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ABSTRACT

Segmentation, Registration, and Selective Watermarking of Retinal Images. (May

2005)

Di Wu, B.S., Nankai University (China);

M.S., Nankai University (China)

Chair of Advisory Committee: Dr. Jyh-Charn (Steve) Liu

In this dissertation, I investigated some fundamental issues related to medical image

segmentation, registration, and watermarking. I used color retinal fundus images to

perform my study because of the rich representation of different objects (blood ves-

sels, microaneurysms, hemorrhages, exudates, etc.) that are pathologically important

and have close resemblance in shapes and colors. To attack this complex subject, I

developed a divide-and-conquer strategy to address related issues step-by-step and to

optimize the parameters of different algorithm steps.

Most, if not all, objects in our discussion are related. The algorithms for detec-

tion, registration, and protection of different objects need to consider how to differ-

entiate the foreground from the background and be able to correctly characterize the

features of the image objects and their geometric properties.

To address these problems, I characterized the shapes of blood vessels in retinal

images and proposed the algorithms to extract the features of blood vessels. A tracing

algorithm was developed for the detection of blood vessels along the vascular network.

Due to the noise interference and various image qualities, the robust segmentation

techniques were used for the accurate characterization of the objects’ shapes and ver-

ification. Based on the segmentation results, a registration algorithm was developed,

which uses the bifurcation and cross-over points of blood vessels to establish the corre-
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spondence between the images and derive the transformation that aligns the images.

A Region-of-Interest (ROI) based watermarking scheme was proposed for image au-

thenticity. It uses linear segments extracted from the image as reference locations for

embedding and detecting watermark. Global and locally-randomized synchronization

schemes were proposed for bit-sequence synchronization of a watermark. The scheme

is robust against common image processing and geometric distortions (rotation and

scaling), and it can detect alternations such as moving or removing of the image

content.
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CHAPTER I

INTRODUCTION

Digital Image Processing is an important field in the engineering discipline. It is

used mainly for two purposes: a) improving the visual appearance of images to a hu-

man viewer, and b) preparing images for measurement of the features and structures

present.

In this work, I investigate several challenging problems in the area of medical im-

age analysis. The retinal images are chosen in our study for two main reasons. First,

the application of computational algorithms to retinal images is a rapidly developing

field, which has led to great advancements in retinal structure analysis. Automated

methods can help detection and control of retinal diseases such as diabetic retinopa-

thy. Screening of diabetic retinopathy by automated algorithms could reduce the

occurrence of blindness by 50% [1][2] and lessen the expenses associated with ex-

aminations. The automated algorithms are needed to be able to screen patients for

diabetic retinopathy and other conditions in a manner that is repeatable, reliable,

and cost effective.

The color retinal images affected by diseases contain many patterns of different

shapes and sizes. For example, microaneurysms are small red round spots. Exudates

are yellow, waxy spots with distinct margins. Hemorrhages are dark patches with a

brush-stroke or flame-like shape. In addition, retinal images exhibit diverse qualities

due to the different photographing conditions, disease deterioration, and noise and

artifact interference. For these reasons, retinal images are the ideal image objects on

which one can test basic algorithms for medical image processing.

The journal model is IEEE Transactions on Image Processing.
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A. Retinal Image Segmentation

A retinal image contains many distinct types of objects. In my work, I select blood

vessels in the images as the target of segmentation. Retinal blood vessel morphology

can be an important indicator for diseases such as diabetes, hypertension, and arte-

riosclerosis. Measurement and analysis of the features of the blood vessels, such as

diameter, branching angle, length, or tortuosity, can aid in diagnosis, treatment, and

further clinical study. Thus, a reliable method of vessel detection and quantification

would be valuable. Detection of large blood vessels is relatively straightforward in

noise-free images, but the detection process becomes much more complicated when

lesions, central reflex, and other pathological changes affect the retinal images. De-

tection of small vessels (diameters that are 3 pixels or less) is difficult because of their

low contrast levels. However, morphological changes of small vessels often signify the

onset of diseases, and analysis of small vessels must be carefully considered.

I proposed an adaptive detection scheme for large and small blood vessels in color

retinal images. Our scheme consists of three functions: adaptive contrast enhance-

ment, feature extraction of blood vessels, and tracing. Enhancement of blood vessels

is extended from an adaptive histogram equalization technique. Feature extraction

of small blood vessels is performed by using the standard deviation of Gabor filter re-

sponses along different orientations. Tracing of the vascular network consists of three

major functions: forward detection, backward verification, and bifurcation detection.

Combining extrapolation and local greedy search reduces the prediction errors of ves-

sel directions by 15-20%. Only two sample images and their hand-traced maps are

needed for parameter training and calibration. The experiment results show that the

performance is better than that of two most recently proposed methods which have

been tested on the same image data. The majority of small vessels could be captured
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by our method.

B. Image Registration

Integrated analysis of multiple images for a subject provides critical information on

the progression of pathological conditions. The first step in the integrated analysis

is to align key image objects, i.e., registration, so that a fusion step can be taken for

display and analysis of the data set.

Image registration can be categorized by considering the type of sensor used, the

position of the sensors, the time difference between the images, and differences be-

tween the image subjects. Using this classification, registration can be mainly divided

into three categories [3]. 1) Multimodal registration, where images of the same sub-

ject have been taken by different types of sensors, for example, computed tomography

(CT), positron emission tomography (PET), and magnetic resonance (MR) images of

the brain. 2) Stereo registration, where the same subject is imaged with two similar

sensors at the same moment, but from different positions. 3) Temporal registration,

where the same subject is photographed from the same viewpoint, but at different

times, for example, the analysis of myocardial function under conditions of rest and

stress.

In this dissertation, I focused on the registration of retinal images. Temporal

registration can help to track disease evolution while stereo registration can combine

or enhance pathological information to facilitate the diagnosis. Despite the impor-

tance of this topic and prior research effort, retinal image registration has remained a

difficult problem. We address some of the opening problems by developing a new im-

age registration method. The coarse blood vessel map is extracted from each retinal

image by enhancement and thresholding. The feature points are then identified from
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the centerline pixels. The feature points in the two images are corresponded by their

local structures. The images are mapped onto a common frame by the affine trans-

formation derived from the corresponded feature points. The desirable registration

performance is obtained on the retinal images with good and poor qualities.

C. Image Watermarking

The third issue I addressed is related to authenticity protection of medical images

using digital watermarking. Digital watermarking has been recently proposed as a

solution for prohibiting copyright infringement of multimedia data. By embedding

indelible and imperceptible labels and/or signatures into various digital media, ex-

traction of the embedded information without ambiguity can be used to identify the

copyright owner or legitimate recipients to prevent these data from being illegally

distributed or misused.

Most commercial watermarking methods are developed to protect the copyright

of broadcast or multimedia data. They embed watermarks in the entire image without

taking the image content into account. For medical images, regions that contain

disease symptoms are of major concern to the physicians and patients. For example, in

retinal images the image viewer usually cares more about the vasculature and lesions

than the background. The portions that attract more attention from an image viewer

are called the regions of interest (ROI). It is desirable to embed robust watermarks

in ROI to give them better protection.

I proposed a ROI based watermarking scheme that uses linear segments extracted

from the image as reference locations for embedding and detecting watermark. Using

the vascular network of the retinal images as an in-depth case study, the (nearly) lin-

ear patterns of the vascular network dispersed across the retinal image are extracted
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for synchronization, embedding, and detection of invisible watermarks. Global and

locally-randomized synchronization schemes are proposed for bit-sequence synchro-

nization of a watermark. On the synchronized locations, one can decide the shapes

and strengths of the watermark signals for embedding, and multiple watermarks can

be embedded easily. The scheme is robust against common image processing and

geometric distortions (rotation and scaling), and it can detect alternations, such as

moving or removing of the image content. Experimental results on a set of ten public

images show that with a high probability, images can be authenticated under different

attacks.

Details on the three major research themes and their experimental results are

presented in Chapter II, III and IV, respectively.



6

CHAPTER II

ADAPTIVE DETECTION OF BLOOD VESSELS

A. Introduction

Automatic detection of blood vessels in retinal images can help physicians for the pur-

poses of diagnosing ocular diseases, patient screening, and clinical study, etc. Blood

vessel appearance provides information on pathological changes caused by some dis-

eases including diabetes, hypertension, and arteriosclerosis. The most effective treat-

ment for many eye-related diseases is the early detection through regular screenings.

Thus, the development of a reliable, repeatable process to accurately detect and trace

the structural changes of the blood vessels in retinal images is needed.

The previous work on extracting blood vessels in retinal images can be divided

into two major approaches: pixel classification and vessel tracing. The pixel classifi-

cation approach [4]-[12][13][14] determine whether or not a pixel belongs to a blood

vessel, based on analysis outcomes of image features at proximity of the pixel under

consideration. This approach requires further processing to generate vessel geomet-

rical properties.

In the threshold probing scheme [7], pixels are grouped using a set of thresholds

on their 2-D matched filter responses, followed by detection of vessels using local and

global features. In [13], the hypothesized vessels are segmented by multiple thresholds.

They are then verified by some criteria designed based on the curve-linear structure

of blood vessels. The postprocessing is performed to locate vessel boundaries by

non-maxima suppression of Sobel detector response.

A primitive-based method (PBM) is proposed in [15], where for every pixel over

twenty features are computed based on the detected vessel centerlines and straight
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lines of blood vessels. A KNN classifier is constructed using selected features by the

sequential forward selection method with the training data to detect vessel pixels.

In [9], retinal images are segmented by morphological filters using linear structur-

ing elements. The segmentation results are validated by the cross-curvature property,

and the vessels are detected as the patterns whose curvatures are linearly coherent.

The parameters in the morphological filters are optimized for detection of large ves-

sels. The segmentation performance is sensitive to the Gaussian noise and uniform

noise.

A statistical method for vessel segmentation is propsed in [16]. The a-priori

distribution of pixel labels is modelled by a Markov random field. The posterior

probability of pixel labels is estimated by simulated annealing and iterated conditional

modes.

Vessel tracing schemes [17][18][19][20] work by starting from some initial vessel

points and tracing the vasculature by detecting vessel boundaries and directions. The

vessel direction and boundaries can be determined either by edge detectors such as

Sobel edge detecors, gradient operators, or by the matched filters that approximate

the intensity profile of vessel cross-sections.

In [21], the initial points for tracing are chosen from the local minima of Gaussian

kernel responses on a set of lines across the image subjection to pre-specified criteria.

The vessel boundaries and directions are estimated using the directional matched

low-pass differentiator templates.

In [22], the tracing algorithm matches the vessel profiles and determines the

vessel locations using Gaussian filter. The locations of next vessel segment is esti-

mated by Kalman filter. The twin Gaussian model developed in [23] characterizes

the blood vessels with central light reflex. In [24], an amplitude modified second-

order Gaussian filter is developed to find the highest response for determining the
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vessel width. These filters are effective for direct matching of large vessels, but their

effectiveness diminishes with small vessels.

In [25], an unsupervised fuzzy algorithm is proposed for vessel tracing to resolve

the ambiguity in determining the exact position of a vessel segment. The fuzzy

C-means clustering is used to classify vessel and non-vessel regions, without any

assumptions for the shape of the vessels and without utilizing edge information that

is usually corrupted by noise.

Detection of large blood vessels is relatively straightforward in noise-free images,

but the detection process becomes much more complicated when lesions, central reflex

and other pathological changes affect the retinal images [7]. Detection of small vessels

(diameters that are 3 pixels or less) is difficult because of their low contrast levels

[22][23][24][26]. However, knowing that subtle changes in small blood vessels may have

significant implications on prognostic of serious diseases, like diabetes or hypertension,

analysis of small blood vessels must be carefully considered.

In this chapter, we propose a novel approach for detection of large and small blood

vessels in color retinal fundus images. Our scheme consists of three major features:

adaptive contrast enhancement, small vessel feature extraction, and tracing of vessel

shapes. In addition to the classical illumination and adaptive equalization schemes

that are known to increase the contrast of blood vessels, we developed a Gabor-based

filtering technique that is highly effective for enhancement of small blood vessels

while removing their surrounding noise. The tracing algorithm uses different types

of feature information based on the most likely vessel shapes for decision making.

Marked performance gain is achieved for both large and small blood vessel detection,

with little parameter adjustment needed for the detection process.

The rest of the chapeter is organized as follows. Section B discusses the contrast

enhancement and feature extraction schemes for retinal images. Section C discusses
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the tracing algorithm. Experiments and analysis of their results are given in section

D.

B. Enhancement and Feature Extraction

The color fundus images under consideration have RGB channels. The dynamic range

of the pixel in each channel is 8-bit, and the image size is 700×605 . A broad range of

retinal images that represent normal and abnormal symptoms are tested in our study

based on the image collection in [27]. Two sample images given in Figure 1 are used

in the rest of this chapter to illustrate effects of different algorithm steps on normal

and abnormal images, respectively. A normal retinal image consists of mostly blood

vessels and the background, but an abnormal retinal image has multiple artifacts of

distinct shapes and colors caused by different diseases.

As a preprocessing step, the green channel of a color retinal image is extracted

and inverted in its intensity, which is denoted as I1. The illumination equalization

scheme proposed in [28] is applied to I1 to neutralize illumination fluctuation. That

is, the intensity of each pixel in I1 is adjusted by I2(p) = I1(p) + m − A(p), where

m = 128 for an 8-bit image, A(p) is the local average intensity within a 21×21 window

centered at pixel p. The output is then normalized into the range [0,255]. Denote the

output of this step as I2. Using I2 as its input, the objective of feature extraction and

contrast enhancement processes is to enhance the contrast of blood vessels as much as

possible. Contrast enhancement is particularly important to detection of small blood

vessels, because the intensity of small vessels declines significantly with reduction of

the vessel width.

The first enhancement step is aimed at general enhancement of all vessels, based

on the adaptive histogram equalization (AHE ) technique [29]. While AHE is found
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(a)

(b)

Figure 1: (a) A normal retinal image, and (b) an abnormal retinal image.
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to be much more effective than the classical histogram equalization approach, the

empirical study shows that the contrast gain can be further increased by introduction

of an enhancement exponent to AHE :

I3(p) = (
∑

p′∈R(p)

s(I2(p) − I2(p
′))/h2)r · M (2.1)

where M = 255, and R(p) denotes the neighborhood of pixel p, specified by a square

window with length h. (2.1) reduces to AHE when r = 1. s(d) = 1 if d > 0, and

s(d) = 0 otherwise. This step produces an output I3 from its input I2.

Increase of r also increases the contrast between vessel pixels and the background.

However, when r becomes too large, it will enhance the noise in the background, and

cause the shape distortion of the blood vessels in the image. To balance the tradeoff,

we found that the contrast measure (µv−µb)/(µv +µb) proposed in [30] is an excellent

performance indicator for optimization of r and h values, where µv and µb represent

the average intensity value of vessel pixels and that of background pixels on I2. Using

the hand-traced maps of blood vessel in [27] as the reference, we carried out extensive

experiments to determine the optimal enhancement parameter values.

The value of r is tested from 1 to 16 at increment of 1, and the value of h from 41

to 121 at increment of 20. The performance curves for images in Figure 1 are shown

in Figure 2, where each curve represents the performance for a given value of h over

the range of r. Based on the tradeoff between the enhancement performance and

processing cost, we chose h = 81 and r = 8 for the rest of discussion in this chapter.

Figure 3(a-c) illustrates the effects of the first two steps. Illumination equalization and

the modified AHE are intensity based algorithms. Together they increase significantly

the contrast of blood vessels but also bring out the background noise. Subsequent

testing results suggest that I3 is adequate for large blood vessel detection, but it is
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Figure 2: The performance of contrast enhancement for (a) the normal image and

(b) the abnormal image in Figure 1.
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(a) (b)

(c) (d)

Figure 3: Experimental results for a normal image: (a) the inverted green channel

(I1), (b) the output (I2) after illumination equalization, (c) the contrast-enhanced

map (I3), and (d) the GS-filtering map (I4).
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not sufficient for detection of small blood vessels. With decrease of the blood vessel

sizes, their contrast against the background diminishes. As a result, the effectiveness

of Gaussian or double-Gaussian like filters is significantly compromised because of

low contrast and small sizes of blood vessels.

Although large and small blood vessels are physically connected, the significant

differences in their sizes and contrast levels suggest that they should be treated as

two different type objects, and be handled by using different enhancement and de-

tection mechanisms for better results. For further enhancement of small vessels after

the modified AHE step, we take a shape-based enhancement approach. Knowing

that numerous background noises would present at proximity of small vessels, the

enhancement filter for small vessels should have directional selectivity. That is, when

the filter is positioned at the center of a small vessel, it should have maximum and

minimum responses, respectively, along the vessel direction and its perpendicular di-

rection. To eliminate spotty noise, only the pixels along the blood vessel direction

should be enhanced, and others suppressed. By putting these factors together, we

propose using the standard deviation (std) of the Gabor filter [31]-[35] responses along

different orientations, denoted as GS, for enhancement of small blood vessels,

I4(x, y) = stdφ(qφ(x, y)) (2.2)

where qφ =
∫ ∞
−∞

∫ ∞
−∞ I3(x − u, y − v)gφ(u, v)dudv is the Gabor filter response along a

particular orientation φ, and the real part of the Gabor filter is used for convolution

with the modulation axis parallel to the envelope axis, as used in most cases [32],

expressed by

gφ(u, v) = exp(−π(
u′2

σ2
u

+
v′2

σ2
v

)) cos(2πfu′) (2.3)

where (u′, v′) = (u cos φ + v sin φ,−u sin φ + v cos φ). The filtering output in 2.2 is
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called the GS response.

The Gabor filter has weak responses along all orientations on the smooth (back-

ground) surface, so the GS response is also weak. On the other hand, when it is

positioned on a linear-pattern object, such as the small blood vessels, the Gabor filter

produces relatively large differences in its responses when the orientation parameter

changes, so that the GS response is much stronger than that of the background.

We adopt the procedure in [35] for parameter setting of the Gabor filter to pro-

duce a single peak response on the straight line with width d, and to differentiate two

closely spaced lines. That is, the frequency parameter f is set to β/d with β ∈ [0.5, 1].

σu and σv, which determine the spread of Gabor filter, are specified by σu = nλd/αβπ

and σv = κσu, where n is the number of orientations, λ =
√

2ln2/π, α ∈ [1, 1.5], and

κ = 0.85 [35]. As Gabor filter is enveloped by a Gaussian function, the range of

convolution in the actual implementation is set to be r < 1.5σv because the filter

coefficients beyond this range become negligible, where r =
√

(x − u)2 + (y − v)2. In

the rest of our discussion, we chose n = 12, α = 1.5 and β = 0.5.

Blood vessels have varying diameters along different branches. When the value of

d is large, e.g., 10, most small vessels are either depressed or smeared by neighboring

noise. A simple histogram counting of the hand-labeled blood vessel maps shows that

diameters of blood vessels range from 1 to 12 pixels, where the highest frequency

count falls on the diameter of 3-pixel wide. As a result, we chose d = 3 for enhancing

and preserving of small vessels, and it is also used as the threshold to differentiate

large and small vessels.

The GS filtering is performed as follows. For each pixel in I3 with intensity larger

than the medium value md of the pixel intensity range, i.e. md = 128 for 8-bit gray

level images, the GS response is calculated by taking the standard deviation of the

Gabor filter response along n quantized orientations φi, φi = iπ/n , i = 1, . . . , n . For



16

pixels in I3 whose intensities are less than md, they are mostly on the background, and

thus their GS responses are simply set to zero. The GS filtering output (denote by

I4) is illustrated in Figure 3(d), where the output has been normalized and quantized

to the range of [0,255]. The skeletons of small vessels are clearly extracted with

high contrasts against the background, suggesting that I4 is the ideal feature map for

detection of small vessels in the tracing phase.

Given that the value of d was chosen to favor enhancement of small vessels, large

vessels have inconsistent responses to GS filtering. Some large blood vessels produce

high GS responses on their central lines or boundaries, yet others were depressed,

obviously because of mismatched vessel diameters. Regardless of this minor problem,

large vessels in I3 are strong enough for their reliable detection. As a result, we use

I3 as the feature map for detection of large vessels in the tracing phase.

Figure 4 illustrates (a) the green channel of a cropped image, (b) its Gaussian

filter response map based on the 2-D Gaussian filter specified in [2], and (c) its

GS-filter response map. Clearly, GS filtering brought out more small vessels that

otherwise could not be captured by the Gaussian filter. In addition to its plausible

visual effects, the numerical contrast measure of the GS response map is 0.80, which is

much higher than those of the green channel (0.05) and the Gaussian output (0.20).

To have a better understanding on the effectiveness of the three different feature

maps, i.e., Figure 4(a-c), we applied our tracing method (to be discussed next) to

them using identical parameters and gave the results in Figure 4(d-f). Clearly, the

tracing using the GS-filtering map captures more small vessels than the other two.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison of different feature maps for small vessels and their detection

outcomes: (a) the green channel of a cropped image, (b) the 2-D Gaussian filter

response map, (c) the GS-filtering map, and (d-f) their respective tracing outcome.
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C. Tracing

The objective of blood vessel tracing is to create the final vascular map based on

the geometric properties of blood vessels. Using the feature maps generated by the

enhancement and feature extraction sub-systems, tracing starts from some automat-

ically selected initial points, at which initial estimations on widths and directions of

vessels will also be made. The initial tracing points are chosen on both I3 and I4 by

the following procedure:

Step 1) In I3, pixels on a 9× 9 mesh grid similar to the one in [12] are analyzed.

A pixel on the grid is considered a candidate for further analysis if it locates at the

middle of two consecutive edge points that have similar responses but at opposite

orientations, and the distance between the two edge points is an initial estimate of

the vessel diameter. Local maxima of gradients calculated by Sobel operator are

considered as edge points of blood vessels.

Step 2) In I4, local maxima points (in a square window) whose intensity values

are also greater than md are selected as candidates, where the length of the square

window is set to be equal to the width of the widest vessel in the sample images.

The initial estimate of vessel width is equal to the value of the parameter d used in

GS-filtering.

Step 3) The oriented feature responses (OFRs), which will be introduced shortly,

of candidates chosen from the first two steps are computed to verify the candidates.

The candidates that have two local maxima on OFR along two opposite orientations

are identified as initial blood vessel points, whose two orientations are the initial

estimate of the vessel directions.

Most candidate initial points selected in the first and second steps are initial

points on large and small vessels, respectively. The third step confirms the selections
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in the first two steps by rejecting candidates that are likely noise or on lesions.

In our work, Sobel operator is chosen to locate the vessel edges. The edges in

an image are defined as the pixels where gray level intensities abruptly change, and

they can be identified by the gradients or differences of neighboring intensities. In

a digitized image, the magnitude M and direction θ of the edge pixel at (x, y) are

computed as,

M = [Ix(x, y)2 + Iy(x, y)2]1/2, (2.4)

θ = arctan
Iy(x, y)

Ix(x, y)
, (2.5)

where Ix(x, y) and Iy(x, y) are computed by Sobel operator as

Ix(x, y) =[I(x + 1, y + 1) + 2I(x + 1, y) + I(x + 1, y − 1)]

− [I(x − 1, y + 1) + 2I(x − 1, y) + I(x − 1, y − 1)],

Iy(x, y) =[I(x + 1, y + 1) + 2I(x, y + 1) + I(x − 1, y + 1)]

− [I(x + 1, y − 1) + 2I(x, y − 1) + I(x − 1, y − 1)],

(2.6)

All initial points are stored in a list after they are sorted in the descending

order of vessel widths. In each iteration, the initial point with the largest vessel

width in the list is removed and is used to start tracing of a new branch. On each

branch, the vascular network is constructed segment by segment, where each segment

is assumed to have a fixed width and direction, and its length is equal to the width,

using three major routines, forward detection, backward verification, and bifurcation

identification. The interactions between the three routines are illustrated in Figure

5.

In the forward detection routine, we use the latest detected segments to predict

the most likely location of the next segment, perform local greedy search, and then

move to the new location based on the two pieces of information. The bifurcation-
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Figure 5: Flowchart of the tracing algorithm.
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identification routine is invoked along with the forward detection routine to identify

branches. After an identified bifurcation point is saved into the initialization list, the

current iteration is terminated, and tracing of the next branch can be started from

the initial point that has the largest diameter. The iteration can also be terminated

when the current branch is detected to be terminated. The backward-verification

routine is invoked at the end of the iteration to verify detection results.

Feature maps I3 and I4 are used adaptively for detection of large vessels and

small vessels. The contrast between (large and small) blood vessels and their neigh-

boring background is strong in I3, but there is significant noise at proximity of the

small vessels. On the other hand, small vessels have sharp skeletons in I4 but their

diameters can be more accurately measured on I3. As a result, we use I3 to detect

large vessels, and use I3 and I4 jointly to detect small vessels, where I4 is used to

determine the presence of small vessels and their directions, and I3 is used to measure

their diameters. Detection of bifurcation points is based on multiple local maxima

of the tracing filter response OFR, where each local maximum of the OFR repre-

sents a branch surrounding a bifurcation point. OFR is essentially the Gaussian filter

response of the vessel on its feature map, i.e., I3 for large vessels, and I4 for small

vessels, along a certain orientation. That is,

OFRθ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∫∫
H(x,y)

I3(x − u, y − v)ξθ(u, v)dudv for large vessels

∫∫
H(x,y)

I4(x − u, y − v)ξθ(u, v)dudv for small vessels

, (2.7)

where ξθ(u, v) = exp(−πv′2/σ2
v) is a two-dimensional Gaussian filter oriented toward

θ, and the convolution range is specified by H(x, y) = {(u, v) : 0 ≤ u′ ≤ 2w, |v′| ≤
1.5σv}. Referring to Figure 6(b), the filter is not centered at (x, y). Instead, the pixel

under consideration is on one edge of the filter. The filter is designed to explore vessel

branches around the pixel. The dimension of the filter, as a function the local vessel
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width w, was determined empirically.

1. Forward Detection

The forward detection routine consists of forward extrapolation and local greedy search.

Let B1, . . . , Bn denote the n latest detected consecutive segments, the goal of for-

ward extrapolation is to estimate the location of the next new segment Bn+1 from

B1, . . . , Bn , where Bi is characterized by its middle point on the centerline, (xi, yi),

width wi, and direction θi, see Figure 6(a). The central curve function (CCF ) of a

vessel represents the geometric central points of the vessel that can be expressed by

(x, y) = (x(t), y(t)), where t takes values in an interval. The CCF will be approxi-

mated by its cubic spline construct, called CCF’ [36].

The cubic splines are the spline functions of degree 3, and they are widely used

in practice. A spline function of degree k having knots t0, t1, . . . , tn is a function

S such that: 1) On each interval [ti−1, ti), S is a polynomial of degree ≤ k. 2) S

has a continuous (k − 1)st derivative on [t0, tn]. Hence, S is a continuous piecewise

polynomial of degree at most k having continuous derivatives of all orders up to k−1.

For the construction of a cubic spline function based on a set of given points, please

refer to [36].

Let Px and Py denote the two cubic splines that approximate x(t) and y(t)

respectively via interpolation on knots (i, xi) and (i, yi). As illustrated in Figure 6(a),

the central point (xn+1, yn+1) of Bn+1 can be approximated by (Px(n + 1), Py(n +

1)). θ̂1
n+1, which denotes the estimate of θn+1, can be calculated by the tangential

orientation of CCF’ at (Px(n + 1), Py(n + 1)). Similarly, ŵn+1, which denotes the

estimate of wn+1, can be calculated by the value of the cubic spline function at

(n+1, wn+1), which is constructed from interpolation on {(i, wi)}. The first estimated

location of Bn+1 by forward extrapolation is characterized by (Px(n + 1), Py(n + 1))
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(a) (b)

(c) (d)

Figure 6: Weighted-sum estimation of θn+1 by (a) extrapolation and by (b) local

greedy search, and examples when (c) cp1 > cp2 and (d) cp1 < cp2 in the estimation

on θn+1.
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and θ̂1
n+1.

θ̂1
n+1 is affected by the extrapolation error at the high curvature area. To offset

the prediction errors in θ̂1
n+1, we propose a local greedy search scheme for the strongest

vessel feature response along the current trajectory. In the design of the local greedy

search scheme, we observed that adjacent segments have small changes in direction

and feature response. Most blood vessels have local maxima of intensity in both

feature maps, and thus the presence of local maxima in next segment suggests that

it would be a good indicator on the location of the next segment. As a result, the

second estimation component for the direction of Bn+1, denoted by θ̂2
n+1, is chosen by

θ̂2
n+1 = argθ max OFRθ(xn2, yn2) for θ ∈ (θn − ∆θ, θn + ∆θ), (2.8)

subject to the constraint that

OFRθ̂2
n+1

(xn2, yn2) > Cstop · OFRθn(xn, yn), 1 > Cstop > 0 (2.9)

where (xn2, yn2) is the end point on the centerline of Bn , Cstop = 0.5 is set empirically.

The constraint condition (2.9) is designed to prevent run-away errors. That is, if one

cannot find the next segment that has similar feature strength as that of the current

one, most likely the current vessel branch ends and the tracing routine terminates at

the current point. ∆θ is the angular range for prediction of the new segment, and

it should be less than the smallest angle between two vessels. ∆θ = 20◦ is adequate

to serve our purposes. Estimation errors in θ̂2
n+1 are most significant when the blood

vessels are adjacent to lesion and other vessels.

Combining two estimations through the extrapolation and local greedy search,

the final estimate of θn+1 is given by

θ̂n+1 := Cp1 · θ̂1
n+1 + Cp2 · θ̂2

n+1 (2.10)
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where 0 ≤ Cp1, Cp2 ≤ 1, and Cp1 + Cp2 = 1. We note that the two weight coefficients

are not constants, and they are adaptive to local curvature changes. Two cases need

to be considered. In the first case, when the vessel under consideration is adjacent

to a brighter vessel, as the example shown in Figure 6(c), the local greedy search

would choose the brighter vessel as a (falsely) better choice. However, the current

vessel usually has only small change in its direction, θ̂1
n+1 would be a better choice

than θ̂2
n+1. On the other hand, when the vessel’s direction undergoes sharp change

at the new segment, as the example shown in Figure 6(d), θ̂2
n+1 would be a better

choice than θ̂1
n+1. In other words, local curvature should be used for adaptive setting

of parameters Cp1 and Cp2 in (2.10), where the local curvature can be estimated by

using CCF’.

The standard definition of the curvature, denote by κ, is given by

κ =
dθ

dl
=

x′y′′ − y′x′′

(x′2 + y′2)3/2
(2.11)

It can be calculated either from direction difference between two consecutive segments,

or using CCF with x(t) and y(t) approximated by Px(t) and Py(t), respectively.

By studying the distribution of curvature in sample images, we found that 0.1 is

a reasonable value as the curvature threshold to switch the two coefficients based on

the following simple technique. Let α ∈ [0, 0.5], when the local curvature is greater

than 0.1, we have Cp1 = α and Cp2 = 1 − α. Otherwise, we have Cp1 = 1 − α and

Cp2 = α. Different α values are tested for the normal image in Figure 1 and its hand-

labeled vessel map, and the results are tabulated in Table I. It was found that the

median prediction error was minimized when α = 0.4. This represents a performance

gain of 15-20% over the prediction errors of using only θ̂1
n+1 or θ̂2

n+1. This parameter

setting is used for all the experiments in this chapter.

Given (Px(n + 1), Py(n + 1)), θ̂n+1 and ŵn+1, next we use them to make the final
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Table I: Prediction error (in degree) of directions with curvature-threshold = 0.1.

θ̂1
n+1 θ̂2

n+1 θ̂n+1 := Cp1 · θ̂1
n+1 + Cp2 · θ̂2

n+1

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

7.56 8.24 7.40 7.40 7.15 6.73 7.20

decision on the location and width of Bn+1. On the virtual centerline specified by

(Px(n+ 1), Py(n+ 1)) and θ̂n+1, we look for two edge points within the range of ŵn+1

along the two opposite perpendicular directions of the virtual centerline, where an

edge point is the point that has the largest gradient value within the search range.

Note that the virtual centerline is only a reference line to search for edge points in

the new segment Bn+1. The true centerline is the collection of the middle points of

opposite edge points. The value of θn+1 can be attained by calculating the tangential

orientation of the CCF’ of the vessel at the end of the iteration. The width of Bn+1 is

acquired by averaging the distance of each edge point to the detected central line and

then multiplying by 2. In general, the virtual centerline slightly deviates from the

true centerline. Similarly, small but non-negligible errors exist between θn+1 (wn+1)

and θ̂n+1 (ŵn+1 ).

2. Bifurcation Point Detection

We search for bifurcation points on the central curve of a vessel (composed of the

centerlines of the segments) following the forward detection steps. As mentioned

earlier, detected bifurcation points are saved into the initialization list, so that they

will be used as starting points for tracing on new branches, where the average width

of the vessel is saved as the initial estimate of new branches’ widths.

A bifurcation point is the junction of three vessel branches, and the OFR along
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each of the three vessel branches is relatively strong. A pixel on the centerline is

considered to be located at proximity of a bifurcation point when three local maxima

of its OFR values, denoted as OFRmax, are detected along three different orientations.

The pixel located at (x, y) has a local maximum of OFR along the orientation θ′ if

OFRθ′(x, y) = max
θ

OFRθ(x, y) for θ ∈ [θ′ − ∆θ, θ′ + ∆θ] (2.12)

and

OFRθ′(x, y) ≥ µOFR(x, y) + Cb · σOFR(x, y) (2.13)

where Cb > 0 is a constant, µOFR(x, y) and σOFR(x, y) are respectively the average

and standard deviation of the OFRs along all discretized orientations. The constraint

(2.13) is designed to eliminate false detections caused by noise. Experimental results

shows that Cb = 0.7 suffices when the angular resolution is 10◦.

We note that multiple pixels around a bifurcation point will meet the detection

criteria (2.12) and (2.13). However, only the pixel that has the highest total sum of its

three OFRmax values will be chosen as the representative location of the bifurcation

point. Two of the three local maxima OFRmax point to directions of the two new

branches, and the last one points to the backward direction of the vessel toward Bn.

If the current vessel is a small one, the bifurcation point represents the location that

connects three small vessels, and thus only the OFRs defined for small vessels need

to be evaluated.

If the current vessel is a large one, the new branches can be large or small.

If the bifurcation point represents the attaching point of a small vessel to a large

one, then it can be identified by the presence of one OFRmax for small vessels along

one orientation, and the other two OFRmax for large vessels along the forward and

backward directions. If the bifurcation point represents the splitting point of a large
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vessel into two small ones, then two of the OFRmax values for small vessels should

point to orientations other than the backward direction of the current vessel.

Figure 7 shows an example of bifurcation point detection. In Figure 7(a), the

yellow line represents the central line of the blood vessel detected by forward detection.

The OFR values around the blue point in Figure 7(a) are plotted in Figure 7(b), where

the three OFRmax values are marked by red arrows. By definition, this example

represents a bifurcation point. Although the red dot in Figure 7(a) also meets the

detection criteria, it is not chosen as the bifurcation point because the blue dot has

a larger total sum of OFRmax values. OFR values around a randomly chosen non-

bifurcation point (the green dot) are plotted in Figure 7(c), where only two OFRmax

values exist along the forward and backward directions.

We tested the effect of image resolution on identification of bifurcation points.

Using the image in Figure 7(a) as an example, the bifurcation point in the image

could still be identified by the method just mentioned when the image size is reduced

until to 40% of the original size. That is because the sizes of vessels and the Gaussian

kernel (used to calculate OFR) are proportional to the image size and they are also

scaled down. When the image size is below 40% of the original size, the sizes of the

vessels in the image are only 2 pixels or less, which reaches the limit of the Gaussian

kernel, causing the failure of identification of bifurcation points.

3. Backward Verification

The backward verification process is designed to eliminate false detections of the

two routines mentioned above. It uses vessel widths and OFR values of consecutive

segments for outlier detection [37] based on Grubbs’ algorithm [38]. This algorithm

assumes that the finite observations of a study are taken from a Gaussian population.

To detect the outlier, one first calculates Z = |x− x̄|/σ′ where x is the sample being
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(a)

(b) (c)

Figure 7: Bifurcation point detection: (a) a cropped image, (b) the OFR values along

different orientations around a bifurcation point (blue dot in (a)), and (c) the OFR

values around a non-bifurcation point (green dot in (a)).
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(a) (b)

(c) (d)

Figure 8: False detection cases (a) and (c), and their correction (b) and (d) in the

backward verification. The red dots represent detected bifurcation points.

examined, and x̄ and σ′ are respectively the mean and standard deviation of the

observations. [38] provides a table of critical values for different observation sizes,

where an outlier is detected when the test outcome of x exceeds the critical value

for the given data size. Experimental results show that Grubb’s algorithm is very

effective in capturing false detection due to lesions or hemorrhages that are located

close to vessels or bifurcation points.

Examples of the backward verification are given in Figure 8. Figure 8(a) shows

an example in which the width of the segment next to a bifurcation point is overesti-

mated. The location and width of the overestimated segment are corrected by using

its adjacent segments, and the middle points are estimated through cubic-spline inter-

polation on the adjacent segments. The corrected detection result is shown in Figure
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8(b). In the example shown in Figure 8(c), a hemorrhage patch adjacent to a blood

vessel was falsely detected as a vessel branch. Our method limits its exploration range

based on the width constraints, and the correction routine removes the hemorrhage

from the vascular map, i.e., see Figure 8(d), because several outliers were detected in

the sequence of segment widths of the false branch, and the branch’s average width

was found to be larger than that of its parent vessel. Obviously, once the vascular

network is correctly identified, it is relatively easy to detect the hemorrhage in a

separate process.

D. Experiments and Performance Evaluation

The performance of our scheme is evaluated against its objectives: detection of large

and small blood vessels. Separate performance measurement on detection of large and

small vessels is consistent with the hand-traced vascular maps provided in [7], where

coarse-grained and fine-grained labeling, called hand-1 and hand-2 maps, respectively,

are provided to illustrate different detection resolutions. The hand-1 maps are used

as the reference maps in calculating the detection rates of our scheme. The hand-1

maps appear to use stricter detection rules for the vascular boundaries, and thus they

have thinner blood vessels.

It is relatively straightforward to evaluate the performance of large blood vessel

detection algorithms, but it is much more complex to evaluate the performance of

small vessel detection algorithms because even hand traced maps can have substantial

amount of inconsistent labeling. The most widely used performance criteria for blood

vessel detection are true positive rate (TPR) and false positive rate (FPR), both of

which are pixel level indicators. When a pixel is marked as a detected vascular pixel,

the detection is a true positive if the pixel is also on the hand-traced vascular network.
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Otherwise, the detection is a false positive. TPR is defined as the number of true

positive divided by the total number of hand-traced (vascular) pixels. FPR is defined

as the number of false positive divided by the total number of non-vessel pixels on

the hand-trace map.

We have implemented our solutions in C#, and all the experiments were tested

in MS Windows environment. The majority of the computational cost was due to

the contrast enhancement, where the interpolation technique proposed in [39] for

calculation of local histogram in the adaptive contrast enhancement algorithm was

adopted to reduce the computational cost. The twenty retinal images used in [7]

were chosen for comparative performance evaluation. The image set contains 10

normal (pathology-free) images and 10 abnormal (pathological) images under various

illumination conditions.

Key parameters used in the evaluation experiments were determined based on

statistical analysis of a normal image and another abnormal image, together with their

hand-traced maps. The parameters derived from the training phase were assigned to

our algorithms for testing on the remaining images. Figure 9 shows the computer-

traced and hand-traced maps for the sample images given in Figure 1.

The numerical results on TPR and FPR for the twenty normal and abnormal

images being tested are given in Table II and Table III, respectively. For normal

images, TPR values range from 80% to 91%, and the corresponding FPR values range

from 2.8% to 5.5%. For abnormal images, the TPRs range from 73.8% to 86.5%, and

the FPRs range from 2.1% to 5.3%, respectively. The overall average performance of

our method over the twenty tested images is 84.3% for TPR and 3.9% for FPR, which

are marked as a single point in Figure 10. For comparison, the average performance

curves reported in [7] (filter response analysis), and in [13] (multi-threshold probing)

are also included in Figure 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: First row: detection results for the images in Figure 1. Second and third

rows: the hand-1 and hand-2 maps of the same images.
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Table II: Performance of our method for 10 normal images.

TPR (%) 91.0 88.0 89.9 82.7 90.6 85.1 82.7 86.2 86.2 80.0

FTR (%) 5.0 4.3 5.5 4.1 4.2 2.9 2.6 3.8 4.2 2.8

Table III: Performance of our method for 10 abnormal images.

TPR (%) 84.5 82.6 84.9 79.1 73.8 84.4 83.9 86.5 78.1 85.2

FPR (%) 4.5 3.5 3.6 4.0 3.8 4.1 4.5 2.1 3.4 5.3

To get a rough idea on the performance upper bound of computer-based detection

systems, we calculated the “TPR” and “FPR” of the hand-2 maps. It was found that

the “performance” of the second set of hand-traced maps to be 89.5% TPR and 4.4%

FPR, which are also marked as a single point in Figure 10. The TPR of our method

is lower than that of the hand-2 maps, but its FPR value is much lower. For the two

schemes in [7] and [13], the multi-threshold probing method will need to increase its

FPR to 5% to achieve the same level of TPR as ours, and the filter response analysis

method needs to increase its FPR value significantly to achieve the same goal. In

addition to its performance benefits, our scheme requires very little calibration. In

contrast, the two approaches that are being compared in this study need ten and

eight sets of parameter values, respectively, see the plotted points in Figure 10. For

these two approaches, when TPR is over 80%, a small increase of TPR will have to

be at the cost of large increase of FPR, suggesting the difficulty of further improving

vessel detection performance without significantly increasing false positive detections.

The performance of our method is mainly attributed to the effectiveness of the

contrast enhancement and feature extraction routines, especially for small vessels. A

close study of 20 images shows that small vessels account for 42% of overall vessel
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Figure 10: The average detection performance over 20 images: our method vs. the

filter response analysis method and the multi-threshold probing method.
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pixels, while 75% of small vessels were captured by our method. Except for lesions

and noise, a close comparison between our detection results and the hand-traced

vessel maps shows that the differences between the two maps are mostly located at

vessel boundaries. Our scheme tends to yield thicker small vessels than those in the

hand-traced maps because of its sensitivity to weak signals.

In addition to the two methods mentioned above that we compared in details, it is

worth mentioning the difference between our scheme and the PBM method proposed

in [15], which used nineteen of the twenty images that we used for performance

evaluation. We do not make direct numerical comparison between our scheme and

PBM based on two simple reasons. First, the performance of PBM is the testing

outcome of their scheme on each image using the other eighteen images for training,

but our scheme only needs to use two training images. The performance sensitivity of

the size of the training set cannot be compared without their substantial experiments.

Second, our experiences show that for a moderate test set of twenty images, the

performance outcome on any abnormal image can have significant impact on the

overall detection performance of twenty cases. Without knowing the nature of the

abnormal image that has been left out from their test set, we cannot make objective

statement about the differences between the two methods.

In terms of design complexity, our scheme is much simpler. It requires only the

hand-traced maps of two (normal and abnormal) images for parameter training, and

the performance outcome is insensitive to the choice of the training images. On the

other hand, for PBM the sensitivity of feature selection is unclear. From over twenty

feature types, one would need to observe the incremental performance outcomes of

addition or removal of specific features, in order to decide the final picks. Normal-

ization and weighing of different features that have significantly different dynamic

ranges can become a challenging issue.
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The imperfection of the hand-2 tracing maps is mainly due to different inter-

pretation of the blood vessel boundaries. By the fact that only 89% of vessels are

identified by both operators, one needs to exercise caution in interpreting the TPR

and FPR values as the performance measure.

Figure 11 shows the vessel reconstructed from segment features including middle

points, widths and directions. In the figure, the central curve S, shown in magenta

color, is generated by Hermite interpolation [36] using the middle points (marked as

“x”) and directions of the segments. That is, assuming that the sequence of middle

points and directions are {(xi, yi)} and {θi}, respectively, 0 ≤ i ≤ n, S is constructed

so that S(xi) = yi and S ′(xi) = tan θi, for 0 ≤ i ≤ n, where tan θi gives the value of

first derivative of S at (xi, yi). S is calculated by

S(x) =
n∑

i=0

yiAi(x) +
n∑

i=0

tan(θi)Bi(x) (2.14)

With the aid of the functions

li(x) =
n∏

j=0,j �=i

x − xj

xi − xj

(0 ≤ i ≤ n) (2.15)

Ai and Bi can be expressed as follows

Ai(x) = [1 − 2(x − xi)l
′
i(xi)]l

2
i (x), Bi(x) = (x − xi)l

2
i (x) (2.16)

Two vessel edges are plotted in green color, which are determined by the width

function and the central curve. It can be seen that the reconstructed vessel closely

matches the original one.

The width function of the vessel is plotted at the top of Figure 11(b). It is

constructed by fitting a polynomial of degree 3 to the segment widths (marked by

“o” in the plot) with least square error [36]. Round errors occur when the measured
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Figure 11: (a) A reconstructed vessel from segment features, and (b) the width func-

tion and curvature of the vessel.
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segment widths are quantized to pixels (integers). However, the approximated width

function still shows that the diameter of this vessel changes significantly from left

to right, indicating the abnormality of the vessel diameter distribution caused by a

blockage of blood flow at the location circled in Figure 11(a). The curvature of the

vessel is evaluated and illustrated at the bottom of Figure 11(b). The line in the plot

stands for the result calculated numerically by (2.11) on the Hermite-interpolated

central curve, and the dots marked in “x” are the curvature values of each segment

approximated by the direction difference between two consecutive segments divided

by the distance of the middle points of the two segments. The two methods of

curvature evaluation both attain the maximum of absolute values at the same area

of the vessel, circled in Figure 11(a). It indicates that although the latter method is

relatively simple, it does capture the high curvature area by using features of discrete

segments.
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CHAPTER III

IMAGE REGISTRATION

A. Introduction

The objective of image registration is to align images acquired for an object so that

the same object imaged at different times can be analyzed. Many algorithms have

been proposed in the literature for image registration. Generally speaking, image

registration algorithms can be classified as either feature-based or intensity-based [40].

The intensity-based matching approach compares and matches intensity differences

of an image pair without explicit extraction of image features. The intensity-based

approach tends to be less compute intensive, but is more sensitive to illumination

changes and significant changes of the imaging positions. For retinal image analy-

sis, this approach may be susceptible to occlusion, background changes caused by

pathologies. It is particularly difficult for images that are affected by diseases such

as cataract, which may significantly interfere with the photo qualities.

In [41], the similarity between images is measured by their intensities. The best

rigid transformation is obtained using simulated annealing. This technique searches

for the global optimum based on pyramid sampling for speed and accuracy. For

performance evaluation, the registration results are compared with the ones obtained

through the exhaustive search.

In [42], the Fourier coefficients of an image is first performed to the log-polar

coordinate system. It converts the rotation and scaling differences of two images to

their translation differences. The rotation and scaling parameters are then computed

from the correlation of the log-polar pairs. The translation parameters were estimated

by correlating the rotated and scaled images
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Feature-based registration methods usually search for the transformation that

optimizes the correspondence between the extracted features. For retinal image reg-

istration, the bifurcation points of blood vessels are the widely used features in this

approach. The main advantage of the feature-based approach is its robustness against

illumination changes.

In [9], a method based on Bayesian-Hough transform is proposed for temporal

and multimodal registration of fluorescein images and green images (green channel

of a color image). Each transformation that matches one pair of feature points in an

image to another pair of feature points in the other image is scored by the a posterior

probability. The best 20 transformations are used to derive the final transformation.

The computational cost of this approach is relatively high, taking 5 to 7 minutes

to register two images. The performance of this method was only evaluated using

visual evaluation. In [43] a second-order polynomial transformation model was de-

veloped by characterizing retina as a rigid quadratic surface and retinal imaging as

a weak perspective camera. The transformation parameters were estimated by a hi-

erarchical algorithm. Registration error was evaluated by the median distance of the

corresponding centerlines of blood vessels and the percentile of overlapping between

images. This method achieved favorable performance results, less than one pixel error

on average, even the overlapping area between two images is small.

In [44], a method based on a global point mapping was evaluated on three trans-

formation models. The affine transformation based scheme achieved better perfor-

mance results than the similarity and second-order polynomial based schemes, in

terms of the superposition percentage. The Constrainted parameters in translation

and rotation makes the proposed method unsuitable for registration of images with

large displacements. Due to the small number of feature points being extracted, this

method may fail to register images that have poor qualities.
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In [45], the set of transformation parameter vectors that match every two control

point pairs under rigid global transformation were first obtained. The distribution of

Euclidean distance of each vector to its nearest neighbor was characterized, and then

parameters of the distribution were estimated to identify the cluster of vectors that

have correct matching. Bilinear and second order polynomial transformations were

then obtained by linear regression of the control points that generated the “correct”

cluster. Only two retinal images were tested for their performance evaluation.

In [46], the squared error of the edge direction histogram of a feature point

pair was used to evaluate the correspondence between the two points. The final

transformation composed of translation and scaling was validated by a sequential

similarity detector.

In [47], automatically extracted vascular networks were used to measure the de-

gree of similarity between images. Three optimization techniques were investigated

to search for a global optimal transformation. Results for multimodal registration

on fluorescent angiogram (FA), red-free retinal image (RF), and Indocyanine Green

Chorioangiography (ICG) showed the effectiveness of combining genetic algorithms

with the affine and bilinear transformation models. The allowed ranges of the trans-

formation parameters indicate the slight change in viewpoint between the matched

images. The registration of 512 × 512 images takes 4.5 minutes on an Indigo SGI.

In [48], the extracted blood vessel centerlines and bifurcation points were used

for transformation initialization and image alignment. A Dual-Bootstrap iterative

closest point method was proposed to refine the initial low-order transformations to

the high-order transformation. It expanded the initial small matching region to the

entire overlap region between images. The experiments on a large image set show the

good performance.

In [49], the sequential similarity detection technique was used to evaluate the
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alignment of two images based on sub-sampled boundary points on blood vessel. The

Hough transform technique was used to find the optimal translation and rotation

parameters. The performance was examined by visual inspection of the corresponding

positions of a manually selected cross-marker in the registered images.

In [50], the correlation between features extracted by a robust creaseness oper-

ator measures the quality of the alignment in two images, and the iterative simplex

algorithm was used to optimize the alignment process.

In [51], the end points of the extracted blood vessel segments are used as feature

points. Mismatched feature-point pairs were eliminated according to constrains on

the parameter values of translation and scaling, and the correlation scores between the

pixel intensities around each feature point. The initial transformation obtained from

the least-square fitting on the remaining feature points is then iteratively refined. A

common coordinate system for two images was used with the location of the identified

optic nerve as the common origin. Similar to the intensity-based approach, this

method is also sensitive to the color or intensity changes between the image pair. It

can also be affected by the detection errors of locating optic nerves.

An active contouring based registration technique was proposed in [52], with only

simulated images tested. The contour of blood vessel and bifurcation points in one

image is placed on the other, and then the contour is adjusted until a matching can

be made. Active contouring usually requires human guidance. Because only local

features are used for adjustment of each snaxel, the method is susceptible to large

translation between the two images.

In [53], edge points of two images extracted using edge detector are recorded

in two matrices. Two images are registered by aligning the matrices on a template

area to find the best transformation comprising of only translation. This method is

unsuitable for registration of image pairs with rotation and scaling changes.
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A recent survey on registration of medical images can be found in [54]. In general,

the feature-based approach is more reliable than its intensity-based counterpart.

Despite the extensive work done in this area, feature-based registration of retinal

images needs to pay special attentions to following issues:

1. Image registration fails when not enough features can be detected due to inad-

equate illumination, lesions, or the small overlapping of two images.

2. Feature-extraction under significant changes of image conditions, e.g., bifur-

cation points and vessels, is difficult. Inconsistent imaging qualities are com-

monplace because of pathological changes and extended time periods between

images acquisitions.

3. Uneven/clustered placements of feature points may lead to localized registration

decisions around the recognized feature points.

4. The high similarity between registration features of an image may lead to sig-

nificant mismatches.

5. Precise registration is critical to capture subtle changes of small vessels that are

three pixels or less in width. Such changes are important indicators to onset of

various diseases.

Image registration is useful for long term and short term tracking of retinal

changes, e.g., diabetic retinopathy, glaucoma, etc. Such changes can occur within a

short time, e.g., before and after laser surgery, or within a long time, e.g., progression

of lesion development or effectiveness of therapeutic treatments. It can also be used to

form a mosaic image of the whole retina from a series of snapshots taken from different

angles. Registration performed in real-time can assist control and adjustment of laser

surgery and other related procedures [12][55][56]. Retinal images to be matched can be
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acquired through different modalities [57], i.e., color fundus image, FA, RF, ICG. The

two images shown in Figure 12 represent an example of retinal image registration.

The first and second images were taken before and after a laser surgery. Image

registration will help detection and confirmation of the laser surgery (or incidental

laser exposures).

We propose here a feature-based registration scheme for retinal images using

bifurcation and cross-over points extracted from the blood vessel maps. The local

structures of feature points are used to establish the correspondence between feature

points in two images. An affine transformation is then derived to map the images to

a common frame. To achieve accuracy and speed, both the coarse and fine maps of

blood vessels are extracted.

B. Registration

Four major steps are involved to register two images together. The first two steps

are automated extraction and matching of image features from the two images. The

third step is deriving a transformation between corresponded features so that in the

fourth step, the two images can be transformed and merged into one common map.

In our work, we use the bifurcation and cross-over points extracted from the blood

vessel maps as registration features. These feature points are corresponded by their

structural similarity. Then, an affine transform is estimated from the correspondences

and is used to map two images into a common frame.

1. Extraction of Registration Points

In the previous methods for retinal image registration, vascular network is the most

widely used landmark because of its full coverage of the whole retina, time-invariant
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(a)

(b)

Figure 12: Two images photographed (a) before and (b) after laser surgery. Some

laser scars are located at the center of the second image.
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structures (except for certain severally diseased conditions), and easy localization of

anchor points. Due to the diverse qualities of the images and interference of noise and

lesions, full extraction of the vascular network is too time-consuming and unreliable.

Speed is important for applications such as real-time surgery control, and high volume

screening of retinal injuries. As a result, we choose the bifurcation points and cross-

over points of the vascular network as registration features of retinal images.

Using bifurcation points for registration allows fast extraction of the vascular

network at certain loss of precision in detection of vessel shapes. We propose a fast

vessel detection method, which extracts a coarse map of blood vessels, and then

look for the registration points from the map. This approach was found to be quite

adequate for registration applications. The fast blood vessel extraction scheme is

similar to the scheme described in chapter II. First, the green channel of the color

fundus image is extracted, and then its intensity values are inverted so that blood

vessels have higher intensities than the background. The illumination variance across

the image is first reduced by the equalization scheme proposed in [28], and then

our contrast enhancement scheme (2.1) is applied to enhance the contrast of blood

vessels. The enhanced map is quantized and normalized to the range of [0,255], and

then segmented by thresholding (threshold = 100, an empirical setting) to obtain a

coarse blood vessel map. The coarse blood vessel map of the image in Figure 12(a)

is shown in Figure 13(a).

Figure 13(a) shows that our scheme can extract the majority of large vessels

and some background noise. The thinning algorithm proposed in [58] is applied to

the coarse blood vessel map to obtain centerlines of blood vessels, and short lines

are removed. Pixels that are adjacent to three or more other (centerline)pixels are

candidate registration points, and they are inspected by using OFRs to determine

if they are indeed bifurcation points. A candidate registration point is accepted as



48

(a)

(b)

Figure 13: (a) An coarse blood vessel map and (b) its thinned centerlines as well as

the extracted feature points that are highlighted in blue.
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a bifurcation point if it has three or four local maxima of OFR. For the example

depicted in Figure 13(b), black lines are centerlines of the blood vessels in the coarse

vascular network, and blue points represent the identified bifurcation points.

2. Matching of Registration Points

The objective of matching of registration points is to establish the best correspondence

between registration points, so that the affine transform can be obtained from the

best matched registration points. Local structure descriptors of registration points

are used to establish a correspondence relationship between the two images being

registered. OFR is a well suited descriptor for orientations, widths, and branch

angles [9] of blood vessels adjacent to a registration point u. Local maxima of OFR

give orientations of adjacent vessel branches. The angle between orientations of local

maxima is indeed the angle between two branches. And the magnitudes of OFR

represent the widths of branches.

Let ∆t denote the atomic unit for measurement of the orientation, and n =

2π/∆t is the number of OFR observations. The OFR vector for u observed at the n

orientations is expressed as


u = (OFR∆t(u), . . . , OFRn∆t(u)), (3.1)

where OFRi∆t(u) is the OFR at point u along direction i∆t. Knowing that two

registering images can be taken under highly different illuminating conditions, the

OFR vector is normalized so that ‖
u‖ = 1, where ‖ · ‖ is the Euclidean norm. The

similarity between two feature points u and v is measured by their Euclidean distance

d(
u,
v) =

√√√√ n∑
i=1

[OFRi∆t(u) − OFRi∆t(v)]2 (3.2)
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For a registration point u in the first image, its corresponding point in the second

image is determined by a back-and-forth search scheme. That is, for u we first find a

registration point u′ in the second image, where the difference between OFR vectors

of the two points is smallest. Reversely, for the just chosen u′, we search for u′′ in

the first image, so that the difference between their OFR vectors is the smallest. If

u = u′′, a correspondence between u and u′ is established. Otherwise, no match.

The angular difference between the images caused by movements of eyes or/and

camera should be considered in searching of the correspondence points. That im-

plies the possible shift between OFR vectors of corresponded registration points. To

accommodate this condition, (3.2) is revised to the following expression, where the

angular difference between the two registering images is upper-bounded by J∆t, and

J was empirically set to be 2 when ∆t = π/18.

d(
u,
v) = min
|j|≤J

√√√√ n∑
i=1

[OFRi∆t(u) − OFRmod(i+j,n)·∆t(v)]2 (3.3)

3. Estimation of Transformation

Four transformation models have been widely used for mapping of corresponded reg-

istration points in the literature. The first is the affine transformation, which maps

straight lines to straight lines, and preserves parallelism of lines. The affine transform

can be implemented by the combination of a linear transformation and translation.

An affine transformation is defined by the following six parameters:

⎛
⎜⎝ x′

y′

⎞
⎟⎠ =

⎛
⎜⎝ a1 a2

b1 b2

⎞
⎟⎠

⎛
⎜⎝ x

y

⎞
⎟⎠ +

⎛
⎜⎝ a0

b0

⎞
⎟⎠ (3.4)

where (x, y) and (x′, y′) are the coordinates of the corresponding points in the two

images, ai and bi are the parameters that specifies the transformation.
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The second transformation is the bilinear transformation, which is the simplest

polynomial transformation to map straight lines into curves. It has eight parameters

and is expressed by

x′ = a0 + a1x + a2y + a3xy

y′ = b0 + b1x + b2y + b3xy

(3.5)

The third model, the projective transformation maps straight lines to straight

lines without preserving parallelism of lines. This transformation is expressed by

⎛
⎜⎜⎜⎜⎝

u

v

w

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x

y

1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎝ x′

y′

⎞
⎟⎠ =

⎛
⎜⎝ u/w

v/w

⎞
⎟⎠ (3.6)

where w represents the extra homogeneous coordinate. The projective transformation

contains nine parameters, while only the ratio of parameters is important.

The fourth model, the quadratic transformation, proposed in [43], is derived

from the combination of rigid transformation, weak-perspective camera model, and a

quadratic surface model of retina. It is defined by twelve parameters as follows.

⎛
⎜⎝ x′

y′

⎞
⎟⎠ =

⎛
⎜⎝ a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

⎞
⎟⎠

(
x2 xy y2 x y 1

)T

(3.7)

Among these transformation models, the quadratic transformation has the best

smoothness but the highest computing costs, with 12 parameters that need to be

estimated. The affine transformation has the least degree of freedom. It outperforms

the bilinear and projective transformations in terms of registration accuracy [47]. A

further important consideration about the transformation choices is that many retinal

images have poor illumination conditions, or significant presence of lesions over the

whole image. For these images, only a small number of blood vessels can be detected

reliably, and thus only limited number of registration points can be used. Putting
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these factors together, we adopt the affine transformation in our study.

The six parameters of the affine transformation can be estimated by solving the

following system of linear equations, based on k pairs of corresponded registration

points.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x′
1 y′

1

x′
2 y′

2

...
...

x′
k y′

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1

x2 y2 1

...
...

...

xk yk 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1 b1

a2 b2

a0 b0

⎞
⎟⎟⎟⎟⎠ (3.8)

where (xi, yi) and (x′
i, y

′
i) are the coordinates of two corresponded registration points.

Since the affine transformation has six parameters, three pairs of corresponded regis-

tration points are enough for parameter estimation. However, considering that regis-

tration may be accurate only around the employed registration points, it is better to

use all available correspondences of registration points to improve the performance.

When k > 3, as in most practical cases, we solve the system using the singular-value

decomposition (SVD) method [59].

The SVD method is based on the fact that any matrix A with M rows and N

columns can be factored as

A = U · [diag(wj)] · V T , (3.9)

where U(M × M) and V (N × N) are unitary matrices (i.e., UUT = I, V V T = I),

and [diag(wj)] is an M × N diagonal matrix. The pseudo-inverse of A is defined as

A+ = V · [diag(1/wj)] · UT (3.10)

Thus, the solution of the equation Ax = b is given by x = A+b.

Using the estimated affine transformation, one image can be mapped to the
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coordinate system where the other image locates, and the two images are then fused.

C. Performance Evaluation

Our retinal image registration scheme was implemented in C#, and its performance

was evaluated on a (Pentium 4 CPU 2GHz, 512MB RAM) PC that runs MS Windows

XP. Fourteen pairs of retinal images ranging from good to poor image qualities were

used to test our scheme. The average registration time for two 900 × 600 images is

about 15 seconds, much faster than most existing registration methods [43][47][60].

The accuracy of the registration scheme is further assessed visually and by quan-

titative measures. Visual assessment of registration results is based on a checkerboard

mosaic image of the two images, and by superposition of the transformed extracted

vessels of one image onto the other image. A good registration is one with a good

superposition of blood vessel centerlines. Figure 14(a) shows an example of superpo-

sition, where the green dots in the image represent the registration points extracted

and used for registration.

The checkerboard is composed by the interleaving grids extracted from the refer-

ence and transformed images. A good registration is one with smooth connection of

blood vessels from grid to grid. Figure 14(b) shows an example of the checkerboard

composition.

Typical numerical measures of registration algorithms include standard devia-

tion, entropy, cross-entropy, spatial frequency [44]. In our study, we measure the

registration performance by the registration error, similar to the one defined in [43]

as follows. Let A be the image mapped into the coordinate system of B. The registra-

tion error between A and B is the median of the distances from all centerline pixels

on A to their nearest centerline pixels on B.
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(a)

(b)

Figure 14: Registration result of the two images shown by: (a) the superposition, (b)

the checkerboard.
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These, and other similar measures work fine for good quality images, but they

are not applicable to images that have significantly different image qualities, or when

occlusion occurs. For a blood vessel located in the overlapping area of A and B, it

may appear in one image but does not show up in the other image. Therefore, we

modify the performance measure as follows.

Assuming the image with less centerline pixels to be A, we define the neigh-

borhood as a square window with size 50 by 50. For a centerline pixel p in the

neighborhood of a feature point of A, it is considered a matched pixel if in the neigh-

borhood of p one can find a centerline pixel of B. The correspondence of p is the

centerline pixel of B in the neighborhood of p with the least distance to p. The per-

formance measure, median distance, is defined to be the median of all distances of

every matched pixel to its correspondence.

If the distance of a matched pixel to its correspondence is less than a specified

threshold, the pixel is considered to be a well-matched pixel. The registration score

is defined as the ratio of total number of well-matched pixels to the total number of

matched pixels in A. In this work, we choose 5 pixels as the threshold for well-matched

pixels, and 0.5 as threshold of registration score empirically.

The registration results for the thirteen tested image pairs are shown in Table

IV. Ten image pairs were successfully registered, with median difference between the

matched centerlines less than 2 pixels. Three image pairs were failed to be matched,

which can be captured by the large median differences and lower registration scores.

For comparison, the registration performance of the test images using their fine vessel

maps (detected by the algorithm proposed in Chapter II) is also included. The

performance data (except the last row) are worse than that of using coarse vessel

maps since more vessels are detected and appear in the fine vessel maps, and most of

them do not have correspondence.
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Table IV: Registration scores for test images: “R” denotes the registration is rejected,

and “A” denotes the registration is accepted.

image using coarse vessel map using fine vessel map

median distance score decision median distance score

1 4.0 0.17 R 16.8 0.11

2 3.7 0.21 R 8.7 0.10

3 1.8 0.76 A 2.5 0.69

4 1.0 0.90 A 2.4 0.81

5 1.0 0.96 A 2.3 0.87

6 1.1 0.89 A 1.0 0.86

7 1.0 0.93 A 1.4 0.85

8 1.2 0.80 A 2.3 0.69

9 1.0 0.72 A 2.1 0.60

10 1.2 0.82 A 1.9 0.70

11 1.0 0.96 A 2.2 0.87

12 1.1 0.94 A 1.9 0.83

13 3.4 0.36 R 2.6 0.78
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A main factor of failed registration is inconsistent detection of the bifurcation

points, due to the nature of coarse detections of the vascular networks. False registra-

tion can be reduced by using a more robust and precise blood-vessel detection scheme

like the one presented in Chapter II. Figure 15 shows an example of the superposition

of the vessel centerlines in the reference and transformed images using the vascular

maps detected by the algorithm presented in Chapter II. The superimposed map is

relatively clean with little noise due to more precise detection of blood vessels. Obvi-

ously, computing costs increase with precision of the vasculature map algorithms. By

switching between coarse and fine grained blood vessel maps, one can make flexible

tradeoff between speed and accuracy of the registration process.

Another reason that may lead to false registration is due to significant similar-

ities among local structures around registration points. Such significant similarities

would lead to incorrect correspondence between feature points. This problem can be

remedied by using additional reference structures, such as the centerline of the blood

vessels or the location of optic disks, to constrain the correspondence, or using robust

statistical techniques for feature extraction and matching [61]-[66].

D. Application to Detection of Laser Scars

In this section, we show one application of retinal image registration. The registra-

tion algorithm is applied to the image pairs taken before and after laser surgery for

detection of laser scars. The detection of laser scars in retinal images is importatnt as

it can help verify surgery results, and inspect physicians for incidental laser exposure.

However, the various intensity and contrast of laser scars in the images make the

general detection techniques such as global thresholding and edge detection unreli-

able. The similarity between the lesions and laser scars in terms of color and shape
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(a)

(b)

Figure 15: Registration result of the two images using their fine vascular maps: (a)

the superposition, (b) the checkerboard.
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(a)

(b)

(c)

Figure 16: Application of Registration result to detection of laser scars: (a) a cropped

retinal image containing laser scars; (b) the difference map between pre- and post-

laser-surgery images, (c) the detected laser scars in yellow color.
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causes the problem of laser-scar detection more complicated [3][67][68][69], as shown

in Figure 16(a).

The interference of noise and lesions on the detection of laser scars can be re-

moved or mitigated by using registration technique. In our experiments, we applied

the proposed registration scheme to the images photographed before and after laser

surgery. On the common frame, each image is first processed by illumination equal-

ization, and the intensity difference between two images is calculated. The difference

map is then normalized and quantized. Figure 16(b) shows a cropped difference map

between the images in Figure 12 after they are registered. In the figure, the laser

scars show the higher contrast against background than in the post-surgery image.

The other objects, such as blood vessels and exudates, are almost gone in the dif-

ference map. That is because they appear in the both pre- and post-surgery images

with similar intensity and they are canceled out in the difference map. Thus, the

difference map between the two aligned images taken before and after surgery is an

ideal one on which one can further process for laser-scar detection.

Using the difference map, the detection of laser scars can be performed automat-

ically by a computer-based algorithm. In the difference map, the laser scars have a

roughly round shape and blur contour. The intensity of a laser scar is highest at the

center, and it decreases gradually with increase in distance from the center, making

the two-dimensional Gaussian model an ideal analytical model for a laser scar. Based

on the observation, we develop a model fitting approach for laser-scar detection.

The Gaussian model is expressed by

z(p) = A · G(p, µ, Σ) + B, (3.11)

where

G(p, µ, Σ) = exp[−1

2
(p − µ)T Σ−1(p − µ)], (3.12)
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µ and Σ are the scar center and covariance matrix, respectively, A is the amplitude

of the scar, B is the intensity of the background, and z(p) is the estimated intensity

at the pixel by the model.

To capture the laser scars, we first locate the pixels in the difference map that

are local maxima of intensity. Then the regions around each local maximum are

matched with the Gaussian template. Each patch is defined by the local square

window centered at each local maximum. The parameters of the matched Gaussian

template are estimated by the maximum likelihood method (MLE). Thus, we have

µ̂ =
1

T
·

n∑
i=1

[I(pi) · pi], (3.13)

where T is the total sum of the intensities of the pixels inside the window, and

Σ̂ =
1

T

n∑
i=1

[I(pi) · (pi − µ̂)(pi − µ̂)T ]. (3.14)

Let the cost function be the square errors between real data and the estimated

Gaussian spot in each patch, A and B are chosen to minimize the cost function,

and we have

Â =

∑n
i=1 I(pi) · G(pi; µ̂, Σ̂)∑n

i=1 G(pi; µ̂, Σ̂)
(3.15)

B̂ =
1

n

n∑
i=1

[I(pi) − Â · G(pi; µ̂, Σ̂)] (3.16)

The matching error is evaluated in terms of the measure

T1 =

∑n
i=1[I(pi) − z(pi)]

2∑n
i=1[I(pi) − T

n
)]2

(3.17)

The size of each laser scar will be derived from the parameters. Figure 16(c) shows

the detection results. The majority of laser scars in the image were captured by the

model fitting algorithm. Another example of laser-scar detection is shown in Figure

17, where most laser scars (with different sizes) were detected.
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(a)

(b)

(c)

Figure 17: Another example of detection of laser scars by registration: (a) a cropped

retinal image containing laser scars; (b) the difference map between pre- and post-

laser-surgery images, (c) the detected laser scars in yellow color.
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CHAPTER IV

ROI-BASED WATERMARKING

A. Introduction

Digital watermarking is becoming increasingly important to protect authenticity and

ownership of digital images [70][71][72][73][74]. Digital watermarks can be roughly

classified as fragile or robust, based on their abilities to recover the watermark after

the watermarked image is altered. As its name implies, a fragile watermark is made

sensitive to image alternations, so that it becomes undetectable even after minute

alteration is made to the marked image. The schemes proposed in [75][76] embed the

(fragile) watermark in the least significant bit plane for perceptual transparency. The

method proposed in [77] uses a two-component Gaussian mixture model to describe

the statistical characteristics of the image and to generate the watermark. Robust

watermarks are designed to tolerate moderate level of distortions, so that a partially

damaged watermark can still be rendered for authentication or other purposes.

In most conventional watermarking techniques the watermark is embedded into

an entire image for full coverage/protection [78][79][72], but it imposes some limita-

tions on applications that are involved with multi-stage information processing, such

as target identification. Even though the low intensity-level watermark added to the

entire host image may appear to be unnoticeable to untrained eyes, it may interfere

the analysis accuracy of computer algorithms or human readers (radiologists, oph-

thalmologists, etc.) For applications involved with analysis of image contents, one

must exercise cautions in how and where to apply the watermark not to compromise

the critical information of the host image. In an informal test, a professional human

reader picked up small watermark blocks at the intensity level of 5, while regular
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readers could not notice them.

Selective watermarking [80] is more effective than full-image watermarking in

protecting the authenticity of images that may go through legitimate, multiple steps

of processing. Most image analysis applications have specific object types that are

considered to be regions of interest (ROI) of the analysis, i.e., analysis-ROI. The

remaining areas are less critical to the analysis function, and thus can be used for

watermarking, i.e., the watermark-ROI. This way, one or more watermarks can be em-

bedded to the watermark-ROI, and the integrity of the analysis-ROI can be protected

by digital signature or similar hash functions. The user can make flexible tradeoff

between the sizes of analysis-ROI and watermark-ROI to balance analyzability and

authenticity protection.

Generally speaking, three major issues need to be addressed in the design of a

watermarking system. The first issue is regarding the generation of watermark. A

watermark is typically a small pseudo-random sequence that may follow the Gaussian

[81], uniform, or bipolar distribution [82][83]. The second issue is on how to embed

the watermark into the host image. Watermark embedding can be done in the spatial

domain [84][85] or a transform domain, such as the discrete cosine transform (DCT)

[81], discrete Fourier transform (DFT) [79], or discrete wavelet transform (DWT)

[72]. The third issue is on how to recover the watermark from the watermarked

image. Watermark verification is usually done by testing the similarity between the

original and recovered watermarks using correlation [85] or hypothesis test [84], with

or without the presence of the original host image.

For selective watermarking, one could use shapes, sizes, or other image features

to divide the host image into the analysis- and watermark-ROI. A recent work on se-

lective watermarking is reported in [86], where feature points were extracted from the

host image by using the Mexican-Hat wavelet to partition the image into a Voronoi
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graph. Each region is independently watermarked by spread-spectrum modulation.

Another scheme reported in [85] divided an image into triangles by applying Delaunay

tessellation to feature points extracted by Harris detector. A triangle-shaped water-

mark is transformed to the exact shape of each triangle and then embedded into it.

The watermark is later verified by a statistical estimator.

The region-based watermarking method proposed in [84] makes the watermark

immune to geometric transformations by extracting multiple regions using the iterated

conditional modes method. The watermark is embedded to the bounding rectangle

of each region after rotation. The presence of watermark is verified by using the max-

imal response of the hypothesis test over all regions, plus a threshold-based decision

rule. False acceptance/rejection ratios of this method are both low when water-

marked images are attacked by popular image processing operations and geometrical

distortions.

Multi-purpose watermarking is an emerging area of research. In [87], two water-

marks are embedded to the Y channel for authentication, and to the I and Q channels

for compression, of a color image. In [88] an MD5 signature computed on a disease

region is encrypted with the patient information to form a digital envelope, whose bit

stream is embedded into the least significant bits of selected pixels. Image integrity

is verified by comparing the signature stored in the digital envelope against the one

computed from the image.

The method proposed in [86] exploits both spectral and spatial information to

embed robust watermark on user-defined ROI. The method in [89] protects the in-

tegrity of an ROI by embedding the watermark around the ROI. The watermark

bit stream is generated by progressive coding of a signature image, which is then

compressed by a hierarchical segmentation scheme.

Common attacks against a watermarking system include pixel level alternation
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(e.g., linear or nonlinear filtering, JPEG compression, noise addition) [90][91][92],

breaking the synchronization between the image and the watermark (e.g., rotation,

shear, cropping) [93][79], producing fake original or watermarked images (e.g., inver-

sion attack [94]), or removing the watermark (e.g., collusion attack [95]). Many more

exotic attacks can be added to the list, yet for practical purposes most watermark-

ing techniques proposed in the literature focused on robustness against compression,

noise addition, low-pass filtering [90][91][92], and geometric distortions [79].

In this chapter, we propose a selective watermarking system for image authen-

tication. We use the vascular network in the retinal image as the watermark-ROI

to order and embed watermarks. Automatically detected blood vessels are used for

synchronization of embedding and recovery of the watermark. Two different order-

ing techniques are developed to compare their robustness against different attack

schemes. Watermark is detected by a blind detector [96] without using the original

image. Selection and marking of the watermark-ROI, i.e., blood vessels, can be done

in the spatial domain, or other domain like discrete wavelet transform (DWT,) but

for simplicity we will only consider the spatial domain here.

Different from the schemes proposed in [84][85], where the watermark is marked

in each region, we use selected linear segments across the image as the watermark-

ROI, so that analytical-ROI, which can be lesion such as exudates, hemorrhages, etc,

can be marked independently. It allows flexible protection of specific areas in multi-

stage processing without compromising the watermark. Testing results show that our

scheme is robust against common image processing and geometric attacks.

The rest of this chapter is organized as follows. Section B describes the ROI

detection and synchronization. Section C describes the watermark embedding and

detection. In Section D, the experiment results on testing images are presented.
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B. ROI Detection and Synchronization

Blood vessels are usually broadly dispersed across an image, but occupy only a frac-

tion of the image area. We will discuss how to automatically locate, order, and

embed/recover the watermark on the vascular network of retinal images, so that the

vascular network and their surrounding areas can be used as either analysis-ROI or

watermark-ROI. In our subsequent discuss, we use the two training images in Fig-

ure 18 to examine algorithmic steps. Then, eight additional testing images, all of

them obtained from the STARE retinal image database [7], will be used to test the

performance of our scheme.

The first step of watermark embedding is extraction of blood vessels. Then, de-

tected blood vessels are divided between bifurcation points, and ordered in a rotation-

invariant fashion. Following the ordering sequence, watermarks are embedded into

the chosen flow segments. For watermark detection, blood vessels are first segmented

and ordered in a similar manner, and then a statistical test is used to detect presence

of the watermark.

1. Blood Vessel Segmentation

Blood vessel segmentation, and ordering of the segmented vessels are required for

both watermark embedding and recovery. First, blood vessels are extracted by the

algorithm proposed in Chapter II. Then, the center lines of extracted blood vessels are

located by a thinning algorithm [58]. For ordering of blood vessels, the bifurcation

points of the central lines are removed, so that vascular central lines are divided

into disconnected flows. The length of each flow is defined as the sum of Euclidean

distance of consecutive pixels on the centerline of the flow, and the width of a flow is

defined as the average diameter of the cross-sections of the actual blood vessel at the
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(a) (b)

(c) (d)

Figure 18: (a)-(b) Two sample retinal images (077 and 163); (c)-(d) the centerlines

of the detected vascular networks of the two sample images.
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flow.

The performance of blood vessel segmentation is affected by geometric distortions

and image processing routines. For instance, the two graphs in Figure 19 are the

blood vessel maps detected from an image before and after it is compressed by JPEG

routine, where the highlighted areas are the inconsistent detection outcomes due to

compression. Segmentation inconsistencies are inevitable, especially for small blood

vessels, when the original image is altered. As a result, we will only use relatively large

blood vessels for watermarking, to minimize the effects of segmentation variations.

For the tested images with size 700× 605, only the blood vessels whose diameters are

equal to or larger than 3 pixels are selected for watermarking.

To examine the effects of different distortions on the segmentation outcomes, we

adopt the score function in [85] for robustness evaluation,

g =
Npre − (Nadd + Nls)

Nini

(4.1)

where Nini denotes the number of pixels on the central lines of the segmentation map

of the original image, and Nadd, Nls, Nprerepresent the number of pixels that have

been created, destroyed and preserved after distortion. The score function s = 1

when Ncre = Ndes = 0, but it decrease to be smaller than one after the image is

altered. Nineteen different processing routines, i.e., additive noise (salt-pepper and

Gaussian), 3×3 low-pass filters, JPEG compression and geometric distortions (scaling

and rotation) are applied to the two training images in Figure 18, and the results are

given in Table V.

As shown in Table IV, the segmentation scores under these distortions range

from 0.72 to 0.96, and from 0.77 to 0.96, respectively, for the two training images,

where scaling has the most significant effects among all distortion effects, because
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(a)

(b)

Figure 19: The segmentation inconsistency due to the distortion: the highlighted area

by rectangles and circles show the difference in the segmentation maps of an original

image and the respective JPEG-compressed image with quality factor 80.
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Table V: Segmentation scores under different distortions.

Distortion Sample image 1 Sample image 2

salt-pepper noise (21.8dB) 0.72 0.79

salt-pepper noise (28.0dB) 0.88 0.92

Gaussian noise (33.6dB) 0.82 0.89

Gaussian noise (40.5dB) 0.90 0.94

mean filtering 0.93 0.94

median filtering 0.94 0.96

Gaussian filtering 0.96 0.96

JPEG90 0.95 0.95

JPEG80 0.92 0.94

JPEG70 0.90 0.93

JPEG60 0.92 0.94

5% downsized 0.91 0.91

10% downsized 0.86 0.89

15% downsized 0.81 0.80

20% downsized 0.77 0.77

10o rotation 0.90 0.91

20o rotation 0.92 0.96

30o rotation 0.90 0.95

40o rotation 0.93 0.92
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change of sizes of blood vessels (after scaling) directly affects the parameter setting

of the detection filter. Otherwise, the blood vessel detection is highly robust against

low-pass filtering, JPEG compression and rotation. It is observed that even when the

score drops to 0.72, shapes and relative locations of blood vessels change little.

In addition to consistency in segmentation of large vessels, the location of the

centroid of all centerline pixels was found to be relatively invariant to the distor-

tions. We evaluated the sensitivity of displacement of the centroid with respect to

the number of centerline pixels used in calculating the centroid. The displacement

of the centroid, i.e., the distance between the centroid of the original image and that

of a distorted image, is calculated for both training and testing images, and for each

of the distortions under consideration. The pixels are selected by choosing one pixel

from every t consecutive pixels on the centerlines, where t varies from 1 to 6. Ta-

ble VI shows that for all the images, the average displacements over the distortions

are small, less than 3.3 pixels. This property is used to design a rotation-invariant,

scaling-invariant ordering scheme of flows.

2. Delaunay Tessellation Ordering

The objective of the flow ordering is to synchronize the embedding and recovering

of the watermark. Knowing that detection of bifurcation points, especially those

connected to relatively small blood vessels, are susceptible to noise distortion, the

spanning tree based technique is not considered. Furthermore, selection of image fea-

tures for rotation-invariant, scaling-invariant watermarking needs to reliably identify

the same set of watermarking locations after attacks. Obvious object features, such

as length or width of blood vessels cannot be used for this purpose, because of the

close resemblance of blood vessels.

Instead, we propose a global and a local flow-ordering algorithm, using flow
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Table VI: Average displacement (∆x, ∆y) of centroid over all distortions.

Image\t 1 2 3 4 5 6

077 1.10,-1.33 1.19,-1.35 1.24,-1.36 1.13,-0.90 1.16,-1.03 0.89,-1.16

163 -0.07,-3.26 0.04,-3.06 0.15,-3.33 0.15,-3.33 0.31,-3.18 0.35,-2.96

001 0.13,1.68 0.01,1.42 -0.10,1.95 0.16,1.29 -0.21,2.32 -0.61,1.67

081 0.78,-2.04 0.71,-2.08 0.92,-2.14 0.38,-2.31 1.10,-1.99 1.15,-2.66

082 0.69,-1.68 0.69,-1.62 0.53,-2.12 0.67,-1.58 0.74,-1.36 0.90,-1.89

162 2.00,-1.89 1.91,-1.82 2.03,-2.10 1.97,-2.19 1.61,-1.88 1.72,-1.92

235 0.55,-0.29 0.64,-0.38 0.20,-0.01 0.98,-0.34 0.58,-0.09 0.76,0.26

236 1.34,-0.81 1.42,-0.83 1.24,-0.92 1.39,-1.27 1.62,-1.11 1.51,-0.72

239 0.33,-1.57 0.44,-1.82 0.04,-1.42 0.58,-1.94 0.23,-1.83 0.33,-1.78

255 -0.99,2.48 -0.95,2.43 -1.07,2.39 -0.98,2.24 -0.87,2.28 -0.86,2.31

lengths, widths and relative locations of flows as their ordering criteria. Through

extensive experiments, we observed that relative locations of flows remain highly

constant under different distortions, where the flow location is defined as the middle

point of a flow. As a result, in the first (global) order scheme we adopt the well known

Delaunay tessellation (DT) [97] to order the flows during embedding and recovery of

the watermark. In the local ordering scheme, a set of random points are generated

by a key. Following the generating order of these points, flows in areas adjacent to

these points are then selected based on certain flow features.

In addition to its low computing cost [98], the tessellation configuration does not

change if the vertex displacement is within its stability area [99]. Furthermore, the

Delaunay tessellation is unique if cocircularity does not occur to P [97], where P is the

set of nodes being connected. Cocircularity refers to the condition that the existence
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of a circle that intersects with at least four points of P, and remaining points of P

are outside of the circle. This condition can be easily eliminated, because a middle

point can be replaced by its adjacent pixel on the flow to disrupt the cocircularity

with little effect on the Delaunay tessellation of flows. DT ordering can be easily

implemented as follows.

Let P denote the set of flow locations of n longest flows in the image, plus the

node o, which is the centroid of the centerline pixels of all flows. After the Delaunay

tessellation, all points in p are interconnected by a number of non-overlapping trian-

gles. Next, we order flows based on the following rules, using an array D and a stack

E to record the vertices and edges of triangles, respectively.

1) 1) Draw a line L to connect o with the middle point of the longest flow.

Starting from o, find its adjacent triangle T1 that intersects with L;

2) Add the other two vertices (except o) of T1 into D, and the three edges of T1

into E in the counterclockwise order with respect to o. The chosen vertices and edges

are marked so that they cannot be added to D and E again later.

3) Remove the edge e on the top of E. If e is shared by another triangle that has

not been completely marked, add the un-marked vertex of the triangle into D, and

add the un-marked edges into E in the counterclockwise order.

4) If E is not empty goes to Step 3).

5) Vertices in D represent a rotation-invariant ordering of the selected flows.

An example of DT-ordering is illustrated in Figure 20. The triangles represent

the Delaunay tessellation, and the number around each vertex is the index of the flow

after ordering. Here, each vertex is the middle point of a selected flow, except for

vertex 0, which is the centroid of all pixels on the centerlines.
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(a)

(b)

Figure 20: DT-ordering results for the two training images: the triangles are generated

by the Delaunay triangulation. Each vertex is the middle point of a selected flow,

except vertex 0 that is the centroid of all pixels on the centerlines. The number

around each vertex is the index of the flow after sorting. For good visual effects, 30

longest flows are selected in this example.
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3. Randomized Flow Ordering

Relative locations of the vascular flows remain highly constant under different distor-

tions. First, the location of the centroid, i.e., the red dot located at center of Figure

21, of all center-line pixels is highly invariant to distortions. In our experiments, the

average displacement of the centroid location under different distortions is less than 3

pixels. Second, the covariance matrix of all centerline pixels is also relatively constant

to the distortions. As shown in Figure 21, the red ellipse on each image illustrates the

covariance matrix, whose orientation and size are determined by the eigenvectors and

eigenvalues of the matrix, respectively. For most non-rotation distortions, the ellipse

of the distorted image has nearly identical orientation and size as that of the original

image, which is shown in Figure 21(b). For rotations, the ellipse of the distorted im-

age is also rotated with the same degree as the image, but its size remains unchanged,

as shown in Figure 21(c). In fact, the ellipse represents the spatial distribution of the

pixels on a vascular network, and the orientation of the ellipse always points to the

same location of the vascular network.

The covariance matrix is a widely used descriptor of a geometric structure. That

is, the location covariance matrix of the vascular network can be calculated by

C =
1

M

M∑
i=1

[(pi − o)(pi − o)T ], (4.2)

where C is a 2 × 2 matrix, M is the number of all centerline pixels, and pi and o

are respectively coordinates of pixels on the centerlines and the centroid, expressed

as column vectors.

The two eigenvalues of C, λ1, λ2 (assuming λ1 > λ2), and their corresponding

eigenvectors, φ1, φ2, can be used to construct a rotation-invariant coordinate system.

φ1 and φ2, commonly called the principal directions [100], are perpendicular to each
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(a) (b)

(c) (d)

(e) (f)

Figure 21: Geometric structure of the vascular network for (a-b) the original training

images, (c-d) the Gaussian-filtered images, and (e-f) the rotated images. The red

dot near the center of each image denotes the centroid of the centerline pixels. The

covariance matrix is illustrated by the red ellipse, whose orientation and size are

determined by the eigenvectors and eigenvalues of the matrix.
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other. Let θ be the angel between φ1 and x-axis. We build a new coordinate system

by taking o as the origin, the direction pointed by φ1 as x-axis, and one perpendicular

direction as y-axis. The directions of x-axis and y-axis follow the right-hand rule so

that the z-axis points to the reader.

Each random point is first translated and scaled by

x′
i = (2xi − 1) · λ1/l

y′
i = (2yi − 1) · λ2/l

(4.3)

where l is a scale factor so that the dynamic range of (x′
i, y

′
i) is within the image size.

Then, a transformation (rotation plus translation) with respect to the new coordinate

system is performed by

x′′
i = x0 + x′

i cos(θ) − y′
i sin(θ)

y′′
i = y0 + x′

i sin(θ) + y′
i cos(θ)

(4.4)

The transformation generates a sequence of locations, denoted by {qi = (x′′
i , y

′′
i ), i =

1, 2, . . . , n}. When an image is geometrically transformed, so are the centroid point

and the covariance matrix. Thus, the locations determined based on o and C remain

invariant to the structure of vascular network in the image.

Let Ai denote the circular area centered at qi with radius r. Among the flows that

pass through Ai, the flow can be selected for ordering based on one of the following

rules:

1) rand-nearest : Select the flow that is nearest to qi, where the distance of a flow

to qi is the minimum of the Euclidean distances of all centerline pixels of the flow to

qi.

2) rand-longest : Select the longest flow that passes through Ai.

3) rand-widest : Select the widest flow that passes through Ai.
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4) rand-most : Select the flow that has the most pixels in Ai.

It is possible that no flows pass through Ai. In this case, qi is recorded. After all

locations are processed, the neighborhood for each recorded location is extended to

the entire image, and the same rule is applied to the recorded locations for assigning

flows for them. We note that by setting the initial radius smaller than the image size

limits the scope of incorrect ordering due to image distortion. This is an important

factor that contributes to the better performance of this scheme than that of DT-

ordering.

4. Performance Comparison of Flow Ordering Algorithms

We used the two training images as benchmark to test the performance of a) DT-

ordering method combined with flow length (global-length) and flow width (global-

length), and b) randomized ordering schemes in conjunction with the four flow order-

ing rules, under distortions mentioned earlier. Synchronization ratio (s-ratio), which

is defined as the number of correct orders divided by the total number of selected

flows, is the primary performance measure. Here, a particular order is considered

correct if a flow is selected in both the original and distorted images with the same

order in the set of selected flows.

The s-ratios for n = 50 are plotted in Figure 22, where the x axis represents the

value of r, and the y axis represents the average s-ratios over all distortions, where the

s-ratios of the global ordering schemes is independent of the r value. It is clear from

Figure 22 that s-ratios of all four randomized ordering algorithms are higher than

that of the two DT-ordering algorithms, because in DT-ordering misordered flows

cause mis-ordering of remaining flows. Among the four randomized ordering rules,

rand-nearest performs best, and rand-widest worst. The rand-nearest rule attains the

higher s-ratios (greater than 0.8 for the first image, and around 0.65 for the second
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one) when r ranges from 20 to 40. It is thus chosen for design of the watermarking

scheme.

C. Watermark Embedding and Detection

In this section, we present the watermark embedding and detection routines using

a watermark that consists of a sequence of uniformly distributed random 1/0 bits,

whose seed is protected by a key k2. The total number of watermark bits, the number

of selected flows, and the number of bits on each flow are user inputs. Locations of

the m blocks on a flow can be randomized using a secret key k3, but for simplicity

we assume that watermarking locations are evenly distributed on a flow.

Each watermark bit is encoded by modifying the intensities of pixels in a neigh-

borhood of the determined location. To reduce visibility of watermark, the neighbor-

hood should have a similar shape with flows or blood vessels. In this work, we choose

a rectangular block to embed a watermark bit in the vessel, with two orientations of

the block parallel with and perpendicular to the local flow direction. The dimension

of the block is designed to be adaptive to the local flow width. The intensity of each

pixel inside the block is updated according to the value of the watermark bit. That

is, if the bit is 1, the intensities of pixels will be increased, otherwise, decreased.

A simple approach of updating each pixel’s intensity by the same constant value

would make the watermark visible, due to the abrupt intensity change from blocks

to un-marked areas on the flows. To reduce such changes, we can make the intensity

change smoothly on blocks and from blocks to adjacent areas on the flow. One

implement, as did in our work, is to make the intensity change of pixels in the block

following a Gaussian template. Here, the intensity change at the center of block

is maximal, and it decreases gradually toward the boundary. The two-dimensional
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Figure 22: Performance comparison over the four local ordering algorithms and two

global ordering algorithms for the two training images.
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Gaussian kernel of size bx × by can be expressed by ∆I(x, y) = α exp(− x2

2σ2 ), where

σ = 0.3bx. The kernel is then translated and rotated so that the x-axis orientation

of the kernel is parallel with the flow direction, and the kernel is centered at the

determined location.

The block size, or the Gaussian kernel size, need to be configured to balance the

tradeoff between the invisibility and recovery accuracy of the watermark. Small block

size results in the rapid intensity change on the block, making it distinct from un-

marked areas on the same flow. Large block size allows the smooth intensity change

on the block, at the cost of lower watermark embedding rate (the ratio of watermark

size to the size of host image) or even interference to the adjacent blocks.

In addition to the visual performance, we also need to consider the effect of block

size on the recovery performance of watermark, where the recovery performance is

defined as the percentile of correctly estimated watermark bits. We tested various

block sizes with bx ranging from d to 4d, and by varying from 1 pixel, 0.5d, to d, where

d is the local flow width. The experiments on the two training images, using different

α values and the two watermark recovery techniques (that will be introduced shortly),

show that the maximal recovery performance is achieved when bx = 3d and by = d.

Hence, such configuration of the block size is used in the following experiments.

Watermark detection follows a process very similar to that of watermark embed-

ding, except for the step of recovering/detecting the watermark in each synchronized

block. Here, k2 is used to regenerate the expected watermark bit sequence, and k3

is used to locate blocks in each selected flow. A simple majority rule can be used to

detect the embedded watermark bit on each block when the original image is avail-

able. That is, for each watermarked block, the watermark bit is estimated to be 1

(0) when the intensities of the majority of pixels in the block of the testing image are

larger (lower) than those in the original one.
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The design of a blind detector, i.e., detecting watermark bits without using

the original image, is more complicated. The key issue here is how to estimate

certain properties of the original image, so that it can be used by the watermark

recovery algorithm reliably. Here, we propose a simple intensity estimation technique,

block-mean, and compare its performance with the well known Wiener filter that is

widely used in the watermark literature [101][102]. Wiener filter is based on the

principle of minimizing the mean square errors between the restored images and

true images, and it is applied to an entire image without considering the differences

between background and foreground information in our experiments.

The block-mean algorithm is based on the observation that in the green channel,

the pixel intensities along the vessel cross section is approximately a Gaussian distrib-

ution, and the distribution does not change rapidly along the flow direction [5][22][24].

As a result, we can estimate the flow intensities on the flows (of the original image)

from the testing image by taking the average of the intensity of all blocks centered at

every pixel of the centerline.

We compared the watermark recovery performance of the two estimation tech-

niques for the two images in Figure 18, after they are distorted by the different

distortions listed in Table V. Results on distorted images are given in Figure 23,

where the recovery performance is defined as the average percentile of correctly es-

timated bits when the flow ordering is free of any error. The watermark recovery

performance using the block-mean technique on the original image is also presented

here as a comparison reference.

From the results shown in Figure 23, one can see that for the two blind detectors,

the block-mean algorithm outperforms Weiner filter. This is attributed to the fact

that block-mean uses the information on the same flow to estimate the block intensity,

while Wiener filter simply uses the entire image for restoration, without differentiation
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Figure 23: Performance comparison of the watermark recovery schemes based on

block-mean and Wiener filter.
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between the foreground (blood vessels) and background. In addition, the performance

of the mean-block algorithm based on the testing image is very close to that based

on original images. Therefore, we adopt the block-mean technique for the rest of

discussion due to its better performance and much lower computing overhead.

Obviously, the estimation accuracy increases with the α value, but at the cost of

increased watermark visibility. When α = 9, the watermark bits become noticeable

to naked eyes, see Figure 24(b). After some experiments, we chose the block-mean

based watermark estimation method with α = 6, by which the watermark is nearly

invisible, see Figure 24(c), and the watermark recovery performance is approximately

77% for the rest of discussion.

The final authentication decision is made by comparison of the detected water-

mark bit sequence with the original one. If the similarity value is greater than a chosen

threshold, the testing image is considered to be authentic. Otherwise, inauthentic.

The similarity between two watermarks is measured by their correlation coefficient

[85][81].

s(w, ŵ) =
w · ŵ√∑
i w

2
i

∑
i ŵ

2
i

(4.5)

D. Experimental Results

We have implemented and tested our scheme in Matlab that runs on Microsoft Win-

dows XP. The two sample images in Figure 18 were used as the training images. In

addition to the optimized parameters mentioned earlier, the other key parameters

are n = 50, m = 3. That is, fifty flows are selected for watermarking, each of which

contains three watermark bits.

The authenticity of a watermarked image is measured by using the likelihood

ratio test (LRT), because it has the lowest probability in decision error [100]. Let c1
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Figure 24: Watermark embedding: (a) the red squares present the locations where

the watermark bits are embedded. (b) The watermarked image with α = 9. (c) The

watermarked image with α = 6.
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and c2 denote the inauthentic and authentic classes, respectively. If P (c1|s) > P (c2|s),
the image is considered to be inauthentic; otherwise authentic, where P (ci|s) is the

posterior probability of similarity for ci. We used a training process to optimize the

decision threshold for the s values as follows.

One-hundred randomly generated watermarks were applied to each of the two

training images, and distortions were applied to the two training images, before and

after watermarking. The training set of the inauthentic class (c1) consists of s values

generated by the watermark recovery routine on the distorted, un-watermarked im-

ages. The training set of the authentic class (c1) consists of the s values generated by

the watermark recovery routine on the distorted, watermarked images.

The histograms of the s values for the two classes are shown in Figure 25. Noting

that overlapping of c1 and c2 indicates that the decision error is inevitable for any

threshold value of s. Assuming that c1 and c2 have an equal prior probability, and

let the distributions of s for c1 and c2 be approximated by normal distributions, with

parameters estimated as µ1 = 0.33,σ1 = 0.075, and µ2 = 0.58,σ2 = 0.116, respectively.

By Bayes’ rule, we have

P (ci|s) =
P (s|ci)P (ci)

P (s)
(4.6)

Thus, the LRT decision rule becomes: if

1

σ1

· exp[−(s − µ1)
2

2σ2
1

] >
1

σ2

· exp[−(s − µ2)
2

2σ2
2

], (4.7)

the testing image is decided to be inauthentic, otherwise it is decided to be authentic.

Due to the absence of a generic model to characterize manipulation, we simulate

two simple cases of manipulation to test our algorithm. As shown in Figure 26, the

two blocks whose areas make up 19% of the entire image are altered by moving and

removing operations. In the first case, two blocks in a testing image are exchanged.
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(a)

(b)

Figure 25: (a) Histogram of the similarity value of the in-authentication class and (b)

histogram of the similarity value of the authentication class, where the two curves are

the approximated normal distributions.
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(a)

(b)

Figure 26: Two manipulation examples for a testing image: (a) two blocks in the

image are exchanged; (b) two blocks in the image are replaced by the uniform regions

with mean intensity of the entire image.
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In the second case, the two blocks in the image are replaced by the uniform regions

with mean intensity of the entire image.

Eight additional images of the retinal image database [7] were used to test the

performance of our scheme. The testing image set contains both healthy (pathology-

free) images and pathological ones, with various vasculature distribution and density.

The Matlab computation time for watermark embedding or detection of an image is

about one minute on a PC (2GHz Pentium 4 processor and 512 MB RAM). Table

VII gives the authentication results on the testing images against the distortions

mentioned earlier, and the two simulated manipulations. On average, the decision

accuracy is 89% for all the tested images. Low-pass filtering, JPEG compression

and rotation have less effects on accuracy of authentication. Impulse noise and size

scaling have the most significant performance impacts, mainly due to loss of accuracy

in segmentation of blood vessels. The two positive-false decisions on images 3 and 8,

after the “manipulation 1” effect, are due to the relatively small number of vessels

within the manipulated areas, so that only a few watermark bits are embedded to

the area.
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Table VII: Authentication results of the testing images against distortions and ma-

nipulations. “Yes” means that an image is decided to be authentic, and “No” means

that an image is decided to be inauthentic.

Distortion 001 081 082 162 235 236 239 255 Ground truth

Salt-pepper noise 1 Yes No Yes No Yes Yes Yes No Yes

Salt-pepper noise 2 Yes Yes Yes Yes Yes Yes No No Yes

Gaussian noise 1 Yes Yes Yes No Yes Yes Yes Yes Yes

Gaussian noise 2 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Mean filtering Yes Yes Yes Yes Yes Yes Yes Yes Yes

Median filtering Yes Yes Yes No Yes Yes Yes Yes Yes

Gaussian filtering Yes Yes Yes Yes Yes Yes Yes Yes Yes

JPEG90 Yes Yes Yes Yes Yes Yes Yes Yes Yes

JPEG80 Yes Yes Yes Yes Yes Yes Yes Yes Yes

JPEG70 Yes Yes Yes Yes Yes Yes Yes No Yes

JPEG60 Yes Yes Yes Yes Yes Yes Yes No Yes

downsize 5% Yes Yes Yes Yes Yes Yes Yes Yes Yes

downsize 10% Yes Yes Yes Yes Yes Yes No Yes Yes

downsize 15% No Yes Yes Yes Yes No Yes Yes Yes

downsize 20% Yes Yes No Yes Yes Yes No Yes Yes

Rotation 10 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rotation 20 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rotation 30 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rotation 40 Yes No Yes Yes Yes Yes Yes No Yes

Manipulation 1 No No Yes No No No No Yes No

Manipulation 2 No No No No No No No No No
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CHAPTER V

CONCLUSION

In this dissertation, I have investigated three major problems in medical image

processing. As a specific application, I studied the problems in segmentation, reg-

istration, and watermarking of retinal images. The segmentation results provide a

good basis on which the registration and watermarking can be performed. The regis-

tration of two or more images taken on the same retina provides a complete view of

the vascular network. The ROI-based watermarking scheme helps protect the image

from malicious manipulation without affecting analysis-ROI.

For the segmentation problem, I proposed an adaptive scheme for blood vessel

detection in color retinal images. The large and small vessels are treated as two

types of image objects and are characterized by different features extracted from

the pre-processed images. The vessel detection is performed by tracing along the

vascular networks with forward prediction and backward verification. The average

performance of our method over twenty tested images is 84.3% for true positive rate

(TPR), and 3.9% for false positive rate (FPR). For normal images, the TPRs range

from 80% to 91%, and their corresponding FPRs range from 2.8% to 5.5%. For

abnormal images, the TPRs range from 73.8% to 86.5%, and the FPRs range from

2.1% to 5.3%, respectively. Small vessels take up 42% of overall vessel pixels, where

75% of small vessels were captured by our method.

For retinal image registration, speed and accuracy are major concerns. The

performance of registration can be affected by many factors such as motions, illumi-

nation, and pathological changes, etc. To address this problem, I developed a fast

registration method that employs the feature points extracted from the coarse vas-

cular maps. It takes only 15 seconds to match two images, thus our method can
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be employed in real-time applications such as laser surgery. The experiments on a

number of retinal images with good and poor qualities show that our method is fast

and effective.

For the problem of image watermarking, I proposed a new ROI-based water-

marking scheme for image authentication based on linear patterns such as the blood

vessels in medical images. Several flow-ordering algorithms are proposed, and com-

pared for their performances. A simple watermark recovery method was developed,

whose performance was shown to be better than the existing techniques. The ex-

periment results show that our scheme can prove the image authenticity with high

probabilities under difference distortions.

During study of these three problems, geometric models are developed to charac-

terize the objects of different shapes in retinal images. The proposed robust segmen-

tation techniques can differentiate the ROIs from noise and lesion in the images with

good and poor illuminations. The registration scheme meets the needs of the robust-

ness and efficiency by using the coarsely extracted vascular network as landmarks.

It can relate the structures in different images and help detect the laser scars in

the post-surgery images. The ROI-based watermarking scheme uses extracted blood

vessels as reference locations for embedding and detecting watermark. The effect of

watermarking and distortions on the ROI segmentation and watermark synchroniza-

tion were carefully studied. The authenticity of image content can be verified by

comparing the recovered watermark with the original one. The proposed algorithms

in these three problems, although tested only on retinal images, can be extended to

other applications. Our study is expected to set a foundation to help development of

computer-aided diagnosis of diabetic retinopathy and other ophthalmologic diseases.
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