

52

Fitness 200

Flipped P ositions

Flipped Positions

CM

positions indicates tha t changing the capabilities of the artillery piece can impact the fitness

of a solution more often negatively than positively. The broad areas between those regions

indicates that the solutions are relatively insensitive to changes to the values contained

there.

This information is valuable for two reasons. First, some solution techniques are inap

propriate to particular landscapes. Knowledge of the landscape shape allows a researcher

to select a more amenable solution technique or problem representation. Second, this infor

mation could indicate areas of sensitivity and insensitivity to changes to particular genes

in the chromosome. Identifying areas of improvement could alert a researcher to ensure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 53

F igure 4.3: Close-up of a Portion of the Three-dimensional Landscape Representation.

F itness 200

Flipped Positions

tha t those landscape regions are specifically searched. Identifying “sleeper” genes, or areas

of insensitivity, could allow a shorter solution chromosome and a correspondingly reduced

solution set, improving overall search performance.

4.2 Available Approaches

4.2 .1 D erivative A pproaches

Simulation optimization requires a method to search through the hyper-dimensional solution

space presented by the options and a way to evaluate each solution dynamically. Several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 54

methods of searching the solution space are discussed below followed by an approach to

building dynamic models.

4 .2 .2 Frequency D om ain M eth od

Simulations in which each attribute set requires a simulation run are called “run-oriented”

simulations [77]. An alternative to run-oriented simulations is to vary the inputs in a known

manner during the simulation run and evaluate the effects on the simulation. The Frequency

Domain Method is used to test the sensitivity of model output to input parameter changes.

This method is appropriate to modeling a system like a power generation plant that operates

at a steady state. The output of the plant can be monitored as the attributes change and

conclusions drawn as to how to optimize the system. Combat operations are not steady

state; they unfold over time as forces move and present themselves to the enemy. A sort

of steady state could occur if forces become stalemated. In this case, however, each force

will attem pt to find a solution to break the stalemate and move away from steady state.

Combat is best represented by terminating simulations [54] which makes the frequency

domain method inappropriate to evaluate most combat operations.

4 .2 .3 D ifferential Q ualita tive A nalysis

Differential Qualitative Analysis (DQA) is a method that perturbs an attribute of a system

then follows the perturbations through a system in a forward-chaining method to determine

the overall effect [89]. This works well if the interactions can be quantified and if they occur

in the same order. In combat, small changes in the early portion of a battle can result in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 55

later interactions occurring in different orders, or not occurring at all. This would make

DQA inappropriate to apply to combat simulations.

4 .2 .4 R esp on se Surface M eth od ology

Response Surface Methodology (RSM) attem pts to cut off large portions of the solution

space by evaluating a portion of it and determining the direction of maximum improvement

[53] [6]. An ensemble of model runs is made to determine an initial response surface con

structed of many single or multiple linear regression models. The gradient representing the

direction of greatest ascent 2 is determined. More simulation runs are made to determine

another response surface in the direction of the gradient and the process iterated until a

solution is found. This method works well in an objective landscape tha t presents wide

slopes leading to a single global maximum. Complex functions tha t result in a landscape

characterized by sharp ridges and multiple local maxima are unsuited for this kind of anal

ysis. A system with a large number of attributes which interact is likely to present just

such a complex landscape with many local maxima [42].

Grier, et al, attem pted to use RSM to find the best mix of Air Force aircraft and weapons

in a scenario set in Southwest Asia against an Iraqi-based threat [28]. They used 26 runs of

a model called THUNDER3 and captured 34 output metrics. These metrics were mapped to

seven meta-variables, which corresponded to seven of the nine campaign objectives identified

in the experimental design. In the end, only five of the seven meta-variables could be fitted

2If maximizing the objective function.
3THUNDER is a deterministic air combat simulation that uses fractional exchange rates (meaning that

losses can be in fractions of an aircraft or target). It takes a long time to set up and run each iteration. This
long set-up and run-time is the motivation for an approach like this that limits the runs required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 56

with a response surface, and of those, four had a correlation coefficient below 0.9, indicating

that the fitness of the surface was poor. Their approach made a valiant attem pt to overcome

the shortcomings of the model, bu t does not offer a way ahead. RSM appears to be of limited

use in optimization of combat simulations.

4.2 .5 E volutionary (D erivative Free) A pproaches

Evolutionary Algorithms include Evolutionary Strategies, Evolutionary Programming, Ge

netic Algorithms, and Genetic Programming [13]. Other evolutionary methods have been

suggested, but remain at their core, modifications of these broad approaches. The basis of

evolutionary algorithms is rooted in nature where plants and animals compete and cooper

ate in search of resources [60]. The more successful become stronger and are more likely to

mate, passing along their genes to their offspring. The offspring in turn, compete and if suc

cessful, pass along their genes. In most species, two members combine their chromosomes

in sexual reproduction. This increases the diversity of the off-spring [42] and allows for

new and unique combinations of the attributes of the species to be “tested.” The successful

combinations repeat the process, the unsuccessful combinations die out. Mutations occur in

the combination process introducing new, unique combinations of attributes, which serves

to push the search into novel parts of the solution space and serves to prevent the search

from converging prematurely on a local maximum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 57

4 .2 .6 E v o lu t io n S tr a te g ie s

Evolution Strategies (ES) were developed in the 1960’s in by I. Rechenberg [60]. Real-valued

attributes of a solution are each represented as genes. The genes are the building blocks of

a double string, called a chromosome th a t represents a candidate solution. The first gene in

the double string is the value of the point in the search space for tha t attribute. The second

gene is the standard deviation allowed for the value of that gene. Once the objective value of

the solution (the parent) is determined, the genes are mutated by an amount drawn from a

distribution dictated by the standard deviation to produce another solution. The offspring

is then evaluated. If it improves on the parent, the parent is discarded and replaced by

the offspring; if not, the offspring is discarded. The process repeats until the candidate

solutions stop improving.

This approach has shown promise in engineering problems such as designing airfoils

and other continuous optimization problems, but has not been used in a mixed integer,

linear or non-linear, simulation optimization. There does not appear to be a reason why

the approach cannot be modified to include integer-valued or binary attribu te values, but

there is no current research where this approach has been used.

4 .2 .7 E v o lu t io n a ry P r o g r a m m in g

Lawrence Fogel, apparently independent of ES, also developed evolutionary programming in

the 1960’s. It seeks to predict changes in the environment based on the previous and current

states of tha t environment [13]. Each solution is represented by a Finite State Machine

(FSM), which examines a string of symbols (each relating to states of the environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 58

ordered over time), and seeks to predict the next symbol. Solutions are ranked on their

predictive ability; the higher ranked solutions produce offspring based on random mutation

of the states of the machine, either changing a state or adding to the state string. The

offspring are evaluated and rank ordered with the parents. The higher-ranking solutions

remain in the pool and the lower ranking solutions are discarded. The process iterates until

the solutions stop improving.

This remains an active area of research and may hold some promise for combat simula

tions [11]. Efforts are being made to use this to develop combat plans.

4.2 .8 G en etic A lgorithm s

John Holland developed genetic algorithms in the 1960’s to study how natural adaptation

might be replicated by computer systems. In genetic algorithms, as in ES, the attributes

of an agent are represented as a string of genes, but in a single chromosome. In Holland’s

genetic algorithm, the alleles (values of the genes) were binary. Since then, work in the

genetic algorithm field has expanded to include integer and real values [60] but most success

has been with binary alleles. In a genetic algorithm, an initial generation of chromosomes

(solutions) are developed either through design by the experimenter or at random. The

chromosomes are evaluated for fitness and chosen to survive or reproduce based on their

relative fitness. In this way the better solutions axe more likely to either survive or to

reproduce, passing along good genes to an offspring. Mating occurs through crossover where

chromosomes from two parents are “broken” at a (usually) random location. The partial

chromosomes are recombined with the complementary chromosome fragment from the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 59

parent to form two unique offspring. Solutions that are not chosen to survive or to mate are

discarded, keeping the population sample constant size. These surviving chromosomes and

the offspring are subsequently evaluated. The selection/evaluation process iterates until the

solutions stop improving.

Genetic algorithms make the greatest use of mutation. Each gene has a non-zero prob

ability of “flipping” outside of the crossover function. This, as discussed earlier, prevents

premature convergence by forcing the search off a local maximum. Much research has been

done to determine the appropriate mutation rate. Anastasoff has even researched allowing

the mutation rate to evolve, without, however, improvement in performance [2], Although

no “correct” rate has been identified, the consensus is tha t a stationary rate of .001 is

generally appropriate.

Genetic algorithms have shown great promise both in evolving both structures [51] [87] [5]

and rule sets [74] [35]. Previous works have focused on the development of either structures

or rule sets, but research on evolving both simultaneously is beginning to emerge [78]. This

appears to be a viable approach to addressing the combat modeling shortcomings outlined

in previous chapters.

4 .2 .9 G en etic Program m ing

Genetic programming involves using computer programs as agents tha t perform a task

and replicate themselves either through combination with other programs or through self

reproduction [70] [85]. Results thus far include developing an artificial ecology of computa

tional entities existing in a virtual environment. The entities vie for computer time with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 60

the faster and smaller programs being judged more “fit.” Interesting mutations have oc

curred which allowed programs to discard their own ability to copy themselves in favor of

using the ability of another agent to reproduce. This method has shown promise in finding

efficient algorithms optimized to a task [69], but does not appear to be useful for simulation

optimization.

4.3 Artificial Life

4 .3 .1 D efin ition

ALife was first proposed by Chris Langton in the late 1980’s and is a non-traditional discrete

optimization technique tha t uses evolving agents [91]. This dissertation has referred to

agents in previous chapters without providing a full explanation of what they are. Agents

in this context are simulated objects tha t interact with their environment using an internal

rule set. The agents can either modify the environment of all other agents simply by reacting

to the environment as they find it. Agents often evolve over the course of the simulation

through learning, reproduction with other agents, self-replication or directed replication

through means of an evolutionary algorithm.

Agents can communicate with other agents directly through token passing or indirectly

through modification of the environment. A simulation of decision-making tha t uses as its

agents a team leader and the team members can incorporate direct communication between

agents [40]. A simulation of ant colonies relies on pheromone trails laid down by ants as

they move through the environment to communicate the presence of food [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 61

Agents make their own decisions based on the environment (which includes the other

agents) without outside direction. In this way, local rules can result in an emergent, global

behavior, not explicitly built into the simulation.

Since AL is a relatively young field, numerous names are used for very similar concepts

but it can be said to consist of two distinct branches, Cellular Autom ata (CA) and Mobile

Autonomous Agents (MAA). CA consist of agents statically arrayed in a lattice. Each agent

interacts with the agents in its immediate neighborhood4. MAA move across the lattice to

interact with other agents and accomplish goals. Because of the dynamic nature of MAA,

it has been used to evolve structures and rule-sets for mobile agents.

The biological analogy of these simulations has spawned a number of successful attem pts

to model natural systems such as birds [17] [86] [22], ants [9], termites and turtle populations

[72]. Man-made systems such as traffic have also been studied by using MAA [63]. These

descriptive models have been useful for understanding the dynamics of the natural world,

but do not use the evolutionary nature of agent-based models. O ther MAA have been used

to evolve physical structures and rule sets, which are more applicable to modeling combat.

The biological analogy also changes the optimization taxonomy. Nature has found “fit”

solutions for the given environment. Accordingly, the objective function in this kind of

simulation is called the fitness function since it measures degree of fitness. Fitness is not

the same as optimality. No one can doubt tha t Neanderthal man was sub-optimal in terms

of intelligence, but he was capable of adapting to his environment and was “good enough”

4This neighborhood could be a von Neumann neighborhood consisting of the points at the four cardinal
directions or could be the Moore neighborhood that includes all eight surrounding grid points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 62

to allow him to survive and reproduce for some 100,000 years. His design was the “fit”

solution necessary in his environment.

4 .3 .2 E volv ing S tructures

MAA have been used to evolve structures in two ways. The first is a discrete competition

to perform a task such as moving across an environment [51]. In this approach, agents are

paired in competition, with the winner allowed to reproduce with other winners. The winner

and its offspring then compete in the next generation of agents. Competition continues until

agent capability stops improving.

The other method is to allow each of the agents to inhabit an environment and compete

for resources [87] [18] [69]. The agents move to attain a goal such as acquiring resources.

Those tha t perform better, becoming stronger and living longer, have more opportunity

to mate and reproduce. This perpetuates the stronger attributes through natural selection

while the weaker attribute sets die out.

4 .3 .3 E volv ing R ules

Rule sets have also been evolved using MAA. In these cases, the physical aspects of the

agents have been kept static, but the rules by which they move and accomplish goals have

changed. Examples have been soccer playing simulations [84], combat simulations [39][47],

and the game of tag [74],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 63

In these simulations, a small number of agents are simulated and a fitness value for their

performance determined. A genetic algorithm then searches through the solution space of

rules until a most-fit solution is found.

4 .3 .4 E volv ing B o th S tru ctures and R ules

There is little current research in evolving both structures and rules a t the same time.

Sims has, however, evolved agents tha t capture a goal in one-on-one competition [78]. He

randomly generated agents and paired them against each other to capture a cube placed

at the center of an arena. The least fit agents were discarded to make room for the new

offspring. The most fit agents reproduced “sexually5” and the population paired off in

another tournament. The fitness function was simply the time required to capture the

cube and to carry it back to the agent’s own starting location.6 Sims found tha t novel

structures and rules evolved where some agents attem pted to “protect” the cube to prevent

the opponent from capturing it while others relied on speed to snatch the cube and return

before the opponent could react. This indicates tha t there is no inherent limitation to

searching the solution space of both physical attributes and rules simultaneously.

4.4 Ant Colony Simulations

A specific branch of Mobile Autonomous Agent research is Ant Colony Simulations. These

developed from studies of ants and an attem pt to model their living and colonization habits.

sMeaning use of a crossover and mutation function.
6 Less time is better.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 64

These simulations have proven so rich that they have been expanded from simply describing

ant behavior to become an on-going area of optimization research. Ant agents act based on

their current state without memory of previous events [90]. As such, they can be simulated

by Finite State Machines (FSMs) in order to solve problems such as shortest path between

two points, shortest path between a subset of points in a network, and shortest Hamilton

cycles in a network (Traveling Salesman Problem, TSP).

Actual ants exhibit the so-called “coordination paradox” [83] in which they do not

communicate directly, as with tokens or physical language, but yet coordinate to build and

maintain nests and forage efficiently for food. They seem to communicate indirectly using

stigmergy [8]. Stigmergy is the reaction to changes in the environment either actively caused

by the ant or as a side effect of its actions. For instance, a real ant lays down a trail of

pheromones when returning to the nest with food. The presence of pheromones indicates to

others tha t food is available along the trail. Ants react to that change in the environment

by following the trail, finding the food, and laying their own pheromone trail behind them

as they return. If no food is available at the food site, the ants return, but do not lay a

pheromone trail. The trail evaporates over time and disappears so tha t ants do not continue

to visit an empty food site. This kind of stigmergy is called active stigmergy [32].

Ants also react to environmental changes not directly caused by other ants using passive

stigmergy. For instance as corpses build up in the nest, ants consolidate them with other

corpses. These corpse piles then become large enough to trigger a reaction in the ants

to carry all the corpses out of the nest [9]. No central direction is given for collection or

disposal of corpses. Individual ants respond to the stimulus of the presence of corpses to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 65

generate a collective housekeeping behavior.

This indicates that each agent can have an individual internal rule set but still act

collectively. This has direct applicability to combat simulations where the activity of agents

is governed by the decisions made by individual agents. If each agent has the overall

framework of what should be accomplished based on a situation, the group of agents can

perform collective tasks such as conducting an attack or a defense. This is a reasonable

representation of real combat given tha t low-level leaders7 are trained to apply the proper

tactics in each situation and to know how they fit into the tactics and mission of the

overall unit. Each of these low-level leaders with their respective combat systems could be

represented as an agent. Each agent could have the overall tactics embedded. The Army

spends a great deal of time and resources to develop and train “battle-drills” where tank

commanders and small unit leaders react appropriately in response to an overall situation

with little or no communication. Experience at the NTC and in combat shows that these

battle-drills are useful techniques a t battalion level and higher.

Ant Colony simulations also lend themselves to using evolutionary algorithms to opti

mize their performance. W hite, et al, used a genetic algorithm to improve an ant simulation

attem pting to optimize path-finding [90]. When finding a point-to-point path, using a ge

netic algorithm decreased the time required to find the optimal path by 25%. When finding

a path through a subset of points in a network, the time required was reduced by 26%. To

find a minimum Hamiltonian path through a set of points, the time was decreased 24%.

in clu d ing infantry squad leaders and tank commanders.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE

4.5 Enhancem ent Through Co-evolution

66

Empirical studies have shown benefits to co-evolving two or more types of agents (which

can be thought of as species or tribes) in the same artificial world but the theoretical basis

for tha t improvement has until now been elusive. The advantage derives from the fact that,

as each species tries to climb its own fitness landscape, it deforms the environment for the

other species. The second species reacts to the change, which deforms the landscape of the

first. Each species prevents the other from being locked onto a local maximum. The two

species continue this process until they achieve equilibrium at the most-fit co-solution.

Kauffman, et al, [43] [41] [44] [42] studied this coevolutionary phenomenon and used it to

help solid state physicists understand spin-glasses. Spin-glasses are a type of disordered

ferro-magnetic material. The direction of each “spin” in relation to the others affects the

overall energy of the spin-glass. Kauffman used this model to show the benefits of using

co-evolution to find a fit combination of spin directions.

Suppose a landscape consists of N “spins” . The spins for this example are binary and

result in some energy level between 0.0 and 1.0. The energy level for the landscape is the

sum of the energy levels of the spins. Each spin is independent in tha t it can be changed

individually, but is connected to K other spins with a resultant collective energy level. In

genetics, this is referred to as epistatic coupling of genes, where the activation of one gene

may cause activation or inactivation of others. This results in a complex energy fitness

landscape where the energy contribution of each spin must be specified for each of the 2K+1

configurations tha t the spin, and the K spins that affect it, can be arrayed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 67

Kauffman defined the energy level as the average of the energy contributions of the spins

and expressed it as follows:

where £7{s} is the average energy level, e \K ̂ is the energy level of spin i which is connected

to K other spins.

In an attem pt to optimize (in the case of a spin glass, lower) the energy level of the

system, one could calculate the improvement derived by flipping each spin and choose the

largest improvement. Unfortunately, this could lead to a local optimum where no one-flip

neighbor improves the energy level but combinations of flips could, in fact, improve the

solution. Finding these combinations would involve calculating all the one-flip, two-flip, up

to N-flip changes-in other words, calculating the energy level for all combinations of spins,

or evaluating 2N solutions. If the problem could be solved with this brute force approach,

there would be no need to use any sort of optimization technique.

Kauffman broke the lattice into P “patches” of size p ■ q. The number of patches is equal

to He then examined one-flip improvements for each. Since spins were connected across

the patch boundaries, lowering the energy level in one patch could increase the energy levels

of other patches. Moving along an improving fitness landscape deformed the landscapes of

the other patches. The energy level of the new problem is:

£ { * } = It EpL 1 EieP E f \ Si aiK)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 68

where P represents the patches to be optimized and i represents the spins tha t are summed

by patch.

Kauffman attem pted three approaches. First, a spin was chosen at random and flipped

if it improved the patch that contained it. Second, each one-flip change in a patch was

evaluated and one tha t improved the energy level was randomly chosen. Last, all one-flip

changes in a patch were evaluated and the best flip selected. The patches were chosen in

order, with one selection of all patches called a “generation.”

His results showed that, when using any value of K > 0, after five generations the

average energy level found was better than attem pting to optimize the entire landscape.

The difference became more pronounced as K , tha t is, the number of connected spins,

increased. This indicates that in the presence of epistatic couplings, a better solution

can be found more quickly by breaking into patches. Co-evolution resulted in more rapid

movement toward the optimum.

Hillis, using a sorting algorithm, also showed this result [30]. A sorting network is

an algorithm in which a sequence of comparisons and data exchanges is performed in a

predetermined order. These networks have great practical importance in switching circuits

and routing algorithms for interconnected networks.

To test this approach, Hillis used a network where the number of data elements to be

sorted (n) was 16. He chose this value for n since the problem was well studied. The best

network found contained 60 comparisons [50]. He evolved a solution by starting with a set

of random networks and testing them against a set of test information strings to determine

their fitness (fewer errors equaled increased fitness). The least fit networks were eliminated,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 69

with the remainder reproducing using crossover and mutation. The new solutions were

then tested for fitness and the process continued until the solutions quit improving. By this

method, Hillis found that he could evolve sorting networks of 65 exchanges, close to the

best-known solution, but not as good.

Hillis then allowed the test cases to evolve in parallel with the networks. Their fitness

criteria measured how many errors they caused. The fittest test cases were allowed to

reproduce through crossover and mutation to evolve better tests. These improved test cases

exploited weaknesses in the evolved sorting networks, which deformed the evolved networks’

fitness landscape. The resulting networks were 61 exchanges long, an improvement from 65

and almost equal to the best known. This indicates tha t there is benefit to co-evolution when

the fitness landscapes are coupled. The solution may not be optimal (although optimality

is not precluded), but a very good solution to a complex problem can be found through

co-evolution fairly rapidly.

These examples would indicate tha t other complex systems, like evolving single weapon

systems in isolation, even if searching the solution space with a genetic algorithm, could

result in less-fit solutions than if the systems are co-evolved. It appears tha t systems should

be evolved together to be able to complement and improve each other. This addresses one

of the major shortfalls of current combat models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. SEARCHING THE SPACE

4.6 Co-evolutionary Theory

70

The strong empirical evidence tha t co-evolution improves solutions has led researchers to

accept the phenomenon and exploit it in areas as diverse as the theoretical applications

above and concrete applications such as the diagnosis of Breast Cancer [66], bu t there have

previously been only “naturalistic” explanations of why improvement occurs, without a

theoretical basis for the improvement.8

The naturalistic explanation is that, as each species evolves, it deforms the solution space

for the other species. The species evolve in a continuing competition where evolutionary

tension pushes them to climb to the global optimum. Species locating local optima may find

that the changes in the opposing species quickly make tha t position non-optimal. This give

and take continues until a joint, globally optimal location is found. This has been called

the “Red-Queen” hypothesis9 where predators and prey must continue to evolve to remain

at parity [64], This explanation makes great sense and probably explains what is going on

inside the genetic algorithm as it evolves to a global solution.

A more rigorous explanation is tha t co-evolution both increases the exploitation of fit

schemata and increases the ability of a genetic algorithm to explore new solutions. This is

very much a “have your cake and eat it” situation, as most times exploitation of “good”

solutions comes at the expense of exploration and vice versa. For example, if the probability

of mutation or crossover increases in a genetic algorithm, the potential for fit solutions to be

8Improvement being defined as arriving at a more fit solution or arriving at an equal solution faster.
9Named for the Red Queen in Alice in Wonderland where everyone had to run in order to remain in

place.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 71

destroyed increases. This risk is balanced by the benefits tha t exploration of the landscape

brings. Much research has centered on how to balance exploration against exploitation.

4.6 .1 Increased E xp lo ita tion

Co-evolution can be shown to improve exploitation of fit schemata as a result of increasing

the probability of schemata surviving the crossover process when compared to evolution.

The increased search range can be shown by the increased step-size afforded by co-evolution.

The probability of a schema surviving the crossover function is related to its defining

length, tha t is, the distance between its most-distant fixed “genes” as measured on the

chromosome representation. The longer the defining length, the more potential “cut points”

exist between the fixed positions. This increases the probability tha t the crossover operator

will fall between the fixed positions, disrupting the schema. This is called a “representational

bias” against long schemata. In coevolution, two crossover points are selected (one in each

set of system genes tha t make up the entire chromosome). If the crossover points occur

both inside of the defining length of the schema or outside of tha t length, no disruption

occurs and the schema survives [38]. The probability of a 2d-order schema (that is with two

fixed positions) surviving typical (single-point) genetic algorithm crossover is:

where pSl is the probability of the schema surviving a single cut, / is the defining length of

the schema and L is the length of the chromosome.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 72

For co-evolution the probability of survival of a schema is equal to the probability tha t

both crossover points are either between or outside of the defining length or:

where pS2 is the probability of the schema surviving two cuts.

Comparing these probabilities, it is apparent that for very short defining lengths, psi > ps2 ,

but as the defining length approaches L, ps 2 > ps\. Graphically the difference is shown be

low and it is clear that the cumulative probability of survival of a schema under co-evolution

is much higher than for standard genetic algorithm.

Probability of Survival (P_s) v. Defining Length

0.9

0.8

0.7

0.6

0.4

0.3

0.2

O.t

Defining Length

De Jong (et al) [38] [81] [80] called the area above the curves the “disruption area,” the

area where a schema is disrupted. By integrating the equations for the two curves, the area

below each line, the “area of stability” (or cumulative probability of survival for 2d-order

schemata) is shown to be larger for the coevolution case. The results are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 73

11 2L
T

While this only accounts for 2d-order schemata over the chromosome of length L, ex

tending it to include higher-order schemata (those with more fixed positions) gives the

recursive function:

n.(i, ii,.... i„-0 = £ (|) * (^) 2_2i \ p 2 (h , h , - , U -

where ps is the probability of survival of all ordered schemata, d is the total number of fixed

positions, p2 is the probability of survival of all schemata with a number of fixed positions

from 2 to d, L is the length of the chromosome, Id is the length of the schemata with d

ordered positions.

To determine the cumulative probability of survival of a third order schema requires

expansion of the equation and integrating twice, first as fa, or the shortest distance between

fixed points, goes from 0 to fa and second as fa ranges from 0 to L giving:

which expands to:

/:/:m *© m (II2 dii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 74

Performing the integration reveals tha t the cumulative probability of survival for 3d-order

schemata in coevolution is:

Pa(L ,h ,h) =

This can be compared to the evolutionary case where survival of any schema is equal

to the probability tha t the single cut falls outside the longest defining length, tha t is, the

length between the most distant fixed positions. The probability equation is simpler to

evaluate. Despite the higher number of defined positions it remains:

Evaluating the area under the, now three-dimensional, curve requires a double integra

tion as did the previous case, giving:

Comparing this result to the survival of a 3d-order schemata in coevolution, we see that

probability of survival for a 3d-order schemata is greater in coevolution than in evolution

just as in the case of 2^-order schemata.

Evaluating the probability of survival for schemata up to d = 5 where d is the number

of fixed positions shows tha t this property holds for small values of d:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE

Table 4.1: Probability of Survival for d-order schemata

75

2

3
4
5

Coevolution
2L =

______ 3 _______
C-
Ik

 f i --------
 72_______

Evolution
L

 I -

- ' h ~

2A -

 120____

Using inductive reasoning we can prove tha t survivability of schema in co-evolution will

always be greater than in evolution. We set our base case as d = 2. The area under the

curve represents the probability of survivability. As we expand from a two-dimensional

space to three dimensions (d = 3), the additional factors for co-evolution and evolution

cases will be in the same proportions as with d = 2 making the volume described in the

co-evolutionary case larger than the evolutionary case. Probability of survival, then, will

be greater, as in the two-dimensional case. As the dimensionality increases, the proportions

between the additional components remain, so probability of survivability for co-evolution

will always be greater than evolution.

4.6 .2 Increased E xploration

Exploration of schemata increases due to the larger step size available to each crossover

action.10 In evolution, as a result of its reliance on single-point crossover, the number of

possible offspring combinations one step from a set of parents is 2L+l — 1. In co-evolution,

more solutions are available in a single step because the chromosome is cut twice. The

number of possible offspring combinations available from each set of parents is 22L, which

10In this dissertation crossover is defined as the process where two chromosomes are cut at a selected point
beyond which the “genetic material” is swapped to form two new chromosomes. In the case of two-point
crossover, the genetic material between the cuts is swapped.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 76

means tha t co-evolutionary available step-size will always be larger than tha t available in

evolution. This is shown in the following graphs.

F igu re 4.4: Comparison of One-step Range.

Possible Steps in Evolution Possible steps in Co-evolution

In these two graphs L — 3, where L is the chromosome length (in number of genes) for

each of two species. The columns and rows represent possible solutions caused by the eight

combinations of the three genes. On the left, the center-shaded block denotes a set of parent

solutions. When a set of parent solutions is crossed using one-point crossover, the resulting

offspring can be any solution denoted by the shaded area (including being mirrors of the

parents). On the right, the same set of parents is mated using two-point crossover. The

shaded area indicates the increased number of possible offspring combinations available. As

can be seen, the entire universe of combinations is available in a single step, instead of the

limited set available in evolutionary, one-point, crossover.

Increased step-size does not guarantee tha t fit solutions will be found faster than in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 77

simple evolutionary genetic algorithm. There may be situations where smaller steps are

better. It does indicate, however, tha t the search will generally be more wide-ranging using

co-evolution. Examination of more different regions of the fitness landscape in a fixed

number of steps will tend to find better solutions and prevent the genetic algorithm from

searching unproductive regions.

Improved retention of fit schemata, combined with the widened single step search dis

tance indicates that, on balance, co-evolution improves the speed to get to a fit solution.

Based on the theoretical improvement shown by a co-evolutionary genetic algorithm, this

research adopted the following approach.

4.7 The G enetic Algorithm Approach

4.7 .1 G eneral A pproach

A standard genetic algorithm was implemented to search the solution space for the most-fit

mix of capabilities and rules. Although the systems were initially patterned on current

equipment and tactics, they freely co-evolved. Based on the six physical attributes and the

27 tactical genes contained in the tuples (whose values ranged from 0-10), the tank and

artillery piece each had about 1031 possible solutions.

The system chromosomes were linked to form a single chromosome with one end of the

strand representing the tank and the other representing the artillery piece. The crossover

point for each chromosome was drawn independently from a uniform distribution. Each end

of the chromosome was split once and mated with the complementary portions of the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 78

parent’s chromosome. M utation was allowed at a rate of 0.001 per gene in keeping with

contemporary research.11 This is a reasonable starting mutation rate given the literature

[56] [60].

4 .7 .2 S election o f S o lu tion s

Selection of potential parents was proportional based on the score generated by the simula

tion compared with the other solution scores in the generation. This gave more-fit solutions

a higher probability of selection for crossover or inclusion in the next generation and penal

ized less-fit solutions.

Two conventions were implemented during the selection of the solutions for the next

generation: elitism and increased probability of retaining unfit solutions. Elitism, that is,

retention of the best solution in a generation, prevents the solution from being lost and

the generational results from prematurely converging on a suboptimal solution [66]. Unfit

solutions, that is, with scores less than 2.5% of the maximum attainable, were not eliminated

out of hand. Instead, these solutions were arbitrarily awarded a small score to allow them to

compete for retention and crossover in the next generation. This prevented unfit solutions

tha t reside in otherwise fit areas of the solution space from being discarded reducing the

ability of the co-evolutionary genetic algorithm to further explore that space. When the

parent solutions for the next generation were selected based on relative fitness, this gave

the unfit solutions a non-zero probability of surviving to the next generation. This did not

decrease the ability of the algorithm to search for fit solutions. As Holland [61] has shown,

11 Mutation was allowed whether or not crossover occurred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. SEARCHING THE SPACE 79

good solutions will still be selected exponentially for survival. It did, however, force the

algorithm to search areas tha t might not get attention, thereby closing off potentially good

solutions.

A cost constraint was instituted on the overall cost of the force to require the genetic

algorithm to make trade-offs between system capabilities. W ithout such a constraint, each

system will improve until reaching the solution with the largest number of the most expen

sive machines.As Emmeche [17]said:

“Evolution acts as a tinker who fixes a broken machine from materials at

hand. Not every design is a good design, many are called but few survive.

Instead of constructing few expensive complicated machines designed for few

well-defined tasks, maybe a flock of small, cheap, perhaps rather unpredictable

machines allowed to evolve naturally is better.”

Limiting the cost of the overall force, while allowing the cost of each system to be

dictated by its capabilities, allows just the kind of trade-off tha t Emmeche discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

M odeling Results

Man always fears the consequences of danger more than the danger itself.

-Maurice de Saxe

To test the theoretical findings in Chapters 3 and 4, the model and co-evolutionary ge

netic algorithm were implemented and the results compared with a standard (evolutionary)

genetic algorithm. The results confirm the two theoretical expectations outlined in Chap

ter 4. First, the resultant solutions were generally better using co-evolutionary techniques.

Second, co-evolution tested a wider range of solutions during its search. The results also

confirmed the proposal in Chapter 3 that, since combat is a complex adaptive system, it

could be modeled as such to get useful solutions. This is important because, although the

oretical underpinnings for co-evolution as a search technique are good, unless the technique

renders a useful solution, it is of little value.

Each of these findings will be explored, and the modeling results presented, in the

following sections.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS

5.1 Improved Solutions

81

Search methods can be considered “better” if they either arrive at a more fit solution or

arrive at an equally fit solution more quickly. In this research, both evolutionary and co-

evolutionary genetic algorithms arrived at very fit solutions quickly, so overall fitness of the

solutions was used as the standard.

To evaluate the evolutionary versus the co-evolutionary approach, a set of 30 solutions

was randomly generated1 for each run. This constituted the common starting solution-set

for the two approaches. A simple genetic algorithm employing one-point crossover and a

co-evolutionary genetic algorithm were run from tha t initial solution population until the

respective algorithm quit making progress and converged on a solution. Crossover occurred

at a rate of 0.6. M utation occurred at a rate of 0.001/gene. In both approaches, elitism

was implemented. All solutions competed for inclusion in, and to become parents to, the

next generation.

As shown in the following table, after eight record runs,2 the co-evolutionary approach

resulted in more fit solutions in six of the eight. The fittest solutions found by run are

shown in the table below:

The shape of the landscape can explain the relatively minor difference in fitness between

the evolutionary and co-evolutionary solutions. As shown in Chapter 4, the landscape

1Each binary gene was selected using random draw from a uniform distribution.
2 More than eight runs were made but initial runs were used for model validation and not included in the

production runs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 82

Table 5.1: Highest Fitness Found.
Run Evolution Co-Evolution

1 381.999 382.934
2 384.075 389.108
3 390.129 391.243
4 385.864 386.452
5 384.982 388.878
6 384.954 385.745
7 391.459 391.449
8 393.803 393.724

consists of relatively flat plateaus punctuated by isolated local maxima and minima. Both

approaches were able to find higher (more-fit) plateaus, but co-evolution generally found

more-fit solutions than did evolution. The fact tha t co-evolution was not the best in every

case is a result of the stochasticity of the search technique. Any search technique has a non

zero probability of finding an equally or more-fit solution and the evolutionary technique

did so in two of the eight runs, although the difference is very small in both cases. The co-

evolutionary approach, however, was expected to result in better solutions and, in practice,

did.

5.2 Increased Exploration

An advantage of the co-evolutionary approach was expected to be the exploration of more

solutions as a result of the wider one-step search range available. To determine if this

occurred in practice, the number of unique solutions visited was captured and the range

from most- to least-fit solution in each generation was recorded. In both measures, co

evolution resulted in a broader search of the solution space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 83

In every case, more unique solutions were visited in the co-evolutionary case. This

broader search increases the probability tha t the technique will locate a better solution.

This is in keeping with the theoretical work from Chapter 4.

At the end of each run, generally after more than 30,000 generations, the co-evolutionary

approach maintained a wider spread between most and least fit solutions. This indicates

that, even after an extensive search and convergence on a fit solution, the co-evolutionary

approach continued to include a wider range of solutions. The inclusion of an increased

number of less fit solutions widened the search area, again improving its ability to find fit

solutions long after the evolutionary approach converged on a solution. The results by run

are shown in table 5.2.

An interesting side effect of maintaining a wider search longer was that the average fitness

of each generation was lower in the co-evolutionary case, even though the most-fit score was

generally higher. T hat is to be expected and is not a weakness of the co-evolutionary

technique. It is something to be aware of when using a co-evolutionary technique.

Table 5.2: Objective Value Range of Solutions Found.
Run Evolution Co-Evolution

1 117.1 39.0
2 6.6 58.6
3 9.3 36.9
4 40.8 55.8
5 31.6 31.3
6 5.2 10.5
7 22.4 34.5
8 8.4 25.9

W ith the exception of the first and fifth runs, the results are completely in keeping with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 84

the expected results. As in the search for more fit solutions, the stochastic nature of the

approaches would preclude one approach always being better than another. Indeed, had the

results been completely one-sided, there would have been concern th a t there were problems

in the implementation. In this case, however, the preponderance of the runs bear out the

theoretical expectations.

5.3 Appropriate Solutions

The final, and really most im portant, test for the ability of the approach of coupling a

dynamic, agent-based simulation with a co-evolutionary genetic algorithm is tha t it resulted

in militarily appropriate solutions. This is more a test of the ability of the agent-based model

to adequately replicate combat, so only the fittest solutions found in the co-evolutionary

runs were evaluated for relevance and military value. If serious flaws existed in the solutions,

then there would be concern tha t the approach was flawed. The fittest solutions were also

compared across the runs to identify similarities and differences. If the solutions are found

to have a great deal in common, it is an indication tha t the approach found a common area

of the solution space despite beginning a t random locations; further justification tha t the

approach is sound. If the solutions are explainable but widely different, it indicates that

the approach is not appropriate for this fitness landscape, as defined by the problem and

its abstraction. More work would need to be done to determine if the problem was the

approach or the inappropriate landscape.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS

5.3.1 G eneral

85

The results across the eight runs showed clear convergence on key system attributes. When

offered choices between superior capabilities, with their attendant cost and size penalties

or lesser capabilities without those penalties, the agent-based model replicated combat

well enough to allow the co-evolutionary genetic algorithm to make reasonable, explainable

choices.

System attributes that constituted most fit systems were clear for tanks. Due to the

scoring system, which made speed a key factor, none of the most-fit set of solutions allowed

the force to wait for artillery to move and have an effect on the enemy. As a result, no

artillery capabilities were tested. In future work, the scoring system should be modified

to place less emphasis on speed to conclude the mission and, by doing so, perhaps place a

higher premium on combined action with the artillery. This could also have been an artifact

of the single scenario with which the systems were tested. To provide conclusive evidence

for system decisions, a number of scenarios should be evaluated in future work.

That being said, in this scenario, the solutions selected were explainable and appropriate,

although not necessarily expected. Although each attribute will be discussed in detail, some

general conclusions can be drawn. A single sight was selected across the most-fit solutions

(that is, the top 11 solutions found across the eight runs).3 Medium armor protection was

selected along with an inexpensive engine capable of moving a medium-weight vehicle. An

inexpensive gun system was more often selected than more expensive (but more accurate

3The top solutions from each of the eight runs were compared. In addition, in three runs, very fit
alternative solutions presented themselves. As the fitness differential was small, they were included to make
a total of 11 solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 86

and lethal) missile systems. The tactics selected to complement these choices placed a

premium on moving quickly to the objective until the enemy was found, then configuring

the force appropriately relative to the enemy. Details of the attributes are listed below.

5.3 .2 S ights

Four sights were available. In order of their relative cost, probability of detection and

accuracy from lowest to highest they were: optical, infrared, thermal, and millimeter wave.

In the 11 best solutions, the therm al sight was selected as the optimal balance between cost

and capability. The salient capabilities and cost factors of each system are shown below.

Table 5.3: Sight System Capabilities and Cost
Sight Prob of Detection Cost($000s) Accuracy (mils) Range(km)

Daylight 0.4 10 0.8 2.0
Infrared 0.6 100 0.8 2.5
Thermal 0.8 250 0.5 5.0

Millimeter Wave 0.95 1000 0.1 10.0

The increased cost of the thermal sight over the optical and infrared sights was out

weighed by the capability of the system. A more capable sight was available, using millime

ter wave technology. The large cost increase for the millimeter wave sight, however, was

not justified by its increased performance in this scenario.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. MODELING RESULTS

5.3.3 A rm or P ro tectio n

87

Sixteen levels of armor protection were available, from a thickness of Om (no protection) to

1.5m of armor4 in increments of 0.1m. The more armor on a vehicle, the more survivable

the system is against a hit by an enemy weapon. Increased weight brings penalties in

weight, size and cost. More armor makes the vehicle heavier and slower, reducing mobility,

or a more expensive engine. More armor also increases the dimensions slightly increasing

the probability tha t it will be hit. It also makes the vehicle more expensive, reducing the

number tha t can be purchased.

The co-evolving genetic algorithm selected armor protection from no armor to 1.3m

thick, with a mean protection level of 0.71m. The Red Tank gun is rated at a penetration

level of 0.55m, so clearly protecting against a penetration was a priority over weight and

cost, but the overmatch between protection and the threat is not large. The thickness stated

refers to the thickness of the frontal armor. Side and top armor is thinner, so a higher

frontal armor value could also indicate that protection of other aspect angles warranted the

increased weight and cost. Although one solution did select a high level of protection (1.3m),

the high frequency of mid-level choices indicates a bias towards “just enough” protection.

5.3.4 W eapon S ystem s

Weapon systems showed the most variety. There were 16 weapon systems to choose from, 7

conventional guns, 6 guided missiles and 3 advanced technology electromagnetic guns. The

4As stated in earlier descriptions, this refers to rolled, homogenous armor; a standard gauge of protection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 88

conventional guns were cheaper, with a higher rate of fire, but less accurate. The missile

systems were more expensive, slower to fire, but highly accurate. The electromagnetic

guns had very high accuracy and penetration capability, but large system cost. Seven of

the 11 solutions found used conventional guns, four selected missiles, and none selected

the electromagnetic guns. The seven gun selections were confined to just three different

options tha t balanced cost against capability. The selected guns were the midrange models

available. The missiles selected were the low end cost systems tha t had adequate capabilities,

indicating that increased capability was desired, but only when the increased performance

warranted the increased cost.

Table 5.4: Selected Weapon Systems Capabilities and Cost
Type Penetration

(m)
Cost/Shot

($000)
Accuracy

(mils)
Cost/W pn

($000)
120mm Gun/M829A1 0.70 2.0 0.90 250
125mm Gun/BM42M 0.65 2.5 0.90 350

125mm Gun/BK29 0.55 2.0 1.0 350
AT-11 Missile 0.80 50.0 0.40 500

TOW-2B Missile 0.80 100.0 0.40 500

A review of the non-selected systems indicates th a t the cost of the missiles and the Elec

tromagnetic Gun were not justified by their improved performance. Cost versus capability

also appeared to be a factor in the guns selected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 89

Table 5.5: Capabilities and Cost for Non-selected Weapons
Type Penetration Cost/Shot Accuracy Cost/W pn

(m) ($000) (mils) ($000)
120mm Gun/M829 0.60 2.0 1.0 250

120mm Gun/M829A2 0.80 5.0 0.80 250
125mm Gun/BK27 0.60 2.9 1.0 350

140mm Gun 0.80 4.0 0.08 500
FOTT Missile 1.0 150.0 0.30 500
Javelin Missile 0.60 75.0 0.30 500
LOSAT Missile 2.0 250.0 0.08 500
Dragon Missile 0.20 40.0 0.30 500

Electromagnetic Gun 2.0 0.001 0.05 1250
Electromagnetic Gun 2.0 0.01 0.05 1250
Electromagnetic Gun 2.0 0.10 0.05 1250

5.3 .5 E ngines

Seven of the 11 solutions selected the cheapest, least powerful, engine able to move the

vehicle with a medium level of armor protection (called the M60 engine here). One selected

the LV100 engine. Two selected the M l engine and just one selected the most expensive,

hybrid engine. The reduced size of those engines saved some cost of armor protection (due

to the smaller envelope tha t needed to be armored), offsetting some of the increased cost of

the engines and decreased the vehicles probability of being hit (P/J. In general, however,

solutions favoring the cheapest engine were dominant in these runs.

Table 5.6: Engine Cost and Parameters
Type Cost($000) Weight(metric tons) Horsepower Size(m3)
M60 100.0 3.5 750 5.04

LV100 175.0 1.4 1500 1.99
AGT-1500 250.0 3.3 1500 3.95

Hybrid 500.0 1.0 900 2.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS

5.3 .6 T actics

90

The selected weighting of the tactical rule sets for each of the solutions was slightly different,

but some trends emerged across the 11 solutions. Generally there was a bias towards the

rule dictating movement to the objective and some bias towards the rule ensuring proper

alignment with respect to the enemy. Little value was placed on the rule tha t maintained

formation with other friendly forces. Table 5.7 shows this more clearly. The columns

represent the threat levels, the rows represent the predominant rule at each level of threat.

The predominant rule shown could be a single rule, a combination of two rules, or balanced

between all three rules. The number in each location represents the number of times tha t

combination of rules was selected in the 11 solutions.

Table 5.7: Rule Predominance
Dominant Rule No Threat Low Threat Med Threat High Threat

Friendly 0 0 0 0
Enemy 1 3 5 2

Objective 3 3 3 3
Fr/Enemy 2 1 1 0

Fr/O bj 3 2 0 2
En/O bj 1 1 2 3

Balanced 1 1 0 1

When no enemy was detected, the 11 solutions selected solutions that, understandably,

were weighted towards moving to the objective. Seven of the 11 solutions had a significant

bias towards moving to the objective. When the enemy was detected, the enemy and the

objective rules were valued about equally throughout the threat levels except at a medium

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 91

threat when there appears to be a bias towards the rule governing position relative to the

enemy.

The lack of emphasis on maintaining friendly formation was surprising since it is so

counterintuitive to anyone tha t has conducted ground combat operations. Major emphasis

is placed, in training exercises and in combat, on maintaining formation in order to present

the most dangerous threat towards the enemy. This counterintuitive result warranted a look

at other instances when the emphasis on Rule 1 was higher. The following figure shows the

analysis presented in Chapter 4 where areas of insensitivity were punctuated by increasing

and decreasing fitness. Looking a t the areas of poor fitness, we find tha t flipping position

17, the position that most increases emphasis on remaining near friendly forces, yields a

poor solution across the board. It appears, then, tha t emphasis on remaining near friendlies

may have merits, but overemphasis on tha t rule is detrimental. In other words, remaining

near friendlies cannot win the war, but disproportionate focus devotes excessive effort to

“dressing the lines” and not enough effort towards defeating an enemy.

This surprising, yet explainable, result is one more indication tha t the simulation yields

valid results. This increases our confidence in the other results derived.

5.4 Conclusions

The co-evolutionary genetic algorithm confirmed two theoretical expectations: better solu

tions and wider search. The dynamic modeling technique of testing system capabilities and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. MODELING RESULTS

F igure 5.1: Effect of Overemphasis on Remaining Near Friendlies.

92

400

350

300

250

F itness 200

150
221

201
181100 161

' 1 141
121

Flipped Positions
50 101

Position Determ ining Priority
of R em aining N ear Friendlies

tactics in an agent-based model demonstrated the ability to develop useful solutions.

Co-evolution resulted in better solutions given an equal number of generations in most

of the runs. Although evolution resulted in a similar result since it was searching the same

fitness space, evolution took longer to reach tha t solution.

Co-evolution also maintained a broader set of solutions longer than evolution, confirming

the theoretical expectation tha t co-evolution would allow a wider group of single-step search

moves. This is one of the key tenets of the explanation tha t co-evolution will generally result

in better solutions, faster than evolution.

Modeling combat as a complex adaptive system resulted in explainable and appropriate

solutions without the intervention of human players. 10’s of thousands of generations, with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MODELING RESULTS 93

30 solutions each,5 were run, which would have been far beyond the capabilities of human

players. The success of this technique recommends it for extension to more complex analysis

involving multiple systems and environments.

5Although each was not a unique solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

The Value of Information

As a general rule the most successful man in life is the man who has the best

information.

-Benjamin Disraeli

A pressing question in defense planning is the value of increased information on the

battlefield. Nations are spending, literally, billions of dollars to develop and field advanced

information technologies designed to speed friendly and enemy information across the force.

The underlying assumption is tha t a force that knows the location and status of friendly

and enemy forces will have a distinct advantage over an enemy. This has been described as

providing a “step-function” increase in combat capability although little empirical research

supports this assertion.

Thus far, measuring the impact of advanced information technology has been prob

lematic. Qualitative assessments of the impact of information technology lead military

professionals to believe tha t the increase is quite dramatic. In fact, many have proposed

tha t combat capabilities might be traded off to pay for these information technologies. The

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION 95

boldest information technology proponents have proposed, theoretically, that information

could replace armor for protection.1 However, there are no quantitative measurements of

that improvement. There are many reasons for this. First, combat simulations tha t would

test impact across a large force aggregates individual systems to the degree tha t command

and control is not measured explicitly. They are singularly unsuited to measuring the im

pact of a command and control system. Second, most simulation has been done substituting

a single type of direct or indirect fire system into known situations to assess improvement.

Systems tha t change the dynamic of how those forces work together are not generally mod

eled. Current simulations are not suited to this type of modeling for all the reasons discussed

in this dissertation; lack of dynamism and inability to search the resultant solution space.

Third, the proper tactics required to maximize the impact of those systems, as discussed

earlier, is not obvious. Live simulations, like the Advanced Warfighting Experiment in 1998

conducted with an Army Brigade at the National Training Center, showed no such step-

function increase in capability, but rather showed in many small ways what the power could

be with the proper tactics and training and with the ubiquity of information technology

equipment.

Based on the success of coupling an agent-based model with a co-evolutionary genetic

algorithm, it was decided to use this approach to explore the value of information. This

section describes the approach and its results.

1This has been a powerful metaphor used by the information technology proponents but thus far there
has been no proof that such a trade-off can actually be made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION

6.1 Approach

96

Former Army leaders have described the desired situation as “. . . knowing where I am,

knowing where my friends are, and knowing where the enemy is” [71]. All information

known to one system would be shared with all other systems. To simulate this capability,

the agent-based model was modified so tha t any enemy or friendly system detected by one

agent appeared to all others. Rather than each agent making decisions based on its local

knowledge, each agent made decisions based on global knowledge. An agent’s threat state

was set by what the entire force could detect, not what the agent could physically detect.

All systems had a common threat sta te on which to make decisions.

Once this modification was made and tested, three runs using random starting solutions

were conducted. Each was allowed to run until the set of solutions converged, and then

the resulting solutions compared to the original runs tha t used the co-evolutionary genetic

algorithm. The comparisons were made to determine the applicability of this approach and,

if successful, to determine the value of information. If a difference could be detected and

the results were explainable, it would show th a t this technique could be used to explore the

impact of information technologies and provide some insight into their value, understanding

that this simulation is highly simplified. If the approach does show merit, more work with

a full complement of different combat and support systems would be warranted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION

6.2 Results

97

Information technology did not raise the overall fitness of the best solutions found in the

three runs. The speed at which forces accomplished the mission and avoidance of friendly

losses (the basis for the fitness scores) were very similar to the runs outlined in the last

chapter, as shown in the following table. The difference came in the increased fitness of

previously unfit solutions and the capabilities selected in the most fit solutions.

Table 6.1: Previous Runs v. Information Enhanced Excursion
Runs High Average Low

Previous 391.449 388.587 382.934
Excursion 390.0 388.326 384.987

6.2.1 Increased F itness

There was a marked increase in the number of solutions that reached high levels of fitness

when compared to the non-information enhanced runs. Considering the number of solutions

found tha t reached a fitness of 380.0 (within 5% of the theoretical maximum of 400.0)

the results show that information enhancement improved previously less fit solutions and

allowed them to compete favorably. Although the excursion runs ran fewer generations, the

number of fit solutions found (those with scores over 380.0) was much greater, as shown in

Table 6.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION

Table 6.2: Fit Solutions Comparison

98

Run # Fit Solutions # Generations
1 9 9719
2 99 85,546
3 115 16,410
4 30 24,666
5 56 33,645
6 54 30,405
7 53 14,726
8 71 23,793

Exc 1 144 5783
Exc 2 25 5885
Exc 3 132 1783

Running an information-enhanced solution in the agent-based simulation without the

increased level of situational awareness resulted in a lowered fitness score, indicating that

the solutions were less fit without the ability to share information. This difference provides

a measure of the improvement caused by information. The results of using the excursion-

selected solutions in the basic, non-information sharing simulation are shown below.

Table 6.3: Comparison of Information-Enhanced Solutions to Standard Information Level
Run Information Enhanced Standard Information Level

Excursion 1 390.0 307.1
Excursion 2 385.0 283.9
Excursion 2 390.0 302.4

As can be seen above, information is worth roughly 100 points of fitness to a solution

that would not be considered fit in the basic runs. This increase in capability indicates that

information increases the utility of otherwise inappropriate solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION

6.2 .2 Inform ation as a S u b stitu te for C apabilities

99

Careful analysis of the individual solutions selected in the excursion runs shows three differ

ences from the non-information enhanced solutions. Information sharing allows inclusion of

less capable sights with which to detect an enemy, inclusion of artillery systems to defeat an

enemy at longer range and a reduction in the armor required to protect the tanks. In every

excursion run, the solution selected a basic, optical sight with a range of just 2000m and

the lowest accuracy of all the potential sight options. This is in stark contrast to the non

information enhanced runs, which all selected a very accurate thermal sight with a range of

5000m. The increased ability of the force to share information on enemy disposition allowed

the inclusion of the cheaper sighting system and compensated for the decreased capability.

Two of the three excursion runs included artillery systems in the solutions discovered,

also in contradiction to the non-information enhanced runs. The original runs, as reported

in the last chapter, selected only solutions tha t consisted entirely of tanks in order to gain

high scores for speed. The two excursion runs divided the available money between tanks

and artillery 57/43 and 71/29, respectively. The solutions tha t waited for indirect fire

to be called and take effect were, in essence, penalized in the non-information enhanced

runs for their lack of aggressiveness by the speed-emphasizing scoring system. In these

excursion runs, however, all of the artillery began firing as soon as the first tank detected

an enemy, based on ubiquitous, immediate information. Rapid information sharing allowed

the artillery into the fight earlier, negating much of the time penalty exhibited in the base

case runs.

The last difference found is that increased information in fact allowed a trade-off of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION 100

armor. Two most fit solutions contained tanks with armor of less than 0.2m, and the third

allowed tanks with ju st 0.5m of frontal armor for an average of 0.3m of armor. This is a

considerable reduction from the non-information enhanced runs where the armor averaged

0.71m.

The two excursion runs tha t allowed the lighter armor were the same two tha t included

artillery systems. This indicates tha t earlier dissemination of the enemy information, re

sulting in earlier indirect fire, reduced the risk of direct fire engagements and losses to the

tank fleet, allowing a decreased level of individual protection. The metaphor of trading

information for armor has shown to be more than a simply a figure of speech in this limited

simulation.

6.3 Assessm ent o f the Value of Information

The introduction of information sharing in the force does not result in a quantifiable increase

in the fitness of already very fit solutions. W hat it does, however, is increase the fitness

of less fit solutions, thereby increasing the variety of fit solutions. This reduces the risk to

the force of selecting an inappropriate solution by increasing their applicability and allows

solutions to have broader utility.

The value of information can be measured in a specific instance by running a solution

through both information enhanced and non-information enhanced simulations. The delta

between the fitness scores indicates the value of information in tha t particular solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. THE VALUE OF INFORMATION

6.4 Assessm ent of th e Validity of the Approach

101

Coupling an agent-based model with a co-evolutionary genetic algorithm enabled compar

ison of solutions with and without information sharing abilities through its matching of

tactics to the physical capabilities of the systems. The ability of agent-based models to

dynamically adjust to the changing situation makes the approach particularly suited to this

type of research and demonstrates the applicability of the approach. Further research with

more types of systems is warranted using this approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Further Work

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

-T . S. Eliot

The success of this approach using just two combat systems in a limited scenario indi

cates the utility of the approach and warrants further exploration with a greater number

of systems. This exploration was constrained to two systems as an initial effort, but real

decisions cannot be made on tha t basis. Combat forces are comprised of large numbers of

disparate systems such as infantry, engineer and air defense, which should be included in

further work.

Increasing the number of candidate systems raises the issue of the appropriate number of

crossover points. Co-evolution using two-point crossover was appropriate with two systems,

but increased numbers of systems may benefit from multiple-point crossover schemes that

allow all systems to simultaneously co-evolve.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FURTHER WORK 103

This research used a single scenario to determine efficacy of the approach, but a method

to test solutions in multiple scenarios, with multiple types of terrain, enemy systems and

missions, should be explored. This would allow full testing of solutions and prevent selection

of “brittle” solutions-only appropriate in a single prescribed instance.

Agent-based modeling showed value with a small-scale, tactical-level force. Determi

nation of the value of this modeling technique when evaluating higher-level organizations

appears warranted. Combat interactions increase in complexity and our ability to repli

cate them with current linear models decreases as forces become larger, indicating tha t an

agent-based approach would be more useful at higher levels than current aggregated models.

Increased information sharing showed great value and the approach appeared to capture

those benefits. This opens an entire research area waiting to be explored now tha t an

appropriate tool is available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusion

I know tha t most men, including those a t ease with problems of the greatest

complexity, can seldom accept even the simplest and most obvious tru th if it be

such as would oblige them to admit the falsity of conclusions which they have

delighted in explaining to colleagues, which they have proudly taught to others,

and which they have woven, thread by thread, into the fabric of their lives.

-Leo Tolstoy

8.1 Intent o f the D issertation

This dissertation intended to provide a solution for one of the most vexing problems in the

government, force development of combat systems. By the nature of the decisions involved,

they commit large sums of money, encompass a wide universe of types and capabilities of

equipment, and have long-term consequences. Although the decisions, at their most basic

level, are to develop the most capable force for an affordable cost, it can never be forgotten

tha t the decisions are critical to the long-term well-being of the nation as well as the very

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION 105

lives of the men and women that use the fielded systems. Given this significance and the

complexity of the choices available, the solution of this problem is a significant step forward

for the Department of Defense as well as other government agencies tha t can adapt this

approach for their uses.

The force development problem suffers from two distinct but intertwined problems.

First, combat is highly non-linear and dynamic. Small inputs can have no result whatsoever

until reaching a critical mass, then the marginal impact of increased input can be significant.

Once a saturation level is reached, marginal impact flattens or even turns negative. Combat

is very situational; decisions must be appropriate in place, force capabilities and time.

Change in the timing of force movement or the number of systems that reach a decision

point, requires a change in either the substance or timing of the decision. Current combat

models are unsuited to replicate this non-linearity except when humans are intimately

involved throughout every stage of the simulation as players.

Second, the large number of types and capabilities of equipment drive the number of

potential solutions far beyond what can be explored with man-in-the-loop processes. Solu

tion sets of 1060 unique solutions are not unusual given the number of individual choices

for each combat system available. Further, even if a search could be made using humans

to react to changing situations, the most appropriate tactics are not always obvious when

dealing with new technologies or applying them in different ways.

This dissertation determined to explore the ability of an agent-based model to dynami

cally model potential solutions for fitness in a combat environment. In order to search the

solution space, a co-evolutionary genetic algorithm was evaluated as a potential improve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION

ment over a standard, evolutionary genetic algorithm.

106

8.2 Restatem ent of the Problem and Approach

This problem can be abstracted to a stochastic, mixed-integer, non-linear optimization

problem with a very large solution set. No closed form representation of an optimization

equation is available, requiring a derivative-free solution method and a search method that

can accommodate a hyperdimensional solution set.

To solve the force development problem, two approaches needed to be developed and

explored; a dynamic modeling technique and an appropriate search technique. To model

the non-linearities of combat, the underlying assumption on which existing models were

built were reexamined. Current models aggregate the interactions of lower units, losing

the essential dynamic of combat, the human factor. Instead of armies being simulated as

a collection of independent agents working together based on an awareness of the mission

and capabilities, whose higher-level performance emerges from the myriad interactions, they

become monolithic entities tha t perform in predetermined ways. This dissertation developed

an agent-based model th a t incorporated both physical capabilities and tactical rules that

determine the agents’ actions. In this way, not only the appropriateness of the equipment

was measured in the simulation, but based that on the most appropriate tactics. The

combination of capability and tactics resulted in an overall fitness of each tested solution.

To search this solution space, this dissertation developed a classification method for

landscapes described by binary-coded problem representations. Landscape shapes have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION 107

been described in various terms, but without a great deal of rigor or comparability. Land

scape shape is a function of the problem to be solved, as well as its representation for

solution. Representation as a binary-coded string is common. This dissertation developed

a standardized way to measure and categorize the resulting landscapes.

To explore the advantages of co-evolution, a rigorous theoretical underpinning for a co-

evolutionary approach was developed. This dissertation proved tha t there axe advantages to

co-evolution, namely increased probability tha t good schemata would survive the crossover

process and tha t the increased available step size at each generation would allow faster

search across the landscape. These advantages were alluded to in previous works and even

explained in a naturalistic manner, but the improvement offered had not been previously

proven.

When the theory recommended pursuing this approach, two combat systems were al

lowed to evolve simultaneously between generations in a dynamic, agent-based model. In

each run, force capability was maximized given a fixed amount of money available to the

force. Solutions selected from a menu of capabilities ranging from engines, armor protec

tion, sights and weapons. Tactics were governed by changing the priority of three rules,

remaining in formation with other friendly systems, moving to attack a perceived enemy

and moving to the objective. Artillery systems had an additional rule tha t governed where

they moved in relation to the tanks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION

8.3 Results

108

Coupling these powerful techniques resulted in a useful method to find very-fit solutions.

The nature of the landscape was such that many very fit solutions were available. By

making multiple runs and comparing the solutions found, it became very clear what the

high-value capabilities were which would allow decision makers a guide to making capability

trade-offs.

A recap of the findings:

• In six of eight record runs, co-evolution found solutions with higher fitness than an

evolutionary approach.

• In seven of eight runs, co-evolution continued to search a wider set of solutions well after

evolution had converged on a most-fit solution. This increase is attributable to the larger

step available in each generation and increases the opportunity to find more fit solutions.

• A good, relatively inexpensive sight was adequate. In fact, all solutions selected the

same sight, attesting its high benefit:cost ratio.

• Armor protection was useful, bu t only up to a threshold. Beyond tha t it became a

detriment. Armor protecting the side and top of vehicles was im portant enough to pay a

weight and expense penalty.

• Low cost conventional guns were selected over more expensive, bu t more accurate,

missiles and electromagnetic guns.

• Lighter armor allowed selection of a cheap engine with limited power.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION 109

• Tactics tha t favored aggressiveness to get to the objective and proper alignment of

forces in relationship to the enemy were very important. Alignment of friendly forces seemed

to have little impact on the fitness of a solution.

8.4 Measurement of the Value of Information

As an excursion, the force was adapted to share information instantaneously to determine

if the value of information could be measured. The availability of information showed little

improvement in already highly fit solutions. However, it increased the fitness of previously

less fit solutions making a wider universe of solutions acceptable. This equates to reducing

the risk of a force decision, since more solutions are relatively equal in fitness values. The

danger of making an inappropriate decision is lessened by the leveling effect of shared

information.

8.5 Implications for Future Work

This dissertation fulfilled its intended goals by developing a dynamic model to simulate com

bat, and developing the theoretical framework for and showing the utility of co-evolution

to search the solution space. The approach developed to solve the force development prob

lem is a significant step forward from current methods. This approach, which used only

two combat systems in a single combat scenario for research purposes, now needs to be

expanded to include the multitude of equipment tha t could be found in combat units and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONCLUSION 110

more, representative scenarios need to be developed in order to test solutions across the

spectrum of combat to prevent selection of brittle solutions of limited utility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Code for the Agent-based Model

The following code was used to build the Agent-based model developed for this dissertation.

The model is called the “MULE” in no small part because of the Army mascot. The files

are listed below with the header files. A sample input file is provided to enable someone to

compile the code and run a test using redirection.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 112

/
/ / / /
// Main.cpp: Provides the control for the Mule simulation //

/ / / /
/ /

#include "vehmgr.h"

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include "rngs.h"

#include "rvgs.h"

#include "rvms.h"

#include <stdio.h>

#include <iostream>

#include <ctime>

#include <string>

#include <cstdlib>

#include <cmath>

#define LOC 0.95

using namespace std;

double Score(long B_Start);

long Cleanup(void);

//declarations

extern World Cell[Landscape_Size][Landscape_Size] ;

double Cur_Time = 0.0;

Veh* BT = NULL;

Veh* BA = NULL;

//Pointer to Blue Tanks

//Pointer to Blue Arty

Veh* RT = NULL;

Veh* RA = NULL;

//Pointer to Red Tanks

//Pointer to Red Arty

ArTGT* Imp = NULL; //Pointer to arty impacts

long BNum = 0;

long RNum = 0;

//Number of Blue Vehicles

//Number of Red Vehicles

long BTNum = 0;

long BANum = 0;

//Number of Blue Tanks

//Number of Blue Arty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 113

long RTNum = 0;

long RANum = 0;

char genome[243];

double N[5];

int mainO

long seed;

PutSeed(54778);

GetSeed(ftseed);

long Next_Event;

// long count = 0;

cin.getline(genome, 243);

//Number of Red Tanks

//Number of Red Arty

//Accepts the soln string

//contains next event times

//next-event list

double w = 100.0;

long n = 0;

double sum = 0.0;

double mean =0.0;

double data;

double stdev;

double u, t;

double diff;

clock_t wait = 5 * CL0CKS_PER_SEC + clockO;

while(w > 5.0 && n < 100 && clockO < wait) {

long B_Start = 0;

Init_World();

//counts number of Blue veh’s at start

//initializes the landscape

BT = Init_BT(genome, 243)

BA = Init_BA(genome, 243)

RT = Init_RT(genome, 243)

RA = Init_RA(genome, 243)

B_Start = BNum;

if(BT != NULL) Put_Vehs(BT);

if(BA != NULL) Put_Vehs(BA);

Put.Vehs(RT);

Put_Vehs(RA);

//initializes blue tanks

//initializes blue arty

//initializes red tanks

//initializes red arty

//places Blue Tanks on the landscape

//places Blue Arty on the landscape

//places Red Tanks on the landscape

//places Red Arty on the landscape

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

enum NE {BTank, BArt, RTank, RArt, Impact};

if(BT != NULL) N[BTank] = BT->NextTime.N;

else N[BTank] = Inf; //init event schedule

if(BA != NULL) N[BArt] = BA->NextTime.N;

else N[BArt] = Inf;

N[RTank] = RT->NextTime.N;

N[RArt] = RA->NextTime.N;

N[Impact] = Inf;

while ((Cur_Time < Time_Limit)&&(BTNum+BANum>0)&&(RTNum>0))

{
Next_Event = BTank;

Cur_Time = N[BTank] ;

if(Cur_Time > N[BArt]) {Next_Event = BArt; Cur_Time = N[BArt];}

if(Cur_Time > N[RTank]) {Next_Event = RTank; Cur_Time = N[RTank];}

if(Cur_Time > N[RArt]) {Next_Event = RArt; Cur_Time = N[RArt];}

if(Cur_Time > N[Impact]) {Next_Event = Impact; Cur_Time = N[Impact];}

switch (Next_Event)

case BTank : BT = ProcTk(BT);

N[BTank] = BT->NextTime.N;

break;

case BArt : BA = ProcArt(BA);

N[BArt] = BA->NextTime.N;

break;

case RTank : RT = ProcTk(RT);

N[RTank] = RT->NextTime.N;

break;

case RArt : RA = ProcArt(RA);

N[RArt] = RA->NextTime.N;

break;

case Impact : Imp = Proclmp(lmp);

if(Imp != NULL) N[Impact] = Imp->time;

else N [Impact] = Inf;

break;

default : cerr « "prob in main" « endl;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

>

if(BT == NULL II BA == NULL II RT == NULL I I RA == NULL)

//if any axe null, set next

{ //time to inf

if(BT == NULL) N[BTank] = Inf;

if(BA == NULL) N[BArt] = Inf;

if(RT == NULL) N[RTank] = Inf;

if(RA == NULL) N[RArt] = Inf;

>
>

data = Score(B_Start);

//cout « data « endl;

n++;

diff = data - mean;

sum += diff * diff * (n - 1.0) / n;

mean += diff / n;

stdev = sqrt(sum / n) ;

if(n>l) {

u = 1.0 - 0.5 * (1.0 - LOC);

t = idfStudent(n-l, u);

w = t * stdev / sqrt(double(n-1));

>
Cleanup();

>
cout « mean « endl;

return 0;

double Score(long B_Start)

double Time;

double Score;

long B_Surv;

double PctSurv;

if(Cur_Time >= Time_Limit) return 0.0;

else {

Time = Time_Limit - Cur_Time;

B_Surv = B_Start - BNum;

PctSurv = double(B_Surv)/double(B_Start);

Score = Time + PctSurv*200.0;

//cout « Score « endl;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

>
return Score;

>

long Cleanup(void)

{
Cur_Time = 0.0;

Veh* Temp = NULL;

ArTGT* Templmp = NULL;

while(BT != NULL) {

Temp = BT;

BT = BT->Next;

delete Temp;

Temp = NULL;

>

while(BA != NULL) {

Temp = BA;

BA = BA->Next;

delete Temp;

Temp = NULL;

>

while(RT != NULL) {

Temp = RT;

RT = RT->Next;

delete Temp;

Temp = NULL;

>

while(RA != NULL) {

Temp = RA;

RA = RA->Next;

delete Temp;

Temp = NULL;

>

while(Imp != NULL) {

Templmp = Imp;

Imp = Imp->Next;

delete Templmp;

Templmp = NULL;

//resets time

//Temp pointers

//Cleans Pointer to Blue Tanks

//Cleans Pointer to Blue Arty

//Cleans Pointer to Red Tanks

//Pointer to Red Arty

//Cleans pointer to arty impacts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

BNum = 0; //Number of Blue Vehicles

RNum = 0; //Number of Red Vehicles

BTNum = 0; //Number of Blue Tanks

BANum = 0; //Number of Blue Arty

RTNum = 0; //Number of Red Tanks

RANum = 0;

return 0;

//Number of Red Arty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
// Veh.CPP: Member functions of the Vehicle class. //

/ / / /
/ /

#define STRICT

#define sqr(x) ((x) * (x))

#include "veh.h"

#include "vehmgr.h"

#include "rvgs.h"

#include "rngs.h"

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include <math.h>

#include <iostream>

using namespace std;

extern World Cell[Landscape_Size][Landscape_Size];

extern long BNum;

extern long BTNum;

extern long RNum;

extern long RTNum;

extern long BEngine;

extern long BAmmo_Type;

extern long BAmmo_Qty;

extern long BSight;

extern long BAuto;

extern long BArmor;

/
/ / Constructors, destructors, and overloaded operators: //

/ /

/ / default constructor:

Veh::Veh(long x, long y, chax clr, char arr[], int n)

{
extern double Engine[4] [4];

extern double Ammo[14][10];

extern double Sight[4][6];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 119

extern double Autoloader [3];

double Fix_Force = ConvCarr, n, 98, 102) * 0.06666;

//pet of force fixing enemy

double p; //used to draw probs

double wt, amtarmor, cubes, spd;

X = x;

Y = y;
Dest_X = x;

Dest_Y = y;

Last_X = x;

Last_Y = y;

if(clr == Jb’)

ObjX = XObj;

ObjY = YObj;

Dir = 0; //blue face N, red face S

//select vision

SelectStream(VISION_STREAM);

Vision = long((Sight[BSight][5] +

Equilikely(-long(Sight[BSight][5]/10),

long(Sight[BSight] [5]/10)))/25);

pd = Sight[BSight][1];

//compute cubes then length

cubes = Engine[BEngine] [2] + 5*BAmmo_Qty*Ammo[BAmmo_Type][2] +

Ammo[BAmmo_Type] [7] + Sight[BSight][2] + BAuto*Autoloader[1] + 20.0;

1 = cubes/(2.15*(2.8-(BAuto*0.6)));

h = 2.8-(BAuto*0.6);

w = 3.5;

//compute weight -> speed

amtarmor = 2*(2.8-(BAuto*0.6))*2.15*(BArmor*0.1);

//m~3 of armor on tank

/ /2* front slab*armor thickness

wt - amtarmor*Arm_Wt + Engine[BEngine][0] + (5 * BAmmo_Qty *

Ammo[BAmmo_Type] [0]) + Ammo[BAmmo_Type][6] + Sight[BSight] [0] +

//veh is blue

//carry obj coord

//first move is in place

//last cell visited to

//damp oscillation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

(BAuto*Autoloader[0]);

spd = 6.49 + 1.49*Engine[BEngine] [1]/wt; //converts hp/t to km/hr

SelectStream(M_RATE_STREAM);

Move_Rate = Equilikely(long(0.9*spd),long(l.l*spd))*40.0/60.0;

Type = 0; //blue tanks are type 0, red are type

Power = 1.0; //cbt effectiveness at start (100%)

Color = clr; //set color

G_Rg = long(Ammo[BAmmo_Type][4]/25);

//G_Rg is in grids, not meters

acc = Ammo[BAmmo_Type] [5];

//acc of gun/ammo comb

stacc = Sight[BSight][4] ; //acc of sight

Armor = BArmor*0.1; //thickness of frontal armor

Pen = Ammo[BAmmo_Type] [1];

//penetration cap of bullets

Moving = l; //starts not moving

State = 0; //blue starts on offense

Rds = BAmmo_Qty * 5; //number of rounds on board

enctr = 0; //initially can’t see any en

frctr = 1; //can always see self

arctr = 0; //

EnDir = 8; //cannot see enemy, so doesn’t have a

// perceived direction

CFF = 1.0/(Move_Rate * CFF.Min);

//sets prob of a call for fire

Reload = Ammo[0][9];

SelectStream(FIX_FORCE_STREAM);

p = Uniform(0,1);

if(p < Fix_Force) Fix = 0;//part of fixing force

else Fix = 1; //part of maneuver force

NextTime.N = 0.0

NextTime.Sh = Inf

NextTime.Mv = 0.0

//init time of next events

Next = NULL

Fr = NULL

Arty = NULL

En = NULL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

Target = NULL;

tgtctr = 0;

Shots_Msn = 0;

Width = 0;

Nof = Conv(arr, n, 17, 20);

Noa = 0;

Noe = ConvCarr, n, 20, 23);

Noo = Conv(arr, n, 23, 26);

ALof = Conv(arr, n, 26, 29);

ALoa = 0;

ALoe = Conv(arr, n, 29, 32);

ALoo = Conv(arr, n, 32, 35);

AMedf = Conv(arr, n, 35, 38);

AMeda = 0;

AMede = ConvCarr, n, 38, 41);

AMedo = Conv(arr, n, 41, 44);

AHif = Conv(arr, n, 44, 47);

AHia = 0;

AHie = Conv(arr, n, 47, 50);

AHio = Conv(arr, n, 50, 53);

APanf = Conv(arr, n, 53, 56);

APana = 0;

APane = Conv(arr, n, 56, 59);

APano = ConvCarr, n, 59, 62);

DLof = Conv(arr, n, 62, 65);

DLoa = 0;

DLoe = Conv(arr, n, 65, 68);

DLoo = Conv(arr, n, 68, 71);

DMedf = ConvCarr, n, 71, 74);

DMeda = 0;

DMede = ConvCarr, n, 74, 77);

DMedo = ConvCarr, n, 77, 80);

DHif = Conv(arr, n, 80, 83);

DHia = 0;

DHie = ConvCarr, n,

CO00 86);

DHio = ConvCarr, n, 86, 89);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

DPanf = Conv(arr, n, 89, 92);

DPana = 0;

DPane = ConvCarr, n, 92, 95);

DPano = ConvCarr, n, 95, 98);

0_Dist = ConvCarr, n, 102, 105);

else //tank is red, inputs hard-coded

{
ObjX = XObj; //carry obj coord

ObjY = YObj;

Dir = 4; //blue face N, red face S

SelectStreamCVISION_STREAM);

Vision = EquilikelyC2750/25, 2250/25);

pd = 0.6;

h = 2.3

1 = 6.0
w = 3.5

SelectStreamCM_RATE_STREAM);

Move_Rate = EquilikelyC22, 18);

//30 kph +/- 10%

Type = 2; //red are type 2

Power = 1.0; //cbt effectiveness at start C100%)

Color = clr; //set color

G_Rg = EquilikelyC90, 110);

//G_Rg is 2500m in grids

acc = 1.0; //acc of gun/amo comb

stacc = 1.0; //acc of sight

Armor = 0.520; //thickness of frontal armor

Pen = 0.550; //penetration cap of bullets

Moving = 1; //starts not moving

State = 5; //red starts on def

Rds = 40; //number of rounds on board

enctr = 0; //initially can’t see any en

frctr = 1; //can always see self

arctr =0; //

EnDir = 8; //cannot see enemy, so doesn’t have

// perceived direction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

CFF = 1.0/(double(Move_Rate * CFF_Min));

//sets prob of a call for fire

Reload = 5;

Fix = 0; //part of fixing force

NextTime.N = 0.0; //init time of next events

NextTime.Sh = Inf;

NextTime.Mv = 0.0;

Next = NULL;

Fr = NULL;

Arty = NULL;

En = NULL;

Target = NULL;

tgtctr = 0;

Shots_Msn = 0; //used in art.cpp

Width = 0; //used in art.cpp

Nof = 1;

Noa = 0;
Noe = 0;
Noo = 1;

ALof = 1;

ALoa = 0;
ALoe = 5;

ALoo = 1;

AMedf = 3;

AMeda = 0;
AMede = 10;
AMedo = 1;

AHif = 1;

AHia = 0;
AHie = 10;
AHio = 1;

APanf = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

APana = 0;

APane = 10;

APano = 0;

DLof = 1

DLoa = 0

DLoe = 0

DLoo = 2

DMedf = 3

DMeda = 0

DMede = 0

DMedo = 2

DHif = 1

DHia = 0

DHie = 1

DHio = 1

DPanf = 0

DPana = 0

DPane = 1

DPano = 0

0_Dist = 8; //opt dist = 200m

// destructor:

Veh::"Veh ()

{
ClearPtrsO ;

if(Color== ’r’) RNum—;

else BNum—;

>

/ /
// Other member functions: //

/ /

bool Veh::Choose_Next_Move(long f, long e, long o)

{
double dist, distf, diste, disto, best;

//dist to dest, fr, en, obj and best pri

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 125

long fx, fy, fxl, fyl, ex, ey, ox, oy, a, i;

double pri[3]; //holds priority calc

if(NextTime.Sh == Inf && State > 0) NextTime.Sh = NextTime.N + Reload;

//schedule a shot

TGT* T1 = NULL;

TGT* T2 = NULL;

//find best location based on friendlies

switch (frctr)

case 1 : fx = X; //no other fr are in sight

fy = Y;

break;

case 2 : Fr_Locn(Fr->X, Fr->Y, fx, fy); //just one other fr in sight

break;

default: T1 = Fr; //mult fr’s in sight

T2 = Fr->Next;

Fr_Locn(Tl->X, T1->Y, fx, fy);

Fr_Locn(T2->X, T2->Y, fxl, fyl);

fx = Rnd((fx+fxl)/2.0);

fy = Rnd((fy+fyl)/2.0);

T1 = NULL;

T2 = NULL;

>

distf = Dist(X, Y, fx, fy); //find dist and priority of movement

pri [0] = f * distf; //based on friendlies

//find best locn based on closest enemy

switch(enctr)

case 0 : ex = X; //no en in sight

ey = Y;

break;

default : En_Locn(En->X, En->Y, ex, ey);

>
diste = Dist(X, Y, ex, ey);

pri [1] = e * diste;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

//find best locn based on obj

0bj_Locn(0bjX, ObjY, ox, oy);

disto = sqrt(Dist(X, Y, ObjX, ObjY));

pri[2] = o * disto;

disto = sqr(disto);

//best location based on highest pri of the three:

a = 0;

best = pri[0];

for(i=l; i<3; i++) //find highest priority move

{
if(pri[i] > best)

{
best = pri[i];

a = i;

>
}

switch(a)

case 0: if(distf != 0.0)

Dest_X = Rnd(X + (fx - X)/distf);

Dest_Y = Rnd(Y + (fy - Y)/distf);

>
else

Dest_X = X;

Dest_Y = Y;

>
break;

case 1:

Dest_X = Rnd(X + (ex - X)/diste);

Dest_Y = Rnd(Y + (ey - Y)/diste);

break;

case 2:

Dest_X = Rnd(X + (ox - X)/disto);

Dest_Y = Rnd(Y + (oy - Y)/disto);

break;

default: cerr « "problem in ch_best_move" « endl;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

if(Dest_X == Last_X && Dest_Y == Last_Y)

//if moving back to previous spot, don’

Dest_X = X;

Dest_Y = Y;

>

//set moving flag

if(Dest_X != X I I Dest_Y != Y) Moving = true;

else Moving = false;

//set direction

//if moving point direction of travel

if(Moving == true) Set_Dir(X - Dest_X + Dest_Y - Y);

//if stationary and enemy in sight, point at closest enemy

else if(En != NULL)

diste = Dist(X, Y, En->X, En->Y);

Set_Dir(Rnd((X - En->X)/diste) + Rnd((Y - En->Y)/diste));

>

//if no enemy, assume default direction

else

if(Color == ’r’) Dir = 4;

else Dir = 0;
>

//determine next update time

dist = Dist(X, Y, Dest_X, Dest_Y);

//if sitting on best spot, stay 1/shots per min

if(dist == 0 .0) NextTime.Mv = NextTime.Mv + Reload;

//else compute next event time

else NextTime.Mv = NextTime.Mv + (dist/Move_Rate);

return true;

>

double Veh::Fr_Locn(long frX, long frY, long &fx, long &fy)

double p;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 128

p = Uniform(0,1);

//best locn is offset from the friendly by the opt dist

i f ((frX > X) || ((frX == X) && (p < 0.5)))

fx = Rnd(double(frX) - double(0_Dist)); //fr is below

else fx = Rnd(double(frX) + double(0_Dist)); //else above

p = Uniform(0,l);

if ((frY > Y) || ((frX == X) && (p < 0.5)))

fy = Rnd(double(frY) - double(0_Dist)); //fr is right

else if(frY < Y) fy = Rnd(double(frY) + double(0_Dist));//or left

else fy = frY; //else on-line

fx = max(0, fx); //stay on game board

fy = max(0, fy) ;

fx = min(fx, Landscape_Size-l);

fy = min(fy, Landscape_Size-l);

return 1.0;

//temp locations

//best dist from en

//actual dist from en

//part of atk’g maneuver force

double Veh::En_Locn(long enX, long enY, long &ex, long &ey)

{
long xl, x2, yl, y2;

double dist = pow(10, -.07918)*G_Rg;

double diste = Dist(X, Y, enX, enY);

long Is = Landscape_Size-l;

if(Fix == 1)

switch(EnDir)

case 0: if(0.9*dist < diste && diste < l.l*dist ft&

(enX-X <= 0 I| enX-X <= mabs(Y-enY)))

{ //if in proper range, don’t move

ex = X;

ey = Y;

>
else

ex = enX;

yl = enY - Rnd(dist);

y2 = enY + Rnd(dist);

if(yl<0) ey = y2;

else if(y2>ls) ey = yl;

else if(Dist(X, Y, ex, yl)<Dist(X, Y, ex, y2)) ey = yl; //ex,yl closer

else ey = y2;

//en pointed north, move to

//flank

//x component not on game bd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

y
break;

//ex,y2 closer

case 1: if(0.9*dist

(enX < X I I Y <

{

< diste && diste < 1.l*dist &&

enY))

//if in proper range, don’t move

ex = X;

ey = Y;

>
else

xl = enX - Rnd(sqrt(sqr(dist)/2))

yl = enY - Rnd(sqrt(sqr(dist)/2))

x2 = enX + Rnd(sqrt(sqr(dist)/2))

y2 = enY + Rnd(sqrt(sqr(dist)/2))

if(xl < 0 I I yl < 0) //xl or yl not on game bd

{
ex = x2;

ey = y2;

> //x2 or y2 not on game bd

else if(x2 > Is I I y2 > Is)

ex = xl;

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer

{
ex = xl;

ey = yl;

>
else //x2,y2 closer

ex = x2;

ey = y2;

>
}

break;

case 2: if(0.9*dist < diste && diste < l.l*dist &&

(Y-enY <= 0 I I Y-enY <= mabs(X-enX)))

{ //if in proper range, don’t move

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ex = X;

ey = Y;

>
else

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 130

xl = enX - Rnd(dist);

x2 = enX + Rnd(dist);

ey = enY;

//en pointed east, move to

//flank

//x component not on game bdif(xl<0) ex = x2;

else if(x2>ls) ex = xl;

else if(Dist(X, Y, xl, ey)<Dist(X, Y, x2, ey)) ex = xl; //xl,ey closer

else ex = x2;

} //x2,ey closer

break;

//xl or yl not on game bd

case 3: if(0.9*dist < diste && diste < l.l*dist &&

(X < enX II Y < enY))

{ //if in proper range, don’t move

ex = X;

ey = Y;

}
else

{
xl = enX + Rnd(sqrt(sqr(dist)/2)):

yl = enY - Rnd(sqrt(sqr(dist)/2))

x2 = enX - Rnd(sqrt(sqr(dist)/2))

y2 = enY + Rnd(sqrt(sqr(dist)/2))

if(xl > Is II yl < 0)

{
ex = x2;

ey = y2;

>
else if(x2 <0 I I y2 > Is)

ex = xl;

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer

{
ex = xl;

ey - yl;

>
else //x2,y2 closer

{
ex = x2;

ey = y2;

>

>

//x2 or y2 not on game bd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 131

break;

case 4: if(0.9*dist < diste && diste < l.l*dist &&

(X-enX <=0| | X-enX <= mabs(Y-enY)))

{ //if in proper range, don’t move

ex = X;

ey = Y;

>
else

ex = enX;

yl = enY - Rnd(dist); //en pointed north, move to

y2 = enY + Rnd(dist); //flank

if(yl<0) ey = y2; //x component not on game bd

else if(y2>ls) ey = yl;

else if(Dist(X, Y, ex, yl)<Dist(X, Y, ex, y2)) ey = yl; //ex,yl closer

else ey = y2;

} //ex,y2 closer

break;

case 5: if(0.9*dist < diste && diste < l.l*dist &&

(X < enX I I enY < Y))

{ //if in proper range, don’t move

ex = X;

ey = Y;

}
else

xl = enX - Rnd(sqrt(sqr(dist)/2))

yl = enY - End(sqrt(sqr(dist)/2))

x2 = enX + Rnd(sqrt(sqr(dist)/2))

y2 = enY + Rnd(sqrt(sqr(dist)/2))

if(xl <0 || yl < 0)

ex = x2;

ey = y2;

>
else if(x2 > Is I I y2 > Is)

{
ex = xl;

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl.yl closer

{
ex = xl;

//en pointed sw

//xl or yl not on game bd

//x2 or y2 not on game bd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 132

ey = yl;

>
else

ex = x2;

ey = y2;

>
>

break;

//x2,y2 closer

case 6: if(0.9*dist < diste && diste < l.l*dist &&

(enY-Y <= 0 I I enY-Y <= mabs(X-enX)))

{ //if in proper range, don’t move

ex = X;

ey = Y;

>
else

//en pointed east, move to

//flank

//x component not on game bd

xl = enX - Rnd(dist);

x2 = enX + Rnd(dist);

ey = enY;

if(xl<0) ex = x2;

else if(x2>ls) ex = xl;

else if(Dist(X, Y, xl, ey)<Dist(X, Y, x2, ey)) ex = xl; //xl,ey closer

else ex = x2; //x2,ey closer

>
break;

case 7: if(0.9*dist < diste && diste < l.l*dist &&

(enX < X II enY < Y))

{ //if in proper range, don’t move

ex = X;

ey = Y;

>
else

{
xl = enX + Rnd(sqrt(sqr(dist)/2))

yl = enY - Rnd(sqrt(sqr(dist)/2))

x2 = enX - Rnd(sqrt(sqr(dist)/2))

y2 = enY + Rnd(sqrt(sqr(dist)/2))

if(xl > Is || yl < 0)

{
ex = x2;

ey = y2;

>

//xl or yl not on game bd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

else if(x2 <0 I I y2 > Is) //x2 or y2 not on game bd

{
ex = xl;

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer

{
ex = xl;

ey = yl;

>
else //x2,y2 closer

■C
ex = x2;

ey = y2;

>
>

break;

default: cerr « "en_locn prob" « ’ ’ « Color « ’ ’ « X « ’ ’

« Y « ’ ’ « NextTime.Mv « endl;

}
}//end if(Fix == 1)

else //atk’g but part of fixing force, or defending

if(0.9*dist<=diste && 1.l*dist<=diste)//in range band, don’t move

ex = X;

ey = Y;

>
else //move to proper range

{
ex = enX + Rnd((dist/diste)*(X-enX));

ey = enY + Rnd((dist/diste)*(Y-enY));

>
}

return 1.0;

>

double Veh::0bj_Locn(long obX, long obY, long &ox, long &oy)

double dist = Dist(X, Y, obX, obY);

if(dist != 0.0)

-C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

ox = obX; //obj attracts tank

oy = obY;

>
else

{
ox = obX;

oy = obY;

>
ox = max (0, ox); / / stay on game board

oy = max (0, oy);

ox = min (ox, Landscape_Size-l);

oy = min (oy, Landscape_Size-l);

return 1.0;

bool Veh::MoveTo(long mX, long mY) //places tank in new location

Y = mY;

return true;

>

bool Veh::PutFr(long fr) //stores number of frdly, arty and en in area

{
frctr = fr;

return true;

>

bool Veh::PutAr(long ar)

{
arctr = ar;

return true;

>

bool Veh::PutEn(long en)

{
enctr = en;

return true;

>

double Veh::Ratio()

return (double(enctr)/frctr);

>

Last_X = X;

Last_Y = Y;

X = mX;

//records where tank moved from

//updates new loaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

}

bool Veh::SetState(long x)

{
State = x;

return true;

>

bool Veh::ClearPtrs()

{
TGT* temp;

temp = Fr;

while (temp != NULL) //there were fr's in area

Fr = Fr->Next;

delete temp;

temp = Fr;

>
temp = En;

while (temp != NULL) //there were en’s in area

{
En = En->Next;

delete temp;

temp = En;

>
temp = Arty;

while(temp != NULL)

{
Arty = Arty->Next;

delete temp;

temp = Arty;

>
enctr = 0;

frctr = 1;

return true;

>

bool Veh::Set_Dir(long D) //set the direction flag

{
D=D+2;

switch (D)

case 0: Dir =5; //if (Dest-Loc’n)+2 == 0, must be going SW

break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

case 1: if(Dest_X == X) Dir =6; / / dir flags: 7 0 1

else Dir =4; // 6 2

break; // 5 4 3

case 2: if(Dest_X < X) Dir = 7;

else Dir = 3;

break;

case 3: if(Dest_X == X) Dir = 2;

else Dir = 0;

break;

case 4: Dir = 1;

break;

default: cerr « "dir prob" « ’ ’ « Color « ’ ’ « X

« ’ ’ « Y « ’ ’ « NextTime.N «endl;

>
return true;

>

bool Veh::Set_EnDir(long ED)

{
EnDir = ED;

return true;

>

bool Veh::Chg_Pwr(double p)

{
Power = Power - p;

return true;

>

void Veh::Set_0bj()

{
Veh* RB = NULL;

long ctr = 0;

long OffY, GrX, GrY;

GrX = GrY = 0;

RB = this;

while(RB != NULL)

{
GrX += RB->X;

GrY += RB->Y;

//sets obj locn based on

//tank’s location in formation

//set ptr to run thru friendlies

//find center of formation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

RB = RB->Next;

ctr++;

>

OffY = GrY/ctr - Y;

ObjX = XObj; //Apply offset to find ind obj

ObjY = YObj - OffY;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
// veh.h: Header file for the Vehicle class. //

/ / / /
/ /

#ifndef VEH_H

#define VEH.H

#define STRICT

struct TGT {

long X;

long Y;

double D;

TGT* Next;

>;

//coord, of tgt or move

//points to next tgt in list

struct ArTGT {

long X;

long Y;

double D;

long pri;

double time;

ArTGT* Next;

>;

//coord, of tgt or move

//points to next arty tgt in list

class Veh

{

public:

//current location

//where tank is going

//coordinates of objective

//Direction veh is facing (0-7,

/ / 0=N, 4=S)

//physical genes

long X;

long Y;

long Dest.X

long Dest.Y

long Last.X

long Last.Y

long ObjX;

long ObjY;

long Dir;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 139

long Vision;

double pd;

double w;

double 1;

double h;

double Move_Rate;

long Type;

double Power;

char Color;

long G_Rg;

double acc;

double stacc;

double Armor;

double Pen;

bool Moving;

long State;

long Rds;

long enctr;

long frctr;

long arctr;

long EnDir;

double CFF;

double Reload;

long Fix;

struct {

double N;

double Sh;

double Mv;

} NextTime;

Veh* Next;

TGT* Fr;

TGT* Arty;

TGT* En;

ArTGT* Target;

long tgtctr;

long Width;

//Vision distance (grids)

//prob of det

//width of veh (m)

//length of the veh (m)

//height of the veh (m)

//speed across environment

//type of veh (0:bl tk, l:bl arty,

// 2:red tk, 3:red arty)

//current effectiveness of veh

//veh color (r or b)

//Rg of Main Gun in grids

//accuracy of gun/ammo comb

//accuracy of sight

//thickness of frontal armor

//Penetration of bullet

//Flag if moving

//State of the Tank

//number of rounds on board

//counts en in sight

//counts fr in sight

//counts fr arty in sight

//general dir of enemy formation

//probability of calling for

// artillery fire

//Time after a shot that veh

// can fire again

//0 if veh is part of fixing

// (shooting) force

//event list

//next event time

//time of next shot

//time of next movement

//ptr to next veh in ord’d linked

/ / list

//pointers to tgt lists and

/ / closest arty piece

//sheaf width for arty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

long Shots_Msn;

//tactical genes

long Nof;

long Noa;

long Noe;

long Noo;

long ALof;

long ALoa;

long ALoe;

long ALoo;

long AMedf

long AMeda

long AMede

long AMedo

long AHif;

long AHia;

long AHie;

long AHio;

long APanf;

long APana;

long APane;

long APano

long DLof ;

long DLoa;

long DLoe;

long DLoo;

long DMedf

long DMeda

long DMede

long DMedo

long DHif;

long DHia;

long DHie;

long DHio;

long DPanf;

//number of shots/msn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 141

long DPana;

long DPane;

long DPano;

long 0_Dist; //dist to friendlies

Veh (long x, long y, char clr, char arr[], int n);

virtual “Veh ();

virtual bool Choose_Next_Move(long f, long e, long o); //find next move

virtual double Fr_Locn(long frX, long frY, long &fx, long &fy);

//locate best move based on:

//fr’s, en, obj

virtual double En_Locn(long enX, long enY, long &ex, long &ey);

virtual double Obj_Locn(long obX, long obY, long &ox, long &oy) ;

bool Chg_Pwr(double p);

bool MoveTo(long X, long Y);

bool PutFr(long fr) ;

bool PutEn(long en);

bool PutAr(long ar);

double Ratio();

bool SetStatedong x) ;

virtual bool ClearPtrsO;

bool Set_Dir(long D);

bool Set_EnDir(long ED);

void Set_Obj();

>;

//chgs power rating due to wounding

//places tk at new locn

//chgs num of fr & en

//computes local force ratio

//sets state of tk

//cleans fr & en tgts from Fr

//and En ptrs

//chgs dir flag

//records dir enemy is facing

//sets obj locn for tank

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
// Vehmgr.cpp: Controls the armies. //

/ / / /
/ /

#define STRICT

#define sqr(x) ((x) * (x))

#define pi 3.1415926

#include "vehmgr.h"

#include "veh.h"

#include "tank.h"

#include "art.h"

#include "BTank.h"

#include "BArt.h"

#include "rvgs.h"

#include "rngs.h"

#include "Param.h"

#include "RParam.h"

#include "land.h"

#include <cmath>

#include <iostream>

#include <string>

using namespace std;

extern World Cell[Landscape..Size][Landscape_Size];

extern double Cur_Time;

extern long BTNum;

extern long BANum;

extern long RTNum;

extern long RANum;

extern long BNum;

extern long RNum;

extern double N[];

long BEngine; //selects type engine

long BAmmo_Type; //type ammo (and gun)

long BAmmo_Qty; //how many stowed rounds/5

long BSight; //select type sight

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 143

long BAuto; //0=no autoloader, l=autoloader

long BArmor; / /amount of armor(*.lm)

long Dollar_Split; //Amount of money that goes to tanks

long BAEngine; //selects type engine

long BAAmmo_Type; //type ammo (and gun)

long BAAmmo_Qty; //how many stowed rounds/5

long BAAuto; //0=no autoloader, l=autoloader

long BAArmor; //amount of armor(*.lm)

enum State{No, ALo, AMed, AHi, APanic, DLo, DMed, DHi, DPanic};

//define State variables

int Conv(char arr[], int n, int nl, int n2)

{
string strl(arr+nl, arr+n2);

if(strl == "0" II strl == "00" II strl == "000" II strl == "0000")

return 0;

else if(strl == "1" I I strl == "01" II strl == "001" II strl == "0001")

return 1;

e l s e i f (s t r l == "10" I 1 s t r l == "010" II s t r l === "0010") r e tu r n 2;
e l s e i f (s t r l == "11" I 1 s t r l == "011" 1 1 s t r l === "0011") r e tu r n 3;
e l s e i f (s t r l == "100" 1 s t r l == "0100 ") r e tu rn 4;
e l s e i f (s t r l == "101" 1 s t r l == "0101 ") r e tu rn 5;
e l s e i f (s t r l == "110" 1 s t r l == "0110 ") r e tu rn 6;
e l s e i f (s t r l == "111" 1 s t r l == "0111 ") re tu r n 7;
e l s e i f (s t r l == "1000") r e t u r n 8;
e l s e i f (s t r l == "1001") r e t u r n 9;
e l s e i f (s t r l == "1010") r e tu r n 10;
e l s e i f (s t r l == "1011") r e t u r n 11;
e l s e i f (s t r l == "1100") r e t u r n 12;
e l s e i f (s t r l == "1101") r e t u r n 13;
e l s e i f (s t r l == "1110") r e t u r n 14;
e l s e i f (s t r l == "1111") r e tu r n 15;
cerr « "prob in vehmgr.cpp line 65" « endl;

return 0;

>

Veh* Init_BT(char arr[], int n)

■c
Veh* Tk = NULL;

long i, j, k, BTStart, max;

char b = ’b’;

double amtarmor, cost;

BEngine = Conv(arr, n, 0, 2);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 144

BAnimo_Type = Conv(arr, n, 2, 6);

BAmmo_Qty = Conv(arr, n, 6, 10);

BSight = Conv(arr, n, 10, 12);

BAuto = Conv(arr, n, 12, 13);

BArmor = Conv(arr, n, 13, 17);

Dollar_Split = Conv(arr, n, 105, 108);

amtarmor = 2*(2.8-(BAuto*0.6))*2.15*(BArmor*0.1); //m"3 of armor on tank

//compute cost

cost = Engine[BEngine][3] + (5*BAmmo_Qty*Ammo[BAmmo_Type][3]) +

Ammo[BAmmo_Type][8] + Sight[BSight][3] + (BAuto*Autoloader [2]) +

(amtarmor*Arm_Cost);

BTStart = long(250000*Dollar_Split*0.1428/cost);

if(BTStart < 1) return Tk;

long BArr[BTStart*4];

if (BTStart*4 < Landscape_Size)

max = BTStart*4;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-(2*BTStart)+i;

>
else if(BTStart*2 < Landscape_Size)

{
max = BTStart*2;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-BTStart+i;

>
else

max = Landscape_Size;

for(i=0;i<max;i++) BArr[i] = i;

>

j = max - 1;

k = Equilikely(0, j);

Tk = new Tank(Blue_Tank_Start, BArr[k], b, arr, n);

//Initializes the first blue tank

BNum++;

BTNum++;

BArr [k] = BArr[j];

j—;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 145

Veh* Temp;

Temp = Tk;

for(i=l; KBTStart; i++) //then the rest of the tribe

{
k = Equilikely(0, j);

Temp->Next = new Tank(Blue_Tank_Start, BArr[k], b, arr, n);

BArr [k] = BArr[j];

j--;

Temp = Temp->Next;

BNum++;

BTNum++;

>
Temp->Next = NULL;

return Tk;

Veh* Init_BA(char arr[], int n)

{
Veh* Arty = NULL;

long i, j, k, BAStart;

char b = ’b’;

double amtarmor, cost;

BAEngine = Conv(arr, n, 108, 110);

BAAmmo_Type = Conv(arr, n, 110, 112);

BAAmmo_Qty = Conv(arr, n, 112, 116);

BAAuto = Conv(arr, n, 241, 242);

BAArmor = Conv(arr, n, 116, 119);

amtarmor=(BAArmor*0.02)*((AAmmo[BAAmmo_Type] [7]*AAmmo[BAAmmo_Type] [8]) +

(AAmmo[BAAmmo_Type] [8]*AAmmo[BAAmmo_Type][9]) +

(AAmmo[BAAmmo_Type] [7]*AAmmo[BAAmmo_Type][9])) ;

//compute cost

cost = AEngine[BAEngine][3] + (5*BAAmmo_Qty*AAmmo[BAAmmo_Type][3]) +
AAmmo[BAAmmo_Type] [10] + (BAAuto*AAutoloader[1]) + (amtarmor*Arm_Cost);

BAStart = long(250000*(l-(Dollar_Split*0.1428))/cost);

//Starting number of blue arty

long max;

long BArr[Landscape_Size];

if(BAStart < 1) return Arty;

if(BAStart*4 < Landscape_Size)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 146

max = BAStart*4;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-(2*BAStart)+i;

>
else if(BAStart*2 < Landscape_Size)

{
max = BAStart*2;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-BAStart+i;

>
else

max = Landscape_Size;

for(i=0;i<max;i++) BArr[i] = i;

>

j = max - 1;

k = EquilikelyCO, j);

Arty = new Art(Blue_Arty_Start, BArr[k], b, arr, n) ;

//Initializes the first blue arty

BNum++;

BANum++;

BArr [k] = BArrCj] ;

j--;

Veh* Temp;

Temp = Arty;

for(i=l; i<BAStart; i++) //then the rest of the tribe

k = Equilikely(0, j);

Temp->Next = new Art(Blue_Arty_Start, BArr[k], b, arr, n);

BArr [k] = BArr[j] ;

j--;

Temp = Temp->Next;

BNum++;

BANum++;

>
Temp->Next = NULL;

return Arty;

Veh* Init_RT(char arr[], int n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 147

Veh* Tk = NULL;

long i, j, k;

char r = ’ r ’;

long RArr[RTStart*4];

for(i=0;i<RTStart*4;i++) RArr[i] = (Landscape_Size/2)-(2*RTStart)+i;

j = (RTStart*4) - 1;

k = EquilikelyCO, j);

Tk = new Tank(Red_Tank_Start, RArr[k], r, arr, n);

//Initializes the first red tank

RNum++;

RTNum++;

RArr [k] = RArrCj] ;

j--;

Veh* Temp;

Temp = Tk;

for(i=l; i<RTStart; i++) //then the rest of the tribe

k = EquilikelyCO, j);

Temp->Next = new Tank(Red_Tank_Start, RArr[k], r, arr, n);

RArr[k] = RArr[j];

j--;

Temp = Temp->Next;

RNum++;

RTNum++;

>
Temp->Next = NULL;

return Tk;

Veh* Init_RA(char arr[], int n)

{
Veh* Arty = NULL;

long i, j, k;

char r = ’r’;

long RArr[RAStart*4];

for(i=0;i<RAStart*4;i++) RArr[i] = (Landscape_Size/2)-(2*RAStart)+i;

j = (RAStart*4) - 1;

k = EquilikelyCO, j);

Arty = new Art(Red_Arty_Start, RArr[k], r, arr, n);

//Initializes the first red arty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

RNum++;

RANum++;

RArr [k] = RArrCj] ;

j“ ;

Veh* Temp;

Temp = Arty;

for(i=l; i<RAStart; i++) //then the rest of the tribe

k = Equilikely(0, j);

Temp->Next = new Art(Red_Arty_Start, RArr[k] , r, arr, n);

RArr[k] = RArr[j] ;

j--;

Temp = Temp->Next;

RNum++;

RANum++;

>
Temp->Next = NULL;

return Arty;

Veh* ProcTk(Veh* V)

{
if(V->NextTime.N == V->NextTime.Sh) //next event is a shot

■c

ShootTk(V);

V = Put_In_Order(V);

>
else //else event is a mvmt

-C
Arr(V);

Chk_State(V);

ActTk(V);

V = Put_In_Order(V);

>
return V;

>

Veh* ProcArt(Veh* V)

if(V->NextTime.N == V->NextTime.Sh) //next event is a shot

{
ShootArt(V);

V = Put_In_Order(V);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 149

>
else //else event is a mvmt

{
Arr(V);

Chk_State(V);

ActArt(V);

V = Put_In_Order(V);

>
return V;

>

ArTGT* Proclmp(ArTGT* Imp)

{
double p;

ArTGT* T1 = Imp;

Imp = Imp->Next;

Veh* T2 = Cell[Tl->X][T1->Y].Occ;

if(T2 != NULL) //a target is at grid

p = Uniform(0,l);

if(p < (T2->1)*2.15/625.0) T2 = Wnd(T2, p); //round struck vehicle

}
T2 = NULL;

delete T2;

Tl->Next = NULL;

delete Tl;

T1 = NULL;

return Imp;

>

Veh* Chk_State(Veh* V)

{
double p = Uniform(0,1);

V = Look(V);

if((p <= V->CFF) && (V->enctr > 0)

V->Set_0bj();

V = Set_State(V);

//look for en and fr vehicles

) Call_Fire(V);

//if en visible attempt to CFF

//set the objective

//set the atk/def state of vehicle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 150

return V;

>

void ActTk(Veh* Tk)

{
switch (State(Tk->State)) //cast long as a State variable

case No : Tk->NextTime.Sh = Inf; //ensure tk does not shoot

Tk->Choose_Next_Move(Tk->Nof, Tk->Noe, Tk->Noo);

//Choose best move for veh

break;

case ALo : Tk->Choose_Next_Move(Tk->ALof, Tk->ALoe, Tk->ALoo);

break;

case AMed : Tk->Choose_Next_Move(Tk->AMedf, Tk->AMede, Tk->AMedo);

break;

case AHi : Tk->Choose_Next_Move(Tk->AHif, Tk->AHie, Tk->AHio);

break;

case APanic : Tk->Choose_Next_Move(Tk->APanf, Tk->APane, Tk->APano);

break;

case DLo : Tk->Choose_Next_Move(Tk->DLof, Tk->DLoe, Tk->DLoo);

break;

case DMed : Tk->Choose_Next_Move(Tk->DMedf, Tk->DMede, Tk->DMedo);

break;

case DHi : Tk->Choose_Next_Move(Tk->DHif, Tk->DHie, Tk->DHio);

break;

default: Tk->Choose_Next_Move(Tk->DPanf, Tk->DPane, Tk->DPano);

>

if(Tk->NextTime.Mv < Tk->NextTime.Sh) Tk->NextTime.N = Tk->NextTime.Mv;

else Tk->NextTime.N = Tk->NextTime.Sh;

>

void ActArt(Veh* V)

•C
Art* W = (Art*) V;

if(V->Color == ’b’) //arty is blue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 151

switch (State(W->State)) //cast long as a State variable

{ //Choose best move for arty based on threat

case No : W->Choose_Next_Move(W->Nof, W->Noa, W->Noe, W->Noo);

break;

case ALo : W->Choose_Next_Move(W->ALof, W->ALoa, W->ALoe, W->ALoo);

break;

case AMed : W->Choose_Next_Move(W->AMedf, W->AMeda, W->AMede, W->AMedo);

break;

case AHi : W->Choose_Next_Move(W->AHif, W->AHia, W->AHie, W->AHio);

break;

case APanic : W->Choose_Next_Move(W->APanf, W->APana, W->APane, W->APano);

break;

case DLo : W->Choose_Next_Move(W->DLof, W->DLoa, W->DLoe, W->DLoo);

break;

case DMed : W->Choose_Next_Move(W->DMedf, W->DMeda, W->DMede, W->DMedo);

break;

case DHi : W->Choose_Next_Move(W->DHif, W->DHia, W->DHie, W->DHio);

break;

default: W->Choose_Next_Move(W->DPanf, W->DPana, W->DPane, W->DPano);

>
>

else //arty is red

■C
switch (State(W->State)) //cast long as a State variable

case No : W->Choose_Next_Move(RANof, RANoa, RANoe, RANoo);

//Choose best move for arty based on threat

break;

case ALo : W->Choose_Next_Move(RAALof, RAALoa, RAALoe, RAALoo);

break;

case AMed : W->Choose_Next_Move(RAAMedf, RAAMeda, RAAMede, RAAMedo);

break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

case AHi : W->Choose_Next_Move(RAAHif, RAAHia, RAAHie, RAAHio);

break;

case APanic : W->Choose_Next_Move(RAAPanf, RAAPana, RAAPane, RAAPano);

break;

case DLo : W->Choose_Next_Move(RADLof, RADLoa, RADLoe, RADLoo);

break;

case DMed : W->Choose_Next_Move(RADMedf, RADMeda, RADMede, RADMedo);

break;

case DHi : W->Choose_Next_Move(RADHif, RADHia, RADHie, RADHio);

break;

default: W->Choose_Next_Move(RADPanf, RADPana, RADPane, RADPano);

>
>

if(V->NextTime.Mv < V->NextTime.Sh) V->NextTime.N = V->NextTime.Mv;

else V->NextTime.N = V->NextTime.Sh;

>

bool Arr(Veh* Tk)

Veh* Tl;

long x, y, destx, desty;

double p;

x = Tk->X;

y = Tk->Y;

destx = Tk->Dest_X;

desty = Tk->Dest_Y;

if((x != destx)||(y != desty)) //only move if going to

// a new destination

■c
//confirm that dest is empty, if not, choose an adjoining grid

while(Cell[destx][desty].Color != ’u’) //dest is occupied

p = Uniform(0,1);

if(p > 0.5) destx++;

else destx—;

p = Uniform(0,1);

if(p > 0.5) desty++;

else desty—;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 153

if(destx < 0 || destx >= Landscape_Size I I desty < 0 I I

desty >= Landscape_Size)

//selected location is off grid, start back at self

destx = x;

desty = y;

}
}

//chg number on each point

Cell[x][y].Number_On_Point—;

Cell[destx][desty].Number_On_Point++;

//chg old data and pointer

Cell[x][y].Occ = NULL;

Cell[x][y].Color = ’u’;

Cell[x][y].Type = 5;

//chg dest data and pointer

Cell[destx][desty].Occ = Tk;

Cell[destx][desty].Type = Tk->Type;

Cell[destx] [desty].Color = Tk->Color;

T1 = NULL;

Tk->MoveTo(destx, desty);

>
return true;

>

Veh* Look(Veh* Tk)

{
extern Veh* BT;

extern Veh* BA;

extern Veh* RT;

extern Veh* RA;

long X, Y, vis, enctr, frctr, arctr, a, b, i, ED, Best;

double dist, prob, p, pd;

long EnDir[8]; //counts number of enemy facing a direction

TGT* Temp = NULL;

TGT* T = NULL;

TGT* T2 = NULL;

Veh* RB = NULL;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

enctr = 0; //count enemy vehicles in vis area

frctr = 1; //count fr’s (self = 1)

arctr = 0;

Tk->ClearPtrs(); //remove fr and en tgts from ptrs

X = Tk->X;

Y = Tk->Y;

vis = Tk->Vision;

pd = Tk->pd;

for(i=0; i<8; i++) EnDir[i] = 0; //initializes array

// build enemy target list

if(Tk->Color== ’b’) RB = RT; //look at enemy tanks first

else RB = BT;

while(RB != NULL)

{
a = RB->X; //get x and y coords for en tank

b = RB->Y;

dist = Dist(X, Y, a, b) ; //compute dist

if(dist <= vis) prob = pd * sqrt(sqrt(1.0-dist/vis));

//inside vision range

else prob = 0.0; //outside vis range

p = Uniform(0.0,1.0);

if(p <= prob) //inside vision range

{
enctr++; //increment enemy ctr

EnDir[RB->Dir]++; //increment enemy direction

Temp = new TGT;

Temp->X = a; //get x and y coords for en tank

Temp->Y = b;

Temp->D = dist; //dist to en

Temp->Next = NULL;

if (Tk->En == NULL) Tk->En = Temp;

else

{
T = Tk->En;

if(Temp->D < T->D) //if new en is closer, keep new

{
Tk->En = Temp;

T->Next = NULL;

delete T;

T = NULL;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 155

>

RB = RB->Next;

>

if(Tk->Color== >b’) RB = RA;

else RB = BA;

while(RB != NULL)

{
a = RB->X;

b = RB->Y;

dist = Dist(X, Y, a, b);

if(dist <= vis)

//then look at en arty

//get x and y coords for en axty

//compute dist

//inside vision range

enctr++;

Temp = new TGT;

Temp->X = a;

Temp->Y = b;

Temp->D = dist;

Temp->Next = NULL;

if (Tk->En == NULL) Tk->En = Temp;

else

T = Tk->En;

if(Temp->D < T->D)

//increment enemy ctr

//get x and y coords for arty

//dist from fr to en

//if new en is closer, keep new

Tk->En = Temp;

T->Next = NULL;

delete T;

T = NULL;

RB = RB->Next;

if(enctr > 0) //do if enemy are visible

{
ED = 0;

Best = EnDir[0]; //find general direction enemy faces

for(i=0; i<8; i++)

if(EnDir[i] > Best)

-c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 156

Best = EnDir[i];

ED = i;

Tk->Set_EnDir(ED);

>

■c

// build friendly target list

if(Tk->Color== 'r’) RB = RT;

else RB = BT;

while(RB != NULL)

a = RB->X;

b = RB->Y;

dist = Dist(X, Y, a, b);

if(dist <= vis && dist >0.0)

Temp = new TGT;

Temp->X = a;

Temp->Y = b;

Temp->D = dist;

Temp->Next = NULL;

if(frctr ==1)

Tk->Fr = Temp;

Temp = NULL;

>
else if (frctr == 2)

T = Tk->Fr;

if(T->D < Temp->D)

T->Next = Temp;

Temp = NULL;

else

Tk->Fr = Temp;

Temp->Next = T;

T = NULL;

Temp = NULL;

//tanks first again

//get x and y coords for fr tank

//inside vision range but not self

//record x and y for fr

//dist to fr

//first fr found

//second fr found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

else if(frctr > 2) //mult fr’s fd

T = Tk->Fr;

T2 = T->Next;

if(Temp->D >= T2->D)

{
Temp->Next = NULL;

delete Temp; //new fr is 3d closest, goodbye

Temp = NULL;

>
else if(Temp->D >= T->D) //second closest

T->Next = Temp;

T2->Next = NULL;

delete T2;

T2 = NULL;

>
else //closest

Tk->Fr = Temp;

Temp->Next = T;

T->Next = NULL;

T2->Next = NULL;

delete T2;

T2 = NULL;

>
Temp = NULL;

T = NULL;

T2 = NULL;

>
frctr++;

>
RB = RB->Next;

>

if(Tk->Color== ’r’) RB = RA; //do fr arty

else RB = BA;

while (RB '.= NULL)

a = RB->X; //get x and y coords for fr arty

b = RB->Y;

dist = Dist(X, Y, a, b);

if(dist <= vis && dist > 0.0) //inside vision range but not self

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

arctr++; //increment arctr

Temp = new TGT;

Temp->X = a; //get x and y coords for fr

Temp->Y = b;

Temp->D = dist; //dist to fr

Temp->Next = NULL;

if(arctr == 1) Tk->Arty = Temp; //first fr found

else //mult fr found

T = Tk->Arty;

if(T->D <= Temp->D)

Temp->Next = NULL;

delete Temp; //new arty is farther than prev. found

Temp = NULL;

>
else

{
Tk->Arty = Temp;

T->Next = NULL;

delete T;

T = NULL;

>
>

T = NULL;

Temp = NULL;

>
RB = RB->Next;

>

Tk->PutFr(frctr); //store number of frdly, arty, and en

Tk->PutAr(arctr);

Tk->PutEn(enctr);

return Tk;

Veh* Set_State(Veh* Tk)

TGT* Temp = Tk->En;

double ratio, p;

ratio = Tk->Ratio();

if(ratio == 0.0) Tk->SetState(No); //State = No

else if(ratio < 0.1 && Temp->D > 80) Tk->SetState(ALo); //ALo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 159

else if(ratio < 0.3 && Temp->D > 40)

else if(ratio <0.5)

{
p = Uniform(0,1);

if(p < 0.90) Tk->SetState(AHi);

else Tk->SetState(APanic);

>
else if(ratio < 1.0 && Temp->D > 80)

else if(ratio < 5.0 && Temp->D > 40)

else

{
p = Uniform(0,1);

if(p < 0.90) Tk->SetState(DHi);

else Tk->SetState(DPanic);

>
return Tk;

Tk->SetState(AMed); //AMed

//could go to AHi or APanic

//p=0.90 of ->AHi

//go to APanic

Tk->SetState(DLo); //State = DLo

Tk->SetState(DMed); //State = DMed

//go to DPanic

void ShootTk(Veh* Tk)

{
double p, dist, ph, pk, a;

static long rshot = 0;

static long bshot = 0;

Veh* T = NULL; //Tgt’d tank

TGT* Tgt = NULL; //ptr to struc TGT to id tgt’d tank

long SD, VD; //Shooter Direction and Victim Direction

Tgt = Tk->En;

T = Cell[Tgt->X][Tgt->Y].Occ;

if(T != NULL)

dist = Tgt->D; //distance to tgt

if(dist < Tk->G_Rg) //tgt is in range

if(Tk->Color == ’r’) rshot++; //count shots on each side

else bshot++;

ph = T->w*40/dist; //apparent width of target in mils

//adjust for moving and stationary firers and targets

//stationary tgts get ph cut to 1/3

//mvg shooting at mvg reduces accuracy by 10'/,

if(Tk->Moving == false && T->Moving == false) ph = 0.33*ph; //S->S

else if(Tk->Moving == true && T->Moving == false) ph = 0.225*ph; //M->S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 160

else if(Tk->Moving == true && T->Moving == true) ph = 0.9*ph; //M->M

ph = ph/2.0; //half of apparent width in mils

p = Normal(0.0, Tk->acc) + Normal(0.0, Tk->stacc);

//acc of gun/ammo and sight

if(p < 0.0) p = -p;

if(p <= ph) //tgt is hit

if(T->Pen>Tk->Armor)

{
a = asin(T->Pen/Tk->Armor);

pk = (pi-a)/pi;

>
else pk = 0.0;

//adjust for frontal or flank shots

SD = Tk->Dir;

VD = T->Dir;

if ((SD+4)'/,8 == VD-1 || (SD+4)7.8 == VD I I (SD+4)*/.8 == VD+1) pk = pk/2;

p = Uniform(0,l); //draw to see if killed or wound

if(p < pk)

{
T = Kill(T); //tgt killed

Tk->NextTime.Sh = Inf; //do not shoot again at tgt

>
else Wnd(T, 1—p); //tgt wounded

Tk->NextTime.Sh += Tk->Reload; //shoot again after reloading

>
}//if(dist < Tk->G_Rg)

else { //tgt is out of rg, don’t sched next shot

Tk->NextTime.Sh = Inf;

}
>

else { //tgt is gone, don’t sched another shot

Tk->NextT ime.Sh = Inf;

>

if(Tk->NextTime.Mv < Tk->NextTime.Sh) Tk->NextTime.N = Tk->NextTime.Mv;

else Tk->NextTime.N = Tk->NextTime.Sh;

>

void ShootArt(Veh* Arty)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

extern ArTGT* Imp;

extern double Cur_Time;

ArTGT* T1 = Arty->Target;

ArTGT* T2 = NULL;

long x, y, yl, y2, i;

double TOF;

//dequeue target and process mission

Arty->Target = Tl->Next;

Arty->tgtctr—;

if(Arty->Target == NULL)

■C
if(Arty->tgtctr != 0) cerr « "prob in shootart, time 11 «

Cur_Time « endl;

Arty->NextTime.Sh = Inf;

Arty->NextTime.N = Arty->NextTime.Mv;

>
else

Arty->NextTime.Sh += Arty->Reload;

if(Arty->NextTime.Sh < Arty->NextTime.Mv) Arty->NextTime.N

Arty->NextT ime.Sh;

else Arty->NextTime.N = Arty->NextTime.Mv;

>

//schedule impact of rounds

for(i=0; i<Arty->Shots_Msn; i++)

■c
x = T1->X;

yl = max(0, T1->Y - long(Arty->Width/2.0));

y2 = min(T1->Y + long(Arty->Width/2.0), Landscape_Size);

y = Equilikely(yl, y2);

T2 = new ArTGT;

T2->X = x;

T2~>Y = y;

T2->D = Dist(x, y, Arty->X, Arty->Y);

TOF = double(T2->D)/double(Arty->G_Rg);

T2->time = Cur_Time + TOF;

T2->pri = 0;

T2->Next = Imp;

Imp = T2;

Imp = OrderTgts(Imp);

T2 = NULL;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

T1 = NULL;

if(Imp != NULL) N[4] = Imp->time;

>

ArTGT* OrderTgts(ArTGT* Imp)

ArTGT* T1 = Imp;

ArTGT* T2 = Imp->Next;

ArTGT* T3 = Imp;

if(T2 == NULL) //there is only one target, so return

T1 = NULL;

T3 = NULL;

return Imp;

>

if(Imp->time > T2->time) //new Imp is later than most imminent

-C
Imp = Imp->Next;

while(Tl->time > T2->time && T2->Next != NULL)

//find proper location for new Imp

{
T3 = T2;

T2 = T2->Next;

>
if(T2->time >= Tl->time)

Tl->Next = T2;

T3->Next = Tl;

>
else

{
T2->Next = Tl;

Tl->Next = NULL;

>
}

Tl = NULL;

T2 = NULL;

T3 = NULL;

return Imp;

>

Veh* Wnd(Veh* Tk, double p)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

if(p > Tk->Power) Tk = Kill(Tk);

else Tk->Chg_Pwr(p);

return Tk;

>

Veh* Kill(Veh* V)

{
extern Veh* BT;

extern Veh* BA;

extern Veh* RT;

extern Veh* RA;

Veh* Tl = NULL;

Veh* T2 = NULL;

int x, y;

switch(V->Type)

case 0 : Tl = BT;

break;

case 1 : Tl = BA;

break;

case 2 : Tl = RT;

break;

case 3 : Tl = RA;

break;

default : cerr « " problem in kill " « endl;

>

x = V->X;

y = V->Y;

if(Tl == V) //Veh to be killed is first in queue

{
switch(V->Type)

case 0 : BT = Tl->Next;

break;

//if p > pwr, tgt is killed

//reduce pwr by p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

case 1 : BA = Tl->Next;

break;

case 2 : RT = Tl->Next;

break;

case 3 : RA = Tl->Next;

break;

default : cerr « " problem in kill 2 " « endl;

>
Tl->ClearPtrs();

Tl->Next = NULL;

delete V;

V = NULL;

Tl = NULL;

>
else

T2 = Tl; //increment thru list to find victim

Tl = Tl->Next;

while(Tl != V)

T2 = Tl;

Tl = Tl->Next;

>
T2->Next = Tl->Next;

Tl->Next = NULL;

delete V; //destroy victim tk

Tl = NULL;

T2 = NULL;

>
clearCell(x, y);

return Tl;

}

Veh* Put_In_Order(Veh*

Veh* Tl = Tk;

Veh* T2 = Tk->Next;

if(T2 == NULL)

Tl = NULL;

Tk)

//Tk points to only veh in list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

return Tk;

} //otherwise, more vehs

Veh* T3 = Tk;

if(Tk->NextTime.N > T2->NextTime.N)

Tk = Tk->Next;

while((Tl->NextTime.N > T2->NextTime.N) && (T2->Next != NULL))

T3 = T2;

T2 = T2->Next;

if(Tl->NextTime.N > T2->NextTime.N) //T2->Next == NULL

T2->Next = Tl;

Tl->Next = NULL;

else //T2->NextTime.N <= Tl->NextTime.N

T3->Next = Tl;

Tl->Next = T2;

>
Tl = NULL;

T2 = NULL;

T3 = NULL;

return Tk;

bool Put_Vehs(Veh* Tk)

{
long x;

long y;

Veh* Tl = Tk;

while (Tl != NULL)

{
x = T1->X;

y = T1->Y;

CellCx][y].Color = Tl->Color;

Cell[x] [y].Type = Tl->Type;

Cell [x] [y].Number_0n_Point++;

Cell[x] [y].Occ = Tl;

Tl = Tl->Next;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 166

Tl = NULL;

return true;

>

void Call_Fire(Veh* V)

extern Veh* BA;

extern Veh* RA;

ArTGT* Tl = NULL;

ArTGT* T2 = NULL;

ArTGT* T3 = NULL;

TGT* A1 = NULL;

TGT* T = NULL;

Veh* A = NULL;

if(V->Color == ’b’)

else A = RA;

A = BA;

//tgt that cff wants to hit

//closest arty to caller

//arty that will shoot mission

//if veh is blue, call for fire to blue

//arty, else red arty shoots

if(V->En != NULL && V->Arty != NULL && A != NULL)

//defensive programming, veh is in

{ //contact with tgt and arty and

//artillery exists

Tl = new ArTGT;

T = V->En;

T1->X = T->X;

T1->Y = T->Y;

T1->D = T->D;

Tl->pri = V->State;

Tl->time = Cur_Time;

Tl->Next = NULL;

A1 = V->Arty;

while(A1->X != A->X II A1->Y != A->Y) A = A->Next;

//find closest arty

A->tgtctr++; //increment the counter

if (A->Target == NULL)

A->Target = Tl; //if no targets in q, place in q

A->NextTime.Sh = Cur_Time + A->Reload; //schedule a shot

//if next event for this arty is

//this shot

if(A->NextTime.N > A->NextTime.Sh)

A->NextTime.N = A->NextTime.Sh; //update next time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 167

if(A->Color == 'b’) BA = Put_In_Order(BA);

//reorder arty based on this shot

else RA = Put_In_Order(RA);

}//if(A->Target == NULL)

else

T2 = A->Target;

if(Tl->pri > T2->pri)

{
Tl->Next = T2;

A->Target = Tl;

>
else

while((Tl->pri <= T2->pri) && T2->Next != NULL)

//increment thru list

{
T3 = T2;

T2 = T2->Next;

>

//targets exist

//new target is higher priority than

//any in q

//higher pri targets exist

if(Tl->pri <= T2->pri)

T2->Next = Tl;

Tl->Next = NULL;

>
else

{
T3->Next = Tl;

Tl->Next = T2;

>
Tl = NULL;

T2 = NULL;

T3 = NULL;

>
while(A->tgtctr > Max_Msns) //eliminate the last

{ //mission in q

T2 = A->Target;

while(T2->Next != NULL)

T3 = T2;

T2 = T2->Next;

>
A->tgtctr—;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

T3->Next = NULL;

T2->Next = NULL;

delete T2;

T2 = NULL;

>
} //else targets already exist

>
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
/ / vehmgr.h: Provides the declarations for vehmgr.cpp //

/ / / /
/ /

#include "art.h"

#include 11 land, h"

#include <string>

#ifndef VEHMGR.H

#define VEHMGR.H

int Conv(char arr[], int n, int nl, int n2);

Veh* Init_BT(char arr[], int n);

Veh* Init_BA(char arr[], int n);

Veh* Init_RT(char arr[], int n);

Veh* Init_RA(char arr[], int n);

bool Put.Vehs(Veh* V);

Veh* ProcTk(Veh* Tk);

Veh* ProcArt(Veh* Arty);

ArTGT* ProcImp(ArTGT* Imp);

bool Arr(Veh* V);

Veh* Chk.State(Veh* V);

void ActTk(Veh* Tk);

void ActArt(Veh* Arty);

Veh* Look(Veh* V);

Veh* Set_State(Veh* V);

void ShootTk(Veh* Tk);

void ShootArt(Veh* Arty);

Veh* Wnd(Veh* V, double p);

Veh* Kill(Veh* V);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

Veh* Put_In_Order(Veh* V);

ArTGT* OrderTgts(ArTGT* T);

void Call_Fire(Veh* V);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/

/
/ / / /
// BTank.h: Contains the Blue Tank Characteristics //

/ / / /
/ /

#ifndef BTANK.H

#define BTANK.H

double Engine[4][4]

{//{wt(mt), hp,

{1.454, 1500.0,

{3.3, 1500.0,

{1.0, 900.0,

{3.545, 750.0,

>;

nT3, cost($k)}

1.9875, 175.0>,

3.95, 250.0>,

2.0, 500.0>,

5.035, 100.0}

//LV100 Engine

//AGT-1500 (Current Ml)

//hybrid

//AVDS-1790 (M60)

double Ammo[16][10] =

{//wt(mt), pen(m), m“3, <:ost($k), rg(m), accuracy(mils), gun wt,

gun m~3, gun cost, min/rd

//120mm

{0.0187, 0.6, 0.272, 1.0, 3000, 1.0, 1.0, 1.5, 250.0, 5>, / /M829

{0.0187, 0.7, 0.272, 2.0, 3000, 0.9, 1.0, 1.5, 250.0, 5>, //M829A1

{0.0187, 0.8, 0.272, 5.0, 3000, 0.8, 1.0, 1.5, 250.0, 5>, //M829A2

//125mm

{0.0243, 0.550, 0.294, 2.0, 2500, 1.0, 1.3, 2.0, 350.0, 5>, //BM42M

{0.0243, 0.60, 0.294, 2.9, 2500, 1.0, 1.3, 2.0, 350.0, 5>, / /BK27

{0.0243, 0.65, 0.294, 2.5, 2500, 0.9, 1.3, 2.0, 350.0, 5>, //BK29

//140mm

{0.0404, 0.8, 0.369, 4.0, 3000, 0.8, 2.0, 5.0, 500.0, 5>, //

/ /ATGM

//AT-11

{0.250, 0.8, 0.270, 50.0, 4000, 0.4, 1.0, 1.0, 500.0, 10},

//T0W2B

{0.180, 0.8, 0.270, 100.0, 5000, 0.4, 1.0, 1.0, 500.0, 10},

//F0TT

{0.350, 1.0, 0.270, 150.0, 5000, 0.3, 1.0, 1.0, 500.0, 10},

//Javelin

{0.250, 0.6, 0.200, 75.0, 2000, 0.3, 1.0, 1.0, 500.0, 10},

//L0SAT

{0.4, 2.0, 0.403, 250.0, 5000, 0.08, 1.0, 1.0, 500.0, 10},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 172

//Dragon

{0.150, 0.2, 0.150,

//EM Projo

{0.001, 2.0, 0.001,

{0.001, 2.0, 0.001,

{0.001, 2.0, 0.001,

40.0, 1500, 0.3, 1

0.001, 10000, 0.05,

0.1, 10000, 0.05,

0.001, 10000, 0.05,

0, 1.0, 500.0, 10},

10.0, 4.0, 1250.0, 10},

10.0, 4.0, 1250.0, 10},

10.0, 4.0, 12500.0, 10}

double Sight[4][6] =

{//wt, Pd, nT3, cost($k), accuracy(mils), Rg

{0 . 1 ,
{0.5,

{0.75,

0.4,

0 . 6 ,
0 . 8 ,

{2.00, 0.95,

};

0.25, 10.0,

0.50, 100.0,

1.0, 250.0, 0.5,

4.0, 1000.0,

0 .8 , 2000} ,
0.8, 2500},

5000},

10000}0 . 1 ,

//105D (Daylight only)

//IR

//Thermal

//MMW

double Autoloader[3] = {1.0, -5.0, 150.0}; //wt, nT3, cost($k)

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
// BArt.h: Contains the Blue Arty Characteristics //

/ / / /
/ /

tifndef BART_H

#define BART_H

double AEngine[4][4] =

{//{wt(mt), hp, m“3, cost($k)>

{3.3, 1500.0, 3.95, 150.0>, //AGT-1500 (Current Ml)

{3.545, 750.0, 5.035, 100.0>, //AVDS-1790 (M60)

{4.0, 500.0, 5.0, 50.0>, //lighter, cheaper engine

{2.0, 250.0, 3.0, 45.0> //M113 engine

>;

double AAmmo[4] [13] =

{//wt(mt), pen(m), m~3, cost($k), rg(m), acc(pt or area), gun wt,

w, 1, h, gun cost, min/rd, max rds/msn

//M1024 120mm mortar

{0.022, 0.0025, 0.18, 0.10, 10000.0, 1.0, 6.0, 2.8, 5.15,

2.3, 500.0, 1.0, 8.0}, //HE

//M109 155mm howitzer

{0.031, 0.005, 0.3, 0.20, 18000.0, 1.0, 25.0, 3.1, 6.2,

3.0, 2500.0, 1.0, 8.0}, //HE

//Crusader 155mm howitzer

{0.031, 0.005, 0.3, 0.20, 45000.0, 1.0, 50.0, 3.1, 6.2,

3.0, 5000.0, 1.0, 8.0}, //HE

//EF0GM

{0.001, 0.1, 0.6, 3.0, 40000.0, 0.0, 6.0, 2.8, 5.15,

2.3, 500.0, 1.0, 1.0} //Msl

};

double AAutoloader[2] = {1.0, 150.0}; //wt, cost($k)

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 174

/
/ / / /
// Param.h: Holds the major parameters for the cbt sim. //

/ / / /
/ /

#ifndef PARAM.H

#define PARAM.H

#define Landscape.Size 750

#define Time.Limit 200.0

#define POSITION.STREAM 0

#define VISION.STREAM 1

#define M.RATE.STREAM 2

#define FIX.FORCE.STREAM 3

#def ine METAB.STREAM 4

#define Inf Time..Limit

#define Out 1

#define pixel.size 3

//Size of landscape=18,750m

//Sets the timelimit for the sim

//draws random numbers from different

/ / streams

100 // A big number

I / O = run visual, 1 = run without

// graphics

/
/ / / /
/ / Blue Tank Force Attributes: //

/ / / /
/ /

#define XObj Landscape_Size/3 //Objective is in red start area

#define YObj Landscape_Size/2

#define Arm.Wt 6.4 //Wt of armor per m~3 (mt)

#define Arm.Cost 630.8 //Cost of armor per nT3 ($k)

/
/ / / /
/ / Blue Tank Attributes: //

/ / / /
/ /

#define CFF_Min 10 //minutes between calls for arty fire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
/ / Blue Arty Force Attributes: //

/ / / /
/ /

#define Max_Msns 5 //max # of fire msns in target q

iiuiiiiiiiiiiiiiiiiiiuiiiiiiiiiiiiiiiniinriiiiiiiiiiiiiiiniiiii
I I u
I I Blue Arty Attributes: //

/ / / /
/ /

#define A_Rds_Min 1 //num rounds that can be fired/minute

/
/ / / /
/ / Landscape attributes: //

/ / / /
/ /

#define Blue_Tank_Start 5*Landscape_Size/8

//Blue will start in lower half

#define Blue_Arty_Start 3*Landscape_Size/4

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
/ / RParam.h: Holds the major parameters for the red side of //

/ / the cbt sim. //

/ / / /
/ /

#ifndef RPARAM_H

#define RPARAM.H

#define RTStart

#define RAStart

15

5

//Starting number of red tanks

//Starting number of red arty

/
/ / / /
/ / Red Tank Force Attributes: //

/ / / /
/ /

#def ine RFix.Force

#define ROpt.Dist

#def ine RNof 1

#define RNoe 0

#define RNoo 1

#def ine RALof 1

#define RALoe 5

#define RALoo 1

#def ine RAMedf 3

#define RAMede 10

#define RAMedo 1

#define RAHif 1

#def ine RAHie 10

#def ine RAHio 0

#def ine RAPanf 0

#def ine RAPane 10

#def ine RAPano 0

#def ine RDLof 1

#def ine RDLoe 0

0.9 //size of attacker in fixing force

200 //Min dist to friendlies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

#define RDLoo 2

#define RDMedf 3

#define RDMede 0

#define RDMedo 2

#def ine RDHif 1

#def ine RDHie 1

#define RDHio 1

#define RDPanf 0

#define RDPane 1

#define RDPano 0

/
/ / / /
/ / Red Tank Attributes: //

/ / / /
/ /

#define RHi_Vision 6000 //Hi limit of vision

#define RLo_Vision 5500 //Lo limit of vision

#def ine RHi_Move_Rate 8000 //Fastest movement allowed (m/hr)

#def ine RLo_Move_Rate 4000 //Slowest movement allowed

#def ine RGun_Rg 3000 //Max Range (m) of main gun

#define RRds_Min 1 //num rounds that can be fired/minute

#define RGun_Type 1 //l=conv gun, 2=msl, 3=em gun

#def ine RAmmo_Type 1 //l=sabot, 2=heat, 3=he

#def ine RCFF_Min 10 //minutes between calls for arty fire

/
/ / / /
// Red Arty Force Attributes: //

/ / / /
/ /

#define RShoot_Force 0.9 //% of attacker arty force shooting

#define R0pt_A_Dist 200 //Min dist to friendly art

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

//max # of msns in target q

//number of shots per fire mission

//width of a fire mission’s sheaf

#def ine RANof 1

#def ine RANoa 1

#define RANoe 0

#define RANoo 0

#define RAALof 1

#define RAALoa 1

#define RAALoe 5

#def ine RAALoo 0

#def ine RAAMedf 3

#define RAAMeda 3

#define RAAMede 10

#def ine RAAMedo 0

#define RAAHif 1

#define RAAHia 1

#def ine RAAHie 10

#define RAAHio 0

#def ine RAAPanf 0

#define RAAPana 0

#define RAAPane 10

#def ine RAAPano 0

#define RADLof 1

#define RADLoa 1

#define RADLoe 0

#define RADLoo 0

#define RADMedf 3

#def ine RADMeda 3

#def ine RADMede 0

#def ine RADMedo 0

#define RADHif 1

#define RADHia 1

#define RADHie 1

#define RADHio 0

#def ine RMax_Msns 5

#define RShots_Msn 6

#define RSheaf_Width 200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 179

#def ine RADPanf 0

#define RADPana 0

#define RADPane 1

#define RADPano 0

/
/ / / /
/ /
/ /

Red Arty Attributes: / /
/ /

/ /

//Hi limit of vision

//Lo limit of vision

//Fastest movement allowed (m/hr)

//Slowest movement allowed

//Max Range (m) of main gun

//num rounds that can be fired/minute

//l=conv gun, 2=msl, 3=em gun

/ / l=sabot, 2=heat, 3=he

/
/ / / /
/ / Landscape attributes: //

/ / / /
/ /

#def ine RA_Hi_Vis 2000

#define RA_Lo_Vis 1500

#define RA_Hi_Move_Rate 5000

#define RA_Lo_Move_Rate 4000

#define RA_Gun_Rg 15000

#def ine RA_Rds_Min 1

#define RA_Gun_Type 1

#def ine RA_Ammo_Type 1

#define Red_Tank_Start

#define Red_Arty_Start

Landscape_Size/3 //Red will start in upper half

Landscape_Size/4

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
/ / Tank.cpp : Member functions of the Tank class. //

/ / / /
/ /

#define STRICT

#include "Param.h"

#include "RParam.h"

#include "tank.h"

extern long BTNum;

extern long RTNum;

extern double N[5];

/
/ / Constructors, destructors, and overloaded operators: //

/ /

/ / default constructor:

Tank::Tank(long x, long y, char clr, char arr[], int n)

: Veh(x, y, clr, arr, n)

>

//tank destructor

Tank:: "TankO

{
if(Color == ’r’) RTNum—;

else BTNum—;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/ /

/ /

#ifndef TANK.H

#define TANK.H

#include "veh.h"

#def ine STRICT

class Tank : public Veh

{
private:

/ /
/ / tank.h:

/ /

/ /
Header file for the tank class, derived from //

the veh class / /

public:

Tank(long x, long y, char clr, char arr[], int n);

~Tank();

>;

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/ /
/ / / /
/ / Art.cpp : Member functions of the Artillery class. //

/ / / /
/ /

#define STRICT

#include "vehmgr.h"

#include "art.h"

#include "land.h"

using namespace std;

#define sqr(x) ((x)*(x))

extern long BANum;

extern long RANum;

/ /
// Constructors, destructors, and overloaded operators: //

/ /

/ / default constructor:

Art::Art(long x, long y, char clr, char arr[], int n)

: Veh(x, y, clr, arr, n)

extern double AEngine[4][4];

extern double AAmmo[4] [13];

extern double AAutoloader[2];

extern long BAEngine;

extern long BAAmmo_Type;

extern long BAAmmo_Qty;

extern long BAAuto;

extern long BAArmor;

double Shoot_Force = double(Conv(arr, n, 237, 241)) * 0.06666;

//pet of force shooting

if(clr == ’b’) //arty is blue

double p, wt, spd;

Vision = 80; //vision is fixed at 2000m

pd = 0.8;

w = AAmmo[BAAmmo_Type][7];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 183

1 = AAmmo[BAAmmo_Type][8] ;

h = AAmmo[BAAmmo_Type][9];

//compute wt, armor + ammo + engine&fuel

wt = (((2*(h*w))+(2*(w*l))+(2*(h*l)))*(BAArmor*0.05)*Arm_Wt) +

(AAmmo[BAAmmo_Type][0]*BAAmmo_Qty*5) + AEngine[BAEngine][0] +

BAAuto*AAutoloader[0];

spd = 6.49 + 1.49*AEngine[BAEngine] [l]/wt; //converts hp/t to km/hr

SelectStream(M_RATE_STREAM);

Move_Rate = Equilikely(long(0.9*spd),long(l.l*spd))*40.0/60.0;

Type = 1;

G_Rg = long(AAmmo[BAAmmo_Type][4]/25);

acc = AAmmo[BAAmmo_Type][5];

stacc = 0.0;

Armor = BAArmor*0.05;

Pen = AAmmo[BAAmmo_Type][1];

Rds = BAAmmo_Qty * 5;

Reload = AAmmo [BAAmmo_Type] [11];

SelectStream(FIX_FORCE_STREAM);

p = Uniform(0,1);

if(p < Shoot_Force) Fix = 0; //part of shooting force

else Fix = 1;

Width = Conv(arr, n, 126, 129); //width of arty sheaf

//shots per msn is min of genome-driven number and type rd-driven

Shots_Msn = min(Conv(arr,n,122,126),long(AAmmo[BAAmmo_Type][12]));

//tactical genes

Nof = Conv(arr, n, 129, 132);

Noa = Conv(arr, n, 132, 135);

Noe = Conv(arr, n, 135, 138);

Noo = Conv(arr, n, 138, 141);

ALof = Conv(arr, n, 141, 144);

ALoa = Conv(arr, n, 144, 147);

ALoe = Conv(arr, n, 147, 150);

ALoo = Conv(arr, n, 150, 153);

AMedf = Conv(arr, n, 153, 156);

AMeda = Conv(arr, n, 156, 159);

//l=area, 0=pt

//thickness of armor

//penetration of ammo

//number of rounds

// aboard

//time to reload

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

AMede = Conv(arr, n, 159, 162);

AMedo = Conv(arr, n, 162, 165);

AHif = Conv(arr, n, 165, 168);

AHia = Conv(arr, n, 168, 171);

AHie = Conv(arr, n, 171, 174);

AHio = Conv(arr, n, 174, 177);

APanf = Conv(arr, n, 177, 180);

APana = Conv(arr, n, 180, 183);

APane = Conv(arr, n, 183, 186);

APano = Conv(arr, n, 186, 189);

DLof = Conv(arr, n, 189, 192);

DLoa = Conv(arr, n, 192, 195);

DLoe = Conv(arr, n, 195, 198);

DLoo = Conv(arr, n, 198, 201);

DMedf = Conv(arr, n, 201, 204);

DMeda = Conv(arr, n, 204, 207);

DMede = Conv(arr, n, 207, 210);

DMedo = Conv(arr, n, 210, 213);

DHif = Conv(axr, n, 213, 216);

DHia = Conv(arr, n, 216, 219);

DHie = Conv(arr, n, 219, 222);

DHio = Conv(arr, n, 222, 225);

DPanf = Conv(arr, n, 225, 228);

DPana = Conv(arr, n, 228, 231);

DPane = Conv(arr, n, 231, 234);

DPano = Conv(arr, n, 234, 237);

0_Dist = Conv(arr, n, 119, 122); //opt dist in grids

else{ //arty is red and attributes hard-coded

Vision = 80;

pd = 0.8;

w = 3.1;

1 = 6 . 0 ;
h = 3.0;

Move_Rate = Equilikely(15, 18); //+/- 10*/, of 25kph

Type = 3;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

G_Rg = 600;

acc = 1.0;

stacc = 0.0;

Armor = 0.05;

Pen = 0.05;

Rds = 60;

Reload = 1.0;

Shots_Msn = 6;

Width = 8;

//tactical genes

Nof = 1;

Noa = 1;

Noe =0;

Noo = 1;

ALof = 1;

ALoa = 1;

ALoe = 5;

ALoo = 1;

AMedf = 3;

AMeda = 3;

AMede = 10;

AMedo = 1;

AHif = 1;

AHia = 1;

AHie = 10;

AHio = 0;

APanf = 0;

APana = 0;

APane = 1;

APano = 0;

DLof = 2;

DLoa = 2;

DLoe = 0;

DLoo = 2;

DMedf = 2;

DMeda = 5;

DMede = 0;

DMedo = 1;

//15000m/25;

//area fire wpn

//50mm pen ability

//60 stowed rounds

//I min between rounds

//6 shots in a volley

//width of sheaf = 200m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

DHif = 1;

DHia = 1;

DHie = 1;

DHio = 1;

DPanf = 0;

DPana = 0;

DPane = 1;

DPano = 0;

0_Dist = 8; //200m between systems

arctr = 0;

>

//default destructor

Art::~Art()

{
if(Color == ’r’) RANum—;

else BANum—;

>

bool Art::Choose_Next_Move(long f, long a, long e, long o)

{
double dist, distf, dista, diste, disto, best;

//dist to dest, fr, en, obj and best pri

long fx, fy, ax, ay, ex, ey, ox, oy, b, i;

double pri[4]; //holds priority calc

//find best location based on friendly

switch (frctr)

>

{
case 1 : fx = X;

fy = Y;

break;

//no other fr are in sight

default: Fr_Locn(Fr->X, Fr->Y, fx, fy);

//find locn based on closest fr tk

break;

>

distf = Dist(X, Y, fx, fy);

pri [0] = f * distf;

//find dist and priority of movement

//based on friendlies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

//find best location based on friendly arty

switch (arctr)

case 0 : ax = X; //no other arty are in sight

ay = Y;

break;

default: Ar_Locn(Arty->X, Arty->Y, ax, ay);

//loc’n of closest arty

break;

>

dista = Dist(X, Y, ax, ay); //find dist and priority of movement

pri[l] = a * dista; //based on fr arty

//find best locn based on closest enemy

switch(enctr)

case 0 : ex = X; //no en in sight

ey = Y;

break;

default: En_Locn(En->X, En->Y, ex, ey);

>
diste = Dist(X, Y, ex, ey);

pri[2] = e * diste;

//find best locn based on obj

Obj_Locn(ObjX, ObjY, ox, oy);

disto = sqrt(Dist(X, Y, ObjX, ObjY));

pri[3] = o * disto;

//best location based on highest pri of the four:

b = 0;

best = pri[0];

for(i=l; i<4; i++) //find highest priority move

if(pri[i] > best)

best = pri[i];

b = i;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 188

>
>

switch(b)

{
case 0: if(distf != 0.0)

-C
Dest_X = Rnd(X + (fx - X)/distf);

Dest_Y = Rnd(Y + (fy - Y)/distf);

>
break;

case 1: if(dista != 0.0)

Dest_X = Rnd(X + (ax: - X)/dista);

Dest_Y = Rnd(Y + (ay - Y)/dista);

>
break;

case 2: if(diste != 0.0)

{
Dest_X = Rnd(X + (ex - X)/diste);

Dest_Y = Rnd(Y + (ey - Y)/diste);

>
break ;

case 3: if(disto != 0.0)

{
Dest_X = Rnd(X + (ox - X)/sqr(disto));

Dest_Y = Rnd(Y + (oy - Y)/sqr(disto));

>
break;

default: cerr « "problem in ch_best_art_move" « endl;

>

if(Dest_X == Last_X && Dest_Y == Last_Y)

//if moving back to previous spot, don’t

Dest_X = X;

Dest_Y = Y;

>

//set moving flag

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

if(Dest_X != X I I Dest_Y != Y) Moving = true;

else Moving = false;

//determine next update time

dist = Dist(X, Y, Dest_X, Dest_Y);

//if sitting on best spot, stay 1/shots per min

if(dist == 0.0) NextTime.Mv = NextTime.Mv + Reload;

//else compute next event time

else NextTime.Mv = NextTime.Mv + (dist/Move_Rate);

return true;

>

bool Art::ClearPtrs()

{
TGT* temp;

temp = Fr;

while (temp != NULL)

{
Fr = Fr->Next;

temp->Next = NULL;

delete temp;

temp = Fr;

>
temp = En;

while (temp != NULL)

En = En->Next;

temp->Next = NULL;

delete temp;

temp = En;

>

temp = Arty;

while (temp != NULL) //there were arty in area

{
Arty = Arty->Next;

temp->Next = NULL;

delete temp;

temp = Arty;

>

enctr = 0;

frctr = 1;

//there were fr’s in area

//there were en’s in area

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

arctr = 0;

return true;

}

double Art::Fr_Locn(long frX, long frY, long &fx, long &fy)

{
double dist = Dist(X, Y, frX, frY);

if(dist > G_Rg/3)

{
fx = frX; //obj attracts arty

fy = frY;

>
else //best to stay in location

fx = X;

fy = Y;

}
fx = max (0, fx); //stay on game board

fy = max (0, fy);

fx = min (fx, Landscape_Size-l);

fy = min (fy, Landscape_Size-l);

return 1.0;

>

double Art::Ar_Locn(long arX, long arY, long &ax, long &ay)

double p;

p = Uniform(0,1);

//best locn is offset from the friendly art by the opt dist

if((arX > X) || ((arX == X) && (p < 0.5))) ax = Rnd(double(arX) -

double(0_Dist)); //fr is below

else ax = Rnd(double(arX) + double(0_Dist)); //else above

p = Uniform(0,1);

if((arY > Y) II ((arX == X) && (p < 0.5))) ay = Rnd(double(arY) -

double(0_Dist)); //fr is right

else if(arY < Y) ay = Rnd(double(arY) + double(0_Dist)); //or left

else ay = arY; //else on-line

ax = max(0, ax); //stay on game board

ay = max(0, ay);

ax = min(ax, Landscape_Size-l);

ay = min(ay, Landscape_Size-l);

return 1.0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

>

double Art::En_Locn(long enX, long enY, long &ex, long &ey)

{
if(X - enX > 0) ex = X+l;

else ex = X-l;

if(Y - enY > 0) ey = Y+l;

else ey = Y-l;

return 1.0;

>

double Art::0bj_Locn(long obX, long obY, long &ox, long &oy)

{
double dist = Dist(X, Y, obX, obY);

if(dist > 0.667*G_Rg)

ox = obX; //obj attracts arty

oy = obY;

>
else //best to stay in location

{
ox = obX;

oy = obY;

>
ox = max (0, ox);

oy = max (0, oy);

ox = min (ox, Landscape_Size-l);

oy = min (oy, Landscape_Size-l);

return 1.0;

//stay on game board

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
// //

// art.h: Header file for the tank class, derived from //

/ / the veh class //

/ /

#ifndef ART.H

#define ART.H

#include "veh.h"

#include "rvgs.h"

#include "rngs.h"

#include "Param.h"

#include "land.h"

#include <math.h>

#include <iostream>

#define STRICT

class Art : public Veh

{
private:

public:

Art(long x, long y, char clr, char arr[], int n);

~Art();

//locate best move based on:

//fr’s, en, obj

bool Choose.Next.Move(long f, long a, long e, long o);

double Fr_Locn(long frX, long frY, long &fx, long &fy);

double Ar_Locn(long frX, long frY, long &fx, long &fy);

double En_Locn(long enX, long enY, long &ex, long &ey);

double Obj_Locn(long obX, long obY, long &ox, long &oy);

bool ClearPtrsO;

>;

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
// land.cpp: Contains the Landscape data for Cbt Sim. //

/ / / /
/ /

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include <cmath>

#include <stdio.h>

#include <fstream>

#define sqr(x) ((x)*(x))

World Cell[Landscape_Size] [Landscape_Size]; //Instantiates the landscape

bool Init_World()

■c
long i = 0;

long j = 0;

for (i=0; i < Landscape_Size; i++)

for (j=0; j < Landscape_Size; j++)

{
Cell[i] [j] .Number_0n_Point = 0;

Cell[i][j].Color = ’u’;

Cell[i][j].Type = 5;

Cell[i][j].Occ = NULL;

>
>

return true;

}

void clearCellClong x, long y)

Cell[x] [y].Number_0n_Point = 0;

Cell[x] [y].Color = ’u’;

Cell[x][y].Type = 5;

Cell[x] [y].Occ = NULL;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 194

/
/ / / /
/ / Common functions needed by all //

/ / / /
/ /

long max(long i, long j)

{
if(i > j) return i;

else return j ;

>

long min (long i, long j)

if(i < j) return i;

else return j ;

>

long Rnd(double x)

{
if (x >= 0)

if(x > long(x)+0.50) return (long(x)+l);

else return long(x);

>
else

{
if(x < long(x)-0.50) return (long(x)-l);

else return long(x);

>
>

double Dist(long i, long j, long a, long b) //measures euclidean distance

{
double dist;

dist = sqrt(sqr(a-i)+sqr(b-j));

return dist;

>

long mabs(long x) //returns absolute value

if(x < 0) return -x;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

else return x;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/
/ / / /
/ / land.h: Organizes the Landscape data for Cbt Sim. //

/ / / /
/ /

#include "veh.h"

#include "rvgs.h"

#include "mgs.h"

#ifndef LAND.H

#define LAND.H

struct World

{
long Number.On.Point;

char Color;

long Type;

Veh* Occ;

>;

bool Init.WorldO;

//number of occupants on a point

//color of occupant, if any

//type of occupant, if any

//pointer to occupant

void clearCelKlong x, long y) ;

long max(long i, long j);

long min (long i, long j);

long Rnd(double x);

double Dist(long i, long j,long a,long b);

long mabs(long x);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 197

/ * ---
* This is an ANSI C library for multi-stream random number generation.

* The use of this library is recommended as a replacement for the ANSI C

* randO and srandO functions, particularly in simulation applications

* where the statistical ’goodness’ of the random number generator is

* important. The library supplies 256 streams of random numbers; use

* SelectStream(s) to switch between streams indexed s = 0,1,...,255.

*
* The streams must be initialized. The recommended way to do this is by

* using the function PlantSeeds(x) with the value of x used to initialize

* the default stream and all other streams initialized automatically with

* values dependent on the value of x. The following convention is used

* to initialize the default stream:

* if x > 0 then x is the state

* if x < 0 then the state is obtained from the system clock

* if x = 0 then the state is to be supplied interactively.

*
* The generator used in this library is a so-called ’Lehmer random number

* generator’ which returns a pseudo-random number uniformly distributed

* 0.0 and 1.0. The period is (m - 1) where m = 2,147,483,647 and the

* smallest and largest possible values are (1 / m) and 1 - (1 / m)

* respectively. For more details see:

*
* "Random Number Generators: Good Ones Are Hard To Find"

* Steve Park and Keith Miller

* Communications of the ACM, October 1988

*
* Name : rngs.c (Random Number Generation - Multiple Streams)

* Authors : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 09-22-98

 * --
* /

#include <stdio.h>

#include <time.h>

#include "rngs.h"

#define MODULUS 2147483647 /*

#define MULTIPLIER48271 /*

#define CHECK 399268537 /*

#define STREAMS 256 /*

#define A256 22925 /*

#define DEFAULT 123456789 /*

* /
* /
* /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 198

static long seed[STREAMS] = {DEFAULT}; /* current state of each stream*/

static int stream =0; /* stream index, 0 is the default */

static int initialized =0; /* test for stream initialization */

double Random(void)

/ * ---
* Random returns a pseudo-random real number uniformly distributed

* between 0.0 and 1.0.

 * ---
* /

{
const long Q = MODULUS / MULTIPLIER;

const long R = MODULUS 7. MULTIPLIER;

long t;

t = MULTIPLIER * (seedCstream] '/. Q) - R * (seed[stream] / Q);

if (t > 0)

seedCstream] = t;

else

seedCstream] = t + MODULUS;

return ((double) seedCstream] / MODULUS);

void PlantSeeds(long x)

/ * ---
* Use this function to set the state of all the random number generator

* streams by "planting" a sequence of states (seeds), one per stream,

* with all states dictated by the state of the default stream.

* The sequence of planted states is separated one from the next by

* 8,367,782 calls to RandomO .

 * ---
* /

{
const long Q = MODULUS / A256;

const long R = MODULUS 7. A256;

int j ;

int s;

initialized = 1;

s = stream;

SelectStream(O);

PutSeed(x);

stream = s;

/* remember the current stream */

/* change to stream 0 */

/* set seed[0] */

/* reset the current stream */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 199

for (j = 1; j < STREAMS; j++) {

x = A256 * (seed[j - 1] '/. Q) - R * (seed[j - 1] / Q) ;

if (x > 0)

seed[j] = x;

else

seed[j] = x + MODULUS;

>
>

void PutSeedClong x)

/ * --
* Use this function to set the state of the current random number

* generator stream according to the following conventions:

* if x > 0 then x is the state (unless too large)

* if x < 0 then the state is obtained from the system clock

* if x = 0 then the state is to be supplied interactively

 * --
* /

i

char ok = 0;

if (x > 0)

x = x ' /, MODULUS; /* correct if x is too large * /

if (x < 0)

x = ((unsigned long) time((time_t *) NULL)) */, MODULUS;

if (x == 0)

while (!ok) {

printf("\nEnter a positive integer seed (9 digits or less) » ");

scanf (M'/,ld" , &x) ;

ok = (0 < x) && (x < MODULUS);

if (!ok)

printf("\nlnput out of range ... try again\n");

}
seedCstream] = x;

>

void GetSeed(long *x)

/ * --
* Use this function to get the state of the current random number

* generator stream.

 * --
* /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 200

*x = seedCstream];

>

void SelectStream(int index)

/ * ---
* Use this function to set the current random number generator

* stream — that stream from which the next random number will come.

 * ---
* /

{
stream = ((unsigned int) index) ’/, STREAMS;

if ((initialized == 0) && (stream != 0)) /* protect against */

PlantSeeds(DEFAULT); /* un-initialized streams */

>

void TestRandom(void)

/ * --
* Use this (optional) function to test for a correct implementation.

 * --

* /

long i ;

long x;

double u;

char ok = 0;

SelectStream(O); / * select the default stream * /

PutSeed(l); / * and set the state to 1 * /

for(i = 0; i < 10000; i++)

u = RandomO;

GetSeed(ftx); / * get the new state value */

ok = (x == CHECK); / * and check for correctness * /

SelectStream(l); /* select stream 1 * /

PlantSeeds(1); / * set the state of all streams */

GetSeed(ftx); / * get the state of stream 1 */

ok = ok && (x == A 256); /* x should be the jump multiplier * /

if (ok)

printf("\n The implementation of rngs.c is correct.\n\n");

else

printf("\n\a ERROR-the implementation of rngs.c is not correct.\n\n");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 201

/ * --
* Name : rngs.h (header file for the library file rngs.c)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 09-22-98
 * --
* /

#if !defined(_RNGS_)

#define _RNGS_

double Random(void);

void PlantSeeds(long x);

void GetSeed(long *x);

void PutSeed(long x);

void SelectStream(int index);

void TestRandom(void);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 202

/ * ---
* This is an ANSI C library for generating random variates from six

* discrete distributions

*

*

*

Generator Range (x) Mean Variance

T
* Bernoulli(p) x = 0,1 P p*(l-p)

* Binomial(n, p) x = 0 , . . . ,n n*p n*p*(l-p)

* Equilikely(a, b) x = a,. . . ,b (a+b)/2 ((b-a+l)*(b-a+l)-l)/12

* Geometric(p) x = 0,... p/(l-p) p/((l-p)*(l-p))

* Pascal(n, p) x = 0,... n*p/(l-p) n*p/((l-p)*(l-p))

*

*

Poisson(m) x = 0,... m m

T

* and seven continuous distributions

♦

* Uniform(a, b) a < x < b (a + b)/2 (b - a)*(b - a)/12

* Exponential(m) x > 0 m m*m

* Erlang(n, b) x > 0 n*b n*b*b

* Normal(m, s) all x m s*s

* Lognormal(a, b) x > 0 see below

* Chisquare(n) x > 0 n 2*n

*

*

Student(n) all x 0 (n > 1) n/(n - 2) (n > 2)

¥

* For

*

the a Lognormal(a, b) random variable, the mean and variance are

▼

* mean = exp(a + 0.5*b*b)

*

*

variance = (exp(b*b) - 1) * exp(2*a + b*b)

* Name : rvgs.c (Random Variate Generators)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 10-28-98
 * ---
*/

#include <math.h>

#include "rngs.h"

#include "rvgs.h"

long Bernoulli(double p)

/* ==
* Returns 1 with probability p or 0 with probability 1 - p.

* NOTE: use 0 .0 < p < 1.0
* ==

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

*/
I

return ((RandomO < (1.0 - p)) ? 0 : 1);

>

long Binomial(long n, double p)

/* ==
* Returns a binomial distributed integer between 0 and n inclusive.

* NOTE: use n > 0 and 0.0 < p < 1.0

* ===

*/
{

long i, x = 0;

for (i = 0; i < n; i++)

x += Bernoulli(p);

return (x);

>

long Equilikely(long a, long b)

/* ===
* Returns an equilikely distributed integer between a and b inclusive.

* NOTE: use a < b

* ===

*/
i

return (a + (long) ((b - a + 1) * RandomO));

>

long Geometric(double p)

/* ==
* Returns a geometric distributed non-negative integer.

* NOTE: use 0.0 < p < 1.0

* ==

*/
I

return ((long) (log(1.0 - RandomO) / log(p)));

>

long Pascal(long n, double p)

/* ===
* Returns a Pascal distributed non-negative integer.

* NOTE: use n > 0 and 0.0 < p < 1.0

* ==:=

* /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

i
long i, x = 0;

for (i = 0; i < n; i++)

x += Geometric(p);

return (x);

>

long Poisson(double m)

/* ===
* Returns a Poisson distributed non-negative integer.

* NOTE: use m > 0

*/
{

double t = 0.0;

long x = 0;

while (t < m) {

t += Exponential(1.0) ;
x++;

}
return (x - 1);

>

double Uniform(double a, double b)

/* ===
* Returns a uniformly distributed real number between a and b.

* NOTE: use a < b

* ===

* /
{

return (a + (b - a) * RandomO);

>

double Exponential(double m)

/* ===
* Returns an exponentially distributed positive real number.

* NOTE: use m > 0 .0

* /
I

return (-m * log(1.0 - RandomO));

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 205

double Erlang(long n, double b)

/* ==
* Returns an Erlang distributed positive real number.

* NOTE: use n > 0 and b > 0.0

* /
{

long i ;

double x = 0.0;

for (i = 0; i < n; i++)

x += Exponential(b);

return (x);

>

double Normal(double m, double s)

/* ==
* Returns a normal (Gaussian) distributed real number.

* NOTE: use s > 0.0

*
* Uses a very accurate approximation of the normal idf due to Odeh &

* Evans, J. Applied Statistics, 1974, vol 23, pp 96-97.

* ===
*/

{
const double pO = 0.322232431088; const

const double pi = 1.0; const

const double p2 = 0.342242088547; const

const double p3 = 0.204231210245e-l; const

const double p4 = 0.453642210148e-4; const

double u, t, p, q, z;

u = RandomO ;

if (u < 0.5)

t = sqrt(-2.0 * log(u));

else

t = sqrt(-2.0 * log(1.0 - u));

p = pO + t * (pi + t * (p2 + t * (p3 + t

q = qO + t * (ql + t * (q2 + t * (q3 + t

if (u < 0.5)

z = (p / q) - t;

else

z = t - (p / q);

return (m + s * z);

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double qO = 0.099348462606;

double ql = 0.588581570495;

double q2 = 0.531103462366;

double q3 = 0.103537752850;

double q4 = 0.385607006340e-2;

* p4)));

* q4)));

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 206

double Lognormal(double a, double b)

/* ==
* Returns a lognormal distributed positive real number.

* NOTE: use b > 0.0

* /
I

return (exp(a + b * Normal(0.0, 1.0)));

>

double Chisquare(long n)

/* ===
* Returns a chi-square distributed positive real number.

* NOTE: use n > 0

* ===
* /

long i ;

double z, x = 0.0;

for (i = 0; i < n; i++) {

z = Normal(0.0, 1.0);

x += z * z;

>
return (x);

>

double Student(long n)

/* ===
* Returns a student-t distributed real number.

* NOTE: use n > 0

* ===
* /

return (Normal(0.0, 1.0) / sqrt(Chisquare(n) / n));

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/ * --
* Name : rvgs.h (header file for the library rvgs.c)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 11-03-96

 * --
* /

#ifndef RVGS.H

#define RVGS.H

long Bernoulli(double p) ;

long Binomial(long n, double p);

long Equilikely(long a, long b);

long Geometric(double p);

long Pascal(long n, double p);

long Poisson(double m);

double Uniform(double a, double b);

double Exponential(double m);

double Erlang(long n, double b);

double Normal(double m, double s);

double Lognormal(double a, double b);

double Chisquare(long n);

double Student(long n);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 208

/ * ---
* This is an ANSI C library that can be used to evaluate the probability

* density functions (pdf’s), cumulative distribution functions (cdf’s),

* and inverse distribution functions (idf’s) for a variety of discrete

* and continuous random variables.

*

* The following notational conventions are used

* x : possible value of the random variable

* u : real variable (probability) between 0.0 and 1.0

* a, b, n, p, m, s : distribution-specific parameters

*
* There are pdf’s, cdf’s and idf’s for 6 discrete random variables

*
*

■i.
Random Variable Range (x) Mean Variance

▼

* Bernoulli(p) 0. .1 P p*(l-p)

* Binomial(n, p) 0. .n n*p n*p*(l-p)

* Equilikely(a, b) a. .b (a+b)/2 ((b-a+l)*(b-a+l)-l)/12

* Geometric(p) 0. . . p/(l-p) p/((l-p)*(l-p))

* Pascal(n, p) 0. . . n*p/(l-p) n*p/((l-p)*(l-p))

*

$

Poisson(m) 0.. . m m

* and for 7 continuous random variables

¥

* Uniform(a, b) a < x < b (a+b)/2 (b-a)*(b-a)/12

* Exponential(m) x > 0 m m*m

* Erlang(n, b) x > 0 n*b n*b*b

* Normal(m, s) all x m s*s

* Lognormal(a, b) x > 0 see below

* Chisquare(n) x > 0 n 2*n

*

*

Student(n) all x 0 (n > 1) n/(n-2) (n > 2)

* For

*

the Lognormal(a, b), the mean and variance iare

* mean = Exp (a + 0.5*b*b)

* variance = (Exp(b*b) - l)*Exp(2*a + b*b)

*
* Name : rvms.c (Random Variable Models)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 11-22-97

 * ---
* /

#include <math.h>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

#include "rvms.h"

#def ine TINY 1.0e-10

#define SQRT2PI 2.506628274631 /* sqrt(2 * pi) */

static double pdfStandard(double x);

static double cdfStandard(double x);

static double idfStandard(double u);

static double LogGamma(double a);

static double LogBeta(double a, double b);

static double InGamma(double a, double b);

static double InBeta(double a, double b, double x);

double pdfBernoulli(double p, long x)

/ * =

* NOTE: use 0.0 < p < 1.0 and 0 <= x <= 1

* =

* /
{

return ((x == 0) ? 1.0 - p : p) ;

}

double cdfBernoulli(double p, long x)

/ * =

* NOTE: use 0.0 < p < 1.0 and 0 <= x <= 1

* =

* /
{

return ((x == 0) ? 1.0 - p : 1.0);

>

long idfBernoulli(double p, double u)

/ * =

* NOTE: use 0.0 < p < 1.0 and 0.0 < u < 1.0

* =

*/
I

return ((u < 1.0 - p) ? 0 : 1);

>

double pdfEquilikely(long a, long b, long x)

/ * =

* NOTE: use a <= x <= b

* =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 210

* /
i

return (1.0 I (b - a + 1.0));

>

double cdfEquilikely(long a, long b, long x)

/ * =

* NOTE: use a <= x <= b

* =

*/
i

return ((x - a + 1.0) / (b- a+ 1.0));

>

long idfEquilikely(long a, long b, double u)

/ * =

* NOTE: use a <= b and 0.0 < u < 1.0

* ==
* /

i

return (a + (long) (u * (b - a + 1)));

>

double pdfBinomial(long n, double p, long x)

/ * =

* NOTE: use 0 <= x <= n and 0.0 < p < 1.0

* =

* /
{.

double s, t;

s = LogChoose(n, x);

t = x * log(p) + (n - x) * log(1.0 - p);

return (exp(s + t));

>

double cdfBinomial(long n, double p, long x)

/ * =

* NOTE: use 0 <= x <= n and 0.0 < p < 1.0

* =

* /

if (x < n)

return (1.0 - InBeta(x + 1, n - x, p));

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

return (1.0);

>

long idfBinomial(long n, double p, double u)

/* ===
* NOTE: use 0<=n, 0.0 < p < 1.0 and 0.0 < u < 1.0

* ===

* /

long x = (long) (n * p); / * start searching at the mean

if (cdfBinomial(n, p, x) <= u)

while (cdfBinomial(n, p, x) <= u)

x++;

else if (cdfBinomial(n, p, 0) <= u)

while (cdfBinomial(n, p, x - 1) > u)

x--;

else

x = 0;

return (x);

>

double pdfGeometric(double p, long x)

/* =====================================
* NOTE: use 0.0 < p < 1.0 and x >= 0

* =====================================
* /

return ((1.0 - p) * exp(x * log(p)));

>

double cdfGeometric(double p, long x)

/* =====================================
* NOTE: use 0.0 < p < 1.0 and x >= 0

* =====================================
* /

return (1.0 - exp((x + 1) * log(p)));

>

long idfGeometric(double p, double u)

/* ===
* NOTE: use 0.0 < p < 1.0 and 0.0 < u < 1.0

* ===
* /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

I
return ((long) (log(1.0 - u) / log(p)));

>

double pdfPascal(long n, double p, long x)

NOTE: use n >= 1, 0.0 < p < 1.0, and x >= 0

t

double s, t ;

s = LogChoose(n + x - 1, x);

t = x * log(p) + n * log(1.0 -- p);

return (exp(s + t));

double cdfPascal(long n, double p, long x)

NOTE: use n >= 1, 0.0 < p < 1..0, and x >= 0

*/
I

r e tu rn (1 .0 - InB eta(x + 1, n , p));

>

long id fP a sc a l(lo n g n , double p, double u)
/* ==

* NOTE: use n >= 1, 0 .0 < p < 1 .0 , and 0 .0 < u < 1 .0
* ==
* /

I
long x = (long) (n * p / (1.0 - p));

/* s t a r t sea rch in g a t th e mean

i f (c d fP asca l(n , p, x) <= u)
w hile (c d fP a sc a l(n , p, x) <= u)

x++;
e ls e i f (c d fP a sc a l(n , p, 0) <= u)

w hile (c d fP a sc a l(n , p, x - 1) > u)
x— ;

e ls e
x = 0;

r e tu rn (x) ;
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 213

double pdfPoisson(double m, long x)

/ * ==================================
* NOTE: use m > 0 and x >= 0

* ==================================
* /

I
double t;

t = - m + x * log(m) - LogFactorial(x);

return (exp(t));

>

double cdfPoisson(double m, long x)

/* ===================================
* NOTE: use m > 0 and x >= 0

* ===================================
* /

return (1.0 - InGamma(x + 1, m));

>

long idfPoisson(double m, double u)

/* ===================================
* NOTE: use m > 0 and 0.0 < u < 1.0

* ===================================
*/

{
long x = (long) m; /* start searching at the mean * /

if (cdfPoisson(m, x) <= u)

while (cdfPoisson(m, x) <= u)

x++;

else if (cdfPoisson(m, 0) <= u)

while (cdfPoisson(m, x - 1) > u)

x—;

else

x = 0;

return (x);

>

double pdfUniform(double a, double b, double x)

/ * ===

* NOTE: use a < x < b

* ===

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

* /
{

return (1.0/ (b - a));

>

double cdfUniform(double a, double b, double x)

/ * =

* NOTE: use a < x < b

* =

* /

return ((x - a) / (b - a));

>

double idfUniform(double a, double b, double u)

/* ===
* NOTE: use a < b and 0.0 < u < 1.0

* ===
*/

I
return (a + (b - a) * u);

>

double pdfExponential(double m, double x)

/* ===
* NOTE: use m > 0 and x > 0

* ===
*/

{
return ((1.0 / m) * exp(- x / m));

>

double cdfExponential(double m, double x)

/ * ==
* NOTE: use m > 0 and x > 0

* ===
*/

I
return (1.0 - exp(- x / m));

>

double idfExponential(double m, double u)

/* ===
* NOTE: use m > 0 and 0.0 < u < 1.0

* ===

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. CODE FOR THE AG ENT-BASED MODEL

* /
{

return (- m * log(1.0 - u));

>

double pdfErlang(long n, double b, double x)

/ * =

* NOTE: use n >= 1, b > 0, and x > 0

* =

* /
{

double t;

t = (n - 1) * log(x / b) - (x / b) - log(b) - LogGamma(n);

return (exp(t));

>

double cdfErlang(long n, double b, double x)

/* ==
* NOTE: use n >= 1, b > 0, and x > 0

* ==
* /

{
return (InGamma(n, x / b));

>

double idfErlang(long n, double b, double u)

/* ==
* NOTE: use n >= 1, b > 0 and 0.0 < u < 1.0

* ==
*/

{
double t , x = n * b ; /* initialize to the mean, then */

do { /* use Newton-Raphson iteration */

t = x;

x = t + (u - cdfErlang(n, b, t)) / pdfErlang(n, b, t) ;

if (x <= 0.0)

x = 0.5 * t;

> while (fabs(x - t) >= TINY);

return (x);

>

static double pdfStandard(double x)

/* ===================================

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 216

* NOTE: x can be any value

* =

*/
{

return (exp(- 0.5 * x * x) / SQRT2PI);

>

static double cdfStandard(double x)

/* ===================================
* NOTE: x can be any value

* ===================================
*/

{
double t;

t = InGamma(0.5, 0.5 * x * x);

if (x < 0.0)

return (0.5 * (1.0 - t));

else

return (0.5 * (1.0 + t));

static double idfStandard(double u)

/* ===================================
* NOTE: 0.0 < u < 1.0

* =

*/
{

double t, x = 0.0; /* initialize to the mean, then */

do { /* use Newton-Raphson iteration */

t = x;

x = t + (u - cdfStandard(t)) / pdfStandard(t);

)■ while (fabs(x - t) >= TINY);

return (x);

>

double pdfNormal(double m, double s, double x)

/* ==
* NOTE: x and m can be any value, but s > 0.0

* =

* /

double t = (x - m) / s;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 217

return (pdfStandard(t) / s);

>

double cdfNormal(double m, double s, double x)

/* ==
* NOTE: x and m can be any value, but s > 0.0

* /
{

double t = (x - m) / s;

return (cdfStandard(t));

>

double idfNormal(double m, double s, double u)

/* ===
* NOTE: m can be any value, but s > 0.0 and 0.0 < u < 1.0

* ===
* /

{
return (m + s * idfStandard(u));

>

double pdfLognormal(double a, double b, double x)

/ * =

* NOTE: a can have any value, but b > 0.0 and x > 0.0

* ===

* /
{

double t = (log(x) - a) / b;

return (pdfStandard(t) / (b * x));

>

double cdfLognormal(double a, double b, double x)

/* ===
* NOTE: a can have any value, but b > 0.0 and x > 0.0

* ===
* /

{
double t = (log(x) - a) / b;

return (cdfStandard(t));

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

double idfLognormal(double a, double b, double u)

/ * =

* NOTE: a can have any value, but b > 0.0 and 0.0 < u < 1.0

* ===
* /

{
double t;

t = a + b * idfStandard(u);

return (exp(t));

>

double pdfChisquare(long n, double x)

/* =====================================
* NOTE: use n >= 1 and x > 0.0

* =

* /
{

double t, s = n / 2.0;

t = (s - 1.0) * log(x / 2.0) - (x / 2.0) - log(2.0) - LogGamma(s);

return (exp(t));

>

double cdfChisquare(long n, double x)

/ * =

* NOTE: use n >= 1 and x > 0.0

* =====================================
*/

return (InGamma(n / 2.0, x / 2));

>

double idfChisquare(long n, double u)

/* =====================================
* NOTE: use n >= 1 and 0.0 < u < 1.0

* =====================================
* /

{
double t, x = n; /* initialize to the mean, then */

do { / * use Newton-Raphson iteration * /

t = x;

x = t + (u - cdfChisquare(n, t)) / pdfChisquare(n, t) ;

if (x <= 0.0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

x = 0.5 * t;

> while (fabs(x - t) >= TINY);

return (x);

>

double pdfStudent(long n, double x)

/* =

* NOTE: use n >= 1 and x > 0.0

* ===================================
* /

{
double s, t;

s = -0.5 * (n + 1) * log(1.0 + ((x * x) / (double) n));

t = -LogBeta(0.5, n / 2.0);

return (exp(s + t) / sqrt((double) n));

double cdfStudent(long n, double x)
/ * ===================================
* NOTE: use n >= 1 and x > 0.0

* =

* /
I

double s, t;

t = (x * x) / (n + x * x) ;
s = InBeta(0.5, n / 2.0, t) ;

if (x >= 0.0)

return (0.5 * (1.0 + s));

else

return (0.5 * (1.0 - s));

double idfStudent(long n, double u)

/* ===================================
* NOTE: use n >= 1 and 0 .0 < u < 1.0
* =

* /
{

double t, x = 0 .0 ; /* initialize to the mean, then */

do { / * use Newton-Raphson iteration */

t = x;
x = t + (u - cdfStudent(n, t)) / pdfStudent(n, t);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 220

} while (fabs(x - t) >= TINY);

return (x);

/* ===
* The six functions that follow are a ’special function’ mini-library

* used to support the evaluation of pdf, cdf and idf functions.

* =

* /

static double LogGamma(double a)

/ * =

* LogGamma returns the natural log of the gamma function.

* NOTE: use a > 0.0

*
* The algorithm used to evaluate the natural log of the gamma function is

* based on an approximation by C. Lanczos, SIAM J. Numerical Analysis, B,

* vol 1, 1964. The constants have been selected to yield a relative error

* which is less than 2.0e-10 for all positive values of the parameter a.

* ===
* /

I
double s [6] , sum, temp;
in t i ;

s [0] = 76.180091729406 / a ;
s [l] = -86.505320327112 / (a + 1 .0)
s [2] = 24.014098222230 / (a + 2 .0)
s [3] = -1.231739516140 / (a + 3 .0)
s [4] = 0.001208580030 / (a + 4 .0)
s [5] = -0.000005363820 / (a + 5 .0)
sum = 1.000000000178:t
fo r (i = 0; i < 6; i++)

sum ^= s [i] ;
temp = (a - 0 .5) * lo g (a •*• 4. 5) - (
r e tu rn (tem p);

double LogFactoriaMlong n)

/* ==
* LogFactorial(n) returns the natural log of n!

* NOTE: use n >= 0

*
* The algorithm used to evaluate the natural log of n! is based on a

* simple equation which relates the gamma and factorial functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 221

* ==
*/

{
return (LogGamma(n +1));

>

static double LogBeta(double a, double b)

/* ==
* LogBeta returns the natural log of the beta function.

* NOTE: use a > 0.0 and b > 0.0

*
* The algorithm used to evaluate the natural log of the beta function is

* based on a simple equation which relates the gamma and beta functions.

*
*/

{
return (LogGamma(a) + LogGamma(b) - LogGamma(a + b));

>

double LogChoose(long n, long m)

/* ==
* LogChoose returns the natural log of the binomial coefficient C(n,m).

* NOTE: use 0 <= m <= n

*
* The algorithm used to evaluate the natural log of a binomial coefficient

* is based on a simple equation which relates the beta function to a

* binomial coefficient.

* ==:===:=====================
* /

{
if (m > 0)

return (-LogBeta(m, n - m + 1) - log(m));

else

return (0.0);

>

static double InGamma(double a, double x)

/* ==
* Evaluates the incomplete gamma function.

* NOTE: use a > 0.0 and x >= 0.0

*
* The algorithm used to evaluate the incomplete gamma function is based on

* Algorithm AS 32, J. Applied Statistics, 1970, by G. P. Bhattacharjee.

* See also equations 6.5.29 and 6.5.31 in the Handbook of Mathematical

* Functions, Abramowitz and Stegum (editors). The absolute error is less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 222

* than le-10 for all non-negative values of x.

* /
I

double t , sum, te rm , f a c to r , f , g , c [2] , p [3] , q [3] ;
long n;

i f (x > 0 .0)
f a c to r = exp (-x + a * lo g (x) - LogGamma(a));

e ls e
f a c to r = 0 .0 ;

i f (x < a + 1 .0) { /* e v a lu a te as an i n f i n i t e s e r ie s - */
t = a ; /* A & S eq u a tio n 6 .5 .2 9 */
term = 1 .0 / a;
sum = term ;
w hile (term >= TINY * sum) { /* sum u n t i l ’te rm ’ i s sm all */

t++;
term *= x / t ;
sum += term ;

>
re tu rn (f a c to r * sum);

else { /* evaluate as a continued fraction - */

p[0] = 0.0; / * A & S eqn 6.5.31 with the extended */

q[0] = 1.0; / * pattern 2-a, 2, 3-a, 3, 4-a, 4,... * /

p[l] = 1.0; /* - see also A & S sec 3.10, eqn (3) * /

qtl] = x;

f = p[l] / q[l];

n = 0;

do { / * recursively generate the continued * /

g = f; /* fraction ’f ’ until two consecutive * /

n++9 /* values are small * /

if ((n % 2) > 0) {

c[0] = ((doub le) (n + 1) / 2) - a;
c [l] = 1 .0 ;

>
e ls e {

c[0] = (double) n / 2;
c [l] = x;

}
p[2] = c [l] * p [l] + c[0] * p [0] ;
q[2] = c [l] * q [l] + c [0] * q[0] ;
i f (q [2] != 0 .0) { /* r e s c a le to avoid overflow * /

p[0] = p [l] / q[2] ;
q[0] = q [l] / q[2] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 223

p[l] = p[2] / q[2] ;

qtl] = 1.0;

f = pCl];

>
> while ((fabs(f - g) >= TINY) II (q[l] != 1.0));

return (1.0 - factor * f);

>
>

static double InBeta(double a, double b, double x)

/* ===
* Evaluates the incomplete beta function.

* NOTE: use a > 0.0, b > 0.0 and 0.0 <= x <= 1.0

*
* The algorithm used to evaluate the incomplete beta function is based on

* equation 26.5.8 in the Handbook of Mathematical Functions, Abramowitz

* and Stegum (editors). The absolute error is less than le-10 for all x

* between 0 and 1.

* ===
* /

double t, factor, f, g, c, p[3], q[3];

int swap;

long n;

if (x > (a + 1.0) / (a + b + 1.0)) { /* to accelerate convergence */

swap = 1 ; /* complement x and swap a & b */

x = 1 .0 - x;
t = a;

a = b;

b = t;

>
else /* do nothing */

swap = 0;

if (x > 0)

factor = exp(a * log(x) + b * log(1.0 - x) - LogBeta(a,b)) / a;

else

f a c to r = 0 .0 ;
p[0] = 0 .0 ;
q[0] = 1 .0 ;
p [l] = 1 .0 ;
qCl] = 1 .0 ;
f = p [l] / q [l] ;
n = 0 ;
do { /* r e c u r s iv e ly g en era te th e con tinued * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 224

g = f; /* fraction ’f ’ until two consecutive * /

n++; /* values axe small */

if ((n */. 2) > 0) {

t = (double) (n - 1) / 2;

c = -(a + t) * (a + b + t) * x / ((a + n - 1.0) * (a + n));

>
else {

t = (double) n / 2;

c = t * (b- t) * x / ((a+n-1.0) * (a + n));

>
p[2] = p [1] + c * p[0] ;

q[2] = q[l] + c * q[0] ;

if (q[2] != 0.0) { /* rescale to avoid overflow */

p[0] = p[l] / q[2] ;

q[0] = q[l] / q[2] ;

p[l] = p[2] / q[2] ;

qtl] = 1.0;

f = p C i] ;
>

> while ((fabs(f - g) >= TINY) I I (q[l] != 1.0));

if (swap)

return (1.0 - factor * f);

else

return (factor * f);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

/ * --
* Name : rvms.h (header file for the library rvms.c)

* Author : Steve Park ft Dave Geyer

* Language : ANSI C

* Latest Revision : 11-02-96

 * --
*/

#if !defined(_RVMS_)

#define _RVMS_

double LogFactorial(long n);

double LogChoose(long n, long m) ;

double pdfBernoulli(double p, long x);

double cdfBernoulli(double p, long x);

long idfBernoulli(double p, double u);

double pdfEquilikely(long a, long b, long x);

double cdfEquilikely(long a, long b, long x);

long idfEquilikely(long a, long b, double u);

double pdfBinomial(long n, double p, long x);

double cdfBinomial(long n, double p, long x);

long idfBinomial(long n, double p, double u);

double pdfGeometric(double p, long x);

double cdfGeometric(double p, long x);

long idfGeometric(double p, double u);

double pdfPascal(long n, double p, long x);

double cdfPascal(long n, double p, long x);

long idfPascal(long n, double p, double u);

double pdfPoisson(double m, long x) ;

double cdfPoisson(double m, long x);

long idfPoisson(double m, double u);

double pdfUniform(double a, double b, double x);

double cdfUniform(double a, double b, double x);

double idfUnif orm(double a, double b, double u);

double pdfExponential(double m, double x) ;

double cdfExponential(double m, double x);

double idfExponential(double m, double u) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL

double pdfErlang(long n, double b, double x) ;

double cdfErlangClong n, double b, double x);

double idfErlang(long n, double b, double u);

double pdfNormal(double m, double s, double x);

double cdfNormal(double m, double s, double x);

double idfNormal(double m, double s, double u);

double pdfLognormal(double a, double b, double x)

double cdfLognormal(double a, double b, double x)

double idfLognormal(double a, double b, double u)

double pdfChisquare(long n, double x);

double cdfChisquare(long n, double x);

double idfChisquare(long n, double u);

double pdfStudent(long n, double x);

double cdfStudent(long n, double x);

double idfStudent(long n, double u);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CODE FOR THE AGENT-BASED MODEL 227

/ /

/ /

01111100000000010100101101110010111110110000110111110000110100
10100010000111110000111100000110000110000111010100011010100000
10000100011101110011000011000101000111110000111000110101001110
11001100011010100000010001110000110000101110011001011100

/ /
/ /
/ /

Input file for the mule

/ /
/ /
/ /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Code for the Co-evolutionary

Genetic Algorithm

The following code controls the co-evolutionary genetic algorithm. This requires a script

to run the Mule on the desired number of solutions (this dissertation used 30, but did

not investigate the “best” number to run) and call the co-evolutionary genetic algorithm.

The script should iterate until the solutions converge or a desired number of generations is

reached.

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 229

/ /
/ / / /
// gacoev.cpp: Runs GA for the mule //

/ / / /
/ / Inputs are 30 x.dat (solution) files and 30 x.result //

// files. Program reads the files, selects the solutions //

/ / from the 30 based on probability drawn from relative //

/ / score, performs the crossovers/mutations and outputs 30 / /
/ / new solutions overwriting the 30 x.dat files. //

/ / Old solutions and results are archived for later analysis //

/ / / /
/ /

#include "rngs.h"

include "rvgs.h"

#include "rvms.h"

#include <stdio.h>

#include <iostream>

#include <ctime>

#include <string>

#include <cstdlib>

#include <cmath>

#include <fstream>

#define pcross 0.6

#define mutrate .001

#define L0C 0.95

#define stop 100000

using namespace std;

string dat[30];

double res [30];

string after[30];

double sel[30];

int main(void);

void inputdat(void);

void inputresult(void);

void chkstopO;

void appenddat(void);

void appendresult(void);

void buildsel(void);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 230

void ga(int);

string mutate(string);

long perm(long, long);

double power(double, long);

void outputdatO;

int mainO

{
int a = 0;

inputdatO;

inputresult();

chkstopO ;

appenddat();

appendresultO ;

buildselO;

for(a=0; a<29; a=a+2)

{
ga(a);

>
outputdatO ;

return 0;

>

void outputdatO

int n = 0;

ofstream fout;

fout.openO'O.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.openOl.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("2.dat");

fout « after[n];

fout.clear();

fout.closeO ;

n++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 231

fout.open("3.dat");

fout « after [n];

fout.clear();

fout.closeO;

n++;

fout.open("4.dat");

fout « after[n] ;

fout.clear0;

fout.closeO;

n++;

fout.open("5.dat");

fout « after[n];

fout.clear();

fout.close();

n + + ;

fout.open("6.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("7.dat");

fout « after[n];

fout.clear();

fout.closeO ;

n++;

fout.open("8.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("9.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("10.dat");

fout « after[n];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 232

fout.clear();

fout.close();

n++;

fout .openC'll.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("12.dat");

fout « after[n];

fout.clear ();

fout.closeO;

n++;

fout.open("13.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("14.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.openOl5.dat") ;

fout « after[n];

fout.clearO;

fout.closeO;

n++;

fout.open("16.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("17.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 233

fout.open("18.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("19.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("20.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("21.dat");

fout « after[n];

fout.clear ();

fout.close() ;

n++;

fout.open("22.dat");

fout « afterCn];

fout.clear();

fout.close();

n++;

fout.open("23.dat");

fout « after[n];

fout.clear 0;

fout.closeO;

n++;

fout.open("24.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

fout.open("25.dat");

fout « after[n];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 234

fout.clear();

fout.closeO;

n++;

fout.open("26.dat");

fout « afterCn];

fout.clear();

fout.closeO;

n++;

fout.open("27.dat");

fout « after[n];

fout.clear();

fout.close();

n++;

fout.open("28.dat");

fout « after[n];

f out. clear O ;
fout.close();

n++;

fout.open("29.dat");

fout « after[n];

fout.clear();

fout.closeO;

n++;

>

void ga(int a)

{
string sO;

string si;

int x = 0;

int xover, xoverl;

int ctr;

char z;

double p;

double b = sel[x];

p = Uniform(0,1); //select first candidate

if(p <= b) sO = dat[0];

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 235

while(p > b)

x++;

b = sel[x] ;

>
sO = dat[x];

>

x = 0;

b = sel[x]; //select second candidate

p = Uniform(0,1);

if(p <= b) si = dat[0];

else

while(p > b)

x++;

b = sel[x];

>
si = dat[x];

>

sO = mutate(sO);

si = mutate(si);

p = Uniform(0,1);

if(p > pcross)

after[a] = sO;

after[a+1] = si;

>

else

xover = Equilikely(0,117); //crossover point

xoverl = Equilikely(118,241);

for(ctr=xover; ctr<=xoverl; ctr++)

•C
z = sO [ctr];

sO[ctr] = si[ctr];

si [ctr] = z;

>
after[a] = sO;

after[a+1] = si;

>

//determine if crossover or not

//no crossover

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 236

>

string mutate(string s)

{
string str;

long ctr, m;

double p, x;

ctr = 0;

str = s;

p = Uniform(0,1);

x = power(1.0-mutrate, 241);

if(p <= x) return str;

else while(x < p)

ctr++;

x += perm(241, ctr) * power(mutrate, ctr) *

power(1-mutrate, 241-ctr);

>

while(ctr > 0)

m = Equilikely(0, 241);

if(str[m] == ’O’) str[m] = ’1’;

else str[m] = ’O’;

ctr—;

>
return str;

>

long perm(long x, long n)

long b =1;

long bl = 1;

while (n > 0)

b *= x;

bl *= n;

x—;

n—;

>
return b/bl;

>

double power(double x, long n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 237

{
double prod = 1.0;

long i;

if(n == 0) return 1;

else for(i=l; i<=n; i++) prod *= x;

return prod;

>

void buildselO

int n = 0;

double y = 0.0;

double x = 0.0;

for(n=0; n<30; n++) x += res[n];

for(n=0; n<30; n++)

y += res [n];

sel[n] = y/x;

>
>

void appenddatO

■c
int n = 0;

ofstream fout("dat.cdat", ios::out I ios::app);

for(n=0; n<30; n++) fout « dat[n] « "\n";

fout « "\n";

fout.clear();

fout.close();

>

void appendresult0

{
int n = 0;

ofstream fout("result.cdat", ios::out I ios::app);

for(n=0; n<30; n++) fout « res[n] « "\n";

fout « "\n";

fout.clear();

fout.close();

>

void inputresultO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 238

int n = 0;

double avg = 0.0;

ifstream fin;

f in.open("0.result");
fin » res[n];

avg += res[n];

fin.clear();

fin.close();

n++;

f in.open("1.result");

fin » res[n];
avg += res[n];

fin.clear();

fin.close();

n++;

fin.open("2.result");
fin » res[n];
avg += res [n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("3.result");
fin » res[n];
avg += res [n];
fin.clearO ;
fin.closeO ;
n++;

fin.open("4.result");

fin » res[n];

avg += res [n] ;

fin.clearO ;

fin.closeO ;

n++;

f in.open("5.result");

fin » res[n];

avg += res[n];

fin.clearO;

fin.closeO ;

n++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 239

f in.open("6.result");
f in » res[n];
avg += res[n];
fin.clearO ;
fin.closeO;
n++;

f in.open("7.result");
fin » res[n];
avg += res[n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("8.result");
fin » res[n];
avg += res[n];
fin.clear();
fin.closeO;
n++;

f in.open("9.result") ;

f in » res[n];
avg += res[n];
fin.clearO ;
fin.closeO;
n++;

f in.open("10.result");
fin » res[n];
avg += res[n];
fin.clearO ;
fin.close();
n++;

f in.open("11.result");
fin » res[n];
avg += res [n];
fin.clear();
fin.closeO ;
n++;

fin.open("12.result");
fin » res[n];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 240

avg += res[n];
fin.clearO;
fin.closeO;
n++;

fin.open("13.result");
fin » res[n] ;
avg += res[n];
fin.clearO;
fin.closeO;
n++;

f in.open("14.result");
fin » res[n] ;
avg += res[n];
fin.clearO;
fin.closeO ;
n++;

fin.open("15.result");
fin » res[n];
avg += res[n];
fin.clearO ;
fin.closeO;
n++;

fin.open("16.result");
fin » res[n];
avg += res[n];
fin. clearO ;
fin.closeO ;
n++;

f in.open("17.result");
f in » res[n];
avg += res[n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("18.result") ;
fin » res[n];
avg += res[n];
fin.clearO ;
fin.closeO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 241

n++;

fin.open("19.result");
fin » res[n];
avg += res[n];
fin.clearO;
fin.closeO ;
n++;

f in.open("20.result");
fin » res[n];
avg += res [n];
fin.clearO;
fin.closeO ;
n++;

fin.open("21.result");
f in » res[n];
avg += res[n];
fin.clearO;
fin.closeO;
n++;

f in.open("22.result");
f in » res [n] ;
avg += res[n];
fin.clearO ;
fin.closeO;
n++;

f in.open("23.result");
f in » res [n] ;
avg += res[n];
fin.clearO;
fin. closeO ;
n++;

f in.open("24.result");
fin » res[n];
avg += res[n];
fin.clear();
fin.closeO ;
n++;

f in.open("25.result");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 242

fin » res[n];
avg += res[n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("26.result");
fin » res[n];
avg += res[n];
fin.clear();
fin.closeO ;
n++;

f in.open("27.result");
fin » res[n] ;
avg += res [n];
fin.clearO ;
fin.closeO;
n++;

f in. open (1128. result") ;
fin » res[n];
avg += res [n];
fin.clear 0;
fin. closeO;
n++;

fin.open("29.result");
fin » res[n];
avg += res[n];
fin. clearO ;
fin.closeO ;

void chkstopO

int n;

ifstream fin;

ofstream fout;

fin.open("iterator");

fin » n;

fin.clearO ;

fin. closeO ;

n++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 243

if(n >= stop)

f out.open("quit");
fout « n;
fout .clearO;
fout.closeO;

>
fout.open("iterator");
fout « n;
fout. clearO;
fout. closeO;

>

void inputdatO

int n = 0;
ifstream fin;
fin.open("0.dat");
f in » dat [n] ;
fin.clear();
fin.closeO ;
n++;

fin.openC'l.dat") ;
f in » dat [n];
fin.clear();
fin.closeO ;
n++;

fin.open("2.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;
n++;

fin.open("3.dat");
f in » dat [n] ;
fin.clear();
fin.closeO ;
n++;

fin.open("4.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 244

n++;

fin.open("5.dat");
fin » dat[n];
fin.clearO;
fin.closeO ;
n++;

fin.open("6.dat");
fin » dat[n];
fin.clear();
fin.closeO ;
n++;

fin.open("7.dat");
fin » dat[n];
fin.clearO ;
fin.closeO;
n++;

fin.open("8.dat");
f in » dat [n] ;
fin.clearO ;
fin. closeO;
n++;

fin.open("9.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("10.dat");
f in » dat [n] ;
fin.clear();
fin. closeO ;
n++;

f in.open("11.dat");
f in » dat [n] ;
fin.clearO ;
fin.closeO ;
n++;

f in.open("12.dat");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 245

fin » dat[n];
fin.clearO;
fin.closeO ;
n++;

fin.open("13.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;
n++;

fin.open("14.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;
n++;

fin.open("15.dat");
fin » dat[n] ;
fin.clearO ;
fin.closeO ;
n++;

fin.openOl6.dat") ;
fin » dat[n];
fin.clear();
fin.closeO ;
n++;

fin.open("17.dat");
fin » dat[n] ;
fin.clearO;
fin.closeO;
n++;

fin.open("18.dat");
fin » dat[n] ;
fin.clearO ;
fin.closeO ;
n++;

f in.open("19.dat");
fin » dat[n] ;
fin.clear();
fin.closeO ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 246

n++;

f in.open("20.dat");
f in » dat[n];
fin.clearO;
fin.closeO ;
n++;

fin.open("21.dat");
fin » dat[n] ;
fin.clearO ;
fin.closeO ;
n++;

fin.open("22.dat");
fin » dat[n];
fin.clearO ;
fin.closeO ;
n++;

fin.open("23.dat");
fin » dat[n];
fin.clearO;
fin. closeO ;
n++;

fin.open("24.dat");
f in » dat [n] ;
fin.clear0 ;
fin.closeO ;
n++;

fin.open("25.dat");
fin » dat[n];
fin.clearO;
fin.closeO ;
n++;

fin.open("26.dat");
fin » dat[n] ;
fin.clear();
fin.closeO ;
n++;

fin.open("27.dat");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM 247

f in » dat[n];
fin. clearO ;
fin.closeO ;
n++;

fin.open("28 .dat");
f in » dat[n];
fin.clearO;
fin.closeO;
n++;

f in.open("29.dat");
f in » dat[n];
fin.clearO;
fin. closeO ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Chromosome Definitions

The following table maps the genetic code contained in the solution chromosome.

For clarification, tank rules are:

• Rule 1: Remain near friendly vehicles

• Rule 2: Move to a position to engage the enemy

• Rule 3: Move to the objective

Table C .l: Tank Physical Gene Definitions.

Positions Definition
0-1 Engine
2-5 Gun/Ammunition Type
6-9 Ammunition Quantity(x5)

10-11 Sight
12 Autoloader

13-16 Armor Protection(xO.lm)

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C. CHROMOSOME DEFINITIONS

Table C.2: Tank Tactical Gene Definitions.

249

17-19 No Threat/Rule 1
20-22 No Threat/R ule 2
23-25 No Threat/Rule 3
26-28 Atk/Low Threat/Rule 1
29-31 Atk/Low Threat/Rule 2
32-34 Atk/Low Threat/Rule 3
35-37 Atk/M ed Threat/Rule 1
38-40 Atk/M ed Threat/Rule 2
41-43 Atk/M ed Threat/Rule 3
44-46 A tk/H i Threat/Rule 1
47-49 A tk/H i Threat/Rule 2
50-52 A tk/H i Threat/Rule 3
53-55 A tk/Pan Threat/Rule 1
56-58 A tk/Pan Threat/Rule 2
59-61 A tk/Pan Threat/Rule 3
62-64 Def/Low Threat/Rule 1
65-67 Def/Low Threat/Rule 2
68-70 Def/Low Threat/Rule 3
71-73 Def/Med Threat/Rule 1
74-76 Def/Med Threat/Rule 2
77-79 Def/Med Threat/Rule 3
80-82 Def/Hi Threat/Rule 1
83-85 Def/Hi Threat/Rule 2
86-88 Def/Hi Threat/Rule 3
89-91 D ef/Pan Threat/Rule 1
92-94 D ef/Pan Threat/Rule 2
95-97 D ef/Pan Threat/Rule 3

The artillery rules are similar bu t include an additional rule to remain near other artillery

pieces:

• Rule 1: Remain near friendly tanks

• Rule 2: Remain near friendly artillery pieces

• Rule 3: Move to a position to engage the enemy

• Rule 4: Move to the objective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C. CHROMOSOME DEFINITIONS

Table C.3: Tank Tactical Gene Definitions (cont’d).

98-101 Fixing Force(xl2.5%)
102-104 Optimal Distance(x25m)
105-107 Dollar Split (xl2.5%)

Table C.4: Artillery Physical Gene Definitions.

Positions Definition
108-109 Engine
110-111 Gun/Ammunition Type
112-115 Ammunition Quantity(x5)
116-117 Armor Protection(xO.lm)

241 Autoloader

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C. CHROMOSOME DEFINITIONS

Tcible C.5: Artillery Tactical Gene Definitions.

119-121 Optimal Distance
122-125 Shots/Mission
126-128 Sheaf W idth (x25m)
129-131 No T hreat/R ule 1
132-134 No Threat/R ule 2
135-137 No Threat/R ule 3
138-140 No Threat/R ule 4
141-143 Atk/Low Threat/R ule 1
144-146 Atk/Low Threat/R ule 2
147-149 Atk/Low Threat/R ule 3
150-152 Atk/Low Threat/R ule 4
153-155 Atk/M ed Threat/R ule 1
156-158 Atk/M ed Threat/R ule 2
159-161 Atk/M ed Threat/R ule 3
162-164 Atk/M ed Threat/R ule 4
165-167 A tk/H i Threat/R ule 1
168-170 A tk/H i Threat/R ule 2
171-173 A tk/H i Threat/R ule 3
174-176 A tk/H i Threat/R ule 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C. CHROMOSOME DEFINITIONS

Table C.6: Artillery Tactical Gene Definitions (cont’d).

177-179 A tk/Pan Threat/R ule 1
180-182 A tk/Pan Threat/R ule 2
183-185 A tk/Pan Threat/R ule 3
186-188 A tk/Pan Threat/R ule 4
189-191 Def/Low Threat/R ule 1
192-194 Def/Low Threat/R ule 2
195-197 Def/Low Threat/R ule 3
198-200 Def/Low Threat/R ule 4
201-203 Def/Med Threat/Rule 1
204-206 Def/Med Threat/Rule 2
207-209 Def/Med Threat/R ule 3
210-212 Def/Med Threat/Rule 4
213-215 Def/Hi Threat/R ule 1
216-218 Def/Hi Threat/R ule 2
219-221 Def/Hi Threat/R ule 3
222-224 Def/Hi Threat/R ule 4
225-227 D ef/Pan Threat/R ule 1
228-230 D ef/Pan Threat/R ule 2
231-233 D ef/Pan Threat/R ule 3
234-236 D ef/Pan Threat/R ule 4
237-240 Shooting Force(x6.25%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Army Force Management School Staff AFMS, editor. Force Integration Course Hand
book. Army Force Management School, 1996.

[2] S te v a n J a y A n a s t a s o f f . Evolving mutations rates for the self-optimisation of ge
netic algorithms. In Advances in Artificial Life, Proceedings from the 5th European
Conference, ECAL 99, Dario Floreano, Jean-Daniel Nicoud, and Francesco Mondad,
editors, pages 74-78. Springer-Verlag, 1999.

[3] W . B r ia n A r t h u r . Increasing Returns and Path Dependence in the Economy. Uni
versity of Michigan Press, 1997.

[4] W . B r ia n A r t h u r . Complexity and the economy. Science, 284(i5411):107-110, April
1999.

[5] R o b e r t A x t e l l , R o b e r t A x e lr o d , J o s h u a M. E p s te in , a n d M ic h a e l D. C o
h en . Aligning simulation models: A case study. Technical Report 95-07-065, Santa Fe
Institute, 1995.

[6] F a r h a d A z a d iv a r . A tutorial on simulation optimization. In Proceedings o f the 1992
Winter Simulation Conference, J .J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson,
editors, pages 198-204, 1992.

[7] S t e v e n C. B a n k e s . Tools and techniques for developing policies for complex and
uncertain systems, 2000.

[8] R. B e c k e r s , O .E. H o l la n d , a n d J.L . D e n e u b o u r g . From local actions to global
tasks: Stigmergy and collective robotics. In Brooks and Maes [10], pages 181-189.

[9] E r ic B o n a b e a u , M a r c o D o r ig o , a n d G u y T h e r a u la z . Swarm Intelligence.
Oxford University Press, 1999.

[10] Rodney Brooks and Pattie Maes, editors. Proceedings o f the Fourth International
Workshop on the Synthesis and Simulation of Living Systems. MIT Press, 1995.

[11] C o l o n e l K. S t e v e n C o l l i e r , 2000. Army Models and Simulation Office, Office of
the Deputy Undersecretary of the Army for Operations Research. From an interview
with the author.

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 254

[12] T h o m a s C zerw in sk i. Coping With the Bounds. National Defense University Press,
1998.

[13] Dipankar Dasgupta and Zbigniew Michalewicz, editors. Evolutionary Algorithms in
Engineering Applications. Springer, 1997.

[14] K e v in D o o le y . A complex adaptive systems model of organizational change. Non
linear Dynamics, Psychology and Life Sciences, l(l):69-97, 1997.

[15] R o b e r t A. D o u g h ty . The Breaking point: Sedan and the Fall o f France. Archon
Books, 1990.

[16] T .N . D u p u y . Understanding War: History and Theory o f Combat. Paragon House
Publishers, 1987.

[17] C la u s E m m eche. The Garden in the Machine. Princeton University Press, 1994.

[18] J o s h u a E p s te in a n d R o b e r t A x t e l l . Growing Artificial Societies. Brookings
Institution Press, 1996.

[19] J O S H U A M. E p ste in . The Calculus of Conventional War: Dynamic Analysis Without
Lanchester Theory. The Brookings Institute, 1985.

[20] J o s h u a M. E p s te in , J o h n D. S te in b r u n e r , a n d M ile s T. P a r k e r . Modeling
civil violence: An agent-based computational approach. Brookings Institute, January
2001. Working paper No. 20.

[21] T h o m a s E r le n b u c h . Agent-based simulation of german peacekeeping operations for
units up to platoon level. M aster’s thesis, Naval Postgraduate School, 2002.

[22] R .P . F l e t c h e r , C. C a n n in g s , a n d P.G . B l a c k w e l l . Modeling foraging behavior
of ant colonies. In Proceedings from the 3d European Conference, ECAL 95, F. Moran,
A. Moreno, J.J. Merelo, and P. Chacon, editors, pages 772-783. Springer-Verlag, 1995.

[23] M u r r a y G e l l -M a n n . W hat is complexity? Complexity, 1(1), 1995.

[24] A n d r e w G i l l , R ic h a r d E g u d o , P e t e r J . D o r tm a n s , a n d D io n G r ie g e r . Sup
porting the amry capability development process using agent based distillations - a
case study. Jom al o f Battlefield Technology, 2(3):l-6, November 1999.

[25] J a m es G le ic k . Genius. Vintage Books, 1992.

[26] C.V. G lin e s . Billy mitchell, airpower visionary. Aviation History, 7(9), September
1997.

[27] J e f f r e y J. G o b le . Combat assessment of non-lethal fires: The applicability of com
plex modeling to measure the effectiveness of information operations. M aster’s thesis,
US Army School of Advanced Military Studies, 2002.

[28] Jam es B . G r ie r , T . G le n n B a i le y , a n d J a c k A . J a c k s o n . Response surface
modeling of campaign objectives using factor analysis. Military Operations Research,
4(2):61-70, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 255

[29] P e t e r H ays an d K a r l M u l l e r . Going boldly - where? Aerospace Power Journal,
Spring, 2001. www.airpower.maxwell.af.mil/airchronicles/apj/apj0/spr01/hays.htm.

[30] W . D a n ie l H i l l i s . Co-evolving parasites improve simulated evolution as an optimiza
tion procedure. In Langton [52], pages 313-324.

[31] J o h n H o l la n d . Hidden Order, How Adaptation Builds Complexity. Helix Books,
1995.

[32] O .E . H o lla n d . Multiagent systems: Lessons from social insects and collective
robotics. In Adaptation, Coevolution and Learning in Multiagent Systems, Papers
from the 1996 A A A I Symposium, Sandip Sen, editor, SS-96-01, pages 57-62. American
Association for Artificial Intelligence, 1996.

[33] A n d r e w I la c h in s k i. Irreducible semi-autonomous adaptive combat (isaac): An
artificial-life approach to land warfare. Technical Report 97-61.10, Center for Naval
Analysis, 1997. www.cna.org/documents/2797006110.pdf.

[34] A n d y I la c h in s k i . Irreducible semi-autonomous adaptive combat (isaac): An artificial
life approach to land combat. Military Operations Research, 5(3):29-46, 2000.

[35] C la y t o n M a t t h e w J o h n so n . A Grammar-based Technique for Genetic Search and
Optimization. PhD thesis, College of William and Mary, 1996.

[36] A r c h e r J o n e s . The A rt o f War in the Western World. Oxford University Press,
1987.

[37] T . J o n e s . A model of landscapes, 1994.

[38] K e n n e th A. D e J o n g a n d W il l ia m M. S p e a r s . A formal analysis of the role
of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial
Intelligence, 5(1), 1992. citeseer.nj.nec.com/dejong92formal.html.

[39] G a l A. K am in ka a n d M ilin d T am be. Robust agent teams via socially attentive
monitoring. Journal o f Artificial Intelligence Research, 12:105-147, 2000.

[40] M in C h e o l K a n g , L a u r ie B. W a is e l , a n d W illia m A. W a lla c e . Team soar, a
model for team decision making in simulating organizations. In Simulating Organi
zations, Michael J. Prietula, Kathleen Carley, and Less Gasser, editors. MIT Press,
1998.

[41] S t u a r t K a u ffm a n . The Origins of Order : Self Organization and Selection in Evo
lution. Oxford University Press, 1993.

[42] STUART K a u ffm a n . A t Home in the Universe. Oxford University Press, 1995.

[43] S t u a r t K a u ffm a n a n d S. J o h n s o n . Co-evolution to the edge of chaos: Coupled
fitness landscapes,poised states, and co-evolutionary avalanches. In Langton [52], pages
325-369.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.airpower.maxwell.af.mil/airchronicles/apj/apj0/spr01/hays.htm
http://www.cna.org/documents/2797006110.pdf

BIBLIOGRAPHY 256

[44] S t u a r t K a u ffm a n , W il lia m G. M a c r e a d y , a n d E m ily D ic k in so n . Divide to
coordinate: Coevolutionary problem solving. Technical report, Santa Fe Institute,
1994.

[45] Orr K e l l e y . King of the Killing Zone. WW Norton and Company, 1989.

[46] Robert K ewley and Mark Embrechts. A computationally intelligent military
tactical planning system. IEEE Transactions on Systems, Man and Cybernetics, 2000.

[47] Robert H. K ewley. Automated tactical course of action development: A compu
tational intelligence approach. Technical report, US Military Academy Operations
Research Center, 2000.

[48] J ason K ingdon and Laura Decker . The shape of space. In Proceedings of the First
IE E /IE E E International Conference on Genetic Algorithms, pages 543-548, London,
1995. IEE. citeseer.nj.nec.com/kingdon95shape.html.

[49] K e n n e th E. K in n e a r , J r . Fitness landscapes and difficulty in genetic programming.
In Proceedings of the 1994 IEEE World Conference on Computational Intelligence,
volume 1, pages 142-147, Orlando, Florida, USA, 27-29 1994. IEEE Press.

[50] Donald Knuth. Sorting and Searching. Volume 3: The Art o f Computer Program
ming. Addison-Wesley, 1973.

[51] Maciej KOMOSINSKI. The world of framsticks: Simulation, evolution, interaction. In
Lecture Notes in Artificial Intelligence, pages 214-224. Springer-Verlag, 2000.

[52] Chris Langton, editor. Artificial Life II, Proceedings of the Workshop on Artificial Life.
Addison-Wesley, 1991.

[53] A v e r i l l M. L aw a n d W. D avid K e l t o n . Simulation Modeling and Analysis.
McGraw-Hill Book Company, 1982.

[54] J in J o o L e e a n d P a u l A. F ish w ic k . Simulation-based planning for multi-agent en
vironments. In Proceedings o f the 1997 Winter Simulation Conference, S. Andradottir,
K. J. Healy, D. H. Withers, and B. L. Nelson, editors, pages 405-412, 1997.

[55] Ia n O. L e s s e r , B r u c e H o ffm a n , J o h n A r q u i l la , D av id F . R o n f e l d t ,
M ic h e le Z an in i, a n d B r ia n M ic h a e l J en k in s . Countering the New Terrorism.
Rand Corporation, 1999.

[56] Gene Levinson. Crossovers generate non-random recombinants under darwinian se
lection. In Brooks and Maes [10], pages 90-101.

[57] Ruth Luscombe, Hlen Mitchard, and Andrew G ill. Using agent-based distil
lations to model human intangibles for dismounted infantry combat. In Land Warfare
Conference, Brisbane Australia, October 2002.

[58] H u m b e r to R . M a tu r a n a a n d F r a n c is c o J V a r e la . The Tree of Knowledge,
Biological Roots of Human Understanding. Shambhala Press, Boston, revised edition,
1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 257

[59] B. M c M u llin . Computational autopoiesis: The original algorithm. Technical
Report 97-01-001, Santa Fe Institute, Santa Fe, NM 87501, USA, 1997. cite-
seer.ist.psu.edu/mcmullin97computational.html.

[60] Melanie M itchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[61] M e la n ie M i t c h e l l , J o h n H. H o l la n d , a n d S te p h a n ie F o r r e s t . When will
a genetic algorithm outperform hill climbing? In Advances in Neural Information
Processing Systems 6, J. D. Cowan, G. Tesauro, and J. lspector, editors. Morgan Kauf-
mann, 2002.

[62] Modsaf 5.0 functional description document. United States Army Simulation, Train
ing and Instrumentation Command, January 1999. Prepared by the Science Ap
plications International Corporation and Lockheed Martin Informations Systems,
www.modsaf.org/publicmodsafl.html.

[63] K a i N a g e l a n d S t e e n R asm u ssen . Traffic at the edge of chaos. In Brooks and
Maes [10], pages 222-235.

[64] J an Paredis. Coevolving cellular automata: Be aware of the red queen! In Proceedings
of the 7th International Conference on Genetic Algorithms (ICGA97), T. Baeck, editor.
Morgan Kaufmann, 1997.

[65] Steve Park and Larry Leemis. Discrete Event Simulation: A First Course, un
published, 2000.

[66] C a r lo s - A n d r e s P e n a -R e y e s a n d M o sh e S ip p er. Fuzzy CoCo: Balancing
accuracy and interpretability of fuzzy models by means of coevolution, 2002.
url=citeseer.nj.nec.com/501020.html.

[67] P eter P. P erla. The A rt o f Wargaming: A Guide for Professionals and Hobbyists.
Naval Institute Press, 1990.

[68] E le n a P o p o v ic i. Understanding landscapes. Personal commnuication with the au
thor.

[69] T homas R ay. Evolution, ecology and optimization of digital organisms. Santa Fe
Institute Working Papers.

[70] T homas R ay. An approach to the synthesis of life. In Langton [52], pages 371-408.

[71] General Dennis R eimer. The army after next: Knowledge, speed and power. Mil
itary Review, pages 2-7, 1999.

[72] M i t c h e l l R e sn ic k . Turtles, Termites, and Traffic Jams. M IT Press, 1994.

[73] C raig R eynolds. Steering behaviors for autonomous characters.
www.red3d.com/cwr / steer / gdc99 / index.html.

[74] C raig W . R eynolds. Competition, coevolution and the game of tag. In Brooks and
Maes [10], pages 59-69.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.modsaf.org/publicmodsafl.html
http://www.red3d.com/cwr

BIBLIOGRAPHY 258

[75] F ield Marshall Erwin Rommel. Attacks. Athena Press, 1979. Reprinted from the
1937 book by the same title.

[76] Major General Robert H. Scales. Future Warfare. US Army War College,
Carlisle Barracks, PA, 1999.

[77] Lee Schruben. Simulation optimization using frequency domain methods. In Pro
ceedings of the 1986 Winter Simulation Conference, J. Wilson, J. Henrickson, and
S. Roberts, editors, pages 366-369, 1986.

[78] K arl Sims. Evolving 3d morphology and behavior by competition. In Brooks and
Maes [10], pages 28-39.

[79] Hokky Situngkir. Money-scape: A generic agent-based model of corruption. Work
ing Papers, 2004. Economic Working Papers Archive, Washington University, Saint
Louis, http://econpapers.hhs.se/paper/wpawuwpco/0405008.htm.

[80] W illiam M. Spears. Adapting crossover in evolutionary algorithms. In Proceedings
of the Fourth Annual Conference on Evolutionary Programming, pages 367-384. MIT
Press, 1995.

[81] W illiam M. Spears and Kenneth A. DeJ ong. An analysis of multi-point
crossover. In Proceedings o f the Foundation of Genetic Algorithms Workshop, pages
301-315, 1990. citeseer.nj.nec.com/97440.html.

[82] L uc Steels. The origins of intelligence, 1996.

[83] TARJA Susi. Social cognition, stigmergy, and artefacts [sic]: A comparative analysis
of theoretical frameworks for the study of computer-mediated collaborative activity.
Master’s thesis, University of Skovde, Sweden, 2000.

[84] Milind Tambe, J afar Adibi, Yaser Al-O naizan, Ali Erdem, Gal A.
Kaminka Stacy Marsella, and Ion Muslea. Building agent teams using an
explicit teamwork model and learning. Artificial Intelligence, 110:215-239, Feb 1999.

[85] K u r t T h e a r l in g AND T h o m a s S. R a y . Evolving parallel computation. Complex
Systems, 10, 1997. w w w 3.shore.net/ k ht/text/evpar/evpar.sh tm l.

[86] Y ukihiko T oquenaga, Isamu Kajitani, and T sutomu Hoshimo. Egrets of a
feather flock together. In Brooks and Maes [10], pages 140-151.

[87] J effrey Ventrella. Designing emergence in animated artificial life worlds. In
Virtual Worlds 98, Lecture Notes in Artificial Intelligence, pages 143-155. Springer-
Verlag, 1999.

[88] M. S. Voss. Complex adaptive systems + soft computing = emergent design systems.
In A SC 2000: Third IASTED International Conference on Artificial Intelligence and
Soft Computing, Banff, Alberta, 2000.

[89] Daniel S. W eld. Theories o f Comparative Analysis. MIT Press, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://econpapers.hhs.se/paper/wpawuwpco/0405008.htm

BIBLIOGRAPHY 259

[90] T ony W hite , Bernard Pagurek, and F ranz Oppacher. (asga): Improving the
ant system by integration with genetic algorithms. In Genetic Programming 1998:
Proceedings from the Third Annual Conference, John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, pages 610-617, University of
Wisconsin, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.

[91] A. Martin W ildberger. Introduction and overview of artificial life, evolving intelli
gent agents for modeling and simulation. In Proceedings o f the 1996 Winter Simulation
Conference, J.M. Charnes, D.J. Morrice, D.T. Brunner, and J.J . Swain, editors, 1996.

[92] Ronald F. A. W oodaman. Agent-based simulation of military operations other than
war small unit combat. M aster’s thesis, Naval Postgraduate School, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260

VITA

Steven Mains

Colonel Steven Mains was born in Downey, California on December 2, 1958. He grad

uated from the US Military Academy in 1980 with a BS in Arabic and Civil Engineering.

He received a MS in Systems Management from the University of Denver in 1990 and an

MS in Computational Operations Research from the College of William and Mary in 2000.

During his 24 years of active service as a U.S. Army Armor officer, he has served in

Cavalry and Armor units in Germany and Fort Hood. His operational assignments include

service in the 11th Armored Cavalry Regiment patrolling the Inter-German Border and the

1st Armored Division in Operation Desert Storm. A member of the original JFCOM Lesson

Learned Team, he led the Coalition Force Land Component Command Team deployed to

Kuwait and Iraq during Operation Iraqi Freedom. Subsequently, he has deployed to collect

Lessons Learned in Afghanistan and Kosovo.

His military education includes the Armor Basic and Advanced Courses, Ranger and

Airborne Schools, and the British Army Command and Staff College.

His military awards include the Defense Superior Service Medal, Legion of Merit, Bronze

Star, and Valorous Unit Award. His campaign medals include the Southwest Asia Service

Medal with two Battle Stars.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Optimizing combat capabilities by modeling combat as a complex adaptive system
	Recommended Citation

	tmp.1539734415.pdf.ZrHg4

