25,540 research outputs found

    An extended interval temporal logic and a framing technique for temporal logic programming

    Get PDF
    PhD ThesisTemporal logic programming is a paradigm for specification and verification of concurrent programs in which a program can be written, and the properties of the program can be described and verified in a same notation. However, there are many aspects of programming in temporal logics that are not well-understood. One such an aspect is concurrent programming, another is framing and the third is synchronous communication for parallel processes. This thesis extends the original Interval Temporal Logic (ITL) to include infinite models, past operators, and a new projection operator for dealing with concurrent computation, synchronous communication, and framing in the context of temporal logic programming. The thesis generalizes the original ITL to include past operators such as previous and past chop, and extends the model to include infinite intervals. A considerable collection of logic laws regarding both propositional and first order logics is formalized and proved within model theory. After that, a subset of the extended ITL is formalized as a programming language, called extended Tempura. These extensions, as in their logic basis, include infinite models, the previous operator, projection and framing constructs. A normal form for programs within the extended Tempura is demonstrated. Next, a new projection operator is introduced. In the new construct, the sub-processes are autonomous; each process has the right to specify its own interval over which it is executed. The thesis presents a framing technique for temporal logic programming, which includes the definitions of new assignments, the assignment flag and the framing operator, the formalization of algebraic properties of the framing operator, the minimal model semantics of framed programs, as well as an executable framed interpreter. The synchronous communication operator await is based directly on the proposed framing technique. It enables us to deal with concurrent computation. Based on EITL and await operator, a framed concurrent temporal logic programming language, FTLL, is formally defined within EITL. Finally, the thesis describes a framed interpreter for the extended Tempura which has been developed in SICSTUS prolog. In the new interpreter, the implementation of new assignments, the frame operator, the await operator, and the new projection operator are all included

    Deriving real-time action systems with multiple time bands using algebraic reasoning

    Get PDF
    The verify-while-develop paradigm allows one to incrementally develop programs from their specifications using a series of calculations against the remaining proof obligations. This paper presents a derivation method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms of interval predicates and algebraic operators to unify the logics for an action system and its properties, which in turn simplifies the calculations and derivations

    Event notification services: analysis and transformation of profile definition languages

    Get PDF
    The integration of event information from diverse event notification sources is, as with meta-searching over heterogeneous search engines, a challenging task. Due to the complexity of profile definition languages, known solutions for heterogeneous searching cannot be applied for event notification. In this technical report, we propose transformation rules for profile rewriting. We transform each profile defined at a meta-service into a profile expressed in the language of each event notification source. Due to unavoidable asymmetry in the semantics of different languages, some superfluous information may be delivered to the meta-service. These notifications are then post-processed to reduce the number of spurious messages. We present a survey and classification of profile definition languages for event notification, which serves as basis for the transformation rules. The proposed rules are implemented in a prototype transformation module for a Meta-Service for event notification

    Using Inhabitation in Bounded Combinatory Logic with Intersection Types for Composition Synthesis

    Full text link
    We describe ongoing work on a framework for automatic composition synthesis from a repository of software components. This work is based on combinatory logic with intersection types. The idea is that components are modeled as typed combinators, and an algorithm for inhabitation {\textemdash} is there a combinatory term e with type tau relative to an environment Gamma? {\textemdash} can be used to synthesize compositions. Here, Gamma represents the repository in the form of typed combinators, tau specifies the synthesis goal, and e is the synthesized program. We illustrate our approach by examples, including an application to synthesis from GUI-components.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    Planning actions in robot automated operations

    Get PDF
    Action planning in robot automated operations requires intelligent task level programming. Invoking intelligence necessiates a typical blackboard based architecture, where, a plan is a vector between the start frame and the goal frame. This vector is composed of partially ordered bases. A partial ordering of bases presents good and bad sides in action planning. Partial ordering demands the use of a temporal data base management system
    corecore