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ABSTRACT

Procuring combat systems in the Department of Defense is a balancing act where many 
variables, only some under control of the department, shift simultaneously. Technology 
changes non-linearly, providing new opportunities and new challenges to the existing and 
potential force. Money available changes year over year to fit into the overall US Gov
ernment budget. Numbers of employees change through political demands rather than by 
cost-effectiveness considerations. The intent is to provide the best mix of equipment to field 
the best force against an expected enemy while maintaining adequate capability against 
the unexpected. Confounding this desire is the inability of current simulations to dynami
cally model changing capabilities and the very large universe of potential combinations of 
equipment and tactics.

The problem can be characterized as a stochastic, mixed-integer, non-linear optimiza
tion problem. This dissertation proposes to combine an agent-based model developed to 
test solutions tha t constitute both equipment capabilities and tactics with a co-evolutionary 
genetic algorithm to search this hyper-dimensional solution space. In the process, the dis
sertation develops the theoretical underpinning for using agent-based simulations to model 
combat. It also provides the theoretical basis for improvement of search effectiveness by 
co-evolving multiple systems simultaneously, which increases exploitation of good schemata 
and widens exploration of new schemata. Further, it demonstrates the effectiveness of using 
agent-based models and co-evolution in this application confirming the theoretical results.

An open research issue is the value of increased information in a system. This disserta
tion uses the combination of an agent-based model with a co-evolutionary genetic algorithm 
to explore the value added by increasing information in a system. The result was an in
creased number of fit solutions, rather than an increase in the fitness of the best solutions. 
Formerly unfit solutions were improved by increasing the information available making them 
competitive with the most fit solutions whereas already fit solutions were not improved.

xiii
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Chapter 1

Introduction

The most extensive computation known has been conducted over the last billion 

years on a planet-wide scale: it is the evolution of life. The power of this compu

tation is illustrated by the complexity and beauty of its crowning achievement, 

the human brain.

-David Rogers

1.1 Statem ent o f the Problem

1.1.1 B u d getin g  as a  B alancing A ct

Procuring combat systems in the Department of Defense is a balancing act where many 

variables, only some under control of the department, shift simultaneously. Technology 

changes non-linearly, providing new opportunities and new challenges to the existing and 

potential force. Money available changes year over year to fit into the overall US Government 

budget. Numbers of employees (soldiers, sailors, Department civilians, etc.) change as a

2
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CHAPTER 1. INTRODUCTION  3

result of political forces1 rather than by an analysis of what is most cost-effective. The 

intent is to provide the best mix of equipment and organizations in order to field the best 

force against an expected enemy while maintaining a  capability against the unexpected. 

Armies seldom get it completely right when planning for an adversary. As British Historian 

Michael Howard puts it, we don’t have to get it completely right but we must get it “less 

wrong than the adversary” [29].

To find the best mix of technology and combat processes (tactics) in this very dynamic 

environment, the Department of Defense has developed the Force Development process. As 

will be seen, this system is hampered by a lack of modeling tools capable of capturing the 

complexity of combat and a way to find the best set of technology and processes in an 

extremely large solution space. This dissertation proposes a solution to these shortcomings.

1.1.2 T he Force D evelop m en t P rocess

The Force Development process consists of both top-down and bottom-up processes. The 

top-down process consists of annual mission, capability and budget guidance developed by 

the administration with input from Congress and passed through the Secretary of Defense 

and Joint Chiefs of Staff.2 The Joint Chiefs model alternative force structure and capa

bility options against projected threats and issue guidance to the services regarding their 

capability requirements and budget limitations.

1 “End strength,” or the number of troops in each service, is regulated by law. The services have input 
into the number, but actual control over the number resides in the Congress. Ideally, upward changes in the 
number of forces would be accompanied by corresponding funds to pay for the accession, training, salary 
and benefits for those extra employees, but in practice increases may not be accompanied by funding.

2The Chairman of the Joint Chiefs of Staff and the uniformed heads of the Army, Navy, Marines and Air 
Force.
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CHAPTER 1. INTRODUCTION  4

The bottom-up component is the result of changing threat capabilities, experience gained 

in real operations (such as Operation Iraqi Freedom or Bosnia), lessons learned at train

ing centers such as the National Training Center (NTC)3 and technological breakthroughs. 

As the threat evolves, services develop new ways to counter the changes. Technology pro

vides new opportunities th a t the services attem pt to  incorporate. The Army has defined 

the changes to be in one of five domains: Doctrine, Training, Leader Development, Orga

nization and Materiel [l].4 These domains are roughly listed in order of increasing cost. 

Changing doctrine,5 aside from a nominal cost to change some field manuals and institu

tional training packages, is essentially without cost. Training and Leader Development6 

changes are usually more expensive, as they may require new training devices, but the cost 

pales in comparison to organizational changes, which may require changing the number of 

people in the organization. This may require redistribution and retraining of people, as well 

as recruiting and training more people with new skill sets.

The most expensive domain in terms of direct cost is Materiel, which entails developing,

buying and fielding new systems. Each new system requires extensive engineering and 

testing to ensure tha t it can withstand the rigors of combat and operate in environments 

as diverse as high mountains and barren deserts. There is a non-trivial cost to establish 

a production facility at the beginning of a  system’s cost learning curve, particularly for

3At Fort Irwin, CA. The NTC is a very large desert training facility where units up to Brigade-level 
(3-4 Battalions or approximately 1500 soldiers) can operate a force-on-force exercise against an opposing 
force. Each vehicle on both sides is instrumented to record vehicle location and actions over time so that 
the reactions can be evaluated and to identify training shortcomings.

4Often these are abbreviated as DTLOM
5 Doctrine is defined as the “rule” that a force uses to defeat an enemy and to accomplish its mission.

For our purposes I will use the terms doctrine and tactics synonymously
®Meaning changing the way we assess, train and mature our leaders in institutional schools and unit 

training.
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CHAPTER 1. INTRODUCTION  5

resource-intensive systems like 70-ton tanks that have no civilian counterparts. The units 

receiving new equipment must be trained to use the equipment at not inconsiderable cost 

and their old equipment must be demilitarized.7

Adding to the cost at each higher-level domain is the fact that a change at one domain 

causes changes to the lesser-cost domains as well. A change of organization could require 

not only more equipment and soldiers. It could also require development of more leaders to 

command the new organizations. At the very least, it requires new training and doctrine.

Each service conducts extensive computer simulations followed by live testing of pro

posed solutions in an effort to find the least cost set of domain changes in response to 

requirements. To complement this process, each service staff balances solutions with the 

guidance received from the Joint Chiefs in an effort to develop coherent and effective one- 

and five-year spending plans. These plans, along with the assumptions and models used in 

their preparation, are in tu rn  reviewed by the Secretary of Defense, the Joint Chiefs, and 

Congress.8 Despite the amount of effort put into this process, analysis of combat systems is 

inherently complex due to the non-linearities of combat and the huge number of alternatives 

available to decision-makers.

7Usually the active forces receive new equipment first, so disposal includes moving their older displaced 
equipment to the reserve forces and subsequent disposal of the reserves’ equipment. Due to the amount and 
type of reserve forces, there may be a multiple cascade of equipment requiring movement to lower priority 
units and disposal. This cascading cost is included when considering new pieces of equipment and in part 
accounts for the high price tag of weapon systems.

8Not to mention every defense contractor whose system “lost” in the budget process and was not funded.
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CHAPTER 1. INTRODUCTION 6

1.1 .3  N on -lin earity  o f  C om bat

Combat is a peculiarly human phenomenon. The outcome is the collective result of the 

individual decisions of a large number of actors and their interaction with their fellow com

batants, the environment, the enemy, and their equipment. These “agents” act9 based on 

their individual understanding of the mission, their knowledge of tactics and the perceived 

threat. Although Generals can send orders to the front, or even deliver those orders per

sonally in order to influence the action by their personal leadership, the individual agent -  

the tank commander10 or the infantryman -  makes the final decision as to what action it 

takes.11 The action of these agents can be intense, chaotic and, to an observer, inscrutable, 

but it results in identifiable macro-level behavior in the overall system. Like the stock 

market, which is often described anthropomorphically as being “jittery” or “advancing,” 

defenses can be said to “buckle” or “strengthen” while assaults “sputter” or “overwhelm.”

The interaction of the agents is non-linear because of the concept of positive and negative 

feedback [3] [4] [19]. Positive feedback provides rewards based on the results of actions. 

Negative feedback penalizes the agent. In combat, as an attack progresses successfully, the 

attackers become more confident of success and press the attack harder. Success provides

9For my purposes I will discuss agents here without a formal definition, which will come later. The 
concept is evident enough for the purpose of description of the overall combat environment. For these 
purposes, I define tank agents as the entire tank system, which includes the crew and the combat equipment 
as if they are one entity. The same will be done with other types of agents.

10It is important to define tank commander as the sergeant or officer that commands an individual tank. 
The term tank commander is sometimes used by historians when discussing skilled leaders of large tank 
formations, like Rommel or Patton, to distinguish them from commanders who did not grasp how to use the 
new tanks effectively. Tank commander is the official Army term for one who commands a single tank and 
will be used throughout the dissertation as such.

11 Even Field Marshall Erwin Rommel found himself leading a one-man charge after ordering a squad to 
attack in Italy in World Weir I [75]. The “agents” in the squad decided the risk was too great and remained 
under cover.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 7

positive feedback, which increases the likelihood of further success. Similarly, local failure 

instills and reinforces expectations of ultimate failure, thus increasing the likelihood of 

failure.

Individual events and small units can have disproportionate effects. An example is the 

experience of the French Army near Sedan, FYance at the outset of World War II [15]. On 

May 13, 1940 inaccurate reports of the presence of German units nearby caused a French 

artillery battalion to reposition. As the unit moved, other units surmised tha t a retreat was 

occurring. W ithin two hours, the entire artillery support for the French 55th Division was 

in headlong retreat, allowing the German attackers a relatively easy victory in tha t area.12

Similarly, only 10 of the 117 German divisions tha t attacked France in 1940 ever broke 

free from their railway-based logistics systems. Those few divisions, even though they were 

equipped with equipment that was at best equal, and in most cases inferior, to tha t of the 

French and British forces, caused most of the collapse of the Allied Forces [76].

Effects of new capabilities13 on operations are also non-linear. In a large army, introduc

tion of a small quantity of some new piece of equipment generally has no effect on overall 

effectiveness. Once a critical mass is reached, however, the new equipment improves combat 

capability until reaching a point of diminishing returns where more of a particular type of 

equipment is not helpful and may even become detrimental to effectiveness.14 Chapter 2 

will review the current models and their shortcomings when addressing these non-linearities.

12This is not to imply that the German Army would not have been successful in their invasion of France 
without this incident. It is merely one example of non-linear interactions in military operations.

13This might be a larger cannon, improved speed or reduced visual signature.
14At some point a new capability would begin to divert resources from other higher-payoff activities and 

the effectiveness curve would turn downward.
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Chapter 3 will discuss how combat modeling can change to account for these non-linearities.

1.1.4 T h e  T yranny o f  M u lti-d im en sion a lity

A problem alluded to  above is the combinatorial complexity caused by the very large number 

of solutions possible when even a small number of systems and capabilities are considered. 

This exponential explosion of possible combinations forces the investigator to limit the 

number of candidate solutions either arbitrarily or through some sort of “Delphi Technique” 

where subject m atter experts select the most promising of the systems under study to keep 

the number of alternative solutions manageable.

To use a very simple example, consider the interactions between three types of weapon 

systems with five system capabilities each. Say the three systems are a tank, an infantry 

squad and an artillery piece and the five capabilities are speed, weapon range, vision dis

tance, survivability15 and fuel consumption. These parameters are continuous values, which 

results in an infinite number of combinations unless discretized into, say, five values. Even 

after such simplification of the problem by restricting the options, the solution space still 

consists of 1010 combinations.

This solution space, however, is not fully representative of the actual problem. It assumes 

that tactics are fixed across the solution space and tha t the numbers of equipment are static. 

Cost constraints should, as systems become more capable (and expensive), decrease their 

numbers in a force, inducing changes in the employment of that force. Clearly the tactics

15Quantified as millimeters of armor. More armor results in an increased probability of surviving a hit 
from an enemy weapon.
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CHAPTER 1. INTRODUCTION  9

would be very different if a force consisted of a large number of tanks and few infantry (as 

the US forces in the Gulf War and Operation Iraqi Freedom) or large infantry formations 

(as the Chinese Army in 1952). Including the different tactics tha t could be used with the 

different types and amount of equipment would increase the dimensionality of the solution 

space from its already daunting size.

Determining the appropriate tactics is surprisingly difficult without extensive analysis 

especially when the capabilities under study are novel. Often the best tactics are not 

obvious or are unacceptable to decision makers because of unconventionality or because 

they challenge the status quo. A historical example will suffice to illuminate this point. 

Brigadier General William “Billy” Mitchell was a great air power enthusiast in World War 

I. After the war, he championed many uses for air power, but his most famous is the 

proposed use of aircraft to defeat battleships. He theorized tha t an air fleet, operating from 

land, could defeat a  naval fleet.

He pressed for tests of his concept, which were staunchly opposed by the US Navy. Fear 

of increasing inter-service rivalry caused even other Army Generals to support Mitchell’s 

efforts only tepidly. He was finally able to get permission to test his concept on captured 

German battleships and excess US battleships due to be scuttled off Norfolk, VA in 1921. 

Mitchell’s pilots succeeded in sinking one of the largest and most heavily armored battleships 

in the world, the Ostfriesland, followed by the battleships USS Alabama, Virginia and New 

Jersey [26]. In doing so, Mitchell set conventional wisdom on its head and changed naval 

tactics forever. To truly develop appropriate tactics, they must be developed alongside the 

capabilities that they complement, rather than as an input variable or as an afterthought.
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Chapter 4 will explore how to search this multidimensional solution space.

10

1.2 Requirem ents For Combat Developm ent M odels

Prom this discussion, four requirements for combat models can be discerned. They must 

account for the non-linearity of combat. They must account for a myriad of potential tactics 

to best support the equipment capabilities. They must be able to search large solution 

spaces and they must do it quickly enough to be useful. The historical examples presented 

emphasize the non-linearity. They clearly indicate tha t the effect of forces on the battlefield 

can be disproportionate to the size and firepower of the force. This is because when a 

force surprises the enemy, employs an unexpected weapon or tactic, is more skillfully led or 

simply is more determined than the enemy, it will have more success than would normally 

be expected. It is not sufficient to count force strengths and attem pt to draw conclusions 

from an expected value derived from the force ratios. Although Werner Heisenberg said 

“The equation knows best,” [25] for a combat model, there is no closed form equation.

The requirement for multiple tactics based on the equipment mix raises another require

ment for combat models -  there must be a way to vary the tactics of the weapon systems 

based on capabilities and numbers automatically in order to compare the best tactics for 

one equipment mix to the best tactics for an alternate equipment mix.

The combinatorial complexity of the solution set requires searching extremely large 

solution spaces where trade-offs in and between DOTLM domains must be made in order 

to determine the best force for a  given situation and against a particular enemy.
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CHAPTER 1. INTRODUCTION  11

The stochastic nature of the interactions between the agents indicates tha t each alterna

tive must be run enough times to get some statistical certainty tha t one alternative is better 

than another. This increases the computing time required to search the solution space. The 

simulation must necessarily be fast16 and provide meaningful measures of combat capability 

in order to support weapons procurement decisions.

1.3 Proposed Approach

The problem under study can be characterized as a mixed-integer, non-linear optimization 

problem tha t lacks a closed-form representation but has an extremely large solution set. To 

address this problem, the research described in this dissertation uses simulation optimization 

combining an agent-based model to determine fitness of a selected solution with a genetic 

algorithm to choose from the very large solution space. The model will consist of tank 

and artillery agents that follow a rule set tha t can vary between generations along with 

the capabilities of the systems. The agent’s capabilities and tactics will be represented 

as a binary string formed into a “chromosome.” This chromosome defines the universe of 

alternatives, which allows a genetic algorithm to search the solution space. To enhance 

the genetic algorithm, the two systems will cooperatively coevolve. The overall fitness of 

the set agent types, which follow the rule sets encoded in their chromosome along with the 

physical characteristics, defines the fitness of the solution. Contribution of each type of 

agent to the overall fitness will not be determined. Solutions will combine and continue to

16Fast is, of course, relative. The simulation must support searching the solution space sufficiently quickly 
to be of use to a decision maker. This means that the solution space must be searched in a matter of days, 
at most. Longer than that would make the model too cumbersome to use in any but the most deliberate 
analyses of alternatives.
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the next generation or be eliminated from the solution sample based only on the overall 

fitness. Chapter 5 documents the results of this approach.

1.4 Contribution

This dissertation provides contributions to the corpus scientia in a number of areas. First 

it proposes a model tha t adapts both system capabilities and rule sets to solve a real- 

world problem. It provides proof tha t co-evolutionary genetic algorithms are superior to 

evolutionary genetic algorithms, a proposition that has been shown empirically, but has 

never been rigorously explained. In developing the model, this dissertation proposes a 

standard categorization technique for fitness landscapes that can be used as a first check 

as to whether a problem is suited to a particular solution method. In the discussion of 

Complex Adaptive Systems, it synthesizes a definition for them from the many that have 

been proposed and rigorously compares the characteristics of combat to the definition. 

Lastly, much has been w ritten about the ability to measure the value of information in a 

physical system, but the very issues of non-linearity and combinatorial complexity tha t have 

limited combat simulations have limited efforts to measure information. As a result, much 

of the measurement of the value of information has been inferential rather than direct. To 

test the value of the modeling process to measure information directly, an excursion was 

run and conclusions drawn.
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1.5 Classification Concerns

13

This dissertation is completely unclassified. All data used in this modeling effort was either 

gathered from open source web sites, such as the Federation of American Scientists, or, 

when not available, estimated by the author. The purpose was to explore an approach 

rather than develop an empirical answer to the problem. The model can be easily recoded 

with the classified data relevant to actual systems under study to develop a solution.
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Chapter 2

Relevant Work

To seek out the best through the whole Union, we must resort to the information 

which from the best of men, acting disinterestedly and with the purest motives, 

is sometimes incorrect.

-Thom as Jefferson

2.1 A ttem pts to Solve the Force Developm ent Problem

The problem described is not novel. It has been an area of interest for over 5000 years. 

This chapter will review the efforts to solve two of the problems outlined in the previous 

chapter -  modeling combat dynamically and searching the large universe of solutions.

2.1.1 M odeling  O rigins

Models or simulations typically are used when the system under study is unavailable or

too expensive to study directly in operation [6]. Likewise, simulation is often the only

way to model a system tha t is dynamic and evolves based on the attributes and actions

14
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of the participants. Combat fits these criteria precisely. It requires a huge investment in 

personnel, land, fuel and ammunition to conduct a  meaningful, non-lethal wargame (i.e. a 

live simulation) with actual troops and equipment. It is much more cost-effective to use 

other (non-live) simulation techniques to develop equipment and tactics before fully testing 

the concept with live troops in a realistic wargame. Confounding the problem of conducting 

a realistic wargame against a projected enemy is tha t the very army or armies tha t would 

be most useful as an opposing force would be unwilling to lend their expertise, manpower 

and equipment to such an enterprise.

Before computers, physical representations of armies were used in simulations. Minia

ture soldiers have been found in the burial effects of kings in ancient Sumeria and Egypt 

indicating that combat modeling may have occurred earlier, but combat modeling really 

can be said to have started when the Chinese General Sun Tsu developed a game called 

Wei Hai about 5000 years ago [67]. In the subsequent centuries, modeling was primarily 

in the form of a two-sided board game with rules for movement and tactics, but no fixed 

rules to adjudicate losses. In the Civil War Abraham Lincoln recognized that successful 

attacks generally required a 3:1 advantage over an entrenched defender [16] and a simple, 

quantitative rule-of-thumb for determining relative advantage was born.

This rule sufficed as a guide until the 1880’s when the Prussian Army devised Kriegspiel 

-  a board game played on a grand scale, filling the central square of the Kriegsakademie 

[67]. Students were assigned to work out the rate of movement for each unit represented and 

move those unit pieces tactically across a grid. The game board was configured with terrain 

data in each square. A group of “umpires” adjudicated losses based on their professional
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judgment and ensured tha t players followed the movement and combat rules.

Combat modeling gained increased sophistication in 1914 when English mathematician 

Frederick Lanchester [16] [36] proposed two sets of differential equations as the basis for 

determining the outcome of a battle. The equations sought to relate force ratios (attacker: 

defender) to loss rates. The first set of equations is called Lanchester’s Linear Law, or 

sometimes his “unaimed fire” equations. They are:

dA
—  =  —nA D  
dt

d D  A n—— =  —m A D  
dt

where A  is Attacker Strength, D  is Defender Strength, t  is time and n  and m  are rate 

coefficients developed from subjective evaluations of relative merits of equipment and tactics 

used by each side.

These equations relate the change of the attacker and defender strength in any time unit 

to a fixed proportion of the aggregate number of troops on both sides. They fail to account 

for positive feedbacks (such as increased aggressiveness caused by perceived success) or 

negative feedbacks (such as fear or disorientation caused by being surprised by an enemy). 

They also disregard the effects of terrain or unit movement during battle [19]. For instance, 

if one unit spreads its forces across a wider front, it presents a more difficult target for an 

enemy to fire at, so the proportion of soldiers killed in a time step should decrease. This 

battlefield adjustment is not explicit in Lanchester’s equations.
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The second set of equations are called Lanchester’s Square Law, or sometimes his “aimed 

fire” equations. Rather than losses being a proportion of the aggregate number of forces, 

losses to each force are a proportion of the number of troops firing at tha t force. The 

equations are

d4 = - kD
dt
dD
—  =  - c A  
dt

where A  and D  are attacker and defender strengths and t is time as before, with k  and 

c being rate coefficients tha t are a  function of the probability of the firing force hitting 

its target. As in Lanchester’s Linear Law, there is no adjustment for dispersion of forces 

across the battlefield. Nor are there benefits for movement, surprise, training or discipline. 

Presumably, some attributes, such as training, discipline, and relative weapon effects, were 

intended to be captured by n, m , k and c, but tha t assumes tha t these factors are somewhat 

uniform across both armies and in some way quantifiable.

Modifications of Lanchester’s Equations, however flawed, as well as the venerable 3:1 

rule, are at the heart of most combat models in use today. The accepted models remain 

linear and attritional in their approach. Although some advantages are given for attacking 

an enemy’s flanks or rear (usually in the form of a scalar increase in weapon effects), forces 

generally do not surprise an enemy and drive it from the field. In most simulations, forces 

fight to a predetermined threshold without regard to the way combat actually develops. 

Also, forces fight at the maximum level of capability based on the characteristics of their 

weapons, without regard to the intangible issues such as training, command, or fatigue.
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The problem of this approach is tha t combat is treated as a set of fixed, linear equations 

to be solved by Gaussian elimination. Combat is reduced from being the free-flowing result 

of the millions of interactions between soldiers, the terrain and machines to a Newtonian 

system where every action results in a  predictable, deterministic reaction. But combat is 

not a grandfather clock, it is dynamic. The agents not only react to their environment, but 

their reactions adjust over time to the changing situation. Later in this chapter, the state 

of the art for combat simulations will be compared against the requirement to be dynamic.

2.1 .2  S im plification  by E xclusion

The other issue identified for force development is the combinatorial problem. To combat 

this the approach is generally simplification through exclusion of what is deemed the “less 

interesting” solutions. The alternative solutions are heuristically limited to a number that 

can be evaluated with available resources while still satisfactorily searching the universe of 

alternatives. An example of this process is when the M l “Abrams” tank began development; 

the Study Director identified 128 potential capability combinations, which were whittled 

down to 72 potential candidates. T hat number was, in turn, reduced to a smaller number 

for actual analysis through a Delphi Process.[45] A problem with this technique was that 

the heuristics used by the participants depended greatly on their combat experience which, 

even when extensive in terms of time in combat, was generally narrow measured across 

the spectrum of conflict. The veterans of W WII, for instance, had years of experience in 

combat against a conventional, armored force, whereas Korean War veterans had experience 

against a conventional, infantry force. The Viet Nam veterans had experience against
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an unconventional, infantry-based force. Few had combat experience across the range of 

conflict. The WW II veterans insisted the tank be designed primarily for anti-tank warfare. 

The Viet Nam veterans insisted on emphasizing the anti-personnel capabilities. The tank 

loader was given a machine gun simply because the Study Director felt it was a good idea. 

Although there still is not a better system to reduce the number of potential candidates to 

a manageable number, this method strikes the author as distinctly unscientific a t best and 

potentially damaging to the force at worst.

2.2 Current Combat M odels

A review of the current models in use in the Department of Defense for ground combat 

follows. A description of the major models is presented then reviewed for adequacy against 

the requirements outlined in Chapter 1.

2.2.1 Janus

The most widely used combat development simulation used by the US Army is Janus. It is 

a two-sided, real-time, “man-in-the-loop,” interactive model tha t uses players to command 

individual units. JANUS is completely free-play. Human players can adopt any tactics and 

form any plan. Players set paths for their vehicles to follow while the game progresses, 

attacking and defending against an enemy controlled by other players. The players react to 

situations by applying their military judgment in order to replicate actual combat. Neither 

side can see forces on the other side, except where intelligence assets have detected the enemy
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or where units are in physical contact, in order to realistically portray the commanders’ 

picture of the battlefield and elicit realistic reactions.

A “man-out-of-the-loop” approach has been attem pted in order to get the high volume 

of runs required to draw statistically valid conclusions about alternatives. The concept is to 

play a scenario until all participants agree it is representative of how a battle should unfold 

given the relative capabilities and tactics of the two sides. The computer then iterates the 

scenario to approximate the mean for selected measures of effectiveness. The approach does 

not take into account tha t the combat action will evolve differently if conditions change. For 

instance, if a unit is unlucky and draws multiple successive low (although random) numbers 

and is wiped out early, the plans of the other units, and perhaps the overall force, should 

change to adjust for the un it’s loss. In this use of JANUS, units continue on the paths and 

timelines designated in the initial run, regardless of the altered situation.

In both the man-in-the-loop and man-out-of-the-loop techniques, changes in the number 

or type of equipment requires changes of tactics tha t must be implemented by subject m atter 

experts controlling the forces. The man-hours required for each changed situation precludes 

most studies from including more than a handful of alternatives.

Janus also suffers from the effects of a learning curve. Players naturally become better 

at playing the game as they perform runs. As a result, later runs generally receive higher 

scores and are not directly comparable with those from earlier runs. Although much time is 

spent designing the experiment to minimize these problems, they can never be eliminated.
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2.2 .2  M odular S em i-A u tom ated  Forces (M O D SA F )

Semi-Automated Forces (SAF) are computer-generated forces (CGF) that can respond to 

specific battlefield occurrences [62], The US Army, in conjunction with the other services, 

is pursuing the MODSAF program as a  training device tha t allows military units to train 

while minimizing the overhead required to portray adjacent and enemy units. The concept 

is that friendly and enemy SAF can operate on the simulated battlefield with manned forces 

so realistically tha t the players cannot distinguish manned forces from SAF. SAF can be 

used as friendly forces beside the manned force on a flank or as enemy forces tailored to 

look, act and perform as a chosen enemy army. Manned units use vehicle simulators to 

replicate their combat vehicles and allow them to see and hear the adjacent forces as they 

move in concert across simulated terrain.

SAF can be configured to behave in very realistic, but limited, ways. For instance if a 

leader orders a unit to cross a bridge, the SAF vehicles line up and cross without the leader 

having to micro-manage each vehicle. A parameter database contains behaviors required of 

each SAF based on its capabilities and role. Rote actions, such as those to be taken upon 

chance contact or actions required when under artillery attack, are automatically followed 

by SAF. SAF do not make battle plans or change their tactics based on changes in the 

equipment. The SAF commander must make those changes during initialization of the 

wargame or dynamically, during play, as the situation develops.

MODSAF has been developed as a training device, and therefore is focused on providing 

a realistic training environment. It runs in real-time, in order to allow training units to 

become familiar with how long tasks take and practice synchronization of all elements of
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combat power.

2.2 .3  Shortcom ings

Both of these models, although useful in many ways, exhibit shortcomings. The inability 

to automatically tailor the behavior of each agent to the situation in Janus results in the 

exploration of a severely restricted universe of alternatives when new equipment or tactics 

are proposed. Typically, a new combat system, such as a tank, replaces the old version 

in a simulation and the effects are noted. Scenarios are artificially limited by the capabil

ities of the analysts to play and analyze them. This approach is unsatisfactory for many 

reasons. Firstly, the new capability may require tactics to change. All efforts are made 

to determine the best new tactics required using subject m atter experts, but the time and 

manpower required for even simple changes can be prohibitive. If the change to equipment 

or organization is novel, there may even be additional runs required to determine the best 

tactics.

A new capability in one type of equipment may dictate a change in the number or qual

ity of other pieces of equipment. The combinatorial complexity caused by evaluating every 

capability and quantity of each type of equipment tha t could bear on the situation prevents 

this from being explored except in the crudest terms. Recalling the combinatorial complex

ity of the three combat system example used before indicates tha t Janus is inappropriate 

to meaningfully explore this solution space since the man-hours alone would be prohibitive.

Even if an organization had the manpower and computing power to conduct an exhaus

tive search of the solution space, enumerating the solutions is not straightforward. There
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are often both positive and negative interactions between capabilities. Determining the 

net result is problematic. For instance, adding armor increases survivability against a hit. 

The additional weight of the armor, however, negatively impacts the speed of the vehicle 

making it an easier target to hit. The added weight also impacts fuel consumption poten

tially causing a change of unit capabilities and, by extension, its employment. Better vision 

and weapon range improves survivability by allowing units to disperse over a larger area, 

but requires more fuel to move increased distances and probably requires faster vehicles, 

increasing the fuel requirement further. Assessing the net effects of all these changes and 

determining the proper tactics to account for them is difficult and increases the modeling 

time required.

MODSAF is designed for training, not combat development. As such, it replicates 

combatants well enough tha t soldiers undergoing training cannot tell machine-assisted forces 

from manned forces. It does not, however, run autonomously or change its plans based on a 

changing situation without human intervention. It cannot be run much more quickly than 

real-time since it relies on human players. This limits its ability to produce the runs required 

to search large solution spaces and develop statistically significant data  in a reasonable time. 

I t is well suited for what it was designed to do, but it is not a combat development tool.

Combat presents a mixed-integer, non-linear stochastic optimization problem where the 

interactions between agents are dynamic and must be dictated a t run-time. Current models 

are linear. Their plans are static without the intervention of human players, forcing the 

options to be artificially limited. Chapter 3 outlines some methods being proposed in 

simulation optimization to mitigate these problems.
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Chapter 3

Modeling Combat as a Complex 

Adaptive System

The Lord said to Gideon, “You have too many men for me to deliver Midian into 

their hands” . .. So twenty-two thousand men left, while ten thousand remained.

But the Lord sa id ... “There are still too many men. Take them down to the 

water, and I will sift them for you there” . . .T he Lord said to Gideon, “With 

the[se] three hundred m en... I will save you and give the Midianites into your 

hands. Let all the other men go, each to his own place.”

-Judges 7

It is enticing to rush headlong into modeling combat as a Complex Adaptive System 

given the apparent applicability and quantity of interest. Ilachinski is credited with the 

initial research into modeling combat as a Complex Adaptive System [34]. His modeling 

environment, EINSTein, has been used in some theoretical studies to explore its applicability 

to ground combat. Epstein, et al, used an agent-based model to explore civil disobedience

24
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situations and the effects of policing and military action [20]. Many, like Czerwinski, have 

theorized tha t we cannot understand the current form of combat without thinking about it 

as a  complex adaptive system [12]. Lesser, et al, Erlenbuch and Woodaman theorize tha t the 

current conflict scenarios tha t the United States faces, terrorism and low-intensity conflict, 

must be thought of as Complex Adaptive Systems and tha t combat must be modeled as such 

for the modeling to be appropriate [55] [21] [92]. Kewley has succeeded developing tactical- 

level orders by modeling small-unit combat as a Complex Adaptive System [46]. Goble has 

theorized the applicability of modeling combat as an alternative to current linear approaches 

[27]. Gill, et al, in New Zealand and Australia, have used agent-based distillations (as they 

call them) to study the human dynamics of combat [57] [24]. It is im portant to note that, 

despite the interest from many researchers, little formal analysis exists to show that combat 

indeed fits the definition of a Complex Adaptive System. This is, no doubt, in no small 

part due to the lack of an agreed definition for a Complex Adaptive System itself. This 

section will examine the many definitions and synthesize them into one definition. It will 

then compare combat to that definition to show the applicability of the approach. Finally, 

it will explain the agent-based model developed to conduct the research.

3.1 Definition of a Com plex Adaptive System

Despite the widespread interest shown in many disparate fields, there is little agreement on 

the precise definition for Complex Adaptive Systems. Researchers, it appears, have defined 

Complex Adaptive Systems in ways tha t fits their research goals and methods, mixing con

cepts from other fields in with nomenclature of their own. This is not a criticism; defining
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Complex Adaptive Systems in the taxonomy of the field of research allows ready applica

tion in the field, bu t it is im portant to understand how these systems are viewed across the 

relevant research in order to apply the concept to  the problem under investigation. W ith

out establishing a framework, the assumption tha t combat can be modeled as a Complex 

Adaptive System hangs unsupported in the air.

Holland [31] posited seven characteristics of Complex Adaptive Systems tha t have been 

accepted as the “gold standard” in some form by most researchers. These seven character

istics are:

•  Aggregation. Aggregation is used in two senses: First, that models are made 

up of smaller components aggregated into the larger model. Second, and more 

important, aggregation is the emergence of large-scale behaviors from the com

bined interactions of individual agents. This behavior may not be predictable, 

but can be explained after the fact.

• Tagging. Tags are attributes of agents recognizable by other agents. These 

might be size, shape or activity of ants tha t sends signals to other ants.

• Non-linearity. The relationship between system inputs and outputs is not 

definable by a set ratio. Holland’s example is the lynx-hare populations captured 

over time by the Hudson Bay Company. The populations oscillated between 

times of feast or famine in a  distinctly non-linear manner.

• Resource Flows. Flows refer to the transmission of information, energy, or 

goods across a network. This is most evident in economic models, but has 

analogues in other systems.
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• Diversity. Agents differentiate as they adapt to fill specific niches in the system. 

Removal of an agent from a system will result in a number of adaptations where 

the remaining agents seek to assume the role (or at least gain the resources) of 

the missing agent.

•  Internal Models. Agents operate on the basis of local knowledge, which drives 

a set of assumptions about the general state of the system in order to make de

cisions. The quality of these models is directly related to the long-term viability 

of the agent. If an agent is “wrong” enough about the state of its system it will 

cease to exist.

•  Building Blocks. Internal models rely on a limited sampling of the constantly 

changing environment, but models can only be useful if situations are repeated 

or the models will become inappropriate, and, therefore, inadequate for con

tinuation of the system. The component agents find themselves facing similar 

situations but perhaps in different sequences making their experience continually 

novel but, nonetheless, their models remain appropriate.

Other researchers, such as Voss [88], have reduced this number to just 5 requirements. 

He agrees with Holland tha t Complex Adaptive Systems require Internal Models, Building 

Blocks, and Emergence (like Holland’s Aggregation or Kauffman’s self-organization [42]). 

He further posits tha t Complex Adaptive Systems have the ability to exhibit novel behavior 

when subjected to a changed environment. Voss’ novel behavior requires systems to adapt 

to meet the new challenge. Voss further proposes that Complex Adaptive Systems require 

the presence of multiple agents exhibiting both diversity and complexity. Systems with a
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small number of agents would become trivial to analyze and would limit the adaptability 

of the system.

Steels, in his work on the nature of intelligence, focused on four attributes of systems: 

self-maintenance, adaptivity, information preservation and spontaneous increase in com

plexity [82]. Steels’ self-maintenance refers to the property tha t these systems actively 

establish and rebuild themselves by drawing materials from the environment. This has also 

been called autopoiesis [58] [59]. Adaptivity, as for Holland and Voss, indicates an ability 

to change structure or function in the face of environmental opportunities. Preservation of 

information allows the system to be independent of the existence of individual agents. This 

allows the elimination of agents without detriment to the existence of the system.

Spontaneous increase in complexity refers to the property tha t Complex Adaptive Sys

tems will develop an increasing number of parts, the interrelationships between these parts 

will become more complex, behaviors will become more complex or parts of the system will 

combine to operate as a component part of a higher-level, more complex system.

Dooley has distilled his definition to three behaviors and a description of the underlying 

agents [14]. In his characterization of Complex Adaptive Systems, order is emergent rather 

than predetermined, consistent with Holland. He further states tha t the system’s history is 

irreversible and the future is often unpredictable. The agents operating in (or making up) 

the system operate independently with schemata that determine how they view the world 

and how they react to what they perceive.

Others have tried a different approach, making the definition simpler, and, as a re

sult, much broader. Bankes, working at Rand [7], has proposed the characterization of
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Complex Adaptive Systems such tha t “no model less complex than the system itself can 

accurately predict in detail how the system will behave at future times.” Ilachinsky [33] 

has proposed tha t they are “non-linear, dynamical systems composed of many interacting 

semi-autonomous and hierarchically organized agents continuously adapting to a  changing 

environment.” .

If we compare these definitions to the real-world systems tha t spawned the research of 

Complex Adaptive Systems, economies [3], ecologies [87], biologies [66], webs of corruption 

[79], as well as the human brain [82], among others, we can see value in all these defini

tions. Although each confirms Gell-Mann’s observation that scientists would rather share 

each other’s toothbrush before sharing their nomenclatures [23], each accepts implicitly or 

explicitly tha t Complex Adaptive Systems share the following characteristics. They:

•  Consist of multiple interacting agents where agents are defined as independent 

acting entities that have attributes and operate on an internal model, or rule 

set, tha t governs their actions and reactions.

•  Adapt at the atomic (agent) and/or the system level. Adaptation can be 

changes in the attributes of the agent or system or the rule set tha t they operate 

under. As such, they develop novel responses to changing inputs.

•  Self-organize and, as a result, achieve stability without external input. The 

stable states are explainable, but not necessarily predictable.

• Exhibit interesting and complex behavior which implies non-linear, if not 

chaotic, behavior.
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This definition captures the essence of the definitions above and passes the acid test, 

which is to take commonly accepted Complex Adaptive Systems and compare them to 

the definition. W ithout belaboring each point, economic systems, biological and ecological 

systems all seem to fit this definition. As a result, this will be used for the remainder of 

this work.

3.2 Applicability

Based on this composite definition, the next step is to determine if combat can be said to 

be a Complex Adaptive System. Each of the four parts of the definition will be addressed 

in turn. Should combat fail any of these parts, it will be judged to not fit the definition of 

a Complex Adaptive System, and a different modeling approach adopted.

3.2.1 M u ltip le  A gen ts

Armies consist of large numbers of agents, from tank crews to artillery crews, infantrymen to 

truck drivers. Each fits the description of agents in tha t they are independent, have physical 

attributes, and act on internal models. T hat is, each tank crew and each infantryman must 

perceive the situation and make a decision how (or even) to follow his orders because 

he is often out of sight of the commander tha t gave them. As Major General Robert 

Scales has noted, when the Captain of a ship orders a turn, everyone aboard turns. In 

ground combat, each soldier is a freethinking actor tha t relies on his discipline, training, 

camaraderie, intelligence, knowledge of the situation and courage to turn  with his unit.
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These things he relies on are the internal models, or rule-sets, tha t he uses to sample his 

environment and determine his actions.

3.2 .2  A d ap ta tion

Armies, and the agents tha t constitute them, adapt as their experience grows. Soldiers 

adding armor protection to their vehicles to protect against experienced threats in Iraq is but 

one example. The Department of Defense is currently undergoing a massive transformation 

program to adapt to the threat from terrorism and so called “small wars.”1

Confronting new enemies, as when the Coalition in Iraqi Freedom shifted from fighting 

the tanks of the Iraqi Republican Guard to fighting irregular forces, causes changes in tactics 

from the individual- to Army-level. Physical changes, such as changing vehicle types and 

organizations, are structural adaptation. Changes in tactics are adaptations of the internal 

models tha t agents or groups of agents (units) use. Clearly, combat fits this part of the 

definition.

3.2 .3  Self-organization

Self-organization, or emergence of stability, is apparent in combat. Forces flow and collide 

in ways tha t belie the individual nature of the agents. It is commonplace for observers 

and historians to describe the movement of armies as “waves” or as to attribute to them 

anthropomorphic descriptions such as “brave,” “determined” or “ragged.” Despite the chaos

1To differentiate what is going on in Iraq today from, say, war with the old Soviet Union.
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often associated with direct combat, units form and disaggregate to accomplish missions and 

as a result of action. Those tha t show more cohesion, that is, those tha t more often achieve 

stability, are generally more successful. Armies achieve this stability without external input 

and can then be said to be self-organizing.

3 .2 .4  N on-linearity

As shown in the first chapter, non-linearity is an intrinsic property in combat and the reason 

that current modeling approaches are unhelpful. The examples of small forces causing 

disproportionate effects are the norm rather than the exception, the explanation of which 

has eluded historians and computer scientists alike.

As combat fits all four portions of the definition of a Complex Adaptive System, the 

premise tha t it is, and can be modeled as one, is accepted and a model can be developed 

accordingly.

3.3 M odel Description

The computer model has been developed using the methods recommended by Parks and 

Leemis [65] in six phases.

•  Description of the problem to be modeled in general terms.

• Development of a conceptual model of the problem.

•  Conversion of a specification model based on the conceptual model.
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• Development of a  computational model.

•  Verification tha t the computational model is in keeping with the specification 

model.

•  Validation that the computational model is consistent with the conceptual 

model.

3.3 .1  G eneral

There is any number of aspects of combat tha t can be used to develop a model. This 

research is focused on developing combat systems and is a proof of concept, so the problem 

can be simplified to include two types of combat systems placed in a specific scenario.

The model will simulate the interaction between tanks and artillery. These systems 

perform distinct battlefield functions. Tanks find enemy forces and engage them by direct 

fire with their own weapons or call for indirect fire from other systems. Artillery pieces 

position themselves out of range of enemy direct fire to provide tha t indirect fire. Tanks 

move together with other tanks, balancing the weight of fire available from massed tanks 

with the susceptibility tha t massing provides to enemy fire.

A realistic scenario tha t can be adopted is a battalion-level attack against a company

sized force in a prepared defense.2 The friendly, or Blue, battalion must capture an objective 

where the Red company is located. Red is tasked to defend tha t objective. This scenario 

has been chosen to focus the research on a manageable number of systems. As shown

2This initially places a set of 50 tanks and 18 artillery pieces attacking against 15 defending tanks 
supported by 6 artillery systems. These numbers and the types of systems will change as the solution space 
is searched, but this serves as an illustration of a starting point, or base case.
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earlier, the dimensionality of even a  small number of systems will cause the solution space 

to become very large. This provides a  sufficiently large solution space to search and yield 

some useful results while providing a bounded problem for this concept exploration.

3 .3 .2  C on ceptu al M odel

As discussed earlier, when equipment capabilities change, the rules by which the equipment 

is employed must change as well, so each system will exhibit physical as well as behavioral 

attributes. Physical attributes will range from types of weapons to the power of sights. 

Armor protection is a  key defense mechanism, so many levels of protection will be available. 

The addition or subtraction of armor affects the performance of other aspects of each system, 

so speed and fuel requirements vary accordingly.

The forces are placed appropriately for an attack and a defense. Attacking forces are 

positioned, initially, out of physical contact with the defender so as to allow them to ap

proach the objective and encounter the enemy. Placing them in immediate contact would 

bias the results towards systems tha t acquire and fire at enemies quickly without allowing 

any benefits from maneuver or the complementary use of multiple types of systems.

As forces come into contact, the sight system on board allows acquisition of the enemy 

at a range consistent with its capabilities. The acquiring system then calls for indirect fire 

and engages with direct fire within its capabilities.

Movement of the systems depends on their physical relationship to their fellows, the 

enemy and the objective. Units approach their objective while they perceive a reasonable 

probability of success and gain confidence from the presence (and nearness) of their fellow
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systems. The three priorities, movement to the objective, movement with friendlies and 

attaining a  proper position to attack (or avoid altogether) an enemy, constantly tug at each 

system. The priorities change as the perceived threat to the system changes.

Based on the perception of the situation, forces can continue their attack or defense, or 

break off the engagement. The action ends when attacker is in possession of the objective 

or the defender has successfully defeated the attacker.

3.3 .3  Specification  M odel

The specification model requires determination of the structures and the states tha t will be 

modeled as well as the criteria for the state changes. In this model, there are two types of 

systems. Each set of system types, tha t is each combination of a  type of tank and a type of 

artillery system, has a large number of potential states, which correspond to the number of 

solutions available in the solution space. The type of equipment that makes up the system 

governs the physical attributes of each system. The tactical attributes are made up of the 

relative importance of the three movement priorities a t the perceived threat. These physical 

and tactical states will be developed in the following sections.

3.3.3.1 Physical States

Only a portion of the many possible characteristics of each system need be available for 

selection, because some characteristics are derivative of other physical attributes. Speed, for 

instance, a key system attribute, is a result of interaction between protection (the weight of 

the armor) and engine capability. Survivability is a combination of speed, protection, target
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acquisition and weapon capability. As a result, the following list of attributes constitutes 

the set of physical states for each system.

•Weapon Type

•Ammunition Type

•Engine

•Amount of armor protection

•Target acquisition system

•Ammunition capacity

For tanks, the possible weapon types are: missiles, smaller, faster-firing guns, and larger, 

slower-firing guns. Ammunition is selected from missiles and conventional gun ammunition. 

Five potential engines are available. Armor can vary between very thin (Om) and very thick 

(1.5m) at 0.1m increments.

Each solution selects one of four target acquisition systems: direct view optical, infrared, 

thermal, and millimeter wave radar. The ammunition capacity will be allowed to vary 

between 20 and 70 rounds.3

For the artillery piece, the same set of capabilities is available. The weapon and ammu

nition types are tailored to reflect the purpose of artillery on the battlefield, but the options 

are similar in number. The engine, armor, and target acquisition systems select from choices 

similar to those available for the tank. Ammunition capacity will cover a larger range, from

3A round is defined as one missile or one bullet fired from a gun.
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20 rounds to 100, to reflect the higher ammunition usage of artillery compared to current 

tanks.

3.3.3.2 Tactical States

The tactical states are a combination of the movement attributes and the perceived threat. 

The movement rules are:

•Maintain formation with other friendly forces.4

•Move into an advantageous position in relation to the enemy.

•Move to the objective.

The priority of each rule will depend upon the agent’s mission and its perceived threat. 

The threat perception is influenced only by what the agent can see, and can vary from 

system to system based on their location relative to other friendly systems and the enemy.

The mission and threat environments are partitioned into nine combat levels. Each level 

has a tuple tha t gives the relative priority of each of the three movement rules. For example, 

as the threat increases, the priority for staying in formation could increase, decreasing the 

priority of moving to the objective. The tuples will be different for tanks and for artillery in 

order to allow the tactics of a tank and an artillery piece to be replicated accurately. The 

Mission/Threat levels are:

• No threat.

4The appropriate distance between vehicles was coded in the chromosome and allowed to vary from 25m 
to 200m.
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• Attack, Low Threat.

• Attack, Medium Threat.

• Attack, High Threat.

• Attack, Panic.

•  Defend, Low Threat.

•  Defend, Medium Threat.

•  Defend, High Threat.

•  Defend, Panic.

A sample table of tuples is shown below:

Table 3.1: Typical Rule Set Tuples.
Rule 1 Rule 2 Rule 3

M ission/Threat Friendly Enemy Objective
No Threat 10 0 1

Atk, Lo 2 5 1
Atk, Med 3 10 1
Atk, Hi 1 10 0

Atk, Panic 0 10 0
Def, Lo 1 0 2

Def, Med 3 0 2
Def, Hi 1 1 1

Def, Panic 0 1 0

In this example, the nine M ission/Threat levels are shown with the relative weight of 

the three movement rules. In the No Threat combat state, it is very important that the
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tank get into formation with other friendly vehicles, so the value for “Rule 1: Friendly” in 

the tuple is 10. There is no weight assigned to moving to a good location versus the enemy 

since there is no threat. Moving to  the objective rates a  priority of 1.

Similarly, in the Atk, Lo state, maintaining formation is im portant, receiving a 2, but 

not as im portant as moving against the enemy, which rates a 5. Moving to the objective 

rates only a small value; in this case a 1.

These values are relative values, so a (1,1,1) is equivalent to (2,2,2). We can also say 

tha t in Atk, Lo it is 40% as im portant to stay in formation as it is to attack the enemy, but 

in Atk, Med it is 30% as important.

3 .3 .4  C om pu tation al M od el

The set of states defined in the specification model was turned into a computational model by 

determining the simulation method, laying out the movement methods, and implementation 

of the physical and tactical attributes available to each system.

The model is an agent-based model using Mobile Autonomous Agents (MAA)5 moving 

on a two-dimensional lattice. The agent types are defined as tank and artillery systems. 

Next-event simulation was used where events are scheduled discretely, as their movement 

and actions dictate, in a global list. The update for each agent is asynchronous. Events are 

either moves or shots. As an event occurs, the agent surveys its environment, determines 

the next event, and schedules it. “Collisions” between agents are avoided by preventing

5 A full explanation of an MAA is contained in section 4.3.
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agents from occupying the same spot. If two agents select and are scheduled to move to the 

same location, the earlier moving agent occupies it. The later-moving agent will divert to 

a nearby location when it is his time to move.

The tank and artillery attributes were coded as genes in a chromosome. This convention 

was adopted based on the work outlined in the next chapter, which allows searching the 

solution space with a genetic algorithm.

There is no explicit commander on either side in the simulation. Like ant simulations, 

tanks and artillery communicate through passive stigmergy-that is, through their actions 

and interaction with the environment. The tactics embedded in each agent result in emer

gent overall action.

Each system scans the visible region by comparing its own location with the location of 

other agents by scanning linked lists of friendly and enemy forces. If the distance is smaller 

than the visual range of the system, the friendly or enemy is counted. This vision approach 

was adopted over having each agent scanning its entire visual area for enemy to speed the 

simulation without loss of fidelity. The number of agents will remain relatively small while 

the size of the visual area increases as a square of the range. Scanning a  visual area requires 

0 ( r 2) time where r  is the visual range. This could bog the simulation down when visual 

range becomes large, whereas the small number of agents (initially less than 100) can be 

scanned in linear time relative to the number of agents.
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The operational area is a 20,000-meter by 20,000-meter area represented by an 800x800 

grid. Each lattice point is 25m away from its von Neumann neighbors.6 Movement is 

allowed in the x  and y  planes. Changing the apparent height of the vehicles as they move 

and become set in position simulates terrain. This “pseudo-terrain” allows full freedom of 

movement for all agents, but gives credit to agents tha t stop to fire (or are defending) for 

using all available local cover.

Threat is defined two ways, the force ratio of enemy to friendly agents and the distance 

to the nearest enemy. If no enemy agents are in sight, the agent is in the No Threat state. 

If the force ratio7 is below 0.3 and no enemy is within |  of the enemy’s weapon range, the 

state is “Attack, Low Threat.”

As the threat level rises, either by the force ratio increasing or by an enemy coming close 

to the system, agents will enter a defensive combat state. When the force ratios improve 

either through destruction of or retreat by the enemy or through increase in the number of 

friendly agents in contact, the agents will adjust their Mission/Threat levels and return to 

the attack.

Movement is performed like Craig Reynolds’ Boids [73]. Agents prioritize the movement 

rules and select a move based on the most eminent rule. For instance, in Rule 1 (maintain 

formation) the agent attem pts to move to a spot a t a 45deg angle from its two nearest 

neighbors at a distance specified in the characteristics of the agent. Tanks normally move 

in a wedge formation to present the maximum number of weapons toward an enemy while

6The von Neumann neighborhood contains the four positions at the cardinal directions from the lattice 
point. The eight adjacent positions constitute a Moore neighborhood.

7Computed as number of enemy agents divided by number of friendly agents.
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presenting the smallest target. In the simulation, the agent finds the best location relative 

to the nearest two friendly agents and computes the distance to tha t location. The distance 

multiplied by the Rule 1 priority value from the tactical tuple results in a priority value for 

moving to tha t location.

The simulation then determines the priority of occupying a location relative to the 

enemy. If any enemy is in sight, it determines the best firing location against the visible 

enemy. The spot cannot be outside the range of the agent’s weapons (or he could not fire 

at the enemy) but should not be so close tha t the enemy has a high probability of killing 

the agent. The agent finds a location tha t best fits the criteria, computes the distance, 

and multiplies the distance by the Rule 2 element from the tactical tuple to determine the 

priority value for moving to engage the enemy.

In the same way, the tank computes the distance to the objective. The distance is 

multiplied by the Rule 3 element of the tactical tuple to determine the priority of moving 

to the objective. The highest priority value is the most eminent rule and the agent moves 

in accordance with it. To smooth the movement of the agents and prevent agents jumping 

to a distant location in a single event, each agent is limited to moving just one square in 

its Moore neighborhood. The agent moves one grid toward the location dictated by the 

most eminent rule. At each grid, the agent reevaluates the threat and its neighbors, then 

determines and schedules the next move.

Both the Attack and Defend missions have a Panic state to allow agents in a high 

threat environment to panic with a small probability. This is to allow forces to attem pt 

to break off the attack or defense, and possibly abandon the mission. This was done to
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introduce the effect discussed in Chapter 1 where real soldiers, either through loss of nerve 

or misunderstanding of their environment, react inappropriately.

If enemy agents are in range, a  tank will shoot at the highest-threat enemy agent and 

call artillery on the others. Tanks can shoot from stationary positions or on the move. If 

they shoot on the move, a small accuracy penalty is assessed on the shot, however. Artillery 

must be stationary in order to fire. Each event is scheduled and executed in turn. As each 

event is complete, the vehicle determines and schedules the next event.

Probability of hit, P/t , is determined by the range and accuracy of the firing weapon and 

the size of the target. Friendly and enemy movement degrades accuracy. A draw from a 

uniform distribution compared to the Ph determines if the target is hit. Probability of kill 

given a hit, P^\h, is determined from the amount of armor on the target and the attack angle 

of the shot. Armored vehicles have their armor concentrated in the front 60° to protect the 

crew from the majority of hits. P}.\h decreases if firing at the front of a vehicle. A draw 

from a uniform distribution compared to the P^\h determines if the agent is killed. If so, it 

is removed from the lattice.

When a vehicle is hit, but not destroyed, its capabilities are decreased by an arbitrary 

value drawn from a uniform distribution.8 When the cumulative effect reaches 1, the vehicle 

is destroyed and removed from the lattice.

The Red force agents will replicate forces using Soviet-designed equipment. Although 

the Soviet Union is not in existence, many states around the world use its equipment and,

8No data is available on the most likely amount of damage a tank can expect if not killed, so this is a 
simple way to assess a penalty for being hit. If more data becomes available, this penalty assessment can be 
adjusted.
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as a group, constitute a reasonable threat set. This also allows the system threat data to 

be derived from open sources such as Jane’s Defence Publications.

The simulation stops when one side is defeated, defined as when Blue reaches the objec

tive, is destroyed or runs out of time. These criteria allow Blue to receive credit for mission 

accomplishment by either destroying Red or driving Red from the objective, but require 

mission accomplishment in a reasonable amount of time. This prevents giving credit solely 

to attritional solutions, one of the critiques of current wargames. It also ensures that Blue 

cannot simply avoid contact with the enemy and still receive a score.

The fitness function will require mission accomplishment (seizure of the objective) as 

the first test before any fitness score is given. If a solution does not accomplish the mission, 

its score will be 0. T hat is because the first test in combat is mission accomplishment. This 

is analogous to retaining only solutions in the feasible region of a simplex search. Once the 

mission accomplishment gate is passed, fitness will be scored with the following function:

2006 + T - t  
oo

where b and r  are the numbers of Blue and Red agents at the end of the simulation and bo 

and tq the respective numbers at the start. T  is the arbitrary cut-off time for the simulation 

and t  is the amount of time required to accomplish the mission.

This scoring system gives a solution two points for each percent of the friendly force that 

survives and one point for each minute under an arbitrary time limit tha t blue accomplished 

the mission. The scoring system is designed to reward accomplishing the mission as quickly
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as possible while protecting friendly forces. It uses percentages of Blue agents that survive 

in order to allow comparison between solutions with differing numbers of vehicles.

This is intentionally a simple scoring system. More elaborate scoring systems could be 

devised to take into account many other attributes, but the purpose of this dissertation is to 

demonstrate a proof-of-principle tha t this modeling and optimization approach is a viable 

alternative to  the linear, attritional approaches available.

The full code for the computational model is not reproduced here, but is at Appendix 

A of this dissertation.

3.4 Verification

To ensure that the computational model conformed to the specification model, extensive 

test were performed to measure each agent’s movement priorities and its ability to shift 

from one mission/threat state to another. The movement rule priorities were evaluated 

off-line for a small number of agents and compared to those generated by the model.

When the agents successfully passed the movement tests, they were allowed into direct 

and indirect fire contact where they had to not only move, but also evaluate their threat 

levels and adjust their movement rules accordingly. Once successful, they were allowed to 

generate direct fire shots and calls for indirect fire.

These shots were evaluated to ensure tha t agents were hit in the probability expected, 

and tha t the effects of the shots were accurately recorded. If the agent was hit, but not
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killed, the appropriate hit penalty was evaluated and compared to tha t produced in the 

simulation. If killed, removal from the simulation was confirmed.

When the “mechanical” workings of the model were deemed to be satisfactory, it was 

compared to the conceptual model in the final phase of model development.

3.5 Validation

Validation th a t the model accurately portrays the conceptual model is the most difficult 

phase, given the emergent behavior of a Complex Adaptive System. Verification of individ

ual actions does not ensure tha t they will combine to replicate emergent behavior exhibited 

in practice. Validation, then, has to take a top-down approach where the overall results are 

compared to  known situations to determine if the actions are reasonable and explainable.

To do this, a visual output module was added to the model to allow researchers to 

watch the interactions of the agents and the flow of the simulation. Initial values for the 

Blue and Red agents based on current systems9 were used to “calibrate” the initial runs. 

W ith some trial and error for the tactical rules, the runs were recognizable as typical combat 

formations and movement. Results from many runs were evaluated in order to ensure that 

the observed results were typical. When the results were deemed satisfactory, the physical 

and tactical attributes were varied to ensure tha t explainable results were developed in 

multiple situations. Only after extensive testing was the simulation deemed sufficient and 

runs made with solutions selected by the genetic algorithm.

9With data supplied by the Federation of American Scientists web site and Jane’s Defence Systems.
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Chapter 4

Searching the Space

It is an error to imagine tha t evolution signifies a constant tendency to increased 

perfection. T hat process undoubtedly involves a constant remodeling of the 

organism in adaptation to new conditions; bu t it depends on the nature of those 

conditions whether the directions of the modifications effected shall be upward 

or downward.

-Thom as H. Huxley

After addressing the issue of dynamic modeling in the last chapter, the next issue to be 

addressed in this dissertation is searching the hyperdimensional solution space. First, the 

nature of the solution space needs to  be determined, and then a solution developed. In this 

section, the fitness space will be explored and a framework for categorizing fitness landscapes 

discussed. Once the state of the landscape is known, then existing search methods will be 

discussed with one being adapted to  use in this problem.

47
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4.1 Characterization o f the Fitness Space

48

Many search techniques have been advanced to solve problems with high dimension hyper

planes and very large solution spaces. Absent in this discussion has been a standardized 

representation of the landscapes themselves, although many authors have indicated tha t 

the shape of the landscape is the most im portant factor in determining problem “hard

ness” given a particular solution technique. The literature refers to landscapes as “lumpy,” 

“rough,” “noisy,” “deceptive” and even “porcupine-quilled,” [2] [68] but only general def

initions of these terms has been provided and even less has been discussed on how the 

landscapes came to  be categorized as such. Simple landscapes, tha t is, landscapes with 

small dimensionality, can be graphed and categorized “by eye” but interesting landscapes 

are, by their nature, high dimensional and resist simple visual categorization. I t appears 

tha t this issue has been ignored for two reasons. First, the landscape metaphor, introduced 

by genetic biologist Sewall Wright in 1932, is so strong that researchers in all fields grasp it 

as a concept immediately without further study [37]. Second, exploration of the underlying 

landscape has been foregone in favor of exploration of the solution methods themselves. 

These reasons avoid the key factor affecting suitability of the selected solution method.

The shape of the fitness landscape results from two factors, the problem itself and its 

abstraction for solution. The relationship between those two parts describes the resulting 

shape of the landscape. An example can be y  =  x 2 which, when using real numbers, is a 

smooth, continuous function [48]. If it is abstracted using binary notation and sorted by
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Hamming distance, it will provide a non-smooth landscape1.

Landscapes tha t result from binary representations are very common when using genetic 

algorithms as a solution method, which makes it all the more surprising that there has been 

no common way to characterize those landscapes. As the problem under study is a  mixed- 

integer, non-linear problem whose solution is represented by a binary string, this discussion 

will limit itself to tha t class of problems.

Clearly the entire landscape cannot be mapped to determine the shape because of the 

size and because the high dimensionality restricts visual mapping. Selected portions can 

be mapped if the size and dimensionality are reduced sufficiently. To do this requires 

selecting a point, defining its neighborhood, and providing a standard process by which the 

neighborhood is to be represented. The point can be selected a t random, and, if done a 

sufficient number of times, these multiple looks can allow a general characterization of the 

overall landscape.

Defining the neighborhood is not as simple as selecting the stating point. One proposal 

has been to map all the possible vertices tha t can be reached in one crossover function from 

two solutions [49]. This is intuitively attractive, for two reasons. It limits the size of the 

partial landscape to 2C(2, n — 1) where n is the number of genes in a single solution chro

mosome. The size remains manageable even for very large landscapes. The representation 

of the neighborhood, however, is problematic. In what order do the solutions appear on

1 Kingdon and Decker used this example to show that landscapes were a result of the interaction between 
the problem representation and the solution method. I propose here that many solution techniques could 
be attempted given the problem and its abstraction, so the solution is not as important to the shape of the 
landscape as the abstraction of the problem.
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the x and y axes of the graph? The representational method greatly affects the perceived 

shape of the landscape.

This dissertation proposes a different approach, defining the neighborhood as all points 

that have a Hamming distance of either one or two from the randomly selected point. This 

limits the size of the partial landscape to n  — 1 and C (2, n  — 1) respectively. It recommends 

an obvious two or three-dimensional presentation of the resulting partial landscape. The 

position of the genes “flipped” from the original solution can define the position on the x  

or x  and y-axes. The greatest benefit of this system is tha t it has wide applicability across 

all landscapes tha t use binary strings.

Two examples follow th a t using this method to restrict the size and dimensionality of the 

subject function. In the first, all solutions with a Hamming distance of one from a randomly 

selected solution are evaluated and the resulting partial fitness landscape graphed. The x- 

axis represents the position in the binary string tha t has been changed from the original 

solution. The y-axis represents the fitness of the solution. This graph indicates that around 

a given solution, the fitness landscape is generally flat, but is punctuated by spikes both of 

both improved and degraded fitness. This can be done at several randomly selected points 

across the landscape in order to gain an understanding of the shape of the landscape.

The following figures present the neighborhood of all points with a  Hamming distance 

of two away from a randomly chosen solution. This three-dimensional half-matrix provides 

a wider view of the points around a  solution and a more complete characterization of the 

neighborhood. This graph shows tha t the landscape around this point is again flat with
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F igure  4.1: Two-dimensional Landscape Representation.
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distinct regions of increasing and decreasing fitness.

In order to focus on a sample of the partial landscape under study, the area corresponding 

to flipping the binary value contained in the first 10 positions has been extracted. This allows 

more detailed analysis of the areas tha t are sensitive to changes in the position values. In 

this case, tha t analysis reveals tha t fitness is highly sensitive to the values contained in 

the first 25 positions with a region of sensitivity between the 105t/l and 139th positions. 

Although the actual results of the modeling will be covered in Chapter 5, the sensitivity 

exhibited in the first 25 positions indicates tha t fitness is sensitive to the physical capabilities 

of the tank and tactics used when threat is low. The sensitivity between the 105t/l and 139t/l
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F igure  4.2: Three-dimensional Landscape Representation.
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positions indicates tha t changing the capabilities of the artillery piece can impact the fitness 

of a solution more often negatively than positively. The broad areas between those regions 

indicates that the solutions are relatively insensitive to changes to the values contained 

there.

This information is valuable for two reasons. First, some solution techniques are inap

propriate to particular landscapes. Knowledge of the landscape shape allows a researcher 

to select a more amenable solution technique or problem representation. Second, this infor

mation could indicate areas of sensitivity and insensitivity to changes to particular genes 

in the chromosome. Identifying areas of improvement could alert a researcher to ensure
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F igure  4.3: Close-up of a Portion of the Three-dimensional Landscape Representation.

F itness 200

Flipped Positions

tha t those landscape regions are specifically searched. Identifying “sleeper” genes, or areas 

of insensitivity, could allow a shorter solution chromosome and a  correspondingly reduced 

solution set, improving overall search performance.

4.2 Available Approaches

4.2 .1  D erivative A pproaches

Simulation optimization requires a method to search through the hyper-dimensional solution 

space presented by the options and a way to evaluate each solution dynamically. Several
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methods of searching the solution space are discussed below followed by an approach to 

building dynamic models.

4 .2 .2  Frequency D om ain  M eth od

Simulations in which each attribute set requires a  simulation run are called “run-oriented” 

simulations [77]. An alternative to run-oriented simulations is to vary the inputs in a known 

manner during the simulation run and evaluate the effects on the simulation. The Frequency 

Domain Method is used to test the sensitivity of model output to input parameter changes. 

This method is appropriate to  modeling a system like a power generation plant that operates 

at a steady state. The output of the plant can be monitored as the attributes change and 

conclusions drawn as to how to optimize the system. Combat operations are not steady 

state; they unfold over time as forces move and present themselves to the enemy. A sort 

of steady state could occur if forces become stalemated. In this case, however, each force 

will attem pt to find a solution to break the stalemate and move away from steady state. 

Combat is best represented by terminating simulations [54] which makes the frequency 

domain method inappropriate to evaluate most combat operations.

4 .2 .3  D ifferential Q ualita tive A nalysis

Differential Qualitative Analysis (DQA) is a method that perturbs an attribute of a system 

then follows the perturbations through a system in a  forward-chaining method to determine 

the overall effect [89]. This works well if the interactions can be quantified and if they occur 

in the same order. In combat, small changes in the early portion of a battle can result in
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later interactions occurring in different orders, or not occurring at all. This would make 

DQA inappropriate to apply to combat simulations.

4 .2 .4  R esp on se  Surface M eth od ology

Response Surface Methodology (RSM) attem pts to cut off large portions of the solution 

space by evaluating a portion of it and determining the direction of maximum improvement 

[53] [6]. An ensemble of model runs is made to determine an initial response surface con

structed of many single or multiple linear regression models. The gradient representing the 

direction of greatest ascent 2 is determined. More simulation runs are made to determine 

another response surface in the direction of the gradient and the process iterated until a 

solution is found. This method works well in an objective landscape tha t presents wide 

slopes leading to a single global maximum. Complex functions tha t result in a landscape 

characterized by sharp ridges and multiple local maxima are unsuited for this kind of anal

ysis. A system with a large number of attributes which interact is likely to present just 

such a complex landscape with many local maxima [42].

Grier, et al, attem pted to use RSM to find the best mix of Air Force aircraft and weapons 

in a scenario set in Southwest Asia against an Iraqi-based threat [28]. They used 26 runs of 

a model called THUNDER3 and captured 34 output metrics. These metrics were mapped to 

seven meta-variables, which corresponded to seven of the nine campaign objectives identified 

in the experimental design. In the end, only five of the seven meta-variables could be fitted

2If maximizing the objective function.
3THUNDER is a deterministic air combat simulation that uses fractional exchange rates (meaning that 

losses can be in fractions of an aircraft or target). It takes a long time to set up and run each iteration. This 
long set-up and run-time is the motivation for an approach like this that limits the runs required.
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with a response surface, and of those, four had a correlation coefficient below 0.9, indicating 

that the fitness of the surface was poor. Their approach made a  valiant attem pt to overcome 

the shortcomings of the model, bu t does not offer a way ahead. RSM appears to be of limited 

use in optimization of combat simulations.

4.2 .5  E volutionary (D erivative  Free) A pproaches

Evolutionary Algorithms include Evolutionary Strategies, Evolutionary Programming, Ge

netic Algorithms, and Genetic Programming [13]. Other evolutionary methods have been 

suggested, but remain at their core, modifications of these broad approaches. The basis of 

evolutionary algorithms is rooted in nature where plants and animals compete and cooper

ate in search of resources [60]. The more successful become stronger and are more likely to 

mate, passing along their genes to their offspring. The offspring in turn, compete and if suc

cessful, pass along their genes. In most species, two members combine their chromosomes 

in sexual reproduction. This increases the diversity of the off-spring [42] and allows for 

new and unique combinations of the attributes of the species to be “tested.” The successful 

combinations repeat the process, the unsuccessful combinations die out. Mutations occur in 

the combination process introducing new, unique combinations of attributes, which serves 

to push the search into novel parts of the solution space and serves to prevent the search 

from converging prematurely on a local maximum.
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4 .2 .6  E v o lu t io n  S tr a te g ie s

Evolution Strategies (ES) were developed in the 1960’s in by I. Rechenberg [60]. Real-valued 

attributes of a solution are each represented as genes. The genes are the building blocks of 

a double string, called a chromosome th a t represents a candidate solution. The first gene in 

the double string is the value of the point in the search space for tha t attribute. The second 

gene is the standard deviation allowed for the value of that gene. Once the objective value of 

the solution (the parent) is determined, the genes are mutated by an amount drawn from a 

distribution dictated by the standard deviation to produce another solution. The offspring 

is then evaluated. If it improves on the parent, the parent is discarded and replaced by 

the offspring; if not, the offspring is discarded. The process repeats until the candidate 

solutions stop improving.

This approach has shown promise in engineering problems such as designing airfoils 

and other continuous optimization problems, but has not been used in a mixed integer, 

linear or non-linear, simulation optimization. There does not appear to be a  reason why 

the approach cannot be modified to include integer-valued or binary attribu te values, but 

there is no current research where this approach has been used.

4 .2 .7  E v o lu t io n a ry  P r o g r a m m in g

Lawrence Fogel, apparently independent of ES, also developed evolutionary programming in 

the 1960’s. It seeks to predict changes in the environment based on the previous and current 

states of tha t environment [13]. Each solution is represented by a  Finite State Machine 

(FSM), which examines a string of symbols (each relating to states of the environment
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ordered over time), and seeks to predict the next symbol. Solutions are ranked on their 

predictive ability; the higher ranked solutions produce offspring based on random mutation 

of the states of the machine, either changing a  state or adding to the state string. The 

offspring are evaluated and rank ordered with the parents. The higher-ranking solutions 

remain in the pool and the lower ranking solutions are discarded. The process iterates until 

the solutions stop improving.

This remains an active area of research and may hold some promise for combat simula

tions [11]. Efforts are being made to use this to develop combat plans.

4.2 .8  G en etic  A lgorithm s

John Holland developed genetic algorithms in the 1960’s to study how natural adaptation 

might be replicated by computer systems. In genetic algorithms, as in ES, the attributes 

of an agent are represented as a string of genes, but in a single chromosome. In Holland’s 

genetic algorithm, the alleles (values of the genes) were binary. Since then, work in the 

genetic algorithm field has expanded to include integer and real values [60] but most success 

has been with binary alleles. In a genetic algorithm, an initial generation of chromosomes 

(solutions) are developed either through design by the experimenter or at random. The 

chromosomes are evaluated for fitness and chosen to survive or reproduce based on their 

relative fitness. In this way the better solutions axe more likely to either survive or to 

reproduce, passing along good genes to an offspring. Mating occurs through crossover where 

chromosomes from two parents are “broken” at a (usually) random location. The partial 

chromosomes are recombined with the complementary chromosome fragment from the other
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parent to form two unique offspring. Solutions that are not chosen to survive or to mate are 

discarded, keeping the population sample constant size. These surviving chromosomes and 

the offspring are subsequently evaluated. The selection/evaluation process iterates until the 

solutions stop improving.

Genetic algorithms make the greatest use of mutation. Each gene has a non-zero prob

ability of “flipping” outside of the crossover function. This, as discussed earlier, prevents 

premature convergence by forcing the search off a local maximum. Much research has been 

done to determine the appropriate mutation rate. Anastasoff has even researched allowing 

the mutation rate to evolve, without, however, improvement in performance [2], Although 

no “correct” rate has been identified, the consensus is tha t a stationary rate of .001 is 

generally appropriate.

Genetic algorithms have shown great promise both in evolving both structures [51] [87] [5] 

and rule sets [74] [35]. Previous works have focused on the development of either structures 

or rule sets, but research on evolving both simultaneously is beginning to emerge [78]. This 

appears to  be a viable approach to  addressing the combat modeling shortcomings outlined 

in previous chapters.

4 .2 .9  G en etic  Program m ing

Genetic programming involves using computer programs as agents tha t perform a task 

and replicate themselves either through combination with other programs or through self

reproduction [70] [85]. Results thus far include developing an artificial ecology of computa

tional entities existing in a virtual environment. The entities vie for computer time with
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the faster and smaller programs being judged more “fit.” Interesting mutations have oc

curred which allowed programs to discard their own ability to copy themselves in favor of 

using the ability of another agent to reproduce. This method has shown promise in finding 

efficient algorithms optimized to a  task [69], but does not appear to be useful for simulation 

optimization.

4.3 Artificial Life

4 .3 .1  D efin ition

ALife was first proposed by Chris Langton in the late 1980’s and is a non-traditional discrete 

optimization technique tha t uses evolving agents [91]. This dissertation has referred to 

agents in previous chapters without providing a full explanation of what they are. Agents 

in this context are simulated objects tha t interact with their environment using an internal 

rule set. The agents can either modify the environment of all other agents simply by reacting 

to the environment as they find it. Agents often evolve over the course of the simulation 

through learning, reproduction with other agents, self-replication or directed replication 

through means of an evolutionary algorithm.

Agents can communicate with other agents directly through token passing or indirectly 

through modification of the environment. A simulation of decision-making tha t uses as its 

agents a team leader and the team members can incorporate direct communication between 

agents [40]. A simulation of ant colonies relies on pheromone trails laid down by ants as 

they move through the environment to communicate the presence of food [9].
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Agents make their own decisions based on the environment (which includes the other 

agents) without outside direction. In this way, local rules can result in an emergent, global 

behavior, not explicitly built into the simulation.

Since AL is a relatively young field, numerous names are used for very similar concepts 

but it can be said to consist of two distinct branches, Cellular Autom ata (CA) and Mobile 

Autonomous Agents (MAA). CA consist of agents statically arrayed in a  lattice. Each agent 

interacts with the agents in its immediate neighborhood4. MAA move across the lattice to 

interact with other agents and accomplish goals. Because of the dynamic nature of MAA, 

it has been used to evolve structures and rule-sets for mobile agents.

The biological analogy of these simulations has spawned a number of successful attem pts 

to model natural systems such as birds [17] [86] [22], ants [9], termites and turtle populations 

[72]. Man-made systems such as traffic have also been studied by using MAA [63]. These 

descriptive models have been useful for understanding the dynamics of the natural world, 

but do not use the evolutionary nature of agent-based models. O ther MAA have been used 

to  evolve physical structures and rule sets, which are more applicable to  modeling combat.

The biological analogy also changes the optimization taxonomy. Nature has found “fit” 

solutions for the given environment. Accordingly, the objective function in this kind of 

simulation is called the fitness function since it measures degree of fitness. Fitness is not 

the same as optimality. No one can doubt tha t Neanderthal man was sub-optimal in terms 

of intelligence, but he was capable of adapting to his environment and was “good enough”

4This neighborhood could be a von Neumann neighborhood consisting of the points at the four cardinal 
directions or could be the Moore neighborhood that includes all eight surrounding grid points.
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to allow him to survive and reproduce for some 100,000 years. His design was the “fit” 

solution necessary in his environment.

4 .3 .2  E volv ing  S tructures

MAA have been used to evolve structures in two ways. The first is a  discrete competition 

to  perform a task such as moving across an environment [51]. In this approach, agents are 

paired in competition, with the winner allowed to reproduce with other winners. The winner 

and its offspring then compete in the next generation of agents. Competition continues until 

agent capability stops improving.

The other method is to allow each of the agents to inhabit an environment and compete 

for resources [87] [18] [69]. The agents move to attain  a goal such as acquiring resources. 

Those tha t perform better, becoming stronger and living longer, have more opportunity 

to  mate and reproduce. This perpetuates the stronger attributes through natural selection 

while the weaker attribute sets die out.

4 .3 .3  E volv ing R ules

Rule sets have also been evolved using MAA. In these cases, the physical aspects of the 

agents have been kept static, but the rules by which they move and accomplish goals have 

changed. Examples have been soccer playing simulations [84], combat simulations [39][47], 

and the game of tag [74],
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In these simulations, a small number of agents are simulated and a fitness value for their 

performance determined. A genetic algorithm then searches through the solution space of 

rules until a most-fit solution is found.

4 .3 .4  E volv ing B o th  S tru ctures and R ules

There is little current research in evolving both structures and rules a t the same time. 

Sims has, however, evolved agents tha t capture a goal in one-on-one competition [78]. He 

randomly generated agents and paired them against each other to capture a cube placed 

at the center of an arena. The least fit agents were discarded to make room for the new 

offspring. The most fit agents reproduced “sexually5” and the population paired off in 

another tournament. The fitness function was simply the time required to capture the 

cube and to carry it back to the agent’s own starting location.6 Sims found tha t novel 

structures and rules evolved where some agents attem pted to “protect” the cube to prevent 

the opponent from capturing it while others relied on speed to snatch the cube and return 

before the opponent could react. This indicates tha t there is no inherent limitation to 

searching the solution space of both physical attributes and rules simultaneously.

4.4 Ant Colony Simulations

A specific branch of Mobile Autonomous Agent research is Ant Colony Simulations. These 

developed from studies of ants and an attem pt to model their living and colonization habits.

sMeaning use of a crossover and mutation function.
6 Less time is better.
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These simulations have proven so rich that they have been expanded from simply describing 

ant behavior to become an on-going area of optimization research. Ant agents act based on 

their current state without memory of previous events [90]. As such, they can be simulated 

by Finite State Machines (FSMs) in order to  solve problems such as shortest path between 

two points, shortest path between a subset of points in a network, and shortest Hamilton 

cycles in a network (Traveling Salesman Problem, TSP).

Actual ants exhibit the so-called “coordination paradox” [83] in which they do not 

communicate directly, as with tokens or physical language, but yet coordinate to build and 

maintain nests and forage efficiently for food. They seem to communicate indirectly using 

stigmergy [8]. Stigmergy is the reaction to changes in the environment either actively caused 

by the ant or as a side effect of its actions. For instance, a  real ant lays down a trail of 

pheromones when returning to the nest with food. The presence of pheromones indicates to 

others tha t food is available along the trail. Ants react to that change in the environment 

by following the trail, finding the food, and laying their own pheromone trail behind them 

as they return. If no food is available at the food site, the ants return, but do not lay a 

pheromone trail. The trail evaporates over time and disappears so tha t ants do not continue 

to visit an empty food site. This kind of stigmergy is called active stigmergy [32].

Ants also react to environmental changes not directly caused by other ants using passive 

stigmergy. For instance as corpses build up in the nest, ants consolidate them with other 

corpses. These corpse piles then become large enough to trigger a reaction in the ants 

to carry all the corpses out of the nest [9]. No central direction is given for collection or 

disposal of corpses. Individual ants respond to the stimulus of the presence of corpses to
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generate a collective housekeeping behavior.

This indicates that each agent can have an individual internal rule set but still act 

collectively. This has direct applicability to combat simulations where the activity of agents 

is governed by the decisions made by individual agents. If each agent has the overall 

framework of what should be accomplished based on a  situation, the group of agents can 

perform collective tasks such as conducting an attack or a defense. This is a  reasonable 

representation of real combat given tha t low-level leaders7 are trained to apply the proper 

tactics in each situation and to know how they fit into the tactics and mission of the 

overall unit. Each of these low-level leaders with their respective combat systems could be 

represented as an agent. Each agent could have the overall tactics embedded. The Army 

spends a great deal of time and resources to develop and train “battle-drills” where tank 

commanders and small unit leaders react appropriately in response to an overall situation 

with little or no communication. Experience at the NTC and in combat shows that these 

battle-drills are useful techniques a t battalion level and higher.

Ant Colony simulations also lend themselves to using evolutionary algorithms to opti

mize their performance. W hite, et al, used a genetic algorithm to improve an ant simulation 

attem pting to optimize path-finding [90]. When finding a point-to-point path, using a ge

netic algorithm decreased the time required to find the optimal path by 25%. When finding 

a path through a subset of points in a network, the time required was reduced by 26%. To 

find a minimum Hamiltonian path  through a set of points, the time was decreased 24%.

in clu d ing  infantry squad leaders and tank commanders.
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4.5 Enhancem ent Through Co-evolution

66

Empirical studies have shown benefits to co-evolving two or more types of agents (which 

can be thought of as species or tribes) in the same artificial world but the theoretical basis 

for tha t improvement has until now been elusive. The advantage derives from the fact that, 

as each species tries to climb its own fitness landscape, it deforms the environment for the 

other species. The second species reacts to the change, which deforms the landscape of the 

first. Each species prevents the other from being locked onto a local maximum. The two 

species continue this process until they achieve equilibrium at the most-fit co-solution.

Kauffman, et al, [43] [41] [44] [42] studied this coevolutionary phenomenon and used it to 

help solid state physicists understand spin-glasses. Spin-glasses are a type of disordered 

ferro-magnetic material. The direction of each “spin” in relation to the others affects the 

overall energy of the spin-glass. Kauffman used this model to show the benefits of using 

co-evolution to find a fit combination of spin directions.

Suppose a  landscape consists of N  “spins” . The spins for this example are binary and 

result in some energy level between 0.0 and 1.0. The energy level for the landscape is the 

sum of the energy levels of the spins. Each spin is independent in tha t it can be changed 

individually, but is connected to K  other spins with a resultant collective energy level. In 

genetics, this is referred to as epistatic coupling of genes, where the activation of one gene 

may cause activation or inactivation of others. This results in a complex energy fitness 

landscape where the energy contribution of each spin must be specified for each of the 2K+1 

configurations tha t the spin, and the K  spins that affect it, can be arrayed.
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Kauffman defined the energy level as the average of the energy contributions of the spins 

and expressed it as follows:

where £7{s} is the average energy level, e \K  ̂ is the energy level of spin i which is connected 

to  K  other spins.

In an attem pt to optimize (in the case of a spin glass, lower) the energy level of the 

system, one could calculate the improvement derived by flipping each spin and choose the 

largest improvement. Unfortunately, this could lead to a local optimum where no one-flip 

neighbor improves the energy level but combinations of flips could, in fact, improve the 

solution. Finding these combinations would involve calculating all the one-flip, two-flip, up 

to N-flip changes-in other words, calculating the energy level for all combinations of spins, 

or evaluating 2N solutions. If the problem could be solved with this brute force approach, 

there would be no need to use any sort of optimization technique.

Kauffman broke the lattice into P  “patches” of size p ■ q. The number of patches is equal 

to He then examined one-flip improvements for each. Since spins were connected across 

the patch boundaries, lowering the energy level in one patch could increase the energy levels 

of other patches. Moving along an improving fitness landscape deformed the landscapes of 

the other patches. The energy level of the new problem is:

£ { * }  =  It EpL 1 EieP E f \ Si aiK)
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where P  represents the patches to be optimized and i represents the spins tha t are summed 

by patch.

Kauffman attem pted three approaches. First, a spin was chosen at random and flipped 

if it improved the patch that contained it. Second, each one-flip change in a  patch was 

evaluated and one tha t improved the energy level was randomly chosen. Last, all one-flip 

changes in a patch were evaluated and the best flip selected. The patches were chosen in 

order, with one selection of all patches called a  “generation.”

His results showed that, when using any value of K  >  0, after five generations the 

average energy level found was better than attem pting to optimize the entire landscape. 

The difference became more pronounced as K ,  tha t is, the number of connected spins, 

increased. This indicates that in the presence of epistatic couplings, a better solution 

can be found more quickly by breaking into patches. Co-evolution resulted in more rapid 

movement toward the optimum.

Hillis, using a sorting algorithm, also showed this result [30]. A sorting network is 

an algorithm in which a sequence of comparisons and data exchanges is performed in a 

predetermined order. These networks have great practical importance in switching circuits 

and routing algorithms for interconnected networks.

To test this approach, Hillis used a network where the number of data  elements to be 

sorted (n ) was 16. He chose this value for n  since the problem was well studied. The best 

network found contained 60 comparisons [50]. He evolved a solution by starting with a set 

of random networks and testing them against a set of test information strings to determine 

their fitness (fewer errors equaled increased fitness). The least fit networks were eliminated,
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with the remainder reproducing using crossover and mutation. The new solutions were 

then tested for fitness and the process continued until the solutions quit improving. By this 

method, Hillis found that he could evolve sorting networks of 65 exchanges, close to the 

best-known solution, but not as good.

Hillis then allowed the test cases to evolve in parallel with the networks. Their fitness 

criteria measured how many errors they caused. The fittest test cases were allowed to 

reproduce through crossover and mutation to evolve better tests. These improved test cases 

exploited weaknesses in the evolved sorting networks, which deformed the evolved networks’ 

fitness landscape. The resulting networks were 61 exchanges long, an improvement from 65 

and almost equal to the best known. This indicates tha t there is benefit to co-evolution when 

the fitness landscapes are coupled. The solution may not be optimal (although optimality 

is not precluded), but a very good solution to a complex problem can be found through 

co-evolution fairly rapidly.

These examples would indicate tha t other complex systems, like evolving single weapon 

systems in isolation, even if searching the solution space with a genetic algorithm, could 

result in less-fit solutions than if the systems are co-evolved. It appears tha t systems should 

be evolved together to be able to complement and improve each other. This addresses one 

of the major shortfalls of current combat models.
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4.6 Co-evolutionary Theory

70

The strong empirical evidence tha t co-evolution improves solutions has led researchers to 

accept the phenomenon and exploit it in areas as diverse as the theoretical applications 

above and concrete applications such as the diagnosis of Breast Cancer [66], bu t there have 

previously been only “naturalistic” explanations of why improvement occurs, without a 

theoretical basis for the improvement.8

The naturalistic explanation is that, as each species evolves, it deforms the solution space 

for the other species. The species evolve in a continuing competition where evolutionary 

tension pushes them to climb to the global optimum. Species locating local optima may find 

that the changes in the opposing species quickly make tha t position non-optimal. This give 

and take continues until a joint, globally optimal location is found. This has been called 

the “Red-Queen” hypothesis9 where predators and prey must continue to evolve to remain 

at parity [64], This explanation makes great sense and probably explains what is going on 

inside the genetic algorithm as it evolves to a global solution.

A more rigorous explanation is tha t co-evolution both increases the exploitation of fit 

schemata and increases the ability of a genetic algorithm to explore new solutions. This is 

very much a “have your cake and eat it” situation, as most times exploitation of “good” 

solutions comes at the expense of exploration and vice versa. For example, if the probability 

of mutation or crossover increases in a genetic algorithm, the potential for fit solutions to be

8Improvement being defined as arriving at a more fit solution or arriving at an equal solution faster.
9Named for the Red Queen in Alice in Wonderland where everyone had to run in order to remain in 

place.
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destroyed increases. This risk is balanced by the benefits tha t exploration of the landscape 

brings. Much research has centered on how to balance exploration against exploitation.

4.6 .1  Increased E xp lo ita tion

Co-evolution can be shown to improve exploitation of fit schemata as a result of increasing 

the probability of schemata surviving the crossover process when compared to evolution. 

The increased search range can be shown by the increased step-size afforded by co-evolution.

The probability of a schema surviving the crossover function is related to its defining 

length, tha t is, the distance between its most-distant fixed “genes” as measured on the 

chromosome representation. The longer the defining length, the more potential “cut points” 

exist between the fixed positions. This increases the probability tha t the crossover operator 

will fall between the fixed positions, disrupting the schema. This is called a “representational 

bias” against long schemata. In coevolution, two crossover points are selected (one in each 

set of system genes tha t make up the entire chromosome). If the crossover points occur 

both inside of the defining length of the schema or outside of tha t length, no disruption 

occurs and the schema survives [38]. The probability of a 2d-order schema (that is with two 

fixed positions) surviving typical (single-point) genetic algorithm crossover is:

where pSl is the probability of the schema surviving a single cut, / is the defining length of 

the schema and L  is the length of the chromosome.
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For co-evolution the probability of survival of a schema is equal to the probability tha t 

both crossover points are either between or outside of the defining length or:

where pS2 is the probability of the schema surviving two cuts.

Comparing these probabilities, it is apparent that for very short defining lengths, psi > ps2 , 

but as the defining length approaches L, ps 2 > ps\. Graphically the difference is shown be

low and it is clear that the cumulative probability of survival of a schema under co-evolution 

is much higher than for standard genetic algorithm.

Probability of Survival (P_s) v. Defining Length
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De Jong (et al) [38] [81] [80] called the area above the curves the “disruption area,” the 

area where a schema is disrupted. By integrating the equations for the two curves, the area 

below each line, the “area of stability” (or cumulative probability of survival for 2d-order 

schemata) is shown to be larger for the coevolution case. The results are:
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11 2L
T

While this only accounts for 2d-order schemata over the chromosome of length L, ex

tending it to include higher-order schemata (those with more fixed positions) gives the 

recursive function:

n.(i, ii,.... i„-0 = £  (|) * ( ^ ) 2_2i \ p 2 ( h , h , - , U -

where ps is the probability of survival of all ordered schemata, d is the total number of fixed 

positions, p2 is the probability of survival of all schemata with a  number of fixed positions 

from 2 to  d, L  is the length of the chromosome, Id is the length of the schemata with d 

ordered positions.

To determine the cumulative probability of survival of a third order schema requires 

expansion of the equation and integrating twice, first as fa, or the shortest distance between 

fixed points, goes from 0 to fa and second as fa ranges from 0 to  L  giving:

which expands to:

/:/:m *© m (II2 dii
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Performing the integration reveals tha t the cumulative probability of survival for 3d-order 

schemata in coevolution is:

Pa( L ,h ,h ) =

This can be compared to the evolutionary case where survival of any schema is equal 

to the probability tha t the single cut falls outside the longest defining length, tha t is, the 

length between the most distant fixed positions. The probability equation is simpler to 

evaluate. Despite the higher number of defined positions it remains:

Evaluating the area under the, now three-dimensional, curve requires a double integra

tion as did the previous case, giving:

Comparing this result to the survival of a 3d-order schemata in coevolution, we see that 

probability of survival for a 3d-order schemata is greater in coevolution than in evolution 

just as in the case of 2^-order schemata.

Evaluating the probability of survival for schemata up to d =  5 where d is the number 

of fixed positions shows tha t this property holds for small values of d:
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Table 4.1: Probability of Survival for d-order schemata
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Using inductive reasoning we can prove tha t survivability of schema in co-evolution will 

always be greater than in evolution. We set our base case as d =  2. The area under the 

curve represents the probability of survivability. As we expand from a two-dimensional 

space to three dimensions (d =  3), the additional factors for co-evolution and evolution 

cases will be in the same proportions as with d =  2 making the volume described in the 

co-evolutionary case larger than the evolutionary case. Probability of survival, then, will 

be greater, as in the two-dimensional case. As the dimensionality increases, the proportions 

between the additional components remain, so probability of survivability for co-evolution 

will always be greater than evolution.

4.6 .2  Increased E xploration

Exploration of schemata increases due to the larger step size available to each crossover 

action.10 In evolution, as a result of its reliance on single-point crossover, the number of 

possible offspring combinations one step from a set of parents is 2L+l — 1. In co-evolution, 

more solutions are available in a single step because the chromosome is cut twice. The 

number of possible offspring combinations available from each set of parents is 22L, which

10In this dissertation crossover is defined as the process where two chromosomes are cut at a selected point 
beyond which the “genetic material” is swapped to  form two new chromosomes. In the case of two-point 
crossover, the genetic material between the cuts is swapped.
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means tha t co-evolutionary available step-size will always be larger than tha t available in 

evolution. This is shown in the following graphs.

F igu re  4.4: Comparison of One-step Range.

Possible Steps in Evolution Possible steps in Co-evolution

In these two graphs L  — 3, where L  is the chromosome length (in number of genes) for 

each of two species. The columns and rows represent possible solutions caused by the eight 

combinations of the three genes. On the left, the center-shaded block denotes a set of parent 

solutions. When a set of parent solutions is crossed using one-point crossover, the resulting 

offspring can be any solution denoted by the shaded area (including being mirrors of the 

parents). On the right, the same set of parents is mated using two-point crossover. The 

shaded area indicates the increased number of possible offspring combinations available. As 

can be seen, the entire universe of combinations is available in a single step, instead of the 

limited set available in evolutionary, one-point, crossover.

Increased step-size does not guarantee tha t fit solutions will be found faster than in a
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simple evolutionary genetic algorithm. There may be situations where smaller steps are 

better. It does indicate, however, tha t the search will generally be more wide-ranging using 

co-evolution. Examination of more different regions of the fitness landscape in a  fixed 

number of steps will tend to find better solutions and prevent the genetic algorithm from 

searching unproductive regions.

Improved retention of fit schemata, combined with the widened single step search dis

tance indicates that, on balance, co-evolution improves the speed to get to a fit solution. 

Based on the theoretical improvement shown by a  co-evolutionary genetic algorithm, this 

research adopted the following approach.

4.7 The G enetic Algorithm  Approach

4.7 .1  G eneral A pproach

A standard genetic algorithm was implemented to search the solution space for the most-fit 

mix of capabilities and rules. Although the systems were initially patterned on current 

equipment and tactics, they freely co-evolved. Based on the six physical attributes and the 

27 tactical genes contained in the tuples (whose values ranged from 0-10), the tank and 

artillery piece each had about 1031 possible solutions.

The system chromosomes were linked to form a single chromosome with one end of the 

strand representing the tank and the other representing the artillery piece. The crossover 

point for each chromosome was drawn independently from a uniform distribution. Each end 

of the chromosome was split once and mated with the complementary portions of the other
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parent’s chromosome. M utation was allowed at a rate of 0.001 per gene in keeping with 

contemporary research.11 This is a reasonable starting mutation rate  given the literature 

[56] [60].

4 .7 .2  S election  o f  S o lu tion s

Selection of potential parents was proportional based on the score generated by the simula

tion compared with the other solution scores in the generation. This gave more-fit solutions 

a higher probability of selection for crossover or inclusion in the next generation and penal

ized less-fit solutions.

Two conventions were implemented during the selection of the solutions for the next 

generation: elitism and increased probability of retaining unfit solutions. Elitism, that is, 

retention of the best solution in a generation, prevents the solution from being lost and 

the generational results from prematurely converging on a suboptimal solution [66]. Unfit 

solutions, that is, with scores less than 2.5% of the maximum attainable, were not eliminated 

out of hand. Instead, these solutions were arbitrarily awarded a  small score to allow them to 

compete for retention and crossover in the next generation. This prevented unfit solutions 

tha t reside in otherwise fit areas of the solution space from being discarded reducing the 

ability of the co-evolutionary genetic algorithm to further explore that space. When the 

parent solutions for the next generation were selected based on relative fitness, this gave 

the unfit solutions a non-zero probability of surviving to the next generation. This did not 

decrease the ability of the algorithm to search for fit solutions. As Holland [61] has shown,

11 Mutation was allowed whether or not crossover occurred.
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good solutions will still be selected exponentially for survival. It did, however, force the 

algorithm to search areas tha t might not get attention, thereby closing off potentially good 

solutions.

A cost constraint was instituted on the overall cost of the force to require the genetic 

algorithm to make trade-offs between system capabilities. W ithout such a constraint, each 

system will improve until reaching the solution with the largest number of the most expen

sive machines.As Emmeche [17]said:

“Evolution acts as a  tinker who fixes a broken machine from materials at 

hand. Not every design is a good design, many are called but few survive. 

Instead of constructing few expensive complicated machines designed for few 

well-defined tasks, maybe a flock of small, cheap, perhaps rather unpredictable 

machines allowed to evolve naturally is better.”

Limiting the cost of the overall force, while allowing the cost of each system to be 

dictated by its capabilities, allows just the kind of trade-off tha t Emmeche discussed.
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M odeling Results

Man always fears the consequences of danger more than the danger itself.

-Maurice de Saxe

To test the theoretical findings in Chapters 3 and 4, the model and co-evolutionary ge

netic algorithm were implemented and the results compared with a standard (evolutionary) 

genetic algorithm. The results confirm the two theoretical expectations outlined in Chap

ter 4. First, the resultant solutions were generally better using co-evolutionary techniques. 

Second, co-evolution tested a wider range of solutions during its search. The results also 

confirmed the proposal in Chapter 3 that, since combat is a complex adaptive system, it 

could be modeled as such to get useful solutions. This is important because, although the

oretical underpinnings for co-evolution as a search technique are good, unless the technique 

renders a useful solution, it is of little value.

Each of these findings will be explored, and the modeling results presented, in the 

following sections.

80
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Search methods can be considered “better” if they either arrive at a more fit solution or 

arrive at an equally fit solution more quickly. In this research, both evolutionary and co- 

evolutionary genetic algorithms arrived at very fit solutions quickly, so overall fitness of the 

solutions was used as the standard.

To evaluate the evolutionary versus the co-evolutionary approach, a set of 30 solutions 

was randomly generated1 for each run. This constituted the common starting solution-set 

for the two approaches. A simple genetic algorithm employing one-point crossover and a 

co-evolutionary genetic algorithm were run from tha t initial solution population until the 

respective algorithm quit making progress and converged on a solution. Crossover occurred 

at a rate of 0.6. M utation occurred at a rate of 0.001/gene. In both approaches, elitism 

was implemented. All solutions competed for inclusion in, and to become parents to, the 

next generation.

As shown in the following table, after eight record runs,2 the co-evolutionary approach 

resulted in more fit solutions in six of the eight. The fittest solutions found by run are 

shown in the table below:

The shape of the landscape can explain the relatively minor difference in fitness between 

the evolutionary and co-evolutionary solutions. As shown in Chapter 4, the landscape

1Each binary gene was selected using random draw from a uniform distribution.
2 More than eight runs were made but initial runs were used for model validation and not included in the 

production runs.
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Table 5.1: Highest Fitness Found.
Run Evolution Co-Evolution

1 381.999 382.934
2 384.075 389.108
3 390.129 391.243
4 385.864 386.452
5 384.982 388.878
6 384.954 385.745
7 391.459 391.449
8 393.803 393.724

consists of relatively flat plateaus punctuated by isolated local maxima and minima. Both 

approaches were able to find higher (more-fit) plateaus, but co-evolution generally found 

more-fit solutions than did evolution. The fact tha t co-evolution was not the best in every 

case is a result of the stochasticity of the search technique. Any search technique has a non

zero probability of finding an equally or more-fit solution and the evolutionary technique 

did so in two of the eight runs, although the difference is very small in both cases. The co- 

evolutionary approach, however, was expected to result in better solutions and, in practice, 

did.

5.2 Increased Exploration

An advantage of the co-evolutionary approach was expected to be the exploration of more 

solutions as a result of the wider one-step search range available. To determine if this 

occurred in practice, the number of unique solutions visited was captured and the range 

from most- to least-fit solution in each generation was recorded. In both measures, co

evolution resulted in a  broader search of the solution space.
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In every case, more unique solutions were visited in the co-evolutionary case. This 

broader search increases the probability tha t the technique will locate a better solution. 

This is in keeping with the theoretical work from Chapter 4.

At the end of each run, generally after more than 30,000 generations, the co-evolutionary 

approach maintained a wider spread between most and least fit solutions. This indicates 

that, even after an extensive search and convergence on a fit solution, the co-evolutionary 

approach continued to include a wider range of solutions. The inclusion of an increased 

number of less fit solutions widened the search area, again improving its ability to find fit 

solutions long after the evolutionary approach converged on a solution. The results by run 

are shown in table 5.2.

An interesting side effect of maintaining a wider search longer was that the average fitness 

of each generation was lower in the co-evolutionary case, even though the most-fit score was 

generally higher. T hat is to be expected and is not a weakness of the co-evolutionary 

technique. It is something to be aware of when using a co-evolutionary technique.

Table 5.2: Objective Value Range of Solutions Found.
Run Evolution Co-Evolution

1 117.1 39.0
2 6.6 58.6
3 9.3 36.9
4 40.8 55.8
5 31.6 31.3
6 5.2 10.5
7 22.4 34.5
8 8.4 25.9

W ith the exception of the first and fifth runs, the results are completely in keeping with
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the expected results. As in the search for more fit solutions, the stochastic nature of the 

approaches would preclude one approach always being better than another. Indeed, had the 

results been completely one-sided, there would have been concern th a t there were problems 

in the implementation. In this case, however, the preponderance of the runs bear out the 

theoretical expectations.

5.3 Appropriate Solutions

The final, and really most im portant, test for the ability of the approach of coupling a 

dynamic, agent-based simulation with a co-evolutionary genetic algorithm is tha t it resulted 

in militarily appropriate solutions. This is more a test of the ability of the agent-based model 

to adequately replicate combat, so only the fittest solutions found in the co-evolutionary 

runs were evaluated for relevance and military value. If serious flaws existed in the solutions, 

then there would be concern tha t the approach was flawed. The fittest solutions were also 

compared across the runs to identify similarities and differences. If the solutions are found 

to have a great deal in common, it is an indication tha t the approach found a common area 

of the solution space despite beginning a t random locations; further justification tha t the 

approach is sound. If the solutions are explainable but widely different, it indicates that 

the approach is not appropriate for this fitness landscape, as defined by the problem and 

its abstraction. More work would need to be done to determine if the problem was the 

approach or the inappropriate landscape.
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The results across the eight runs showed clear convergence on key system attributes. When 

offered choices between superior capabilities, with their attendant cost and size penalties 

or lesser capabilities without those penalties, the agent-based model replicated combat 

well enough to allow the co-evolutionary genetic algorithm to make reasonable, explainable 

choices.

System attributes that constituted most fit systems were clear for tanks. Due to the 

scoring system, which made speed a key factor, none of the most-fit set of solutions allowed 

the force to wait for artillery to move and have an effect on the enemy. As a result, no 

artillery capabilities were tested. In future work, the scoring system should be modified 

to place less emphasis on speed to conclude the mission and, by doing so, perhaps place a 

higher premium on combined action with the artillery. This could also have been an artifact 

of the single scenario with which the systems were tested. To provide conclusive evidence 

for system decisions, a number of scenarios should be evaluated in future work.

That being said, in this scenario, the solutions selected were explainable and appropriate, 

although not necessarily expected. Although each attribute will be discussed in detail, some 

general conclusions can be drawn. A single sight was selected across the most-fit solutions 

(that is, the top 11 solutions found across the eight runs).3 Medium armor protection was 

selected along with an inexpensive engine capable of moving a medium-weight vehicle. An 

inexpensive gun system was more often selected than more expensive (but more accurate

3The top solutions from each of the eight runs were compared. In addition, in three runs, very fit 
alternative solutions presented themselves. As the fitness differential was small, they were included to make 
a total of 11 solutions.
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and lethal) missile systems. The tactics selected to complement these choices placed a 

premium on moving quickly to the objective until the enemy was found, then configuring 

the force appropriately relative to the enemy. Details of the attributes are listed below.

5.3 .2  S ights

Four sights were available. In order of their relative cost, probability of detection and 

accuracy from lowest to highest they were: optical, infrared, thermal, and millimeter wave. 

In the 11 best solutions, the therm al sight was selected as the optimal balance between cost 

and capability. The salient capabilities and cost factors of each system are shown below.

Table 5.3: Sight System Capabilities and Cost
Sight Prob of Detection Cost($000s) Accuracy (mils) Range(km)

Daylight 0.4 10 0.8 2.0
Infrared 0.6 100 0.8 2.5
Thermal 0.8 250 0.5 5.0

Millimeter Wave 0.95 1000 0.1 10.0

The increased cost of the thermal sight over the optical and infrared sights was out

weighed by the capability of the system. A more capable sight was available, using millime

ter wave technology. The large cost increase for the millimeter wave sight, however, was 

not justified by its increased performance in this scenario.
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Sixteen levels of armor protection were available, from a thickness of Om (no protection) to 

1.5m of armor4 in increments of 0.1m. The more armor on a  vehicle, the more survivable 

the system is against a hit by an enemy weapon. Increased weight brings penalties in 

weight, size and cost. More armor makes the vehicle heavier and slower, reducing mobility, 

or a more expensive engine. More armor also increases the dimensions slightly increasing 

the probability tha t it will be hit. It also makes the vehicle more expensive, reducing the 

number tha t can be purchased.

The co-evolving genetic algorithm selected armor protection from no armor to 1.3m 

thick, with a mean protection level of 0.71m. The Red Tank gun is rated at a penetration 

level of 0.55m, so clearly protecting against a penetration was a priority over weight and 

cost, but the overmatch between protection and the threat is not large. The thickness stated 

refers to the thickness of the frontal armor. Side and top armor is thinner, so a higher 

frontal armor value could also indicate that protection of other aspect angles warranted the 

increased weight and cost. Although one solution did select a high level of protection (1.3m), 

the high frequency of mid-level choices indicates a bias towards “just enough” protection.

5.3.4 W eapon S ystem s

Weapon systems showed the most variety. There were 16 weapon systems to choose from, 7 

conventional guns, 6 guided missiles and 3 advanced technology electromagnetic guns. The

4As stated in earlier descriptions, this refers to rolled, homogenous armor; a standard gauge of protection.
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conventional guns were cheaper, with a higher rate of fire, but less accurate. The missile 

systems were more expensive, slower to fire, but highly accurate. The electromagnetic 

guns had very high accuracy and penetration capability, but large system cost. Seven of 

the 11 solutions found used conventional guns, four selected missiles, and none selected 

the electromagnetic guns. The seven gun selections were confined to just three different 

options tha t balanced cost against capability. The selected guns were the midrange models 

available. The missiles selected were the low end cost systems tha t had adequate capabilities, 

indicating that increased capability was desired, but only when the increased performance 

warranted the increased cost.

Table 5.4: Selected Weapon Systems Capabilities and Cost
Type Penetration

(m)
Cost/Shot

($000)
Accuracy

(mils)
Cost/W pn

($000)
120mm Gun/M829A1 0.70 2.0 0.90 250
125mm Gun/BM42M 0.65 2.5 0.90 350

125mm Gun/BK29 0.55 2.0 1.0 350
AT-11 Missile 0.80 50.0 0.40 500

TOW-2B Missile 0.80 100.0 0.40 500

A review of the non-selected systems indicates th a t the cost of the missiles and the Elec

tromagnetic Gun were not justified by their improved performance. Cost versus capability 

also appeared to be a factor in the guns selected.
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Table 5.5: Capabilities and Cost for Non-selected Weapons
Type Penetration Cost/Shot Accuracy Cost/W pn

(m) ($000) (mils) ($000)
120mm Gun/M829 0.60 2.0 1.0 250

120mm Gun/M829A2 0.80 5.0 0.80 250
125mm Gun/BK27 0.60 2.9 1.0 350

140mm Gun 0.80 4.0 0.08 500
FOTT Missile 1.0 150.0 0.30 500
Javelin Missile 0.60 75.0 0.30 500
LOSAT Missile 2.0 250.0 0.08 500
Dragon Missile 0.20 40.0 0.30 500

Electromagnetic Gun 2.0 0.001 0.05 1250
Electromagnetic Gun 2.0 0.01 0.05 1250
Electromagnetic Gun 2.0 0.10 0.05 1250

5.3 .5  E ngines

Seven of the 11 solutions selected the cheapest, least powerful, engine able to move the 

vehicle with a medium level of armor protection (called the M60 engine here). One selected 

the LV100 engine. Two selected the M l engine and just one selected the most expensive, 

hybrid engine. The reduced size of those engines saved some cost of armor protection (due 

to  the smaller envelope tha t needed to be armored), offsetting some of the increased cost of 

the engines and decreased the vehicles probability of being hit (P/J. In general, however, 

solutions favoring the cheapest engine were dominant in these runs.

Table 5.6: Engine Cost and Parameters
Type Cost($000) Weight(metric tons) Horsepower Size(m3)
M60 100.0 3.5 750 5.04

LV100 175.0 1.4 1500 1.99
AGT-1500 250.0 3.3 1500 3.95

Hybrid 500.0 1.0 900 2.00
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The selected weighting of the tactical rule sets for each of the solutions was slightly different, 

but some trends emerged across the 11 solutions. Generally there was a bias towards the 

rule dictating movement to the objective and some bias towards the rule ensuring proper 

alignment with respect to the enemy. Little value was placed on the rule tha t maintained 

formation with other friendly forces. Table 5.7 shows this more clearly. The columns 

represent the threat levels, the rows represent the predominant rule at each level of threat. 

The predominant rule shown could be a single rule, a combination of two rules, or balanced 

between all three rules. The number in each location represents the number of times tha t 

combination of rules was selected in the 11 solutions.

Table 5.7: Rule Predominance
Dominant Rule No Threat Low Threat Med Threat High Threat

Friendly 0 0 0 0
Enemy 1 3 5 2

Objective 3 3 3 3
Fr/Enemy 2 1 1 0

Fr/O bj 3 2 0 2
En/O bj 1 1 2 3

Balanced 1 1 0 1

When no enemy was detected, the 11 solutions selected solutions that, understandably, 

were weighted towards moving to the objective. Seven of the 11 solutions had a significant 

bias towards moving to the objective. When the enemy was detected, the enemy and the 

objective rules were valued about equally throughout the threat levels except at a medium
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threat when there appears to be a bias towards the rule governing position relative to the 

enemy.

The lack of emphasis on maintaining friendly formation was surprising since it is so 

counterintuitive to anyone tha t has conducted ground combat operations. Major emphasis 

is placed, in training exercises and in combat, on maintaining formation in order to present 

the most dangerous threat towards the enemy. This counterintuitive result warranted a look 

at other instances when the emphasis on Rule 1 was higher. The following figure shows the 

analysis presented in Chapter 4 where areas of insensitivity were punctuated by increasing 

and decreasing fitness. Looking a t the areas of poor fitness, we find tha t flipping position 

17, the position that most increases emphasis on remaining near friendly forces, yields a 

poor solution across the board. It appears, then, tha t emphasis on remaining near friendlies 

may have merits, but overemphasis on tha t rule is detrimental. In other words, remaining 

near friendlies cannot win the war, but disproportionate focus devotes excessive effort to 

“dressing the lines” and not enough effort towards defeating an enemy.

This surprising, yet explainable, result is one more indication tha t the simulation yields 

valid results. This increases our confidence in the other results derived.

5.4 Conclusions

The co-evolutionary genetic algorithm confirmed two theoretical expectations: better solu

tions and wider search. The dynamic modeling technique of testing system capabilities and
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F igure  5.1: Effect of Overemphasis on Remaining Near Friendlies.
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tactics in an agent-based model demonstrated the ability to develop useful solutions.

Co-evolution resulted in better solutions given an equal number of generations in most 

of the runs. Although evolution resulted in a similar result since it was searching the same 

fitness space, evolution took longer to reach tha t solution.

Co-evolution also maintained a broader set of solutions longer than evolution, confirming 

the theoretical expectation tha t co-evolution would allow a wider group of single-step search 

moves. This is one of the key tenets of the explanation tha t co-evolution will generally result 

in better solutions, faster than evolution.

Modeling combat as a  complex adaptive system resulted in explainable and appropriate 

solutions without the intervention of human players. 10’s of thousands of generations, with
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30 solutions each,5 were run, which would have been far beyond the capabilities of human 

players. The success of this technique recommends it for extension to more complex analysis 

involving multiple systems and environments.

5Although each was not a unique solution.
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Chapter 6

The Value of Information

As a general rule the most successful man in life is the man who has the best 

information.

-Benjamin Disraeli

A pressing question in defense planning is the value of increased information on the 

battlefield. Nations are spending, literally, billions of dollars to develop and field advanced 

information technologies designed to speed friendly and enemy information across the force. 

The underlying assumption is tha t a force that knows the location and status of friendly 

and enemy forces will have a distinct advantage over an enemy. This has been described as 

providing a “step-function” increase in combat capability although little empirical research 

supports this assertion.

Thus far, measuring the impact of advanced information technology has been prob

lematic. Qualitative assessments of the impact of information technology lead military 

professionals to believe tha t the increase is quite dramatic. In fact, many have proposed 

tha t combat capabilities might be traded off to pay for these information technologies. The

94
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boldest information technology proponents have proposed, theoretically, that information 

could replace armor for protection.1 However, there are no quantitative measurements of 

that improvement. There are many reasons for this. First, combat simulations tha t would 

test impact across a large force aggregates individual systems to the degree tha t command 

and control is not measured explicitly. They are singularly unsuited to measuring the im

pact of a command and control system. Second, most simulation has been done substituting 

a single type of direct or indirect fire system into known situations to assess improvement. 

Systems tha t change the dynamic of how those forces work together are not generally mod

eled. Current simulations are not suited to this type of modeling for all the reasons discussed 

in this dissertation; lack of dynamism and inability to search the resultant solution space. 

Third, the proper tactics required to maximize the impact of those systems, as discussed 

earlier, is not obvious. Live simulations, like the Advanced Warfighting Experiment in 1998 

conducted with an Army Brigade at the National Training Center, showed no such step- 

function increase in capability, but rather showed in many small ways what the power could 

be with the proper tactics and training and with the ubiquity of information technology 

equipment.

Based on the success of coupling an agent-based model with a co-evolutionary genetic 

algorithm, it was decided to use this approach to explore the value of information. This 

section describes the approach and its results.

1This has been a powerful metaphor used by the information technology proponents but thus far there 
has been no proof that such a trade-off can actually be made.
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Former Army leaders have described the desired situation as “. . .  knowing where I am, 

knowing where my friends are, and knowing where the enemy is” [71]. All information 

known to one system would be shared with all other systems. To simulate this capability, 

the agent-based model was modified so tha t any enemy or friendly system detected by one 

agent appeared to all others. Rather than each agent making decisions based on its local 

knowledge, each agent made decisions based on global knowledge. An agent’s threat state 

was set by what the entire force could detect, not what the agent could physically detect. 

All systems had a common threat sta te  on which to make decisions.

Once this modification was made and tested, three runs using random starting solutions 

were conducted. Each was allowed to run until the set of solutions converged, and then 

the resulting solutions compared to the original runs tha t used the co-evolutionary genetic 

algorithm. The comparisons were made to determine the applicability of this approach and, 

if successful, to determine the value of information. If a difference could be detected and 

the results were explainable, it would show th a t this technique could be used to explore the 

impact of information technologies and provide some insight into their value, understanding 

that this simulation is highly simplified. If the approach does show merit, more work with 

a full complement of different combat and support systems would be warranted.
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6.2 Results
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Information technology did not raise the overall fitness of the best solutions found in the 

three runs. The speed at which forces accomplished the mission and avoidance of friendly 

losses (the basis for the fitness scores) were very similar to the runs outlined in the last 

chapter, as shown in the following table. The difference came in the increased fitness of 

previously unfit solutions and the capabilities selected in the most fit solutions.

Table 6.1: Previous Runs v. Information Enhanced Excursion
Runs High Average Low

Previous 391.449 388.587 382.934
Excursion 390.0 388.326 384.987

6.2.1 Increased F itness

There was a marked increase in the number of solutions that reached high levels of fitness 

when compared to the non-information enhanced runs. Considering the number of solutions 

found tha t reached a fitness of 380.0 (within 5% of the theoretical maximum of 400.0) 

the results show that information enhancement improved previously less fit solutions and 

allowed them to compete favorably. Although the excursion runs ran fewer generations, the 

number of fit solutions found (those with scores over 380.0) was much greater, as shown in 

Table 6.3.
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Table 6.2: Fit Solutions Comparison
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Run #  Fit Solutions #  Generations
1 9 9719
2 99 85,546
3 115 16,410
4 30 24,666
5 56 33,645
6 54 30,405
7 53 14,726
8 71 23,793

Exc 1 144 5783
Exc 2 25 5885
Exc 3 132 1783

Running an information-enhanced solution in the agent-based simulation without the 

increased level of situational awareness resulted in a lowered fitness score, indicating that 

the solutions were less fit without the ability to share information. This difference provides 

a measure of the improvement caused by information. The results of using the excursion- 

selected solutions in the basic, non-information sharing simulation are shown below.

Table 6.3: Comparison of Information-Enhanced Solutions to Standard Information Level
Run Information Enhanced Standard Information Level

Excursion 1 390.0 307.1
Excursion 2 385.0 283.9
Excursion 2 390.0 302.4

As can be seen above, information is worth roughly 100 points of fitness to a solution 

that would not be considered fit in the basic runs. This increase in capability indicates that 

information increases the utility of otherwise inappropriate solutions.
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6.2 .2  Inform ation  as a  S u b stitu te  for C apabilities
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Careful analysis of the individual solutions selected in the excursion runs shows three differ

ences from the non-information enhanced solutions. Information sharing allows inclusion of 

less capable sights with which to detect an enemy, inclusion of artillery systems to defeat an 

enemy at longer range and a reduction in the armor required to protect the tanks. In every 

excursion run, the solution selected a basic, optical sight with a range of just 2000m and 

the lowest accuracy of all the potential sight options. This is in stark contrast to the non

information enhanced runs, which all selected a very accurate thermal sight with a range of 

5000m. The increased ability of the force to share information on enemy disposition allowed 

the inclusion of the cheaper sighting system and compensated for the decreased capability.

Two of the three excursion runs included artillery systems in the solutions discovered, 

also in contradiction to the non-information enhanced runs. The original runs, as reported 

in the last chapter, selected only solutions tha t consisted entirely of tanks in order to gain 

high scores for speed. The two excursion runs divided the available money between tanks 

and artillery 57/43 and 71/29, respectively. The solutions tha t waited for indirect fire 

to be called and take effect were, in essence, penalized in the non-information enhanced 

runs for their lack of aggressiveness by the speed-emphasizing scoring system. In these 

excursion runs, however, all of the artillery began firing as soon as the first tank detected 

an enemy, based on ubiquitous, immediate information. Rapid information sharing allowed 

the artillery into the fight earlier, negating much of the time penalty exhibited in the base 

case runs.

The last difference found is that increased information in fact allowed a trade-off of
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armor. Two most fit solutions contained tanks with armor of less than 0.2m, and the third 

allowed tanks with ju st 0.5m of frontal armor for an average of 0.3m of armor. This is a 

considerable reduction from the non-information enhanced runs where the armor averaged 

0.71m.

The two excursion runs tha t allowed the lighter armor were the same two tha t included 

artillery systems. This indicates tha t earlier dissemination of the enemy information, re

sulting in earlier indirect fire, reduced the risk of direct fire engagements and losses to the 

tank fleet, allowing a decreased level of individual protection. The metaphor of trading 

information for armor has shown to be more than a simply a figure of speech in this limited 

simulation.

6.3 Assessm ent o f the Value of Information

The introduction of information sharing in the force does not result in a quantifiable increase 

in the fitness of already very fit solutions. W hat it does, however, is increase the fitness 

of less fit solutions, thereby increasing the variety of fit solutions. This reduces the risk to 

the force of selecting an inappropriate solution by increasing their applicability and allows 

solutions to have broader utility.

The value of information can be measured in a specific instance by running a solution 

through both information enhanced and non-information enhanced simulations. The delta 

between the fitness scores indicates the value of information in tha t particular solution.
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6.4 Assessm ent of th e Validity of the Approach
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Coupling an agent-based model with a co-evolutionary genetic algorithm enabled compar

ison of solutions with and without information sharing abilities through its matching of 

tactics to the physical capabilities of the systems. The ability of agent-based models to 

dynamically adjust to the changing situation makes the approach particularly suited to this 

type of research and demonstrates the applicability of the approach. Further research with 

more types of systems is warranted using this approach.
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Further Work

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

-T . S. Eliot

The success of this approach using just two combat systems in a limited scenario indi

cates the utility of the approach and warrants further exploration with a greater number 

of systems. This exploration was constrained to two systems as an initial effort, but real 

decisions cannot be made on tha t basis. Combat forces are comprised of large numbers of 

disparate systems such as infantry, engineer and air defense, which should be included in 

further work.

Increasing the number of candidate systems raises the issue of the appropriate number of 

crossover points. Co-evolution using two-point crossover was appropriate with two systems, 

but increased numbers of systems may benefit from multiple-point crossover schemes that 

allow all systems to simultaneously co-evolve.

102
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This research used a single scenario to determine efficacy of the approach, but a method 

to test solutions in multiple scenarios, with multiple types of terrain, enemy systems and 

missions, should be explored. This would allow full testing of solutions and prevent selection 

of “brittle” solutions-only appropriate in a single prescribed instance.

Agent-based modeling showed value with a small-scale, tactical-level force. Determi

nation of the value of this modeling technique when evaluating higher-level organizations 

appears warranted. Combat interactions increase in complexity and our ability to repli

cate them  with current linear models decreases as forces become larger, indicating tha t an 

agent-based approach would be more useful at higher levels than current aggregated models.

Increased information sharing showed great value and the approach appeared to capture 

those benefits. This opens an entire research area waiting to be explored now tha t an 

appropriate tool is available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

Conclusion

I know tha t most men, including those a t ease with problems of the greatest 

complexity, can seldom accept even the simplest and most obvious tru th  if it be 

such as would oblige them to admit the falsity of conclusions which they have 

delighted in explaining to colleagues, which they have proudly taught to others, 

and which they have woven, thread by thread, into the fabric of their lives.

-Leo Tolstoy

8.1 Intent o f the D issertation

This dissertation intended to provide a  solution for one of the most vexing problems in the 

government, force development of combat systems. By the nature of the decisions involved, 

they commit large sums of money, encompass a wide universe of types and capabilities of 

equipment, and have long-term consequences. Although the decisions, at their most basic 

level, are to develop the most capable force for an affordable cost, it can never be forgotten 

tha t the decisions are critical to the long-term well-being of the nation as well as the very

104
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lives of the men and women that use the fielded systems. Given this significance and the 

complexity of the choices available, the solution of this problem is a  significant step forward 

for the Department of Defense as well as other government agencies tha t can adapt this 

approach for their uses.

The force development problem suffers from two distinct but intertwined problems. 

First, combat is highly non-linear and dynamic. Small inputs can have no result whatsoever 

until reaching a critical mass, then the marginal impact of increased input can be significant. 

Once a saturation level is reached, marginal impact flattens or even turns negative. Combat 

is very situational; decisions must be appropriate in place, force capabilities and time. 

Change in the timing of force movement or the number of systems that reach a decision 

point, requires a change in either the substance or timing of the decision. Current combat 

models are unsuited to replicate this non-linearity except when humans are intimately 

involved throughout every stage of the simulation as players.

Second, the large number of types and capabilities of equipment drive the number of 

potential solutions far beyond what can be explored with man-in-the-loop processes. Solu

tion sets of 1060 unique solutions are not unusual given the number of individual choices 

for each combat system available. Further, even if a search could be made using humans 

to react to changing situations, the most appropriate tactics are not always obvious when 

dealing with new technologies or applying them in different ways.

This dissertation determined to explore the ability of an agent-based model to dynami

cally model potential solutions for fitness in a combat environment. In order to search the 

solution space, a co-evolutionary genetic algorithm was evaluated as a potential improve
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ment over a standard, evolutionary genetic algorithm.

106

8.2 Restatem ent of the Problem  and Approach

This problem can be abstracted to a stochastic, mixed-integer, non-linear optimization 

problem with a very large solution set. No closed form representation of an optimization 

equation is available, requiring a  derivative-free solution method and a search method that 

can accommodate a hyperdimensional solution set.

To solve the force development problem, two approaches needed to be developed and 

explored; a dynamic modeling technique and an appropriate search technique. To model 

the non-linearities of combat, the underlying assumption on which existing models were 

built were reexamined. Current models aggregate the interactions of lower units, losing 

the essential dynamic of combat, the human factor. Instead of armies being simulated as 

a collection of independent agents working together based on an awareness of the mission 

and capabilities, whose higher-level performance emerges from the myriad interactions, they 

become monolithic entities tha t perform in predetermined ways. This dissertation developed 

an agent-based model th a t incorporated both physical capabilities and tactical rules that 

determine the agents’ actions. In this way, not only the appropriateness of the equipment 

was measured in the simulation, but based that on the most appropriate tactics. The 

combination of capability and tactics resulted in an overall fitness of each tested solution.

To search this solution space, this dissertation developed a classification method for 

landscapes described by binary-coded problem representations. Landscape shapes have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. CONCLUSION 107

been described in various terms, but without a great deal of rigor or comparability. Land

scape shape is a function of the problem to be solved, as well as its representation for 

solution. Representation as a binary-coded string is common. This dissertation developed 

a standardized way to measure and categorize the resulting landscapes.

To explore the advantages of co-evolution, a rigorous theoretical underpinning for a co- 

evolutionary approach was developed. This dissertation proved tha t there axe advantages to 

co-evolution, namely increased probability tha t good schemata would survive the crossover 

process and tha t the increased available step size at each generation would allow faster 

search across the landscape. These advantages were alluded to in previous works and even 

explained in a naturalistic manner, but the improvement offered had not been previously 

proven.

When the theory recommended pursuing this approach, two combat systems were al

lowed to evolve simultaneously between generations in a dynamic, agent-based model. In 

each run, force capability was maximized given a fixed amount of money available to the 

force. Solutions selected from a menu of capabilities ranging from engines, armor protec

tion, sights and weapons. Tactics were governed by changing the priority of three rules, 

remaining in formation with other friendly systems, moving to attack a perceived enemy 

and moving to the objective. Artillery systems had an additional rule tha t governed where 

they moved in relation to the tanks.
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8.3 Results
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Coupling these powerful techniques resulted in a useful method to find very-fit solutions. 

The nature of the landscape was such that many very fit solutions were available. By 

making multiple runs and comparing the solutions found, it became very clear what the 

high-value capabilities were which would allow decision makers a guide to making capability 

trade-offs.

A recap of the findings:

• In six of eight record runs, co-evolution found solutions with higher fitness than an 

evolutionary approach.

• In seven of eight runs, co-evolution continued to search a wider set of solutions well after 

evolution had converged on a most-fit solution. This increase is attributable to the larger 

step available in each generation and increases the opportunity to find more fit solutions.

• A good, relatively inexpensive sight was adequate. In fact, all solutions selected the 

same sight, attesting its high benefit:cost ratio.

• Armor protection was useful, bu t only up to a threshold. Beyond tha t it became a 

detriment. Armor protecting the side and top of vehicles was im portant enough to pay a 

weight and expense penalty.

• Low cost conventional guns were selected over more expensive, bu t more accurate, 

missiles and electromagnetic guns.

• Lighter armor allowed selection of a cheap engine with limited power.
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• Tactics tha t favored aggressiveness to get to the objective and proper alignment of 

forces in relationship to the enemy were very important. Alignment of friendly forces seemed 

to have little impact on the fitness of a solution.

8.4 Measurement of the Value of Information

As an excursion, the force was adapted to share information instantaneously to determine 

if the value of information could be measured. The availability of information showed little 

improvement in already highly fit solutions. However, it increased the fitness of previously 

less fit solutions making a wider universe of solutions acceptable. This equates to reducing 

the risk of a force decision, since more solutions are relatively equal in fitness values. The 

danger of making an inappropriate decision is lessened by the leveling effect of shared 

information.

8.5 Implications for Future Work

This dissertation fulfilled its intended goals by developing a dynamic model to simulate com

bat, and developing the theoretical framework for and showing the utility of co-evolution 

to search the solution space. The approach developed to solve the force development prob

lem is a significant step forward from current methods. This approach, which used only 

two combat systems in a single combat scenario for research purposes, now needs to be 

expanded to include the multitude of equipment tha t could be found in combat units and
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more, representative scenarios need to be developed in order to test solutions across the 

spectrum of combat to prevent selection of brittle solutions of limited utility.
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Code for the Agent-based Model

The following code was used to build the Agent-based model developed for this dissertation. 

The model is called the “MULE” in no small part because of the Army mascot. The files 

are listed below with the header files. A sample input file is provided to enable someone to 

compile the code and run a test using redirection.

I l l
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  Main.cpp: Provides the control for the Mule simulation //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "vehmgr.h"

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include "rngs.h"

#include "rvgs.h"

#include "rvms.h"

#include <stdio.h>

#include <iostream>

#include <ctime>

#include <string>

#include <cstdlib>

#include <cmath>

#define LOC 0.95

using namespace std;

double Score(long B_Start); 

long Cleanup(void);

//declarations

extern World Cell[Landscape_Size][Landscape_Size] ;

double Cur_Time = 0.0;

Veh* BT = NULL; 

Veh* BA = NULL;

//Pointer to Blue Tanks 

//Pointer to Blue Arty

Veh* RT = NULL; 

Veh* RA = NULL;

//Pointer to Red Tanks 

//Pointer to Red Arty

ArTGT* Imp = NULL; //Pointer to arty impacts

long BNum = 0; 

long RNum = 0;

//Number of Blue Vehicles 

//Number of Red Vehicles

long BTNum = 0; 

long BANum = 0;

//Number of Blue Tanks 

//Number of Blue Arty
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long RTNum = 0;

long RANum = 0;

char genome[243];

double N[5];

int mainO

long seed;

PutSeed(54778); 

GetSeed(ftseed);

long Next_Event;

// long count = 0;

cin.getline(genome, 243);

//Number of Red Tanks 

//Number of Red Arty

//Accepts the soln string

//contains next event times

//next-event list

double w = 100.0; 

long n = 0; 

double sum = 0.0; 

double mean =0.0; 

double data; 

double stdev; 

double u, t; 

double diff;

clock_t wait = 5 * CL0CKS_PER_SEC + clockO; 

while(w > 5.0 && n < 100 && clockO < wait) {

long B_Start = 0; 

Init_World();

//counts number of Blue veh’s at start 

//initializes the landscape

BT = Init_BT(genome, 243) 

BA = Init_BA(genome, 243) 

RT = Init_RT(genome, 243) 

RA = Init_RA(genome, 243)

B_Start = BNum;

if(BT != NULL) Put_Vehs(BT); 

if(BA != NULL) Put_Vehs(BA); 

Put.Vehs(RT);

Put_Vehs(RA);

//initializes blue tanks 

//initializes blue arty 

//initializes red tanks 

//initializes red arty

//places Blue Tanks on the landscape 

//places Blue Arty on the landscape 

//places Red Tanks on the landscape 

//places Red Arty on the landscape
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enum NE {BTank, BArt, RTank, RArt, Impact}; 

if(BT != NULL) N[BTank] = BT->NextTime.N;

else N[BTank] = Inf; //init event schedule

if(BA != NULL) N[BArt] = BA->NextTime.N; 

else N[BArt] = Inf;

N[RTank] = RT->NextTime.N;

N[RArt] = RA->NextTime.N;

N[Impact] = Inf;

while ( (Cur_Time < Time_Limit)&&(BTNum+BANum>0)&&(RTNum>0) )

{
Next_Event = BTank;

Cur_Time = N[BTank] ;

if(Cur_Time > N[BArt]) {Next_Event = BArt; Cur_Time = N[BArt];} 

if(Cur_Time > N[RTank]) {Next_Event = RTank; Cur_Time = N[RTank];} 

if(Cur_Time > N[RArt]) {Next_Event = RArt; Cur_Time = N[RArt];} 

if(Cur_Time > N[Impact]) {Next_Event = Impact; Cur_Time = N[Impact];}

switch (Next_Event)

case BTank : BT = ProcTk(BT);

N[BTank] = BT->NextTime.N; 

break;

case BArt : BA = ProcArt(BA);

N[BArt] = BA->NextTime.N; 

break;

case RTank : RT = ProcTk(RT);

N[RTank] = RT->NextTime.N; 

break;

case RArt : RA = ProcArt(RA);

N[RArt] = RA->NextTime.N; 

break;

case Impact : Imp = Proclmp(lmp);

if(Imp != NULL) N[Impact] = Imp->time;

else N [Impact] = Inf;

break;

default : cerr «  "prob in main" «  endl;
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>

if(BT == NULL II BA == NULL II RT == NULL I I RA == NULL)

//if any axe null, set next 

{ //time to inf

if(BT == NULL) N[BTank] = Inf;

if(BA == NULL) N[BArt] = Inf;

if(RT == NULL) N[RTank] = Inf;

if(RA == NULL) N[RArt] = Inf;

>
>

data = Score(B_Start);

//cout «  data «  endl;

n++;

diff = data - mean;

sum += diff * diff * (n - 1.0) / n;

mean += diff / n;

stdev = sqrt(sum / n ) ;

if(n>l) {

u = 1.0 - 0.5 * (1.0 - LOC); 

t = idfStudent(n-l, u); 

w = t * stdev / sqrt(double(n-1));

>
Cleanup();

>
cout «  mean «  endl; 

return 0;

double Score(long B_Start)

double Time; 

double Score; 

long B_Surv;

double PctSurv;

if(Cur_Time >= Time_Limit) return 0.0; 

else {

Time = Time_Limit - Cur_Time;

B_Surv = B_Start - BNum;

PctSurv = double(B_Surv)/double(B_Start); 

Score = Time + PctSurv*200.0;

//cout «  Score «  endl;
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>
return Score;

>

long Cleanup(void)

{
Cur_Time = 0.0;

Veh* Temp = NULL;

ArTGT* Templmp = NULL;

while(BT != NULL) { 

Temp = BT;

BT = BT->Next; 

delete Temp;

Temp = NULL;

>

while(BA != NULL) { 

Temp = BA;

BA = BA->Next; 

delete Temp;

Temp = NULL;

>

while(RT != NULL) { 

Temp = RT;

RT = RT->Next; 

delete Temp;

Temp = NULL;

>

while(RA != NULL) { 

Temp = RA;

RA = RA->Next; 

delete Temp;

Temp = NULL;

>

while(Imp != NULL) { 

Templmp = Imp;

Imp = Imp->Next; 

delete Templmp; 

Templmp = NULL;

//resets time 

//Temp pointers

//Cleans Pointer to Blue Tanks

//Cleans Pointer to Blue Arty

//Cleans Pointer to Red Tanks

//Pointer to Red Arty

//Cleans pointer to arty impacts
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BNum = 0; //Number of Blue Vehicles

RNum = 0; //Number of Red Vehicles

BTNum = 0; //Number of Blue Tanks

BANum = 0; //Number of Blue Arty

RTNum = 0; //Number of Red Tanks

RANum = 0; 

return 0;

//Number of Red Arty
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  Veh.CPP: Member functions of the Vehicle class. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define STRICT

#define sqr(x) ((x) * (x))

#include "veh.h"

#include "vehmgr.h"

#include "rvgs.h"

#include "rngs.h"

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include <math.h>

#include <iostream> 

using namespace std;

extern World Cell[Landscape_Size][Landscape_Size];

extern long BNum;

extern long BTNum;

extern long RNum;

extern long RTNum;

extern long BEngine;

extern long BAmmo_Type;

extern long BAmmo_Qty;

extern long BSight;

extern long BAuto;

extern long BArmor;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  Constructors, destructors, and overloaded operators: //

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /  default constructor:

Veh::Veh(long x, long y, chax clr, char arr[], int n)

{
extern double Engine[4] [4]; 

extern double Ammo[14][10]; 

extern double Sight[4][6];
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extern double Autoloader [3];

double Fix_Force = ConvCarr, n, 98, 102) *  0.06666;

//pet of force fixing enemy 

double p; //used to draw probs

double wt, amtarmor, cubes, spd;

X = x;

Y = y;
Dest_X = x;

Dest_Y = y;

Last_X = x;

Last_Y = y;

if(clr == Jb’)

ObjX = XObj;

ObjY = YObj;

Dir = 0; //blue face N, red face S

//select vision 

SelectStream(VISION_STREAM);

Vision = long(( Sight[BSight][5] +

Equilikely(-long(Sight[BSight][5]/10), 

long(Sight[BSight] [5]/10) ))/25);

pd = Sight[BSight][1];

//compute cubes then length

cubes = Engine[BEngine] [2] + 5*BAmmo_Qty*Ammo[BAmmo_Type][2] +

Ammo[BAmmo_Type] [7] + Sight[BSight][2] + BAuto*Autoloader[1] + 20.0;

1 = cubes/(2.15*(2.8-(BAuto*0.6))); 

h = 2.8-(BAuto*0.6); 

w = 3.5;

//compute weight -> speed

amtarmor = 2*(2.8-(BAuto*0.6))*2.15*(BArmor*0.1);

//m~3 of armor on tank 

/ /2* front slab*armor thickness

wt - amtarmor*Arm_Wt + Engine[BEngine][0] + (5 * BAmmo_Qty *

Ammo[BAmmo_Type] [0]) + Ammo[BAmmo_Type][6] + Sight[BSight] [0] +

//veh is blue 

//carry obj coord

//first move is in place

//last cell visited to 

//damp oscillation
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(BAuto*Autoloader[0]);

spd = 6.49 + 1.49*Engine[BEngine] [1]/wt; //converts hp/t to km/hr 

SelectStream(M_RATE_STREAM);

Move_Rate = Equilikely(long(0.9*spd),long(l.l*spd))*40.0/60.0;

Type = 0; //blue tanks are type 0, red are type

Power = 1.0; //cbt effectiveness at start (100%)

Color = clr; //set color

G_Rg = long(Ammo[BAmmo_Type][4]/25);

//G_Rg is in grids, not meters

acc = Ammo[BAmmo_Type] [5];

//acc of gun/ammo comb

stacc = Sight[BSight][4] ; //acc of sight

Armor = BArmor*0.1; //thickness of frontal armor

Pen = Ammo[BAmmo_Type] [1];

//penetration cap of bullets

Moving = l; //starts not moving

State = 0; //blue starts on offense

Rds = BAmmo_Qty * 5; //number of rounds on board

enctr = 0; //initially can’t see any en

frctr = 1; //can always see self

arctr = 0; //

EnDir = 8; //cannot see enemy, so doesn’t have a

// perceived direction 

CFF = 1.0/(Move_Rate * CFF.Min );

//sets prob of a call for fire

Reload = Ammo[0][9];

SelectStream(FIX_FORCE_STREAM); 

p = Uniform(0,1);

if(p < Fix_Force) Fix = 0;//part of fixing force

else Fix = 1; //part of maneuver force

NextTime.N = 0.0 

NextTime.Sh = Inf 

NextTime.Mv = 0.0

//init time of next events

Next = NULL 

Fr = NULL 

Arty = NULL 

En = NULL
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Target = NULL; 

tgtctr = 0;

Shots_Msn = 0;

Width = 0;

Nof = Conv(arr, n, 17, 20); 

Noa = 0;

Noe = ConvCarr, n, 20, 23); 

Noo = Conv(arr, n, 23, 26);

ALof = Conv(arr, n, 26, 29);

ALoa = 0;

ALoe = Conv(arr, n, 29, 32);

ALoo = Conv(arr, n, 32, 35);

AMedf = Conv(arr, n, 35, 38);

AMeda = 0;

AMede = ConvCarr, n, 38, 41);

AMedo = Conv(arr, n, 41, 44);

AHif = Conv(arr, n, 44, 47);

AHia = 0;

AHie = Conv(arr, n, 47, 50);

AHio = Conv(arr, n, 50, 53);

APanf = Conv(arr, n, 53, 56);

APana = 0;

APane = Conv(arr, n, 56, 59);

APano = ConvCarr, n, 59, 62);

DLof = Conv(arr, n, 62, 65);

DLoa = 0;

DLoe = Conv(arr, n, 65, 68);

DLoo = Conv(arr, n, 68, 71);

DMedf = ConvCarr, n, 71, 74);

DMeda = 0;

DMede = ConvCarr, n, 74, 77);

DMedo = ConvCarr, n, 77, 80);

DHif = Conv(arr, n, 80, 83);

DHia = 0;

DHie = ConvCarr, n,

CO00 86);

DHio = ConvCarr, n, 86, 89);
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DPanf = Conv(arr, n, 89, 92); 

DPana = 0;

DPane = ConvCarr, n, 92, 95); 

DPano = ConvCarr, n, 95, 98);

0_Dist = ConvCarr, n, 102, 105);

else //tank is red, inputs hard-coded

{
ObjX = XObj; //carry obj coord

ObjY = YObj;

Dir = 4; //blue face N, red face S

SelectStreamCVISION_STREAM);

Vision = EquilikelyC2750/25, 2250/25); 

pd = 0.6;

h = 2.3 

1 =  6.0  
w = 3.5

SelectStreamCM_RATE_STREAM);

Move_Rate = EquilikelyC22, 18);

//30 kph +/- 10%

Type = 2; //red are type 2

Power = 1.0; //cbt effectiveness at start C100%)

Color = clr; //set color

G_Rg = EquilikelyC90, 110);

//G_Rg is 2500m in grids 

acc = 1.0; //acc of gun/amo comb

stacc = 1.0; //acc of sight

Armor = 0.520; //thickness of frontal armor

Pen = 0.550; //penetration cap of bullets

Moving = 1; //starts not moving

State = 5; //red starts on def

Rds = 40; //number of rounds on board

enctr = 0; //initially can’t see any en

frctr = 1; //can always see self

arctr =0; //

EnDir = 8; //cannot see enemy, so doesn’t have

// perceived direction
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CFF = 1.0/( double(Move_Rate * CFF_Min) );

//sets prob of a call for fire

Reload = 5;

Fix = 0; //part of fixing force

NextTime.N = 0.0; //init time of next events

NextTime.Sh = Inf;

NextTime.Mv = 0.0;

Next = NULL;

Fr = NULL;

Arty = NULL;

En = NULL;

Target = NULL; 

tgtctr = 0;

Shots_Msn = 0; //used in art.cpp

Width = 0; //used in art.cpp

Nof = 1;

Noa = 0;
Noe = 0;
Noo = 1;

ALof = 1;

ALoa = 0;
ALoe = 5;

ALoo = 1;

AMedf = 3;

AMeda = 0;
AMede = 10;
AMedo = 1;

AHif = 1;

AHia = 0;
AHie = 10;
AHio = 1;

APanf = 0;
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APana = 0; 

APane = 10; 

APano = 0;

DLof = 1 

DLoa = 0 

DLoe = 0 

DLoo = 2

DMedf = 3 

DMeda = 0 

DMede = 0 

DMedo = 2

DHif = 1 

DHia = 0 

DHie = 1 

DHio = 1

DPanf = 0 

DPana = 0 

DPane = 1 

DPano = 0

0_Dist = 8; //opt dist = 200m

// destructor:

Veh::"Veh ()

{
ClearPtrsO ; 

if(Color== ’r’) RNum—; 

else BNum—;

>

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
//  Other member functions: //

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

bool Veh::Choose_Next_Move(long f, long e, long o)

{
double dist, distf, diste, disto, best;

//dist to dest, fr, en, obj and best pri
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long fx, fy, fxl, fyl, ex, ey, ox, oy, a, i; 

double pri[3]; //holds priority calc

if(NextTime.Sh == Inf && State > 0) NextTime.Sh = NextTime.N + Reload;

//schedule a shot

TGT* T1 = NULL;

TGT* T2 = NULL;

//find best location based on friendlies 

switch (frctr)

case 1 : fx = X; //no other fr are in sight

fy = Y; 

break;

case 2 : Fr_Locn(Fr->X, Fr->Y, fx, fy); //just one other fr in sight 

break;

default: T1 = Fr; //mult fr’s in sight

T2 = Fr->Next;

Fr_Locn(Tl->X, T1->Y, fx, fy);

Fr_Locn(T2->X, T2->Y, fxl, fyl); 

fx = Rnd((fx+fxl)/2.0); 

fy = Rnd((fy+fyl)/2.0);

T1 = NULL;

T2 = NULL;

>

distf = Dist(X, Y, fx, fy); //find dist and priority of movement

pri [0] = f * distf; //based on friendlies

//find best locn based on closest enemy

switch(enctr)

case 0 : ex = X; //no en in sight

ey = Y; 

break;

default : En_Locn(En->X, En->Y, ex, ey);

>
diste = Dist(X, Y, ex, ey); 

pri [1] = e * diste;
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//find best locn based on obj

0bj_Locn(0bjX, ObjY, ox, oy); 

disto = sqrt(Dist(X, Y, ObjX, ObjY)); 

pri[2] = o * disto; 

disto = sqr(disto);

//best location based on highest pri of the three: 

a = 0;

best = pri[0];

for(i=l; i<3; i++) //find highest priority move

{
if(pri[i] > best)

{
best = pri[i]; 

a = i;

>
}

switch(a)

case 0: if(distf != 0.0)

Dest_X = Rnd(X + (fx - X)/distf);

Dest_Y = Rnd(Y + (fy - Y)/distf);

>
else

Dest_X = X;

Dest_Y = Y;

>
break; 

case 1:

Dest_X = Rnd(X + (ex - X)/diste);

Dest_Y = Rnd(Y + (ey - Y)/diste); 

break;

case 2:

Dest_X = Rnd( X + (ox - X)/disto );

Dest_Y = Rnd( Y + (oy - Y)/disto ); 

break;

default: cerr «  "problem in ch_best_move" «  endl;

>
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if(Dest_X == Last_X && Dest_Y == Last_Y)

//if moving back to previous spot, don’

Dest_X = X;

Dest_Y = Y;

>

//set moving flag

if(Dest_X != X I I Dest_Y != Y) Moving = true; 

else Moving = false;

//set direction

//if moving point direction of travel

if(Moving == true) Set_Dir(X - Dest_X + Dest_Y - Y);

//if stationary and enemy in sight, point at closest enemy 

else if(En != NULL)

diste = Dist(X, Y, En->X, En->Y);

Set_Dir( Rnd((X - En->X)/diste) + Rnd((Y - En->Y)/diste) );

>

//if no enemy, assume default direction 

else

if(Color == ’r’) Dir = 4; 

else Dir = 0;
>

//determine next update time 

dist = Dist(X, Y, Dest_X, Dest_Y);

//if sitting on best spot, stay 1/shots per min 

if(dist == 0 .0 )  NextTime.Mv = NextTime.Mv + Reload;

//else compute next event time

else NextTime.Mv = NextTime.Mv + (dist/Move_Rate); 

return true;

>

double Veh::Fr_Locn(long frX, long frY, long &fx, long &fy) 

double p;
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p = Uniform(0,1);

//best locn is offset from the friendly by the opt dist 

i f ( (frX > X) || ((frX == X) && (p < 0.5)))

fx = Rnd( double(frX) - double(0_Dist) ); //fr is below 

else fx = Rnd( double(frX) + double(0_Dist)); //else above

p = Uniform(0,l);

if ( (frY > Y) || ((frX == X) && (p < 0.5)))

fy = Rnd( double(frY) - double(0_Dist) ); //fr is right

else if(frY < Y) fy = Rnd( double(frY) + double(0_Dist) );//or left 

else fy = frY; //else on-line

fx = max(0, fx); //stay on game board

fy = max(0, fy) ;

fx = min(fx, Landscape_Size-l);

fy = min(fy, Landscape_Size-l);

return 1.0;

//temp locations 

//best dist from en 

//actual dist from en

//part of atk’g maneuver force

double Veh::En_Locn(long enX, long enY, long &ex, long &ey) 

{
long xl, x2, yl, y2; 

double dist = pow(10, -.07918)*G_Rg; 

double diste = Dist(X, Y, enX, enY); 

long Is = Landscape_Size-l; 

if(Fix == 1)

switch(EnDir)

case 0: if( 0.9*dist < diste && diste < l.l*dist ft&

( enX-X <= 0 I| enX-X <= mabs(Y-enY)) )

{ //if in proper range, don’t move

ex = X; 

ey = Y;

>
else

ex = enX;

yl = enY - Rnd(dist); 

y2 = enY + Rnd(dist); 

if(yl<0) ey = y2; 

else if(y2>ls) ey = yl;

else if(Dist(X, Y, ex, yl)<Dist(X, Y, ex, y2)) ey = yl; //ex,yl closer 

else ey = y2;

//en pointed north, move to 

//flank

//x component not on game bd
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y
break;

//ex,y2 closer

case 1: if( 0.9*dist 

(enX < X I I Y <

{

< diste && diste < 1.l*dist && 

enY) )

//if  in proper range, don’t move

ex = X;

ey = Y;

>
else

xl = enX - Rnd(sqrt(sqr(dist)/2))

yl = enY - Rnd(sqrt(sqr(dist)/2))

x2 = enX + Rnd(sqrt(sqr(dist)/2))

y2 = enY + Rnd(sqrt(sqr(dist)/2))

if(xl < 0 I I yl < 0) //xl or yl not on game bd

{
ex = x2; 

ey = y2;

> //x2 or y2 not on game bd

else if(x2 > Is I I y2 > Is)

ex = xl; 

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer 

{
ex = xl; 

ey = yl;

>
else //x2,y2 closer

ex = x2; 

ey = y2;

>
}

break;

case 2: if( 0.9*dist < diste && diste < l.l*dist && 

(Y-enY <= 0 I I Y-enY <= mabs(X-enX)) )

{ //if in proper range, don’t move
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xl = enX - Rnd(dist); 

x2 = enX + Rnd(dist); 

ey = enY;

//en pointed east, move to 

//flank

//x component not on game bdif(xl<0) ex = x2; 

else if(x2>ls) ex = xl;

else if(Dist(X, Y, xl, ey)<Dist(X, Y, x2, ey)) ex = xl; //xl,ey closer 

else ex = x2;

} //x2,ey closer

break;

//xl or yl not on game bd

case 3: if( 0.9*dist < diste && diste < l.l*dist &&

( X < enX II Y < enY) )

{ //if  in proper range, don’t move

ex = X; 

ey = Y;

}
else 

{
xl = enX + Rnd(sqrt(sqr(dist)/2)): 

yl = enY - Rnd(sqrt(sqr(dist)/2)) 

x2 = enX - Rnd(sqrt(sqr(dist)/2)) 

y2 = enY + Rnd(sqrt(sqr(dist)/2)) 

if(xl > Is II yl < 0)

{
ex = x2; 

ey = y2;

>
else if(x2 <0 I I y2 > Is)

ex = xl; 

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer 

{
ex = xl; 

ey - yl;

>
else //x2,y2 closer

{
ex = x2; 

ey = y2;

>

>

//x2 or y2 not on game bd
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break;

case 4: if( 0.9*dist < diste && diste < l.l*dist &&

(X-enX <=0| |  X-enX <= mabs(Y-enY)) )

{ //if  in proper range, don’t move

ex = X; 

ey = Y;

>
else

ex = enX;

yl = enY - Rnd(dist); //en pointed north, move to

y2 = enY + Rnd(dist); //flank

if(yl<0) ey = y2; //x component not on game bd

else if(y2>ls) ey = yl;

else if(Dist(X, Y, ex, yl)<Dist(X, Y, ex, y2)) ey = yl; //ex,yl closer 

else ey = y2;

} //ex,y2 closer

break;

case 5: if( 0.9*dist < diste && diste < l.l*dist &&

( X < enX I I enY < Y) )

{ //if  in proper range, don’t move

ex = X; 

ey = Y;

}
else

xl = enX - Rnd(sqrt(sqr(dist)/2)) 

yl = enY - End(sqrt(sqr(dist)/2)) 

x2 = enX + Rnd(sqrt(sqr(dist)/2)) 

y2 = enY + Rnd(sqrt(sqr(dist)/2)) 

if(xl <0 || yl < 0)

ex = x2; 

ey = y2;

>
else if(x2 > Is I I y2 > Is)

{
ex = xl; 

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl.yl closer 

{
ex = xl;

//en pointed sw

//xl or yl not on game bd

//x2 or y2 not on game bd
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ey = yl; 

>
else

ex = x2; 

ey = y2; 

>
>

break;

//x2,y2 closer

case 6: if( 0.9*dist < diste && diste < l.l*dist && 

(enY-Y <= 0 I I enY-Y <= mabs(X-enX)) )

{ //if  in proper range, don’t move

ex = X; 

ey = Y;

>
else

//en pointed east, move to 

//flank

//x component not on game bd

xl = enX - Rnd(dist); 

x2 = enX + Rnd(dist); 

ey = enY;

if(xl<0) ex = x2; 

else if(x2>ls) ex = xl;

else if(Dist(X, Y, xl, ey)<Dist(X, Y, x2, ey)) ex = xl; //xl,ey closer 

else ex = x2; //x2,ey closer

>
break;

case 7: if( 0.9*dist < diste && diste < l.l*dist &&

( enX < X II enY < Y) )

{ //if  in proper range, don’t move

ex = X; 

ey = Y;

>
else

{
xl = enX + Rnd(sqrt(sqr(dist)/2)) 

yl = enY - Rnd(sqrt(sqr(dist)/2)) 

x2 = enX - Rnd(sqrt(sqr(dist)/2)) 

y2 = enY + Rnd(sqrt(sqr(dist)/2)) 

if(xl > Is || yl < 0)

{
ex = x2; 

ey = y2;

>

//xl or yl not on game bd
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else if(x2 <0 I I y2 > Is) //x2 or y2 not on game bd

{
ex = xl; 

ey = yl;

>
else if(Dist(X, Y, xl, yl)<Dist(X, Y, x2, y2)) //xl,yl closer 

{
ex = xl; 

ey = yl;

>
else //x2,y2 closer

■C
ex = x2; 

ey = y2;

>
>

break;

default: cerr «  "en_locn prob" «  ’ ’ «  Color «  ’ ’ «  X «  ’ ’

«  Y «  ’ ’ «  NextTime.Mv «  endl;

}
}//end if(Fix == 1)

else //atk’g but part of fixing force, or defending

if(0.9*dist<=diste && 1.l*dist<=diste)//in range band, don’t move

ex = X; 

ey = Y;

>
else //move to proper range

{
ex = enX + Rnd((dist/diste)*(X-enX)); 

ey = enY + Rnd((dist/diste)*(Y-enY));

>
}

return 1.0;

>

double Veh::0bj_Locn(long obX, long obY, long &ox, long &oy)

double dist = Dist( X, Y, obX, obY); 

if(dist != 0.0)

-C
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ox = obX; //obj attracts tank

oy = obY;

>
else

{
ox = obX; 

oy = obY;

>
ox = max (0, ox); / / stay on game board

oy = max (0, oy);

ox = min (ox, Landscape_Size-l);

oy = min (oy, Landscape_Size-l);

return 1.0;

bool Veh::MoveTo(long mX, long mY) //places tank in new location

Y = mY; 

return true;

>

bool Veh::PutFr(long fr) //stores number of frdly, arty and en in area 

{
frctr = fr; 

return true;

>

bool Veh::PutAr(long ar)

{
arctr = ar; 

return true;

>

bool Veh::PutEn(long en)

{
enctr = en; 

return true;

>

double Veh::Ratio()

return (double(enctr)/frctr);

>

Last_X = X; 

Last_Y = Y; 

X = mX;

//records where tank moved from

//updates new loaction
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}

bool Veh::SetState(long x)

{
State = x; 

return true;

>

bool Veh::ClearPtrs()

{
TGT* temp; 

temp = Fr;

while (temp != NULL) //there were fr's in area

Fr = Fr->Next; 

delete temp; 

temp = Fr;

>
temp = En;

while (temp != NULL) //there were en’s in area

{
En = En->Next; 

delete temp; 

temp = En;

>
temp = Arty; 

while(temp != NULL)

{
Arty = Arty->Next; 

delete temp; 

temp = Arty;

>
enctr = 0; 

frctr = 1; 

return true;

>

bool Veh::Set_Dir(long D) //set the direction flag 

{
D=D+2; 

switch (D)

case 0: Dir =5; //if  (Dest-Loc’n)+2 == 0, must be going SW

break;
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case 1: if(Dest_X == X) Dir =6; / /  dir flags: 7 0 1

else Dir =4; //  6 2

break; //  5 4 3

case 2: if(Dest_X < X) Dir = 7;

else Dir = 3;

break;

case 3: if(Dest_X == X) Dir = 2;

else Dir = 0;

break;

case 4: Dir = 1; 

break;

default: cerr «  "dir prob" «  ’ ’ «  Color «  ’ ’ «  X

«  ’ ’ «  Y «  ’ ’ «  NextTime.N «endl;

>
return true;

>

bool Veh::Set_EnDir(long ED)

{
EnDir = ED; 

return true;

>

bool Veh::Chg_Pwr(double p)

{
Power = Power - p; 

return true;

>

void Veh::Set_0bj()

{
Veh* RB = NULL; 

long ctr = 0; 

long OffY, GrX, GrY;

GrX = GrY = 0;

RB = this; 

while(RB != NULL)

{
GrX += RB->X;

GrY += RB->Y;

//sets obj locn based on 

//tank’s location in formation

//set ptr to run thru friendlies 

//find center of formation
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RB = RB->Next; 

ctr++;

>

OffY = GrY/ctr - Y;

ObjX = XObj; //Apply offset to find ind obj

ObjY = YObj - OffY;

>
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  veh.h: Header file for the Vehicle class. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef VEH_H 

#define VEH.H

#define STRICT

struct TGT { 

long X; 

long Y; 

double D; 

TGT* Next;

>;

//coord, of tgt or move

//points to next tgt in list

struct ArTGT { 

long X; 

long Y; 

double D; 

long pri; 

double time; 

ArTGT* Next;

>;

//coord, of tgt or move

//points to next arty tgt in list

class Veh 

{

public:

//current location 

//where tank is going

//coordinates of objective

//Direction veh is facing (0-7, 

/ /  0=N, 4=S)

//physical genes

long X; 

long Y; 

long Dest.X 

long Dest.Y 

long Last.X 

long Last.Y 

long ObjX; 

long ObjY; 

long Dir;
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long Vision; 

double pd; 

double w; 

double 1; 

double h; 

double Move_Rate; 

long Type;

double Power; 

char Color; 

long G_Rg; 

double acc; 

double stacc; 

double Armor; 

double Pen; 

bool Moving; 

long State; 

long Rds; 

long enctr; 

long frctr; 

long arctr; 

long EnDir; 

double CFF;

double Reload; 

long Fix;

struct { 

double N; 

double Sh; 

double Mv;

} NextTime;

Veh* Next;

TGT* Fr;

TGT* Arty;

TGT* En;

ArTGT* Target; 

long tgtctr; 

long Width;

//Vision distance (grids)

//prob of det 

//width of veh (m)

//length of the veh (m)

//height of the veh (m)

//speed across environment 

//type of veh (0:bl tk, l:bl arty,

//  2:red tk, 3:red arty)

//current effectiveness of veh 

//veh color (r or b)

//Rg of Main Gun in grids 

//accuracy of gun/ammo comb 

//accuracy of sight 

//thickness of frontal armor 

//Penetration of bullet 

//Flag if moving 

//State of the Tank 

//number of rounds on board 

//counts en in sight 

//counts fr in sight 

//counts fr arty in sight 

//general dir of enemy formation 

//probability of calling for 

//  artillery fire

//Time after a shot that veh 

//  can fire again 

//0 if veh is part of fixing 

//  (shooting) force

//event list 

//next event time 

//time of next shot 

//time of next movement

//ptr to next veh in ord’d linked 

/ /  list

//pointers to tgt lists and 

/ /  closest arty piece

//sheaf width for arty
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long Shots_Msn;

//tactical genes

long Nof;

long Noa;

long Noe;

long Noo;

long ALof;

long ALoa;

long ALoe;

long ALoo;

long AMedf

long AMeda

long AMede

long AMedo

long AHif;

long AHia;

long AHie;

long AHio;

long APanf;

long APana;

long APane;

long APano

long DLof ;

long DLoa;

long DLoe;

long DLoo;

long DMedf

long DMeda

long DMede

long DMedo

long DHif;

long DHia;

long DHie;

long DHio;

long DPanf;

//number of shots/msn
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long DPana; 

long DPane; 

long DPano;

long 0_Dist; //dist to friendlies

Veh (long x, long y, char clr, char arr[], int n); 

virtual “Veh ();

virtual bool Choose_Next_Move(long f, long e, long o); //find next move 

virtual double Fr_Locn(long frX, long frY, long &fx, long &fy);

//locate best move based on: 

//fr’s, en, obj

virtual double En_Locn(long enX, long enY, long &ex, long &ey); 

virtual double Obj_Locn(long obX, long obY, long &ox, long &oy) ;

bool Chg_Pwr(double p); 

bool MoveTo(long X, long Y); 

bool PutFr(long fr) ; 

bool PutEn(long en); 

bool PutAr(long ar);

double Ratio(); 

bool SetStatedong x) ; 

virtual bool ClearPtrsO;

bool Set_Dir(long D);

bool Set_EnDir(long ED);

void Set_Obj();

>;

//chgs power rating due to wounding 

//places tk at new locn 

//chgs num of fr & en

//computes local force ratio

//sets state of tk

//cleans fr & en tgts from Fr

//and En ptrs

//chgs dir flag

//records dir enemy is facing

//sets obj locn for tank

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  Vehmgr.cpp: Controls the armies. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define STRICT

#define sqr(x) ((x) * (x))

#define pi 3.1415926

#include "vehmgr.h"

#include "veh.h"

#include "tank.h"

#include "art.h"

#include "BTank.h"

#include "BArt.h"

#include "rvgs.h"

#include "rngs.h"

#include "Param.h"

#include "RParam.h"

#include "land.h"

#include <cmath>

#include <iostream>

#include <string>

using namespace std;

extern World Cell[Landscape..Size][Landscape_Size];

extern double Cur_Time;

extern long BTNum;

extern long BANum;

extern long RTNum;

extern long RANum;

extern long BNum;

extern long RNum;

extern double N[];

long BEngine; //selects type engine

long BAmmo_Type; //type ammo (and gun)

long BAmmo_Qty; //how many stowed rounds/5

long BSight; //select type sight
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long BAuto; //0=no autoloader, l=autoloader

long BArmor; / /amount of armor(*.lm)

long Dollar_Split; //Amount of money that goes to tanks

long BAEngine; //selects type engine

long BAAmmo_Type; //type ammo (and gun)

long BAAmmo_Qty; //how many stowed rounds/5

long BAAuto; //0=no autoloader, l=autoloader

long BAArmor; //amount of armor(*.lm)

enum State{No, ALo, AMed, AHi, APanic, DLo, DMed, DHi, DPanic};

//define State variables

int Conv(char arr[], int n, int nl, int n2)

{
string strl(arr+nl, arr+n2);

if(strl == "0" II strl == "00" II strl == "000" II strl == "0000" ) 

return 0;

else if(strl == "1" I I strl == "01" II strl == "001" II strl == "0001")

return 1;

e l s e i f ( s t r l == "10" I 1 s t r l  == "010" II s t r l  === "0010") r e tu r n  2;
e l s e i f ( s t r l == "11" I 1 s t r l  == "011" 1 1 s t r l  === "0011") r e tu r n  3;
e l s e i f ( s t r l == "100" 1 s t r l  == "0100 ") r e tu rn 4;
e l s e i f ( s t r l == "101" 1 s t r l  == "0101 ") r e tu rn 5;
e l s e i f ( s t r l == "110" 1 s t r l  == "0110 ") r e tu rn 6;
e l s e i f ( s t r l == "111" 1 s t r l  == "0111 ") re tu r n 7;
e l s e i f ( s t r l == "1000" ) r e t u r n  8;
e l s e i f ( s t r l == "1001" ) r e t u r n  9;
e l s e i f ( s t r l == "1010" ) r e tu r n  10;
e l s e i f ( s t r l == "1011" ) r e t u r n  11;
e l s e i f ( s t r l == "1100" ) r e t u r n  12;
e l s e i f ( s t r l == "1101" ) r e t u r n  13;
e l s e i f ( s t r l == "1110" ) r e t u r n  14;
e l s e i f ( s t r l == "1111" ) r e tu r n  15;
cerr «  "prob in vehmgr.cpp line 65" «  endl; 

return 0;

>

Veh* Init_BT(char arr[], int n)

■c
Veh* Tk = NULL;

long i, j, k, BTStart, max;

char b = ’b’;

double amtarmor, cost;

BEngine = Conv(arr, n, 0, 2);
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BAnimo_Type = Conv(arr, n, 2, 6);

BAmmo_Qty = Conv(arr, n, 6, 10);

BSight = Conv(arr, n, 10, 12);

BAuto = Conv(arr, n, 12, 13);

BArmor = Conv(arr, n, 13, 17);

Dollar_Split = Conv(arr, n, 105, 108);

amtarmor = 2*(2.8-(BAuto*0.6))*2.15*(BArmor*0.1); //m"3 of armor on tank

//compute cost

cost = Engine[BEngine][3] + (5*BAmmo_Qty*Ammo[BAmmo_Type][3]) +

Ammo[BAmmo_Type][8] + Sight[BSight][3] + (BAuto*Autoloader [2]) +

(amtarmor*Arm_Cost);

BTStart = long(250000*Dollar_Split*0.1428/cost);

if(BTStart < 1) return Tk; 

long BArr[BTStart*4];

if (BTStart*4 < Landscape_Size)

max = BTStart*4;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-(2*BTStart)+i;

>
else if(BTStart*2 < Landscape_Size)

{
max = BTStart*2;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-BTStart+i;

>
else

max = Landscape_Size; 

for(i=0;i<max;i++) BArr[i] = i;

>

j = max - 1; 

k = Equilikely(0, j);

Tk = new Tank(Blue_Tank_Start, BArr[k], b, arr, n);

//Initializes the first blue tank

BNum++;

BTNum++;

BArr [k] = BArr[j];

j—;
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Veh* Temp;

Temp = Tk;

for(i=l; KBTStart; i++) //then the rest of the tribe

{
k = Equilikely(0, j);

Temp->Next = new Tank(Blue_Tank_Start, BArr[k], b, arr, n); 

BArr [k] = BArr[j];

j--;

Temp = Temp->Next;

BNum++;

BTNum++;

>
Temp->Next = NULL; 

return Tk;

Veh* Init_BA(char arr[], int n)

{
Veh* Arty = NULL; 

long i, j, k, BAStart; 

char b = ’b’; 

double amtarmor, cost;

BAEngine = Conv(arr, n, 108, 110);

BAAmmo_Type = Conv(arr, n, 110, 112);

BAAmmo_Qty = Conv(arr, n, 112, 116);

BAAuto = Conv(arr, n, 241, 242);

BAArmor = Conv(arr, n, 116, 119);

amtarmor=(BAArmor*0.02)*((AAmmo[BAAmmo_Type] [7]*AAmmo[BAAmmo_Type] [8]) +

(AAmmo[BAAmmo_Type] [8]*AAmmo[BAAmmo_Type][9]) + 

(AAmmo[BAAmmo_Type] [7]*AAmmo[BAAmmo_Type][9]) ) ;

//compute cost

cost = AEngine[BAEngine][3] + (5*BAAmmo_Qty*AAmmo[BAAmmo_Type][3 ])  + 
AAmmo[BAAmmo_Type] [10] + (BAAuto*AAutoloader[1]) + (amtarmor*Arm_Cost);

BAStart = long(250000*(l-(Dollar_Split*0.1428))/cost);

//Starting number of blue arty

long max;

long BArr[Landscape_Size];

if(BAStart < 1) return Arty; 

if(BAStart*4 < Landscape_Size)
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max = BAStart*4;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-(2*BAStart)+i;

>
else if(BAStart*2 < Landscape_Size)

{
max = BAStart*2;

for(i=0;i<max;i++) BArr[i] = (Landscape_Size/2)-BAStart+i;

>
else

max = Landscape_Size; 

for(i=0;i<max;i++) BArr[i] = i;

>

j = max - 1; 

k = EquilikelyCO, j);

Arty = new Art(Blue_Arty_Start, BArr[k], b, arr, n) ;

//Initializes the first blue arty

BNum++;

BANum++;

BArr [k] = BArrCj] ;

j--;

Veh* Temp;

Temp = Arty;

for(i=l; i<BAStart; i++) //then the rest of the tribe

k = Equilikely(0, j);

Temp->Next = new Art(Blue_Arty_Start, BArr[k], b, arr, n);

BArr [k] = BArr[j] ;

j--;

Temp = Temp->Next;

BNum++;

BANum++;

>
Temp->Next = NULL; 

return Arty;

Veh* Init_RT(char arr[], int n)
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Veh* Tk = NULL; 

long i, j, k; 

char r = ’ r ’; 

long RArr[RTStart*4];

for(i=0;i<RTStart*4;i++) RArr[i] = (Landscape_Size/2)-(2*RTStart)+i; 

j = (RTStart*4) - 1; 

k = EquilikelyCO, j);

Tk = new Tank(Red_Tank_Start, RArr[k], r, arr, n);

//Initializes the first red tank

RNum++;

RTNum++;

RArr [k] = RArrCj] ;

j--;

Veh* Temp;

Temp = Tk;

for(i=l; i<RTStart; i++) //then the rest of the tribe

k = EquilikelyCO, j);

Temp->Next = new Tank(Red_Tank_Start, RArr[k], r, arr, n);

RArr[k] = RArr[j];

j--;

Temp = Temp->Next;

RNum++;

RTNum++;

>
Temp->Next = NULL; 

return Tk;

Veh* Init_RA(char arr[], int n)

{
Veh* Arty = NULL; 

long i, j, k; 

char r = ’r’; 

long RArr[RAStart*4];

for(i=0;i<RAStart*4;i++) RArr[i] = (Landscape_Size/2)-(2*RAStart)+i; 

j = (RAStart*4) - 1; 

k = EquilikelyCO, j);

Arty = new Art(Red_Arty_Start, RArr[k], r, arr, n);

//Initializes the first red arty
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RNum++;

RANum++;

RArr [k] = RArrCj] ;

j“ ;

Veh* Temp;

Temp = Arty;

for(i=l; i<RAStart; i++) //then the rest of the tribe

k = Equilikely(0, j);

Temp->Next = new Art(Red_Arty_Start, RArr[k] , r, arr, n); 

RArr[k] = RArr[j] ;

j--;

Temp = Temp->Next;

RNum++;

RANum++;

>
Temp->Next = NULL; 

return Arty;

Veh* ProcTk(Veh* V)

{
if(V->NextTime.N == V->NextTime.Sh) //next event is a shot

■c

ShootTk(V);

V = Put_In_Order(V);

>
else //else event is a mvmt

-C
Arr(V);

Chk_State(V);

ActTk(V);

V = Put_In_Order(V);

>
return V;

>

Veh* ProcArt(Veh* V)

if(V->NextTime.N == V->NextTime.Sh) //next event is a shot

{
ShootArt(V);

V = Put_In_Order(V);
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>
else //else event is a mvmt

{
Arr(V);

Chk_State(V);

ActArt(V);

V = Put_In_Order(V);

>
return V;

>

ArTGT* Proclmp(ArTGT* Imp)

{
double p;

ArTGT* T1 = Imp;

Imp = Imp->Next;

Veh* T2 = Cell[Tl->X][T1->Y].Occ;

if(T2 != NULL) //a target is at grid

p = Uniform(0,l);

if(p < (T2->1)*2.15/625.0) T2 = Wnd(T2, p); //round struck vehicle

}
T2 = NULL; 

delete T2;

Tl->Next = NULL; 

delete Tl;

T1 = NULL; 

return Imp;

>

Veh* Chk_State(Veh* V)

{
double p = Uniform(0,1);

V = Look(V);

if( (p <= V->CFF) && (V->enctr > 0)

V->Set_0bj();

V = Set_State(V);

//look for en and fr vehicles

) Call_Fire(V);

//if  en visible attempt to CFF

//set the objective

//set the atk/def state of vehicle
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return V;

>

void ActTk(Veh* Tk)

{
switch ( State(Tk->State) ) //cast long as a State variable

case No : Tk->NextTime.Sh = Inf; //ensure tk does not shoot

Tk->Choose_Next_Move(Tk->Nof, Tk->Noe, Tk->Noo);

//Choose best move for veh

break;

case ALo : Tk->Choose_Next_Move(Tk->ALof, Tk->ALoe, Tk->ALoo);

break;

case AMed : Tk->Choose_Next_Move(Tk->AMedf, Tk->AMede, Tk->AMedo);

break;

case AHi : Tk->Choose_Next_Move(Tk->AHif, Tk->AHie, Tk->AHio);

break;

case APanic : Tk->Choose_Next_Move(Tk->APanf, Tk->APane, Tk->APano); 

break;

case DLo : Tk->Choose_Next_Move(Tk->DLof, Tk->DLoe, Tk->DLoo); 

break;

case DMed : Tk->Choose_Next_Move(Tk->DMedf, Tk->DMede, Tk->DMedo);

break;

case DHi : Tk->Choose_Next_Move(Tk->DHif, Tk->DHie, Tk->DHio); 

break;

default: Tk->Choose_Next_Move(Tk->DPanf, Tk->DPane, Tk->DPano);

>

if(Tk->NextTime.Mv < Tk->NextTime.Sh) Tk->NextTime.N = Tk->NextTime.Mv; 

else Tk->NextTime.N = Tk->NextTime.Sh;

>

void ActArt(Veh* V)

•C
Art* W = (Art*) V;

if(V->Color == ’b’) //arty is blue
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switch ( State(W->State) ) //cast long as a State variable

{ //Choose best move for arty based on threat

case No : W->Choose_Next_Move(W->Nof, W->Noa, W->Noe, W->Noo);

break;

case ALo : W->Choose_Next_Move(W->ALof, W->ALoa, W->ALoe, W->ALoo);

break;

case AMed : W->Choose_Next_Move(W->AMedf, W->AMeda, W->AMede, W->AMedo);

break;

case AHi : W->Choose_Next_Move(W->AHif, W->AHia, W->AHie, W->AHio);

break;

case APanic : W->Choose_Next_Move(W->APanf, W->APana, W->APane, W->APano); 

break;

case DLo : W->Choose_Next_Move(W->DLof, W->DLoa, W->DLoe, W->DLoo); 

break;

case DMed : W->Choose_Next_Move(W->DMedf, W->DMeda, W->DMede, W->DMedo);

break;

case DHi : W->Choose_Next_Move(W->DHif, W->DHia, W->DHie, W->DHio); 

break;

default: W->Choose_Next_Move(W->DPanf, W->DPana, W->DPane, W->DPano);

>
>

else //arty is red

■C
switch ( State(W->State) ) //cast long as a State variable

case No : W->Choose_Next_Move(RANof, RANoa, RANoe, RANoo);

//Choose best move for arty based on threat

break;

case ALo : W->Choose_Next_Move(RAALof, RAALoa, RAALoe, RAALoo);

break;

case AMed : W->Choose_Next_Move(RAAMedf, RAAMeda, RAAMede, RAAMedo); 

break;
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case AHi : W->Choose_Next_Move(RAAHif, RAAHia, RAAHie, RAAHio);

break;

case APanic : W->Choose_Next_Move(RAAPanf, RAAPana, RAAPane, RAAPano); 

break;

case DLo : W->Choose_Next_Move(RADLof, RADLoa, RADLoe, RADLoo); 

break;

case DMed : W->Choose_Next_Move(RADMedf, RADMeda, RADMede, RADMedo);

break;

case DHi : W->Choose_Next_Move(RADHif, RADHia, RADHie, RADHio); 

break;

default: W->Choose_Next_Move(RADPanf, RADPana, RADPane, RADPano);

>
>

if(V->NextTime.Mv < V->NextTime.Sh) V->NextTime.N = V->NextTime.Mv; 

else V->NextTime.N = V->NextTime.Sh;

>

bool Arr(Veh* Tk)

Veh* Tl;

long x, y, destx, desty;

double p;

x = Tk->X;

y = Tk->Y;

destx = Tk->Dest_X;

desty = Tk->Dest_Y;

if((x != destx)||(y != desty)) //only move if going to

// a new destination

■c
//confirm that dest is empty, if not, choose an adjoining grid 

while(Cell[destx][desty].Color != ’u’) //dest is occupied

p = Uniform(0,1); 

if(p > 0.5) destx++; 

else destx—; 

p = Uniform(0,1); 

if(p > 0.5) desty++; 

else desty—;
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if(destx < 0 || destx >= Landscape_Size I I desty < 0 I I 

desty >= Landscape_Size)

//selected location is off grid, start back at self

destx = x; 

desty = y;

}
}

//chg number on each point 

Cell[x][y].Number_On_Point—;

Cell[destx][desty].Number_On_Point++;

//chg old data and pointer

Cell[x][y].Occ = NULL;

Cell[x][y].Color = ’u’;

Cell[x][y].Type = 5;

//chg dest data and pointer

Cell[destx][desty].Occ = Tk;

Cell[destx][desty].Type = Tk->Type;

Cell[destx] [desty].Color = Tk->Color;

T1 = NULL;

Tk->MoveTo(destx, desty);

>
return true;

>

Veh* Look(Veh* Tk)

{
extern Veh* BT; 

extern Veh* BA; 

extern Veh* RT; 

extern Veh* RA;

long X, Y, vis, enctr, frctr, arctr, a, b, i, ED, Best; 

double dist, prob, p, pd;

long EnDir[8]; //counts number of enemy facing a direction

TGT* Temp = NULL;

TGT* T = NULL;

TGT* T2 = NULL;

Veh* RB = NULL;
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enctr = 0; //count enemy vehicles in vis area

frctr = 1; //count fr’s (self = 1)

arctr = 0;

Tk->ClearPtrs(); //remove fr and en tgts from ptrs

X = Tk->X;

Y = Tk->Y;

vis = Tk->Vision;

pd = Tk->pd;

for(i=0; i<8; i++) EnDir[i] = 0; //initializes array 

// build enemy target list

if(Tk->Color== ’b’) RB = RT; //look at enemy tanks first

else RB = BT;

while(RB != NULL)

{
a = RB->X; //get x and y coords for en tank

b = RB->Y;

dist = Dist(X, Y, a, b) ; //compute dist

if(dist <= vis) prob = pd * sqrt( sqrt(1.0-dist/vis) );

//inside vision range 

else prob = 0.0; //outside vis range

p = Uniform(0.0,1.0);

if(p <= prob) //inside vision range

{
enctr++; //increment enemy ctr

EnDir[RB->Dir]++; //increment enemy direction

Temp = new TGT;

Temp->X = a; //get x and y coords for en tank

Temp->Y = b;

Temp->D = dist; //dist to en

Temp->Next = NULL; 

if ( Tk->En == NULL) Tk->En = Temp; 

else 

{
T = Tk->En;

if(Temp->D < T->D) //if  new en is closer, keep new

{
Tk->En = Temp;

T->Next = NULL; 

delete T;

T = NULL;

>
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>

RB = RB->Next;

>

if(Tk->Color== >b’) RB = RA; 

else RB = BA;

while(RB != NULL)

{
a = RB->X; 

b = RB->Y;

dist = Dist(X, Y, a, b); 

if(dist <= vis)

//then look at en arty

//get x and y coords for en axty

//compute dist 

//inside vision range

enctr++;

Temp = new TGT;

Temp->X = a;

Temp->Y = b;

Temp->D = dist;

Temp->Next = NULL;

if ( Tk->En == NULL) Tk->En = Temp;

else

T = Tk->En; 

if(Temp->D < T->D)

//increment enemy ctr 

//get x and y coords for arty 

//dist from fr to en

//if new en is closer, keep new

Tk->En = Temp; 

T->Next = NULL; 

delete T;

T = NULL;

RB = RB->Next;

if(enctr > 0) //do if enemy are visible

{
ED = 0;

Best = EnDir[0]; //find general direction enemy faces

for(i=0; i<8; i++)

if(EnDir[i] > Best)

-c
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Best = EnDir[i]; 

ED = i;

Tk->Set_EnDir(ED);

>

■c

// build friendly target list

if(Tk->Color== 'r’) RB = RT; 

else RB = BT;

while(RB != NULL)

a = RB->X; 

b = RB->Y;

dist = Dist(X, Y, a, b); 

if(dist <= vis && dist >0.0)

Temp = new TGT;

Temp->X = a;

Temp->Y = b;

Temp->D = dist;

Temp->Next = NULL; 

if( frctr ==1)

Tk->Fr = Temp;

Temp = NULL;

>
else if ( frctr == 2 )

T = Tk->Fr; 

if(T->D < Temp->D)

T->Next = Temp;

Temp = NULL;

else

Tk->Fr = Temp;

Temp->Next = T;

T = NULL;

Temp = NULL;

//tanks first again

//get x and y coords for fr tank

//inside vision range but not self

//record x and y for fr 

//dist to fr 

//first fr found

//second fr found
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else if(frctr > 2) //mult fr’s fd

T = Tk->Fr;

T2 = T->Next; 

if(Temp->D >= T2->D)

{
Temp->Next = NULL;

delete Temp; //new fr is 3d closest, goodbye 

Temp = NULL;

>
else if(Temp->D >= T->D) //second closest

T->Next = Temp;

T2->Next = NULL; 

delete T2;

T2 = NULL;

>
else //closest

Tk->Fr = Temp;

Temp->Next = T;

T->Next = NULL;

T2->Next = NULL; 

delete T2;

T2 = NULL;

>
Temp = NULL;

T = NULL;

T2 = NULL;

>
frctr++;

>
RB = RB->Next;

>

if(Tk->Color== ’r’) RB = RA; //do fr arty

else RB = BA;

while (RB '.= NULL)

a = RB->X; //get x and y coords for fr arty

b = RB->Y;

dist = Dist(X, Y, a, b);

if(dist <= vis && dist > 0.0) //inside vision range but not self
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arctr++; //increment arctr

Temp = new TGT;

Temp->X = a; //get x and y coords for fr

Temp->Y = b;

Temp->D = dist; //dist to fr

Temp->Next = NULL;

if( arctr == 1) Tk->Arty = Temp; //first fr found

else //mult fr found

T = Tk->Arty; 

if(T->D <= Temp->D)

Temp->Next = NULL;

delete Temp; //new arty is farther than prev. found 

Temp = NULL;

>
else

{
Tk->Arty = Temp;

T->Next = NULL; 

delete T;

T = NULL;

>
>

T = NULL;

Temp = NULL;

>
RB = RB->Next;

>

Tk->PutFr(frctr); //store number of frdly, arty, and en

Tk->PutAr(arctr);

Tk->PutEn(enctr); 

return Tk;

Veh* Set_State(Veh* Tk)

TGT* Temp = Tk->En; 

double ratio, p; 

ratio = Tk->Ratio();

if(ratio == 0.0) Tk->SetState(No); //State = No

else if(ratio < 0.1 && Temp->D > 80) Tk->SetState(ALo); //ALo
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else if(ratio < 0.3 && Temp->D > 40) 

else if(ratio <0.5)

{
p = Uniform(0,1);

if(p < 0.90) Tk->SetState(AHi);

else Tk->SetState(APanic);

>
else if(ratio < 1.0 && Temp->D > 80) 

else if(ratio < 5.0 && Temp->D > 40) 

else 

{
p = Uniform(0,1);

if(p < 0.90) Tk->SetState(DHi);

else Tk->SetState(DPanic);

>
return Tk;

Tk->SetState(AMed); //AMed 

//could go to AHi or APanic

//p=0.90 of ->AHi 

//go to APanic

Tk->SetState(DLo); //State = DLo 

Tk->SetState(DMed); //State = DMed

//go to DPanic

void ShootTk(Veh* Tk)

{
double p, dist, ph, pk, a; 

static long rshot = 0; 

static long bshot = 0;

Veh* T = NULL; //Tgt’d tank

TGT* Tgt = NULL; //ptr to struc TGT to id tgt’d tank

long SD, VD; //Shooter Direction and Victim Direction

Tgt = Tk->En;

T = Cell[Tgt->X][Tgt->Y].Occ; 

if(T != NULL)

dist = Tgt->D; //distance to tgt

if(dist < Tk->G_Rg) //tgt is in range

if(Tk->Color == ’r’) rshot++; //count shots on each side

else bshot++;

ph = T->w*40/dist; //apparent width of target in mils

//adjust for moving and stationary firers and targets

//stationary tgts get ph cut to 1/3

//mvg shooting at mvg reduces accuracy by 10'/,

if(Tk->Moving == false && T->Moving == false) ph = 0.33*ph; //S->S

else if(Tk->Moving == true && T->Moving == false) ph = 0.225*ph; //M->S
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else if(Tk->Moving == true && T->Moving == true) ph = 0.9*ph; //M->M

ph = ph/2.0; //half of apparent width in mils

p = Normal(0.0, Tk->acc) + Normal(0.0, Tk->stacc);

//acc of gun/ammo and sight

if(p < 0.0) p = -p;

if(p <= ph) //tgt is hit

if(T->Pen>Tk->Armor)

{
a = asin(T->Pen/Tk->Armor); 

pk = (pi-a)/pi;

>
else pk = 0.0;

//adjust for frontal or flank shots 

SD = Tk->Dir;

VD = T->Dir;

if ((SD+4)'/,8 == VD-1 || (SD+4)7.8 == VD I I (SD+4)*/.8 == VD+1) pk = pk/2; 

p = Uniform(0,l); //draw to see if killed or wound

if(p < pk )

{
T = Kill(T); //tgt killed

Tk->NextTime.Sh = Inf; //do not shoot again at tgt

>
else Wnd(T, 1—p); //tgt wounded

Tk->NextTime.Sh += Tk->Reload; //shoot again after reloading

>
}//if(dist < Tk->G_Rg)

else { //tgt is out of rg, don’t sched next shot

Tk->NextTime.Sh = Inf;

}
>

else { //tgt is gone, don’t sched another shot

Tk->NextT ime.Sh = Inf;

>

if(Tk->NextTime.Mv < Tk->NextTime.Sh) Tk->NextTime.N = Tk->NextTime.Mv; 

else Tk->NextTime.N = Tk->NextTime.Sh;

>

void ShootArt(Veh* Arty)

{
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extern ArTGT* Imp; 

extern double Cur_Time;

ArTGT* T1 = Arty->Target;

ArTGT* T2 = NULL; 

long x, y, yl, y2, i; 

double TOF;

//dequeue target and process mission 

Arty->Target = Tl->Next;

Arty->tgtctr—; 

if(Arty->Target == NULL)

■C
if(Arty->tgtctr != 0) cerr «  "prob in shootart, time 11 «  

Cur_Time «  endl;

Arty->NextTime.Sh = Inf;

Arty->NextTime.N = Arty->NextTime.Mv;

>
else

Arty->NextTime.Sh += Arty->Reload;

if(Arty->NextTime.Sh < Arty->NextTime.Mv) Arty->NextTime.N 

Arty->NextT ime.Sh; 

else Arty->NextTime.N = Arty->NextTime.Mv;

>

//schedule impact of rounds 

for(i=0; i<Arty->Shots_Msn; i++)

■c
x = T1->X;

yl = max( 0, T1->Y - long(Arty->Width/2.0) );

y2 = min( T1->Y + long(Arty->Width/2.0), Landscape_Size );

y = Equilikely(yl, y2);

T2 = new ArTGT;

T2->X = x;

T2~>Y = y;

T2->D = Dist(x, y, Arty->X, Arty->Y);

TOF = double(T2->D)/double(Arty->G_Rg);

T2->time = Cur_Time + TOF;

T2->pri = 0;

T2->Next = Imp;

Imp = T2;

Imp = OrderTgts(Imp);

T2 = NULL;

>
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T1 = NULL;

if(Imp != NULL) N[4] = Imp->time;

>

ArTGT* OrderTgts(ArTGT* Imp)

ArTGT* T1 = Imp;

ArTGT* T2 = Imp->Next;

ArTGT* T3 = Imp;

if(T2 == NULL) //there is only one target, so return

T1 = NULL;

T3 = NULL; 

return Imp;

>

if(Imp->time > T2->time) //new Imp is later than most imminent

-C
Imp = Imp->Next;

while( Tl->time > T2->time && T2->Next != NULL)

//find proper location for new Imp

{
T3 = T2;

T2 = T2->Next;

>
if(T2->time >= Tl->time)

Tl->Next = T2;

T3->Next = Tl;

>
else

{
T2->Next = Tl;

Tl->Next = NULL;

>
}

Tl = NULL;

T2 = NULL;

T3 = NULL; 

return Imp;

>

Veh* Wnd(Veh* Tk, double p)
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if(p > Tk->Power) Tk = Kill(Tk); 

else Tk->Chg_Pwr(p); 

return Tk;

>

Veh* Kill(Veh* V)

{
extern Veh* BT; 

extern Veh* BA; 

extern Veh* RT; 

extern Veh* RA;

Veh* Tl = NULL;

Veh* T2 = NULL;

int x, y;

switch(V->Type)

case 0 : Tl = BT; 

break;

case 1 : Tl = BA; 

break;

case 2 : Tl = RT; 

break;

case 3 : Tl = RA; 

break;

default : cerr «  " problem in kill " «  endl;

>

x = V->X; 

y = V->Y;

if(Tl == V) //Veh to be killed is first in queue

{
switch(V->Type)

case 0 : BT = Tl->Next; 

break;

//if p > pwr, tgt is killed 

//reduce pwr by p
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case 1 : BA = Tl->Next; 

break;

case 2 : RT = Tl->Next; 

break;

case 3 : RA = Tl->Next; 

break;

default : cerr «  " problem in kill 2 " «  endl;

>
Tl->ClearPtrs();

Tl->Next = NULL; 

delete V;

V = NULL;

Tl = NULL;

>
else

T2 = Tl; //increment thru list to find victim

Tl = Tl->Next; 

while(Tl != V)

T2 = Tl;

Tl = Tl->Next;

>
T2->Next = Tl->Next;

Tl->Next = NULL;

delete V; //destroy victim tk

Tl = NULL;

T2 = NULL;

>
clearCell(x, y); 

return Tl;

}

Veh* Put_In_Order(Veh*

Veh* Tl = Tk;

Veh* T2 = Tk->Next; 

if(T2 == NULL)

Tl = NULL;

Tk)

//Tk points to only veh in list
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return Tk;

} //otherwise, more vehs

Veh* T3 = Tk;

if(Tk->NextTime.N > T2->NextTime.N)

Tk = Tk->Next;

while((Tl->NextTime.N > T2->NextTime.N) && (T2->Next != NULL))

T3 = T2;

T2 = T2->Next;

if(Tl->NextTime.N > T2->NextTime.N) //T2->Next == NULL

T2->Next = Tl;

Tl->Next = NULL;

else //T2->NextTime.N <= Tl->NextTime.N

T3->Next = Tl;

Tl->Next = T2;

>
Tl = NULL;

T2 = NULL;

T3 = NULL; 

return Tk;

bool Put_Vehs(Veh* Tk)

{
long x; 

long y;

Veh* Tl = Tk; 

while (Tl != NULL)

{
x = T1->X; 

y = T1->Y;

CellCx][y].Color = Tl->Color; 

Cell[x] [y].Type = Tl->Type; 

Cell [x] [y].Number_0n_Point++; 

Cell[x] [y].Occ = Tl;

Tl = Tl->Next;

>
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Tl = NULL; 

return true;

>

void Call_Fire(Veh* V)

extern Veh* BA; 

extern Veh* RA;

ArTGT* Tl = NULL; 

ArTGT* T2 = NULL; 

ArTGT* T3 = NULL; 

TGT* A1 = NULL;

TGT* T = NULL;

Veh* A = NULL; 

if(V->Color == ’b’) 

else A = RA;

A = BA;

//tgt that cff wants to hit

//closest arty to caller

//arty that will shoot mission

//if veh is blue, call for fire to blue

//arty, else red arty shoots

if(V->En != NULL && V->Arty != NULL && A != NULL)

//defensive programming, veh is in 

{ //contact with tgt and arty and

//artillery exists

Tl = new ArTGT;

T = V->En;

T1->X = T->X;

T1->Y = T->Y;

T1->D = T->D;

Tl->pri = V->State;

Tl->time = Cur_Time;

Tl->Next = NULL;

A1 = V->Arty;

while(A1->X != A->X II A1->Y != A->Y) A = A->Next;

//find closest arty 

A->tgtctr++; //increment the counter

if ( A->Target == NULL )

A->Target = Tl; //if no targets in q, place in q

A->NextTime.Sh = Cur_Time + A->Reload; //schedule a shot

//if next event for this arty is 

//this shot

if(A->NextTime.N > A->NextTime.Sh)

A->NextTime.N = A->NextTime.Sh; //update next time
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if(A->Color == 'b’) BA = Put_In_Order(BA);

//reorder arty based on this shot

else RA = Put_In_Order(RA);

}//if(A->Target == NULL) 

else

T2 = A->Target; 

if(Tl->pri > T2->pri)

{
Tl->Next = T2;

A->Target = Tl;

>
else

while( (Tl->pri <= T2->pri) && T2->Next != NULL )

//increment thru list

{
T3 = T2;

T2 = T2->Next;

>

//targets exist

//new target is higher priority than 

//any in q

//higher pri targets exist

if(Tl->pri <= T2->pri)

T2->Next = Tl;

Tl->Next = NULL;

>
else

{
T3->Next = Tl;

Tl->Next = T2;

>
Tl = NULL;

T2 = NULL;

T3 = NULL;

>
while(A->tgtctr > Max_Msns) //eliminate the last

{ //mission in q

T2 = A->Target; 

while(T2->Next != NULL)

T3 = T2;

T2 = T2->Next;

>
A->tgtctr—;
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T3->Next = NULL;

T2->Next = NULL; 

delete T2;

T2 = NULL;

>
} //else targets already exist 

>
>
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  vehmgr.h: Provides the declarations for vehmgr.cpp //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "art.h"

#include 11 land, h"

#include <string>

#ifndef VEHMGR.H 

#define VEHMGR.H

int Conv(char arr[], int n,  int nl, int n2);

Veh* Init_BT(char arr[], int n);

Veh* Init_BA(char arr[], int n);

Veh* Init_RT(char arr[], int n);

Veh* Init_RA(char arr[], int n);

bool Put.Vehs(Veh* V);

Veh* ProcTk(Veh* Tk);

Veh* ProcArt(Veh* Arty);

ArTGT* ProcImp(ArTGT* Imp);

bool Arr(Veh* V);

Veh* Chk.State(Veh* V);

void ActTk(Veh* Tk);

void ActArt(Veh* Arty);

Veh* Look(Veh* V);

Veh* Set_State(Veh* V);

void ShootTk(Veh* Tk);

void ShootArt(Veh* Arty);

Veh* Wnd(Veh* V, double p);

Veh* Kill(Veh* V);
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Veh* Put_In_Order(Veh* V); 

ArTGT* OrderTgts(ArTGT* T);

void Call_Fire(Veh* V);

#endif
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/

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  BTank.h: Contains the Blue Tank Characteristics //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef BTANK.H 

#define BTANK.H

double Engine[4][4] 

{//{wt(mt), hp, 

{1.454, 1500.0, 

{3.3, 1500.0,

{1.0, 900.0,

{3.545, 750.0,

>;

nT3, cost($k)}

1.9875, 175.0>,

3.95, 250.0>,

2.0, 500.0>,

5.035, 100.0}

//LV100 Engine 

//AGT-1500 (Current Ml) 

//hybrid

//AVDS-1790 (M60)

double Ammo[16][10] =

{//wt(mt), pen(m), m“3, <:ost($k), rg(m), accuracy(mils), gun wt,

gun m~3, gun cost, min/rd

//120mm

{0.0187, 0.6, 0.272, 1.0, 3000, 1.0, 1.0, 1.5, 250.0, 5>, / /M829

{0.0187, 0.7, 0.272, 2.0, 3000, 0.9, 1.0, 1.5, 250.0, 5>, //M829A1

{0.0187, 0.8, 0.272, 5.0, 3000, 0.8, 1.0, 1.5, 250.0, 5>, //M829A2

//125mm

{0.0243, 0.550, 0.294, 2.0, 2500, 1.0, 1.3, 2.0, 350.0, 5>, //BM42M

{0.0243, 0.60, 0.294, 2.9, 2500, 1.0, 1.3, 2.0, 350.0, 5>, / /BK27

{0.0243, 0.65, 0.294, 2.5, 2500, 0.9, 1.3, 2.0, 350.0, 5>, //BK29 

//140mm

{0.0404, 0.8, 0.369, 4.0, 3000, 0.8, 2.0, 5.0, 500.0, 5>, //

/ /ATGM

//AT-11

{0.250, 0.8, 0.270, 50.0, 4000, 0.4, 1.0, 1.0, 500.0, 10},

//T0W2B

{0.180, 0.8, 0.270, 100.0, 5000, 0.4, 1.0, 1.0, 500.0, 10},

//F0TT

{0.350, 1.0, 0.270, 150.0, 5000, 0.3, 1.0, 1.0, 500.0, 10},

//Javelin

{0.250, 0.6, 0.200, 75.0, 2000, 0.3, 1.0, 1.0, 500.0, 10},

//L0SAT

{0.4, 2.0, 0.403, 250.0, 5000, 0.08, 1.0, 1.0, 500.0, 10},
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//Dragon

{0.150, 0.2, 0.150,

//EM Projo

{0.001, 2.0, 0.001,

{0.001, 2.0, 0.001,

{0.001, 2.0, 0.001,

40.0, 1500, 0.3, 1

0.001, 10000, 0.05, 

0.1, 10000, 0.05,

0.001, 10000, 0.05,

0, 1.0, 500.0, 10},

10.0, 4.0, 1250.0, 10},

10.0, 4.0, 1250.0, 10},

10.0, 4.0, 12500.0, 10}

double Sight[4][6] =

{//wt, Pd, nT3, cost($k), accuracy(mils), Rg

{0 . 1 ,
{0.5,

{0.75,

0.4,

0 . 6 ,
0 . 8 ,

{2.00, 0.95,

};

0.25, 10.0,

0.50, 100.0,

1.0, 250.0, 0.5,

4.0, 1000.0,

0 .8 , 2000} ,  
0.8, 2500}, 

5000}, 

10000}0 . 1 ,

//105D (Daylight only) 

//IR

//Thermal

//MMW

double Autoloader[3] = {1.0, -5.0, 150.0}; //wt, nT3, cost($k)

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  BArt.h: Contains the Blue Arty Characteristics //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

tifndef BART_H 

#define BART_H

double AEngine[4][4] =

{//{wt(mt), hp, m“3, cost($k)>

{3.3, 1500.0, 3.95, 150.0>, //AGT-1500 (Current Ml)

{3.545, 750.0, 5.035, 100.0>, //AVDS-1790 (M60)

{4.0, 500.0, 5.0, 50.0>, //lighter, cheaper engine

{2.0, 250.0, 3.0, 45.0> //M113 engine

>;

double AAmmo[4] [13] =

{//wt(mt), pen(m), m~3, cost($k), rg(m), acc(pt or area), gun wt, 

w, 1, h, gun cost, min/rd, max rds/msn 

//M1024 120mm mortar

{0.022, 0.0025, 0.18, 0.10, 10000.0, 1.0, 6.0, 2.8, 5.15,

2.3, 500.0, 1.0, 8.0}, //HE

//M109 155mm howitzer

{0.031, 0.005, 0.3, 0.20, 18000.0, 1.0, 25.0, 3.1, 6.2,

3.0, 2500.0, 1.0, 8.0}, //HE

//Crusader 155mm howitzer

{0.031, 0.005, 0.3, 0.20, 45000.0, 1.0, 50.0, 3.1, 6.2,

3.0, 5000.0, 1.0, 8.0}, //HE

//EF0GM

{0.001, 0.1, 0.6, 3.0, 40000.0, 0.0, 6.0, 2.8, 5.15,

2.3, 500.0, 1.0, 1.0} //Msl

};

double AAutoloader[2] = {1.0, 150.0}; //wt, cost($k)

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  Param.h: Holds the major parameters for the cbt sim. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef PARAM.H

#define PARAM.H

#define Landscape.Size 750

#define Time.Limit 200.0

#define POSITION.STREAM 0

#define VISION.STREAM 1

#define M.RATE.STREAM 2

#define FIX.FORCE.STREAM 3

#def ine METAB.STREAM 4

#define Inf Time..Limit

#define Out 1

#define pixel.size 3

//Size of landscape=18,750m 

//Sets the timelimit for the sim 

//draws random numbers from different 

/ /  streams

100 //  A big number

I / O  = run visual, 1 = run without

// graphics

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Blue Tank Force Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define XObj Landscape_Size/3 //Objective is in red start area

#define YObj Landscape_Size/2

#define Arm.Wt 6.4 //Wt of armor per m~3 (mt)

#define Arm.Cost 630.8 //Cost of armor per nT3 ($k)

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Blue Tank Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define CFF_Min 10 //minutes between calls for arty fire
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Blue Arty Force Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define Max_Msns 5 //max # of fire msns in target q

iiuiiiiiiiiiiiiiiiiiiuiiiiiiiiiiiiiiiniinriiiiiiiiiiiiiiiniiiii 
I I  u
I I  Blue Arty Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define A_Rds_Min 1 //num rounds that can be fired/minute

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Landscape attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define Blue_Tank_Start 5*Landscape_Size/8

//Blue will start in lower half 

#define Blue_Arty_Start 3*Landscape_Size/4

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  RParam.h: Holds the major parameters for the red side of //

/ /  the cbt sim. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef RPARAM_H 

#define RPARAM.H

#define RTStart 

#define RAStart

15

5

//Starting number of red tanks 

//Starting number of red arty

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Red Tank Force Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#def ine RFix.Force

#define ROpt.Dist

#def ine RNof 1

#define RNoe 0

#define RNoo 1

#def ine RALof 1

#define RALoe 5

#define RALoo 1

#def ine RAMedf 3

#define RAMede 10

#define RAMedo 1

#define RAHif 1

#def ine RAHie 10

#def ine RAHio 0

#def ine RAPanf 0

#def ine RAPane 10

#def ine RAPano 0

#def ine RDLof 1

#def ine RDLoe 0

0.9 //size of attacker in fixing force

200 //Min dist to friendlies
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#define RDLoo 2

#define RDMedf 3

#define RDMede 0

#define RDMedo 2

#def ine RDHif 1

#def ine RDHie 1

#define RDHio 1

#define RDPanf 0

#define RDPane 1

#define RDPano 0

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Red Tank Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define RHi_Vision 6000 //Hi limit of vision

#define RLo_Vision 5500 //Lo limit of vision

#def ine RHi_Move_Rate 8000 //Fastest movement allowed (m/hr)

#def ine RLo_Move_Rate 4000 //Slowest movement allowed

#def ine RGun_Rg 3000 //Max Range (m) of main gun

#define RRds_Min 1 //num rounds that can be fired/minute

#define RGun_Type 1 //l=conv gun, 2=msl, 3=em gun

#def ine RAmmo_Type 1 //l=sabot, 2=heat, 3=he

#def ine RCFF_Min 10 //minutes between calls for arty fire

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  Red Arty Force Attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define RShoot_Force 0.9 //% of attacker arty force shooting

#define R0pt_A_Dist 200 //Min dist to friendly art
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//max # of msns in target q 

//number of shots per fire mission 

//width of a fire mission’s sheaf

#def ine RANof 1

#def ine RANoa 1

#define RANoe 0

#define RANoo 0

#define RAALof 1

#define RAALoa 1

#define RAALoe 5

#def ine RAALoo 0

#def ine RAAMedf 3

#define RAAMeda 3

#define RAAMede 10

#def ine RAAMedo 0

#define RAAHif 1

#define RAAHia 1

#def ine RAAHie 10

#define RAAHio 0

#def ine RAAPanf 0

#define RAAPana 0

#define RAAPane 10

#def ine RAAPano 0

#define RADLof 1

#define RADLoa 1

#define RADLoe 0

#define RADLoo 0

#define RADMedf 3

#def ine RADMeda 3

#def ine RADMede 0

#def ine RADMedo 0

#define RADHif 1

#define RADHia 1

#define RADHie 1

#define RADHio 0

#def ine RMax_Msns 5

#define RShots_Msn 6

#define RSheaf_Width 200
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#def ine RADPanf 0

#define RADPana 0

#define RADPane 1

#define RADPano 0

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /
/ /

Red Arty Attributes: / /
/ /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

//Hi limit of vision 

//Lo limit of vision

//Fastest movement allowed (m/hr) 

//Slowest movement allowed

//Max Range (m) of main gun

//num rounds that can be fired/minute

//l=conv gun, 2=msl, 3=em gun 

/ / l=sabot, 2=heat, 3=he

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Landscape attributes: //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#def ine RA_Hi_Vis 2000

#define RA_Lo_Vis 1500

#define RA_Hi_Move_Rate 5000

#define RA_Lo_Move_Rate 4000

#define RA_Gun_Rg 15000

#def ine RA_Rds_Min 1

#define RA_Gun_Type 1

#def ine RA_Ammo_Type 1

#define Red_Tank_Start 

#define Red_Arty_Start

Landscape_Size/3 //Red will start in upper half 

Landscape_Size/4

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Tank.cpp : Member functions of the Tank class. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define STRICT 

#include "Param.h"

#include "RParam.h"

#include "tank.h"

extern long BTNum; 

extern long RTNum; 

extern double N[5];

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  Constructors, destructors, and overloaded operators: //

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /  default constructor:

Tank::Tank(long x, long y, char clr, char arr[], int n)

: Veh(x, y, clr, arr, n)

>

//tank destructor 

Tank:: "TankO 

{
if(Color == ’r’) RTNum—; 

else BTNum—;

>
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef TANK.H 

#define TANK.H 

#include "veh.h"

#def ine STRICT

class Tank : public Veh 

{
private:

/ /
/ /  tank.h: 

/ /

/ /
Header file for the tank class, derived from //

the veh class / /

public:

Tank(long x, long y, char clr, char arr[], int n); 

~Tank();

>;

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  / /
/ /  Art.cpp : Member functions of the Artillery class. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#define STRICT 

#include "vehmgr.h"

#include "art.h"

#include "land.h"

using namespace std;

#define sqr(x) ((x)*(x))

extern long BANum; 

extern long RANum;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
//  Constructors, destructors, and overloaded operators: //

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /  default constructor:

Art::Art(long x, long y, char clr, char arr[], int n)

: Veh(x, y, clr, arr, n)

extern double AEngine[4][4]; 

extern double AAmmo[4] [13]; 

extern double AAutoloader[2];

extern long BAEngine; 

extern long BAAmmo_Type; 

extern long BAAmmo_Qty; 

extern long BAAuto; 

extern long BAArmor;

double Shoot_Force = double(Conv(arr, n, 237, 241)) * 0.06666;

//pet of force shooting

if(clr == ’b’) //arty is blue

double p, wt, spd;

Vision = 80; //vision is fixed at 2000m

pd = 0.8;

w = AAmmo[BAAmmo_Type][7];
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1 = AAmmo[BAAmmo_Type][8] ; 

h = AAmmo[BAAmmo_Type][9];

//compute wt, armor + ammo + engine&fuel

wt = ( ( (2*(h*w))+(2*(w*l))+(2*(h*l)) )*(BAArmor*0.05)*Arm_Wt ) + 

(AAmmo[BAAmmo_Type][0]*BAAmmo_Qty*5) + AEngine[BAEngine][0] + 

BAAuto*AAutoloader[0];

spd = 6.49 + 1.49*AEngine[BAEngine] [l]/wt; //converts hp/t to km/hr 

SelectStream(M_RATE_STREAM);

Move_Rate = Equilikely(long(0.9*spd),long(l.l*spd))*40.0/60.0;

Type = 1;

G_Rg = long(AAmmo[BAAmmo_Type][4]/25); 

acc = AAmmo[BAAmmo_Type][5]; 

stacc = 0.0;

Armor = BAArmor*0.05;

Pen = AAmmo[BAAmmo_Type][1];

Rds = BAAmmo_Qty * 5;

Reload = AAmmo [BAAmmo_Type] [11];

SelectStream(FIX_FORCE_STREAM); 

p = Uniform(0,1);

if(p < Shoot_Force) Fix = 0; //part of shooting force 

else Fix = 1;

Width = Conv(arr, n, 126, 129); //width of arty sheaf

//shots per msn is min of genome-driven number and type rd-driven 

Shots_Msn = min(Conv(arr,n,122,126),long(AAmmo[BAAmmo_Type][12]));

//tactical genes

Nof = Conv(arr, n, 129, 132);

Noa = Conv(arr, n, 132, 135);

Noe = Conv(arr, n, 135, 138);

Noo = Conv(arr, n, 138, 141);

ALof = Conv(arr, n, 141, 144);

ALoa = Conv(arr, n, 144, 147);

ALoe = Conv(arr, n, 147, 150);

ALoo = Conv(arr, n, 150, 153);

AMedf = Conv(arr, n, 153, 156);

AMeda = Conv(arr, n, 156, 159);

//l=area, 0=pt

//thickness of armor 

//penetration of ammo 

//number of rounds 

//  aboard 

//time to reload
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AMede = Conv(arr, n, 159, 162);

AMedo = Conv(arr, n, 162, 165);

AHif = Conv(arr, n, 165, 168);

AHia = Conv(arr, n, 168, 171);

AHie = Conv(arr, n, 171, 174);

AHio = Conv(arr, n, 174, 177);

APanf = Conv(arr, n, 177, 180);

APana = Conv(arr, n, 180, 183);

APane = Conv(arr, n, 183, 186);

APano = Conv(arr, n, 186, 189);

DLof = Conv(arr, n, 189, 192);

DLoa = Conv(arr, n, 192, 195);

DLoe = Conv(arr, n, 195, 198);

DLoo = Conv(arr, n, 198, 201);

DMedf = Conv(arr, n, 201, 204);

DMeda = Conv(arr, n, 204, 207);

DMede = Conv(arr, n, 207, 210);

DMedo = Conv(arr, n, 210, 213);

DHif = Conv(axr, n, 213, 216);

DHia = Conv(arr, n, 216, 219);

DHie = Conv(arr, n, 219, 222);

DHio = Conv(arr, n, 222, 225);

DPanf = Conv(arr, n, 225, 228);

DPana = Conv(arr, n, 228, 231);

DPane = Conv(arr, n, 231, 234);

DPano = Conv(arr, n, 234, 237);

0_Dist = Conv(arr, n, 119, 122); //opt dist in grids

else{ //arty is red and attributes hard-coded

Vision = 80; 

pd = 0.8; 

w = 3.1;

1 = 6 . 0 ; 
h = 3.0;

Move_Rate = Equilikely(15, 18); //+/- 10*/, of 25kph

Type = 3;
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G_Rg = 600; 

acc = 1.0; 

stacc = 0.0; 

Armor = 0.05;

Pen = 0.05;

Rds = 60;

Reload = 1.0; 

Shots_Msn = 6; 

Width = 8;

//tactical genes 

Nof = 1;

Noa = 1;

Noe =0;

Noo = 1;

ALof = 1;

ALoa = 1;

ALoe = 5;

ALoo = 1;

AMedf = 3;

AMeda = 3;

AMede = 10;

AMedo = 1;

AHif = 1;

AHia = 1;

AHie = 10;

AHio = 0;

APanf = 0;

APana = 0;

APane = 1;

APano = 0;

DLof = 2;

DLoa = 2;

DLoe = 0;

DLoo = 2;

DMedf = 2;

DMeda = 5;

DMede = 0;

DMedo = 1;

//15000m/25;

//area fire wpn

//50mm pen ability 

//60 stowed rounds 

//I min between rounds 

//6 shots in a volley 

//width of sheaf = 200m
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DHif = 1;

DHia = 1;

DHie = 1;

DHio = 1;

DPanf = 0;

DPana = 0;

DPane = 1;

DPano = 0;

0_Dist = 8; //200m between systems

arctr = 0;

>

//default destructor 

Art::~Art()

{
if(Color == ’r’) RANum—; 

else BANum—;

>

bool Art::Choose_Next_Move(long f, long a, long e, long o)

{
double dist, distf, dista, diste, disto, best;

//dist to dest, fr, en, obj and best pri 

long fx, fy, ax, ay, ex, ey, ox, oy, b, i; 

double pri[4]; //holds priority calc

//find best location based on friendly 

switch (frctr)

>

{
case 1 : fx = X; 

fy = Y; 

break;

//no other fr are in sight

default: Fr_Locn(Fr->X, Fr->Y, fx, fy);

//find locn based on closest fr tk

break;

>

distf = Dist(X, Y, fx, fy); 

pri [0] = f * distf;

//find dist and priority of movement 

//based on friendlies
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//find best location based on friendly arty 

switch (arctr)

case 0 : ax = X; //no other arty are in sight

ay = Y; 

break;

default: Ar_Locn(Arty->X, Arty->Y, ax, ay);

//loc’n of closest arty

break;

>

dista = Dist(X, Y, ax, ay); //find dist and priority of movement

pri[l] = a * dista; //based on fr arty

//find best locn based on closest enemy

switch(enctr)

case 0 : ex = X; //no en in sight

ey = Y; 

break;

default: En_Locn(En->X, En->Y, ex, ey);

>
diste = Dist(X, Y, ex, ey); 

pri[2] = e * diste;

//find best locn based on obj

Obj_Locn(ObjX, ObjY, ox, oy); 

disto = sqrt(Dist(X, Y, ObjX, ObjY)); 

pri[3] = o * disto;

//best location based on highest pri of the four: 

b = 0;

best = pri[0];

for(i=l; i<4; i++) //find highest priority move

if(pri[i] > best)

best = pri[i]; 

b = i;
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>
>

switch(b)

{
case 0: if(distf != 0.0)

-C
Dest_X = Rnd(X + (fx - X)/distf);

Dest_Y = Rnd(Y + (fy - Y)/distf);

>
break;

case 1: if(dista != 0.0)

Dest_X = Rnd(X + (ax: - X)/dista);

Dest_Y = Rnd(Y + (ay - Y)/dista);

>
break;

case 2: if(diste != 0.0)

{
Dest_X = Rnd(X + (ex - X)/diste);

Dest_Y = Rnd(Y + (ey - Y)/diste);

>
break ;

case 3: if(disto != 0.0)

{
Dest_X = Rnd(X + (ox - X)/sqr(disto));

Dest_Y = Rnd(Y + (oy - Y)/sqr(disto));

>
break;

default: cerr «  "problem in ch_best_art_move" «  endl; 

>

if(Dest_X == Last_X && Dest_Y == Last_Y)

//if moving back to previous spot, don’t

Dest_X = X;

Dest_Y = Y;

>

//set moving flag
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if(Dest_X != X I I Dest_Y != Y) Moving = true; 

else Moving = false;

//determine next update time 

dist = Dist(X, Y, Dest_X, Dest_Y);

//if sitting on best spot, stay 1/shots per min 

if(dist == 0.0) NextTime.Mv = NextTime.Mv + Reload;

//else compute next event time

else NextTime.Mv = NextTime.Mv + (dist/Move_Rate); 

return true;

>

bool Art::ClearPtrs()

{
TGT* temp; 

temp = Fr;

while (temp != NULL)

{
Fr = Fr->Next; 

temp->Next = NULL; 

delete temp; 

temp = Fr;

>
temp = En;

while (temp != NULL)

En = En->Next; 

temp->Next = NULL; 

delete temp; 

temp = En;

>

temp = Arty;

while (temp != NULL) //there were arty in area

{
Arty = Arty->Next; 

temp->Next = NULL; 

delete temp; 

temp = Arty;

>

enctr = 0; 

frctr = 1;

//there were fr’s in area

//there were en’s in area
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arctr = 0; 

return true;

}

double Art::Fr_Locn(long frX, long frY, long &fx, long &fy)

{
double dist = Dist( X, Y, frX, frY); 

if(dist > G_Rg/3)

{
fx = frX; //obj attracts arty

fy = frY;

>
else //best to stay in location

fx = X;

fy = Y;

}
fx = max (0, fx); //stay on game board

fy = max (0, fy);

fx = min (fx, Landscape_Size-l);

fy = min (fy, Landscape_Size-l);

return 1.0;

>

double Art::Ar_Locn(long arX, long arY, long &ax, long &ay)

double p; 

p = Uniform(0,1);

//best locn is offset from the friendly art by the opt dist 

if( (arX > X) || ((arX == X) && (p < 0.5))) ax = Rnd( double(arX) -

double(0_Dist) ); //fr is below

else ax = Rnd( double(arX) + double(0_Dist) ); //else above

p = Uniform(0,1);

if( (arY > Y) II ((arX == X) && (p < 0.5))) ay = Rnd( double(arY) -

double(0_Dist) ); //fr is right

else if(arY < Y) ay = Rnd( double(arY) + double(0_Dist) ); //or left 

else ay = arY; //else on-line

ax = max(0, ax); //stay on game board

ay = max(0, ay);

ax = min(ax, Landscape_Size-l);

ay = min(ay, Landscape_Size-l);

return 1.0;
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>

double Art::En_Locn(long enX, long enY, long &ex, long &ey) 

{
if(X - enX > 0) ex = X+l; 

else ex = X-l;

if(Y - enY > 0) ey = Y+l; 

else ey = Y-l;

return 1.0;

>

double Art::0bj_Locn(long obX, long obY, long &ox, long &oy) 

{
double dist = Dist( X, Y, obX, obY); 

if(dist > 0.667*G_Rg)

ox = obX; //obj attracts arty

oy = obY;

>
else //best to stay in location

{
ox = obX;

oy = obY;

>
ox = max (0, ox); 

oy = max (0, oy); 

ox = min (ox, Landscape_Size-l); 

oy = min (oy, Landscape_Size-l); 

return 1.0;

//stay on game board

>
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
//  //  

//  art.h: Header file for the tank class, derived from //

/ /  the veh class //

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#ifndef ART.H 

#define ART.H 

#include "veh.h"

#include "rvgs.h" 

#include "rngs.h" 

#include "Param.h" 

#include "land.h" 

#include <math.h> 

#include <iostream>

#define STRICT

class Art : public Veh 

{
private:

public:

Art(long x, long y, char clr, char arr[], int n);

~Art();

//locate best move based on:

//fr’s, en, obj 

bool Choose.Next.Move(long f, long a, long e, long o);

double Fr_Locn(long frX, long frY, long &fx, long &fy);

double Ar_Locn(long frX, long frY, long &fx, long &fy);

double En_Locn(long enX, long enY, long &ex, long &ey);

double Obj_Locn(long obX, long obY, long &ox, long &oy); 

bool ClearPtrsO;

>;

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
//  land.cpp: Contains the Landscape data for Cbt Sim. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "land.h"

#include "Param.h"

#include "RParam.h"

#include <cmath>

#include <stdio.h>

#include <fstream>

#define sqr(x) ((x)*(x))

World Cell[Landscape_Size] [Landscape_Size]; //Instantiates the landscape 

bool Init_World()

■c
long i = 0; 

long j = 0;

for (i=0; i < Landscape_Size; i++)

for (j=0; j < Landscape_Size; j++)

{
Cell[i] [j] .Number_0n_Point = 0;

Cell[i][j].Color = ’u’;

Cell[i][j].Type = 5;

Cell[i][j].Occ = NULL;

>
>

return true;

}

void clearCellClong x, long y)

Cell[x] [y].Number_0n_Point = 0;

Cell[x] [y].Color = ’u’;

Cell[x][y].Type = 5;

Cell[x] [y].Occ = NULL;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. CODE FOR THE AGENT-BASED MODEL 194

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  Common functions needed by all //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

long max(long i, long j)

{
if(i > j) return i; 

else return j ;

>

long min (long i, long j)

if(i < j) return i; 

else return j ;

>

long Rnd(double x)

{
if (x >= 0)

if(x > long(x)+0.50) return (long(x)+l); 

else return long(x);

>
else

{
if(x < long(x)-0.50) return (long(x)-l); 

else return long(x);

>
>

double Dist(long i, long j, long a, long b) //measures euclidean distance 

{
double dist;

dist = sqrt(sqr(a-i)+sqr(b-j)); 

return dist;

>

long mabs(long x) //returns absolute value

if(x < 0) return -x;
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else return x;

>
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  / /
/ /  land.h: Organizes the Landscape data for Cbt Sim. //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "veh.h"

#include "rvgs.h"

#include "mgs.h"

#ifndef LAND.H 

#define LAND.H

struct World 

{
long Number.On.Point; 

char Color; 

long Type;

Veh* Occ;

>;

bool Init.WorldO;

//number of occupants on a point 

//color of occupant, if any 

//type of occupant, if any 

//pointer to occupant

void clearCelKlong x, long y) ; 

long max(long i, long j); 

long min (long i, long j); 

long Rnd(double x);

double Dist(long i, long j,long a,long b); 

long mabs(long x);

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. CODE FOR THE AGENT-BASED MODEL 197

/ * -------------------------------------------------------------------------------------------------------------------
* This is an ANSI C library for multi-stream random number generation.

* The use of this library is recommended as a replacement for the ANSI C

* randO and srandO functions, particularly in simulation applications

* where the statistical ’goodness’ of the random number generator is

* important. The library supplies 256 streams of random numbers; use

* SelectStream(s) to switch between streams indexed s = 0,1,...,255.

*
*  The streams must be initialized. The recommended way to do this is by

* using the function PlantSeeds(x) with the value of x used to initialize

* the default stream and all other streams initialized automatically with

* values dependent on the value of x. The following convention is used

* to initialize the default stream:

* if x > 0 then x is the state

* if x < 0 then the state is obtained from the system clock

* if x = 0 then the state is to be supplied interactively.

*
* The generator used in this library is a so-called ’Lehmer random number

* generator’ which returns a pseudo-random number uniformly distributed

* 0.0 and 1.0. The period is (m - 1) where m = 2,147,483,647 and the

* smallest and largest possible values are (1 / m) and 1 - (1 / m)

* respectively. For more details see:

*
* "Random Number Generators: Good Ones Are Hard To Find"

* Steve Park and Keith Miller

* Communications of the ACM, October 1988

*
* Name : rngs.c (Random Number Generation - Multiple Streams)

* Authors : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 09-22-98

 * ------------------------------------------------------------------------------------------------------------------
* /

#include <stdio.h> 

#include <time.h>

#include "rngs.h"

#define MODULUS 2147483647 /*

#define MULTIPLIER48271 /*

#define CHECK 399268537 /*

#define STREAMS 256 /*

#define A256 22925 /*

#define DEFAULT 123456789 /*

* /
* /
* /
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static long seed[STREAMS] = {DEFAULT}; /* current state of each stream*/ 

static int stream =0; /* stream index, 0 is the default */

static int initialized =0; /* test for stream initialization */

double Random(void)

/ * ---------------------------------------------------------------------------------------------------------
* Random returns a pseudo-random real number uniformly distributed

* between 0.0 and 1.0.

 * ---------------------------------------------------------------------------------------------------------
* /

{
const long Q = MODULUS / MULTIPLIER; 

const long R = MODULUS 7. MULTIPLIER; 

long t;

t = MULTIPLIER * (seedCstream] '/. Q) - R * (seed[stream] / Q); 

if (t > 0)

seedCstream] = t; 

else

seedCstream] = t + MODULUS; 

return ((double) seedCstream] / MODULUS);

void PlantSeeds(long x)

/ * -----------------------------------------------------------------------------------------------------------------
* Use this function to set the state of all the random number generator

* streams by "planting" a sequence of states (seeds), one per stream,

* with all states dictated by the state of the default stream.

* The sequence of planted states is separated one from the next by

* 8,367,782 calls to RandomO .

 * -----------------------------------------------------------------------------------------------------------------
* /

{
const long Q = MODULUS / A256; 

const long R = MODULUS 7. A256; 

int j ; 

int s;

initialized = 1; 

s = stream;

SelectStream(O);

PutSeed(x); 

stream = s;

/* remember the current stream */

/* change to stream 0 */

/* set seed[0] */

/* reset the current stream */
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for (j = 1; j < STREAMS; j++) {

x = A256 * (seed[j - 1] '/. Q) - R * (seed[j - 1] / Q) ; 

if (x > 0) 

seed[j] = x; 

else

seed[j] = x + MODULUS;

>
>

void PutSeedClong x)

/ * --------------------------------------------------------------------------------------------------------
* Use this function to set the state of the current random number

* generator stream according to the following conventions:

* if x > 0 then x is the state (unless too large)

* if x < 0 then the state is obtained from the system clock

* if x = 0 then the state is to be supplied interactively

 * --------------------------------------------------------------------------------------------------------
* /

i

char ok = 0; 

if (x > 0)

x = x ' /, MODULUS; /* correct if x is too large * /

if (x < 0)

x = ((unsigned long) time((time_t *) NULL)) */, MODULUS; 

if (x == 0) 

while (!ok) {

printf("\nEnter a positive integer seed (9 digits or less) »  "); 

scanf ( M'/,ld" , &x) ; 

ok = (0 < x) && (x < MODULUS); 

if (!ok)

printf("\nlnput out of range ... try again\n");

}
seedCstream] = x;

>

void GetSeed(long *x)

/ * --------------------------------------------------------------------------------------------------------
* Use this function to get the state of the current random number

* generator stream.

 * --------------------------------------------------------------------------------------------------------
* /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. CODE FOR THE AGENT-BASED MODEL 200

*x = seedCstream];

>

void SelectStream(int index)

/ * -------------------------------------------------------------------------------------------------------------
* Use this function to set the current random number generator

* stream — that stream from which the next random number will come.

 * -------------------------------------------------------------------------------------------------------------
* /

{
stream = ((unsigned int) index) ’/, STREAMS;

if ((initialized == 0) && (stream != 0)) /* protect against */

PlantSeeds(DEFAULT); /* un-initialized streams */

>

void TestRandom(void)

/ * ------------------------------------------------------------------------------------------------------------
* Use this (optional) function to test for a correct implementation.

 * ------------------------------------------------------------------------------------------------------------

* /

long i ;

long x; 

double u; 

char ok = 0;

SelectStream(O); / *  select the default stream * /

PutSeed(l); / *  and set the state to 1 * /

for(i = 0; i < 10000; i++)

u = RandomO;

GetSeed(ftx); / *  get the new state value */

ok = (x == CHECK); / *  and check for correctness * /

SelectStream(l); /* select stream 1 * /

PlantSeeds(1); / *  set the state of all streams */

GetSeed(ftx); / *  get the state of stream 1 */

ok = ok && (x == A 256); /* x should be the jump multiplier * /

if (ok)

printf("\n The implementation of rngs.c is correct.\n\n"); 

else

printf("\n\a ERROR-the implementation of rngs.c is not correct.\n\n");
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/ * --------------------------------------------------------------------------------------------------------------
* Name : rngs.h (header file for the library file rngs.c)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 09-22-98
 * --------------------------------------------------------------------------------------------------------------
* /

#if !defined( _RNGS_ )

#define _RNGS_

double Random(void);

void PlantSeeds(long x);

void GetSeed(long *x);

void PutSeed(long x);

void SelectStream(int index);

void TestRandom(void);

#endif
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/ * -----------------------------------------------------------------------------------------------------------
* This is an ANSI C library for generating random variates from six

* discrete distributions

*

*

*

Generator Range (x) Mean Variance

T
* Bernoulli(p) x = 0,1 P p*(l-p)

* Binomial(n, p) x = 0 , . . . ,n n*p n*p*(l-p)

* Equilikely(a, b) x = a,. . . ,b (a+b)/2 ((b-a+l)*(b-a+l)-l)/12

* Geometric(p) x = 0,... p/(l-p) p/((l-p)*(l-p))

* Pascal(n, p) x = 0,... n*p/(l-p) n*p/((l-p)*(l-p))

*

*

Poisson(m) x = 0,... m m

T

* and seven continuous distributions

♦

* Uniform(a, b) a < x < b (a + b)/2 (b - a)*(b - a)/12

* Exponential(m) x > 0 m m*m

* Erlang(n, b) x > 0 n*b n*b*b

* Normal(m, s) all x m s*s

* Lognormal(a, b) x > 0 see below

* Chisquare(n) x > 0 n 2*n

*

*

Student(n) all x 0 (n > 1) n/(n - 2) (n > 2)

¥

* For

*

the a Lognormal(a, b) random variable, the mean and variance are

▼

* mean = exp(a + 0.5*b*b)

*

*

variance = (exp(b*b) - 1) * exp(2*a + b*b)

* Name : rvgs.c (Random Variate Generators)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 10-28-98
 * ---------------------------------------------------------------------------------------------
*/

#include <math.h>

#include "rngs.h"

#include "rvgs.h"

long Bernoulli(double p)

/*  ========================================================
* Returns 1 with probability p or 0 with probability 1 - p.

* NOTE: use 0 .0  < p < 1.0
* ========================================================
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*/
I

return ((RandomO < (1.0 - p)) ? 0 : 1);

>

long Binomial(long n, double p)

/*  ================================================================
* Returns a binomial distributed integer between 0 and n inclusive.

* NOTE: use n > 0 and 0.0 < p < 1.0

* ===============================================================

*/
{

long i, x = 0;

for (i = 0; i < n; i++) 

x += Bernoulli(p); 

return (x);

>

long Equilikely(long a, long b)

/*  ===================================================================
* Returns an equilikely distributed integer between a and b inclusive.

* NOTE: use a < b

* ===================================================================

*/
i

return (a + (long) ((b - a + 1) * RandomO));

>

long Geometric(double p)

/*  ====================================================
* Returns a geometric distributed non-negative integer.

* NOTE: use 0.0 < p < 1.0

* ====================================================

*/
I

return ((long) (log(1.0 - RandomO) / log(p)));

>

long Pascal(long n, double p)

/*  =================================================
* Returns a Pascal distributed non-negative integer.

* NOTE: use n > 0 and 0.0 < p < 1.0

* ================================================:=

* /
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i
long i, x = 0;

for (i = 0; i < n; i++) 

x += Geometric(p); 

return (x);

>

long Poisson(double m)

/*  =================================================
* Returns a Poisson distributed non-negative integer.

* NOTE: use m > 0

*/
{

double t = 0.0; 

long x = 0;

while (t < m) {

t += Exponential(1.0 ) ; 
x++;

}
return (x - 1);

>

double Uniform(double a, double b)

/*  ===========================================================
* Returns a uniformly distributed real number between a and b.

* NOTE: use a < b

* ===========================================================

* /
{

return (a + (b - a) * RandomO);

>

double Exponential(double m)

/*  =========================================================
* Returns an exponentially distributed positive real number.

* NOTE: use m > 0 .0

* /
I

return (-m * log(1.0 - RandomO));

>
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double Erlang(long n, double b)

/*  ==================================================
* Returns an Erlang distributed positive real number.

* NOTE: use n > 0 and b > 0.0

* /
{

long i ; 

double x = 0.0;

for (i = 0; i < n; i++) 

x += Exponential(b); 

return (x);

>

double Normal(double m, double s)

/*  ==================================================================
* Returns a normal (Gaussian) distributed real number.

* NOTE: use s > 0.0

*
* Uses a very accurate approximation of the normal idf due to Odeh &

* Evans, J. Applied Statistics, 1974, vol 23, pp 96-97.

* =========================================
*/

{
const double pO = 0.322232431088; const 

const double pi = 1.0; const

const double p2 = 0.342242088547; const

const double p3 = 0.204231210245e-l; const 

const double p4 = 0.453642210148e-4; const 

double u, t, p, q, z;

u = RandomO ; 

if (u < 0.5)

t = sqrt(-2.0 *  log(u)); 

else

t = sqrt(-2.0 * log(1.0 - u)); 

p = pO + t * (pi + t * (p2 + t * (p3 + t

q = qO + t * (ql + t * (q2 + t * (q3 + t

if (u < 0.5)

z = (p / q) - t; 

else

z = t - (p / q); 

return (m + s * z);

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double qO = 0.099348462606; 

double ql = 0.588581570495; 

double q2 = 0.531103462366; 

double q3 = 0.103537752850; 

double q4 = 0.385607006340e-2;

* p4)));

* q4)));



APPENDIX A. CODE FOR THE AGENT-BASED MODEL 206

double Lognormal(double a, double b)

/*  ====================================================
* Returns a lognormal distributed positive real number.

* NOTE: use b > 0.0

* /
I

return (exp(a + b * Normal(0.0, 1.0)));

>

double Chisquare(long n)

/*  =====================================================
* Returns a chi-square distributed positive real number.

* NOTE: use n > 0

* =====================================================
* /

long i ;

double z, x = 0.0;

for (i = 0; i < n; i++) { 

z = Normal(0.0, 1.0); 

x += z * z;

>
return (x);

>

double Student(long n)

/*  ===========================================
* Returns a student-t distributed real number.

* NOTE: use n > 0

* ===========================================
* /

return (Normal(0.0, 1.0) / sqrt(Chisquare(n) / n));

>
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/ * ----------------------------------------------------------------------------------------------------
* Name : rvgs.h (header file for the library rvgs.c)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 11-03-96

 * ----------------------------------------------------------------------------------------------------
* /

#ifndef RVGS.H 

#define RVGS.H

long Bernoulli(double p) ; 

long Binomial(long n, double p); 

long Equilikely(long a, long b); 

long Geometric(double p); 

long Pascal(long n, double p); 

long Poisson(double m);

double Uniform(double a, double b); 

double Exponential(double m); 

double Erlang(long n, double b); 

double Normal(double m, double s); 

double Lognormal(double a, double b); 

double Chisquare(long n); 

double Student(long n);

#endif
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/ * -------------------------------------------------------------------------------------------------------------------
* This is an ANSI C library that can be used to evaluate the probability

* density functions (pdf’s), cumulative distribution functions (cdf’s),

* and inverse distribution functions (idf’s) for a variety of discrete

* and continuous random variables.

*

* The following notational conventions are used

* x : possible value of the random variable

* u : real variable (probability) between 0.0 and 1.0

* a, b, n, p, m, s : distribution-specific parameters

*
* There are pdf’s, cdf’s and idf’s for 6 discrete random variables

*
*

■i.
Random Variable Range (x) Mean Variance

▼

* Bernoulli(p) 0. .1 P p*(l-p)

* Binomial(n, p) 0. .n n*p n*p*(l-p)

* Equilikely(a, b) a. .b (a+b)/2 ((b-a+l)*(b-a+l)-l)/12

* Geometric(p) 0. . . p/(l-p) p/((l-p)*(l-p))

* Pascal(n, p) 0. . . n*p/(l-p) n*p/((l-p)*(l-p))

*

$

Poisson(m) 0.. . m m

* and for 7 continuous random variables

¥

* Uniform(a, b) a < x < b (a+b)/2 (b-a)*(b-a)/12

* Exponential(m) x > 0 m m*m

* Erlang(n, b) x > 0 n*b n*b*b

* Normal(m, s) all x m s*s

* Lognormal(a, b) x > 0 see below

* Chisquare(n) x > 0 n 2*n

*

*

Student(n) all x 0 (n > 1) n/(n-2) (n > 2)

* For

*

the Lognormal(a, b), the mean and variance iare

* mean = Exp (a + 0.5*b*b)

* variance = (Exp(b*b) - l)*Exp(2*a + b*b)

*
* Name : rvms.c (Random Variable Models)

* Author : Steve Park & Dave Geyer

* Language : ANSI C

* Latest Revision : 11-22-97

 * -------------------------------------------------------------------------------------------------
* /

#include <math.h>
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#include "rvms.h"

#def ine TINY 1.0e-10

#define SQRT2PI 2.506628274631 /* sqrt(2 * pi) */

static double pdfStandard(double x);

static double cdfStandard(double x);

static double idfStandard(double u);

static double LogGamma(double a);

static double LogBeta(double a, double b);

static double InGamma(double a, double b);

static double InBeta(double a, double b, double x);

double pdfBernoulli(double p, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use 0.0 < p < 1.0 and 0 <= x <= 1

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

return ((x == 0) ? 1.0 - p : p) ;

}

double cdfBernoulli(double p, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use 0.0 < p < 1.0 and 0 <= x <= 1

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

return ((x == 0) ? 1.0 - p : 1.0);

>

long idfBernoulli(double p, double u)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use 0.0 < p < 1.0 and 0.0 < u < 1.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

*/
I

return ((u < 1.0 - p) ? 0 : 1);

>

double pdfEquilikely(long a, long b, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use a <= x <= b

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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* /
i

return (1.0 I  (b - a + 1.0));

>

double cdfEquilikely(long a, long b, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

*  NOTE: use a <= x <= b

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

*/
i

return ((x - a + 1.0) / (b- a+ 1.0));

>

long idfEquilikely(long a, long b, double u)

/ *    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use a <= b and 0.0 < u < 1.0

* ============================================
* /

i

return (a + (long) (u * (b - a + 1)));

>

double pdfBinomial(long n, double p, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use 0 <= x <= n and 0.0 < p < 1.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{.

double s, t; 

s = LogChoose(n, x);

t = x * log(p) + (n - x) * log(1.0 - p); 

return (exp(s + t));

>

double cdfBinomial(long n, double p, long x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use 0 <= x <= n and 0.0 < p < 1.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /

if (x < n)

return (1.0 - InBeta(x + 1, n - x, p)); 

else
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return (1.0);

>

long idfBinomial(long n, double p, double u)

/*  =================================================
* NOTE: use 0<=n, 0.0 < p < 1.0 and 0.0 < u < 1.0

* =================================================

* /

long x = (long) (n * p); / *  start searching at the mean

if (cdfBinomial(n, p, x) <= u) 

while (cdfBinomial(n, p, x) <= u) 

x++;

else if (cdfBinomial(n, p, 0) <= u) 

while (cdfBinomial(n, p, x - 1) > u) 

x--;

else 

x = 0; 

return (x);

>

double pdfGeometric(double p, long x)

/*  =====================================
* NOTE: use 0.0 < p < 1.0 and x >= 0

* =====================================
* /

return ((1.0 - p) * exp(x * log(p)));

>

double cdfGeometric(double p, long x)

/*  =====================================
* NOTE: use 0.0 < p < 1.0 and x >= 0

* =====================================
* /

return (1.0 - exp((x + 1) * log(p)));

>

long idfGeometric(double p, double u)

/*  =========================================
* NOTE: use 0.0 < p < 1.0 and 0.0 < u < 1.0

* =========================================
* /
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I
return ((long) (log(1.0 - u) / log(p)));

>

double pdfPascal(long n, double p, long x)

NOTE: use n >= 1, 0.0 < p < 1.0, and x >= 0

t

double s, t ;

s = LogChoose(n + x - 1, x);

t = x * log(p) + n * log(1.0 -- p);

return (exp(s + t));

double cdfPascal(long n, double p, long x)

NOTE: use n >= 1, 0.0 < p < 1..0, and x >= 0

*/
I

r e tu rn  (1 .0  -  InB eta(x  + 1, n , p));

>

long id fP a sc a l( lo n g  n , double p, double u)
/*  ==================================================

* NOTE: use n >= 1, 0 .0  < p < 1 .0 , and 0 .0  < u < 1 .0
* ==================================================
* /

I
long x = (long) (n * p / (1.0 - p));

/*  s t a r t  sea rch in g  a t  th e  mean

i f  (c d fP asca l(n , p, x) <= u) 
w hile (c d fP a sc a l(n , p, x) <= u) 

x++;
e ls e  i f  (c d fP a sc a l(n , p, 0) <= u) 

w hile (c d fP a sc a l(n , p, x -  1) > u) 
x— ;

e ls e  
x = 0; 

r e tu rn  ( x ) ;
>
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double pdfPoisson(double m, long x)

/  * ==================================
* NOTE: use m > 0 and x >= 0

* ==================================
* /

I
double t;

t = - m + x * log(m) - LogFactorial(x); 

return (exp(t));

>

double cdfPoisson(double m, long x)

/*  ===================================
* NOTE: use m > 0 and x >= 0

* ===================================
* /

return (1.0 - InGamma(x + 1, m));

>

long idfPoisson(double m, double u)

/*  ===================================
* NOTE: use m > 0 and 0.0 < u < 1.0

* ===================================
*/

{
long x = (long) m; /* start searching at the mean * /

if (cdfPoisson(m, x) <= u) 

while (cdfPoisson(m, x) <= u) 

x++;

else if (cdfPoisson(m, 0) <= u) 

while (cdfPoisson(m, x - 1) > u) 

x—;

else 

x = 0; 

return (x);

>

double pdfUniform(double a, double b, double x)

/ *  ===============================================

* NOTE: use a < x < b

* ===============================================
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* /
{

return (1.0/ (b - a));

>

double cdfUniform(double a, double b, double x) 

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use a < x < b

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /

return ((x - a) / (b - a));

>

double idfUniform(double a, double b, double u) 

/*  ===============================================
* NOTE: use a < b and 0.0 < u < 1.0

* ===============================================
*/

I
return (a + (b - a) * u);

>

double pdfExponential(double m, double x)

/*  =========================================
* NOTE: use m > 0 and x > 0

* =========================================
*/

{
return ((1.0 / m) * exp(- x / m));

>

double cdfExponential(double m, double x)

/  * ========================================
*  NOTE: use m > 0 and x > 0

* =========================================
*/

I
return (1.0 - exp(- x / m));

>

double idfExponential(double m, double u)

/*  =========================================
* NOTE: use m > 0 and 0.0 < u < 1.0

* =========================================
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* /
{

return (- m * log(1.0 - u));

>

double pdfErlang(long n, double b, double x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use n >= 1, b > 0, and x > 0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

double t;

t = (n - 1) * log(x / b) - (x / b) - log(b) - LogGamma(n); 

return (exp(t));

>

double cdfErlang(long n, double b, double x)

/*  ============================================
* NOTE: use n >= 1, b > 0, and x > 0

* ============================================
* /

{
return (InGamma(n, x / b));

>

double idfErlang(long n, double b, double u)

/*  ============================================
* NOTE: use n >= 1, b > 0 and 0.0 < u < 1.0

* ============================================
*/

{
double t , x = n * b ;  /* initialize to the mean, then */

do { /* use Newton-Raphson iteration */

t = x;

x = t + (u - cdfErlang(n, b, t)) / pdfErlang(n, b, t ) ; 

if (x <= 0.0) 

x = 0.5 * t;

> while (fabs(x - t) >= TINY); 

return (x);

>

static double pdfStandard(double x)

/*  ===================================
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*  NOTE: x can be any value

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

*/
{

return (exp(- 0.5 * x * x) / SQRT2PI);

>

static double cdfStandard(double x)

/*  ===================================
* NOTE: x can be any value

* ===================================
*/

{
double t;

t = InGamma(0.5, 0.5 * x * x); 

if (x < 0.0)

return (0.5 * (1.0 - t)); 

else

return (0.5 * (1.0 + t));

static double idfStandard(double u)

/*  ===================================
* NOTE: 0.0 < u < 1.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

*/
{

double t, x = 0.0; /* initialize to the mean, then */

do { /* use Newton-Raphson iteration */

t = x;

x = t + (u - cdfStandard(t)) / pdfStandard(t);

)■ while (fabs(x - t) >= TINY); 

return (x);

>

double pdfNormal(double m, double s, double x)

/*  ==============================================
* NOTE: x and m can be any value, but s > 0.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /

double t = (x - m) / s;
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return (pdfStandard(t) / s);

>

double cdfNormal(double m, double s, double x)

/*  ==============================================
* NOTE: x and m can be any value, but s > 0.0

* /
{

double t = (x - m) / s; 

return (cdfStandard(t));

>

double idfNormal(double m, double s, double u)

/*  =======================================================
*  NOTE: m can be any value, but s > 0.0 and 0.0 < u < 1.0

* =======================================================
* /

{
return (m + s * idfStandard(u));

>

double pdfLognormal(double a, double b, double x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: a can have any value, but b > 0.0 and x > 0.0

* ===================================================

* /
{

double t = (log(x) - a) / b; 

return (pdfStandard(t) / (b * x));

>

double cdfLognormal(double a, double b, double x)

/*  ===================================================
* NOTE: a can have any value, but b > 0.0 and x > 0.0

* ===================================================
* /

{
double t = (log(x) - a) / b; 

return (cdfStandard(t));

}
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double idfLognormal(double a, double b, double u)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: a can have any value, but b > 0.0 and 0.0 < u < 1.0

* =========================================================
* /

{
double t;

t = a + b * idfStandard(u); 

return (exp(t));

>

double pdfChisquare(long n, double x)

/*  =====================================
* NOTE: use n >= 1 and x > 0.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

double t, s = n / 2.0;

t = (s - 1.0) *  log(x / 2.0) - (x / 2.0) - log(2.0) - LogGamma(s); 

return (exp(t));

>

double cdfChisquare(long n, double x)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use n >= 1 and x > 0.0

* =====================================
*/

return (InGamma(n / 2.0, x / 2));

>

double idfChisquare(long n, double u)

/*  =====================================
* NOTE: use n >= 1 and 0.0 < u < 1.0

* =====================================
* /

{
double t, x = n; /* initialize to the mean, then */

do { / *  use Newton-Raphson iteration * /

t = x;

x = t + (u - cdfChisquare(n, t)) / pdfChisquare(n, t ) ; 

if (x <= 0.0)
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x = 0.5 * t;

> while (fabs(x - t) >= TINY); 

return (x);

>

double pdfStudent(long n, double x)

/*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* NOTE: use n >= 1 and x > 0.0

* ===================================
* /

{
double s, t;

s = -0.5 * (n + 1) * log(1.0 + ((x * x) / (double) n));

t = -LogBeta(0.5, n / 2.0);

return (exp(s + t) / sqrt((double) n));

double cdfStudent(long n, double x) 
/ *  ===================================
* NOTE: use n >= 1 and x > 0.0

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
I

double s, t;

t = (x * x) / (n + x * x) ; 
s = InBeta(0.5, n / 2.0, t ) ; 

if (x >= 0.0)

return (0.5 * (1.0 + s)); 

else

return (0.5 * (1.0 - s));

double idfStudent(long n, double u)

/*  ===================================
* NOTE: use n >= 1 and 0 .0  < u < 1.0
*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /
{

double t, x = 0 .0 ; /* initialize to the mean, then */

do { / *  use Newton-Raphson iteration */

t = x;
x = t + (u - cdfStudent(n, t)) / pdfStudent(n, t);
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} while (fabs(x - t) >= TINY); 

return (x);

/*  ===================================================================
* The six functions that follow are a ’special function’ mini-library

* used to support the evaluation of pdf, cdf and idf functions.

*  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* /

static double LogGamma(double a)

/ *  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

* LogGamma returns the natural log of the gamma function.

* NOTE: use a > 0.0

*
*  The algorithm used to evaluate the natural log of the gamma function is

* based on an approximation by C. Lanczos, SIAM J. Numerical Analysis, B,

* vol 1, 1964. The constants have been selected to yield a relative error

* which is less than 2.0e-10 for all positive values of the parameter a.

* =======================================================================
* /

I
double s [ 6 ] ,  sum, temp;
in t i ;

s [0] = 76.180091729406 / a ;
s [ l ]  = -86.505320327112 / (a + 1 .0)
s [2] = 24.014098222230 / (a + 2 .0 )
s [3] = -1.231739516140 / (a + 3 .0 )
s [4] = 0.001208580030 / (a + 4 .0 )
s [5] = -0.000005363820 / (a + 5 .0 )
sum = 1.000000000178:t
fo r  ( i = 0; i  < 6; i++)

sum ^= s [ i]  ;
temp = (a  -  0 .5 ) * lo g (a  •*• 4. 5) -  (
r e tu rn (tem p);

double LogFactoriaMlong n)

/*  ==================================================================
* LogFactorial(n) returns the natural log of n!

* NOTE: use n >= 0

*
* The algorithm used to evaluate the natural log of n! is based on a

* simple equation which relates the gamma and factorial functions.
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* ==================================================================
*/

{
return (LogGamma(n +1));

>

static double LogBeta(double a, double b)

/*  ====================================================================
* LogBeta returns the natural log of the beta function.

* NOTE: use a > 0.0 and b > 0.0

*
* The algorithm used to evaluate the natural log of the beta function is

*  based on a simple equation which relates the gamma and beta functions.

*
*/

{
return (LogGamma(a) + LogGamma(b) - LogGamma(a + b));

>

double LogChoose(long n, long m)

/*  ========================================================================
* LogChoose returns the natural log of the binomial coefficient C(n,m).

* NOTE: use 0 <= m <= n

*
* The algorithm used to evaluate the natural log of a binomial coefficient

* is based on a simple equation which relates the beta function to a

* binomial coefficient.

* ================================================:===:=====================
* /

{
if (m > 0)

return (-LogBeta(m, n - m + 1) - log(m)); 

else

return (0.0);

>

static double InGamma(double a, double x)

/*  ========================================================================
* Evaluates the incomplete gamma function.

* NOTE: use a > 0.0 and x >= 0.0

*
* The algorithm used to evaluate the incomplete gamma function is based on

* Algorithm AS 32, J. Applied Statistics, 1970, by G. P. Bhattacharjee.

* See also equations 6.5.29 and 6.5.31 in the Handbook of Mathematical

* Functions, Abramowitz and Stegum (editors). The absolute error is less
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* than le-10 for all non-negative values of x.

* /
I

double t ,  sum, te rm , f a c to r ,  f ,  g , c [2 ] ,  p [3 ] ,  q [ 3 ] ; 
long n;

i f  (x > 0 .0 )
f a c to r  = exp (-x  + a  * lo g (x ) -  LogGamma(a)); 

e ls e
f a c to r  = 0 .0 ;

i f  (x < a  + 1 .0 ) { /*  e v a lu a te  as an i n f i n i t e  s e r ie s  -  */
t  = a ;  /*  A & S eq u a tio n  6 .5 .2 9  */
term  = 1 .0  /  a; 
sum = term ;
w hile (term  >= TINY * sum) { /*  sum u n t i l  ’te rm ’ i s  sm all */

t++;
term  *= x /  t ;  
sum += term ;

>
re tu rn  ( f a c to r  * sum);

else { /* evaluate as a continued fraction - */

p[0] = 0.0; / * A & S eqn 6.5.31 with the extended */

q[0] = 1.0; / * pattern 2-a, 2, 3-a, 3, 4-a, 4,... * /

p[l] = 1.0; /* - see also A & S sec 3.10, eqn (3) * /

qtl] = x;

f = p[l] / q[l];

n = 0;

do { / * recursively generate the continued * /

g = f; /* fraction ’f ’ until two consecutive * /

n++9 /* values are small * /

if ((n % 2) > 0) {

c[0] = ((doub le) (n + 1) /  2) -  a; 
c [ l ]  = 1 .0 ;

>
e ls e  {

c[0] = (double) n /  2; 
c [ l ]  = x;

}
p[2] = c [ l ]  * p [ l ]  + c[0] * p [0] ;
q[2] = c [ l ]  * q [ l]  + c [0] * q[0] ;
i f  (q [2] != 0 .0 )  { /*  r e s c a le  to  avoid  overflow  * /

p[0] = p [ l ]  /  q[2] ; 
q[0] = q [ l ]  /  q[2] ;
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p[l] = p[2] / q[2] ;

qtl] = 1.0; 

f = pCl];

>
> while ((fabs(f - g) >= TINY) II (q[l] != 1.0)); 

return (1.0 - factor * f);

>
>

static double InBeta(double a, double b, double x)

/*  =======================================================================
* Evaluates the incomplete beta function.

* NOTE: use a > 0.0, b > 0.0 and 0.0 <= x <= 1.0

*
* The algorithm used to evaluate the incomplete beta function is based on

* equation 26.5.8 in the Handbook of Mathematical Functions, Abramowitz

* and Stegum (editors). The absolute error is less than le-10 for all x

* between 0 and 1.

* =======================================================================
* /

double t, factor, f, g, c, p[3], q[3]; 

int swap;

long n;

if (x > (a + 1.0) / (a + b + 1.0)) { /* to accelerate convergence */

swap = 1 ;  /* complement x and swap a & b */

x = 1 .0  -  x;
t = a;

a = b;

b = t;

>
else /* do nothing */

swap = 0; 

if (x > 0)

factor = exp(a * log(x) + b * log(1.0 - x) - LogBeta(a,b)) / a; 

else

f a c to r  = 0 .0 ;
p[0] = 0 .0 ;
q[0] = 1 .0 ;
p [ l]  = 1 .0 ;
qCl] = 1 .0 ;
f = p [ l] /  q [ l ] ;
n = 0 ;
do { /*  r e c u r s iv e ly  g en era te  th e  con tinued  * /
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g = f; /* fraction ’f ’ until two consecutive * /

n++; /* values axe small */

if ((n */. 2) > 0) { 

t = (double) (n - 1) / 2;

c = -(a + t) * (a + b + t) * x / ((a + n - 1.0) * (a + n));

>
else {

t = (double) n / 2;

c = t * (b- t )  *  x  /  ( (a+n-1.0)  * (a + n));

>
p[2] = p [1] + c * p[0] ; 

q[2] = q[l] + c * q[0] ;

if (q[2] != 0.0) { /* rescale to avoid overflow */

p[0] = p[l] / q[2] ; 

q[0] = q[l] / q[2] ; 

p[l] = p[2] / q[2] ; 

qtl] = 1.0; 

f  = p C i ] ;
>

> while ((fabs(f - g) >= TINY) I I (q[l] != 1.0)); 

if (swap)

return (1.0 - factor * f); 

else

return (factor * f);
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/ * ----------------------------------------------------------------------------------------------------
* Name : rvms.h (header file for the library rvms.c)

* Author : Steve Park ft Dave Geyer

* Language : ANSI C

* Latest Revision : 11-02-96

 * ----------------------------------------------------------------------------------------------------
*/

#if !defined( _RVMS_ )

#define _RVMS_

double LogFactorial(long n); 

double LogChoose(long n, long m) ;

double pdfBernoulli(double p, long x); 

double cdfBernoulli(double p, long x); 

long idfBernoulli(double p, double u);

double pdfEquilikely(long a, long b, long x); 

double cdfEquilikely(long a, long b, long x); 

long idfEquilikely(long a, long b, double u);

double pdfBinomial(long n, double p, long x); 

double cdfBinomial(long n, double p, long x); 

long idfBinomial(long n, double p, double u);

double pdfGeometric(double p, long x); 

double cdfGeometric(double p, long x); 

long idfGeometric(double p, double u);

double pdfPascal(long n, double p, long x);

double cdfPascal(long n, double p, long x);

long idfPascal(long n, double p, double u);

double pdfPoisson(double m, long x) ;

double cdfPoisson(double m, long x);

long idfPoisson(double m, double u);

double pdfUniform(double a, double b, double x);

double cdfUniform(double a, double b, double x);

double idfUnif orm(double a, double b, double u);

double pdfExponential(double m, double x) ; 

double cdfExponential(double m, double x); 

double idfExponential(double m, double u) ;
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double pdfErlang(long n, double b, double x) ; 

double cdfErlangClong n, double b, double x); 

double idfErlang(long n, double b, double u);

double pdfNormal(double m, double s, double x); 

double cdfNormal(double m, double s, double x); 

double idfNormal(double m, double s, double u);

double pdfLognormal(double a, double b, double x) 

double cdfLognormal(double a, double b, double x) 

double idfLognormal(double a, double b, double u)

double pdfChisquare(long n, double x); 

double cdfChisquare(long n, double x); 

double idfChisquare(long n, double u);

double pdfStudent(long n, double x);

double cdfStudent(long n, double x);

double idfStudent(long n, double u);

#endif
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

01111100000000010100101101110010111110110000110111110000110100
10100010000111110000111100000110000110000111010100011010100000
10000100011101110011000011000101000111110000111000110101001110
11001100011010100000010001110000110000101110011001011100

/ /
/ /
/ /

Input file for the mule

/ /
/ /
/ /
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A ppendix B

Code for the Co-evolutionary 

Genetic Algorithm

The following code controls the co-evolutionary genetic algorithm. This requires a script 

to run the Mule on the desired number of solutions (this dissertation used 30, but did 

not investigate the “best” number to run) and call the co-evolutionary genetic algorithm. 

The script should iterate until the solutions converge or a  desired number of generations is 

reached.

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM  229

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  / /
//  gacoev.cpp: Runs GA for the mule //

/ /  / /
/ /  Inputs are 30 x.dat (solution) files and 30 x.result //

//  files. Program reads the files, selects the solutions //

/ /  from the 30 based on probability drawn from relative //

/ /  score, performs the crossovers/mutations and outputs 30 / /
/ /  new solutions overwriting the 30 x.dat files. //

/ /  Old solutions and results are archived for later analysis //

/ /  / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "rngs.h"

# include "rvgs.h"

#include "rvms.h"

#include <stdio.h>

#include <iostream>

#include <ctime>

#include <string>

#include <cstdlib>

#include <cmath>

#include <fstream>

#define pcross 0.6

#define mutrate .001

#define L0C 0.95

#define stop 100000

using namespace std;

string dat[30]; 

double res [30]; 

string after[30]; 

double sel[30];

int main(void); 

void inputdat(void); 

void inputresult(void); 

void chkstopO; 

void appenddat(void); 

void appendresult(void); 

void buildsel(void);
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void ga(int); 

string mutate(string); 

long perm(long, long); 

double power(double, long); 

void outputdatO;

int mainO 

{
int a = 0; 

inputdatO; 

inputresult(); 

chkstopO ; 

appenddat(); 

appendresultO ; 

buildselO; 

for(a=0; a<29; a=a+2)

{
ga(a);

>
outputdatO ; 

return 0;

>

void outputdatO

int n = 0; 

ofstream fout; 

fout.openO'O.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.openOl.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("2.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO ; 

n++;
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fout.open("3.dat"); 

fout «  after [n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("4.dat"); 

fout «  after[n] ; 

fout.clear0; 

fout.closeO; 

n++;

fout.open("5.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n + + ;

fout.open("6.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("7.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO ; 

n++;

fout.open("8.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("9.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("10.dat"); 

fout «  after[n];
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fout.clear(); 

fout.close(); 

n++;

fout .openC'll.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("12.dat"); 

fout «  after[n]; 

fout.clear (); 

fout.closeO; 

n++;

fout.open("13.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("14.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.openOl5.dat") ; 

fout «  after[n]; 

fout.clearO; 

fout.closeO; 

n++;

fout.open("16.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("17.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;
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fout.open("18.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("19.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("20.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("21.dat"); 

fout «  after[n]; 

fout.clear (); 

fout.close() ; 

n++;

fout.open("22.dat"); 

fout «  afterCn]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("23.dat"); 

fout «  after[n]; 

fout.clear 0; 

fout.closeO; 

n++;

fout.open("24.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("25.dat"); 

fout «  after[n];
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fout.clear(); 

fout.closeO; 

n++;

fout.open("26.dat"); 

fout «  afterCn]; 

fout.clear(); 

fout.closeO; 

n++;

fout.open("27.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.close(); 

n++;

fout.open("28.dat"); 

fout «  after[n]; 

f out. clear O ; 
fout.close(); 

n++;

fout.open("29.dat"); 

fout «  after[n]; 

fout.clear(); 

fout.closeO; 

n++;

>

void ga(int a)

{
string sO;

string si;

int x = 0;

int xover, xoverl;

int ctr;

char z;

double p;

double b = sel[x];

p = Uniform(0,1); //select first candidate

if(p <= b) sO = dat[0];

else
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while(p > b)

x++;

b = sel[x] ;

>
sO = dat[x];

>

x = 0;

b = sel[x]; //select second candidate

p = Uniform(0,1); 

if(p <= b) si = dat[0]; 

else

while(p > b)

x++;

b = sel[x];

>
si = dat[x];

>

sO = mutate(sO); 

si = mutate(si);

p = Uniform(0,1); 

if(p > pcross)

after[a] = sO; 

after[a+1] = si;

>

else

xover = Equilikely(0,117); //crossover point 

xoverl = Equilikely(118,241); 

for(ctr=xover; ctr<=xoverl; ctr++)

•C
z = sO [ctr]; 

sO[ctr] = si[ctr]; 

si [ctr] = z;

>
after[a] = sO; 

after[a+1] = si;

>

//determine if crossover or not 

//no crossover
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>

string mutate(string s)

{
string str; 

long ctr, m; 

double p, x;

ctr = 0; 

str = s;

p = Uniform(0,1); 

x = power(1.0-mutrate, 241); 

if(p <= x) return str; 

else while(x < p)

ctr++;

x += perm(241, ctr) * power(mutrate, ctr) * 

power(1-mutrate, 241-ctr);

>

while( ctr > 0)

m = Equilikely(0, 241); 

if(str[m] == ’O’) str[m] = ’1’; 

else str[m] = ’O’; 

ctr—;

>
return str;

>

long perm(long x, long n)

long b =1; 

long bl = 1; 

while (n > 0)

b *= x; 

bl *= n; 

x—; 

n—;

>
return b/bl;

>

double power(double x, long n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. CODE FOR THE CO-EVOLUTIONARY GENETIC ALGORITHM  237

{
double prod = 1.0; 

long i;

if(n == 0) return 1;

else for(i=l; i<=n; i++) prod *= x;

return prod;

>

void buildselO

int n = 0; 

double y = 0.0; 

double x = 0.0;

for(n=0; n<30; n++) x += res[n]; 

for(n=0; n<30; n++)

y += res [n]; 

sel[n] = y/x;

>
>

void appenddatO

■c
int n = 0;

ofstream fout("dat.cdat", ios::out I ios::app);

for(n=0; n<30; n++) fout «  dat[n] «  "\n"; 

fout «  "\n"; 

fout.clear(); 

fout.close();

>

void appendresult0 

{
int n = 0;

ofstream fout("result.cdat", ios::out I ios::app);

for(n=0; n<30; n++) fout «  res[n] «  "\n"; 

fout «  "\n"; 

fout.clear(); 

fout.close();

>

void inputresultO
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int n = 0; 

double avg = 0.0;

ifstream fin;

f in.open("0.result");
fin »  res[n];

avg += res[n];

fin.clear();

fin.close();

n++;

f in.open("1.result");

fin »  res[n];
avg += res[n];

fin.clear();

fin.close();

n++;

fin.open("2.result"); 
fin »  res[n]; 
avg += res [n]; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("3.result"); 
fin »  res[n]; 
avg += res [n]; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("4.result"); 

fin »  res[n]; 

avg += res [n] ; 

fin.clearO ; 

fin.closeO ; 

n++;

f in.open("5.result"); 

fin »  res[n]; 

avg += res[n]; 

fin.clearO; 

fin.closeO ; 

n++;
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f in.open("6.result"); 
f in »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO; 
n++;

f in.open("7.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("8.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clear(); 
fin.closeO; 
n++;

f in.open("9.result" ) ;  

f in »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO; 
n++;

f in.open("10.result");
fin »  res[n];
avg += res[n];
fin.clearO ;
fin.close();
n++;

f in.open("11.result"); 
fin »  res[n]; 
avg += res [n]; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("12.result"); 
fin »  res[n];
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avg += res[n]; 
fin.clearO; 
fin.closeO; 
n++;

fin.open("13.result"); 
fin »  res[n] ; 
avg += res[n]; 
fin.clearO; 
fin.closeO; 
n++;

f in.open("14.result"); 
fin »  res[n] ; 
avg += res[n]; 
fin.clearO; 
fin.closeO ; 
n++;

fin.open("15.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO; 
n++;

fin.open("16.result");
fin »  res[n];
avg += res[n];
fin. clearO ;
fin.closeO ;
n++;

f in.open("17.result");
f in »  res[n];
avg += res[n];
fin.clearO ;
fin.closeO ;
n++;

f in.open("18.result") ; 
fin »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO
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n++;

fin.open("19.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clearO; 
fin.closeO ; 
n++;

f in.open("20.result");
fin »  res[n];
avg += res [n];
fin.clearO;
fin.closeO ;
n++;

fin.open("21.result"); 
f in »  res[n]; 
avg += res[n]; 
fin.clearO; 
fin.closeO; 
n++;

f in.open("22.result"); 
f in »  res [n] ; 
avg += res[n]; 
fin.clearO ; 
fin.closeO; 
n++;

f in.open("23.result"); 
f in »  res [n] ; 
avg += res[n]; 
fin.clearO; 
fin. closeO ; 
n++;

f in.open("24.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clear(); 
fin.closeO ; 
n++;

f in.open("25.result");
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fin »  res[n]; 
avg += res[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("26.result"); 
fin »  res[n]; 
avg += res[n]; 
fin.clear(); 
fin.closeO ; 
n++;

f in.open("27.result"); 
fin »  res[n] ; 
avg += res [n]; 
fin.clearO ; 
fin.closeO; 
n++;

f in. open (1128. result" ) ;
fin »  res[n];
avg += res [n];
fin.clear 0;
fin. closeO;
n++;

fin.open("29.result"); 
fin »  res[n]; 
avg += res[n]; 
fin. clearO ; 
fin.closeO ;

void chkstopO 

int n;

ifstream fin;

ofstream fout;

fin.open("iterator");

fin »  n;

fin.clearO ;

fin. closeO ;

n++;
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if(n >= stop)

f out.open("quit"); 
fout «  n; 
fout .clearO; 
fout.closeO;

>
fout.open("iterator"); 
fout «  n; 
fout. clearO; 
fout. closeO;

>

void inputdatO

int n = 0; 
ifstream fin; 
fin.open("0.dat"); 
f in »  dat [n] ; 
fin.clear(); 
fin.closeO ; 
n++;

fin.openC'l.dat") ; 
f in »  dat [n]; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("2.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("3.dat"); 
f in »  dat [n] ; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("4.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ;
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n++;

fin.open("5.dat"); 
fin »  dat[n]; 
fin.clearO; 
fin.closeO ; 
n++;

fin.open("6.dat"); 
fin »  dat[n]; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("7.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO; 
n++;

fin.open("8.dat"); 
f in »  dat [n] ; 
fin.clearO ; 
fin. closeO; 
n++;

fin.open("9.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("10.dat"); 
f in »  dat [n] ; 
fin.clear(); 
fin. closeO ; 
n++;

f in.open("11.dat"); 
f in »  dat [n] ; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("12.dat");
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fin »  dat[n]; 
fin.clearO; 
fin.closeO ; 
n++;

fin.open("13.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("14.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("15.dat"); 
fin »  dat[n] ; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.openOl6.dat") ; 
fin »  dat[n]; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("17.dat"); 
fin »  dat[n] ; 
fin.clearO; 
fin.closeO; 
n++;

fin.open("18.dat"); 
fin »  dat[n] ; 
fin.clearO ; 
fin.closeO ; 
n++;

f in.open("19.dat"); 
fin »  dat[n] ; 
fin.clear(); 
fin.closeO ;
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n++;

f in.open("20.dat"); 
f in »  dat[n]; 
fin.clearO; 
fin.closeO ; 
n++;

fin.open("21.dat"); 
fin »  dat[n] ; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("22.dat"); 
fin »  dat[n]; 
fin.clearO ; 
fin.closeO ; 
n++;

fin.open("23.dat"); 
fin »  dat[n]; 
fin.clearO; 
fin. closeO ; 
n++;

fin.open("24.dat"); 
f in »  dat [n] ; 
fin.clear0  ; 
fin.closeO ; 
n++;

fin.open("25.dat"); 
fin »  dat[n]; 
fin.clearO; 
fin.closeO ; 
n++;

fin.open("26.dat"); 
fin »  dat[n] ; 
fin.clear(); 
fin.closeO ; 
n++;

fin.open("27.dat");
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f in »  dat[n]; 
fin. clearO ; 
fin.closeO ; 
n++;

fin.open( "28 .dat"); 
f in »  dat[n]; 
fin.clearO; 
fin.closeO; 
n++;

f in.open("29.dat"); 
f in »  dat[n]; 
fin.clearO; 
fin. closeO ;
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A ppendix C

Chromosome Definitions

The following table maps the genetic code contained in the solution chromosome. 

For clarification, tank rules are:

• Rule 1: Remain near friendly vehicles

•  Rule 2: Move to a  position to engage the enemy

• Rule 3: Move to the objective

Table C .l:  Tank Physical Gene Definitions.

Positions Definition
0-1 Engine
2-5 Gun/Ammunition Type
6-9 Ammunition Quantity(x5)

10-11 Sight
12 Autoloader

13-16 Armor Protection(xO.lm)

248
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Table C.2: Tank Tactical Gene Definitions.

249

17-19 No Threat/Rule 1
20-22 No Threat/R ule 2
23-25 No Threat/Rule 3
26-28 Atk/Low Threat/Rule 1
29-31 Atk/Low Threat/Rule 2
32-34 Atk/Low Threat/Rule 3
35-37 Atk/M ed Threat/Rule 1
38-40 Atk/M ed Threat/Rule 2
41-43 Atk/M ed Threat/Rule 3
44-46 A tk/H i Threat/Rule 1
47-49 A tk/H i Threat/Rule 2
50-52 A tk/H i Threat/Rule 3
53-55 A tk/Pan Threat/Rule 1
56-58 A tk/Pan Threat/Rule 2
59-61 A tk/Pan Threat/Rule 3
62-64 Def/Low Threat/Rule 1
65-67 Def/Low Threat/Rule 2
68-70 Def/Low Threat/Rule 3
71-73 Def/Med Threat/Rule 1
74-76 Def/Med Threat/Rule 2
77-79 Def/Med Threat/Rule 3
80-82 Def/Hi Threat/Rule 1
83-85 Def/Hi Threat/Rule 2
86-88 Def/Hi Threat/Rule 3
89-91 D ef/Pan Threat/Rule 1
92-94 D ef/Pan Threat/Rule 2
95-97 D ef/Pan Threat/Rule 3

The artillery rules are similar bu t include an additional rule to remain near other artillery 

pieces:

• Rule 1: Remain near friendly tanks

• Rule 2: Remain near friendly artillery pieces

• Rule 3: Move to a position to engage the enemy

• Rule 4: Move to the objective
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Table C.3: Tank Tactical Gene Definitions (cont’d).

98-101 Fixing Force(xl2.5%)
102-104 Optimal Distance(x25m)
105-107 Dollar Split (xl2.5%)

Table C.4: Artillery Physical Gene Definitions.

Positions Definition
108-109 Engine
110-111 Gun/Ammunition Type
112-115 Ammunition Quantity(x5)
116-117 Armor Protection(xO.lm)

241 Autoloader
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Tcible C.5: Artillery Tactical Gene Definitions.

119-121 Optimal Distance
122-125 Shots/Mission
126-128 Sheaf W idth (x25m)
129-131 No T hreat/R ule 1
132-134 No Threat/R ule 2
135-137 No Threat/R ule 3
138-140 No Threat/R ule 4
141-143 Atk/Low Threat/R ule 1
144-146 Atk/Low Threat/R ule 2
147-149 Atk/Low Threat/R ule 3
150-152 Atk/Low Threat/R ule 4
153-155 Atk/M ed Threat/R ule 1
156-158 Atk/M ed Threat/R ule 2
159-161 Atk/M ed Threat/R ule 3
162-164 Atk/M ed Threat/R ule 4
165-167 A tk/H i Threat/R ule 1
168-170 A tk/H i Threat/R ule 2
171-173 A tk/H i Threat/R ule 3
174-176 A tk/H i Threat/R ule 4
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Table C.6: Artillery Tactical Gene Definitions (cont’d).

177-179 A tk/Pan Threat/R ule 1
180-182 A tk/Pan Threat/R ule 2
183-185 A tk/Pan Threat/R ule 3
186-188 A tk/Pan Threat/R ule 4
189-191 Def/Low Threat/R ule 1
192-194 Def/Low Threat/R ule 2
195-197 Def/Low Threat/R ule 3
198-200 Def/Low Threat/R ule 4
201-203 Def/Med Threat/Rule 1
204-206 Def/Med Threat/Rule 2
207-209 Def/Med Threat/R ule 3
210-212 Def/Med Threat/Rule 4
213-215 Def/Hi Threat/R ule 1
216-218 Def/Hi Threat/R ule 2
219-221 Def/Hi Threat/R ule 3
222-224 Def/Hi Threat/R ule 4
225-227 D ef/Pan Threat/R ule 1
228-230 D ef/Pan Threat/R ule 2
231-233 D ef/Pan Threat/R ule 3
234-236 D ef/Pan Threat/R ule 4
237-240 Shooting Force(x6.25%)
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