
Event Notification Services: Analysis and Transformation of
Profile Definition Languages

Doris Jung and Annika Hinze

Department of Computer Science,
University of Waikato, New Zealand
{d.jung, a.hinze}@cs.waikato.ac.nz

Abstract. The integration of event information from diverse event notification sources is, as
with meta-searching over heterogeneous search engines, a challenging task. Due to the
complexity of profile definition languages, known solutions for heterogeneous searching
cannot be applied for event notification. In this technical report, we propose transformation
rules for profile rewriting. We transform each profile defined at a meta-service into a profile
expressed in the language of each event notification source. Due to unavoidable asymmetry in
the semantics of different languages, some superfluous information may be delivered to the
meta-service. These notifications are then post-processed to reduce the number of spurious
messages. We present a survey and classification of profile definition languages for event
notification, which serves as basis for the transformation rules. The proposed rules are
implemented in a prototype transformation module for a Meta-Service for event notification.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Doris Jung and Annika Hinze

Table of Contents

1 Introduction to Event Notification Services ..3

1.1 Focus and Goals.. 4
1.2 Related Work .. 4
1.3 Structure.. 5

2 Concepts..6

3 Survey of Profile Definition Languages and the Systems Using Them...8
3.1 Event-based Infrastructures... 8
3.2 Active Databases... 11
3.3 Event-Action Systems... 13
3.4 Event Notification Services .. 15
3.5 Combined Systems.. 18

4 Classification of Filter Languages - a Comparative Study19
4.1 Composite Events (Unland/Zimmer) .. 20
4.2 Composite Events (Hinze/Voisard) .. 25
4.3 Classification .. 32
4.4 Language Groups.. 36
4.5 Summary of Findings Regarding a Classification of Filter Languages 36

5 Transformations...37
5.1 Transformation Methodology ... 37
5.2 Profile Transformation of Composite Operators... 38
5.3 Transformation of Operator Parameters.. 41

6 Implementation ..44
6.1 Realisation of the Transformator .. 44
6.2 Functionality of the Programme ... 45
6.3 Integration into CompAS.. 47

7 Conclusion and Outlook..47
7.1 Evaluation ... 47
7.2 Future Work.. 48
7.3 Summary... 48

References ...49

Event Notification Services: Analysis and Transformation of Profile Definition Languages 3

1 Introduction to Event Notification Services

Event Notification Services are systems that inform subscribers of an event notification service
about certain facts they are interested in (cf. Fig. 1). The knowledge about these facts is provided
by publishers, which send information about these facts. In the following these are referred to as
events ex, to the event notification service. Events are changes of the state of an object such as a
sensor. The interests of subscribers are defined in profiles px and registered with the event
notification service. Whenever the event notification service receives an event which can be
matched by one or several profiles, the respective subscribers are notified by a notification nx [25].

Event notification services find their application in many areas such as medicine, logistics,
quality and product management, the stock market, digital libraries or in traffic systems. For the
area of healthcare many scenarios could be realised by using an event notification service such as
depicted in Fig. 1.

Fig. 1. Overview of an event notification service

Scenario 1 Notify Dr. Smith in case patient Anna Roberts develops an abnormally low blood
pressure. Send an SMS to Dr. Smith’s mobile phone in order to do so. Also, for future reference
send this data to Ms. Roberts’ electronic patient record.

Scenario 2 If John Donovan’s pulse falls below 45, print out his heart rate at the central printer.

Scenario 3 If the electrocardiogram is malfunctioning notify the technician via an SMS to his
mobile phone. Additionally, send a notification to request checking the costs of the reparation to
the billing department using an automated e-mail.

We can express these scenarios with the help of the profiles and notifications given in Table 1.

Table 1. Profiles and notifications

Scenario Profiles px Notifications nx
1 (p1: ((sys < 95) OR

(dia < 50)))
(n1: (mpSmith: AnnaRoberts(sys/dia))
AND
(recAnnaRoberts: AnnaRoberts (sys/dia)))

2 (p2: (pul < 45) (n2: printer: hrJohnDonovan)
3 (p3: (¬eECG) (n3: (mptechnichian: ECG broken)

AND
(emailbillingdepartment: check repair costs ECG))

4 Doris Jung and Annika Hinze

1.1 Focus and Goals

The aim of this work is to examine how systems with differing profile definition languages can
communicate with each other and to develop a concept for communication between systems on the
ground of this analysis. The idea is to translate the semantics of all languages into a single
collective language. This language should at least be able to map the power of each single profile
definition language in order to avoid loss of information. When transforming those profile
definition languages into a collective language, a problem occurs if differing languages have a
different expressiveness and follow differing concepts. These differences have to be taken into
account for the transformation of each profile definition language into the collective language.
Otherwise, as a consequence there will be loss of information:

If for example a publisher does not support timeframes and we have a profile of a conjunction
(e1, e2)7sec, we will lose the information that these two events originally would have to appear
within seven seconds, once we transform the profile to (e1, e2) without a timeframe.

To analyse the semantics of various profile definition languages, we research literature. This
research forms the basis for a classification of the characteristics of the profile definition languages
on account of their underlying concepts. Based on this classification we will subsume those profile
definition languages into groups which offer a correspondence in concepts. This is necessary in
order not to have to develop transformations for every single profile definition language. Also our
approach causes an independence of the used system and thereby the possibility to permanently
add new systems to the communication process.

For the transformation, identical operators of each group of profile definition languages, are
written in a common meta-language and then transformed into the event algebra developed by
Hinze and Voisard [26].

At the institute of computer science at Freie Universität Berlin two event notification systems
have been under development, PrimAS [4] and CompAS [29]. PrimAS is based on primitive and
CompAS on composite events. For better scalability, CompAS has been extended to a distributed
system [5]. For this system, we have developed a prototype of a transformator [28], which
translates the concepts of each group of profile definition languages into the event algebra on the
basis of the developed transformations. This prototype is the basis for a transformator that can be
integrated into the distributed version of CompAS representing a Meta event notification service
(Meta-ENS). This Meta-ENS would be able to communicate with other event notification systems
and furthermore to mediate between other event notification services.

1.2 Related Work

Language transformations In [11] Chang, Garcia-Molina and Paepcke have described an
approach of how it is possible to offer a uniform query language for Boolean queries to users who
are using different information systems. Users are provided with an interface with the help of
which they can pass their queries. It is more powerful than the underlying systems. The
implementation translates queries into the language of the target systems. Some of the languages
of target systems are weaker; therefore the result set has to undergo post-filtering to gain the data
which was originally looked for. The authors have developed three kinds of transformations in
order to change languages into each other. These are useful for our work; nevertheless, they are
not sufficient. Boolean queries are performed once only, however, event notification services have
profiles which are active over a long history of time. Due to this, it is impossible to undertake post-
filtering once and for all. Instead, we require a concept which permanently evens out the different
degrees in power of various profile definition languages.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 5

Related concepts There are some publications that deal with the analysis of profile definition
languages such as [42] and [7]. Nevertheless, these are only by-products of analyses targeting
different problems than this work. Therefore, they only marginally cover the presentation of
profile definition languages which is relevant to this work. The analyses are undertaken with a
small number of languages only and therefore they are not representative for the purpose of our
work. Hence, they cannot be used in order to develop transformations between languages of event
notification services. For the analysis of differing profile definition languages we cannot only use
languages of event notification services but also those of several other systems. Next, we will
describe what kind of systems may be considered for our approach. In doing so, we follow the
account of Liebig and Buchmann [31] as well as Hinze [23]:

Active databases Active databases are database systems which have integrated certain rules into
their database management system such as “on event do action”. There is no transaction concept.
Furthermore, actions cannot be parameterised. A working assumption made is an event history
which is totally ordered. Meanwhile, in a number of database management systems, simple rules
are realised as triggers, e.g. Oracle and Sybase possess these kinds of mechanisms. Active
database systems such as SAMOS [15] and Sentinel [9] (language: Snoop [10]) offer the concept
of composite events.

Event-based infrastructures Event-based infrastructures are systems that support asynchronous
message exchange in a distributed environment. Mostly, they are middleware-systems which
realise communication via point-to-point connections. One application sends a message to a so-
called event-channel. There the consuming application pulls the message. The Corba Notification
Service [1] is an example for an event-based infrastructure.

Event-action systems A typical feature of event-action systems is that events which occur within
the boundaries of the system can cause actions. Both events as well as actions are specified by the
user. Actions can cause more actions in sequence. Specifications of these principles are also called
ECA-rules (Event-Condition-Action Rules). Examples of this kind of system are the therapy
planning programme PLAN [43] as well as YEAST [30]. Both are described in more detail in
Section 3.

Integration into the MediAS Project This technical report is a summary of the thesis work fully
presented in [28] (in German). That thesis is part of the project MediAS [24] of the group for
databases and information systems at the Institut für Informatik at Freie Universität Berlin. This
project dealt with the development of an event notification system which supports primitive events
(version PrimAS [4]) and composite events (version CompAS [29]). It runs in a distributed
environment (version DAS [5]). The work described in this technical report lays the foundation for
the use of various event notification systems with differing profile definition languages as can be
integrated into the distributed version of our system.

1.3 Structure

This technical report is structured as follows: In Section 2, we begin with an introduction of the
concepts we are using within this work.

This is followed in Section 3 with the description of a survey of a number of profile definition
languages and the systems that deploy them. For each system, we list the supported operators,
support of time frames, consumption mode and duplicate handling. These analyses are based on
the available literature, i.e. we refer to the operators and their parameters the way the initial
publication does. Consequently, there are differences in the semantics and symbols compared to
the ones we will introduce in Section 2.

6 Doris Jung and Annika Hinze

Section 4 presents a comparative study of the profile definition languages we have analysed.
The filter operators are translated into the terminology used in this technical report, i.e. here the
descriptions of the systems described in Section 3 are explained using the same terminology for
each system. Based on this, we perform a comparison of the approaches, and we group languages
with similar concepts into categories (language groups). Following to that, the definitions of the
resulting language groups are presented in the same section: Based on the comparative study, we
identify five groups (types) of filter languages for event-based services. These language groups
form the basis for the design of a meta-service for event notification and event-based
communication.

Section 5 describes transformations we have developed to transform the language and its
concepts of one profile definition language into another one. This is the precondition for the Meta-
ENS mentioned above.

We have developed an implementation of our transformation rules as a proof of concept. This
implementation, our transformator which is the prototype of our meta-service, is described in
Section 6.

To finalise our technical report, in Section 7 we give a conclusion and outlook, evaluating our
approach and discussing possibilities of future work.

2 Concepts

In this section, we introduce the concepts we are using in this technical report. Most of our
definitions follow either [28], [5] or [27] which are based on the model for event notification
proposed in [25]. A more extensive discussion of models and terminology can be found in [23].

Event Notification Service An event notification service is a system that sends subscribers (users
or other services) a notification whenever an event is encountered this subscriber is interested in.
Such an event is seen as change in state of an object as for example a wind sensor or a document.
It is provided by publishers to the event notification service. There are two possible ways for the
event notification service to discover these events: either they are actively collected (pull) or
passively received by being sent to the event notification service by publishers (push). Publisher
can be applications as well as other event notification services.

Profiles In order to describe relevant data, the subscriber has to register a profile, which he
specifies in a profile definition language also referred to as a filter language (e.g. XMLCL [38] or
CQ [32]). This way the profile expresses the interests of users. The profile consists of two parts the
query-profile and the meta-profile. The former is described by attribute-value pairs, i.e. a
description of the state of the object in relation to time. It is possible to connect these attribute-
value pairs with the help of Boolean operators. Furthermore, the query-profile may have a
timeframe, which denotes the time interval the event has to occur in. The latter contains
information about the modes of notification such as the frequency of notifications and the format
used for them.

Events An event describes the occurrence of a state transition of an object of interest at a certain
point in time. Events are reported by means of notifications. Every event has a timestamp which
indicates the time of its occurrence. Liebig and others have described in [31] that the evaluation of
such timestamps can be problematic since publishers might originate from a distributed
environment. But in such an environment there is no universal time. Nevertheless, in this work we
abstract from these problems and undertake our analysis on a more theoretical foundation.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 7

Event type Every event belongs to an event type T, which is defined by a set of attributes:
 T = {a1, … , an}. This way, T describes the structure of an event. Each attribute has a domain D.
D(a) denotes the Domain of each attribute a.

Event instance In the following, we differentiate between event type and event instance. An event
instance belongs to an event type exactly if it contains all the attributes of the event type.

Event class We distinguish event instances from event classes. An event class is a set of events
specified by a profile while an event instance relates to the actual occurrence of an event. In the
following, we simply use the term event whenever the distinction is clear from the context. Events
(instances) are denoted by lower Latin e with indices, e.g. e1, e2, while event classes are denoted
by upper Latin E with indices, e.g. E1, E2. The fact that an event ei is an instance of an event class
Ej is denoted as membership, e.g. ei ∈ Ej . This relationship is non-exclusive, i.e. ei∈ Ej and ei ∈ Ek

is possible even with Ej ≠ Ek. Event classes may also have subclasses, so that ei ∈ Ej ⊂ Ek. The
timestamp of an event e ∈ E1 is denoted as t(e).

Primitive vs. composite events There are primitive as well as composite events. Primitive events
describe a change of state for only one object while composite events may refer to a change of
state for several objects. They are nested and build up from primitive and other composite events.
Within these composite events there may exist temporal dependencies such as present in the
definition of a sequence of events. For this, we need to assume a temporal order of the events. A
further dependency is the dependence on certain points in time or time intervals. This can be
expressed by the means of an event algebra.

Hierarchical event notification services Hierarchal event notification services are able to use
other event notification services as publishers. Thereby own events and events of other systems
may be nested into composite events and be evaluated as such. This way, systems become more
scalable and are able to offer more information to their users.

Event filtering Event filtering is the process of correlating incoming events and registered profiles
with each other. If an event fits with a profile, i.e. its query evaluates to true, we say the event
matches the profile.

Event history We call the internal representation of all events in partial order processed by the
system event history.

Consumption mode The consumption mode is a concept concerning the strategy of evaluation in
respect to the event history. When specifying a profile, it is necessary to define whether event
instances should be disposed of after matching or whether they should be used again for new
filtering processes. If disposed of, there are two different possibilities to do so. One way is to
delete all event instances which occurred before the matched event instance. This we call delete.
The other possibility is to only delete those event instances which have really taken part in the
matched event instance. This is called delete & reapply. If no event instances are deleted, this is
called keep.

Duplicate handling The term duplicate handling describes which event instances out of a list of
identical duplicates are regarded for the filtering process.

We only call those event instances duplicates which have the same event type and are of the
same values for their attributes. If we have instances which are interrupted by instances of the
same type but with at least one different value, we do not speak of duplicates.

8 Doris Jung and Annika Hinze

The following possibilities are relevant for our analysis: first, last, all, nth, and n to m. The
values refer to the ordering number of the duplicate events.

Event algebra An event algebra is a meta language which describes the behaviour of events
which is specified in profile definition languages [22]. The algebraic structure refers to the
combination of several events which thereby form composite events [7]. There are a number of
possibilities to define an event algebra. Principally, they all base on the use of operators such as
conjunction, disjunction, negation, selection, sequence and simultaneity. Moreover, there is a more
detailed description with the help of various parameters and modes. Operators, parameters and
modes all describe dependencies between events. For details, we refer to Section 4.1 and 4.2.

3 Survey of Profile Definition Languages and the Systems Using Them

In order to find out whether differing profile definition languages have a different expressiveness
or power and follow differing concepts (the problem introduced in Section 1.1), we have analysed
filter languages of several systems. Among them, there were not only event notification systems
but also event-based infrastructures, active databases, event-action systems and some combined
systems.

After a brief description of the intended purpose of a system, we evaluate the parameters for
building up composite events such as sequence or conjunction in case the system implements
them. Furthermore, we investigate time management, consumption mode and duplicate handling if
they were given in the literature about the respective systems.

3.1 Event-based Infrastructures

In the category of event-based infrastructures, we analysed Cobea [34] (which is used e.g. for the
management of networks), made an analysis of requirements of the facility management company
Lichtvision [20], analysed Rebeca [37] [13] (an event-based architecture for electronic commerce),
Regis [36] (a development environment for distributed systems) and Salamander [35] (a system
for the distribution of web-applications). An overview of our evaluation is given in Table 2.

Table 2. Event-based infrastructures

System Operators Time frame Consumption mode Duplicate
handling

Cobea Conjunction: (C1 & C2)
Disjunction: (C1 | C2)
Sequence: (C1 ; C2)
Whenever: ($ C1)
Without: (C1 – C2)

Yes:
Duration

Keep events all

Lichtvision Conjunction
Disjunction
Sequence
Negation

Yes - -

Rebeca Conjunction
Disjunction
Sequence
Negation

Yes Delete used events and
reapply remaining ones:
Chronicle (choose oldest
instances)
Recent (choose newest
instances)

-

Regis Conjunction: (e1 & e2)
Disjunction: (e1 | e2)
Sequence: (e1 ; e2

Yes: Dw
(Duration
window)

Delete all events first

Event Notification Services: Analysis and Transformation of Profile Definition Languages 9

Negation: ({e1; e2}!e3)
Time: (e + timeperiod)

Salamander only primitive events - - -

Cobea Cobea [34] was developed at the University of Cambridge. It is based on the Corba Event
Service, which takes as a foundation the Cambridge Event Architecture (CEA). The system is
working according to the Publish-Register-Notify-Model, i.e. publishers deliver events whereas
users create profiles and are notified whenever these profiles are fulfilled. Cobea is able to filter
composite events. Application areas for this system are to be found in the area of distributed
systems such as the network management for telecommunication networks.

Operators The event algebra which Cobea uses has been developed in Cambridge. It is structured
as follows: The operator without (C1-C2) denotes that C1 occurs without C2 having occurred
previously. The sequence (C1;C2) indicates that C1 happens before C2. The conjunction (C1&C2)
requires the occurrence of C1 as well as C2 in an arbitrary order. (C1|C2) represents the disjunction,
which needs either C1 or C2 to take place. Additionally, there is an operator called whenever ($C1).
It specifies that each occurrence of C1 causes a reaction.

Time handling The filter parameters include the duration. It describes the timeframe of an event.
The other parameters are of no relevance to this work.

Consumption mode and duplicate handling From the definition of sequence and disjunction given
in the PhD thesis of Richard Hayton [19] explaining the CEA, we can deduce how the
consumption mode and duplicates are handled: The consumption mode is used in the sense of keep
and duplicates are dealt with in the sense of all.

Lichtvision We could learn about an application scenario for composite events in facility
management by our cooperation with Carsten Heinrich of the company Lichtvision [20]. This
company placed in Berlin, Germany, offers services in the area of electric lighting and facility
management.

To date, facility management is working with logic devices such as Lon microcontrollers. They
are addressed via a Lon Works network. This is a proprietary system, which works with several
programming interfaces. All of them offer different functionality. However, this does not offer a
uniform basis for planning.

More often, we can find devices using the bus system of EIB. They are mainly usable for
programming them with „and“ or „or“ and are addressed in a hierarchical structure via lines and
groups. The number of devices which can be combined is limited, though. Furthermore, these
devices do not possess the expressiveness required. Therefore, they are dependent on the inbuilt
intelligence of the apparatuses they are connected to. Before their first use, they have to be
programmed once.

Such a decentralised use of logic devices causes problems if used for big buildings with more
than 30 storeys such as the Treptowers in Berlin-Treptow-Köpenick. Such office buildings have
far too many things to control (e.g. blinds, wind sensors, light push-buttons etc.) to still be able to
control via the established way. Even in smaller buildings, we encounter problems when their
equipment and electrical fittings have to be changed. This only works by totally gutting the
building and reinstalling everything in the way it is desired. Moreover, it is difficult to track
mistakes as it is not possible to get an overview from a centralised position. Another problem
exists regarding the overall planning: light-, clime- and media-technologies are realised by
different companies. This is why end-devices, which belong together, are often not connected with
each other. In addition, the fitting of electrical cables is complicated as fitters rarely bring together
cables according to complicated plans.

These problems could be solved by the deployment of a central server running an event
notification service. It would be possible to bring together all cables through one centralised duct

10 Doris Jung and Annika Hinze

to that server. Out of security reasons, a second redundant system would be installed additionally.
The desired logic could be realised via the definition of profiles.

An approach such as this would allow for the fast change of the logic installed in a building.
With a more powerful language of an event notification service, there would be more possibilities
for the design of the fittings and equipment of a building. Cheaper apparatuses could be used since
there would be no need for special devices with inbuilt functionalities. Using this approach for the
future, it would be possible to have personalised solutions in a building. For example, every user
could define the brightness of their room (by the controls for blinds and lamps).

The following operators would be relevant when using an event notification service for facility
management:

Operators As can be deduced from the following application scenarios, the conjunction,
disjunction and sequence would be relevant.

1. Scenario (time problem): If the use of light push-buttons will not show immediate effect, users
will push them again and again. This is why, for a given time interval t, after a first push further
pushes have to be ignored:

,: (| ())x x x t tP e e e

1. Scenario (synchronisation problem): In a room there are two lamps L1 and L2. Each has a
sensor, S1 and S2, measuring the brightness of the room. From a certain threshold, the sensor
switches on or off the lamp connected to it. Furthermore, there is a main switch for both lamps
together. If only one of the sensors has sent its lamp into another state than that the other lamp
is in (i.e. one lamp is switched on and the other off), it is impossible to switch off both lamps
with the main switch assuming the control has been programmed in the wrong way. When
using a centrally programmable event notification service, this kind of problem can be easily
solved:

1 1 1

2 2 2

: (((1000));) : ()
: (((1000));) : ()

t

t

P S brightness Lux T change L
P S brightness Lux T change L

<

<

If a sensor S measures no daylight the lamp L will be switched off automatically. This is why,
only in this case the use of the push-button T requires a change of the state to “off”.

1. Scenario (Totmann safety lever): All 30 seconds, a wind sensor W1 sends a signal indicating the
wind force. If necessary, the jalousie J1 can be lifted up (if the wind force is above 9). If the
signal does not occur, it may be the case that the wind has destroyed the wind sensor within the
last 29 sec because it has become that strong. Then, the jalousie has to be lifted up to be safe:

11 1 30sec 1: ((9) |) : ()P W windForce W liftUp J>

1. Scenario (central control): When pushing the push-button T1, the jalousie J1 has to be lifted up.
Furthermore, the janitor is able to centrally lock the building with the control Z1, i.e. all
jalousies of the building are pulled down.

 1 1 1

2 1 1 1

: ((), ()) :

: ((), ()) : ()

P T pullUp Z locked noReaction

P T pullUp Z locked pullUp J
∞

∞

Time handling From the above examples, it becomes clear that we require a timeframe. This also
yields for a timestamp.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 11

Rebeca Rebeca [37] [13] is an event-based architecture used in e-commerce that has been
developed at the University of Darmstadt. It offers a configurable environment for distributed
applications similar to the architecture of the Corba Notification Service. The actual realisation of
the system is rudimentary described since publications do not differentiate much between theory
and the actual application.

Operators Keeping in mind the above comment, we were able to deduce that the implementation
realises the conjunction, disjunction, sequence and negation for composite events.

Time handling Primitive events comprise a timestamp, whereas a time interval is assigned to
composite events.

Regis Regis is a development environment for distributed systems realised by the Distributed
Software Engineering Group of the University of London. The language GEM [36] extends the
inter-process communication enabled in Regis through the integration of composite events.

Operators The conjunction e1&e2 is fulfilled if e1 and e2 occur, independently of their order. The
disjunction e1|e2 can be matched whenever one of the events occurs. e1;e2 denotes the sequence
and is matched when first e1 occurs followed by the occurrence of e2. The negation {e1;e2}!e3
signifies that e1 has to be followed by e2 without e3 occurring in between the two of them.
Moreover, GEM offers a time operator e+timeperiod, which informs about the occurrence of e
after a certain time span.

Time handling There is the possibility to specify a timeframe in form of a detection window (dw).
If this detection window is not given, a default value of 12 minutes is used to detect composite
events.

There is a differentiation between primitive and composite events: the former carry a
timestamp, whereas the latter are assigned a time interval.

Consumption mode and duplicate handling From the examples presented in [36], it becomes
evident that for the consumption mode the value “delete” is used. In doing so, they always choose
the first duplicate.

Salamander Salamander is a system for the distribution of several internet applications. It was
developed by the University of Michigan. In [35], two application are described which deploy
Salamander: The IPMA project (Internet Performance Measurement and Analysis) as well as the
UARC project (Upper Atmospheric Research Collaboratory). The UARC project is an architecture
which enables scientists to jointly research projects even if they are located apart. Furthermore, it
makes it possible for scientists to undertake experiments at remote locations such as Alaska or
Greenland without actually being there. This is made possible by joint displays of measurements
devices and computers which are synchronised. Furthermore, it offers a database for joint
comments as well as a distributed text editor. Atmospheric data is transmitted in real time to the
scientists taking part in the project. However, Salamander only provides primitive events.

3.2 Active Databases

The active databases we considered were Samos [15] and Sentinel [9] with its filter language
Snoop [10]. An overview can be found in Table 3.

12 Doris Jung and Annika Hinze

Table 3. Active databases

System Operators Time frame Consumption mode Duplicate
handling

Samos Conjunction: (E1, E2)
Disjunction: (E1 | E2)
Sequence: (E2; E2)
Negation: (NOT E)

Timeframe I
defined by
start_time
and end_time:
(E in I)

Delete used events and reapply
remaining ones:
chronicle

first:
Closure/*
nth:
Times (n, E)

Sentinel Disjunction: (E1 ∨ E2)
Sequence: (E1; E2)
Any:
((I, E1, E2, ..., En),
I <= n)
All:
(Any(m, E1, …, En),
 m<= n)
Periodic: (P, P*)

 Differing modes of delete and
delete & reapply:
recent
chronicle,
continuous,
cumulative

all
last

Samos Samos (Swiss Active Mechanism-Based Object-Oriented Database System) was developed
by the Universität Zürich as prototype. Dittrich and Gatziu have described it in [15]. Their goal for
the realisation of Samos was to combine features of active databases and of object orientation. The
prototype of the system works with the commercial object oriented database system Object-Store.
For the detection of events they deploy Petri nets. In its ECA-rules, Samos works with composite
events, which are supported by the following operators:

Operators Dittrich and Gatziu offer the disjunction (E1|E2), the conjunction (E1,E2), the sequence
(E1;E2) and the negation (Not E).

Time handling The occurrence time of an event E is denoted by occ_point(E). The operators
mentioned above are used in combination with a timeframe I in the form (E in I). Normally, it is
signified by a start and an ending (start_time and end_time, respectively). Additionally, there are
operators for overlap and extend to express the intersection and union of two intervals. The start
and ending of a timeframe can be explicitly defined or be given implicitly. Then, it would be
determined in dependence of other events. If no timeframe is given, it is assumed to be
indefinitely. However, this possibility does not exist for the negation.

Consumption mode Samos uses the consumption mode “chronicle”. This corresponds to “delete &
reapply”.

Duplicate handling The handling of duplicates can be determined by two operators combined with
timeframes.

The closure/*-constructor activates an action once even if the respective event occurs several
times within the given time interval. The action takes place after the first occurrence of event E.
This means that the first duplicate is chosen.

The history-event TIMES(n,E) activates an action if event E has occurred exactly n times within
the specified timeframe. This means that the nth duplicate is chosen.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 13

Sentinel Sentinel [9] is an object oriented active database system that has been developed at the
Database Systems Research and Development Center of the University of Florida. The profile
definition language used for this system is Snoop [10]. It is able to express composite events with
the help of the following operators:

Operators The disjunction is expressed by (E1 ∨ E2). Within the limits of the publication, they
assume the use of an exclusive or. This is done so by presuming that no simultaneous events may
take place. Without this presumption the operator is used for an inclusive or. Furthermore, the
authors emphasise that it is useful to supply this kind of disjunction with a timeframe. The
realisation of this, nevertheless, is not described within their publication.

The conjunction is represented by the operators Any and All. Any(I,E1,E2,…,En) with I≤n
matches exactly if I arbitrary events occur out of n events independently of their order. All is an
abbreviation for Any(n,E1,…,En) or Any(m,E1,…,En) with m>n, respectively. If an event occurs
repeatedly, this is ignored.

The sequence (E1;E2) can be combined with so-called definite events. These are events such as
the end of a transaction or an absolute time event.

Furthermore, there is a periodic operator. It provides two versions: (P,P*). In P(E1,[t],E3), E1
and E3 specify a time span, within which a notification is caused periodically in intervals t. In P*,
t can be supplied with an additional parameter, which allows a cumulative querying of values
within intervals t.

Consumption mode Snoop offers four possibilities for the consumption mode: recent, chronicle,
continuous and cumulative. These differ from the possibilities discussed in Section 2:

Recent means that always the most recent, i.e. the newest, event instance is chosen. Event
instances are deleted after a successful matching. Chronicle works similarly but chooses the oldest
event instances. These two possibilities can be expressed by “delete & reapply” (“recent” in
combination with the duplicate handling “first” and “chronicle” with the duplicate handling of
“last”).

The possibility cumulative chooses all event instances and deletes them and their terminating
event instance after a successful filtering. This is the same as the consumption mode “delete”.

The continuous consumption mode cannot be expressed by the concepts mentioned so far. It
chooses the oldest event instance, and after the successful filtering it only deletes the initiating
event instance.

Duplicate handling Additionally to the standard operators mentioned above, there is an aperiodic
operator in two versions: (A,A*). For A(E1,E2,E3) with E1, E2 and E3 as arbitrary events, event A
will be caused for each occurrence of E2. The timeframe within which this is filtered, is
determined by events E1 and E3. This would be a duplicate handling of “all”.

The version A*(E1,E2,E3) differs by the number of activations of A as well as by the point in
time at which event A is activated. A* cumulates all duplicates of E2 and initiates A when E3
occurs. This is similar to the duplicate handling of “last”. Nevertheless, the activation of event A or
the notification, respectively, can have a temporal offset.

Time handling Timeframes can be simulated by temporal events as well as by the A*-operator.

3.3 Event-Action Systems

We have looked at some event-action systems. They are Active House [3] (a demonstration for the
ability of the Cambridge Event Architecture to coordinate several systems in a distributed
environment), PLAN [43] (a framework and specification language with an event-condition-action
mechanism for clinical test request protocols) and YEAST [30] (a client-server system which

14 Doris Jung and Annika Hinze

enables other systems to register their event-action rules at a central server). A description of the
operators and modes is given in Table 4.

Table 4. Event-action systems

System/Function Operators Time
frame

Consumption mode Duplicate handling

Active House Conjunction: (A & B)
Sequence: (A; B)
Disjunction: (A | B),
Negation: (A - B)
First(A)

- - first

PLAN Conjunction
Disjunction
Negation

yes first

YEAST Sequence: then
Disjunction: or
Conjunction: and

yes:
in,
within

 first

Active House The active house project [3] has been undertaken by the Opera Group in order to
show the possibility to collaboratively work in a distributed environment with several systems
using the Cambridge Event Architecture (CEA). In the project, they simulate activities in a house
such as activities in the kitchen, ringing of the bell or functionalities of a hi-fi system.
Furthermore, an integrated security system monitors the location of people in the house. The
activities simulated are sent as events. However, they can also receive events. They are combined
to composite events using operators and follow the event-condition-action-concept. This way, it
can be specified that whenever the bell is ringing, the toaster has to automatically start roasting a
toast or the light has to be automatically switched off.

Operators The Cambridge-Event-Algebra provides the following operators for building composite
events: The sequence A;B denotes that event A has to occur followed by event B. The negation A-B
represents that A has to occur without the previous occurrence of B. The disjunction operator A|B
describes that event A or event B has to occur. The conjunction A&B denotes that event A as well
as event B has to occur. The temporal order is insignificant for this. Furthermore, there is an
operator called First(A), which tests the first occurrence of event A.

Time handling The events are supplied with a timestamp. The problems occurring when dealing
with a distributed environment (e.g. determination of a global time) is not solved, however.

Consumption mode The consumption mode is mentioned by the authors, though only as an issue
which should be considered when developing an event notification service. Nevertheless, a
concrete realisation is not described.

Duplicate handling The system deletes duplicates of an event and notifies once only at the first
occurrence of an event.

PLAN PLAN [43] is a framework for controlling the application of given therapy guidelines. It
was developed by Bing Wu and Kudakwashe Dube at the Dublin Institute of Technology. The
therapy guidelines contain knowledge about diseases, potential therapy possibilities, examinations
required for a patient as well as information about a patient’s medical history. In a clinical
environment, mostly events such as the following are defined: the admission of a new patient, an
elapsed time span, receiving new test results of certain medical examinations or a combination of
these events.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 15

Potential conditions are the divergence of test results from standard values or the incidence of a
specified disease. A potential reaction could be the initiation of certain examinations or tests, the
information of a doctor or the notification of a nurse.

The system possesses a specification language, i.e. it can be modified according to the needs of
users. It follows the ECA-concept and can be integrated into other technological infrastructures.
The events of the ECA-rules can be combined to composite events with the help of the following
operators:

Operators Conjunction, disjunction and negation are available.

Time handling Timeframes can be specified in PLAN. This happens using ECA-rules for which
the condition has to be set to true. Their actions are initiated by time events.

Duplicate handling Deducing from the examples given in the publication, we consider an implicit
use of “first” for duplicate handling.

YEAST Krishnamurthy and Rosenblum describe YEAST in [30]. It is a client-server-system that
enables distributed clients to register specifications of event-action-rules for their applications at a
central server. This server undertakes filtering and management of incoming events. The event-
action-rules can cover several clients. YEAST can process several kinds of composite events.
They are defined using the following operators:

Operators The sequence is represented by then and the disjunction by or. The conjunction is
expressed with and. However, the conjunction is only filtered successfully if the event instances
that are taking part arrive simultaneously.

Time handling Two operators similar to a timeframe are offered: in and within. They allow the
filtering after or within a specified time interval, respectively.

Duplicate handling The parameter repeat causes a new registering of a profile whenever it has
been matched once. It is implied that the first event of a sequence of duplicates is considered,
except the repeat parameter is used. Then, all duplicates which match a profile are considered.

3.4 Event Notification Services

The event notification systems we have investigated are CompAS [29] (prototype of an event
notification system for composite events which was developed within the project MediAS at Freie
Universität Berlin), the Corba Notification Service [1], Elvin [40] [14], Hermes [12] (an event
notification system for digital libraries), Keryx [6] (which is designed to distribute notifications in
the internet), READY [17] [18] (which is the sequel of the event-action system YEAST) and Siena
[8]. Table 5 gives an overview of the operators and modes of the event notification systems.

Table 5. Event notification systems

System Operators Time
frame

Consumption
mode

Duplicate
handling

CompAS Conjunction
Disjunction
Sequence
Negation
Selection

yes keep
delete
delete & reapply

first
last
all
nth
from n to m

Corba Only primitive events - - -

16 Doris Jung and Annika Hinze

Notification
Service
Elvin Only primitive events - - -
Hermes Only primitive events - - -
Keryx Only primitive events - - -
READY Conjunction: (Ev_x && Ev_y)

Disjunction: (Ev_x || Ev_y)
Sequence: (Ev_x ; Ev_y)
Negation: (not Ev_x)

 first
last
all
nth
from n to m

Siena Sequence: A ⋅ B - delete first

CompAS CompAS [29] is a system that has been developed at the Institut für Informatik at Freie
Universität Berlin. It is a system which is related to the work described in this technical report. It is
an event notification service, which deals with composite events. The version DAS [5] realises this
for a distributed environment.

Operators The following event operators are implemented in the system: conjunction, disjunction,
sequence, negation, selection and simultaneity.

Time handling Event instances are supplied with a timestamp. Composite events have a timeframe
within which they have to occur.

Consumption mode For the consumption mode the possibilities “delete”, “delete & reapply” as
well as “keep” are realised.

Duplicate handling It is possible to select the first, last, ith and all duplicates of an event.

Corba Notification Service The Corba Notification Service is an event notification service which
is based on Corba. Corba (Common Object Request Broker Architecture) is a specification of the
Object Management Group. It offers a possibility for communication among arbitrary applications
in a distributed environment. The event notification service separates the communication between
Corba-objects and offers an event-based asynchronous exchange via so-called notification
channels. These are responsible for the filtering of the events. Primitive events are the only ones
that are supported [1].

Elvin The works in [40] and [14] describe the Elvin system, which has been developed by the
Distributed Systems Technology Centre. It is an event notification service that uses a distributed
client-/server-architecture. Elvin itself acts as a server, whereas the publishers and users work as
clients. Neither Elvin nor the next development Elvin4 support composite events.

Hermes Hermes is an event notification service that has been developed at the Institut für
Informatik at Freie Universität Berlin and is used for digital libraries [12]. The service offers a
uniform interface for users which enables them to be notified about literature of differing
publishers. Even publishers who do not offer an own notification service are supported. Users have
the option to sort the documents presented in a notification by a relevance feedback. Hermes
supports primitive events only.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 17

Keryx The event notification service Keryx has been developed by Keryxsoft, which is a research
group of the Hewlett Packard Laboratories in Bristol. It is a successor of the Nexus Event Service.
The service is realised independent of languages and platform and uses a client-server structure. Its
functionality is to distribute notifications throughout the Internet. From [6] it can be concluded that
there is no possibility for Keryx to build composite events, i.e. they only offer primitive events.

READY READY, which is described in [17] and [18], is a successor of the YEAST event-action-
system. It has been developed by AT&T and is an asynchronous event notification service.
READY offers a middleware for applications which have been developed separately. Publishers
and users can be integrated independently from each other into the system. The following
operators are used for the realisation of composite events:

Operators The conjunction is expressed by Ev_x&&Ev_y, the disjunction using Ev_x||Ev_y, the
sequence by Ev_x;Ev_y and the negation via notEv_x.

Duplicate handling READY uses an expression for matching intervals of duplicate occurrences.
This expression offers the possibility to specify how often an event has to match in order for a
notification to be sent. It is possible to state the following expressions: “at most x”, “exactly x”,
“x to y” and “at least x”.

Examples for this are Ev1[0..3] with at most 3 matchings, Ev1[3..5] with 3 to 5 matchings,
Ev1[3..3] with exactly 3 matchings and Ev1[3..*] with at least 3 matchings. Here “0” and “*”
denote there is no upper or lower bound. Furthermore, it is possible to specify the first, last, ith and
all duplicates.

Siena Siena [8] is the prototype of an event notification service developed by Carzaniga at the
University of Colorado. The system is the product of a research project targeting the development
and the implementation of a scalable event notification service using a distributed architecture of
event filtering brokers. This means that Siena can be used internet-wide.

In the scope of this research project, there have been developed a number of fundamental
theoretical approaches for event notification services in distributed environments. Nevertheless,
the system is realised only rudimentary. It can filter composite events.

Operators Siena only implements the sequence A⋅B. It selects the first j
iA followed by the first

, if i<k and j<m holds. m
kB

6

7 8
7 8A B⋅

Time handling Each event contains two timestamps. The former ti it receives at the creation of
the event, the latter tj at the time of filtering.

j

i

t
tE

Consumption mode and duplicate handling Carzaniga gives the following example for clarifying
his filtering process: Given the following event history:

1 2 3 4 5 6 7 8
4 3 1 2 5 6 7 8 B A A B A B A B

We want to express the sequence A⋅B: The first sequence that is selected is . The next
sequence is . This implies a consumption mode of “delete” and a duplicate handling of
“first” (first duplicate).

2
3 6A B⋅

18 Doris Jung and Annika Hinze

3.5 Combined Systems

We examined further systems: Conquer [33] and OpenCQ [32] [39] (systems which are able to
handle web-documents, databases and files), and also Eve [16] [41] (which combines
characteristics of active databases and event-based architectures in its task to execute event driven
workflows). An overview is given in Table 6.

Table 6. Combined systems

System Operators Time
frame

Consumption
mode

Duplicate
handling

CQ:
Conquer
and
OpenCQ

Sequence: (E1; E2)
Simultaneity: (E1|| E2)
Conjunction
Disjunction
Negation

Yes - -

Eve Conjunction: (CON(ET1, ET2, sw))
Disjunction: (DEX(ET1, ET2))
Sequence: (SEQ(ET1, ET2, sw))
Simultanity: (CCR(ET1, ET2, sw))
Negation: (NEG(ET1, (ET2, ET3, sw),
sw))
Repetition: (ET1, times, sw)

Yes delete &
reapply:
chronicle

First
nth

CQ: Conquer and OpenCQ Conquer and OpenCQ have been developed at the Oregon Graduate
Institute of Science and Technology. Conquer is discussed in [33] and OpenCQ in [32] by Liu, Pu
and Tang. Further information is available from [39]. Conquer is a system for monitoring changes
in web documents. OpenCQ extends the possibilities of Conquer: It can not only monitor web
documents but also databases and files.

Both systems are based on the CQ-specification language. This can express composite events.
The operators presented in their publications vary. In the following, we will present all of them:

Operators The sequence is expressed by E1;E2. It is fulfilled whenever E1 occurs before E2. The
simultaneity E1||E2 matches when E1 and E2 occur at the same time. Furthermore, there are the
conjunction, disjunction as well as the negation.

Time handling It is possible to specify a timeframe by choosing a time interval within which a
profile is valid. This interval can be defined by a start and ending. Another possibility is to only
name the ending when registering the profile. Then, for the beginning the time of the registration
of the profile is chosen automatically.

Eve Eve is an event engine that was developed at Universität Zürich. It realises an event-driven
execution of distributed workflows ([16] and [41]). This means that the engine is able to register
events, recognize and administer events as well as notify distributed autonomous software
components, which represent workflows. The system combines ECA-rules with active database
mechanisms in an integrated event-based architecture. In order to achieve this, it is able to form
composite events with the following operators:

Operators ET1, ET2 and ET3 are event types. The conjunction CON(ET1,ET2,sw) is recognised
whenever ET1 and ET2 occur regardless of their relative order. sw denotes the restriction that both
events have to occur within the same workflow. DEX(ET1,ET2) expresses the exclusive
disjunction, which is matched if only one of the events has occurred. The sequence
SEQ(ET1,ET2,sw) is matched when ET1 temporally occurs before ET2. The simultaneity is
represented by CCR(ET1,ET2,sw). It is fulfilled whenever both events take place at the same time.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 19

The authors are dealing with time according to the 2g-precedence-model. This model defines
within which time limits we can still accept the occurrence as simultaneous.
NEG(ET1,(ET2,ET3,sw),sw) represents the negation. It tests whether ET1 does not occur within
the interval given by ET2 and ET3. Furthermore, they offer an operator representing the repetition
REP(ET1,times,sw). It tests whether ET1 occurs as often as defined by the parameter times.

Time handling The definition of an event can be restricted by the definition of a timeframe, which
is given by two events. Events have a large number of attributes that specify them more closely.
Among them are a timestamp and an identifier that assigns the membership of the event to a
workflow. The timestamp of the negation is given by the timestamp of the event that terminates
the negation.

Consumption mode In order to work properly, Eve requires a consumption mode of “chronicle”.
This is equivalent to “delete & reapply”.

Duplicate handling The publication implies that the first duplicate of an event is selected.
Furthermore, the repetition operator allows specifying a kind of filtering that searches for a
specified number of events that cumulatively occur. This is the same as a notification after the ith
duplicate.

4 Classification of Filter Languages - a Comparative Study

On grounds of our previous analysis, we have classified selected applications and event
notification systems by ordering them according to the power of their profile definition languages.
For doing so, we have developed classification criteria which base on two works [44] [26] for the
description of the semantics of filter languages.

Looking at the analysed systems, it becomes clear that to simply consider the operators is not
sufficient in order to convey the full semantics. Each system offers parameters, which more
closely define the operators, or operators, which carry differing semantics to others. Nevertheless
the exact description of these operators/parameters is rarely given in literature. Despite that, we
can summarize the operators to: conjunction, disjunction, negation, selection, sequence und
simultaneity.

Unland and Zimmer give in [44] a very detailed description of parameter-semantics and their
modes. For example, they have defined a concurrency and a consumption mode which are
presented in Table 7.

Table 7. Concurrency and consumption mode (Unland/Zimmer)

Parameter Mode Function
Overlapping Components of different event instances may overlap each other Concurrency
Non-overlapping Components of different event instances may not overlap each other
Shared No event instance is deleted
Exclusive
parameter

All event instances which have taken part in the matching of a
composite event are deleted

Consumption

Exclusive All event instances before the terminating event instance of a
composite event are deleted

Some of the modes they present are dependent on each other, so not all combinations are possible.
If we have a consumption mode of shared, the concurrency mode has to be overlapping; a
consumption mode of exclusive only is logical in combination with a concurrency of non-
overlapping. Furthermore, some modes of parameters they give do not occur in the kind of
systems we are interested in (e.g. concurrency mode). Also the traversion mode, which describes

20 Doris Jung and Annika Hinze

the direction of traversing composite events, is irrelevant for us since systems filter their events in
timely order and not backwards. So, we neglect this parameter.

Due to this and the fact that we do not have the exact parameters of all systems at hand, we
choose the description of Hinze and Voisard [26] as a basis for the classification of our systems.
Please refer to Table 8.

Table 8. Comparison classifications of Hinze/Voisard and Unland/Zimmer

Hinze/Voisard Unland/Zimmer
Composite events

Operators
Timeframes

Consumption Mode
Coupling Mode
Concurrency Mode
Parameter Selection

Duplicate handling

Traversion Mode

The only change is that the consumption mode we chose is that used by Unland/Zimmer. They
offer three values as can be seen in Table 6. Unland/Zimmer’s coupling mode can be neglected
since it may be expressed with the help of the negation operator and wildcards. Unland/Zimmer’s
parameter selection is expressed via Hinze/Voisard’s duplicate handling.

4.1 Composite Events (Unland/Zimmer)

Notions Unland and Zimmer have developed their concepts for the description of composite
events within the scope of active databases [44]. Due to this, their terminology mainly is limited to
that particular area as well. This is why, they are using some of the notions differently than we do
in this technical report so far. In the following please find a summary of their definitions:

Event An event is simply seen as the occurrence of a situation which requires an action.

Event-Condition-Action-Rule At the occurrence of an event which matches a specification of an
event type, the condition of the rule is tested. If applicable an action which previously had been
defined is executed.

Time domain For their project, Unland and Zimmer have assumed an equidistant discrete time
domain.

Event instance An event instance represents a concrete event existing in the real world.

Event type (Ei) The event type is an abstract description of a set of event instances which can be
described by more closely defined similarities. This can be the same describing parameters or the
same reaction specified for the occurrence of an event. As an example, we could have the
following description:

E4:=;(last: shared(E1), first: exclusive parameter(E2), shared(E3))

The event type E4 is specified by the sequence of E1, E2 and E3. They are filtered with a different
kind of consumption mode: E1 and E3 are repeatedly used in the filtering process whereas E2 is
deleted after matching once.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 21

Parameter Parameters are used for the specific description of event instances. They give details
about their event type, the point in time when they occur as well as about their activator.

Primitive event types Unland and Zimmer differentiate primitive event types between external,
temporal and database-specific event types. The latter refer to data manipulation or transaction
operations. The temporal event types split up into absolute, relative and periodic time event types.
External event types represent events which occur external to the database or the computer.

Complex event types Unland and Zimmer call the combination of event types through operators of
an event algebra a complex event type. The components of a complex event type are called event
type components Eij – they can be of primitive or complex type. The complete formation is
referred to as parent event type.

Event instance sequence (EISEi) An event instance sequence is a partial ordered set of event
instances, which have occurred in the system. They are ordered in respect to their time of
occurrence. One can differentiate between instance-oriented event instances and type-oriented
event instance sequences. Instance-oriented event instance sequences represent these kinds of
event components, which have caused the occurrence of complex events. Whereas type-oriented
event instance sequences describe the event components required for the recognition of complex
events. An example for their notation is the following event instance sequence:

1 1 2 3 1 4 2
1 1 1 2 1 2 3: EIS ei ei ei ei ei ei ei= 1

The event instance sequence EIS1 is composed of three instances of type E1, followed by one of
type E2, by one of E1 and one of E2, finalized by an instance of type E3.

Event instance pattern Event instance patterns describe the same constituents as type-oriented
event instance sequences, i.e. the event components required for the recognition of a complex
event type.

Initiator The event instance of an event instance sequence which starts the recognition of a
complex is called the initiator. The event instance which ends the event instance sequence is the
terminator. Those which lie in between are referred to as interiors.

Event group An event group is formed by those event instances which are ended by the exact same
terminator.

Instance set A duplicate set is formed by different event instances of the same event type.

Operators The following operators are used by Unland and Zimmer:

∧-operator The conjunction operator requires the occurrence of the instances of the events
concerned in arbitrary order.

∨-operator For the disjunction operator, it is sufficient if at least one of the given instances takes
place.

¬-operator The negation operator describes the absence of an instance specified within a given
time interval. This time interval is defined by the occurrence time of the first operand (start time of

22 Doris Jung and Annika Hinze

the interval) and the occurrence time of the last operand (ending time of the interval) of the
negation operator.

;-operator The sequence operator requires the occurrence of the specified instances in the order
defined.

==-operator The simultaneity operator describes that event instances have to take place at the
same point in time.

Operator modes The authors differentiate between three modes for the specification of the
operator relationships: they give the traversion mode, the coupling mode and the concurrency
mode.

Traversion mode There are two different traversion modes: from left to right and vice versa. The
direction is highly relevant for the evaluation. In the following example, given the event instance
sequence EIS2

2 1 1 2 2 3 3
1 2 1 2 2 1 3: EIS ei ei ei ei ei ei ei= 1

2 3

and the event type E4

4 1: ; (: , : ,)E last E first E E=

we have different results depending on the traversion mode (direction of evaluation). Using the
traversion from right to left, at first the first instance of type E3 is chosen. Then the first
instance of the event type E2 and finally the last instance of the type E1 , which has to
occur before . So we get: , , ei . Whereas using the traversion mode from left to right,
we gain the following sequence: , , . At first, the last instance of type E1 is chosen –
this would be . This is no valid result, however. This is due to the fact that between as
initiator and as terminator there is no instance of the event type E2. This is why we have to
perform backtracking to ei . Next, the first instance of type E2 is looked for, which follows ei :

. We terminate with .

1
3()ei

1
2()ei 1

1()ei
1
2ei 1

2ei 1
3)

1
3)ei

3 3
1ei

2
1

2
1

2
2ei

1

3E

1
1(ei

2
1(ei 2

2ei

1ei
1
3ei

1
3ei

Coupling mode The coupling mode determines whether it is allowed that the searched event
instances are interrupted by other event instances that are irrelevant for the event instance pattern
or whether they may not be interrupted. Given the following event instance sequence

3 1 1
1 2 3: EIS ei ei ei=

and event type

5 1: ; (,)E E=

If we have a continuous coupling mode, no event of type E5 would be matched since interrupts
the sequence 1 and 3 . Whereas if we have a non-continuous coupling mode, this interruption
would be allowed and an event of type E5 would be recognised.

1
2ei

1ei ei1

Event Notification Services: Analysis and Transformation of Profile Definition Languages 23

Concurrency mode The concurrency mode determines whether event instance components may
overlap in respect to their occurrence time: Here, we have an overlapping concurrency mode. An
alternative would be a non-overlapping concurrency mode. Consider event instance sequence

4 1 2 1 1
1 1 3 2 3: EIS ei ei ei ei ei= 2

2

and event types

5 1: ; (,)E E E= and 6 3: ; (,)E E 5E=

Then, the occurrence time of is identical with the occurrence time of the terminating event
instance component . Thus, instance of type E3 has an earlier occurrence time than , but a
later one than the initiating event instance sequence or , respectively (depending on the
strategy of evaluation). So, whether in an event instance sequence EIS4 an event will be
recognized, is dependent on the concurrency mode of that event, i.e. whether it is defined as
“overlapping”.

1
5e

1
2e 1

3e 1
5e

1
1e 2

1e
1
6e

Modes of operands Also the operands offer a range of specification possibilities:

Parameter selection Unland and Zimmer describe two kinds of duplicate handling – one only uses
the minimum of the event instances required. Whereas the other chooses more than the number
prescribed by one delimiter. First and last refer to the instance or instances of an event with the
oldest and youngest timestamp, respectively. So they are strategies choosing a minimal number.
Cumulative selecting strategies are the cumulative and restricted cumulative parameter selection.
The parameter “cumulative” selects all instances of an event type, whereas “restricted cumulative”
only chooses those event instance components which are required by the event instance pattern of
the parent type. Additionally, the authors define two modes: combinations and combinations
minimum. We need these modes in order to make it possible that different duplicate sets of an
event instance component can be combined subsequently with the duplicate sets of other event
type components.

Consumption mode The recycling of event instances when matching complex events can be
specified through the consumption mode by using “shared”, “exclusive parameter” and
“exclusive”. “Exclusive” deletes all event instances which occur prior to the terminating event. If
we look for E5:=;(E1,E2), then the event instances selected would be those depicted in Fig. 2 1.

e1
1 e1

2 e2
3 e1

5e1
4e1

3 e2
2e2

1 e2
5e2

4

Fig. 2. Exclusive consumption mode

A consumption mode of “exclusive parameter” deletes those event instances which have already
been used for the matching of a complex event. Refer to Fig. 3.

1 In Fig. 2, we present the event history as temporal sequence from left to right.

24 Doris Jung and Annika Hinze

e1
1 e1

2 e2
3 e1

5e1
4e1

3 e2
2e2

1 e2
5e2

4

Fig. 3. Exclusive parameter consumption mode

In opposition to that, a consumption mode of “shared” deletes no event instances at all (Fig. 4).

e1
1 e1

2 e2
3 e1

5e1
4e1

3 e2
2e2

1 e2
5e2

4

Fig. 4. Shared consumption mode

Delimiter The number of duplicates of an event type that are taken into account for matching is
specified by a number or an interval.

The formal specification system of Unland and Zimmer is very comprehensive and allows for
the detailed description of the semantics of complex events. Nevertheless, there is the
disadvantage that certain issues are subdivided into components which in itself should not be
possible to subdivide. This is due to the fact that they are dependent on each other. An example for
this problem are the concurrency mode and consumption mode which are interconnected: If we
choose the parameter “exclusive” for the consumption mode, then this makes the choice of
“overlapping” for the concurrency mode impossible. The reason for this is in the deletion of all
event instances from the event history which occur prior to the terminating event. Moreover, the
consumption mode “shared” involves an overlapping, as one event instance is used for several
matchings. Only the possibility of “exclusive parameter” for the consumption mode does not
influence the choice of the concurrency mode. If we have E4:=;(E1,E3) and E5:=;(E4,E2) and are
looking for E5, we only receive one match (Fig. 5).

e1
1 e1

2 e3
3 e1

3e3
2e3

1 e3
4e2

1 e2
2e1

4

e4
1 e4

2
e5

1

Fig. 5. Consumption exclusive and concurrency overlapping

This match is or as there is no matching instance of E2 for the first occurrence
of instance E4. This is due to the fact that is already deleted because of the “exclusive”

3 4 2
1 3 2(, ,)e e e 2 2

4 2(,)e e
1
2e

Event Notification Services: Analysis and Transformation of Profile Definition Languages 25

consumption mode. The following dependencies result from the possibilities of the parameters for
the consumption and concurrency mode (Table 9).

Table 9. Dependency of consumption and concurrency mode

Consumption Mode Concurrency Mode
shared overlapping
exclusive parameter undetermined
exclusive subsequently

If we have a consumption mode of “exclusive”, it is reasonable to use the subsequent concurrency
mode since this consumption mode excludes overlapping events. Moreover, the consumption
mode “shared” would not be reasonable with a subsequent concurrency mode as overlappings are
the typical feature of the “shared” consumption mode.

4.2 Composite Events (Hinze/Voisard)

Notions We here will introduce the notions used by Hinze and Voisard in [26] unless they have
already been introduced in Section 2. For the definitions the following holds: (ei), i∈Ν denotes
primitive as well as composite events. For t(ei), t specifies the timestamp of an event and for (ei)t , t
represents a timeframe.

Event (ei) This notion refers to the previous definition of an event to be found in Section 2.

Event class (Ei) The event class of Hinze and Voisard also refers to the definition which can be
found in Section 2.

Event instance We extend the previous definition: The event instance (ei) of event class (Ei) is
denoted by ei∈Ei. It is possible that an event instance (ei) belongs to several event classes, i.e.
ei∈Ei and ei∈Em hold at the same time. An event class can have subclasses ei∈Ei⊂Em .

Primitive event Primitive events are divided into time events and content events. Time events
describe the occurrence of a point in time whereas content events denote all changes of states.

Composite event This concept corresponds to Unland and Zimmer’s concept of complex events
types.

Timestamp The timestamp t(e) of an event e∈Ei stands for the occurrence time of this event.

Duplicates We follow the definition which has already been introduced earlier in this technical
report.

Event operators Hinze and Voisard describe the meaning of their event operators as follows:

Disjunction The disjunction of two events (e1|e2) signifies the occurrence of at least one of these
events. The occurrence point of the composite event e3=(e1|e2) is the occurrence point of the earlier
event taking part in the disjunction t(e3):=min{t(e1),t(e2)}.

26 Doris Jung and Annika Hinze

Conjunction For the conjunction of two events (e1,e2)t , we have to specify a timeframe for the
filtering of the profile. Both of the events have to occur within the given time span described by
the timeframe. The occurrence point of the composite event e3=(e1,e2) is the occurrence point of
the later one of both of the events taking part in the conjunction t(e3):=max{t(e1),t(e2)}.

Sequence The sequence of two events (e1;e2)t tightens the conditions of the conjunction: first, e1
has to occur followed by e2. The occurrence point of the composite event e3=(e1;e2) is the same as
that of the second event e2. So, it holds: t(e3):=t(e2).

Negation The negation of an event ()te informs about the fact that this event has not taken place
within the given timeframe [tstart,tend], tend=tstart+t. The occurrence time of the negative event ()te
is the ending of the time interval (()) : (())t end tt et e = .

Selection The selection denotes the occurrence of the ith
 event within a list of event

instances.

[] , ie with i∈`

Basic principles of parameters Hinze and Voisard remark that the semantics of temporal event
operators is dependent on the applications which are chosen. This is why, they introduce special
parameters which allow for this matter. The modes relevant for this are event selection, event
instance pattern, event instance selection and event consumption.

The concept of event selection, i.e. the mechanism describing how primitive events are chosen,
is not described in detail by the authors but assumed to be attribute-value-pairs. The event instance
pattern, i.e. the operator concept underlying the composition of composite events has been
discussed in the previous section.

The event instance selection deals with the selection of duplicates of events. It allows for the
consideration of application-dependent circumstances of this selection. All possibilities for this
selection are depicted in Table 10.

Table 10. Example for event instance selection

Event
instance
selection

Application example

first Changes of state happen once only, so all further duplicates are redundant.
ith For technical readings where a high precision is required, it might be interesting not only to

consider the first but also the second and third reading, when the parameters have passed a
certain threshold. Also, in the medical area it is possible that the first occurrence of an event
does not indicate anything unusual; nevertheless if that value occurs repeatedly, this indicates
a problem.

last For location systems we usually are only interested in the last duplicate of an event since only
that one can give valid information about the location of an object.

all Security systems (movement sensors, messages about doors which are open within specified
time intervals) have to regard all duplicates since every discrepancy can represent a security
hazard.

Hinze and Voisard express the event instance selection via parameters for event operators. This
will be further described later this section (event operators with parameters).

The event consumption determines whether event instances which have been considered for the
filtering process will be deleted from the event history or whether they will be kept for the filtering
of further composite events of the same event class, i.e. they would be recycled. The authors
differentiate between two kinds of consumption modes:

Event Notification Services: Analysis and Transformation of Profile Definition Languages 27

All pairs All event instances are kept, i.e. even those which have been used in the filtering process
before. That way, we gain all possible permutations of event instance combinations. Unland and
Zimmer call this the “shared” consumption mode (see Fig. 4).

Unique pairs All event instances that have been used in the profile matching of a composite event
are deleted. However, then the event history is refiltered using the remaining event instances. This
is identical to the mode “exclusive parameter” of Unland and Zimmer (see Fig. 2).

Parameter definitions The following definitions of notions are required for the parameters of the
event operators:

Profile-matching An event e matches a profiles p whenever the attributes of the event are the same
as all the attributes of the profile: p e≺

tE

e

. This notation of matching operators refers to its use by
Carzaniga, Rosenblum and Wolf in [8].

Event space The set of all events that can possibly occur in a system is called event space . The
set of all time events is referred to as .

E

Trace A trace trt1,t2 is a sequence of temporally ordered events with the beginning t1 and the ending
t2. Thus, the event history of a service (containing events ∈E 0,t ∞

[], L i i∈

x∈`

�) is the trace tr . t0 is the
beginning, i.e. the point in time when the event notification service started filtering events. A trace
is like a list L. It is possible to access the elements via a list index: yields the ith

element.
`

Trace view A trace view tr({E1}) is a part of a sequence or a sub list of a trace tr, which contains
only event instances of one single event class, i.e. e∈E1 is contained in a partial order.

Trace renumbering A trace tr can be divided into trace views tr[1], … , tr[n]. These contain event
instances of the same class. These event instances are numbered in the following way: tr[x,y],

 as number of subsequences and y∈[1, length(tr[x])] as index number of the event instance
within the respective subsequence.

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,3]

e2
tr[2,1]

e2
tr[2,2]

e3
tr[3,1]

e3
tr[3,2]

e1
tr[5,1]

e2
tr[6,1]

e2
tr[6,2]

e4
tr[4,1]

tr[1]

tr[2]

tr[3] tr[5]

tr[4] tr[6]

Fig. 6. Example for trace renumbering

Fig. 6 illustrates an example for trace renumbering. There the membership in the same class is
denoted by using the same name. The first trace view tr[1] is built from three event instances
tr[1,1], tr[1,2] and tr[1,3] since all belong to the same event class E1. Then, an instance of another
event class follows: E2. This is why, the next trace view tr[2] begins with tr[2,1]. This trace view
consists of the event instances tr[2,1] and tr[2,2]. The other trace views are built analogously.
Event instance tr[5,1] can also be referred to as trace view tr[5] even though it belongs to event
class E1 (same as tr[1]). This is due to the fact that a repetition of event instances is independent of

28 Doris Jung and Annika Hinze

instances of the same class prior to that particular instance if these instances are separated by
instances of other classes.

Event operators with parameters

Operators For event operators with parameters, we assume without loss of generality as
precondition that our traces always start with e1. The operators are defined as follows:

Negative event

1 1 1 1 1 1 1() : { () [() , ()] : () }t t t tp e e t e t e t t e p e= ∀ ∈ ∧ ∈ − ¬≺ ≺E

Time event et matches the negative profile of p1 within time span t1 if, within time span
until t e , none of the occurring events matches profile p1.

1 1()t e t−
()t

1 1 1 1() () { | () }t t t tp tr e e tr p et∈ ∧≺ ≺

The negation of profile p1 within time interval t1, applied to trace tr, is the set of all time events out
of this trace tr, which match the negation of profil p1 within time interval t1.

e1
tr[1,1]

e1
tr[1,2]

e1
tr[4,1]

e2
tr[2,1]

e3
tr[3,1]

5sec

e3
tr[3,2]

et

Fig. 7. Negation 1 11 5() : ()tp e= sec

The example depicted in Fig. 7 describes the test whether within time frame t1=5sec profile p1 is
not fulfilled, i.e. whether no event e1 takes place. Since only event instances of classes E2 and E3

occur 1 5sec() is true. e

Disjunction For an event e and profiles and holds: ∈E 1p 2p

1 2 1 2(|) : { }p p e p e p e= ∨≺ ≺ ≺

1 2 1 2

1 2

min max

(|) () { [,] | [,] (,)
 (|) [,]

[1,), z [z ,z]}

p p tr tr x z tr x z tr e e
p p tr x z

x

∈
∧
∧ ∈ ∞ ∈

≺
≺

We receive the set of events of a trace tr, which match a disjunction of p1 and p2, by choosing all
elements between zmin and zmax (which match p1 or p2) in the respective trace views tr[x]. If the

Event Notification Services: Analysis and Transformation of Profile Definition Languages 29

same value is selected for zmin and zmax, for each trace view only one event instance of the same
class will be selected (i.e. that one that has been specified by the value of zmin=zmax). Otherwise,
zmin and zmax select several duplicates of the same event instance which follow subsequently and lie
within the range given by zmin and zmax.

An example for a disjunction 3 1 2(|) p p p= with and as well as zmin=1 and
zmax= 1 is depicted in Fig. 8:

1p e≺ 1 22p e≺

e1
tr[1,1]

e1
tr[1,2]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,3]

e1
tr[3,2]

e1
tr[3,1]

tr[1]

tr[2]

tr[3]

Fig. 8. Disjunction p3:=(e1|e2), zmin=zmax= 1

The same example with different zmin and zmax would choose other, and in the case of zmin=2 and
zmax=4, more duplicates. The second duplicate of tr[1], tr[2] and tr[3] as well as the third duplicate
of tr[3] would be selected. If there were longer trace views, the fourth duplicate out of them would
be chosen as well (see Fig. 9):

e1
tr[1,1]

e1
tr[1,2]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,3]

e1
tr[3,2]

e1
tr[3,1]

tr[1]

tr[2]

tr[3]

Fig. 9. Disjunction p3:=(e1|e2) with zmin=2 and zmax= 4

Conjunction For profiles and as well as events 1p 2p 1 2,e e ∈E holds:

1 2 1 2 1 1 2 2 2 1(,) (,) : { , | () () | }tp p e e p e p e t e t e t= ∧ −≺ ≺ ≺ ≤

1 2

1 2

1 2

min max min max

(,) () {([,], [1,]) |
([,], [1,]) (,)

(,) ([,], [1,])
 [1,) [1,)

[,] [,]
 }

t

t

xy

p p tr tr x z tr y w
tr x z tr y w tr e e

p p tr x z tr y w
x y

w w w z z z
P

+
+ ∈

∧ +
∧ ∈ ∞ ∧ ∈ ∞
∧ ∈ ∧ ∈

∧

≺

≺

The set of the events of traces tr which match the conjunction of p1 and p2 consists of the tuples
(e1,e2), which match (p1,p2), and for which the events e1 or e2 occur at certain places of the
respective trace views. This means, z∈[zmin,zmax] determines the duplicates which are chosen for
e1=tr[x,z] and w∈[wmin,wmax] those for e2=tr[y+1,w]. Pxy specifies as condition the relation between

30 Doris Jung and Annika Hinze

x and y. This conveys which pairs are selected for (p1,p2). An example for the conjunction is
depicted in Fig. 10:

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,3]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,1]

e2
tr[4,1]

e2
tr[4,2]

tr[4]tr[3]tr[2]tr[1]

Fig. 10. Conjunction p4:=(e1,e2), zmin=zmax= 1, wmin=wmax=1 as well as Pxy:(x=y)

The value of Pxy determines that only unique pairs have to be selected, i.e. each event instance may
be used for the conjunction once at the most. zmin=zmax=1 specifies that for each trace view tr[x,z],
we only consider the first duplicate and wmin=wmax=1 works analogously for tr[y+1,w].

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,3]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,1]

e2
tr[5,1]

e2
tr[5,2]

tr[4]tr[3]tr[2]tr[1]

Fig. 11. Conjunction p5:=(e1,e2) with zmin=1, zmax= 2, wmin=1, wmax=2 as well as Pxy:(x<=y)

Fig. 11, however, shows how the value of Pxy selects all pairs which are allowed by zmin=1, zmax=2
and wmin=1, wmax=2. From each trace view, the two first duplicates of e1 are combined with the two
first duplicates of e2 or vice versa. An exception is tr[3], which contains a single instance of class
E1 only.

Sequence For profiles and as well as event 1p 2p 1 2,e e ∈E holds:

1 2 1 2 1 1 2 2 2 1 1(;) (,) : { , () ((), ()]}tp p e e p e p e t e t e t e t= ∧ ∈≺ ≺ ≺ +

1 2

1 2

1 2

min max min max

(;) () {([2 1,], [2 ,]) |
([2 1,], [2 ,]) (,)

(;) ([,], [,])
[1,) [1,)
[,] [,]

 }

t

t

xy

p p tr tr x z tr y w
tr x z tr y w tr e e

p p tr x z tr y w
x y
w w w z w w
P

−
− ∈

∧
∧ ∈ ∞ ∧ ∈ ∞
∧ ∈ ∧ ∈

∧

≺

≺

The set of event pairs of a trace tr, which matches the sequence of p1 and p2, consists of the tuples
(e1,e2) that match (p1;p2) and for which the events e1 or e2 occur in certain places of the respective
trace views. That means z∈[zmin,zmax] determines those duplicates to be chosen for e1=tr[2x-1,z]

Event Notification Services: Analysis and Transformation of Profile Definition Languages 31

whereas w∈[wmin,wmax] determines those for e2=tr[2y,w]. Pxy specifies as condition the relation
between x and y. This conveys which pairs are chosen for (p1,p2)2. The following example
illustrates the sequence (Fig. 12).

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,3]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,1]

e2
tr[5,1]

e2
tr[5,2]

tr[4]tr[3]tr[2]tr[1]

Fig. 12. Sequence p4:=(e1;e2) with zmin=zmax= 1, wmin=wmax=1 as well as Pxy:(x=y)

In Fig. 12, Pxy specifies that for the sequence we are considering unique pairs only, i.e. each event
instance may take part in the sequence only once. zmin=zmax=1 as well as wmin=wmax=1 define that
for each trace view, we are considering the first duplicate only.

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,3]

e2
tr[2,1]

e2
tr[2,2]

e1
tr[3,1]

e2
tr[5,1]

e2
tr[5,2]

tr[4]tr[3]tr[2]tr[1]

Fig. 13. Sequence p5:=(e1;e2), zmin=1, zmax= 2, wmin=1, wmax=2 and Pxy:(x<=y)

Fig. 13 shows an example of the sequence in which Pxy selects all pairs which are allowed by
zmin=1, zmax=2 and wmin=1, wmax=2. So, for each odd trace view the two first duplicates of class E1
are selected. They are selected together with the two first duplicates of class E2 of each even trace
view. A precondition is that the even trace view is located after the odd trace view, though this
does not necessarily have to be directly after it.

Selection For a profile p, is the set of all events e which match p: Ε ⊂ E

min max{ [,] | [1] [,] [,] ()}tr x z x z z z tr x z tr eΕ = ∈ ∧ ∈ ∧ ∈

For we have: | |i i∈ ∧ ≤ ΕN �
[]

min max() : { [,] | [,] }ip tr e tr x z z z i tr x z E= = = ∧≺ ∈

From the trace tr the ith event is selected (the presentation of the selection is based on [21]).

2 As we have mentioned at the beginning of the section, we presume that the first occurrence of an event

instance is always . For the implementation, in which this is not always given, the definition has to be
implemented in both directions. Then, we would have to consider (

1e
[2 ,], [2 1,])tr x z tr y w+ .

32 Doris Jung and Annika Hinze

e1
tr[1,1]

e1
tr[1,2]

e1
tr[1,5]

e1
tr[1,4]

e1
tr[1,3]

tr[1]

p[4]

e1
tr[1,6]

Fig. 14. Selection [4]

1:p e

Parameters The parameters used in the definitions of the event operators can specify different
values. Exemplary, in Table 11, we give an overview of the values which are most common for the
duplicate parameter z and w. These two parameters describe the event instance selection, i.e. which
events of each duplicate group will be selected:

Table 11. Duplicate parameter values

Selected
event instances

z w

first event zmin=zmax=1 wmin=wmax=1
ith event zmin=zmax=i wmin=wmax=i
last event zmin=zmax=length(trant) wmin=wmax=m
all events zmin=1, zmax=length(trant) wmin=1, wmax=m

Another parameter is the selection parameter. It specifies which pairs of event instances will be
combined with each other. This expresses the consumption mode of the event operators with
parameters.

Table 12. Selection parameter values

Selection Pxy
unique pairs Pxy: x=y
all pairs Pxy: x≤y

The value “unique pairs” signifies a consumption mode of “delete” and “all pairs” denotes “keep”,
i.e. event instances can be filtered several times.

4.3 Classification

Both publications [26], [44] regarding the description of composite events or the definition of
profiles which are fulfilled by these events show similarities in some areas. Nevertheless, they are
not fully congruent since Unland and Zimmer subdivide the describing parameters further.

Both, Hinze and Voisard as well as Unland and Zimmer use the concept of composite events:
The former use it in the context of event notification systems. There profiles filter composite
events. The latter are discussing event-condition-action-rules in respect to active databases. Within
such a rule an event is triggered by another event. If an event matches the specification of its event
type, the condition is checked and, if applicable, the action is executed. The concepts for the
description, nevertheless, remain the same in both cases.

Both publications employ as operators conjunction, disjunction, sequence and negation.
However, the selection is only offered by Hinze and Voisard and the simultaneity by Unland and
Zimmer. As in the following sections we are using the event algebra suggested by Hinze and

Event Notification Services: Analysis and Transformation of Profile Definition Languages 33

Voisard, we define the simultaneity in this technical report. It follows the event algebra introduced
by Hinze and Voisard.

Simultaneity For profiles p1 and p2 as well as events e1,e2∈E holds:

1 2 1 2 1 1 2 2 1 2(:) (,) : { , () ()}tp p e e p e p e t e t e= ∧ =≺ ≺ ≺

1 2

1 2

1 2

min max min max

(:) () {([2 1,], [2 ,]) |
([2 1,], [2 ,]) (,)

(:) ([,], [,])
[1,) [1,)
[,] [,]

 }

t

t

xy

p p tr tr x z tr y w
tr x z tr y w tr e e

p p tr x z tr y w
x y
w w w z w w
P

−
− ∈

∧
∧ ∈ ∞ ∧ ∈ ∞
∧ ∈ ∧ ∈

∧

≺

≺

The set of event pairs of trace tr which match the simultaneity of p1 and p2 consists of the tuples
(e1,e2) which match (p1:p2) and for which events e1 and e2 occur at a certain place of the respective
trace view. This means that z∈[zmin,zmax] determines the duplicates which have to be selected for
e1=tr[2x-1,z], and w∈[wmin,wmax] determines the duplicates for e2=tr[2y,w]. Pxy specifies the
relation between x and y. This yields which pairs have to be selected for (p1,p2).

Both, Unland and Zimmer as well as Hinze and Voisard offer the idea of a timeframe for
operators. This is required for the negation operator and the exclusive disjunction (if any system
defines the disjunction operator in that way). For the actual implementation of the simultaneity
operator, we can use a timeframe with value ε. This is due to the fact that because of time
differences between systems, a “real” simultaneity of two events is not detectable. Since this work
analyses concepts underlying the formation of transformations, we chose a theoretical approach
for the simultaneity. For the evaluation of other operators, a timeframe is helpful but not required.

The evaluation strategies regarding incoming event instances are handled differently by the
authors - except for the consumption mode. This is represented by Unland and Zimmer by the
values “shared”, “exclusive parameter” and “exclusive”. Hinze and Voisard have summarised
these values by “all pairs” and “unique pairs”. In our classification, we use the following notions:
“keep” – this corresponds to the consumption mode of “shared” for Unland and Zimmer and “all
pairs” for Hinze and Voisard; “delete” corresponds to “exclusive parameter” for Unland and
Zimmer as well as “delete & reapply”, which corresponds to the value of “exclusive” for Unland
and Zimmer and the value of “unique pairs” for Hinze and Voisard.

The traversion mode described by Unland and Zimmer is theoretically relevant for the
evaluation since it influences the result. Nevertheless, in none of the described systems it is
specified. However, we can state that implicitly the traversion mode is always from left to right.
This is due to the fact that all systems are using the temporal order for their evaluation. So, in
reality we never have to deal with a traversion mode of right to left. Therefore, we do not include
the traversion mode into our classification.

Furthermore, Unland’s concurrency mode with the values overlapping and non-overlapping
does not exist in Hinze and Voisard’s work. This mode is rarely specified in real systems.
Moreover, it is dependent on the values of the consumption mode (cf. Table 9). Thus, it is not
suitable for the classification of profile definition languages.

What is more is that the coupling mode of Unland and Zimmer does not necessarily have to be
included in our classification scheme. This mode refers to the characteristic whether composite
events may be interrupted or not (“continuous” or “„non-continuous”). We do not need to include
this mode since it can also be expressed by the negation operator and the use of wildcards.

Unland and Zimmer’s concept of parameter selection is realised by Hinze and Voisard with the
help of the duplicate handling. For example both can select the first, last and ith event instance or
the corresponding duplicate of an event. These values are the most common ones of the systems
analysed in Section 3. Additionally, we add a category “detailed” as there are a few systems which
offer a duplicate or parameter selection which is even more sophisticated. It is possible to express

34 Doris Jung and Annika Hinze

these sophisticated parameters with the help of the concepts of both publications, but we
summarise them and neglect them for our transformations, as they are so rare.

The classification system for profile definition languages we can derive from our previous
discussion follows the structure shown in Table 13:

Table 13. Classification scheme

Composite events

Operators: conjunction, disjunction,
sequence, negation, simultaneity, selection
Timeframe
Consumption: keep, delete, delete & reapply
Duplicate handling: first, last, all, detailed

Operators Consumption mode Duplicate handling

Composite events

Conjunction Disjunction Sequence Negation Simultaneity Selection
Timeframe

keep delete delete & reapply first last all detailed
Facility management x x x x x x

Hermes No
PLAN X x x x x x

CompAS language X x x x x x x x x x x x x x
Cobea X x x x x x x x

Conquer X x x x x x x
Corba notification

service
No

Elvin No
Eve X x x x x x x x x x

Regis/Darwin (language
GEM)

X x x x x x x x

Keryx No
OpenCQ X x x x x x x
READY x x x x x x xx x
Rebeca x x x x x x

Salamander No
Samos x x x x x x x x x

Sentinel (language
Snoop)

x x x x x x x x x

Siena x x x x
Yeast x x x x x x x

Active house x x x x x x

Table 14. Analysis of profile definition languages of several systems and applications

4.4 Language Groups

Based on the observations from our comparative study of languages in the previous section, we
identify language groups (types) of filter languages for event-based systems. This is the final step
required for the identification of typical event patterns and groups of filter languages for event
notification services.

These language groups form the basis for the design of the meta-service for event notification
and event-based communication. In the next section, we address the finding of rules for profile
transformations between these language groups. Parameters for consumption mode and duplicate
handling are very rarely explicitly described in the literature. For this reason, we did not include
the parameters in the definition of groups – they will be considered separately. Thus, the languages
are classified into groups based on their support for time frames and on their support for pattern
operators.

Table 15. Groups of filter languages

Time-frame-less composite events Time-framed composite events
CE: Simple composite events
 (conjunction, disjunction, negation)

TCE: Simple time-framed composite events
 (conjunction, disjunction, sequence)
OTCE: Ordinary time-framed composite
 events
 (TCE and negation) SCE: Sophisticated composite events

 (CE and sequence) STCE: Sophisticated time-framed composite
 events
 (OTCE and simultaneity)

We define five groups as shown in Table 15.. There are two groups without time frame support:
CEs support conjunction, disjunction and negation; a group member is PLAN. SCEs support
conjunction, disjunction, negation and sequences. Members are READY, Rebeca and Active
House (CEA).

There are three groups with time frame support: TCE offer conjunction, disjunction and
sequence. Members of this group are Yeast and Sentinel (language Snoop). The OTCEs support
conjunction, disjunction, sequence and negation; members of this group are Samos, Cobea and
GEM. STCE offer conjunction, disjunction, sequence, negation and simultaneity. Members of this
group are Eve, Conquer and OpenCQ. The disequilibrium of the group assignment of negation and
sequence is due to the different effect of time frames on the operators.

4.5 Summary of Findings Regarding a Classification of Filter Languages

The three steps of analysing profile languages presented in this section are our answer to the
question of how to identify typical event patterns and language groups. Firstly (Sections 4.1 and
4.2), we analysed typical patterns for composite events in profile definition languages. Secondly
(Section 4.3), we compared the profile definition languages based on a classification schema.
Thirdly (Section 4.4), we used the classification to identify typical groups of profile definition
languages. The findings of this section shall serve as a foundation for answering the problem of
finding transformation rules between languages from different groups. This problem is addressed
in the next section.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 37

5 Transformations

The previous section presented our three steps towards a classification of filter languages into
language groups. We now address the problem of translating filter expressions between languages
that use different operators and semantics. The answer to this problem shall provide a set of
transformation rules that form the core of the proposed Meta-ENS for integrating heterogeneous
event notification services. Here, we therefore especially consider the challenge of translating a
filter expression of the meta-service into the target language of other systems.

5.1 Transformation Methodology

For each language group, we introduce transformation rules for translating filter expressions
defined at the Meta-ENS into equivalent filter expressions using a language of the group. As can
be derived from the group definitions, a simple translation of filter expressions between groups is
not possible. Instead, for different semantic concepts in two distinct groups, we have to find
expressions that are semantically close. Additionally, auxiliary profiles and post-filtering may be
required.

Profile transformation If a certain operator does not exist in one language, a transcription
expression has to be used. These transcriptions may be more or less expressive than the source
expression. Therefore, we define four types of transformations: equivalent, positive, negative and
transferring transformation. We denote these transformations with the arrow-notation that is shown
in Table 16.

Table 16. Types of transformations

Transformation Notation
Equivalent transformation ←⎯→
Positive transformation +⎯⎯→
Negative transformation −⎯⎯→
Transferring transformation #←⎯→

It is an extension of the notation used for Boolean transformations [11]. Equivalent
transformations lead to expressions that have identical result sets. Positive transformations result
in expressions that are less selective than the original - potentially creating larger result sets;
negative transformations result in more selective expressions compared to the original filter
expression (creating smaller result sets). Transferring transformations use post-filtering and
auxiliary profiles.

Post-filtering and auxiliary profiles For the considered transformations between language
groups, not all of the original operations can be expressed in the languages of less powerful
groups. In order to use weaker systems in cooperation with stronger ones, auxiliary profiles (i.e.
additional filter expressions) have to be defined at the services. Filter results are delivered to the
stronger system, which then needs to perform additional simple filter operations (post-filtering).

38 Doris Jung and Annika Hinze

Notification transformation Differing from query transformation, the result set obtained in an
event notification service is not simply a set of tuples or documents. For event notification
services, the result reflects the filter expression, i.e. the temporal connection between the events is
reported. If for two communicating systems, the less expressive system receives a message from a
more expressive one, the notification might not be comprehensible to the less expressive filter
language. Lets consider the following example:

Consider two systems A and B denoted in Fig. 15, where the filter language of A supports only
sequences and disjunctions. The filter language of B supports only conjunctions. These systems
cannot cooperate directly, since their set of filter operators are disjoint. In order to cooperate,
system B defines a profile PB at the Meta-ENS (PB = (E1,E2)t). The Meta-ENS transforms this
expression into a profile PMeta that is defined at system A: PMeta = ((E1;E2)t|(E2;E1)t)t with PMeta

 PB. When system A sends a notification NMeta = ((e1; e2)t|(e2; e1)t)t to the Meta-ENS,
system B is notified by the transformed message NB = (e1,e2)t. Thus, not only the filter expressions
have to be transformed for the cooperation but also the notifications.

←⎯→

PMeta = ((E1;E2)t|(E2;E1)t)t

PB = (E1,E2)t

NB = (e1,e2)t NMeta = ((e1; e2)t|(e2; e1)t)t

System A
(sequence, disjunction)

System B
(conjunction)

Meta-ENS

Profile PX
Notification NX

NMeta NB

PX PY Equivalent Profile Transformation

PMeta PB

NX NY Equivalent Notification Transformation

Fig. 15. Profile and notification transformation

The contributions of this section are a set of profile transformation rules for the interaction of the
meta-service with other event notification services, auxiliary profile definitions and rules for post-
filtering, and notification transformation rules. In this section, firstly we introduce the
transformations for composite operators together with auxiliary profiles and post-filtering.
Secondly, we define transformation rules for event pattern parameters which form the basic
building block for our Meta-ENS.

5.2 Profile Transformation of Composite Operators

This section defines the transformation rules for composite operators. The rules are presented for
the transformation of filter expressions defined at the Meta-ENS towards expressions of a target
system within a given group (as identified in Section 4.4). We assume the Meta-ENS supports all
concepts and event patters introduced in this technical report. We now iterate through the five
target groups and show the necessary transformations.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 39

Simple time-frame-less composite events (CE) For the members of this language group, for most
operators we have to differentiate between two cases: When a profile is coming from the Meta-
ENS, a timeframe may be given or not.

Conjunction, disjunction and negation can be mapped almost identically. However, the
timeframe of the event algebra has to be set to ∞ in order to gain an equivalent transformation.
This is due to the fact that timeframes do not exist in this language group. Nevertheless, if a
timeframe is given, it will be lost when transforming into CE. Since the simultaneity does not exist
in this language group, we have to simulate it with the help of the transferring transformation. For
each of a selection i∈` []i

xe , we have to compose an own transformation rule. For an overview
refer to Table 17.

Table 17. Transformation between CE and Meta-ENS

Operator CE Meta-ENS

Conjunction (Ex,Ey)
(Ex,Ey)

←⎯→
+←⎯⎯

(Ex,Ey)∞
(Ex,Ey)t

Disjunction (Ex|Ey)
(Ex|Ey)

←⎯→
+←⎯⎯

(Ex|Ey)∞
(Ex|Ey)t

Sequence (Ex,Ey)
(Ex,Ey)

#←⎯→
+←⎯⎯

(Ex;Ey)∞ , t(N(ex))<t(N(ey))
(Ex;Ey)t

Negation
()

x
E 3

()
x

E

←⎯→
−←⎯⎯

()
x

E
∞

()
x t

E

Simultaneity
(,)

x y
E E

(,)
x y

E E

#←⎯→
+←⎯⎯

(:) , (()) (()
x y t x y

E E t e t e=N N)

t

(:)
x y

E E

Selection

(() , (,))
x t x x t t

E E E ,

((,) , ((,) ,))
x x t x x t x t t

E E E E E

←⎯→

←⎯→

←⎯→

[1]

x
E

[2]

x
E

 #

Sophisticated time-frame-less composite events (SCE) Conjunction, disjunction, negation and
selection can be mapped in the same way as for the CE (simple timeframe-less composite events).
The sequence is transformed analogously to conjunction and disjunction. The simultaneity is
mapped by a combination of conjunction, sequence and negation. Please refer to Table 18.

Table 18. Transformation between SCE and Meta-ENS

Operator SCE Meta-ENS
Conjunction (,)x yE E

(,)x yE E
←⎯→

+←⎯⎯

(,)x yE E ∞

(,)x y tE E

Disjunction (|)x yE E

(|)x yE E
←⎯→

+←⎯⎯

(|)x yE E ∞

(|)x y tE E

Sequence (;)x yE E

(;)x yE E
←⎯→

+←⎯⎯

(;)x yE E ∞

(;)x y tE E

3 Systems belonging to this group internally realise the negation by other means than a timeframe.

40 Doris Jung and Annika Hinze

Negation ()xE

()xE

←⎯→
−←⎯⎯

()xE ∞

()x tE

Simultaneity ((,), ((;), (;)))x y x y y xE E E E E E

((,), ((;), (;)))x y x y y xE E E E E E

←⎯→
+←⎯⎯

(:) x yE E ∞

(:)x y tE E

Selection (() , (,))x t x x tE E E t

((,) , ((,) ,))x x t x x t x t tE E E E E

←⎯→
←⎯→
←⎯→

[1]
xE
[2]
xE

 #

Simple time-framed composite events (TCE) Conjunction, disjunction and sequence can be
transformed without any problems. The simultaneity can be constructed by using the conjunction,
sequence and negation. Negation and selection do not exist within this language group, so their
filtering has to be moved to the more powerful system using the transferring transformation. For
the conjunction, disjunction and sequence, the timeframe t can be set to ∞ whenever required.
Nevertheless, this will not be the case if the transformation from TCE is undertaken directly to our
Meta-ENS. An overview can be found in Table 19.

Table 19. Transformation between TCE and Meta-ENS

Operator TCE Meta-ENS
Conjunction (,)x y tE E ←⎯→ (,)x y tE E

Disjunction (|)x y tE E ←⎯→ (|)x y tE E

Sequence (;)x y tE E ←⎯→ (;)x y tE E

Negation ()x tE #←⎯→ () , (())x x ttE eN

Simultaneity ((,) , ((;) , (;)))x y t x y t y x tE E E E E E ←⎯→ (:) x y tE E

Selection ()x tE #←⎯→ [] [], (())i i
x xE eN

Ordinary time-framed composite events (OTCE) Conjunction, disjunction and simultaneity are
transformed in an analogous way to the same operators of group TCE (simple time-framed
composite events). The negation can be directly transformed. For each i∈` []i of the selection xe ,
we have to build an own transformation rule. For conjunction, disjunction and sequence, the
timeframe t can be set to ∞ whenever required. Nevertheless, this will not be the case if the
transformation from the OTCE is undertaken directly to our Meta-ENS. For an overview, refer to
Table 20.

Table 20. Transformation between OTCE and Meta-ENS

Operator OTCE Meta-ENS
Conjunction (,)x y tE E ←⎯→ (,)x y tE E

Disjunction (|)x y tE E ←⎯→ (|)x y tE E

Sequence (;)x y tE E ←⎯→ (;)x y tE E

Negation ()x tE ←⎯→ ()x tE

Simultaneity ((,), ((;), (;)))x y x y y xE E E E E E t ←⎯→ (:) x y tE E

Selection (() , (,))x t x x t t E E E ←⎯→
[1]
xE

Event Notification Services: Analysis and Transformation of Profile Definition Languages 41

((,) , ((,) ,))x x t x x t x t tE E E E E

←⎯→
←⎯→

[2]
xE

 #

Sophisticated time-framed composite events (STCE) The operators of this language group can
be transformed almost directly into the event algebra since as most powerful group, it possesses
almost all semantic concepts. For the selection, we simply have to develop a transformation rule
for each of i∈` []i

xe . For conjunction, disjunction and sequence, the timeframe t can be set to ∞
whenever required. Nevertheless, this will not be the case if the transformation from the OTCE is
undertaken directly to our Meta-ENS. An overview is given in Table 21.

Table 21. Transformation between OTCE and Meta-ENS

Operator STCE Meta-ENS
Conjunction (,)x y tE E ←⎯→ (,)x y tE E

Disjunction (|)x y tE E ←⎯→ (|)x y tE E

Sequence (;)x y tE E ←⎯→ (;)x y tE E

Negation ()x tE ←⎯→ ()x tE

Simultaneity (:)x y tE E ←⎯→ (:) x y tE E

Selection
(() , (,))x t x x t t E E E

((,) , ((,) ,))x x t x x t x t tE E E E E

←⎯→
←⎯→
←⎯→

[1]
xE
[2]
xE

 #

5.3 Transformation of Operator Parameters

The group definitions given in Section 4.4 abstracted from the parameters of consumption mode
and duplicate handling strategy since these parameters are rarely explicitly supported in the
considered systems. In this section, we show the influence of considering parameter
transformations on operator transformations (as introduced in the previous section). This previous
section presented our answer to the problem of translating filter expressions between languages
that use different operators and semantics. We provided a set of transformation rules that form the
core of the proposed Meta-ENS for integrating heterogeneous event notification services. The
transformation rules presented here have also been implemented in a prototype transformation
component that can be used with any given event notification service.

In this section, we will exemplarily introduce parameterised transformations. We will do this
for a system of the Universität Zürich that has been described in detail in research publications.
The system, Samos, has the value “first” for the duplicate parameter and can also chose the ith

duplicate. For the consumption mode, it uses “delete & reapply”.
Additionally to these example transformations, we give an overview of what possibilities for

parameterised transformations exist at all. This overview takes into account which parameter
values of a system A can be transformed into which parameter values of a system B. Generally, we
can state that the consumption mode presented by Unland and Zimmer [44] with a value of
“delete” can be mapped to the selection parameter of Hinze und Voisard [26] by using a value of
“unique pairs” with . For the value “keep”, it is transformed by the selection parameter
with the value “all pairs” with

:xyP x y=

:xyP x y≤ .

42 Doris Jung and Annika Hinze

Exemplary parameter transformation for Samos Exemplarily for the transformation of the
parameters, we give the transformation of Samos with the value of “delete & reapply” for the
consumption mode and a duplicate parameter of ”first”. In the Samos system, the selection of the
first duplicate is realised by the closure-constructor *. If we transfer this into the event algebra the
duplicate parameter is represented by (1min max) (1)z z= ∧ = min max(w 1) (w 1), = ∧ = and the
selection parameter is specified with the help of :xyP x y= .

In the following, we present our transformations from Samos (left-hand-side of the
transformation, red) to the Meta-ENS (right-hand-side of the transformation) for the different
operators.

Conjunction

1 2 min max min max

1 2

(,) () (1) (1) (w 1) (w 1) :

1 2 [_ _]
xyp p tr with z z P x y

p E p E t end time start time

←⎯→
= ∧ = ∧ = ∧ = ∧ =

∧ ∧ ∧ = −≺ ≺

:

1 2
xyp p tr with z z P x y

p E p E

+⎯⎯→

(*(1, 2)) [_ , _]E E IN start time en imd t e

(*(1 | 2)) [_ , _]E E IN start time end time

Disjunction In Samos, it is possible to specify a timeframe for the disjunction. In the definition of
the parameterised event algebra, this is not possible. This is why, we require two different kinds of
transformations depending on the timeframe given in Samos.

1 2 min max min max

1 2

(|) () (1) (1) (w 1) (w 1)= ∧ = ∧ = ∧ = ∧ =

∧ ∧≺ ≺

(|) () (1) (1) (w 1) (w 1) :

1 2
xyp p tr with z z P x y

p E p E

←⎯→

and

(*(1 | 2)) []E E IN

1 2 min max min max

1 2

= ∧ = ∧ = ∧ = ∧ =

∧ ∧≺ ≺

]
xyp p tr with z z P x y

p E p E t end time start time

←⎯→
= ∧ = ∧ = ∧ = ∧ =

∧ ∧ ∧ = −≺ ≺

∞

(*(1; 2)) [_ , _]E E IN start time en imd t e

Sequence

1 2 min max min max

1 2

(;) () (1) (1) (w 1) (w 1) :

1 2 [_ _

Negation For the negation operator, duplicate handling and consumption mode are irrelevant. It is
not necessary to determine which duplicate of an event is selected or if it will be consumed or is
available for refiltering after being used for the event composition. This is due to the fact that we
are considering the absence of an event and not its occurrence.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 43

1 1 11() ()

() [_ , _]

NOT E IN start time end time

((*(((*(1, 2)) [_ , _]),
((*(((((*(1; 2)) [_ , _]))

[_ , _]),
((((*(2; 1)) [_ , _]))

[_ , _])
)) [

E E IN start time end time
NOT E E IN start time end time

 [_ _]tp tr with p E t end time start time

←⎯→

∧ = −≺

Simultaneity Samos does not offer this operator. Thus, we have to construct the simultaneity by
using the conjunction, sequence and negation.

IN start time end time
NOT E E IN start time end time

IN start time end time
IN s _ , _])

)) [_ , _])
tart time end time

IN start time end time

1 2 min max min max

1 2

(:) (), (1) (1) (w 1) (w 1) :

1 2 [_ _]
xyp p tr z z P x y

p E p E t end time start time

←⎯→
= ∧ = ∧ = ∧ = ∧ =

∧ ∧ ∧ = −≺ ≺

Selection For each of the selection i∈` []ip , we have to specify an own transformation rule.
Here, we exemplarily give the rule for i=1:

(*(
((* 1) [_ , _]),
((((*(1, 1)) [_ , _]))

[_ , _])
)) [_ , _]

E IN start time end time
NOT E E IN start time end time

IN start time end time
IN start time end time

[1]
min max () (1) (1) 1p tr with z z p E←⎯→ = ∧ = ∧ ≺

Transferability of parameters The transformations of the event operators that have been
discussed in Section 5.2 will now be extended by the duplicate and the selection parameter. In
Table 22, you can find an overview of the transferability of all different values of these parameters
into each other.

44 Doris Jung and Annika Hinze

Table 22. Parameter transformations: duplicate handling and consumption mode parameter

all 4
first

unique
+3 4

all - - 4
last

unique - - +3 4

all
+2 +2 +2 +2 4

all
unique - - - - +3 4

all
+2 +2 - - +3 - 4

ith4
unique - +2 - - +3 +3 +3 4

duplicate first last all ith4
parameter selection all unique all unique all unique all unique

For all combinations of values for the duplicate and selection parameter, we show their possibility
of transforming them. The direction of the arrows presented indicates that a transformation is
possible. For a direction to the left, the expression in a column can be transformed into the
expression in a row. The other direction works analogously.

6 Implementation

Within the scope of this work, we have implemented a transformator which is a prototype of the
meta-service that was mentioned as motivation for our work. The transformator realises
transformations into the event algebra for some of the language groups and vice versa. It can be
integrated into DAS [5]. There the transformator can be used to support communication between
other systems as well as a mediator for different event notification systems translating different
languages and concepts.

For the realisation of the transformator, we have used the programming language Prolog since it
is based on logic concepts. We employed SWI-Prolog (Version 3.2.6), a free version of Prolog by
the Universität Amsterdam. The basic structure of Prolog is based on facts, rules, clauses and
questions. As data basis, a number of facts is defined. With these, it is possible to define rules
which describe relations between arguments and predicates. This set of rules can be evaluated with
the help of questions using variables. All arguments can be calculated by the use of the rules
previously defined. A determination of an unknown we may undertake from both directions. This
structure is similar to the formation of our transformations, which are defined in two directions.

6.1 Realisation of the Transformator

For the realisation of our transformator, we have considered three different aspects, which are
described in the following:

4 Here, we consider how powerful a language is and not the actual value of i.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 45

Syntax mapping The construction of events has to be undertaken in a way they can be used by
Prolog. For this, we had to find expressions for primitive and composite events, timeframes,
timestamps and operators.

Correctness check The implementation does not only have to offer a realisation of the
expressions of the event algebra but also provide the possibility to check them semantically. For
example, the sequence (e1;e2) shall be transformed only if the timestamp of e1 is smaller than that
of e2. Otherwise, the transformation has to be discarded.

Transformation In the programme, we have exemplarily realised transformations for the
language groups ordinary time-framed composite events, sophisticated time-framed composite
events as well as simple timeframe-less composite events.

6.2 Functionality of the Programme

Presentation of events Primitive events are represented as tuples. The first element stands for the
event name and the second realises the timestamp of the event. Event names are realised by the
identifiers “e1” to “e9”. As an example, see the rule for primitive event e1:
pEvent([e1, Timestamp]):- integer(Timestamp).

For checking the correctness, the given timeframe is tested for its membership in the integer
domain.

The operators for the representation of composite events are divided into binary and unary
operators. Both of them require a different presentation. Binary operators are conjunction,
disjunction, sequence and simultaneity. They are realised as list containing four elements. The first
element describes the operator, the second and third stand for the events that are taking part and
the last element represents the timeframe. Within this timeframe, the composite event has to take
place. As an example, please view the following sequence. For the correctness test, the events
have to occur in the correct order within the given timeframe:
comEvent([sequence, Event1, Event2, Timeframe]):-

 sequence(Event1, Event2, Timeframe).

sequence(Event1, Event2, Timeframe):-event(Event1),

 event(Event2), isEarlier(Event1, Event2),

 withinTimeframe(Event1, Event2, Timeframe).

The unary operators are negation and selection. They are implemented as triples. The first element
denotes the operator, the second stands for the event and the third for the timeframe or the
parameter to be selected by the selection.

Supported operators Examples for the syntax of the unary operators, negation and selection, are
given as triples as follows:
[negation, evt, 10]

Hereby, we describe the negation of event evt. This means that event evt has not occurred for 10
seconds. evt can be a primitive event as well as a composite event.
[selection, evt, 3]

The previous example describes a selection in our implementation. It selects the third duplicate of
event evt.

46 Doris Jung and Annika Hinze

The binary operator representing the disjunction can be utilised as follows:
[disjunction, evt1, evt2, 3]

The events evt1 and evt2 can denote primitive or composite events. As timeframe for our example,
we have chosen three seconds. Analogously, we can use the binary operators, conjunction,
sequence and simultaneity as conjunction, sequence and simultaneity. This uses the
same syntax as a list with four elements.

Supported language groups The ordinary time-framed composite events, the sophisticated time-
framed composite events and the simple timeframe-less composite events are represented in the
implementation as group1, group2 and group3. An integration of further groups is easily possible
as the transformations are specified in tables. The development of these tables is possible without
changing the logic of the programme.

Exemplary use of programme In the following section, we are showing several short programme
sequences.
?- event([sequence, [e1,3],[e2,5], 10]).

Yes

?- event([sequence, [e1,3], [e2,20], 10]).

No

In the first case, we have a sequence that occurs within the given timeframe. The second case
shows an example where the event occurs after the given timeframe has ended. This is why, this
event is discarded.
?- transformation([event-algebra, [simultanity,

 [e1,10], [e2,10], 40]], [group3, X]).

X = [conjunction, [e1, 10], [e2, 10]]

Yes

When transforming a simultaneity from the event algebra into the group of the simple timeframe-
less composite events, we loose information. On the one hand, this group does not offer a
simultaneity operator, and on the other hand it does not use timeframes. This is why, according to
our transformation rules we have to transform it into the conjunction without a timeframe.
?- transformation([event-algebra, [sequence, [e1,4],

 [e3,6], 10]], X).

X = [group1, [sequence, [e1, 4], [e3, 6], 10]] ;

X = [group2, [sequence, [e1, 4], [e3, 6], 10]] ;

X = [group3, [conjunction, [e1, 4], [e3, 6]]]

Yes

Event Notification Services: Analysis and Transformation of Profile Definition Languages 47

Here, we are querying the programme to execute all possible sequences by the event algebra. Not
only the ordinary but also the sophisticated time-framed composite events are able to directly map
this transformation. The group of simple timeframe-less composite events have to transform into
the conjunction without using a timeframe.

6.3 Integration into CompAS

The CompAS system has been implemented in Java. Nevertheless, our transformator can be
integrated. This works with the help of the interface JIPL (Java Interface for Prolog) offered by k-
Prolog [2]. Using this interface, it is possible to invoke Prolog-predicates directly from Java. This
way, a composite event existing in the CompAS system can be transformed by calling the Prolog
implementation. Furthermore, the CompAS system can be used directly by Prolog.

7 Conclusion and Outlook

In this section, we give an evaluation of our results and discuss a potential application of our
research. Based on that, we give suggestions for future work. We conclude with a summary of the
technical report.

7.1 Evaluation

This technical report is part of the research which has been undertaken in the project MediAS [24]
at the Institut für Informatik at Freie Universität Berlin. Within the scope of this project, an event
notification service has been developed with its different versions PrimAS, CompAS and DAS.
This theoretical work is of use to the CompAS system and its distributed variant DAS as it forms
the basis for a communication using differing profile definition languages.

In doing so, the transformations we have found require an hierarchical approach in their
application in order to fully exploit the powerfulness of differing language groups. As indicated in
the introduction, it is possible that we encounter loss of information when transforming composite
events. An example is the transformation of the sequence (e3;e5) into the conjunction (e3,e5)∞. If a
publisher neglects temporal matters, we loose the information that event e3 temporally occurred
before event e5. If we are using a sequence of systems, the one with the least expressive profile
definition language will determine the degree of information. Therefore, it would be reasonable to
request information from systems with more expressive profile definition languages whenever
possible. Only if this is impossible, systems with less expressive profile definition languages
should be used as publishers. The expressiveness of our language groups increases within the
hierarchy presented in Table 23.

Table 23. Hierarchy of expressiveness

Simple time-frameless composite events

Sophisticated time-frameless composite events

Simple time-framed composite events

Ordinary time-framed composite events

Sophisticated time-framed composite events

The highest precision is offered by the group of the sophisticated time-framed composite events.
The greatest inaccuracies occur if we use languages that do not utilize timeframes. This is due to
the fact that timeframes cannot be reconstructed from any other information.

48 Doris Jung and Annika Hinze

In some language groups, not all missing event operators are expressible by the use of existing
event operators of the respective group. This is why, we have introduced the transferring
transformation in order to make possible the use of systems belonging to these language groups.
This kind of transformation is a good means for the representation of non-existent operators. Some
components of an event in question are directly requested from the other system. Nevertheless, the
actual filtering to gain a composite event is transferred to the CompAS system. The advantage of
this is that all event operators can be simulated. The disadvantage is the higher load on the system
to which the filtering is transferred.

When using the transformator, it is important to keep in mind that due to the lack of detail in the
respective research publications, we do not know the values for the duplicate and selection
parameters. This might cause inaccuracies concerning the evaluation of the incoming events. To
target this problem, we propose the approach described in the following section.

7.2 Future Work

The following issues could still be covered within the general project matter. Nevertheless, they
exceeded the scope of the thesis described in this technical report:

Practical analysis The analysis of different event notification services presented in this technical
report could be extended by a practical analysis. This practical analysis could examine systems for
those parameters which are not fully described in research publications. The lack of these
parameters makes an evaluation of incoming events difficult. Mostly, authors neither describe
what values they are using for the consumption mode nor how they handle the duplicate
parameter. To target this problem, it would be a possibility to install the respective systems. This
way, we are able to test them by defining appropriate profiles in order to find out how they deal
with these parameters. These results could be used for the classification of groups and thus, the
groups could be categorised more detailed.

Implementation of complete concept Our exemplary implementation of transformations for three
language groups could be extended by adding the two remaining language groups.

Integration of transformator The transformator could be integrated into the CompAS system
which has been extended in DAS [5] to a distributed event notification service supporting
composite events.

Integration of parameters If the practical analysis (described above) has been undertaken, the
consumption mode and duplicate parameter can be integrated into the transformator and the
CompAS system. These parameters do not refer to the part of the transformator which has been
realised in Prolog but concerns the filtering process of profiles within the CompAS system. For the
integration, Table 22, describing the theoretical possibilities, can be used.

7.3 Summary

This technical report has presented answers to the following two research problems: Firstly,
subscribers of heterogeneous event notifications services are forced to subscribe the same profile
to a number of services using different filter languages. Secondly, composite events combining
events from different providers that are handled by different services have to be identified by a
subscriber-based post-filtering.

As a solution to these two problems, we proposed the detailed design of a Meta-Event
Notification Service based on transformation rules. In particular, this technical report presented the
following contributions: Firstly, we presented a survey of filter languages for event notification.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 49

Secondly, we introduced a classification schema for profile definition languages. Thirdly, we
identified five categories of profile languages. Fourthly, we proposed detailed transformation rules
for translating profiles defined at the Meta-ENS into languages of systems from the five categories
(and vice versa for notifications).

As proof of concept, we have implemented a transformation component for our proposed
language transformations. The implementation was carried out using Prolog. The transformation
component currently supports our operator transformations. The next version of the transformation
component will also incorporate the proposed parameter transformation.

The next step in our research will see the close integration of the transformation component into
our prototypical event notification system A-MediAS [13]. The transformation can be used for the
role of a Meta-ENS in the communication with other event notification services (as providers) and
for the mediation between event notification services (as providers and subscribers).

References

1. CORBA Notification Service Specification, OMG Document 00-06-20, Object Management
Group, 2002.

2. Karakuri Logic Systems, 2002.

3. Belokosztolszki, A. The Active House Project, Opera Group, University of Cambridge Computer
Laboratory, Cambridge, 2002.

4. Bittner, S. Implementierung eines effizienten Filteralgorithmus für Benachrichtigungssysteme.
Thesis (Studienarbeit). Department of Computer Science, Freie Universität Berlin, Berlin, 2002.

5. Bittner, S. Implementierung und Analyse eines verteilten Benachrichtigungsdienstes. Thesis
(Diplomarbeit). Department of Computer Science, Freie Universität Berlin, Berlin, 2003.

6. Brandt, S. and Kristensen, A. Web push as an Internet notification service W3C Workshop on Push
Technology, Boston, USA, 1997.

7. Carzaniga, A., Rosenblum, D.R. and Wolf, A.L., Challenges for Distributed Event Services:
Scalability vs. Expressiveness. in In Proceedings of the 21st International Conference on Software
Engineering (ISCE'99) Workshop on Engineering Distributed Objects (EDO'99), (Los Angeles,
USA, 1999), 72-77.

8. Carzaniga, A., Rosenblum, D.S. and Wolf, A.L. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems, 19 (3). 332-383, 2001.

9. Chakravarthy, S. and Mishra, D., Sentinel: An Object-Oriented DBMS with Event-Based Rules. in
Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1997), (Tucson, USA, 1997), 572-575.

10. Chakravarthy, S. and Mishra, D., Snoop: An Expressive Event Specification Language for Active
Databases. Technical Report, UF-CIS-TR-93-007. University of Florida, Computer and
Information Sciences Department, 1993.

11. Chang, C.-C.K., Garcia-Molina, H. and Paepcke, A. Predicate Rewriting for Translating Boolean
Queries in a Heterogeneous Information System. ACM Transactions on Information Systems, 17
(1). 1-39, 1999.

12. Faensen, D., Faulstich, L., Schweppe, H., Hinze, A. and Steidinger, A., Hermes - A Notification
Service for Digital Libraries. in Proceedings of the ACM/IEEE Joint Conference on Digital
Libaries (JCDL2001), (Roanoke, USA, 2001), 373-380.

13. Fiege, L., Mühl, G. and Gärtner, F.C., A Modular Approach to Building Event-Based Systems. in
Proceedings of the ACM Symposium on Applied Computing 2002 (SAC'02), (Madrid, Spain, 2002),
385-392.

50 Doris Jung and Annika Hinze

14. Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps, T. and Segall, B., Augmenting the
workaday world with Elvin. in Proceedings of the 6th European Conference on Computer
Supported Cooperative Work (ECSCW'99), (Copenhagen, Denmark, 1999), 431-451.

15. Gatziu, S. and Dittrich, K.R. SAMOS: an Active Object-Oriented Database System. IEEE
Quarterly Bulletin on Data Engineering, Special Issue on Active Databases, 15 (1-4). 23-26, 1992.

16. Geppert, A. and Tombros, D. Event-based Distributed Workflow Execution with EVE. Proceeding
of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware'98). 427-442, 1998.

17. Gruber, R.E., Krishnamurthy, B. and Panagos, E. The Architecture of the READY Event
Notification Service Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems (ICDCS 1999) Workshop on Electronic Commerce and Web-Based
Applications, Austin, USA, 1999.

18. Gruber, R.E., Krishnamurthy, B. and Panagos, E. High-Level Constructs in the READY Event
Notification System. Proceedings of 8th ACM SIGOPS European Workshop on Support for
Composing Distributed Applications. 195-202, 1998.

19. Hayton, R. OASIS - An Open Architecture for Secure Interworking Services. PhD Thesis. Computer
Laboratory, Cambridge University, Cambridge, UK, 1996.

20. Heinrich, K., Lichtvision - Gesellschaft für Lichttechnik und Gebäudemanagement, Berlin,
Germany, 2002.

21. Hinze, A., Freie Universität Berlin, Berlin, Germany, 2002.

22. Hinze, A., Does Alerting have Special Requirements for Query Languages? in Tagungsband zum
13. GI-Workshop Grundlagen von Datenbanken (GvD 2001), (Gommern, Germany, 2001), 58-62.

23. Hinze, A. A-MEDIAS: Concept and Design of an Adaptive Integrating Event Notification Service.
PhD Thesis. Department of Computer Science, Freie Universität Berlin, Berlin, 2003.

24. Hinze, A., Bittner, S. and Jung, D. Project Description MediAS, Freie Universität Berlin, Berlin,
Germany, 2002.

25. Hinze, A. and Faensen, D., A Unified Model of Internet Scale Alerting Services. in Proceedings of
the 5th International Computer Science Conference (ICSC'99), (Kowloon, Hong Kong, 1999), 284-
293.

26. Hinze, A. and Voisard, A., Composite events in notification services with application to logistics
support. in Proceedings of the 9th International Symposium on Temporal Representation and
Reasoning (TIME-2002), (Manchester, UK, 2002).

27. Hinze, A. and Voisard, A., A flexible parameter-dependent algebra for event notification services.
Technical Report, tr-b-02-10. Freie Universität Berlin, Berlin, Germany, 2002.

28. Jung, D. Benachrichtigungssysteme: Analyse und Transformation ausgewählter
Profildefinitionssprachen. Thesis (Staatsexamensarbeit). Department of Computer Science, Freie
Universität Berlin, Berlin, Germany, 2002.

29. König, S. Implementierung und Untersuchung eines parametergesteuerten
Benachrichtigungssystems für kombinierte Events. Diplomarbeit. Department of Computer Science,
Freie Universität Berlin, Berlin, Germany, 2005.

30. Krishnamurthy, B. and Rosenblum, D.S. Yeast: A General Purpose Event-Action System. IEEE
Transactions on Software Engineering, 21 (10). 845-857, 1995.

31. Liebig, C., Cilia, M. and Buchmann, A.P., Event Composition in Time-dependent Distributed
Systems. in Proceedings of the 4th IFCIS International Conference on Cooperative Information
Systems (CoopIS'99), (Edinburgh, UK, 1999), 70-78.

32. Liu, L., Pu, C. and Tang, W. Continual queries for internet scale eventdriven information delivery.
IEEE Transactions on Knowledge and Data Engineering, Special issue on Web Technologies, 11
(4). 610-628, 1999.

Event Notification Services: Analysis and Transformation of Profile Definition Languages 51

33. Liu, L., Pu, C., Tang, W. and Han, W. CONQUER: A Continual Query System for Update
Monitoring in the WWW. International Journal of Computer Systems, Science, and Engineering,
Special edition on Web Semantics, 1999.

34. Ma, C. and Bacon, J., COBEA: A CORBA-Based Event Architecture. in Proceedings of the
USENIX Conference on Object-Oriented Technologies & Systems (COOTS'98), (Santa Fe, USA,
1998), 117-131.

35. Malan, G.R., Jahanian, F. and Subramanian, S., Salamander: A push-based distribution substrate
for internet applications. in Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS'97), (Monterey, USA, 1997), 171-181.

36. Mansouri-Samani, M. and Sloman, M., GEM: A Generalised Event Moni-toring Language for
Distributed Systems. in Proceeding of the International Con-ference on Open Distributed Systems
and Distributed Platforms (ICODP/ICDP'97), (Toronto, Canada, 1997), 96-108.

37. Mühl, G., Generic Constraints for Content-Based Publish-Subscribe. in In Proceedings of the 6th
International Conference on Cooperative Information Systems (CoopIS'01), (Trento, Italy, 2001),
211-225.

38. Naughton, J., DeWitt, D., Maier, D., Chen, J., Galanis, L., Tufte, K., Kang, J., Luo, Q., Prakash, N.
and Tian, F. The Niagara Internet Query System. IEEE Data Engineering Bulletin, 24 (2). 27-33,
2001.

39. Pu, C. and Liu, L., Update Monitoring: The CQ project. in Proceedings of the 2nd International
Conference on Worldwide Computing and Its Applications (WWCA'98), (Tsukuba, Japan, 1998),
396-411.

40. Segall, B., Elvin: Event notification service. Internal Report, DSTC, 1995.

41. Tombros, D., Geppert, A. and Dittrich, K.R., Semantics of Reactive Components in Event-Driven
Workflow Execution. in Proceedings of the 9th International Conference on Advanced Information
Systems Engineering (CAiSE'02), (Barcelona, Spain, 1997), 409-442.

42. Urban, S.D., Unruh, A., Martin, G. and Nodine, M., Expressing Composite Events in Infosleuth.
Technical Report, MCC-INSL-131-98. Microelectronics and Computer Technology Corporation,
1998.

43. Wu, B. and Dube, K. PLAN: a Framework and Specification Language with an Event-Condition-
Action (ECA) Mechanism for Clinical Test Request Protocols 34th Hawaii International
Conference on System Science (HICSS-34), Maui, USA, 2001.

44. Zimmer, D. and Unland, R., The Formal Foundation of the Semantics of Complex Events in Active
Database Management Systems. Technical Report, 22/1997. Cooperative Computing &
Communication Laboratory, Paderborn, Germany, 1997.

	Event Notification Service An event notification service is

