73 research outputs found

    An Approach to the Detection of Retinoblastoma based on Apriori Algorithm

    Get PDF
    Retinoblastoma is a rare kind of cancer, typically designated as leukocoria (white-eye pupillary reflex) that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common malignant cancer of the eye in young children. Early detection of leukocoria can improve the overall treatment duration.There is intensification in interest for setting up medical system that can monitor a large number of people for sight threatening diseases, likely Retinoblastoma and Diabetic Retinopathy.Developed an image processing application for the discovery of retinoblastoma by exploiting graph theory based apriori algorithm as a novel approach and different image processing techniques.The application will review the image with different phases and identifies region of interest of the threatened area in the retina.The software is implemented using MATLAB and developed a graphical user interface for smooth proceedings during identification stages of the disease

    Segmentation, registration,and selective watermarking of retinal images

    Get PDF
    In this dissertation, I investigated some fundamental issues related to medical image segmentation, registration, and watermarking. I used color retinal fundus images to perform my study because of the rich representation of different objects (blood vessels, microaneurysms, hemorrhages, exudates, etc.) that are pathologically important and have close resemblance in shapes and colors. To attack this complex subject, I developed a divide-and-conquer strategy to address related issues step-by-step and to optimize the parameters of different algorithm steps. Most, if not all, objects in our discussion are related. The algorithms for detection, registration, and protection of different objects need to consider how to differentiate the foreground from the background and be able to correctly characterize the features of the image objects and their geometric properties. To address these problems, I characterized the shapes of blood vessels in retinal images and proposed the algorithms to extract the features of blood vessels. A tracing algorithm was developed for the detection of blood vessels along the vascular network. Due to the noise interference and various image qualities, the robust segmentation techniques were used for the accurate characterization of the objects shapes and verification. Based on the segmentation results, a registration algorithm was developed, which uses the bifurcation and cross-over points of blood vessels to establish the correspondence between the images and derive the transformation that aligns the images. A Region-of-Interest (ROI) based watermarking scheme was proposed for image authenticity. It uses linear segments extracted from the image as reference locations for embedding and detecting watermark. Global and locally-randomized synchronization schemes were proposed for bit-sequence synchronization of a watermark. The scheme is robust against common image processing and geometric distortions (rotation and scaling), and it can detect alternations such as moving or removing of the image content

    Advanced retinal imaging: Feature extraction, 2-D registration, and 3-D reconstruction

    Get PDF
    In this dissertation, we have studied feature extraction and multiple view geometry in the context of retinal imaging. Specifically, this research involves three components, i.e., feature extraction, 2-D registration, and 3-D reconstruction. First, the problem of feature extraction is investigated. Features are significantly important in motion estimation techniques because they are the input to the algorithms. We have proposed a feature extraction algorithm for retinal images. Bifurcations/crossovers are used as features. A modified local entropy thresholding algorithm based on a new definition of co-occurrence matrix is proposed. Then, we consider 2-D retinal image registration which is the problem of the transformation of 2-D/2-D. Both linear and nonlinear models are incorporated to account for motions and distortions. A hybrid registration method has been introduced in order to take advantages of both feature-based and area-based methods have offered along with relevant decision-making criteria. Area-based binary mutual information is proposed or translation estimation. A feature-based hierarchical registration technique, which involves the affine and quadratic transformations, is developed. After that, a 3-D retinal surface reconstruction issue has been addressed. To generate a 3-D scene from 2-D images, a camera projection or transformations of 3-D/2-D techniques have been investigated. We choose an affine camera to characterize for 3-D retinal reconstruction. We introduce a constrained optimization procedure which incorporates a geometrically penalty function and lens distortion into the cost function. The procedure optimizes all of the parameters, camera's parameters, 3-D points, the physical shape of human retina, and lens distortion, simultaneously. Then, a point-based spherical fitting method is introduced. The proposed retinal imaging techniques will pave the path to a comprehensive visual 3-D retinal model for many medical applications

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Incorporating spatial and temporal information for microaneurysm detection in retinal images

    Get PDF
    The retina of the human eye has the potential to reveal crucial information about several diseases such as diabetes. Several signs such as microaneurysms (MA) manifest themselves as early indicators of Diabetic Retinopathy (DR). Detection of these early signs is important from a clinical perspective in order to suggest appropriate treatment for DR patients. This work aims to improve the detection accuracy of MAs in colour fundus images. While it is expected that multiple images per eye are available in a clinical setup, proposed segmentation algorithms in the literature do not make use of these multiple images. This work introduces a novel MA detection algorithm and a framework for combining spatial and temporal images. A new MA detection method has been proposed which uses a Gaussian matched filter and an ensemble classifier with 70 features for the detection of candidates. The proposed method was evaluated on three public datasets (171 images in total) and has shown improvement in performance for two of the sets when compared to a state-of-the-art method. For lesion-based performance, the proposed method has achieved Retinopathy Online Challenge (ROC) scores of 0.3923, 2109 and 0.1523 in the MESSIDOR, DIARETDB1 and ROC datasets respectively. Based on the ensemble algorithm, a framework for the information combination is developed and consists of image alignment, detecting candidates with likelihood scores, matching candidates from aligned images, and finally fusing the scores from the aligned image pairs. This framework is used to combine information both spatially and temporally. A dataset of 320 images that consists of both spatial and temporal pairs was used for the evaluation. An improvement of performance by 2% is shown after combining spatial information. The framework is applied to temporal image pairs and the results of combining temporal information are analyzed and discussed

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method
    corecore