48 research outputs found

    Segmentation, registration,and selective watermarking of retinal images

    Get PDF
    In this dissertation, I investigated some fundamental issues related to medical image segmentation, registration, and watermarking. I used color retinal fundus images to perform my study because of the rich representation of different objects (blood vessels, microaneurysms, hemorrhages, exudates, etc.) that are pathologically important and have close resemblance in shapes and colors. To attack this complex subject, I developed a divide-and-conquer strategy to address related issues step-by-step and to optimize the parameters of different algorithm steps. Most, if not all, objects in our discussion are related. The algorithms for detection, registration, and protection of different objects need to consider how to differentiate the foreground from the background and be able to correctly characterize the features of the image objects and their geometric properties. To address these problems, I characterized the shapes of blood vessels in retinal images and proposed the algorithms to extract the features of blood vessels. A tracing algorithm was developed for the detection of blood vessels along the vascular network. Due to the noise interference and various image qualities, the robust segmentation techniques were used for the accurate characterization of the objects shapes and verification. Based on the segmentation results, a registration algorithm was developed, which uses the bifurcation and cross-over points of blood vessels to establish the correspondence between the images and derive the transformation that aligns the images. A Region-of-Interest (ROI) based watermarking scheme was proposed for image authenticity. It uses linear segments extracted from the image as reference locations for embedding and detecting watermark. Global and locally-randomized synchronization schemes were proposed for bit-sequence synchronization of a watermark. The scheme is robust against common image processing and geometric distortions (rotation and scaling), and it can detect alternations such as moving or removing of the image content

    Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confidence and Edge Measures

    Full text link

    Advanced retinal imaging: Feature extraction, 2-D registration, and 3-D reconstruction

    Get PDF
    In this dissertation, we have studied feature extraction and multiple view geometry in the context of retinal imaging. Specifically, this research involves three components, i.e., feature extraction, 2-D registration, and 3-D reconstruction. First, the problem of feature extraction is investigated. Features are significantly important in motion estimation techniques because they are the input to the algorithms. We have proposed a feature extraction algorithm for retinal images. Bifurcations/crossovers are used as features. A modified local entropy thresholding algorithm based on a new definition of co-occurrence matrix is proposed. Then, we consider 2-D retinal image registration which is the problem of the transformation of 2-D/2-D. Both linear and nonlinear models are incorporated to account for motions and distortions. A hybrid registration method has been introduced in order to take advantages of both feature-based and area-based methods have offered along with relevant decision-making criteria. Area-based binary mutual information is proposed or translation estimation. A feature-based hierarchical registration technique, which involves the affine and quadratic transformations, is developed. After that, a 3-D retinal surface reconstruction issue has been addressed. To generate a 3-D scene from 2-D images, a camera projection or transformations of 3-D/2-D techniques have been investigated. We choose an affine camera to characterize for 3-D retinal reconstruction. We introduce a constrained optimization procedure which incorporates a geometrically penalty function and lens distortion into the cost function. The procedure optimizes all of the parameters, camera's parameters, 3-D points, the physical shape of human retina, and lens distortion, simultaneously. Then, a point-based spherical fitting method is introduced. The proposed retinal imaging techniques will pave the path to a comprehensive visual 3-D retinal model for many medical applications

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces

    Contextual effects on visual perception

    Get PDF

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Incorporating spatial and temporal information for microaneurysm detection in retinal images

    Get PDF
    The retina of the human eye has the potential to reveal crucial information about several diseases such as diabetes. Several signs such as microaneurysms (MA) manifest themselves as early indicators of Diabetic Retinopathy (DR). Detection of these early signs is important from a clinical perspective in order to suggest appropriate treatment for DR patients. This work aims to improve the detection accuracy of MAs in colour fundus images. While it is expected that multiple images per eye are available in a clinical setup, proposed segmentation algorithms in the literature do not make use of these multiple images. This work introduces a novel MA detection algorithm and a framework for combining spatial and temporal images. A new MA detection method has been proposed which uses a Gaussian matched filter and an ensemble classifier with 70 features for the detection of candidates. The proposed method was evaluated on three public datasets (171 images in total) and has shown improvement in performance for two of the sets when compared to a state-of-the-art method. For lesion-based performance, the proposed method has achieved Retinopathy Online Challenge (ROC) scores of 0.3923, 2109 and 0.1523 in the MESSIDOR, DIARETDB1 and ROC datasets respectively. Based on the ensemble algorithm, a framework for the information combination is developed and consists of image alignment, detecting candidates with likelihood scores, matching candidates from aligned images, and finally fusing the scores from the aligned image pairs. This framework is used to combine information both spatially and temporally. A dataset of 320 images that consists of both spatial and temporal pairs was used for the evaluation. An improvement of performance by 2% is shown after combining spatial information. The framework is applied to temporal image pairs and the results of combining temporal information are analyzed and discussed

    Qualität und Nutzen - Über den Gebrauch von Zeit-Wert-Funktionen zur Integration qualitäts- und zeit-flexibler Aspekte in einer dynamischen Echtzeit-Einplanungsumgebung

    Get PDF
    Scheduling methodologies for real-time applications have been of keen interest to diverse research communities for several decades. Depending on the application area, algorithms have been developed that are tailored to specific requirements with respect to both the individual components of which an application is made up and the computational platform on which it is to be executed. Many real-time scheduling algorithms base their decisions solely or partly on timing constraints expressed by deadlines which must be met even under worst-case conditions. The increasing complexity of computing hardware means that worst-case execution time analysis becomes increasingly pessimistic. Scheduling hard real-time computations according to their worst-case execution times (which is common practice) will thus result, on average, in an increasing amount of spare capacity. The main goal of flexible real-time scheduling is to exploit this otherwise wasted capacity. Flexible scheduling schemes have been proposed to increase the ability of a real-time system to adapt to changing requirements and nondeterminism in the application behaviour. These models can be categorised as those whose source of flexibility is the quality of computations and those which are flexible regarding their timing constraints. This work describes a novel model which allows to specify both flexible timing constraints and quality profiles for an application. Furthermore, it demonstrates the applicability of this specification method to real-world examples and suggests a set of feasible scheduling algorithms for the proposed problem class.Einplanungsverfahren für Echtzeitanwendungen stehen seit Jahrzehnten im Interesse verschiedener Forschungsgruppen. Abhängig vom Anwendungsgebiet wurden Algorithmen entwickelt, welche an die spezifischen Anforderungen sowohl hinsichtlich der einzelnen Komponenten, aus welchen eine Anwendung besteht, als auch an die Rechnerplattform, auf der diese ausgeführt werden sollen, angepasst sind. Viele Echtzeit-Einplanungsverfahren gründen ihre Entscheidungen ausschließlich oder teilweise auf Zeitbedingungen, welche auch bei Auftreten maximaler Ausführungszeiten eingehalten werden müssen. Die zunehmende Komplexität von Rechner-Hardware bedeutet, dass die Worst-Case-Analyse in steigendem Maße pessimistisch wird. Die Einplanung harter Echtzeit-Berechnungen anhand ihrer maximalen Ausführungszeiten (was die gängige Praxis darstellt) resultiert daher im Regelfall in einer frei verfügbaren Rechenkapazität in steigender Höhe. Das Hauptziel flexibler Echtzeit-Einplanungsverfahren ist es, diese ansonsten verschwendete Kapazität auszunutzen. Flexible Einplanungsverfahren wurden vorgeschlagen, welche die Fähigkeit eines Echtzeitsystems erhöhen, sich an veränderte Anforderungen und Nichtdeterminismus im Verhalten der Anwendung anzupassen. Diese Modelle können unterteilt werden in solche, deren Quelle der Flexibilität die Qualität der Berechnungen ist, und jene, welche flexibel hinsichtlich ihrer Zeitbedingungen sind. Diese Arbeit beschreibt ein neuartiges Modell, welches es erlaubt, sowohl flexible Zeitbedingungen als auch Qualitätsprofile für eine Anwendung anzugeben. Außerdem demonstriert sie die Anwendbarkeit dieser Spezifikationsmethode auf reale Beispiele und schlägt eine Reihe von Einplanungsalgorithmen für die vorgestellte Problemklasse vor

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments
    corecore