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Abstract
Scheduling methodologies for real-time applications havebeen of keen interest to diverse research com-

munities for several decades. Depending on the applicationarea, algorithms have been developed that are

tailored to specific requirements with respect to both the individual components of which an application

is made up and the computational platform on which it is to be executed. Many real-time scheduling algo-

rithms base their decisions solely or partly on timing constraints expressed by deadlines which must be met

even under worst-case conditions. The increasing complexity of computing hardware means that worst-

case execution time analysis becomes increasingly pessimistic. Scheduling hard real-time computations

according to their worst-case execution times (which is common practice) will thus result, on average,

in an increasing amount of spare capacity. The main goal of flexible real-time scheduling is to exploit

this otherwise wasted capacity. Flexible scheduling schemes have been proposed to increase the ability

of a real-time system to adapt to changing requirements and nondeterminism in the application behav-

iour. These models can be categorised as those whose source of flexibility is the quality of computations

and those which are flexible regarding their timing constraints. This work describes a novel model which

allows to specify both flexible timing constraints and quality profiles for an application. Furthermore, it

demonstrates the applicability of this specification method to real-world examples and suggests a set of

feasible scheduling algorithms for the proposed problem class.

Zusammenfassung
Einplanungsverfahren für Echtzeitanwendungen stehen seit Jahrzehnten im Interesse verschiedener For-

schungsgruppen. Abhängig vom Anwendungsgebiet wurden Algorithmen entwickelt, welche an die spe-

zifischen Anforderungen sowohl hinsichtlich der einzelnenKomponenten, aus welchen eine Anwendung

besteht, als auch an die Rechnerplattform, auf der diese ausgeführt werden sollen, angepasst sind. Viele

Echtzeit-Einplanungsverfahren gründen ihre Entscheidungen ausschließlich oder teilweise auf Zeitbe-

dingungen, welche auch bei Auftreten maximaler Ausführungszeiten eingehalten werden müssen. Die

zunehmende Komplexität von Rechner-Hardware bedeutet, dass die Worst-Case-Analyse in steigendem

Maße pessimistisch wird. Die Einplanung harter Echtzeit-Berechnungen anhand ihrer maximalen Aus-

führungszeiten (was die gängige Praxis darstellt) resultiert daher im Regelfall in einer frei verfügbaren

Rechenkapazität in steigender Höhe. Das Hauptziel flexibler Echtzeit-Einplanungsverfahren ist es, diese

ansonsten verschwendete Kapazität auszunutzen. Flexible Einplanungsverfahren wurden vorgeschlagen,

welche die Fähigkeit eines Echtzeitsystems erhöhen, sich an veränderte Anforderungen und Nichtdeter-

minismus im Verhalten der Anwendung anzupassen. Diese Modelle können unterteilt werden in solche,

deren Quelle der Flexibilität die Qualität der Berechnungen ist, und jene, welche flexibel hinsichtlich ihrer

Zeitbedingungen sind. Diese Arbeit beschreibt ein neuartiges Modell, welches es erlaubt, sowohl flexible

Zeitbedingungen als auch Qualitätsprofile für eine Anwendung anzugeben. Außerdem demonstriert sie

die Anwendbarkeit dieser Spezifikationsmethode auf reale Beispiele und schlägt eine Reihe von Einpla-

nungsalgorithmen für die vorgestellte Problemklasse vor.
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Chapter 1

Introduction

Begin at the beginning and go on till you

come to the end; then stop.

Lewis Carroll

Deciding on appropriate actions within a system to achieve pre-defined goals, to meet certain

given constraints or as a reaction to the behaviour of the environment is a very general description

of problems existing in a wide variety of application areas,ranging from the field of economics

to computer science and engineering disciplines. Several terms have been coined for a series

of similar basic problems including planning, scheduling,allocation, timetabling, and configu-

ration. Most prominently, the expressions planning and scheduling are both frequently used for

concepts linking a set of environmental parameters to a methodology deciding on which actions

to perform at which time, in which order and using which resources. Traditionally, a planning

problem is defined on sets of states (including an initial state), actions, and one or several goals

which are to be achieved. The aim of a planning agent is to select appropriate actions in each

state and to perform them in a suitable order so that the system state ultimately transits from

the initial to (one of) the goal state(s). A typical planningproblem is travel planning, where the

result is an itinerary given a point of departure and a destination. On the other hand, traditional

scheduling problems are cast in terms of a set of activities and several kinds of constraints (e.g.,

resource, timing, or precedence constraints). The scheduler has to ensure that resources are allo-

cated to activities appropriately at each time instant, so that the constraints can be met. Maybe

the best-known classical scheduling problem is job-shop scheduling, where sets of tasks must be

executed on a set of machines subject to the precedence constraints that may have been posed on

the task set. Although the terminology within this work was taken from the scheduling area of
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2 CHAPTER 1. INTRODUCTION

research, the close relationship of the specific class of scheduling problems to planning means

that the results are applicable also to problems of the planning domain.

1.1 The Relationship between Planning and Scheduling

Both classes of problems can be categorised in several ways.Dean and Kambhampati [DK96]

suggest the following:

1. aim: either find some solution satisfying the constraintsand being sufficiently close to

a goal state (satisficing) or find the least cost or most rewarding solution satisfyingthe

constraints (optimising)

2. the a-priori knowledge of the dynamics of the environment: eitherdeterministic, nondeter-

ministic, or stochastic

3. representation of plans or schedules: eitherconditional(depending on future behaviour of

the environment) orunconditional(independent from future behaviour of the environment)

4. time variance of plans or schedules: eitherstationary(depending on current time) ortime

variant (independent from current time)

5. adaptivity: eitherclosed-loop(consequences of prior actions influencing future actions)or

open-loopsetting (consequences of prior actions not influencing future actions)

6. performance measure:goal-based(distance to final state) orcost-based/reward-based(dis-

counted cumulative cost or reward)

7. deliberation time:off-line (planning / scheduling prior to execution) oron-line(planning /

scheduling concurrent with execution)

Despite the similarities in the problem settings and the methods applied to solve them, there

is a common agreement that planning focuses more on action selection and action ordering,

whereas scheduling is more concerned with resource assignment and exact timing issues [Sau03].

It has been noted, however, that most practical applications feature characteristics from both ar-

eas. Contrary to the basic layout of planning problems, real-world applications tend to require

the ability to handle metric quantities, overlapping actions with finite durations, and very of-

ten some notion of a resource model. Similarly, most real-world scheduling problems require

more than only allocating resources to pre-specified activities over time; it is frequently neces-

sary to solve subproblems with planning characteristics like a simple selection among alternative
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processes (e.g., due to heterogeneous resource capabilities) or the synthesis of complex networks

of activities. We opted for the termschedulingin order to emphasise on the resource allocation

and real-time aspects in our specific problem, rather than the precedence ordering and alterna-

tive selection aspects. Nevertheless, our model is also applicable to related time-aware planning

domains.

In the following sections we will outline the motivation of our work and classify the approach

according to the criteria of [DK96].

1.2 Basic Real-Time Scheduling Terminology

Generally speaking, scheduling problems deal primarily with allocating resources to activities

over time. Resources can be machines in a production plant, personnel within a company, ve-

hicles of a transport enterprise, or processors of a computer system. The common terminology

identifies some of the resources needed to make progress in the problem domain as the major

driving entities and refers to them asprocessing units. Scheduling domains differ largely in the

order of magnitude of the time ranges within which they have to take action. Whereas many

production or personnel scheduling problems are aimed at time ranges of days, weeks, or even

months, processor scheduling usually deals with times in the area of milliseconds and below. Ob-

viously, the vast differences in the time domains result in different techniques to be applicable,

even though the basic problem aspects are similar. For the remainder of this thesis, we concen-

trate on scheduling problems for computing machinery, i.e., with allocating processors to the

elements of an application program.

All of today’s widely used operating systems support multitasking, which allows multiple

computations to run concurrently, taking turns using the processing units and other resources of

the computer. This has made it necessary to come up with elaborate schemes for distributing

these shared resources among different computations; processor scheduling deals with exactly

the problem of finding suitable distribution schemes.

In computer science, anapplication is the use of a technology, system, or product. More

specifically, the term application is a shorter form ofapplication program, i.e., a program de-

signed to perform a specific function directly for the user orfor another program. Applications

use the services of the computer’s operating system and other supporting applications and are

organised internally as sets of smaller units calledtasks. In real-time scheduling, a task is a ba-

sic unit of programming that the operating system or the runtime environment controls. Note

that unfortunately, the expressionstask, process, activity, or job are frequently used interchange-

ably; however, these terms do have distinct meanings in different contexts and may be used to
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add some structure to a task set (e.g., an application consisting of jobs, which in turn consist

of tasks). The time when a task becomes known to the system is called itsrelease time; within

this thesis, we assume that the release time equals the earliest time of activation of a task. Ob-

viously, the processing units in this class of scheduling problems can be identified as the set

of general-purpose and application-specific processors, and further resources are, e.g., memory

units, busses, and peripheral devices.

We are not going to investigate into methods for solving scheduling problems for applica-

tions without explicit timing constraints like office software, web browsers, or drawing pro-

grams; scheduling schemes for such problems are incorporated into any general-purpose oper-

ating system. In most cases, their objective is to maximise the throughput or to minimise the

average waiting time. Instead, we assume applications to beexecuted under real-time conditions.

A common misconception is that real-time operation is synonymous to fast operation. Real-time

computation can better be defined as the ability of a system toguarantee the completion of opera-

tions within given time limits, not only under average-case, but also under worst-case conditions.

Unlike traditional (non-real-time) computing systems defining correctness solely as operational

correctness, i.e., as compliance with a given correlation of out- and input, real-time systems must

respond in a (timely) predictable way to possibly unpredictable external events. In other words,

correctnessin real-time systems consists of bothoperationalandtemporal correctness. Looking

at the response time of computations, we notice that for a non-real-time application like a word

processing program, a smallaveragereaction time to user input is desirable, but quite long delays

in rare cases are acceptable. On the other hand, the same behaviour is clearly not acceptable for

the fly-by-wire system of an aircraft: a guaranteedmaximumresponse time for all safety-critical

tasks under all possible circumstances is absolutely essential.

Every real-time processor scheduling system includes two basic components: ascheduler

determining which resources to allocate to which task at which time, and adispatcherresponsible

for actually allocating and revoking the processor based onthe results of the calculations of the

scheduler. The method used to derive scheduling decisions from the state of the application

and its environment is called thescheduling algorithm. Scheduling algorithms are frequently

classified intostatic (offline) anddynamic(online) ones. Static scheduling algorithms have the

advantage that they do not incur any significant overhead at runtime, but on the other hand they

can obviously not react appropriately to changing characteristics of the application, so that they

are only suitable for problems with well-known deterministic behaviour with regard to release

times, execution times, etc.

Undoubtedly, for a certain class of safety and timeliness critical applications, worst-case

analysis of task execution times and specifying timing constraints as deadlines which must al-

ways be guaranteed to be met are justified. On the other hand, adifferent kind of applications
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has gained attention in recent years; these applications dohave properties related to the timing

of computations, but exhibit a higher degree of flexibility than the traditional real-time schedul-

ing approaches. The major advantage of these so-calledflexible schedulingschemes is to avoid

the pessimistic worst-case analysis, which typically leaves the (presumably expensive) hardware

of the computer unused in the average case. Unfortunately, no consistent terminology has been

agreed upon so far. However, attempts have been made to classify techniques that allow trading

off at runtime properties of the results of a computation andthe effort in terms of time and re-

sources these computations need to produce the results. These classifications refer to theload of

the system. This expression has two different meanings. Thefirst one is the percentage of time

within a given interval that the processing units are busy executing tasks. Obviously thisproces-

sor loadranges between 0 and 1. On the other hand, theapplication load(also calledutilisation)

denotes the processor load that would result from all tasks being executed and completed; of

course, the application load can exceed 1. A system is calledoverloadedif the application load

is higher than 1. A desired property of scheduling algorithms is graceful degradation under over-

load conditions, which means that the performance does not drop dramatically, but gradually

beyond the limit of an application load of 1. For our class of scheduling problems, there are two

parameters which the scheduler can compromise on to allow the application to degrade gracefully

when in overload. Liu [Liu00] divides flexible scheduling techniques into two broad categories,

depending on whether they are designed for graceful degradation in result quality or in timeli-

ness. For brevity, we will use the expressionutilisation for application load and the expression

load for processor load.

1.3 The Quality of Computations

The first source of flexibility in scheduling models we consider arises from giving up the so-

called run-to-completion assumption.

1.3.1 The Run-to-Completion Assumption

Traditional scheduling schemes almost always rely on a concept called therun-to-completion

assumption. This is to say that a scheduler has no means of influence on theexecution times of

tasks other than the selection of the processing unit on which it places them to execute and the

allocation of a certain amount of computation time on these processing units. The notion of a

task finishing successfully lies entirely within the task itself. This assumption does make sense

in a broad variety of application scenarios. For example, a scheduler for the disc memory of

a computer certainly does know the order in which it wishes toserve the individual requests,
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and it can estimate their start and end times. Depending on the nature of the specific scheduling

algorithm and the dynamics of the requests, these estimatesmay be more or less accurate. Even

though the scheduler is well-informed about the environment it has to work in (which in many

real-world applications is not the case either), it does nothave the ability to decide on the duration

of activities to any extent. The data on individual activities available to the scheduler can be,

e.g., fixed execution times or probability distributions for execution times. Figure 1.1 shows the

general model of a scheduler for tasks in the run-to-completion category.

Figure 1.1: Run-to-completion scheduler model

The dispatcher can

• cause the task torun on the processor, i.e., to let it start computing

• preemptthe execution of the task, so that it can later be resumed

• resumethe execution after prior preemption or relinquishment

• abort the execution, i.e., terminate its execution without reasonable result

The run-to-completion task can

• relinquishthe processor voluntarily, so that it can later be resumed

• signalthe successful termination of the computation

Note that not all of these actions are possible for every scheduler. Typically not more than one

of the actions “relinquish” and “preempt” is defined, the former one (or neither of them) for

non-preemptive, the latter one for preemptive scheduling algorithms.
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1.3.2 Quality-Flexible Scheduling

In other circumstances, however, the scheduler has an additional degree of freedom inasmuch as

the execution times can be modified to increase or decrease the quality of the computations of

the tasks. Several possibilities exist for quality-flexible scheduling:

• In some cases, there may be several implementations for a specific problem available which

differ in both the duration and their quality or accuracy.

• Tasks may be implemented as iterative algorithms under the assumption that rising alloca-

tion of computation time to an activity results in higher quality of this activity and hence

in a higher contribution to the overall performance.

• Tasks may be parameterised prior to execution such that their duration can be fine-tuned

and adapted to the resources currently available in the system.

Several models on these aspects of computation have been described, and we will go into

much more detail on these in a later chapter. However, two basic schemes for quality-flexible

scheduling can be identified.

In the first one (figure 1.2), parameters are passed on from thescheduler to the application

tasks via the dispatcher to adapt their level of service (i.e., their quality) appropriately to match

the resources available.

Figure 1.2: Quality-flexible scheduler model, parametrisation type

In the second case (figure 1.3), application tasks are directly terminated by the dispatcher.

In the latter model, there is no notion of unsuccessful computations (at least not resulting from

timing constraints); there is no edge indicating the abortion of a task and the “finish” action is

signalled from the dispatcher to the task, not the other way around.
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Figure 1.3: Quality-flexible scheduler model, external termination type

Quality functions describe the relationship between the execution time awarded to a task and

the quality to be expected from this task. Figure 1.4 shows anexample quality function.

Figure 1.4: Example quality function

1.4 The Timeliness of Computations

The second source of flexibility we consider is based on timing constraints less strict than tradi-

tional deadlines.

1.4.1 Traditional Timing Constraints in Scheduling

As stated above, of all the parameters that are used to drive the scheduling process, timing con-

straints are among the most common ones. The simplest way of specifying timing constraints on
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individual tasks is by means of deadlines by which their execution is supposed to have finished.

Depending on the consequences of a missed deadline to the performance of the overall applica-

tion, attributes are usually assigned to a deadline, e.g., hard, soft, semi-hard, firm, etc. Deadlines

can be specified relative to the release time of individual activities or in terms of a system-global

time.

1.4.2 Timeliness-Flexible Scheduling

Alternatives to specifying deadlines are end-to-end constraints, where in general maximum delay

values are given for entire chains of tasks rather than for individual tasks. Furthermore, so-called

window constraints can be posed on tasks that enter the system repeatedly on a more or less

regular basis. Window constraints require a certain percentage within any consecutive number

of tasks to meet their deadlines. A direct generalisation tospecifying timeliness with traditional

deadlines is by functions of time, so that levels of urgency can be modelled in a much more

fine-granular way; we use the termutility functionsfor the mentioned functions of time. Figure

1.5 shows an example utility function.

Figure 1.5: Example utility function

1.5 State of the Art

Until recently, the paradigms of scheduling imprecise computations (quality-flexible scheduling)

and scheduling with timing constraints given as functions of time (timeliness-flexible schedul-

ing) used to be considered orthogonal. Handling imprecise computations has been more popular

in the planning than in the real-time scheduling research community. Rare attempts have been
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made to add deadlines to anytime planning schemes, and looking at the few existing approaches

to timeliness-flexible scheduling, no evidence could be found on attempts to do without the run-

to-completion assumption. However, it was recognised thatthere are certain environments where

components of an application can be described very naturally as imprecise computations (e.g.,

multimedia applications, image processing, etc.) and the context of the application shows prop-

erties that can be modelled better with fine-granular utility functions than deadlines. The general

assumption, however, was that the expected complexity of the search for solutions to any such

problem was too high for the approach to be of any practical use [BPB+00]. Table 1.1 shows

a first classification of scheduling schemes along the two categories with which this work pri-

marily deals, namely the sources of flexibility. It is especially the class of quality-flexible and

timeliness-flexible schemes (which we callquality-utility schedulingschemes) we are going to

investigate.

Deadlines Flexible Timing Constraints

Run-to-completion

tasks

traditional real-time

scheduling schemes

timeliness-flexible

scheduling schemes

Quality-based schemes quality-flexible

scheduling schemes

quality-utility

scheduling schemes

Table 1.1: Classification of scheduling schemes

Note that not all real-time scheduling schemes can be classified according to this diagram.

For example, not all scheduling schemes (e.g., rate-monotonic scheduling and many other static-

priority algorithms) make explicit use of the timing constraints to drive the scheduling decisions.

1.6 Example

As a first (simplistic) example for the quality/utility scheduling problem consider the scenario of

a multimedia application which generates three-dimensional scenes of moving objects in real-

time, i.e., concurrently with the display of these scenes. Assume that due to user interaction

(changing the viewing perspective) the parameters to calculate the scenes are not available before

runtime. The objects can be displayed in various granularities, where a subdivision scheme allows

to generate one image from the previous one. Obviously, the granularity (and hence the image

quality) rises with increasing computation time. The example of figure 1.6 shows a sphere-shaped

object in rising granularity levels, starting from a cube.
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Figure 1.6: Iterative refinement of object

Next, look at the snapshots of a sequence of moving and rotating objects of figure 1.7. To let

the sequence appear smooth to the human eye, scenes have to begenerated at roughly equidistant

times, and the distance must not be too big. However, minor deviations from either the periodicity

or a desired maximum temporal distance between frames may beacceptable for the sake of the

quality individual objects are rendered with.

Figure 1.7: Snapshots of sequence of moving objects

Obviously, there is a tradeoff between the quality of image rendering and the timeliness

of such a procedure. The functions of figures 1.4 and 1.5 can serve as the quality and utility

functions of the rendering tasks.

This kind of problem is usually treated by keeping either thequality specifications fixed or

providing hard deadlines for the rendering algorithm. In the former case, the execution time of
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the rendering algorithm can only be roughly estimated, and the influence of other applications

running concurrently on the same processor is not normally taken into account directly; the best

one can hope for is that the processes producing the image stream are prioritised sufficiently high

to allow for a more or less acceptable display frequency. Thelatter choice tries to guarantee the

timely generation of scenes; however, such guarantees can only be given by worst-case execution

time analysis, so that the quality parameters will generally be set at a level which is unnecessar-

ily low in the average case. No previous model for schedulingproblems directly addresses the

tradeoff between quality and timeliness for other than veryspecial cases.

1.7 Aims of this Work

This work intends to show that there is indeed a way to specifyscheduling problems with quality

profiles and fine-granular timing constraints associated with the individual tasks of an applica-

tion. In the terminology cited earlier in this chapter, the system model we develop is dynamic

with stochastic knowledge of the scheduler on its environment, the scheduling problem is cast

in terms of optimising an objective function defined as the cumulative reward of the tasks. In

our model, an application is structured hierarchically in atask / subtask relation. Logical types

(eitherandor or) are associated to the nodes of the task hierarchy, so that wecan interpret tasks

differently in their role within the hierarchy:or type tasks represent the case where the children

are alternative implementations of the parent node, andand type tasks mean that the parent node

is composed of the child nodes. The task / subtask model is more general in expressiveness than

the hierarchisation by jobs and tasks mentioned earlier, asit can span several levels.

The model of a generic example application consisting of tasks with release types and logical

type specifications (circles in upper part) with hierarchy graph (continuous lines) and dependency

edges (continuous arrows) is shown in figure 1.8. The bottom part of the model is made up of

methods (rectangles) and processors (ellipses) with the associated access edges.

Another important characteristic of our model is that it deals with task sets which vary over

time; for this reason, all scheduling algorithms we developare bound to work dynamically, as

the decisions depend on the system state unknown prior to starting the application. Partial con-

ditional or unconditional schedules are calculated repeatedly according to an up-to-date estimate

of the future behaviour of the environment; these schedulesare generally valid only relative to

a specific time and thus time-variant. In addition to the hierarchy relation, a precedence relation

is introduced as a second graph structure on the same task set. The hardware platform consists

of a heterogeneous multiprocessor system with shared memory, but no other resources. To fa-

cilitate the reuse of basic algorithms, these are provided as a library of so-calledmethods. Task
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Figure 1.8: Example application graph

hierarchies are built upon this method layer.

We also investigate a feedback mechanism in order to allow the scheduler to adapt its own

parameters while monitoring the environment and the consequences of its own actions. Further-

more, we will propose scheduling algorithms that solve practical scheduling problems of this

class.

1.8 Structure of the Thesis

After the introduction of a basic model for quality / utilityscheduling of unstructured task sets

on a single-processor architecture, several scheduling algorithms are described to work on this

problem class. In the subsequent chapter, the initial modelis extended to hierarchical task net-

works for the description of an application and to heterogeneous multiprocessor architectures as

the target platform. After that, we present a control-theoretic approach to closed-loop quality /

utility scheduling. Descriptions of real-world examples in the realm of this methodology and of

the simulation environment developed in order to evaluate (amongst others) the performance of

the scheduling algorithms introduced in this work are followed by a series of empirical results.

The thesis concludes with a detailed picture of the scientific context in which this work can be

seen.
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1.9 Publications

Parts of the ideas presented in this thesis have previously been published: [Sch03c] introduced

the basic idea of investigating quality and timeliness aspects of applications. [Sch03b] extended

the model to aperiodic task sets and instance graphs, and [Sch03d] described a detailed value-

based representation of precedence constraints. Finally,[Sch03a] presented extended simulation

results for a scheduling scheme based on local search, and [Sch04b] an alternative decision-

theoretic scheduling scheme and a control-theoretic feedback mechanism.



Chapter 2

The Basic Quality / Utility Scheduling

Problem

A cynic is a man who knows the price of

everything, and the value of nothing.

Oscar Wilde

In this chapter we describe the basic quality / utility scheduling problem. We introduce a

preliminary simplified version of the system model sufficient for the discussion of the scheduling

algorithms in the following chapter. This model will be extended later in this thesis.

2.1 Basic Quality / Utility Scheduling Problem

As we want to emphasise the quality and timeliness flexible aspects, we restrict our attention in

this chapter to non-hierarchical task sets without precedence constraints. Furthermore, we only

consider single-processor systems as the hardware platform for the time being.

2.1.1 Application Model

As stated earlier, an application in our model consists of a (possibly infinite) set of tasks:

Definition 1 (Task set)

We denote the set of all tasks of the application byT := {T1, T2, . . . }.

The main attributes of tasks are the quality and utility functions. Quality and utility functions

15
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are defined on different time domains. As utility functions express the urgency of computations

and urgency is independent of these computations actually taking place or not, they are defined

in terms of a system-global time. On the other hand, the quality of a task depends on the amount

of computation time that has been or will be awarded to the task; hence, quality functions are

defined in terms of a task-local time. A schedule for a single-processor system can be fully

represented by a series of functions mapping global time to processor time allocated to each task

up to this global time. An example series of partial schedules is shown in figure 2.1. The global

clock advances with each time instant, the local time of a task only if the task is scheduled for

execution.

at time 0 at time 3

at time 6 at time 9

Figure 2.1: Partial schedules, local and global times

taskT1 taskT2 taskT3

Figure 2.2: Functions mapping global time to local times of tasks
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This schedule translates into three functions mapping global time to local time for each task

(figure 2.2).

As our time model is discrete, global times are simply natural numbers; however, for the sake

of clarity in later definitions, we introduce a new symbol forthe set of global time instants.

Definition 2 (Global time)

The set of global time instants is denoted byGT :≡ N0.

The release times of tasks are the times when the environmentand the scheduler gain know-

ledge of their existence; in our model, this time equals the time of earliest activation of a task.

Although the system and especially the scheduler do not knowin advance the exact release times

of tasks, we assume that stochastic distributions of release times are available. However, offline

scheduling is clearly unsuitable, and online scheduling schemes have to be developed. We do not

want to employ specialised hardware to schedule applications, but instead use the same processor

for both scheduler and application tasks. These preconditions impose very hard restrictions on

the complexity of scheduling algorithms, and we will very likely have to resort to fast heuristics

instead of optimal search algorithms. Furthermore, our task model is preemptive, i.e., we assume

that tasks can be interrupted and resumed at any time and as often as necessary. Context switch

costs are not taken into account.

Definition 3 (Release times)

The release time of taskT ∈ T is rT ∈ GT.

Just like global times, task-local times are discrete; however, an additional symbol is intro-

duced for clarity. The task-local time of a task indicates the amount of processor service awarded

to it. We say that a task has reached local timen at (global) timet if it was allowed to run on the

processor forn time units until timet.

Definition 4 (Local time)

The set of local time instants of taskT ∈ T is LTT :≡ N0.

The task setT encompasses all tasks that have been or will ever be released. The dynamic

scheduler, however, works on a subset of tasks most relevantat the time of making scheduling

decisions. This subset of interest consists of tasks already released in the past and tasks likely

to be released in the near future. Obviously, this subset (which we will subsequently denote by

T′ ⊆ T in many cases) has to be adapted regularly. In principle, tasks could remain in the set

of interest forever after their release time; however, for efficiency reasons, a scheduler should
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remove tasks from the set once they cannot contribute much tothe overall performance any

more.

2.1.2 Quality and Utility Functions

Quality and utility functions are defined for each taskT ∈ T. The quality function is based on

task-local time:

Definition 5 (Quality functions)

A quality functionqT for taskT ∈ T is defined as a monotonically increasing function

qT : LTT → R+
0 .

Quality functionsqT (n) have bounded values forn→ ∞.

Quality functions are evaluated according to the computational progress of a task; after hav-

ing been allowed to run on the processor forn time units, the quality of the taskT is qT (n).

Examples for quality functions can be seen in figure 2.3.

a) run-to-completion b) linearly increasing with maximum

c) continuously differentiable d) value-discrete

Figure 2.3: Example quality functions

Example a) models a run-to-completion task, which accrues value only if it reaches its execu-

tion time; no additional reward is gained after that. Example b) has a quality linearly increasing
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with execution time up to a given maximum value; this maximumis approached asymptotically

by the continuously differentiable, concave function in c). The function in example d) is value-

discrete.

Note, however, that in our model time domains are discrete and hence, quality functions can

only be approximations of the continuous example functions. Note also that the quality function

of a method need in fact not be invariable as in the above definition. In some real-world applica-

tions it may be necessary to adapt quality functions at run-time. This does not, however, affect

the discussions on scheduling algorithms in the following chapter, as long as the functions are

unambiguously defined at all times.

For a set of tasks, quality functions are grouped together ina vector for notational brevity.

The set of such vectors is needed for the later definition of the objective function of quality /

utility scheduling algorithms.

Definition 6 (Vectors of quality functions)

The set of vectors of all possible quality functions for the elements of a task setT′ ⊆ T

is

QFT′ :=
∏

T∈T′

QFT with QFT := (R+
0 )LTT . 1

We use the notation~q ∈ QFT′ for vectors of quality functions for all tasks inT′.

The domain of~q will always be unambiguous from the context without including the task set

T′ explicitly in the notation.

Note that there are no deadlines in our system, as urgency is expressed via utility functions.

Therefore, tasks may conceptually be active for an infinitely long time. It is only for reasons of

efficiency that a scheduling algorithm should remove tasks from consideration once they have

low utility. Utility functions are defined on global time:

Definition 7 (Utility functions)

A utility functionuT for taskT ∈ T is defined as a time-discrete function

uT : GT → R+
0 .

uT (t) = 0 for all t < rT anduT (t) is monotonically decreasing fort ≥ rT .

1where forT′ = {T1, . . . , Tk} : ∏

T∈T′

QFT := QFT1
× · · · × QFTk
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Examples of utility functions can be seen in figure 2.4.

a) value-discrete b) firm deadline

c) rapid decline at critical time d) continuously differentiable utility

Figure 2.4: Example utility functions

Example a) represents a value-discrete utility function. Example b) models a firm deadline; if

it is missed, the value gained from this task drops to zero, but no other effect to the environment

is noticed. The utility function of c) shows a slow linear decline prior to and a rapid exponential

decline after a critical time has been reached, and functiond) is continuously differentiable.

Again, discrete utility functions defined on a discrete timedomain are only approximations

of the continuous example functions.

As with quality functions, utility functions for a set of tasks are grouped together in a vector

for notational reasons, and we define the set of all possible such vectors.

Definition 8 (Vectors of utility functions)

The set of vectors of utility functions forT′ ⊆ T is

UFT′ :=
∏

T∈T′

UFT with UFT := (R+
0 )GT.

We use the notation~u ∈ UFT′ for vectors of utility functions for all tasks inT′.

Again, the domain of~u will always be unambiguous from the context.
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2.1.3 Local Time Functions

As shown above, a schedule is fully determined by giving the local times of all tasks for all global

time instants. This leads us to the definition of local time functions.

Definition 9 (Local time functions)

For taskT ∈ T, a local time function is defined as monotonically increasing function

τT : GT → LTT

with ∀t ≤ rT : τT (t) = 0.

The set of all possible local time functions forT is denoted byLTFT .

The above condition means that no computation time can be allocated to a task prior to its

release time.

Allocation functions are based on the same information as local time functions, but retrieve

the amount of computation time allocated to tasks at each time instant. Obviously, within the

model defined so far, allocation functions can only assume values of 0 or 1. In multiprocessor

systems, further values are possible.

Definition 10 (Allocation functions)

The allocation function is defined as

αT : LTFT × GT → LTT

with αT (τT , t) := τT (t+ 1) − τT (t).

For the set of tasks, the following must be true

∀t ∈ GT : 0 ≤
∑

T∈T

αT (τT , t) ≤ 1

(especially:∀t ∈ GT : ∀T ∈ T : 0 ≤ αT (τT , t) ≤ 1)

At any time instant no more than one task may be allocated the processor. Obviously, as time

moves on, the progress of the task cannot decrease.

As a consequence, for the sum of local times:

∀t ∈ GT : 0 ≤
∑

T∈T

τT (t) ≤ t

(especially:∀t ∈ GT : ∀T ∈ T : 0 ≤ τT (t) ≤ t)
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We define functions based on local time functions indicatinghow early a certain local time

(level of progress) is reached by a task.

Definition 11 (Local timeliness functions)

For taskT ∈ T with local time functionτT ∈ LTFT , the timeliness function

τT : LTT → GT ∪ {∞} is defined as:

τT (n) :=

{
min{t ∈ GT : τT (t) ≥ n} if there is such a t

∞ otherwise

τT (n) yields the earliest point of time when the associated local time functionτT surpasses

the value ofn.

As before, we define vectors of local time functions and sets thereof for notational reasons.

Definition 12 (Vectors of local time functions)

For a subsetT′ ⊆ T of tasks,

LTFT′ :=
∏

T∈T′

LTFT

is the set of vectors of local time functions for tasks inT′; we use the symbol~τ ∈ LTFT′

for elements of this set.

The domain of~τ will always be unambiguous from the context.

2.1.4 Value Functions

For a finite task setT′ ⊆ T, we know the quality and utility functions~q ∈ QFT′ and~u ∈ UFT′ .

The question is how to select local time functions such that long-term reward is maximised. Any

objective function defined for this purpose is based on the given quality and utility functions

as well as the global time and the local time functions. As we are primarily interested in high

long-term reward, we formulate that the goal of the scheduling algorithm is to find local time

functions~τ ∈ LTFT′ such that an objective function (which we will callvalue function)

v : QFT′ × UFT′ × LTFT′ × GT → R+
0

for the parameters stated above and these local time functions is maximized for the global time

t→ ∞.
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The solution found by an optimal scheduler would be the vector of local time functions

maxarglim v~q,~u(~τ , t)
~τ∈LTFT′ t→∞

.

This statement includes that we assume the value function tobe bounded and convergent

for t → ∞ with any parameter setting, such that the above limit alwaysexists. For each task,

identity is an upper bound to local time functions. Therefore, and because quality functions are

monotonically increasing,uT (t) · qT (t) is an upper bound to the product of quality and utility

uT (t) · qT (τT (t)) of taskT for any local time functionτT .

The way to combine quality and utility functions into a valuefunction that we will use in

our scheduling algorithms includes forming the pointwise product of these functions, as will be

described in more detail in the following chapter.

AssumeT′ = {T1, T2} and figures 2.5a) and c) show the quality function and utilityfunction

of taskT1. Likewise, let figures 2.5b) and d) depict the quality and theutility functions of task

T2.

Figures 2.5e) and f) are the pointwise product of quality andutility functions of taskT1 and

T2, respectively, i.e., the current upper boundsuT1(t) · qT1(t) anduT2(t) · qT2(t) for the products

of quality and utilityuT1(t) · qT1(τT1(t)) anduT2(t) · qT2(τT2(t)).

Defining the current time to be 0, for local time functionsτT1 andτT2 , the sum of the products

of quality and utility for the two tasks at timet is

uT1(t) · qT1(τT1(t)) + uT2(t) · qT2(τT2(t)).

Of course, resource constraints apply to the task set, i.e.

αT1(τT1 , t) + αT2(τT2 , t) ≤ 1.

As τT1(t) ≤ t, τT2(t) ≤ t, quality functions are monotonically increasing and utility functions

are non-negative, we now see that

uT1(t) · qT1(t) + uT2(t) · qT2(t)

is an upper bound for the above expression. However, this is not very useful, as it does not give us

any hint for an appropriate distribution of resources. Therefore, instead of looking at the upper

bound of the sum of products of quality and utility, we now investigate the sum of the upper

bounds of products of quality and utility, receiving a function of two time domains:

uT1(t1) · qT1(t1) + uT2(t2) · qT2(t2)
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a) Quality function of taskT1 b) Quality function of taskT2

c) Utility function of taskT1 d) Utility function of taskT2

e) Product of quality and utility functions for taskT1 f) Product of quality and utility functions for taskT2

Figure 2.5: Forming pointwise products of quality and utility functions

Figure 2.6 shows the resulting profile for the example functions.

Assuming once again the processor can be fully utilised by the task set, we may in fact

use this profile to find actual distributions of processor time among the tasks. We note that the

resource constraint takes the following form fort ∈ GT when applied to the upper bounds of the

resource allocations:

t1 + t2 ≤ t

Some diagrams for various values oft are shown in figure 2.7. A search algorithm is subse-

quently applied to find maxima in these problem spaces.

Based on the prior assumptions of upper bounds for the product of quality and utility as well

as the full utilisation of processing time by the task set, itcan now be justified to identify local
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Figure 2.6: ProfileuT1(t1) · qT1(t1) + uT2(t2) · qT2(t2)

a) Profile with constraintt1 + t2 ≤ 5 b) Profile with constraintt1 + t2 ≤ 10

c) Profile with constraintt1 + t2 ≤ 15 d) Profile with constraintt1 + t2 ≤ 20

Figure 2.7: Profiles with constraintst1 + t2 ≤ t for t ∈ {5, 10, 15, 20}
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times with the valuest1 and t2, so that by connecting the maximum values gained for search

spaces with various values oft we receive the value function graph forτT1(t) + τT2(t) in figure

2.8. Fortunately, the scheduler only needs to evaluate these functions at a small number of points,

so the value function does not have to be calculated for a large interval of time, as the figure might

suggest.

Figure 2.8: Value function

2.2 Dynamic Scheduling

The dynamic quality / utility scheduling scheme we propose means that partial schedules are gen-

erated in a series of consecutive phases at not necessarily equidistant times. In these scheduling

phases, release times are estimated for tasks likely to arrive within a limited-size time window

into the future. We assume that within any finite interval of time, only a finite number of new

tasks may arrive. Quality and utility functions of tasks already released earlier are updated: ac-

tual release times are now used instead of the estimates, andthe quality functions are transformed

according to the processor time that has already been allocated to the task in the past. The par-

tial schedules that are calculated for these time windows may have to be adapted or recalculated

even before the end of the window if it turns out that the release time estimates were too far from

reality.

Figure 2.9 shows the core components of the scheduling architecture we use. Data known

before runtime are the quality and utility functions of all tasks as well as stochastic distributions

for the release times of future tasks. These data are passed on to the dynamic scheduler along

with the definition of a suitable value function. At runtime,the dynamic scheduler estimates the

release times of future tasks, decides on a set of tasks to investigate and uses a search technique

to find an appropriate allocation of processor time to the tasks so that the objective function

is optimised. The resulting partial schedules are translated into individual task allocation and
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revocation actions. Data required to be provided by the environment (which in our case is a

simulation system) is information on the actual behaviour of tasks (primarily their release times

that have previously been estimated) and a time signal to drive the scheduling and dispatching

process. Based on the actual data on the release times of tasks, the scheduler has to decide if and

when to adapt or recalculate schedules.

Figure 2.9: Core components of scheduling architecture

2.3 Time-Variant Value Functions

Value functions are functions of several time domains and hence are not time-invariant with

respect to the global timeline. The following example demonstrates the shape of the upper bound

of a value function during the “life time” of a taskT , starting from its release timerT . In the

following example, we use the value function

max
t′≤t

uT (t′) · qT (τT (t′))

(which is one of the variants we will introduce later in this chapter).

Let the quality function be piecewise constant (figure 2.10a)) and the utility function represent

a firm deadline (figure 2.10b)).

Figure 2.10c) shows the upper bound

max
t′≤t

uT (t′) · qT (t′)
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a) Quality function b) Utility function

c) 0 time passed,0 time allocated d)∆t time passed,0 time allocated

e)∆t time passed,∆t time allocated f)2 · ∆t time passed,∆t time allocated

Figure 2.10: Time variance of example value function
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of the value function with the current timet0 equaling the release time of the task. Figure 2.10d)

depicts the situation when∆t (global) time has passed, but no cpu time at all has been allocated

to the task. The two highest quality levels are already unreachable now, because even if the

task receives exclusive service from now on, it cannot possibly calculate long enough before its

deadline (i.e., its decline in utility). On the contrary, infigure 2.10e) the task was able to execute

during the whole interval[rT ; rT + ∆t[. The task has already reached the first positive quality

level (qT (τT (t0))) and still has the potential to reach its highest levels. Finally, in figure 2.10f)

2 · ∆t time has passed, and∆t units of cpu time have been allocated to the task. Both of the

effects described above can be noticed here. The figures demonstrate that in the (normal) case

when a task does not receive full allocation of the processorwithin any interval of time, quality

levels with high resource requirements become more and moreunreachable.

Let us now investigate the shape of the search profile from which a value function is cal-

culated for a set of two tasks{T1, T2} with the quality and utility functions of figure 2.5 at a

later point in time, namely after 10 time units. Like in the previous example for a single task,

the search profile does not remain constant over time. Assumethe tasks are released at the same

time and the processor time can be fully distributed among the two tasks during this interval.

The development of the search profile depends on this distribution of resources. First, let all 10

units of time have been allocated to taskT1. In this case only the quality of taskT1 was able

to advance, as figures 2.11a) and 2.11b) show. The situation of figure 2.10e) applies to taskT1,

and the situation of figure 2.10d) to taskT2. Figures 2.11c) and 2.11d) show the utility functions

with the vertical line indicating the (global) time passed since the release of the tasks. Intuitively,

current time has approached the (firm and soft) deadlines of both tasks by 10 units of time.

The resulting profile from which to calculate the value function is given in figure 2.12b).

On the other hand, now assume all 10 units of time were allocated to taskT2. Figure 2.12c)

shows the profile for this case. Now the situation of figure 2.10d) applies to taskT1 and the

situation of figure 2.10e) to taskT2.

Finally, in figure 2.12d) each of the tasks was allowed to execute for 5 of the 10 time units,

i.e., both tasks encounter the situation of figure 2.10f).

2.4 Properties of Value Functions

This section describes a set of properties we assume to be valid for all value functions used within

the scheduling framework outlined in the previous chapter.Later, we propose a series of example

value functions with these properties.

For a finite set of tasksT′ ⊆ T, a vector~q ∈ QFT′ of quality functions, and a vector~u ∈ UFT′
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a) Quality function of taskT1 b) Quality function of taskT2

c) Utility function of taskT1 d) Utility function of taskT2

Figure 2.11: Quality and utility functions after 10 time units with full allocation to taskT1

a) at the common release time ofT1 andT2 b) after 10 units with full allocation toT1

c) after 10 units with full allocation toT2 d) after 10 units with fair share betweenT1 andT2

Figure 2.12: Search profiles
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of utility functions, we want to find local time functions~τ ∈ LTFT′ , such that a value function

v~q,~u(~τ , t)

is maximized fort → ∞. Remember that the vector of local time functions is a complete de-

scription of the schedule, providing information on processor allocation for every point in time

and every task in the task subset of interestT′. We implicitly assume that no processor time is

allocated to tasks outside this set. The preparatory step weare not going to deal with explicitly

is the selection of an appropriate task set; suffice to say we include tasks that have either already

been released or will be released in the near future. Additionally, the scheduler may exclude tasks

with low utility.

In order to find appropriate value functions, we are first going to define characteristics by

stating a series of conditions we require objective functions to hold. We assume that for all

objective functions, the following is true:

(1) Global time monotony: A longer execution time of the system results in a higher or equal

overall value; therefore, any value function must be monotonically increasing int, i.e., for

a given task setT′ with quality functions~q ∈ QFT′ , utility functions~u ∈ UFT′, local time

functions~τ ∈ LTFT′, and timet ∈ GT:

v~q,~u(~τ , t) ≤ v~q,~u(~τ, t+ 1)

(2) Allocation history monotony: If two vectors of local time functions~τ , ~τ ′ ∈ LTFT′ repre-

sent the same resource allocation to the tasks up to a certaintime t1, the value up to this

time is the same for both vectors of local time functions. In other words, a value function

must be prefix monotonic in the vector of local time functions, i.e., for a given task setT′

with quality functions~q ∈ QFT′ , utility functions~u ∈ UFT′ and timet1 ∈ GT:

∀t ∈ {0, . . . , t1} : ∀T ∈ T′ : τT (t) = τ ′T (t)

⇒ ∀t ∈ {0, . . . , t1} : v~q,~u(~τ, t) = v~q,~u(~τ ′, t)

(3) Allocation amount monotony: A higher allocation of resources to a task means a higher or

equal value of the overall system, i.e., a value function must be monotonically increasing

in every local time functionτT . Let ~τ , ~τ ′ ∈ LTFT′ be two vectors of local time functions

and assume there is aT ′ ∈ T′ such that

• ∀t ∈ GT : τT ′(t) ≤ τ ′T ′(t)
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• ∀T ∈ T′\{T ′} : ∀t ∈ GT : τT (t) = τ ′T (t)

Then for the value function the following must be true for~q ∈ QFT′ , ~u ∈ UFT′ andt ∈ GT:

v~q,~u(~τ , t) ≤ v~q,~u(~τ ′, t)

(4) Allocation time monotony: An earlier allocation of resources to tasks means a higher or

equal value of the overall system, i.e., a value function must be monotonically decreasing

in every local timeliness functionτT :

Let ~τ , ~τ ′ ∈ LTFT′ be vectors of local time functions and assume there is aT ′ ∈ T′ such

that

• ∀n ∈ LTT ′ : τT ′(n) ≥ τ ′T ′(n)

• ∀T ∈ T′\{T ′} : ∀n ∈ LTT : τT (n) = τ ′T (n)

Then for quality functions~q ∈ QFT′ , utility functions~u ∈ UFT′ and timet ∈ GT:

v~q,~u(~τ , t) ≤ v~q,~u(~τ ′, t)

(5) Reducibility to utility intervals: Dividing global time into intervals without utility change

for any task, for arbitrary quality functions and local timefunctions, the value is fully

determined by local times at the ends of these intervals.

Let ~u ∈ UFT′, ~τ , ~τ ′ ∈ LTFT′ be vectors of local time functions and assume there are

t1, t2 ∈ GT with t1 < t2 such that for all tasksT ∈ T′:

uT (t1) = uT (t1 + 1) = · · · = uT (t2)

∀t ≤ t1 : τ ′T (t) = τT (t)

and

τ ′T (t2) = τT (t2)

Then for the value function at timet2 with ~q ∈ QFT′ :

v~q,~u(~τ ′, t2) = v~q,~u(~τ , t2)
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(6) Utility monotony: Higher utility of tasks results in higher or equal value of the system, i.e.,

a value function must be monotonically increasing with any utility function of tasks in the

following sense:

Let T′,T′′ ⊆ T and assume there areT ′ ∈ T′ andT ′′ ∈ T′′ such that

rT ′ = rT ′′ and qT ′ = qT ′′ and ∀t ∈ GT : uT ′(t) ≤ uT ′′(t)

andT′\{T ′} = T′′\{T ′′}. 2

Then for all local time functions~τ ′ ∈ LTFT′, ~τ ′′ ∈ LTFT′′ with τ ′T ′ = τ ′′T ′′ , ~q′ ∈ QFT′, ~u′ ∈

UFT′ , ~q′′ ∈ QFT′′ , ~u′′ ∈ UFT′′ , andt ∈ GT, the following must be true:

v~q′, ~u′(
~τ ′, t) ≤ v ~q′′, ~u′′(

~τ ′′, t)

(7) Quality monotony: Higher quality of tasks results in higher or equal value of the system,

i.e., a value function must be monotonically increasing with any quality function of tasks

in the following sense:

Let T′,T′′ ⊆ T and assume there areT ′ ∈ T′ andT ′′ ∈ T′′ such that

rT ′ = rT ′′, uT ′ = uT ′′ and ∀n′ ∈ LTT ′, n′′ ∈ LTT ′′ : n′ ≡ n′′ ⇒ qT ′(n′) ≤ qT ′′(n′′)

andT′\{T ′} = T′′\{T ′′}.

Then for all local time functions~τ ′ ∈ LTFT′, ~τ ′′ ∈ LTFT′′ with τ ′T ′ = τ ′′T ′′ , ~q′ ∈ QFT′, ~u′ ∈

UFT′ , ~q′′ ∈ QFT′′ , ~u′′ ∈ UFT′′ , andt ∈ GT, the following must be true:

v~q′, ~u′(
~τ ′, t) ≤ v ~q′′, ~u′′(

~τ ′′, t)

Note that properties 3 (allocation amount monotony) and 4 (allocation time monotony) are

actually equivalent; nevertheless, they are stated separately, because in different problem settings,

one of them may be easier to prove than the other. To see that the two properties are equivalent,

note that from the definition of timeliness functions, we know that

τT (τT (t)) = min{t′ ∈ GT : τT (t′) ≥ τT (t)} ≤ t

and

τT (τT (n)) = τT (min{t′ ∈ GT : τT (t′) ≥ n}) = n

2Of course, local time domains ofT ′ andT ′′ are isomorphic, so thatqT ′ andqT ′′ can be compared.
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Thenτ ′T (t) ≤ τT (t) is equivalent to

τT (t) = (idLTT
◦ τT )(t) = ((τ ′T ◦ τ ′T ) ◦ τT )(t) = τ ′T (τ ′T (τT (t))) ≤ τ ′T (τT (τT (t))) ≤ τ ′T (t)

Therefore, for any given value function, we only need to showthat it conforms with one of the

two properties.

2.5 Example Value Functions

In this section we will introduce a few example value functions that hold the conditions of the

previous section.

2.5.1 Pointwise Sum of Product of Utility and Quality Functions with

Outer Hold Operator

As a first example, we want to define the objective function as the sum of the pointwise product

of quality and utility functions of individual tasks

∑

T∈T′

uT (t) · qT (τT (t)),

as was already mentioned in the previous chapter, where the quality function is evaluated accord-

ing to the local time of this task, and the utility function isevaluated for the global time.

To take into account the property of the objective function being monotonically increasing

with the global time, we add a “hold operator” (the maximum value of the original function

encountered up to some given time), such that the value function renders as follows:

v~q,~u(~τ, t) := max
t′≤t

∑

T∈T′

uT (t′) · qT (τT (t′))

The proof that this definition complies with the properties of value functions stated above can

be found in appendix B.1.

2.5.2 Pointwise Sum of Product of Utility and Quality Functions with In-

ner Hold Operator

Instead of applying a hold operator to the entire sum

∑

T∈T′

uT (t) · qT (τT (t)),
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we can apply it to individual tasks and sum up afterwards:

v~q,~u(~τ, t) :=
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′))

The proof that this definition complies with the properties of value functions stated above can

be found in appendix B.2.

2.5.3 Pointwise Sum of Product of Quality and Utility Functions with Ad-

ditional Conditions

An alternative to the hold operator is to pose additional preconditions on the quality and utility

functions as well as on the local time functions. Consider the following function:

v~q,~u(~τ, t) =
∑

T∈T′

uT (t) · qT (τT (t))

with the constraint

∀T ∈ T : ∀t ∈ GT : uT (t+ 1) · qT (τT (t+ 1)) ≥ uT (t) · qT (τT (t))

The proof that this definition complies with the properties of value functions stated above can

be found in appendix B.3.

Let us now look at some examples for task sets satisfying the additional constraint.

2.5.3.1 Background Anytime Tasks

Background tasks do not have any timing constraints; in our model, they have constant utility

functions. LetuT (t) = 1 for all T ∈ T′ andt ∈ GT andqT : LTT → R+
0 be monotonically

increasing. Then

uT (t+ 1) · qT (τT (t+ 1)) = qT (τT (t+ 1))

≥ qT (τT (t))

= uT (t) · qT (τT (t))

2.5.3.2 Tasks with Mandatory and Optional Service Times

Another suitable class of tasks for this category of value functions requires to be serviced at

specific times, whereas service at other times is optional; note that this property of mandatory and

optional service times is different from mandatory and optional parts of computations. Assume

taskTi ∈ {T1, . . . , Tk} with
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• release timesrT1 = · · · = rTk
= 0 for simplicity

• utility functions fort ∈ GT

uTi
(t) =

{
1 if t < 2i

1
2

if t ≥ 2i

• quality functions forn ∈ LTTi
:

qTi
(n) =






0 if n = 0

(1
3
)2i−n if 1 ≤ n ≤ 2i

1 if n > 2i

• the service guarantee

∀i ∈ N0, n ≥ 1 : αTi
(τTi

, 2i − 1) = 1

The system has to guarantee to schedule each task for execution at least at the instant in

time when its utility drops; note that this guarantee is possible in this specific setting, as no two

tasks change their utilities at the same time. The proof of these definitions complying with the

additional properties given above can be found in appendix B.4.

2.5.4 Pointwise Maximum of Product of Utility and Quality Functions

Define the value function as follows

v~q,~u(~τ , t) := max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

The proof that this definition complies with the properties of value functions stated above can

be found in appendix B.5.



Chapter 3

Scheduling Algorithms

There cannot be a crisis next week. My

schedule is already full.

Henry Kissinger

In this chapter we suggest several algorithms for the basic quality / utility scheduling problem.

As mentioned before, we need to develop dynamic scheduling algorithms to run concurrently

with the application tasks to be scheduled. The dynamic scheduler is invoked repeatedly at run

time and works on both a set of tasks that have already arrivedand set of tasks which are likely

to be released in the near future. Obviously, the ability of ascheduling algorithm to predict the

release times of tasks correctly determines its performance to a large extent. Of course, this

ability depends on the probability distributions of the task release times which are supposed

to be known in advance. The higher thevariance in the release time distributions, the more

difficult it is to accurately estimate the set of future readytasks. Furthermore, the larger thetime

horizonfor the prediction, the better the resource distribution tofuture tasks can potentially be.

In the extreme case, taking a myopic approach, no predictionof the future behaviour is made

at all, and all scheduling decisions are based entirely on tasks having been released in the past.

Scheduling takes place in a series of consecutivephases, and the resulting partial schedules

remain valid until the beginning of the next scheduling phase. For each scheduling phase, we

assume that the application may utilise the entire set of resources (up to now: a single processor)

to full extent. Having introduced the terms of phase and horizon, we can now clarify the aim

of the scheduler to distribute the processing time among theset of tasks made up of the ones

released prior to the beginning of the scheduling phase and those likely to be released between

the beginning of the scheduling phase and the end of the time horizon. We call the interval of time

37
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between the beginning of a phase and the end of the corresponding time horizon thescheduling

windowassociated with this phase. We generally assume that the length of the windows remains

approximately constant for all phases, although changes can be made depending on the behaviour

of the system. Obviously, the window size largely influencesthe performance of the scheduler.

A small window gives the scheduler too little insight into the estimated future behaviour of the

application, so that it can hardly make any sensible decisions. On the other hand, larger window

sizes increase the overhead caused by the online optimisation; as a dynamic scheduler competes

with the application tasks for the shared resources, a degradation of system performance can be

expected.

It is not obvious, however, which optimisation or search algorithm is best suited for the com-

putation of good distributions of processor time among the tasks. An important piece of infor-

mation in this regard is the reliability of the estimation offuture task release times. If the set

of ready tasks within each interval of time can be predicted with high certainty or even deter-

ministically, the main focus of the scheduling algorithm can be directed towards finding locally

optimal distributions without paying too much attention tothe cost of contingency actions like

rescheduling or schedule adaptation. Contingency actionscan be allowed to be expensive if the

probability of having to trigger them is sufficiently low. Onthe other hand, if the scheduler has

to deal with higher levels of uncertainty, it may be more favourable to divert some of the effort

awarded to scheduling to the provision of alternative plansfor the set of most likely situations

than can occur at a certain time. It appears natural that calculating schedules for sets of possible

situations is more time-consuming than for a deterministically known single future state. Hence,

for a comparable level of scheduling effort, the former scheme will in general only be able to

find inferior schedules for each situation investigated than the latter one, which can concentrate

on one specific situation.

We can expect a tradeoff between the cost of contingency actions in a scheduling scheme

and the quality of schedules for individual situations, driven by the probability that such ac-

tions become necessary. In this context, we may also define ranges of acceptability of schedules

with regard to the deviation of the current situation from a prior estimate. This is to mean that

rescheduling or schedule adaptation may not necessarily betriggered by each minor change in

release times, based on the assumption that solutions to similar problems are similar to solutions

of the original problem. This important assumption of all local-search techniques is of course not

always valid due to possible discontinuities in the search space.

We first derive a dynamic scheduling scheme which iteratively estimates the single most

likely situation in terms of ready tasks with associated release times for a fixed-size time window

into the future. The original problem description is formulated in a way that makes it applicable

to local-search algorithms like Simulated Annealing and meta-heuristic algorithms like Tabu
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Search. We use thresholds to limit the set of ready tasks to those with sufficiently high utility

and to identify major deviations of release times from theirprior estimate, making it necessary

to trigger schedule adaptation or rescheduling. In general, however, the search algorithms used

are not able to build on prior solutions and thus adapt schedules, so that we have to resort to

recalculating the current partial schedule in such cases. Unfortunately, rescheduling is expensive,

so that the scheme can only be expected to perform well if the release times can be estimated with

high accuracy. We call this schemereactive, because it can only react to unlikely future situations

when they occur without taking any prior precautions for them. Local-search algorithms have

previously been applied in the context of scheduling problems, and Tabu Search schemes can be

found for scheduling and related time-based planning problems. However, we are not aware of

their prior use within dynamic flexible schedulers. The decisive step was to restrict the problem

space to gain a finite description and thus enable these search algorithms to be applied in a

dynamic setting to receive partial schedules, even though we must be aware that limited search

spaces cannot be expected to result in globally optimal schedules even for deterministic problem

settings with entirely known characteristics.

The second scheme we devised codes sets of most likely encountered future states with as-

sociated partial schedules into Markov Decision Processes(MDPs). The set of ready tasks is

not limited by a fixed-size window, but by the likeliness of their release. The dynamic scheduler

simulates the release behaviour of the task set and constructs a weighted state transition graph

originating from the current situation with transition probabilities as weights. Again, thresholds

are applied to exclude low-utility tasks. Now, contingencyactions are far less likely to be needed,

but computing schedules for alternative situations is alsotime-consuming. This additional effort

pays off if release times cannot be predicted with high accuracy. We call this schemeproactive,

because it provides strategies for dealing with situationsbefore we know they occur. The appli-

cation of decision-theoretic reasoning to dynamic value-based real-time scheduling appears to be

novel. Our approach is based on analogies between the searchspaces in stochastic route planning

and dynamic real-time scheduling.

3.1 Reactive Unconditional Scheduling

The first set of scheduling algorithms works directly on a limited-size window of time into the

future for each scheduling phase as described above to determine a set of tasks which are likely

to be released within this period of time. Figure 3.1 shows the development of the first three

scheduling phases for an example application. Invocationsof the dynamic scheduler are inter-

leaved with execution of application tasks. One of the most important levers for optimising the
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system performance is the selection of a reasonable amount of processor time awarded to the

scheduling algorithm. In many respects, the dynamic scheduler can be seen as just an additional

task to the ones given in the problem description, although it does in reality require some special

handling. Embedding the scheduler task into the task set almost naturally leads to the alterna-

tion of processor allocation between scheduler and application tasks (very much like the context

switch between two application tasks) and the schedule being gradually developed by appending

successive partial schedules. The filled circles representthe (real or estimated) release times of

tasks, the contiguous lines the period of activity (i.e., tasks are ready for execution) of tasks with

known release times, and the dotted lines the estimated period of activity of tasks with hitherto

unknown release times.

Figure 3.1: Scheduling phases
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3.1.1 Determining the Task Set

Whenever the dynamic scheduler is invoked, the current set of tasks is enlarged such as to in-

clude the tasks which are likely to be released until the end of the scheduling window. Note that

scheduling windows may (and in fact usually do) overlap. Thesystem may opt for adaptation of

the current partial schedule or even complete reschedulingif the estimated release times differ

largely from their actual values. Furthermore, because theoptimisation of processor allocation

is cut off at this boundary, the scheduler does not treat favourably tasks that arrive shortly before

the end of the scheduling window. The largest amount of potential service to these tasks will

probably be beyond the end of the window and for this reason resource allocation to these tasks

does not appear to the scheduler to be very rewarding. For this reason, it is generally necessary

to start the next scheduling phase well ahead of the end of thewindow in figure 3.1. Note that

the lines representing the individual tasks have a defined start (the release time), but no end; as

mentioned earlier, tasks may conceptually be executed for an arbitrarily long time, and it is the

responsibility of the scheduling algorithm to dismiss tasks which are unlikely to contribute much

to the system performance (presumably those with low utility).

As an example for the remainder of this section, assume that the scheduler estimates that

three tasksT1, T2 andT3 will be released within the scheduling window, and their parameters

are:

rT1 = 0 uT1(t) =






0 if t− rT1 < 0

1 if 0 ≤ t− rT1 < 6

0.6 if 6 ≤ t− rT1 < 13

0.1 if t− rT1 ≥ 13

qT1(n1) =






0 if 0 ≤ n1 < 4

0.3 if 4 ≤ n1 < 8

0.4 if 8 ≤ n1 < 12

0.8 if n1 ≥ 12

rT2 = 2 uT2(t) =






0 if t− rT2 < 0

1 if 0 ≤ t− rT2 < 8

0.2 if 8 ≤ t− rT2 < 12

0 if t− rT2 ≥ 12

qT2(n2) =






0 if 0 ≤ n2 < 2

0.1 if 2 ≤ n2 < 4

0.2 if 4 ≤ n2 < 6

0.3 if n2 ≥ 6

rT3 = 5 uT3(t) =






0 if t− rT3 < 0

1 if 0 ≤ t− rT3 < 8

0.7 if 8 ≤ t− rT3 < 10

0.1 if t− rT3 ≥ 10

qT3(n3) =






0 if 0 ≤ n3 < 2

0.4 if 2 ≤ n3 < 8

1.0 if n3 ≥ 8

t ∈ GT, n1 ∈ LTT1 , n2 ∈ LTT2 , n3 ∈ LTT3
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3.1.2 Local-Search Approach

One possibility for solving the optimisation problem of maximising the value function is by

heuristic local-search methods. Local-search methods arebased on the neighbourhood assump-

tion, i.e., on the perception that similar problem settingshave similar solutions. In our case,

search steps are described in terms of units of processor time allocated to individual tasks. We

developed this scheme with the objective of possibly reusing previously calculated solutions at

a later time. A major advantage is that the scheme can be adapted for a wide range of local-

search algorithms without additional reasoning about the specific requirements of the scheduling

problem. A general framework abstracts from these problem-specific properties and leaves the

optimisation algorithms with a rather generic search problem, the quality and utility attributes as

well as the release times and resource constraints coded into the search space and the objective

function.

3.1.2.1 Calculation of Elementary Intervals

In a preparatory step the scheduler represents the problem in a way suitable for a local-search

optimisation algorithm. We note that we need not generally take into account every single point

of time within the scheduling window, as the tasks are by definition interruptible at any time

without cost. It is easy to understand that the allocation ofprocessors to tasks depends only on

the allocation within intervals during which tasks do not change their utility, whereas the alloca-

tion at exact points of time is irrelevant due to property no.5 of value functions. Consider two

vectors of local time functions for the same task set with theproperty that the sum of allocations

within intervals without utility change is the same; the twovectors of local time functions can be

replaced for each other without changing the system value.

Therefore, we define the search space for the resource allocation algorithm in terms of inter-

vals of time during which the utility does not change; of course, these intervals should be as large

as possible to reduce the size of the search space. Keep in mind that trivial intervals of length

1 fulfill the property of no utility changes, but would again result in the same search space as if

working with the original local time functions defined for each global time.

First, we define elementary intervals of tasks as the maximumlength intervals during which

the utility functions of the tasks do not change. These are contiguous subsets of the global time

with the lower bound being either the release time or a utility change time (i.e., the utility is

smaller than in the immediately preceding time step) and theupper bound being either a utility

change time or positive infinity. No utility change time mustlie in the interior of such an el-

ementary interval. We do not include intervals prior to the release time of tasks, as we do not

allow assignment of computation time to a task in such an interval anyway. Similarly, we do not
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expect tasks of utility 0 to contribute to the system performance and hence do not include the

corresponding time intervals.

For a set of tasks, the set of elementary intervals is defined as the set of maximum length

intervals during which none of the tasks change their utility.

a) within interval[0;∞[ b) within interval[t0; t0 + ws[= [1; 16[

Figure 3.2: Calculation of elementary intervals without utility limit

The calculation of elementary intervals for the example task set is demonstrated in figure 3.2.

The sets of utility change times are{6, 13} for T1, {10, 14} for T2, and{13, 15} for T3, so that

we receive the following sets of elementary intervals:

JT1 = {[0; 6[, [6; 13[, [13;∞[}

JT2 = {[2; 10[, [10; 14[}

JT3 = {[5; 13[, [13; 15[, [15;∞[}

Formally, the set of elementary intervals of taskT is defined a follows:

Definition 13 (Elementary intervals for task)

We define the set of elementary intervals of taskT ∈ T′ ⊆ T as

JT := { [ts; te[⊆ GT : ts < te ∧ uT (ts) > 0

∧ (ts = rT ∨ (ts > rT ∧ uT (ts − 1) > uT (ts)))

∧ (uT (te − 1) > uT (te) ∨ te = ∞)

∧ (∀t ∈ GT : ts < t < te : uT (t) = uT (ts))}

For the set of tasks, we receive the set of elementary intervals by looking for the least fine-

granular intervals that can be mapped into the elementary intervals of individual tasks; in the
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running example, we get:

JT′ = {[0; 2[, [2; 5[, [5; 6[, [6; 10[, [10; 13[, [13; 14[, [14; 15[, [15;∞[}

Formally, we calculate the elementary intervals for a task set as:

Definition 14 (Elementary intervals for task set)

We define the set of elementary intervals for task setT′ ⊆ T as

JT′ := {[ts; te[⊆ GT : ts < te ∧ ts ∈ PS ∧ te ∈ PS ∧ ∀t : ts < t < te : t /∈ PS}

with

PS := {t ∈ GT : (∃T ∈ T′∃[ts; te[∈ JT : t = ts ∨ t = te)}

Note that these definitions have no notion of the scheduling interval previously mentioned

other than the task setT′ in general being a proper subset ofT, defined by a limited-size time

window into the future. The tasks, however, may be ready for execution for an infinitely long

time. This does, of course, not imply that the search algorithm within the scheduler would not

itself limit its area of interest to a finite time interval (which may be the same as the one used

to determine the task set or a smaller one). Modifying the definitions such that intervals are not

taken fromGT, but from the scheduling window[t0; t0 + ws[, wheret0 is the current time and

ws is the window size, we receive

Definition 15 (Elementary intervals for task within scheduling window)

The set of elementary intervals for taskT in scheduling window[t0; t0 + ws[ is

JT,[t0;t0+ws[ := (JT\{[ts; te[∈ JT : ts < t0 ∨ te > t0 + ws})

∪{[t0; te[: ∃[ts; te[∈ JT : ts < t0 ≤ te}

∪{[ts; t0 + ws[: ∃[ts; te[∈ JT : ts ≤ t0 + ws < te}

∪{[t0; t0 + ws[: ∃[ts; te[∈ JT : ts < t0 ∧ te ≥ t0 + ws}

This definition excludes from the original set of intervals those which completely lie outside

and truncates those partially lying outside the schedulinginterval. For the task setT′, the original

definition can be applied on the modified interval sets without change, and we use the notation

JT′,[t0;t0+ws[ for the set of elementary intervals for task setT′ in the scheduling interval.

Choosingt0 = 1 andws = 15, we now receive to following interval sets for the running
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example:

JT1,[1;16[ = {[1; 6[, [6; 13[, [13; 16[}

JT2,[1;16[ = {[2; 10[, [10; 14[}

JT3,[1;16[ = {[5; 13[, [13; 15[, [15; 16[}

JT′,[1;16[ = {[1; 2[, [2; 5[, [5; 6[, [6; 10[, [10; 13[, [13; 14[, [14; 15[, [15; 16[}

As utility functions are monotonically decreasing, there may obviously be intervals during

which the tasks have little or no utility. As the reduction ofthe number of intervals leads to a

smaller search space, it is desirable to focus on those intervals during which significant changes

to the system value can be expected. Even though the system value depends on the definition of

the value function, tasks with low utility are unlikely to contribute much to the overall value.

Introducingutility thresholdϑu ∈ R+
0 , we can replace the original utility functions by less

fine-granular ones obstructing changes in low utility levels by

u≥ϑu

T (t) :=

{
uT (t) if uT (t) ≥ ϑu

0 if uT (t) < ϑu

1

Defining further taskT≥ϑu to have the same properties asT , except for the utility function

uT being replaced byuT≥ϑu := u≥ϑu

T and introducing task setT′≥ϑu := {T≥ϑu : T ∈ T′}, we

receive sets of high-utility intervalsJ≥ϑu

T := JT≥ϑu andJ
≥ϑu

T′ := JT′≥ϑu for the original task set

T′. Interval setsJ≥ϑu

T,[t0;t0+ws[ andJ
≥ϑu

T′,[t0;t0+ws[ can be defined as before.

Setting the thresholdϑu to 0.3, we get for the example application

J
≥0.3
T1,[1;16[

= {[1; 6[, [6; 13[}

J
≥0.3
T2,[1;16[

= {[2; 10[}

J
≥0.3
T3,[1;16[

= {[5; 13[, [13; 15[}

J
≥0.3
T′,[1;16[ = {[1; 2[, [2; 5[, [5; 6[, [6; 10[, [10; 13[, [13; 15[}

This threshold is one of the levers for trading off accuracy of scheduling for computational

effort. Tasks with utility functions never falling below the given threshold can be considered as

1This is of course not the only possibility of reducing the granularity of utility functions; more general heuristics

would reduce the number of higher-value utility levels as well.
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a)J
≥0.3
T,[1;16[ b) J

≥0.3
T,[1;16[,T

Figure 3.3: Calculation of elementary intervals with utility limit and task-set-granular intervals

having properties similar to background tasks; their sets of elementary intervals do include an

interval with infinite upper bound (not shown in the example).

The final preparatory steps are passing down the granularityof intervals from the task set to

individual tasks and determining the set of ready tasks within each interval inJ≥ϑu

T′ with suffi-

ciently high utility.

Definition 16 (High utility elementary intervals at task setgranularity)

We define the set of high utility intervals of taskT ∈ T′ ⊆ T at task set granularity as

J
≥ϑu

T,T′ := {[ts; te[∈ J
≥ϑu

T′ : ts ≥ rT ∧ uT (ts) ≥ ϑu}

Interval setsJ≥ϑu

T,[t0;t0+ws[,T′ are defined as before.

In our example, we receive (cf. figure 3.3b))

J
≥0.3
T1,[1;16[,{T1,T2,T3} = {[1; 2[, [2; 5[, [5; 6[, [6; 10[, [10; 13[}

J
≥0.3
T2,[1;16[,{T1,T2,T3} = {[2; 5[, [5; 6[, [6; 10[}

J
≥0.3
T3,[1;16[,{T1,T2,T3} = {[5; 6[, [6; 10[, [10; 13[, [13; 15[}

Finally, we need to know the set of tasks that may be running with sufficiently high utility in

any interval inJ
≥ϑu

T′,[t0;t0+ws[.
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Definition 17 (Set of ready tasks)

For an intervalJ ∈ J
≥ϑu

T′,[t0;t0+ws[, the set of ready tasks is

T′
J := {T ∈ T′ : J ∈ J

≥ϑu

T,[t0;t0+ws[,T′}

In the running example, we have

J [1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T′
J {T1} {T1, T2} {T1, T2, T3} {T1, T2, T3} {T1, T3} {T3}

3.1.2.2 Allocations

Processor time is distributed among tasks according to a matrix of tasks and elementary inter-

vals. Table 3.1 depicts the maximum allocation matrix for the example task set. The entries are

the maximum numbers of units of processor time that can be allocated to a task in a specific

interval. Obviously, the sum of allocations to all tasks must not exceed the length of the inter-

val. The maximum allocation for a task in an interval equals the length of the interval if the

task is ready; otherwise the maximum allocation is 0. We implicitly assume the application has

exclusive access to the processor.

[1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 1 3 1 4 3 0

T2 0 3 1 4 0 0

T3 0 0 1 4 3 2

maximum sum 1 3 1 4 3 2

Table 3.1: Allocation constraints table

An allocation of units of computation time to elementary intervals suffices to determine the

value, as we can redefine the local time, allocation, and utility functions as well as the value

functions, as follows for interval[t1; t2[∈ J
≥ϑu

T′,[t0;t0+ws[
:
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τT : J
≥ϑu

T,[t0;t0+ws[,T′ → LTT with τT ([t1; t2[) := τT (t2 − 1)

αT : LTFT × J
≥ϑu

T,[t0;t0+ws[,T′ → LTT with αT (τT , [t1; t2[) := τT (t2) − τT (t1)

uT : J
≥ϑu

T,[t0;t0+ws[,T′ → R+
0 with uT ([t1; t2[) := uT (t1)

We noticed earlier that local time and allocation function contain the same information. For

evaluating the value function for a resource distribution,local time functions are more appropri-

ate, whereas for the description of search steps, allocation functions are easier. In the following,

whenever we talk about allocating cpu time to a task by assigning to the expressionαT (τT , J),

we actually intend to set the local time functionτT such thatαT assumes the desired value. Ob-

viously, allocations to prior intervals must be unambiguously known for this procedure to be

well-defined.

The quality function remains unchanged:

qT : LTT → R+
0 with qT (τT ([t1; t2[)) := qT (τT (t2 − 1))

The value function is defined analogously to the original definition (we do not repeat the

examples here); the signature of the value function now is

v : QFT′ × UFT′ × LTFT′ × J
≥ϑu

T′,[t0;t0+ws[
→ R+

0

Having established the search space and the value functionsto evaluate allocations repre-

sented via intervals of time, we can start to search for appropriate allocations to maximise the

value function. Well-known local-search techniques can beapplied for this purpose. Search steps

are changes of the resource distributions within the same intervals. The smallest possible step

is to move one unit of processor time from one task to another in one interval and leave all

other allocations unchanged. Bigger changes, e.g., movingmore than one time unit or modifying

the allocations for more than one interval, may be incorporated into one step. Obviously, the

selection of a suitable neighbourhood relationship is application-dependent.

The choice of an initial distribution from which to start theoptimisation algorithm is an-

other factor influencing the performance. Unfortunately, however, we cannot generally make a

better informed choice and usually start with an approximately uniform distribution like the one

gained by the algorithm in figure 3.4. Parameters are the set of ready tasksT′ within the current

scheduling window and the set of associated high-utility intervalsJ
≥ϑu

T′,[t0;t0+ws[.
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almostUniform(T′, J≥ϑu

T′,[t0;t0+ws[) : ~τ

forall intervalsJ = [ts; te[∈ J
≥ϑu

T′,[t0,t0+ws[
do

c := |T′
J | // #active tasks in intervalJ

l := te − ts // max. allocation inJ

n := 0

forall T ∈ T′
J do

αT (τT , J) :=
⌊
l
c

⌋
+ 1 − min

(
1,
⌊

n
max(1,l mod c)

⌋)

n := n + 1

od

od

return~τ

end

Figure 3.4: Approximately uniform resource distribution algorithm

[1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 1 1 0 1 2 0

T2 0 2 0 1 0 0

T3 0 0 1 2 1 2

sum 1 3 1 4 3 2

Table 3.2: Approximately uniform distribution for example

Table 3.2 is one possible result for the example task set.2 Tables 3.3, 3.4, and 3.5 show the

local time, quality, and utility for the example task set andthe resource allocation in 3.2.

Evaluating this allocation with the value function

v~q,~u(~τ, J) =
∑

T∈{T1,T2,T3}
max
J ′≤J

uT (J ′) · qT (τT (J ′)), 3

we get the overall value of the task set of table 3.6.

2depending on the order of tasks in the inner loop
3where we define the order relation on time intervals as[ts; te[≤ [t′

s
; t′

e
[:⇔ ts ≤ t′

s
; as intervals are not overlap-

ping, this even defines a total order on the interval set.
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τT (J) [1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 1 2 2 3 5 5

T2 0 2 2 3 3 3

T3 0 0 1 3 4 6

Table 3.3: Local time functions for approximately uniform distribution

qT (τT (J)) [1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 0 0 0 0 0.3 0.3

T2 0 0.1 0.1 0.1 0.1 0.1

T3 0 0 0 0.4 0.4 0.4

Table 3.4: Qualities for approximately uniform distribution

uT (J) [1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 1 1 1 0.6 0.6 0

T2 0 1 1 1 0 0

T3 0 0 1 1 1 0.7

Table 3.5: Utilities for example task set

max
J ′≤J

uT (J ′) · qT (τT (J ′)) [1; 2[ [2; 5[ [5; 6[ [6; 10[ [10; 13[ [13; 15[

T1 0 0 0 0 0.18 0.18

T2 0 0.1 0.1 0.1 0.1 0.1

T3 0 0 0 0.4 0.4 0.4
∑

T∈{T1,T2,T3}
max
J ′≤J

uT (J ′) · qT (τT (J ′))
0 0.1 0.1 0.5 0.68 0.68

Table 3.6: Product of quality and utility and system value for approximately uniform distribution

3.1.2.3 Optimisation of Resource Allocation

Starting from the approximately uniform distribution, local-search algorithms are used to im-

prove on this initial solution. From the wide variety of techniques, we implemented a Simulated-

Annealing and a Tabu-Search variant to solve the quality-utility scheduling problem.
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Having found an appropriate resource allocation for the task set, a schedule can simply be

constructed by sorting tasks within each interval arbitrarily. As tasks are independent of each

other and context switch costs are not taken into account, the order is irrelevant, as long as the

schedule complies with the previously calculated distribution. It may, however, be favourable to

prioritise tasks which have already been released or whose release time can be predicted with

certainty to reduce the effect of (avoidable) idle phases during the execution of a schedule. This

can happen if a task occurs in a schedule which happens not yetto be available at the given

time, because the release time estimate was inaccurate. On the same line, ordering tasks with

decreasing predictability of release times is an appropriate heuristic for the same objective. One

possible schedule for the allocation in table 3.2 is shown infigure 3.5 as a Gantt chart.

Figure 3.5: Gantt chart for example schedule

3.1.2.3.1 Simulated Annealing

Metropolis et al. described an algorithm for the simulationof a collection of atoms when matter

is slowly cooling down [MRR+53]. This so-called Metropolis algorithm is based on the fact

that in statistical mechanics, an annealing process consists of first melting the matter at a high

temperature and then gradually lowering the temperature until the system freezes and no further

changes occur. At each temperatureT , enough time must pass in order to allow for the system to

reach a steady state. Each configuration of the atoms of the system is defined by the set of atomic

positions,{pi}, and the energy of the configuration is a function of the atomic positions,E({pi}).

The probability of each such configuration is given by the Boltzmann factore−
E({pi})

kB ·T , wherekB is

the Boltzmann constant. Ground (low-energy) states are a very small subset of all configurations;

at high temperatures, they are hardly more likely than otherstates, but they dominate the system

at low temperatures. In other words, when the system cools down, it ends up in one of these

low-energy states. In practice, cooling must take place very slowly, especially at temperatures

close to the freezing point.
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Kirkpatrick et al. were probably first in applying the Metropolis algorithms to more gen-

eral optimisation problems by drawing an analogy between these and the physical process of

annealing [KJV83]. The optimisation technique has since become known asSimulated Anneal-

ing. The first domain Kirkpatrick et al. applied the Simulated Annealing technique to was the

physical design of computers, i.e., the placement of elements on a chip and the wiring between

them. Identifying the energy of a configuration of atoms withthe objective or error function of

a combinatorial optimisation problem, one can derive the difference of energy∆E between two

different configurations. Simulated Annealing assumes that given a current state and a candidate

successor state, the successor state is accepted

• unconditionally if it is lower in energy (or, in terms of the general optimisation problems,

lower in error or higher according to the objective function) or

• with probabilitye−
∆E

kB ·T , if it is higher in energy

One main advantage of Simulated Annealing over iterative refinement algorithms is that it

is not bound to get stuck in local optima. At high temperatures, the search is quite likely to

leave local optima, because of the high probability of accepting less optimal states. This changes,

however, with falling temperature. A second feature is thatthe gross characteristics of the system

already appear at high temperature levels, whereas the morefine-granular details of the solutions

develop at lower temperatures.

Our expectation for the Simulated Annealing optimisation scheme is that it is easy to im-

plement and parameterise and yields reasonable results within short computation times. On the

other hand, Simulated Annealing does not prevent cyclic search processes, which can consti-

tute a problem especially in low-contrast search spaces, i.e., when values differ only slightly for

neighbouring configurations. A further disadvantage of Simulated Annealing is that (in its pure

form) it continues to improve on one path of configurations only. No large-distance search steps

are taken, rendering the choice of the start configuration animportant one. In search spaces with

a large number of widely scattered optima, not being able to start new search traces can easily

prevent finding solutions close to global optima in finite time.

Figure 3.6 outlines the Simulated-Annealing resource allocation algorithm. Parameters are

• the set of tasksT′

• the set of intervalsJ≥ϑu

T′,[t0;t0+ws[

• the interval with latest start timeJmax ∈ Jϑu

T′,[t0;t0+ws[

• the start temperature for the cooling processTempstart
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optimize(T′, J≥ϑu

T′,[t0;t0+ws[, Jmax, T empstart, T empmin,#rep, cF ) : ~τbest

~τ := almostUniform(T′, J≥ϑu

T′,[t0;t0+ws[)

Temp := Tempstart

V := v~q,~u(~τ , Jmax)

Vbest := V

~τbest := ~τ

while(Temp > Tempmin) do

choose one intervalJ ∈ J
≥ϑu

T′,[t0;t0+ws[

for n = 1 to #rep do
~τ ′ := searchStep(~τ)

V ′ := v~q,~u(~τ ′, Jmax)

if (V ′ > V ) then

~τ := ~τ ′

V := V ′

if V > Vbest then

Vbest := V

~τbest := ~τ

fi

else

with probabilitymin(1, e
V −V ′

Temp ) do

~τ := ~τ ′

V := V ′

od

fi

Temp := cF · Temp

od

od

return~τbest
end

Figure 3.6: Simulated-Annealing resource allocation algorithm

• the minimum temperature for the cooling processTempend

• the number of search steps for a temperature level#rep



54 CHAPTER 3. SCHEDULING ALGORITHMS

• the cool-down factor for the cooling processcF

The return value is the best vector of local time functions found. Several strategies are used

to select the interval on which to change the processor time allocation; most of these are based

on the number of possible different allocations of resources to tasks for each interval.

3.1.2.3.2 Tabu Search

Tabu Search evolved from Glover’s work on integer programming. Although its roots are going

back to research in the 1960’s, the term itself was coined in an article on the connection between

integer programming and artificial intelligence [Glo86]. Agood introductory text on Tabu Search

can be found in [GTdW93].

Tabu Search is another principle to solve combinatorial andnonlinear problems, the main

component being a flexible memory to store previous configurations on the search path, com-

ponents thereof or operators applied on an initial solutionto receive this path. It can be viewed

as an iterative technique, repeatedly making moves from onesolution to another in the neigh-

bourhood, hoping to gradually find better solutions according to some given objective function.

As with Simulated Annealing, the main objective of Tabu Search is to avoid getting stuck in

local optima. The problem that can arise in search techniques allowing to proceed with inferior

intermediate states is that they can easily run into cycles.Tabu Search tries to explicitly tackle

the cyclic search problem by forbidding either to return to states previously encountered or to

repeatedly perform the same operations.

One major aspect is to define the set of neighbour states and toselect from this neighbourhood

the subset of states actually being candidates for a successor state. Scanning the entire neighbour-

hood is not normally feasible, and it has been noted that the restriction of the candidate states to

exactly one element of the neighbourhood means to search according to Simulated Annealing. In

general, however, a small set of states in the neighbourhoodis selected; this set should be chosen

strategically rather than entirely by random, with the goalof increasing the likelihood of ending

up with states in the vicinity or direction of a local optimumin the neighbourhood. As a wide

variety of heuristics can be applied in order to select a subset of the neighbourhood for each state

and these heuristics can themselves be used as search algorithms, Tabu Search has been called a

metaheuristic, i.e., a heuristic guiding other heuristics.

Tabu Search stores information that can be used to prevent cycles in the search, either pro-

hibiting or at least penalising moves that would mean returning to a solution previously visited.

This information (calledtabu conditions) is usually structured in one or moretabu lists. Basi-

cally, there are two possibilities for data to store in tabu lists: either the configurations or states

that have recently been visited, or the operators used in therecent past to move from one state
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to another. In the latter case, it is useful to have reversible operators; this way, it is possible to

restore previous states if necessary.

One difficulty with using tabu lists of operators is that theymay forbid moves which lead to

unvisited and especially attractive unvisited solutions,because the state on which the operator

was applied when it was placed in the tabu list can be completely different from the current state.

This problem is slightly relieved through the use of severaltabu lists for a series of attributes

of states, assuming operators to modify only small subsets of these attributes within one move.

States having the same settings in these attributes are assumed to behave equally or at least

similarly with regard to these attributes. However, this technique is not sufficient. Tabu Search

has been extended to incorporateaspiration level conditions, which are used to explicitly overrule

the tabu conditions. An aspiration level condition is fulfilled if the aspiration level expected

when applying an operator on the current state exceeds some threshold value. Moves that would

be forbidden according to the tabu specifications are allowed if one or several aspiration level

conditions are satisfied.

We expect from the Tabu Search scheme to improve on the Simulated Annealing scheme

inasmuch as it prevents at least a large percentage of the cycles in the search process and it

includes taking search steps not only in the neighbourhood of the current configuration, but also

over larger distances. On the other hand, Tabu Search incursa larger overhead in both time and

space consumption and it is more difficult to implement and parameterise. Without a proper

(problem-specific) selection of long-distance search steps and tabu lists, Tabu Search can easily

perform worse than Simulated Annealing, especially if compared not only for quality of the

resulting schedules, but also on the basis of computationaleffort to receive these.

The iterative procedure of Tabu Search terminates if eitheran optimal solution is found, the

neighbourhood set of the current state is empty (so that no further move is possible), a maximum

number of search steps has been reached, or the state has not changed or noticeably improved

for a maximum number of search steps.

Figure 3.7 outlines the Tabu-Search main resource allocation algorithm. We adopted a ver-

sion of Tabu Search which uses two kinds of search steps:normalones (3.9) making only small

modifications to the resource allocation (similar to Simulated Annealing search steps) anddiver-

sificationsteps causing radical changes in the allocation (3.8), e.g., as follows:

• choose new allocation completely arbitrarily

• remove all allocations to one task and distribute these resources among the others

• fully allocate the processor to one task in selected intervals
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optimize(T′, J≥ϑu

T′,[t0;t0+ws[, Jmax, maxDiv, lLength,maxImp, impTh) : ~τbest

~τ := almostUniform(T′, J≥ϑu

T′,[t0;t0+ws[)

stop := false

V := v~q,~u(~τ , Jmax)

Vbest := V

~τbest := ~τ

divCounter := 0; divTrigger := false; improvCounter := 0

tabuList :=< ~τ >

repeat

if divTrigger thendiversificationSearchStep()

elsenormalSearchStep()

fi

until stop // set indiversificationSearchStep() subroutine

return~τbest
end

Figure 3.7: Tabu-Search resource allocation algorithm

diversificationSearchStep()

divTrigger := false; improvCounter := 0

if divCounter ≥ maxDiv thenstop := true

else

divCounter := divCounter + 1

~τ := radicalChange(~τ)

V := v~q,~u(~τ , Jmax)

if V > Vbest then

Vbest := V

~τbest := ~τ

fi

fi

tabuList :=< ~τ >

end

Figure 3.8: Diversification search step in Tabu-Search resource allocation algorithm



3.1. REACTIVE UNCONDITIONAL SCHEDULING 57

normalSearchStep()

select an intervalJ ∈ J
≥ϑu

T′,[t0;t0+ws[

calculate neighbourhood for~τ
~τ ′ := minorChange(~τ , neighbourhood\tabuList)

V ′ := v~q,~u(~τ ′, Jmax)

if tabuList has lengthlLength then

remove first element from list

fi

add~τ ′ to end oftabuList

if V ′ > V then

~τ := ~τ ′

V := V ′

if (V = 0) ∨ (V > 0 ∧ V ′−V
V

≥ impTh) then

improvCounter := 0

else

improvCounter := improvCounter + 1

fi

if V > Vbest then

Vbest := V

~τbest := ~τ

fi

else

improvCounter := improvCounter + 1

fi

if improvCounter > maxImp then

divTrigger := true

fi

end

Figure 3.9: Normal search step in Tabu-Search resource allocation algorithm

As we use the states themselves to define tabu conditions, there is no need for aspiration level

conditions.

The parameters for the Tabu-Search resource allocation algorithm are

• the task setT′
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• the set of intervalsJ≥ϑu

T′,[t0;t0+ws[

• the interval with highest start timeJmax

• the maximum number of diversification stepsmaxDiv

• the maximum length of the tabu listlLength

• the maximum number of normal search steps without noticeable improvements before

triggering a diversification stepmaxImp

• the threshold for classifying the relative improvement of solutionsimpTh

The return value is the best vector of local time functions found.

3.1.2.4 Search Guidance

Search steps of the local-search algorithms of this sectionusually incorporate the (random) se-

lection of an interval for which the allocations of time units are moved from one task to another.

This applies to both Simulated Annealing search steps and normal search steps in the Tabu Search

algorithm. Obviously, it does not make sense to select intervals for which there is no or only one

task able to execute, because all possible search steps are trivial. Furthermore, if the number of

possible resource distributions within one interval is much larger than in another one, it might

be favourable to concentrate on exploring changes occurring in the former rather than in the lat-

ter one. We therefore assess the number of possible resourceallocations within one interval as

follows:

For interval[ts; te[, let ν :=
∣∣T′

[ts;te[

∣∣ be the number of tasks ready for execution within the

interval and letψ := te− ts be the length of the interval (which is, of course, the numberof time

units that can be distributed among the tasks). Then simple combinatorics (figure 3.10) yields

that the local search space for this interval is of sizelss(ψ, ν) with

lss(ψ, 1) = 1

lss(ψ, ν + 1) =

ψ∑

ψ′=0

lss(ψ′, ν)

This recursive definition can be resolved as:

lss(ψ, ν) =

(
ψ + ν − 1

ψ

)
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Figure 3.10: Recursive calculation of search space size

Please find the proof in appendix B.6.

Obviously, the size of the search space for a set of tasksT′ in a scheduling window[t0; t0+ws[

of fixed length can be calculated as the product of local search space sizes for the intervalsJ into

which the scheduling window is broken down. The search spacesizess(T′, J) is therefore given

as

ss(T′, J) =
∏

J∈J

lss
(∣∣J
∣∣,
∣∣T′

J

∣∣)

where|J | is the length of intervalJ .

The size of the search space obviously depends on the interval set into which the scheduling

window is divided. By the definition of the interval borders,there are of course several factors

influencing the size of the search space, namely:

• the number of tasks

• the release times of tasks and the regularity of release (e.g., periodic tasks)

• for periodic task sets (i.e., all tasks are released periodically), the homogeneity of the period

lengths and the phase shifts

• the number of utility levels for each task

No general rule is given here for all the factors as to how theyinfluence the size of the search

space, but there are some important cases which deserve special treatment. Especially for the

very common case of periodic task sets, the number of tasks being released during any period
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of time (in this case: during the scheduling window) can be estimated by dividing the number

of tasks being released within the least common multiple of all period lengths of tasks by the

length of this time interval. Thisaverage release frequencyis a good estimate for the size of the

search space for harmonic periodic task sets4. In the general case, however, the average release

frequency is neither easy to determine nor a good estimate for the size of the search space.

Therefore, we instead calculate the expected release timesfor the (finite) task set within the

scheduling window, decompose the scheduling window into anappropriate set of intervals and

explicitly calculate both the size of the local search spacefor each interval and the size of the

global search space for the entire scheduling window. The logarithm of the local search space

size to the basis of the global search space size is then used as weight for the selection of intervals

in the search process:

sProbJ := logss(T′,J) lss
(∣∣J
∣∣,
∣∣T′

J

∣∣)

This means that within one search step, changes in intervalJ1 are twice as likely than changes

in intervalJ2 if sProbJ1 = 2 · sProbJ2.

We thus direct computational effort towards those intervals with big local search spaces, as

these are now more likely to be selected within a search step.

Before starting the local search algorithm, the selection of an interval set for a given schedul-

ing window is obviously very important. It can be rewarding to consider reducing the number of

elementary intervals, e.g., by modifying the release time estimates for some tasks. The size of

the search space may shrink significantly due to the reduced interval set and allow the schedul-

ing algorithm to make up for the approximation of information on the task set incurred by the

modifications.

The search space is biggest (for a given number of intervals and a given number of ready tasks

in these intervals) if the intervals have equal length. Again, the proof can be found in the appendix

(B.7). If the number of intervals cannot be reduced without losing too much information, it may

therefore also be possible to reduce the size of the search space by intentionally shifting the

borders of adjacent intervals and explore possibly invalidgood solutions in the vicinity of valid

solutions. In many cases, the search space is well-formed enough to derive good valid solutions

from the invalid ones gained by this strategy.

4i.e., each period length is either the multiple of another one ore vice versa
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3.1.3 Lagrange Multiplier Approach

Lagrange multipliers are a widely used method for finding extrema on a bounded surface. This

optimisation technique goes back to the “calculus of variations” of Joseph Louis Lagrange (1736-

1813).

Suppose we want to find the extremum of a continuously differentiable function

f : Rn → R

subject to a constraint

g(x1, . . . , xn) = C ∈ R

where

g : Rn → R

is continuously differentiable.

Define the set of points satisfying the constraint as

M = {(x1, . . . , xn ∈ Rn|g(x1, . . . , xn) = C}.

If (x1, . . . , xn) is a local extremum off |M , then the gradients gradf(x1, . . . , xn) and

gradg(x1, . . . , xn) are linearly dependent, i.e., there is aλ ∈ R such that

gradf(x1, . . . , xn) = λ · gradg(x1, . . . , xn)

or

gradg(x1, . . . , xn) = λ · gradf(x1, . . . , xn)

The factorλ is called theLagrange multiplier. For a proof, see [?].

Cheng [Che02] suggests to apply the method of Lagrange multipliers to the time-budgeting

problem (which is similar, albeit simpler than the quality/utility problem, because the search

space is time-invariant). The first step is to approximate the given discrete functions by continu-

ously differentiable functions as required by the Lagrangemultiplier method.

We applied the method only for value functions based on the sum of the products of quality

and utility functions without maximum operator; in this case, the sum of approximations of

functions for individual tasks can be used as approximations for the sum of functions.

At time instantt0, for taskT form the product of quality and utility as:

quT (tT ) := uT (tT ) · qT (τT (t0) + tT − t0)
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where we evaluate the quality function according to the units of processor time actually allocated

in the past and the maximum processor allocation in the future. It is the aim of the optimisation

process to reduce the allocation to each task in order to be able to meet the (resource) constraint

of only one processor to be shared among the tasks.

We approximate each discrete functionquT defined by data points

(tT,1, quT (tT,1)), . . . , (tT,nT
, quT (tT,nT

)) by a quadratic function̂quT (tT ) = aT,0+aT,1tT+aT,2t
2
T

using the least-squares method:
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 =
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tT,1 tT,2 . . . tT,nT
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quT (tT,2)
...

quT (tT,nT
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According to the description above, we receive a set of linear equations as the partial deriva-

tives of these quadratic functions:
2aT1,2tT1 + aT1,1 = λ

2aT2,2tT2 + aT2,1 = λ
...

2aTn,2tTn
+ aTn,1 = λ

Adding the resource constraint

tT1 + tT2 + · · · + tTn
= ws

with ws being the size of the scheduling window, we have a system ofn+ 1 linear equations

in n+ 1 variables, which can easily be solved. Taking care when handling quadratic curves with

the same derivative and rounding solutions to the nearest integer numbers, the Lagrange method

can be used to solve the quality/utility scheduling problem. However, it must be noted that it

does not provide optimal solutions in this case, as the product of quality and utility function is

not time-invariant, i.e., it is valid only for the next time step; for larger window sizes, optimisation

is performed on a mere estimate of the future problem space. Furthermore, these functions are

themselves approximated, and, finally, the solutions have to be rounded to integer numbers.5

5As an alternative, we also approximated the given discrete function by quadratic splines in the implementation

of the scheduling algorithm; we will not describe this alternative in this work, because it would not add anything in

principle to the discussion.
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Our expectations in the Lagrange multiplier approach are limited. Although known to be an

effective means for a wide variety of optimisation problems, we face several sources of approx-

imation necessary to find a formulation of our problem suitable for Lagrangian optimisation.

The original quality and utility functions have to be approximated by continuously differentiable

functions. Depending on the type of approximation, these can be arbitrarily bad models for the

originals. The optimisation scheme suffers from the fact that the search space for the given prob-

lem class constitutes a mere estimate for the value which canbe obtained in the future (expressed

by the notion of upper bounds of value in the preceding chapter). This estimate becomes increas-

ingly inaccurate with the distance of the corresponding time from current time. Furthermore,

our Lagrangian-optimisation-based scheduler can deal only with a restricted set of problems,

i.e., with non-hierarchical task sets without precedence constraints, and with exactly one kind of

value function. Nevertheless, this scheme has been included for comparison primarily because it

constitutes a well-known standard optimisation techniqueand has even been previously applied

successfully to the time budgeting problem, which is related to our problem class.

3.2 Proactive Conditional Scheduling

Another solution technique we considered for solving the quality / utility scheduling problem

was by formulating it as a Markov Decision Process (MDP) and deriving appropriate execution

policies for each time instant.

3.2.1 Description

MDPs consist of a stochastic automaton on a finite set of worldstatesS and a finite set of actions

A. Probabilities are defined for transitions of one states to another ones′ when performing action

a. For each state, the current policyπ determines which action to take next. Therefore, instead of

calculating schedules explicitly, the goal of our MDP-based scheduler is to calculate appropriate

policies.

First, let us define a set of possible states for every point oftime:

St = {(t, 〈a0, . . . , at〉,T(t)}

with

t ∈ GT , T(t) being the tasks released up tot,

the history of actions until timet

a0, . . . , at ∈ T′
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and the set of states as
S =

⋃

t∈GT

St.

A state includes all allocations of processing time to tasksup to a certain timet and the set of

ready tasks at this time.

For the time being, it suffices to define the set of actions as tasks being executed:

A :≡ T′

An action is made up of the allocation of processing time to all tasks at a specific time.

Note that the sets of states and actions are infinite, in contrary to the above stated require-

ments. Therefore, instead of working on the entire sets, we use finite and mutable subsetsŜ (the

state envelope) andÂ (theaction envelope). To represent all states not present in the envelope,

we add two pseudo statessout (to be used for legal transitions) andserr (to be used for illegal

transitions). Finally, we need an additional start states0.

To determine the probability for transitions between states, first take into account that it is

neither possible to skip a point in time while progressing inproducing and executing a schedule,

nor to go back in time. Furthermore, the action performed in any step has to be incorporated into

the next state. Consider two states

s = (t, 〈a0, . . . , at〉,T(t))

s′ = (t′, 〈a′0, . . . , a
′
t′〉,T(t′)).

Let pT (t) denote the probability of taskT being released at timet and

∆T (t+ 1) :=

{
1 if T ∈ T(t+ 1)\T(t)

0 otherwise

The probabilityPr(s, a, s′) of going to states′ ∈ Ŝ from states ∈ Ŝ when executing actiona, is

Pr(s, a, s′) =






∏
T∈T′

(pT (t+ 1))∆T (t+1) ·(1 − pT (t+ 1))1−∆T (t+1)

if t′ = t+ 1 ∧ a′t+1 = a∧ ∀
t′∈{0,...,t}

: at′ = a′t′

∧〈a′0, . . . , a
′
t′〉 is a valid partial schedule

0 otherwise

Pr(s, a, sout) =






1 −
∑

s′∈Ŝ
Pr(s, a, s′)

if t′ = t+ 1 ∧ a′t+1 = a∧ ∀
t′∈{0,...,t}

: at′ = a′t′

∧〈a′0, . . . , a
′
t′〉is a valid partial schedule

0 otherwise
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Pr(s, a, serr) =

{
1 if ∃T ∈ T′ : rT > t ∧ ∃t′ ≤ t : at′ = T

0 otherwise

Pr(sout, a, s) = Pr(serr, a, s) = 0

Pr(sout, a, sout) = Pr(serr, a, serr) = 1

An instantaneous reward is assigned to each state to indicate the gain a certain allocation of

processing time to tasks means for the performance of an application. The reward is derived from

the value function of the task set. Define

~τa0,...,at

such that

αT (τT,a0,...,at
, t′) =

{
1 if at′ = T, 0 ≤ t′ ≤ t

0 otherwise

Then the reward is the difference of objective function evaluations for consecutive allocations,

i.e.,R : Ŝ → R as follows:

R(s) :=

{
v~q,~u(~τa0,...,at

, t) − v~q,~u(~τa0,...,at
, t− 1) if t > 0

v~q,~u(~τa0,...,at
, t) if t = 0

The goal is to find an appropriate policyπ : Ŝ ∪ {s0, sout, serr} → Â for the system to know

how to act in any situation.

To assess a states when encountered under the application of policyπ, a discounted sum of

the expected future reward is used:

Vπ(s) =

∞∑

t=0

γtE(Rt)

= R(s) + γ
∑

s′∈Ŝ

Pr(s, π(s), s′)Vπ(s
′)

(3.1)

whereRt is a random variable for the reward at timet and the discount factorγ ∈ [0; 1[

determines the influence of future rewards on current decisions. A discount factor of 0 means

that decisions are solely based on immediate rewards, a discount factor close to 1 allows distant

future behaviour to have considerable effect on the currentpolicy.

A policy π is considered superior to a policyπ′, if
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• ∀s ∈ Ŝ : Vπ(s) ≥ Vπ′(s)

• ∃s ∈ Ŝ : Vπ(s) > Vπ′(s)

We use a policy iteration algorithm to determine an optimal policy for the current envelope

(figure 3.11).

policy iteration()

let π′ be an arbitrary policy on̂S

repeat

π := π′

forall s ∈ Ŝ do

calculateVπ(s) by solving system of linear equations (3.1)

od

forall s ∈ Ŝ do

forall a ∈ Â do
if R(s) + γ

∑
s′∈Ŝ

Pr(s, a, s′)Vπ(s
′) > Vπ(s) thenπ′(s) := a

else π′(s) := π(s)

od

od

until π = π′

returnπ

end

Figure 3.11: Policy iteration algorithm

We interleave calculation of policies with their application and the execution of application

task instances in a so-called recurrent deliberation model(3.12). As the scheduling algorithm

uses the same computing resources as the application tasks,we have to operate on the tradeoff

between scheduling effort and the quality of the resulting policy. The quality of a policy can be

measured by the size of the envelope, as it is desirable to minimise the number of states for which

the system has to act according to the default actions. Statespace pruning is done by removing

those from the set of active tasks whose utility has fallen below a predefined utility threshold.
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recurrentdeliberation()

s := s0

foreverdo

while scheduling allowance not reached do

extend the envelopêS by forward simulation

prune the envelopêS

generate an optimal policyπ for Ŝ

od

while application task allowance not reached do

execute application tasks according to policyπ

od

od

end

Figure 3.12: Recurrent deliberation algorithm

3.3 Experimental Data

All of the scheduling schemes described in the preceding sections have been implemented within

a simulation environment for scheduling problems. Detailsof this environment as well as exper-

imental results from a series of benchmark tests can be foundin the following chapters.
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Chapter 4

General Quality / Utility Scheduling

Problem

Even if there is only one possible unified

theory, it is just a set of rules and equa-

tions. What is it that breathes fire into the

equations and makes a universe for them to

describe? The usual approach of science of

constructing a mathematical model cannot

answer the questions of why there should

be a universe for the model to describe.

Why does the universe go to all the bother

of existing?

Stephen Hawking

[A Brief History of Time]

Chapter 2 introduced the basic quality / utility schedulingproblem on a single-processor

system for unstructured task sets in order to provide the reader with a smooth approach and to

allow a simple description of the scheduling algorithms, concentrating on the main characteristics

of the problem, i.e., the correlation between task-local properties on the one hand and global time

attributes on the other hand. In our experimental work, however, we use a more general model

than this one. In this chapter, we will provide a complete coverage of this extended model for

quality / utility scheduling before proceeding to details on experimental results in subsequent

chapters.

69
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4.1 Extended Model for Quality / Utility Scheduling Problems

The model for problems as introduced earlier consisted of anunstructured set of tasks and a

single processor (figure 4.1). The main attributes of tasks were the release time and quality and

utility functions.

Application layer:

unstructured set of tasks with
• release times
• quality functions
• utility functions

Hardware layer:

single-processor architecture

a) basic model b) example task set

Figure 4.1: Basic model for the quality / utility schedulingproblem

In the general version, the task set is structured in a way that will be explained in detail later

in this chapter. For the moment, note the two different graphstructures defined on the nodes

T2, T2.1, T2.2, andT2.3 of the example graph in figure 4.2b). TasksT2.1, T2.2, andT2.3 are subtasks

of T2 and form a hierarchy graph together with their common parent. A so-called dependency

graph is spanned by the tasksT2.1, T2.2, andT2.3, representing a certain form of precedence con-

straints. Furthermore, a set of basic algorithms is introduced in between the task and hardware

layers to facilitate the reusability of frequently needed computations. Finally, instead of a single

processor architecture, we now target a heterogeneous multiprocessor architecture.

Basic computations are provided to the application developer as a method library, on top of

which he or she can construct an application as a hierarchy oftasks.

In the following sections, the general model is gradually developed from the basic scheme.

4.2 Processors, Methods and Tasks

In this section, our original model is extended in various directions. First, we now target a hetero-

geneous multiprocessor system rather than a single processor. Furthermore, we split the quality

and timeliness flexible aspects and place them on distinct objects, based on the perception that

quality profiles are often associated with basic algorithmsthat can be reused in later applications
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Application layer:

structured set of tasks with
• release times
• utility functions

Library layer:

set of basic algorithms (methods) with

• quality functions

Hardware layer:

heterogeneous multi-processor architecture

a) general model b) example application graph

Figure 4.2: General model for the quality / utility scheduling problem

once implemented. A set of methods is used to represent such alibrary of reusable basic algo-

rithms; the quality functions can be stored within such a library, whereas utility functions are

problem-specific and must be stored separately for each application. Finally, the concept of task

and method instances is introduced to increase the practical usability of the model by provid-

ing a simple means of expressing infinite sets of computations by finite sets of task and method

specifications.

4.2.1 Hardware Layer

We assume that the hardware layer of the general model consists of a heterogeneous multiproces-

sor architecture. For simplicity, we assume further that noother resources are considered in our

model and that context switch, migration, and communication costs are neglected. Therefore, we

do not target a specific topology, but rather assume the communication between any two proces-

sors to be ideal (loss-free and without delay). We introducethe (finite) setP = {P1, . . . , P|P|} of

all processors.

4.2.2 Library Layer

Methods can be thought of as basic algorithms available to the systems engineer as an algorithm

library. The algorithms can be instantiated in an arbitrarynumber and associated with tasks to

build an application. We suppose methods (and hence, the tasks based on them) to be interruptible
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at any time. Methods1 do not lose data when they are interrupted and can resume operation on

the same processor immediately and without need for rollbacks or redo mechanisms once the

interrupt has finished. The quality function tells the environment the value to be expected from

(an instance of) a method when assigned a certain amount of processor time.

We denote the (finite) set of methods byM = {M1, . . . ,M|M|}.

Definition 18 (Method instances)

I1
M , I

2
M , . . . are the instances ofM ∈ M.

IM := {I1
M , I

2
M , . . . } is the set of all instances ofM .

IM′ :=
⋃
M∈M′ IM is the set of all instances of methods inM′ ⊆ M.

Methods may in general only be executable on a subset of all processors, and their execution

speed may vary, e.g., according to processor speed or dedicated support of specific arithmetic

operations (e.g., floating-point calculations). To express the progress of a method depending

on the processing time allocated to it, quality functions are introduced. Remember that in the

basic scheme, quality functions were associated directly with tasks. We assume quality functions

for methods to be known in advance and to remain unchanged regardless for which task the

computations are carried out. These quality functions are attributes of the methods and are stored

statically with the method library.

First, we need to extend the concept of local time introducedpreviously. The local time of a

method with respect to a processor is the amount of computation time on this processor awarded

to the method.

Definition 19 (Local time for method instances)

The set of local times of method instanceI ∈ IM , M ∈ M with respect to processor

P ∈ P is writtenLTP,I :≡ N0.

Quality functions map the allocation of computation time ona processor to the progress of

the method (instance) expressed through its quality.

Definition 20 (Quality functions)

Every methodM ∈ M has a time-discrete monotonically increasing function (the qual-

ity function) for each processorP ∈ P.

qP,M :
⋃

k∈N

LTP,Ik
M
→ R+

0 with qP,M(0) = 0 and

qP,M(n) = qP,M(n′) for all n ∈ LTIk
M
, n′ ∈ LTIk′

M
, n ≡ n′ andk, k′ ∈ N

1more precisely: method instances, as we will see shortly
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Awarding the same processing time on the same processor to instances of the same method

yields the same quality.

As before, we introduce vectors of quality functions for notational brevity.

Definition 21 (Vectors of quality functions)

The set of vectors of all possible quality functions for the elements of a method set

M′ ⊆ M is

QFM′ :=
∏

M∈M′,P∈P

QFM,P with QFM,P = (R+
0 )
S

k∈N
LT

P,Ik
M .

We use the notation~q ∈ QFM′ for vectors of quality functions for all methods inM.

Local time functions still represent the number of units of processor time that have been

awarded to a method up to a certain time. However, we must now parameterise local time func-

tions, as we target a multiprocessor system.

Definition 22 (Local time and allocation functions for method instances)

For all method instancesI ∈ IM, we define a local time function with regard to a

certain processorP ∈ P as a monotonically increasing function

τP,I : GT → LTP,I with ∀t ≤ rI : τP,I(t) = 0

The set of all possible local time functions forI on processorP ∈ P is LTFP,I .

Allocation functions

αP,I : LTFP,I × GT → LTP,I

are introduced the same way as before:

αP,I(τP,I , t) := τP,I(t+ 1) − τP,I(t)

Definition 23 (Vectors of local time functions for method instances)

For a subsetI′ ⊆ IM of method instances,LTFI′ :=
∏

P∈P,I∈I′
LTFP,I is the set of

vectors of local time functions for method instances inI′; we use the symbol~τ ∈ LTFI′

for elements of this set.

To prevent migration of method instances between differentprocessors, we claim that

(∃I ∈ IM : ∃t ∈ GT : τP ′,I(t) > 0 ∧ τP,I(t) > 0) ⇒ P = P ′
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Finally, vectors~τ ∈ LTFI′ of local time functions are still bounded by the same resource

constraints as before:

∀P ∈ P : ∀t ∈ GT :
∑

I∈I′

αP,I(τP,I , t) ≤ 1

4.2.3 Application Layer

We note that in many applications, significant subsets of thetask set behave periodically, i.e., the

tasks are released in regular intervals. For other task sets, the release times may not be equidistant,

but distributed with a known function. It is generally beneficial for a scheduling algorithm to use

this additional information on the regularity of release times. For this purpose, we group together

tasks correlated this way. Such tasks have previously been treated as entirely independent entities

and will now be considered as one task with severalinstances. Tasks are associated with methods

to express that the task can be implemented by these basic algorithms. Typically, a task can be

implemented by a set of different algorithms with specific resource requirements, execution time,

accuracy, level of detail, etc. In our model, we implement this method selection scheme by a

number of methods for each task; these methods in general have different quality functions.

Definition 24 (Child function for tasks)

Each taskT ∈ T is associated a non-empty set of methods. This relationshipcan be

expressed by a graph structure on the tasks and methods spanned by a child function

c : T → 2M

The child function crosses the border between application and library layer.

We now assume the task setT to be finite, and for each task, instances are released.

Definition 25 (Task instances)

For taskT ∈ T, IT = {I1
T , I

2
T , . . . } is the set of instances ofT .

The instance set of a task is either infinite or has exactly oneelement. We do not con-

sider the case that a finite number of instances greater than 1is released.

The set of all instances of all tasks inT is

IT :=
⋃

T∈T

IT

Note that the task set is now assumed to be finite, so that a finite set of task instances within

a scheduling window can be defined as the union of the respective sets of instances of each task,
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denoted byI′
T
⊆ IT.

The child functions defined above between tasks and methods are now extended to task and

method instances.

Definition 26 (Child function for task instances)

Each task instanceIkT is associated with exactly one instanceIk
′

M for each methodM ∈

c(T ). The child relationship between tasks and methods is extended to the instances:

c : IT → 2IM

The instance numbers of task instances and their associatedmethod instances are not neces-

sarily equal. This is unavoidable if we want instance numbers to be unique within all the instances

of a task or method on the one hand and allow the same method to be used by several tasks on

the other. For example, letM ∈ c(T1) ∩ c(T2). The requirement of equal instance numbers for

task and method instances would leave us with the question ofassociating thek − th instance

of M , IkM , with eitherIkT1
, IkT2

, or both. AssociatingIkM with both task instances would mean

the task instances sharing the same invocation of the same piece of code with the same parame-

ters and data, an assumption which is not valid in most cases.Of course, we cannot associate

the method instance with only one of the task instances, as the other one would be missing an

implementation alternative (which might even be the only one).

We therefore pose that for any two task instancesI, I ′ ∈ IT with I 6= I ′, c(I) ∩ c(I ′) = ∅.

This definition explicitly prevents two task instances to share the same method instance, regard-

less of whether they are instances of the same method or not.

Method instances are created only when needed, i.e.,

∀IM ∈ IM : ∃IT ∈ IT : IM ∈ c(IT )

We intentionally overloaded the symbolc for the child functions on task/method and

task/method instance levels to express the close relationship between them.

Similarly to the prior definition for tasks, release times are now associated with task instances.

Method instances inherit the release times of the task instances which they implement.

Definition 27 (Release times)

The release time for task instanceI ∈ IT is rI ∈ GT.

A method instance has the same release time as the unique taskinstance it is associated

with:

rIk
M

:= rIk′
T

with IkM ∈ c(Ik
′

T )
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Of course, release times of task instances can be arbitrary,and it is not always easy to find

a mathematical description for the release behaviour of a task set in reality. Within this work,

however, we assume that the release times of the instances ofa task can be fully described by a

stochastic distribution function. We even constrain our model to two kinds of functions which we

found both easy to describe and sufficiently close to many real-world scenarios. Further exten-

sions in this direction would probably not add any more insights in the nature of our scheduling

problem. Therefore, we distinguish only three types of tasks with regard to their release behav-

iour.

Periodic tasks have instances that are released at (approximately) equidistant times, the dis-

tance being called theperiod length; actual release times may deviate from the beginning of a

task period only within very small limits. This deviation iscalled themaximum release time jitter.

We assume the release time to be distributed uniformly around the beginning of a task period; the

task periods may have a constant offset from the start time ofthe system (global time 0) called the

phase shift. Release times of instances of periodic tasks are not correlated, i.e., the release time

distribution of one instance is independent of the release time of preceding instances. Specifi-

cally, if the jitter was allowed to be big enough compared to the period length, task instances

might “overtake” each other, so that instances with higher instance numbers are released earlier

than instances with lower instance numbers. Such a situation is generally considered undesirable

and can be guaranteed not to occur if the maximum jitter is sufficiently small compared to the

period length. To sum up, the attributes of a periodic taskT (see figure 4.3) are

• period lengthperT

• phase shiftϕT

• maximum jitterjT

The release time distribution is

Pr(rIk
T

= t) =

{
1

2jT +1
if ϕT + (k − 1)perT − jT ≤ t ≤ ϕT + (k − 1)perT + jT

0 otherwise

Aperiodic tasks have instances that are released with the same probability at any time instant.

This release probabilitydefines a geometric distribution of release times, which basically means

that the probability of a new task instance being released remains constant over time2. Release

times of consecutive instances differ by at least aminimum interarrival time. Once the minimum

interarrival time has passed, a new instance is released with a constant release probabilitypT
2The geometric distribution is the equivalent of the memoryless exponential distribution in discrete domains.
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Figure 4.3: Instantiation of periodic task

at each time step. Release times of instances of aperiodic tasks are correlated, i.e., the release

time distribution of one instance is dependent on the release time of the immediately preceding

instance. The expected value of the release time after the minimum interarrival time has passed

is 1
pT

. The release time of the first instance may have a constant offset from the start time of

the system (global time 0) called thephase shift. Task instances may not “overtake” each other,

i.e., instances with higher instance numbers are always released later than instances with lower

instance numbers. To sum up, the attributes of an aperiodic taskT (see figure 4.4) are

• minimum interarrival timeiatT

• phase shiftϕT

• release probabilitypT

Figure 4.4: Instantiation of aperiodic task

The release time distribution is given by the conditional probability

Pr(rI1
T

= t|rI1
T
≥ t) =

{
pT if t ≥ ϕT

0 otherwise

Pr(rIk
T

= t|k > 1 ∧ rIk
T
≥ t ∧ rIk−1

T
< t) =

{
pT if t ≥ rIk−1

T
+ iatT

0 otherwise
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Sporadic tasks have only one instance; its release time can be specified with an arbitrary

distribution. For simplicity, we assume the release time ofthe instance of a sporadic task to be

either given as an absolute number or uniformly (like a periodic task instance) or geometrically

(like an aperiodic task instance) distributed.

We denote the sets ofperiodic, aperiodic, andsporadictasks of an application byTp, Ta,

andTs, respectively. Tasks of setTa ∪ Tp release an infinite number of instances according to a

predefined stochastic distribution function.

Definition 28 (Utility functions)

Each task is associated a time-discrete utility function

uT : GT → R+
0 .

For each task instanceIkT ∈ IT , the utility function is defined as

uIk
T

: GT → R+
0

with

uIk
T
(t) =

{
0 if t < rIk

T

uT (t− rIk
T
) if t ≥ rIk

T

This means thatuI(t) = 0 for t < rI , uI(t) is monotonically decreasing fort ≥ rI and all

instances of a task have the same shape of utility function relative to their release times, i.e.

∀T ∈ T : ∀t ∈ GT : ∀k, k′ ∈ N : uIk
T
(t+ rIk

T
) = uIk′

T
(t+ rIk′

T
)

Definition 29 (Vectors of utility functions)

For a set of task instancesI′T ⊆ IT, the set of vectors of utility functions is given as

UFI′
T

:=
∏

I∈I′
T

UFT with UFT := (R+
0 )GT
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4.2.4 Value Functions

Value functions are defined similarly to the prior case of a single-processor system, but now on

the properties of task and method instances:

Definition 30 (Value functions)

Value functions now take the following form:

v : QFM × UFI′
T
× LTFI′

M
× GT → R+

0

Example definitions for value functions are

v~q,~u(~τ, t) := max
t′≤t

(
∑

IT∈I′
T

(
uIT (t′) ·

∑

IM∈c(IT ),P∈P

qM(τP,IM (t′))
))

v~q,~u(~τ, t) :=
∑

IT∈I′
T

(
max
t′≤t

(
uIT (t′) ·

∑

IM∈c(IT ),P∈P

qM(τP,IM (t′))
))

v~q,~u(~τ , t) := max
IT∈I′

T
,t′≤t

(
uIT (t′) · max

IM∈c(IT ),P∈P

qM(τP,IM (t′))
)

We still assume that the properties of value functions defined earlier apply accordingly.

4.3 Task Hierarchy

In the previous section, we introduced the application, library, and hardware layers for our prob-

lem description. However, the application layer still consists of an unstructured set of tasks. Now

a hierarchy graph is defined on the tasks.

4.3.1 Hierarchy Graph

The hierarchy graph resembles the iterative refinement approach to software development, ex-

amples of which are the concepts of inheritance or subroutine calls. Intuitively, the hierarchy

relation can express the fact that one task is a part or alternative of another. In example 4.5, the

hierarchy graph contains nodes and edges on the applicationand library layers. Processor access

specifications (edges between methods and processors) are not part of the hierarchy graph.
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T ∈ T T0 T1

c(T ) {T1, T2} {T3,M3,M4}

T ∈ T T2 T3

c(T ) {M4,M5,M6} {M1,M2}

a) example graph b) child function

Figure 4.5: Example hierarchy graph

For this purpose, the child function is modified as follows:

Definition 31 (Child function for tasks in hierarchical grap hs)

For task setT and method setM, the child function is defined as

c : T → 2T∪M

Now tasks can themselves be children of tasks; we call this atask/subtask relationship.

The child function defines a graph structure on the tasks and methods with the following

properties:

• The graph structure, restricted to task nodes, is a tree, i.e., it has a unique root node, is

acyclic and provides unique parent nodes for all task nodes except for the root. Methods

may be instantiated by several tasks; therefore, the tree property does not apply to the entire

graph.

• The leaves of the graph are methods; all computations are ultimately based on the algo-

rithm library, and without methods there would not be any quality functions and no notion

of computational progress.

Now the question arises how to interpret the instantiation specification for tasks. For example,

what should be the meaning of a periodic subtask of another periodic task (with possibly different

period lengths), especially if we think of extending the parent relation to task instances? Defining

a parent relationship between task instances with equal instance number would mean the release

times of these instances drifting apart more and more (figure4.6 a)); this property is not very

desirable.
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a) Task instances drifting apart b) Single task instance child of multiple task instances

Figure 4.6: Instantiation problems

Having a parent task release many instances and a child task only one causes similar prob-

lems. Do we want to designate one of the parent instances to beassociated with the child instance

or do we introduce a parent/child relationship between all instances of the parent task and the

child instance (figure 4.6b))? The first choice would leave uswith no child nodes for all but one

of the parent task instances, the other one would destroy thetree structure.

On the other hand, generating many instances from the child task and only one for the parent

task does not cause these problems. We therefore opt to allowmultiple instances of a task to be

generated if and only if the same is guaranteed for all directand indirect children and neither

the parent nor the child task instances are released more frequently than the others. We can

accomplish this behaviour by the following restriction on the task graph parameters and the

definition of the instantiation in the following section.

Define the ancestor relation

a : T ∪ M → 2T

by

T ∈ a(N) :⇔ T = N ∨ ∃N ′ ∈ c(T ) : N ′ ∈ a(N)

for all N ∈ T ∪ M.

We restrict the graph structure to allow no more than one non-sporadic task on any path from

the root to a leaf node. Then for all methodsM ∈ M : |a(M) ∩ (Ta ∪ Tp)| ≤ 1.

Along with a non-sporadic task instance, the entire subtreeis instantiated. A sporadic task is

now not instantiated necessarily only once altogether, butonce per parent task instance. As we

will see later, the evaluation of value functions takes place in a bottom-up manner along the task

hierarchy. In order to aggregate a value for the entire instance graph, it is convenient to assume

the graph to be contiguous. According to the previous paragraph, this is the case if only one
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instance is generated from the root task, i.e., if it is sporadic. We therefore require the root task

node to be sporadic; if this is in contrast to the logic of the application, a “dummy” sporadic root

node can always be added.

4.3.2 Instantiation

We can then re-define the instantiation of tasks to take placeas follows:

• Exactly one instance is generated from a task if the task itself and all of its ancestor nodes

are sporadic.

• Infinitely many instances are generated from a task if eitherthe task itself or one of its

ancestors is non-sporadic

The set of tasks instantiated exactly once is

T1 := {T ∈ T : |a(T ) ∩ (Ta ∪ Tp)| = 0}.

The set of tasks instantiated infinitely often is

T∞ := {T ∈ T : |a(T ) ∩ (Ta ∪ Tp)| = 1}.

Then the instance set of a taskT is

IT :=

{
{IkT}k∈N if T ∈ T∞

{I1
T} if T ∈ T1

During the execution of the system (the application graph together with the scheduling algo-

rithm), an instance graph is derived from the application graph. The child function is extended to

task instances:

Definition 32 (Child function for task and method instances)

For task and method instances, the child function is now defined as

c : IT → 2IT∪IM

IkT ∈ c(Ik
′

T ′) :⇔ T ∈ c(T ′) ∧ (T ∈ (Ta ∪ Tp) ∨ k = k′)

∀M ∈ c(T ) : ∀k′ ∈ N0 : ∃k ∈ N0 : IkM ∈ c(Ik
′

T )

That is, together with a task, the whole subtree is instantiated. The only case for which in-

stance numbers of parent and child task instance do not necessarily equal is that the child is an
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instance of a periodic or aperiodic task: The parent task by definition is instantiated only once,

whereas the child task has infinitely many instances; the child instances are all children of the

only parent task instance. Again, ifIkM ∈ IM , Ik
′

T ∈ IT andIkM ∈ c(Ik
′

T ), no general statement can

be made about the correlation of instance numbers. As before, method instances are generated

when needed, and instance numbers are only used to tell them apart.

We do not specify release time distributions for sporadic tasks other than the precondition

that release times of child task instances are no earlier than the one of the parent task instance:

∀I, I ′ ∈ IT : I ′ ∈ c(I) ⇒ rI′ ≥ rI

Instances of non-sporadic tasks share the same parent task instance, so that for a periodic task

T ∈ Tp with parent taskT ′ (i.e.,T ∈ c(T ′)):

Pr(rIk
T

= t) =






1
2jT +1

if rI1
T ′

+ ϕT + (k − 1)perT − jT ≤ t

≤ rI1
T ′

+ ϕT + (k − 1)perT + jT

0 otherwise

and for an aperiodic taskT ∈ Ta with parent taskT ′:

Pr(rI1
T

= t|rI1
T
≥ t) =

{
pT if t ≥ rI1

T ′
+ ϕT

0 otherwise

Pr(rIk
T

= t|k > 1 ∧ rIk−1
T

< t ∧ rIk
T
≥ t) =

{
pT if t ≥ rIk−1

T
+ iatT

0 otherwise

4.3.3 Local Time Functions

We now introduce local time functions not only on method instances, but also on task instances.

This will be necessary for scheduling algorithms to operatelocally on each node, i.e., to take

advantage of the task hierarchy. Using local times on the method level only requires all data on

resource distribution for the entire application to be taken into account simultaneously, resulting

in possibly large search spaces. Allowing the scheduler to store allocation information locally

at each node of the instance graph is especially beneficial ina dynamic scheduling scheme, as

it allows schedule adaptations by changing only allocations in a certain subtree at the lowest

possible level without having to retouch the remainder of the schedule. The root node represents

the entire application, and we assume the application can use the processors to full extent. Re-

source allocation takes place in top-down (i.e., the allocation to a node is distributed among the

children), and evaluation in bottom-up manner, as we will see later.
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First, let us define local time domains for task instances:

Definition 33 (Local time for task instances)

For task instanceI ∈ IT and processorP ∈ P, we define a local time domain as

LTP,I :≡ N0

The next step is to define local time and allocation functionsfor task instances:

Definition 34 (Local time and allocation functions for task instances)

For all task instancesI ∈ IT, we define a local time function with regard to a certain

processor as a monotonically increasing function

τP,I : GT → LTP,I with

∀t ≤ rI : τP,I(t) = 0

The set of all possible local time functions forI on processorP is LTFP,I .

We define local allocation functions as

αP,I : LTFP,I × GT → LTP,I

with

αP,I(τP,I , t) := τP,I(t+ 1) − τP,I(t)

We define vectors of local time functions as usual:

Definition 35 (Vectors of local time functions)

For a subsetI′ ⊆ IT ∪ IM of task and method instances,LTFI′ :=
∏

I∈I′,P∈P
LTFP,I is

the set of vectors of local time functions for task and methodinstances inI′; we use the

symbol~τ ∈ LTFI′ for elements of this set.

The restrictions on the local time functions for methods remain valid:

• To any method instance, no more than one processor is allocated at a time.

• The sum of allocations to the set of method instances does notexceed the resources avail-

able at any time.

Apart from that, we now require that for any~τ ∈ LTFI′:
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• The root nodeI1
T0

is allocated all processors at all times:

∀P ∈ P : ∀t ∈ GT : αP,I1
T0

(τP,I1
T0
, t) = 1 3

• The allocation to the children must not exceed the allocation to the parent node at any time:

∀P ∈ P : ∀t ∈ GT : ∀I ∈ I′ :
∑

I′∈c(I)
αP,I′(τP,I′, t) ≤ αP,I(τP,I , t)

• To any task or method instanceI, no processors may be allocated prior to the release time:

∀I ∈ I′ : ∀P ∈ P : ∀t ∈ GT : t < rI ⇒ τP,I(t) = 0

4.3.4 And/or Graph

One advantage of hierarchisation is that the structure of the task set can now be used to impose

different semantics on the parts of the graph. Instead of using one value function for the entire

task set, we now construct scheduling algorithms which evaluate value functions recursively for

each node in the hierarchy tree. Node value functions are of type

I′T × QFM × UFI′
T
× LTFI′

T
∪I′

M
× GT → R+

0

Specifically, we found a distinction of nodes into two logical types useful to model an impor-

tant difference between them.

We assume each task (and its instances) to have one of the following types:

and: The child nodes of this task compete for the shared resources; the execution of all child

node instances is desirable.

or: The child nodes of this task are alternative implementations; execution of several child node

instances does in general not yield any advantage over execution of only one.

The effect of different logical types is simply the value functions that apply for each node:

3This definition does not take into account idle times when no method instance is actually executed on the

processor. However, processing time allocated to a node in the hierarchy need not be passed on to any children (i.e.,

parent node allocation merely gives upper bounds to child node allocations). We opt for this notation, because it

does not require prior analysis of the active set of methods at each time.
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For instancesI of a task with logical typeand, we chose the value function

vI,~q,~u(~τ, t) :=
∑

IT∈IT∩c(I)

(
max
t′≤t

(
uI(t

′) · vIT ,~q,~u(~τ, t
′)
))

+
∑

IM∈IM∩c(I),P∈P

(
max
t′≤t

(
uI(t

′) · qM(τP,IM (t′))
))

For example, assume we have an all-sporadic task hierarchy with the root taskT0 of logical

typeand, several child tasksT1, . . . , Tn and associated methodsM1, . . . ,Mn (figure 4.7).

Figure 4.7: Example forand type task

Assume further thatrI1
T0

= rI1
T1

= · · · = rI1
Tn

= 0 anduI1
T0

(t) = uI1
T1

(t) = · · · = uI1
Tn

(t) = 1

for all t. Finally, let the quality functions of all methods be concave. This setting resembles a set

of anytime algorithms without timing constraints. For the child task instancesTk, we simply get

vI1
Tk
,~q,~u(~τ, t) = max

t′≤t
qP,Mk

(τP,I1
Mk

(t′))

= qP,Mk
(τP,I1

Mk

(t))

The root node reflects a common objective function for the optimal stopping problem in a set

of anytime tasks, where only the amount of processor time foreach task (instance) is important,

not the time when the allocation takes place:

vI1
T0
,~q,~u(~τ, t) =

n∑

k=1

max
t′≤t

vI1
Tk
,~q,~u(~τ , t

′)

=

n∑

k=1

max
t′≤t

qP,Mk
(τP,I1

Mk

(t′))

=

n∑

k=1

qP,Mk
(τP,I1

Mk

(t))
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For instancesI of a task with logical typeor, we chose the value function

vI,~q,~u(~τ, t) := max

(
max

IT ∈IT∩c(I),t′≤t

(
uI(t

′) · vIT ,~q,~u(~τ , t
′)
)
,

max
IM∈IM∩c(I),P∈P,t′≤t

(
uI(t

′) · qM(τP,IM (t′))
))

Assume that the root node in the graph of figure 4.8 is of typeor.

Figure 4.8: Example foror type task

Let uT0(t) = 1 for all t and define vectors of local time functions~τ(M1), . . . , ~τ(Mn) such that

∀t ∈ GT : ∀k ∈ {1, . . . , n} : τ(Mk),P,I1
Mi

(t) =

{
t if k = i

0 otherwise

and chooset ∈ GT andm ∈ {1, . . . , n} such that

∀k ∈ {1, . . . , n} : vI1
T0
,~q,~u(~τ(Mk), t) ≤ vI1

T0
,~q,~u(~τ(Mm), t)

Then for all possible vectors of local time functions~τ :

vI1
T0
,~q,~u(~τ, t) = max

k∈{1,...,n},t′≤t
qP,Mk

(τP,I1
Mk

(t′))

≤ max
k∈{1,...,n},t′≤t

qP,Mk
(τ(Mk),P,I1

Mk

(t′))

= vI1
T0
,~q,~u(~τ(Mm), t)

It is most rewarding to allocate all processing time to one method (instance) only; this resem-

bles a method selection scheme.

4.3.5 Implications on Scheduling Algorithms

Scheduling algorithms now have to take into account the hierarchical structure by evaluating

value functions recursively for all nodes. The overall value of the application equals the value of

the root node. As an example, we re-state the pseudocode of the Simulated-Annealing algorithm

with the necessary changes in figure 4.9.
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optimizeI(c(I), J
≥ϑ
c(I),[t0;t0+ws[

, Jmax, T empstart, T empmin,#rep, cF ) : ~τbest ∈ LTFc(I)

~τ := almostUniform(c(I), J≥ϑ
c(I),[t0;t0+ws[)

Temp := Tempstart

V := vI,~q,~u(~τ, Jmax)

Vbest := V

~τbest := ~τ

while(Temp > Tempmin) do

choose one intervalJ ∈ J
≥ϑ
c(I),[t0;t0+ws[

for n = 1 to #rep do
~τ ′ := searchStep(~τ)

optimise and evaluate children

V ′ := vI,~q,~u(~τ ′, Jmax)

if (V ′ > V ) then

~τ := ~τ ′

V := V ′

if V > Vbest then

Vbest := V

~τbest := ~τ

fi

else

with probabilitymin(1, e
V −V ′

Temp ) do

~τ := ~τ ′

V := V ′

od

fi

Temp := cF · Temp

od

od

return~τbest
end

Figure 4.9: Simulated-Annealing resource allocation algorithm

The optimisation algorithm is called for every nodeI in the task instance graph. It now

distributes processor time not among all tasks, but among all child task instancesc(I) of the cur-
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rent instanceI. Allocations are indexed by the processor, because the algorithm has to compute

processing time distributions for a multiprocessor system. Search steps are analogous to the sim-

pler previous case, but now must take into account the different processors. If there are multiple

processors of the same kind, moving allocations from one of these processor instances to another

would be possible; however, we usually forbid this kind of search steps, as they would imply task

migration from one processor to another at runtime, possibly incurring enormous costs.

A central point in the new version of the algorithm is the recursive call for children of the

current task. To prevent exponential costs by recalculating allocations for child nodes, we imple-

mented caching mechanisms which store information on previously calculated partial solutions.

For each node, there is a repository mapping subproblems that have been submitted to the asso-

ciated optimising agent at an earlier time to the solution found. Depending on the time available

for the optimisation agent when the same subproblem is re-submitted later, it may either use the

previous result or try to improve on the prior solution. A metric is applied to detect similar prob-

lems to the ones previously calculated. We assume that solutions to a similar problem are similar

to the solutions of the original problem, so they can be used as a starting point for optimisation.

In many cases, this is a reasonable assumption; obviously, however, it is not always true.

4.3.5.1 And/or Graph

We demonstrate the implications of the and/or hierarchy of tasks with the Simulated-Annealing

algorithms presented before, and we choose an example with one processor and sporadic tasks

with utility functions representing firm relative deadlines δ, i.e., for every task instanceIkT , its

utility function is defined as follows:

uIk
T
(t) =

{
1 if t < δT

0 if t ≥ δT

Figure 4.10 shows an example graph withand type (symbol:∧) andor type (symbol:∨)

tasks. Tasks in this example are annotated with release times,r, and deadlines,δ.

Elementary intervals are calculated in bottom-up manner from the release times and utility

change times (here: the deadlines) of tasks.

Figure 4.11 demonstrates the bottom-up calculation of elementary intervals for the exam-

ple graph, and tables 4.1 and 4.2 the sets of elementary intervals for all instances in root-node

granularity and the sets of active nodes for all elementary intervals.

Having established the set of active intervals for all tasks(figure 4.12), the optimisation al-

gorithm starts off with a full allocation of processing timeto the root node and by distributing

time units in top-down manner. Figure 4.13 shows a distribution of cpu time as it might be used
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Figure 4.10: Example application graph

Figure 4.11: Calculation of elementary intervals for example graph

node elementary intervals

I1
T0

[0; 2[, [2; 8[, [8; 10[, [10; 13[, [13; 22[

I1
T1
/I1
M1.1

/I1
M1.2

[0; 2[, [2; 8[, [8; 10[

I1
T2
/I1
M2

[2; 8[, [8; 10[, [10; 13[

I1
T3
/I1
M3

[8; 10[, [10; 13[, [13; 22[

Table 4.1: Elementary intervals for nodes of example graph

interval active instances

[0; 2[ I1
T0

, I1
T1

, I1
M1.1

, I1
M1.2

[2; 8[ I1
T0

, I1
T1

, I1
M1.1

, I1
M1.2

, I1
T2

, I1
M2

[8; 10[ I1
T0

, I1
T1

, I1
M1.1

, I1
M1.2

, I1
T2

, I1
M2

, I1
T3

, I1
M3

[10; 13[ I1
T0

, I1
T2

, I1
M2

, I1
T3

, I1
M3

[13; 22[ I1
T0

, I1
T3

, I1
M3

Table 4.2: Active nodes for all elementary intervals
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at the beginning of the optimisation process. To root nodeI1
T0

, the allocation of cpu cycles in an

interval [ts; te[ is te − ts units. Allocations are distributed approximately uniformly amongst the

child nodes for each task.

Figure 4.12: Elementary intervals for example graph

Figure 4.13: Primary distribution of cpu time

Assume the step quality functions for the method nodes as given in table 4.3, so thatqM(t) =

max0≤t′≤t q(t
′).

Node Step 1 Step 2 Step 3 Step 4

t q t q t q t q

M1.1 0 0.0 4 0.2 6 0.6

M1.2 0 0.0 2 0.4 8 1.0

M2 0 0.0 2 0.1 4 0.2 6 0.3

M3 0 0.0 4 0.3 8 0.4 12 0.8

Table 4.3: Assumed quality functions of methods

The allocation of figure 4.13 would then yield an overall value ofmax(qM1.1(3), qM1.2(3)) +

qM2(6) + qM3(10) = max(0, 0.4) + 0.3 + 0.4 = 1.1, the optimised allocation of figure 4.14 an
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overall value ofmax(qM1.1(0), qM1.2(8)) + qM2(2) + qM3(12) = max(0, 1) + 0.1 + 0.8 = 1.9.

The Gantt chart for the resulting schedule is shown in figure 4.15.

Figure 4.14: Final distribution of cpu time

Figure 4.15: Gantt chart of result schedule

4.3.5.2 Instantiation

We demonstrate the usefulness of the distinction between tasks and instances with the MDP

approach to quality/utility scheduling. The finite set of tasks with regularly occurring release

times makes this scheduling algorithm practically feasible. As an example, consider the graph of

figure 4.16 with root nodeT0, child task nodesT1 andT2, methodsM1 andM2 and one processor

P .

TaskT0 is instantiated exactly once, and the release time of this instance is 0. The release

times of instances of tasksT1 andT2 are geometrically distributed with probabilitiesp1, p2 ∈]0; 1[

and minimum interarrival timesiatT1 = iatT2 = 1. Hence, the probability for the release time of

instanceIkTi
, i ∈ {1, 2}, k ∈ N0 beingt is

Pr(rI1
Ti

= t|rI1
Ti

≥ t) = pi

Pr(rIk
Ti

= t|rIk−1
Ti

< t ∧ rIk
Ti

≥ t) = pi
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instance numbers

T0 T1 T2

1 ∞ ∞

release probabilities

T1 T2

0.3 0.8

Figure 4.16: Example graph

The mean interarrival time, i.e., the expected time betweentwo consecutive instantiations of

taskTi, is

E(rIk+1
Ti

− rIk
Ti

) =
1

pi

Utility and quality functions for the example graph are given in tables 4.4, with the previously

given definition for utility functions of task instances:

uIk
T
(t) =

{
0 if t < rIk

T

uT (t− rIk
T
) t ≥ rIk

T

T0 ∀t ∈ GT : uT0(t) = 1

T1 uT1(t) =

{
1 if 0 ≤ t < 2

0 if t ≥ 2

T2 uT2(t) =






1 if 0 ≤ t < 3

0.5 if 3 ≤ t < 5

0 if t ≥ 5

M1 qP,M1(n) =

{
0 if n = 0

1 if n ≥ 1

M2 qP,M2(n) =






0 if n = 0

0.1 if n = 1

0.5 if n = 2

1 if n ≥ 3

a) Utility functions b) Quality functions

Table 4.4: Quality and utility functions for example

For the MDP formulation of the problem, let states be denotedby a tuple

(t, 〈a1, . . . , at〉, I(t)), whereI(t) is the set of ready instances at timet. At any timet, at most

one new instance of tasksT1 andT2 can arrive. The probabilities are0.7 · 0.2 = 0.14 for no

new instance being released,0.3 · 0.2 = 0.06 for only a new instance ofT1, 0.7 · 0.8 = 0.56 for

only a new instance ofT2 being released. The probability of instances of either taskarriving is
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0.3 ·0.8 = 0.24. Note that the partial schedules do not have any influence on the transition proba-

bilities between states, so that forward simulation to find the states most likely to be encountered

can be done on state sets with variables being used within thepartial schedules, as demonstrated

in figure 4.17. The state setsS1, . . . , S9 are numbered in the order they are encountered during

forward simulation. The forward simulation algorithm always expands the state transition graph

with transitions from the state set with highest probability (the product of transition probabilities

on the path originating from states0). Edges are annotated with transition probabilities and the

set of tasks that are instantiated during this transition; remember that at most one instance of

each task is released at each time step. Nodes are annotated with the probability of entering a

state (set) from start states0 and the name of the state set; only the most likely state sets are

assigned names.

Figure 4.17: Forward simulation

Table 4.5 lists the state sets with their associated attributes, i.e., time, set of ready task in-

stances and partial schedule. The first column contains the name of a state or the structural

description for a set of states (using variables instead of individual actions within the partial

schedules), the probability of reaching this state (set) starting from states0 and the current action.

The possible transitions from each state set are given in column 2, followed by the probability

of reaching the direct successor state (set) starting from states0. The most likely successor state



4.3. TASK HIERARCHY 95

sets are marked by an asterisk (∗) and named (last column). The notationIk(t)Ti
is used to indicate

thek-th instance ofTi arriving at timet. An entryǫ in a schedule means leaving the processor

idle.

State (pattern) Transitions Successor Successor

prob. action state prob. state set

s0
0.14
−→ (1, 〈〉, ∅) 0.14∗ S5
0.06
−→ (1, 〈〉, {I

1(1)
T1

}) 0.06
0.56
−→ (1, 〈〉, {I

1(1)
T2

}) 0.56∗ S1

1 ǫ
0.24
−→ (1, 〈〉, {I

1(1)
T1

, I
1(1)
T2

}) 0.24∗ S3

(1, 〈〉,
0.14
−→ (2, 〈x1〉, {I

1(1)
T2

}) 0.0784∗ S9

{I
1(1)
T2

})
0.06
−→ (2, 〈x1〉, {I

1(2)
T1

, I
1(1)
T2

}) 0.0336
0.56
−→ (2, 〈x1〉, {I

1(1)
T2

, I
2(2)
T2

}) 0.3136∗ S2

0.56 x1
0.24
−→ (2, 〈x1〉, {I

1(2)
T1

, I
1(1)
T2

, I
2(2)
T2

}) 0.1344∗ S6

(2, 〈x1〉,
0.14
−→ (3, 〈x1x2〉, {I

1(1)
T2

, I
2(2)
T2

}) 0.0439

{I
1(1)
T2

,
0.06
−→ (3, 〈x1x2〉, {I

1(3)
T1

, I
1(1)
T2

, I
2(2)
T2

}) 0.0188

I
2(2)
T2

})
0.56
−→ (3, 〈x1x2〉, {I

1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

}) 0.1756∗ S4

0.31 x2
0.24
−→ (3, 〈x1x2〉, {I

1(3)
T1

, I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

}) 0.0753

(1, 〈〉,
0.14
−→ (2, 〈x′1〉, {I

1(1)
T1

, I
1(1)
T2

}) 0.0336

{I1(1)
T1

,
0.06
−→ (2, 〈x′1〉, {I

1(1)
T1

, I
2(2)
T1

, I
1(1)
T2

}) 0.0144

I
1(1)
T2

})
0.56
−→ (2, 〈x′1〉, {I

1(1)
T1

, I
1(1)
T2

, I
2(2)
T2

}) 0.1344∗ S7

0.24 x′1
0.24
−→ (2, 〈x′1〉, {I

1(1)
T1

, I
2(2)
T1

, I
1(1)
T2

, I
2(2)
T2

}) 0.0576

(3, 〈x1x2〉,
0.14
−→ (4, 〈x1x2x3〉, {I

1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

}) 0.0246

{I
1(1)
T2

,
0.06
−→ (4, 〈x1x2x3〉, {I

1(4)
T1

, I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

}) 0.0105

I
2(2)
T2

, I
3(3)
T2

}
0.56
−→ (4, 〈x1x2x3〉, {I

1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

}) 0.0983∗ S8

0.18 x3
0.24
−→ (4, 〈x1x2x3〉, {I

1(4)
T1

, I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

}) 0.0421

x1 ∈
{
ǫ, I

1(1)
T2

}
, x′1 ∈

{
ǫ, I

1(1)
T1

, I
1(1)
T2

}

x2 ∈
{
ǫ, I

1(1)
T2

, I
2(2)
T2

}
, x3 ∈

{
ǫ, I

1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

}

Table 4.5: Forward simulation of state sets

We expand the most likely encountered state sets into the individual states of the state enve-

lope by replacing the variables in the structural description of the state sets with their possible
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values (table 4.6). We avoid to bind any variables toǫ if other values are possible. As our assump-

tion is that all tasks are preemptive and we neglect context switch costs, leaving the processor

idle in the presence of ready task instances could not yield any advantage. Note that we add the

absorbing statessout andserr. Statess0, sout andserr do not have an internal structure.

State set State Structure

−− s0 −−

S5 s1 (1, 〈〉, ∅)

S1 s2 (1, 〈〉, {I
1(1)
T2

})

S3 s3 (1, 〈〉, {I
1(1)
T1

, I
1(1)
T2

})

S9 s4 (2, 〈I
1(1)
T2

〉, {I
1(1)
T2

})

S2 s5 (2, 〈I1(1)
T2

〉, {I1(1)
T2

, I
2(2)
T2

})

S6 s6 (2, 〈I
1(1)
T2

〉, {I
1(2)
T1

, I
1(1)
T2

, I
2(2)
T2

})

S7 s7 (2, 〈I
1(1)
T1

〉, {I
1(1)
T1

, I
1(1)
T2

, I
2(2)
T2

})

S7 s8 (2, 〈I
1(1)
T2

〉, {I
1(1)
T1

, I
1(1)
T2

, I
2(2)
T2

})

S4 s9 (3, 〈I
1(1)
T2

, I
1(1)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

})

S4 s10 (3, 〈I
1(1)
T2

, I
2(2)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

})

S8 s11 (4, 〈I
1(1)
T2

, I
1(1)
T2

, I
1(1)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

S8 s12 (4, 〈I
1(1)
T2

, I
1(1)
T2

, I
2(2)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

S8 s13 (4, 〈I
1(1)
T2

, I
1(1)
T2

, I
3(3)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

S8 s14 (4, 〈I1(1)
T2

, I
2(2)
T2

, I
1(1)
T2

〉, {I1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

S8 s15 (4, 〈I
1(1)
T2

, I
2(2)
T2

, I
2(2)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

S8 s16 (4, 〈I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

〉, {I
1(1)
T2

, I
2(2)
T2

, I
3(3)
T2

, I
4(4)
T2

})

−− sout −−

−− serr −−

Table 4.6: Names and structure of states

After that, we calculate the reward of every state by evaluating the appropriate utility and

quality functions for the given partial schedule (table 4.7); note that in this example, states0

is associated with (global) time 0, so the first task instances may appear at time 1. The partial

schedules contained in the attributes of the states refer tothe situation exactly one unit of time

prior to the time indicated by the time attribute of the state. This is to say that we allow task

instances to be scheduled only at the time instant immediately after their release.4 Utility and

4The alternative would be to allow all instances possibly released at a time instant to be included in the schedule

immediately, making the search space bigger and the state transition table more complex.
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quality functions are evaluated according to the definitionof the value function in section 2.5.2

(sum of product of quality and utility with inner hold operator). All states excepts0, sout andserr
have a unique predecessor state, such that the reward can be defined as the difference between a

state’s value and its predecessor’s value.

State(s) vI0 R

s0 − 0

s1, s2, s3 0 0

s4, s5, s6, s8 qP,M2(1)uT2(1) = 0.1 · 1 = 0.1 0.1 − 0 = 0.1

s7 qP,M1(1)uT1(1) = 1 · 1 = 1 1 − 0 = 1.0

s9 qP,M2(2)uT2(2) = 0.5 · 1 = 0.5 0.5 − 0.1 = 0.4

s10 qP,M2(1)uT2(1) + qP,M2(1)uT2(1) 0.2 − 0.1 = 0.1

= 0.1 · 1 + 0.1 · 1 = 0.2

s11 qP,M2(3)uT2(3) = 1 · 0.5 = 0.5 0.5 − 0.5 = 0

s12 qP,M2(2)uT2(2) + qP,M2(1)uT2(2) 0.6 − 0.5 = 0.1

= 0.5 · 1 + 0.1 · 1 = 0.6

s13 qP,M2(2)uT2(2) + qP,M2(1)uT2(1) 0.6 − 0.5 = 0.1

= 0.5 · 1 + 0.1 · 1 = 0.6

s14 qP,M2(2)uT2(3) + qP,M2(1)uT2(1) 0.35 − 0.2 = 0.15

0.5 · 0.5 + 0.1 · 1 = 0.35

s15 qP,M2(1)uT2(1) + qP,M2(2)uT2(2) 0.6 − 0.2 = 0.4

0.1 · 1 + 0.5 · 1 = 0.6

s16 qP,M2(1)uT2(1) + qP,M2(1)uT2(1) 0.3 − 0.2 = 0.1

+qP,M2(1)uT2(1) = 3 · 0.1 · 1 = 0.3

sout − 0

serr − −∞

Table 4.7: Rewards for states in state envelope

We can then derive the state transition table 4.8 from figure 4.17 and table 4.6.

The only cycles in the transition graph are the self-loops ofthe absorbing states. Remember

that

s
(a,p)

−−−−−−−−→ sout

if a is a legal action for states andp = 1 −
∑

s′∈Ŝ:s
(a,p′)
−−−−−−−−→s′

p′ and for all statess′ ∈ Ŝ : times′ =

times + 1 5,
5times is the time attribute in states
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state possible transitions

s0 s0

(ǫ,0.14)

−−−−−−−−→ s1, s0

(ǫ,0.56)

−−−−−−−−→ s2, s0

(ǫ,0.24)

−−−−−−−−→ s3

s2 s2

(I
1(1)
T2

,0.14)

−−−−−−−−→ s4, s2

(I
1(1)
T2

,0.56)

−−−−−−−−→ s5, s2

(I
1(1)
T2

,0.24)

−−−−−−−−→ s6

s3 s3

(I
1(1)
T1

,0.56)

−−−−−−−−→ s7, s3

(I
1(1)
T2

,0.56)

−−−−−−−−→ s8

s5 s5

(I
1(1)
T2

,0.56)

−−−−−−−−→ s9, s5

(I
2(2)
T2

,0.56)

−−−−−−−−→ s10

s9 s9

(I
1(1)
T2

,0.56)

−−−−−−−−→ s11, s9

(I
2(2)
T2

,0.56)

−−−−−−−−→ s12, s9

(I
3(3)
T2

,0.56)

−−−−−−−−→ s13

s10 s10

(I
1(1)
T2

,0.56)

−−−−−−−−→ s14, s10

(I
2(2)
T2

,0.56)

−−−−−−−−→ s15, s10

(I
3(3)
T2

,0.56)

−−−−−−−−→ s16

Table 4.8: State transition table

s
(a,1)

−−−−−−−−→ serr

if a is not a legal action in states (i.e., it is not contained in the set of ready task instances)and

times′ = times + 1 and

s
(a,0)

−−−−−−−−→ s′

if s′ is not a legal successor state ofs with regard to the time attributes or the partial schedules.

For the policy iteration, we choose a discount factor of 0.9,start with a policyπ(s) = ǫ for

all statess and have to solve the following linear equation system:

Vπ(s0) = 0 + 0.9 · (0.14Vπ(s1) + 0.56Vπ(s2) + 0.24Vπ(s3))

∀s ∈ {s1, . . . , s16, sout, serr} : Vπ(s) = R(s)

Obviously, the trivial solution to this system is

∀s ∈ {s0, . . . , s16, sout, serr} : Vπ(s) = R(s).

Iterating through all states of the envelope, we find that, e.g., I1(1)
T1

would be a better action

for states3 thanǫ, as

(R(s3) + γ
∑

s′∈Ŝ

Pr(s3, I
1(1)
T1

, s′)Vπ(s
′))

= 0 + 0.9 · 0.56 · 1 = 0.504 > 0 = Vπ(s3)
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The policy we receive after a sufficient series of three runs of the policy iteration algorithm

(with the additional heuristic that executing any action instates on the border of the envelope is

better than the null actionǫ) is as follows:

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

ǫ ǫ I
1(1)
T2

I
1(1)
T1

I
1(1)
T2

I
1(1)
T2

I
1(1)
T1

I
2(2)
T2

I
1(1)
T1

I
3(3)
T2

s10 s11 s12 s13 s14 s15 s16 sout serr

I
2(2)
T2

I
2(2)
T2

I
2(2)
T2

I
3(3)
T2

I
2(2)
T2

I
2(2)
T2

I
3(3)
T2

ǫ ǫ

This policy guides the actions of the scheduler; a new policyhas to be calculated once the

current state is not contained in the envelope any more. Figure 4.17 demonstrates that the state

envelope and the corresponding policy is sufficient for the next time step with a probability of

0.14 + 0.56 + 0.24 = 0.94, for the following time step with a probability of0.078 + 0.314 +

0.134 + 0.134 = 0.66, and for the time step of distance 3 to the current time with probability

0.176.

4.3.6 Caching Mechanism

The hierarchisation of the application graph and the adaptations of the scheduling algorithms

we introduced earlier would require subtrees of the graph tobe evaluated recursively, even if

the local problems in some subgraphs remain unchanged. To avoid this drawback, we use local

caches at each node to store problem descriptions encountered before and use the previously

calculated solutions, thus pruning the recursion tree if possible. Along with this basic scheme,

we also introduced a further improvement of scheduling algorithms storing solutions not only on

the level of task/method instance graphs, but also on the level of the original problem description

(the task/method graph). This enables the scheduler to use solutions of prior instantiations of

tasks and entire subgraphs; this is only appropriate, however, if the relative release times of

tasks within the subgraph are well predictable. Finally, wecan use the cache not only to detect

subproblems which have previously been solved, but also to find problems similar to the current

one, hoping to receive a better starting point for the searchalgorithm than an entirely arbitrary

resource distribution.

4.4 Dependencies

Dependency edges act as a value-based equivalent of dataflowor other precedence constraints.
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4.4.1 Dependencies on the Task / Method Level

The dependency graph is a second directed graph structure defined on the same task nodes as

the hierarchy graph and is expressed by a predecessor function. We do not allow dependency

edges between methods, as this would prevent reusability with the same arguments we used to

justify the restriction of no method instance being the child of two different task instances. All

desired dependencies must be expressed on the task level; this may in some cases require the

introduction of dummy tasks.

pred : T → 2T

Hierarchy and dependency graphs are in some regard orthogonal to each other, as dependency

edges cannot connect tasks on different levels of the hierarchy tree.

To allow evaluation to still take place recursively along the task hierarchy and due to the

semantics of different kinds of task nodes, certain restrictions apply to the dependency graph:

• Dependencies are allowed only between child nodes of the sameand type node.

The restriction toand type nodes was introduced primarily for semantic reasons; the inter-

pretation of anor type node is such that the child nodes represent alternativeimplemen-

tations of the parent. It does not seem to make sense in most cases that one alternative

depends on another one; in general, we want only one of the alternatives to be executed at

all.

The restriction of dependencies to nodes sharing the same parent is necessary to keep value

function evaluation efficient; allowing dependencies to span several hierarchy levels would

mean we cannot aggregate values hierarchically any more with significant consequences

for the efficiency of scheduling algorithms.

• Dependencies are only allowed between tasks which are not both non-sporadic.

Allowing dependencies between non-sporadic tasks would lead us to similar difficulties

as we described for the task hierarchy. For example, a dependency between periodic tasks

of different period lengths would involve correlated instances diverging in time more and

more, which we intend to avoid. A sporadic task may, on the other hand, trigger the start

of repetitive computations, and a certain minimum number ofexecuted instances of a non-

sporadic task may trigger a one-time action.

The dependency graph on the task level acts as an abbreviation for the equivalent relation-

ship on the instance level. A distinction must be made, however, according to the instan-
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tiation type of tasks. If either the source or the target nodeof a dependency edge is non-

sporadic, an infinite number of instances are created from one task, but only one instance

from the other task. Each instance of these tasks takes part in the same dependency rela-

tionship, regardless of the instance numbers. This impliesthat dependency cycles involving

a non-sporadic task would mean each instance of this task to depend on all instances of the

same task, including itself. This would question causality, so that we have to forbid cycles

including non-sporadic tasks.

For sporadic tasks, however, the situation is different: A cycle in the task-level dependency

graph means that an instance of a task depends on another instance of the same task. We

suppose this makes sense as long as the dependency refers to an earlier instance. This leads

us to the following statement:

• A delay specification for sporadic tasks is defined on the set of dependency edges as fol-

lows:

delay : Ts × Ts → N0

with

delay(T, T ′)

{
= ∞ if T /∈ pred(T ′)

∈ N0 if T ∈ pred(T ′)

The delay is the distance in instance numbers for task instances depending on each other.

For example, ifdelay(T, T ′) = k, the(i + k)-th instance of taskT ′ depends on thei−th

instance of taskT . For i ≤ k, I iT ′ does not depend on any instance of taskT .

For every cycle in the dependency graph, the delay specification is positive: Assume there

areT1, . . . , Tn ∈ T with Tn ∈ pred(T1) and∀j ∈ {2, . . . , n} : Tj−1 ∈ pred(Tj).

Then

delay(Tn, T1) +
n∑

j=1

delay(Tj−1, Tj) > 0

A positive weightweight(T, T ′) is assigned to nodes connected by a dependency edge, i.e.,

weight : T × T → [0; 1]

with

weight(T, T ′)

{
> 0 if T ∈ pred(T ′)

= 0 otherwise

An example application graph with task hierarchy, dependency graph, periodicity specification

and a multiprocessor target architecture is shown in figure 4.18.
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Figure 4.18: Example application graph

4.4.2 Dependencies on the Instance Level

Similarly to the hierarchy graph, a dependency graph is constructed between the task instances.

Dependencies between instances have to take into account the delay specifications:

pred : IT → 2IT

For dependency edges between task instances, the followingmust be true forIkT , I
k′

T ′ ∈ IT:

Ik
′

T ′ ∈ pred(IkT ) :⇔ T ′ ∈ pred(T ) ∧ k − k′ = delay(T ′, T )

Finally, we define weights for the dependency edges indicating the level of influence of the

predecessor on the successor node:

I i
′

T ′ ∈ pred(I iT ) ⇒ weight(I i
′

T ′, I iT ) := weight(T ′, T )

The delay specification is necessary in order to guarantee the instance dependency graph to

be acyclic, as we will show now:

Assumepred : ITs
→ 2ITs to define a cyclic instance dependency graph. Then the following

must be true:

∃T1, . . . , Tn ∈ T : ∃k1, . . . , kn : T kn

n ∈ pred(T k11 ) ∧ ∀ni=2T
ki−1

i−1 ∈ pred(T ki

i )

From the definition of dependency edges on instances, we knowthat

Tn ∈ pred(T1) ∧ ∀ni=2 : Ti−1 ∈ pred(Ti)
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and

k1 − kn = delay(Tn, T1) ∧ ∀ni=2 : ki − ki−1 = delay(Ti−1, Ti)

We receive

delay(Tn, T1) +

n∑

i=2

delay(Ti−1, Ti) = k1 − kn +

n∑

i=2

(ki − ki−1)

= (k1 +
n∑

i=2

ki) − (kn +
n∑

i=2

ki−1)

=

n∑

i=1

ki −
n∑

i=1

ki = 0,

in contradiction to the requirements for the delay specification.

�

For example, the application graph of figure 4.18 unfolds partially into the instance graph of

figure 4.19. Only up to three of a possibly infinite number of instances of the tasks are shown.

The dynamic scheduler repeatedly constructs partial instance graphs according to its limited view

of the future.

Figure 4.19: Partial instance graph

Note that in the context of value-based scheduling, there isno intrinsic equivalent to the

completion of execution in traditional task models. We can,however, emulate methods with

fixed execution timen0 in our model by using quality functions with two values only,e.g.,

q(n) =

{
0 if n < n0

1 if n ≥ n0

In this regard, the situation described here, where qualityfunctions are not restricted to this shape,

is more general than precedence conditions.
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Our model assumes that all tasks can be executed independently of each other. Dependencies

expressed through weighted edges between the task nodes affect only the evaluation of value

functions and hence the overall value achieved by the application. We call this kind of relation-

shipvalue dependency.

Imagine task instanceI1 has to be executed prior toI2 because of a precedence constraint.

Our schedulers would then assign a smaller value to the pair of tasks when executed the other

way around; hence, the optimisation algorithm would effectively avoid this situation.

4.4.3 Value Functions

We want to introduce an interpretation of dependencies which allows us to map precedence

constraints into our system of value functions without having to resort to constraint solving tech-

niques for this aspect of the scheduling problem. The basic idea is to modify the definition of

value functions such that they penalise schedules which include the execution of tasks in an order

contradicting the desired precedence. We then rely on the value-based scheduler to find schedules

with high values. Depending on the performance of the scheduling algorithm, we can hope that

most precedence constraints are fulfilled. However, we cannot guarantee that all constraints are

met. Modelling dataflow constraints with value functions, our schedulers would allow to execute

tasks in the wrong order; however, this would result in the system or at least the subsystem in

question not being able to achieve any positive value.

For the moment, assume all edge weights to equal 1. We define the new value function as

v∗I,~q,~u(~τ , t) :=



max
t′≤t

vI,~q,~u(~τ , t
′) ·

∏

I′∈pred(I)
v∗I′,~q,~u(~τ, t

′)



 6

Note that this recursive definition only terminates for acyclic instance dependency graphs,

which is guaranteed by the delay constraints.

Let us now look at several typical patterns which frequentlyoccur in a dependency graph.

Figure 4.20: Typical patterns

6with
∏

∅
expr = 1 for an arbitrary expressionexpr
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Independent instances: For two independent task instances (figure 4.20a)),I1 andI2, the value

functions are the original ones:

v∗I1,~q,~u(~τ, t) = vI1,~q,~u(~τ, t)

v∗I2,~q,~u(~τ, t) = vI2,~q,~u(~τ, t)

Sequence of instances:If two instances form a sequence (figure 4.20b)), the value ofI1 is

independent of the value ofI2, but the value ofI2 is influenced by the value ofI1.

v∗I1,~q,~u(~τ, t) = vI1,~q,~u(~τ, t)

v∗I2,~q,~u(~τ , t) = max
t′≤t

(
vI1,~q,~u(~τ, t

′) · vI2,~q,~u(~τ, t
′)
)

A value of 0 forI1 (i.e.,I1 has not made any recognisable progress) means that the succes-

sorI2 cannot achieve any value:

v∗I2,~q,~u(~τ , t) = max
t′≤t

(0 · vI2,~q,~u(~τ, t)) = 0

Fork: If three instances form a fork pattern (figure 4.20c)), the value ofI1 is independent of the

other instances and the values ofI2 andI3 are influenced equally by the value ofI1.

v∗I1,~q,~u(~τ, t) = vI1,~q,~u(~τ, t)

v∗I2,~q,~u(~τ , t) = max
t′≤t

(
vI1,~q,~u(~τ, t

′) · vI2,~q,~u(~τ, t
′)
)

v∗I3,~q,~u(~τ , t) = max
t′≤t

(
vI1,~q,~u(~τ, t

′) · vI3,~q,~u(~τ, t
′)
)

Join: Finally, if three instances form a join pattern (figure 4.20c)), the values ofI1 andI2 are

independent of the value ofI3, andI3 is influenced by the values of bothI1 andI2.

v∗I1,~q,~u(~τ, t) = vI1,~q,~u(~τ, t)

v∗I2,~q,~u(~τ, t) = vI2,~q,~u(~τ, t)

v∗I3,~q,~u(~τ , t) = max
t′≤t

(
vI1,~q,~u(~τ, t

′) · vI2,~q,~u(~τ, t
′) · vI3,~q,~u(~τ, t

′)
)

Maximum values at the source nodes mean that the successor node can also achieve max-

imum performance. If only one of the predecessors has 0 value, no value can be expected

from the successor node.
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Traditional dataflow between run-to-completion tasks means that the successor task can only

start once the predecessors have commenced execution. Suppose we model run-to-completion

tasks as before by two-valued quality functions. In our model, the successor node can always

start execution; it cannot, however, achieve any positive value if the successors have not fin-

ished. Triggering behaviour, where only one of the predecessors is needed as an input, can be

implemented via the task hierarchy withor type tasks.

Note that above definition ofv∗ does not yet consider edge weights6= 1. In order to include

edge weights into the calculation of aggregate functions, we first pose a series of conditions on

an appropriately extended definition.

4.4.4 Interpreting Edge Weights

The edge weight expresses a level of influence the predecessor has on the successor node. As

with the original definition of value functions, we now statea series of properties which must be

true for value functionsv‡ within weighted directed dependency graphs.

• For source nodes of the instance dependency graph, the new function equals the original

value function, i.e.

pred(I) = ∅ ⇒ v‡I,~q,~u(~τ, t) = vI,~q,~u(~τ , t)

• A higher edge weight must not result in a smaller impact of thepredecessor node on the

successor node. Consider two task instances,I1 andI2, with only one predecessor node,

i.e.,pred(I1) = pred(I2) = {I}. Assumeweight(I, I1) ≤ weight(I, I2). Assume further

thatvI1,~q,~u(~τ, t) = vI2,~q,~u(~τ, t) andτP,I1 = τP,I2 for all P ∈ P.

Then the following must be true:

∀t ∈ GT : ∀~τ ∈ LTFIT∪IM
: |v‡I1,~q,~u(~τ, t) − vI1,~q,~u(~τ , t)| ≤ |v‡I2,~q,~u(~τ , t) − vI2,~q,~u(~τ, t)|

• A higher value at the source node of an edge must not result in alower value at the target

node of the edge. Consider two task instances,I1 andI2. Assume there are task instances

I ′1 ∈ pred(I1) andI ′2 ∈ pred(I2), such thatI ′1 6= I ′2 andpred(I1)\{I ′1} = pred(I2)\{I
′
2}.

Assume further thatweight(I ′1, I1) = weight(I ′2, I2) and for all common predecessor

nodesI ∈ pred(I1) ∩ pred(I2): weight(I, I1) = weight(I, I2). Then the following must

be true:

∀t ∈ GT : ∀~τ ∈ LTFIT∪IM
: v‡I′1,~q,~u

(~τ, t) ≤ v‡I′2,~q,~u
(~τ , t) ⇔ v‡I1,~q,~u(~τ, t) ≤ v‡I2,~q,~u(~τ , t)
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We chose the following definition for the value functionv‡, which holds all of the properties

listed above:

v‡I,~q,~u(~τ , t) := max
t′≤t



vI,~q,~u(~τ , t′) ·
∏

I′∈pred(I)
v‡I′,~q,~u(~τ , t

′)weight(I
′,I)





4.4.5 Limiting the Scope of Value Dependencies

A useful simplification for the calculation of value functions in the presence of value dependen-

cies is to limit the scope of the dependencies. We assume thatchanging values at the source node

of an edge do not necessarily always affect the target node ofthe edge, but that a “value flow”

takes place only once, namely at the time of the first allocation of resources to the target task

instance. This is a further analogy to dataflow modelling, where it is usually assumed that the

data are completely read before the actor starts its own calculations. In this case, the influence of

the predecessor nodes can be represented by a scalar, the impact factorξI,~τ ∈ R+
0 , defined as:

ξI,~τ :=
∏

I′∈pred(I)
v‡I,~q,~u(~τ, σI,~τ )

weight(I′,I)

with the earliest time of processor allocation toI being

σI,~τ := min{t ∈ GT : ∃P ∈ P : τI,P (t) > 0}

The definition of the value functionv• then reduces to

v•I,~q,~u(~τ, t) := ξI,~τ · vI,~q,~u(~τ , t)

This is in fact the definition of value functions which we usedfor the experimental work.

4.5 Dynamic Scheduling Scheme

From the static task graph a partial task instance graph is derived and regularly updated at run-

time. Given a resource allocation for a specific task node, a heuristic optimisation algorithm tries

to achieve the highest possible value for the task under consideration by evaluating the child

nodes’ value functions. From this description it seems obvious that value functions are to be

calculated in a bottom-up manner. However, as we do not need to evaluate value functions for all

parameter settings, it is far more efficient to calculate them in top-down manner and apply lazy

evaluation techniques to avoid unnecessary computations.

Figure 4.21 shows the main components of the implemented scheduling architecture.
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Figure 4.21: Overview of the scheduling architecture
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Static task graph: The static task graph is the problem description provided bythe application

engineer for the use by other components. The main data stored in the problem description

are the structure of the task set, its use of the method library, quality and utility func-

tions, release time distribution, periodicity classifications with additional data (e.g., period

length), logical type of tasks and the dependency graph. Caches are kept with individual

nodes of the graph to store resource allocations for subgraphs with deterministic release

behaviour that have been calculated so far. These allocations can be reused when the same

subgraph is instantiated for the next time.

Instance graph and allocation optimiser: At runtime, an instance graph is gradually con-

structed from the static task graph. The root node is assigned the entire set of processors

at all times, and this resource allocation is passed on to thechildren. At each node, local

optimisers with a local value function are available. The optimisers use one of the tech-

niques described earlier to calculate suitable allocations of processors to task and method

instances. Solutions are stored in local caches for reuse inlater optimisation runs on the

same instances. These local caches can be initialised from the static cache if there is in-

formation available. On the other hand, the content of instance-level caches can be used to

update task-level caches.

Scheduler: The scheduler object triggers new optimisation runs calculating resource distribu-

tions for the current time window within the task instance graph as well as updates to the

instance graph to be performed by the instantiation engine.Finally, the scheduler calcu-

lates sequential lists of task assignments for the individual processors (schedules) from a

given resource allocation.

Dispatcher: The dispatcher reads the sequential schedules produced by the scheduler and takes

over the role of dispatching instances on specific processors and withdrawing processors

from instances.

Instantiation engine: The instantiation engine reads information from the environment and

the scheduler needed to adapt the instance graph; furthermore it estimates the number of

instances of every task occurring within the current time window. These estimates are used

to update the instance graph.

Environment: Interaction with the environment (which in our case is a simulation tool) must

ensure that an external global time signal is available to drive the scheduling process.

Furthermore, actual task releases and state changes must besignaled by the environment.
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On the other hand, the dispatcher signals the decisions of the optimisation and scheduling

procedures to the environment in the form of dispatch and withdraw actions.



Chapter 5

The Cost of Scheduling and Adaptivity

Never let the future disturb you. You will

meet it, if you have to, with the same

weapons of reason which today arm you

against the present.

Marcus Aurelius Antoninus

[Meditations]

The main advantage of dynamic scheduling over static schemes is that the scheduler can

adapt to changing requirements of the application environment. However, we have so far not

made extensive use of this ability other than a regular estimation of the future set of ready task

instances. The potential for adaptation to changing environments, which makes dynamic schedul-

ing applicable to problem settings with partly unknown behaviour of a system, has to be paid for

by an increased run-time overhead. In this chapter we will extend our model of schedulers by

taking into account the cost of scheduling (which has previously been neglected) and then adding

a feedback component aimed at dynamically determining an appropriate distribution of compu-

tational resources between the scheduling algorithm on theone hand (thescheduling allowance)

and the application program(s) on the other hand (theapplication allowance). This feedback

mechanism is part of a so-calledmeta schedulerwhich schedules the activities of the (original)

scheduler. The existence of a feedback mechanism implies that the meta-scheduler operates in

a closed-loopsetting, results of prior decisions influencing future decisions, as opposed to the

open-loopsetting we discussed in the preceding chapters, where this is not the case.

111
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5.1 Adaptive Scheduling

For many applications, service requirements vary over time, and in many cases arrival of tasks

happens unpredictably. In adaptive real-time systems, resource needs of applications are usually

highly data-dependent and time-variant. Under these circumstances, schedulers must be able to

maintain a minimum of service at high load or overload while not wasting resources during times

of low load. Adaptive scheduling schemes take into account these dynamic requirements and try

to use information on the current load of the system to parameterise the scheduling algorithm or

even switch to a different algorithm.

Adaptive scheduling schemes are classified by Lu and Stankovic ([LSTS99]) according to

whether they adapt to the current situation either by looking at the environment parameters only

(e.g., workload, task release rates, maximal execution times, etc.) or by including the conse-

quences of previous scheduling decisions in making new decisions (e.g., utilisation, deadline

miss ratio, actual release times, etc.). The former kind of adaptive scheduling schemes is called

open-loop, the other oneclosed-loop, as it needs some sort of feedback mechanism. Figure 5.1

shows the basic architecture of these two classes of schedulers.

a) open-loop b) closed-loop

Figure 5.1: Adaptive scheduling schemes

Open-loop adaptive schedulers are basically rather simpleheuristics, as they cannot know

by construction how the system reacts to their decisions. The performance of such schemes

depends largely on the accuracy of the model the designer devises for the actual problem. We

will introduce a small set of such heuristics for decision-making in an open-loop quality / utility

scheduler later in this chapter.

The more interesting class of schedulers, however, allows data generated at runtime as a

consequence of scheduling decisions to be fed back to the scheduler, so that it may learn to

modify its behaviour and make different decisions for similar situations in the future if that seems

reasonable from the observations. In a later chapter, we will describe the work on closed-loop

scheduling found in literature that influenced the development of our own adaptive scheduling

scheme in detail.
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5.2 The Scheduling / Execution Problem

Dynamic processor scheduling schemes have to address one fundamental problem when they

are to be executed on the same processor(s) as the application tasks. Many algorithms assume

their own execution time to be short and negligible comparedto the tasks to be scheduled. For

many simple heuristics, this assumption may be reasonable.However, for the decisively more

complex value-based algorithms we use, the computational effort to calculate schedules cannot

be ignored.

Like many other problem solving methods incorporating optimisation algorithms, value-

based scheduling algorithms can be attributed a tradeoff between the execution time and the

quality of the results.

Assume for simplicity that scheduling and execution of partial schedules take place strictly

alternating on a single processor and rescheduling is not necessary before the end of the window.

Then the order of action is

schedulerPhase1 → partialSchedule1 → schedulerPhase2 → partialSchedule2 → . . .

and the sum of the lengths of each scheduling phase and its corresponding partial schedule equals

the window sizews:

|schedulerPhasei| + |partialSchedulei| = ws

For a relative scheduling allowance (percentage of processor time awarded to the schedul-

ing algorithm) of sa ∈ [0; 1], we then know that|schedulerPhasei| = sa · ws and

|partialSchedulei| = (1 − sa) · ws.

Thei-th scheduler phase runs from time(i−1)·ws until (i−1)·ws+sa·ws = (i−1+sa)·ws,

thei-th partial schedule from time(i− 1 + sa) · ws until i · ws. We define the value of a partial

schedule~τi for the i-th phase as its value at the end, i.e., at the end of the scheduling window:

v~q,~u(~τi, i · ws). An optimal schedule for thei-th phase is one with maximal value.

Under above preconditions, the length of the partial schedule can only be increased if the

scheduling phase is shortened and vice versa. Consider a setof three tasksTA, TB, TC with

release timesrTA
= rTB

= rTC
= 0 and quality and utility functions

qTA
(n) =

{
0 if n < 4

1 if n ≥ 4
qTB

(n) =

{
0 if n < 5

2 if n ≥ 5
qTC

(n) =

{
0 if n < 2

0.5 if n ≥ 2

uTA
(t) =

{
1 if t < 11

0 if t ≥ 11
uTB

(t) =

{
1 if t < 9

0 if t ≥ 9
uTC

(t) =

{
1 if t < 11

0 if t ≥ 11
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Let the scheduling window be of size 10 and the value functionbe

v~q,~u(~τ, t) =
∑

T∈{TA,TB,TC}
max
t′≤t

(
uT (t′) · qT (τT (t′))

)
.

For scheduling allowances of 0, 0.3, 0.5, 0.8, and 1, optimalschedules (with a prefix in each

row reserved for the scheduler) are as in the table below. Thesize of the search space (ss) is

calculated with the simple rule that allocating cpu time units to tasks with zero utility does not

make sense and should be avoided. If the search algorithm canmake 10 steps in unit time (sut),

we receive the percentage of the search space which can be visited by the scheduling algorithm

in the final row.

sa optimal schedule
value of

optimal

schedule

search space

size(ss)
sa·ws·sut

ss

0 B B B B B B A A A A 3 38 · 22 = 26244 0

0.3 – – – B B B B B C C 2.5 35 · 22 = 972 0.03

0.5 – – – – – A A A A – 1 33 · 22 = 108 0.46

0.8 – – – – – – – – C C 0.5 30 · 22 = 4 20

1 – – – – – – – – – – 0 30 · 20 = 1 100

The scheduler can cover the entire search space in the last two cases. We can deduct that an

optimal schedule will be calculated for a scheduling allowance of 0.8 or 1 and with a reasonably

high probability can be found for a scheduling allowance of 0.5, but with a considerably smaller

probability for a scheduling allowance of 0.3. This is expressed by the suboptimal schedule in row

2 of the following table. Finally, it is extremely unlikely that the (presumably arbitrary) solution

found for a scheduling allowance of 0 is anywhere close to optimal; the initial configuration of

the search algorithm (which in this cases equals the final solution) might assign the processor

to the tasks in round-robin fashion. The last column lists the relative value, i.e., the ratio of the

values of the found and the optimal schedule.

sa schedule
value of found

schedule
relative value

0 A B C A B C A B C B 0 0

0.3 – – – A B A A A C C 1.5 0.6

0.5 – – – – – A A A A – 1 1

0.8 – – – – – – – – C C 0.5 1

1 – – – – – – – – – – 0 –
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The relative value is highest for partial allocation of the processor time to the scheduler. This

ratio is bounded by 0 and 1 and is usually smaller at the extremes of very high and very low

scheduling allowance. Note that it is undefined for zero-value optimal schedules. The aim of

our meta scheduler is to find a scheduling allowance such thatthe relative value is 1 or close

to 1; however, note that the scheduling allowance should notbe chosen too big to allow for the

optimal schedule value to be as high as possible. Awarding more of the processing resources to

the scheduler may increase the relative value, because the optimisation algorithm of the sched-

uler can explore a comparatively large portion of the searchspace. However, the drawback of

a high scheduling allowance is that only a small percentage of the resources remains available

for the application tasks, so that even the optimal scheduleis likely to be of comparatively little

value. On the other hand, leaving most of the processor time to the application tasks usually

results in higher values for optimal schedules; however, a scheduler with very little resources

available to itself (in the extreme case, it may only have enough time to act according to a sim-

ple straight-forward heuristic) is unlikely to find schedules anywhere near such an optimum, so

that the relative value is probably low. The search for optimal distributions of processing time

between the scheduler and the application task is known as the scheduling / execution problem.

A graphical representation of the values involved can be seen in figure 5.2.

Figure 5.2: Processor time distribution between schedulerand application tasks

The concepts of algorithm selection, anytime algorithms, etc. of the previous chapters can

often be applied to the scheduling algorithms themselves, not only to the set of application tasks

they work on. Different scheduling algorithms may obviously generate schedules with varying

maximum qualities and different quality profiles. The choice of scheduler to calculate a partial

schedule at run-time is obviously closely related to algorithm selection, whereas the search tech-

niques forming the core of most of our schedulers in general are anytime algorithms by nature.

For example, a simple heuristic may generate a fairly good result without any relevant effort,
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but will probably not be able to improve on this solution if given more processing time1. On

the other hand, a sophisticated scheduling algorithm should be able to calculate close-to-optimal

schedules, but may need a certain minimum computational effort before yielding its first pre-

liminary result. At low levels of scheduling effort, schedule value rises monotonically (i.e., the

scheduler is an anytime algorithm) with scheduling effort,but starting from a certain level of

scheduling effort, the best schedule value (continuous line) differs noticeably from the actual

schedule value (dashed line) and starts decreasing at some point. An example diagram for this

relationship is shown in figure 5.3.

Figure 5.3: Tradeoff between scheduling effort and schedule value

Clearly, this graph for the actual schedule value is not necessarily concave and hence, can well

exhibit local maxima. One goal of meta scheduling is the (non-trivial) search for the optimal (or

a close-to-optimal) scheduling effort, i.e., a good solution to the scheduling / execution problem.

What makes this problem complicated is the fact that the datait works on are in general not

available before runtime; only online monitoring reveals the shape of the tradeoff curve. This

shape may even be time-variant, so one cannot necessarily rely on the data after an initial learning

period.

In the decision-theoretic approach to our specific scheduling problem, it can become highly

expensive to cover any sufficiently big subset of possible states even for the near future, especially

in cases where transition probabilities to neighbour states are low. The search space for the local

search algorithms in the sliding-window approach grows exponentially with the window size2.

1i.e., in an anytime algorithm model, the quality of such heuristics usually degenerates to a two-valued function
2in fact, it grows exponentially in the number of elementary intervals, and we assume the average size and hence

the frequency and number of elementary intervals within thetime window to remain approximately constant over

time
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Therefore, regardless of whether the designer chooses to generate conditional or unconditional

schedules for nondeterministic applications, a schedulerusually has to limit itself to smaller

state sets and window sizes than might be desirable and hencemay have to perform more or less

frequent rescheduling in either case.3 Hence, in the specific case of the quality / utility scheduling

schemes we suggested, the scheduling effort can be adjustedby the window size or state set size

parameters as well as algorithm-specific parameters like the cool-down factor of the Simulated

Annealing algorithm.

Some research groups have pointed out the necessity of making decisions on whether and

when to run a dynamic scheduler. For example, [HAR99] investigated into the tradeoff between

the quality of a schedule and the effort required to obtain it. This kind of scheduling scheme

needs search algorithms with anytime properties, such thata feasible solution can be obtained

whenever the search process is interrupted. Similarly, algorithms have been proposed that bound

the scheduling effort a priori, such that interrupting the search process is never required (see sec-

tion 5.3.1). For simplicity, we assume the scheduler works in consecutive scheduling phases, i.e.,

instances of the scheduling algorithms whose execution maybe interrupted just as any other task,

and that schedulers are optimally parallelisable. An even more realistic scheme would consider,

e.g., the cost of migration of schedulers between processors and the cost of communication in

a parallel scheduler setting. Terms frequently used for thereasoning about the cost of schedul-

ing itself aremeta schedulingor deliberation scheduling, largely depending on the nature of the

original application to schedule and the respective research community.

5.3 Meta Scheduling Techniques

This section introduces two of the main approaches to meta ordeliberation scheduling. Both of

them are described in an open-loop setting. This means that the data on which decisions are made

by the meta scheduler are unrelated to prior decisions.

In figure 5.4, the flow of data from the meta scheduler to both the application tasks and the

application scheduler is acyclic. The meta scheduler decides on the distribution of resources

between application tasks and application scheduler and triggers the actions of the application

scheduler on the basis of user-defined parameters and data itreceives from the environment, espe-

cially on the release of new task instances. The applicationscheduler then decides on appropriate

schedules for the application tasks. The meta scheduler hasno knowledge of the consequences

of its own decisions and of those of the application scheduler.

3Note that due to the factor of nondeterminism, some rescheduling and schedule adaptation would have to take

place even if unlimited resources were available.
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Figure 5.4: Open-loop meta scheduling

In the following section, we will finally extend this model toclosed-loop meta scheduling

to allow the correlation of consecutive decisions we desire. Meta scheduling should possess the

property previously assumed for the application scheduler: the effort needed to make its deci-

sions must be small compared to both application tasks and application scheduler and can be

neglected. Otherwise, multi-stage scheduling in a tree structure of schedulers is possible in the-

ory, ultimately requiring only the computational effort for the root scheduler to be small enough

for not having to deal with it. However, hardly any evidence of genuine multi-stage scheduling

could be found in practice; one of the few examples is the workby Regehr et al.[Reg01].

Two major approaches can be recognised dealing with meta scheduling problems. One of

them stems from the area of real-time scheduling, where morecomplex algorithms applied in

dynamic settings have made it necessary in recent years to handle the scheduling effort explicitly;

before that, complex algorithms were usually deemed to be applicable only to static scheduling,

and the computational overhead of dynamic scheduling was ignored for the biggest part. The

second approach was developed in the artificial intelligence community, where reasoning about

the cost of making decisions and when to make them (deliberation scheduling) has never been

uncommon. We note that techniques used in these approaches are very similar despite the differ-

ences in their origins and, for this reason, in terminology.We can categorise both of them along

the domain of the original scheduling or planning problem. In this thesis, we only deal with

problems in the time domain, i.e., real-time scheduling andtemporal planning. Other interesting

domains like route planning and deliberation scheduling for this kind of applications are outside

the scope of this work.

5.3.1 Real-Time Scheduling Approach

A first step towards an explicit handling of the scheduling effort is the predictability of

execution times for scheduling algorithms. Zhao, Ramamritham and Stankovic developed

a series of scheduling algorithms whose complexity can be bounded in a predictable way
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[ZR87, ZRS87a, ZRS87b].

However, knowing upper bounds on the execution time of scheduling algorithms may not

always yield the desired fine-granular control over the scheduling effort. For this purpose,

Hamidzadeh et al. [HAR99] developed a scheme called Time-Controlled Dynamic Scheduling

(TCDS) which is based on iterative construction of partial schedules, such that the scheduling

algorithm can be interrupted at any time and always producesa valid partial schedule. In other

words, this work is an attempt for an anytime scheduling algorithm and directly addresses the

scheduling / execution problem. The dynamic scheduler allows itself a certain portion of the

available processor time (thescheduling quantum) in each of its invocations (calledscheduling

phases). Instead of estimating the scheduling effort in advance, as was the case in the algorithms

by Zhao et al., a TCDS scheduling phase starts extending an initially empty partial schedule until

it has used up its quantum it has previously decided upon itself. TCDS does not, however, sched-

ule quality-sensitive tasks; only the scheduling algorithm itself has a notion of quality, defined

over three objectives: minimising the number of scheduled tasks which miss their deadlines, the

number of tasks not scheduled, and the cost of scheduling. Partially executing tasks (i.e., schedul-

ing tasks which ultimately miss their deadlines) is considered to have more severe consequences

than not starting to execute them at all; this kind of deadlines is calledsemi-hard(or, by other

authors,firm). Each scheduling phase works on a set of currently active tasks; its results are a

set of tasks to be scheduled in the near future, a set of tasks predicted to miss their deadlines

and therefore prevented from executing, and a new set of active tasks for the next scheduling

phase (by removing the tasks just having been scheduled or discarded and adding newly arrived

ones). Schedules are extended iteratively by a branch-and-bound method with backtracking. Sev-

eral heuristics to decide on the scheduling quantum dynamically for each scheduling phase are

mentioned in [HAR99]:

• Let the scheduling quantum be lower or equal to the minimum ofthe slack times of ac-

tive tasks; this way, the scheduling phase is guaranteed notto cause any task to miss its

deadline.

• Decide on a small fixed integerz before runtime; let the scheduling quantum be lower or

equal toz times the average task interarrival time; this results in a higher allowance for the

scheduling phase if the arrival rate is small (so that it can be anticipated that new decisions

have to be made less frequently).

• Let the scheduling quantum be lower or equal to the minimum gained by the two previous

rules; each of the two objectives may dominate the decision depending on the current

behaviour of the application.
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The contribution of TCDS to our work was the notion of scheduling phases deciding on the

size of the scheduling quantum first and then starting the actual scheduling algorithm. However,

we did not treat the scheduling quantum as a time interval independent of the size of the partial

schedule which is computed. We instead introduced the scheduling allowance as the percentage

of processing time available for the scheduler in each phase. We thus intended to make the trade-

off between the effort for scheduling and the computation time remaining to execute application

tasks more transparent. We use the above heuristics for the initial setting of the scheduling al-

lowance, but try to adapt it at runtime according to the consequences perceived. What TCDS

lacks is any notion of quality, which is of course a vital component of the objective functions in

our problem setting.

5.3.2 Artificial Intelligence Approach

As mentioned earlier, temporal reasoning is usually introduced into artificial intelligence plan-

ning systems by specialised real-time subsystems. Whereasmost of these models require com-

plete a-priori knowledge of the real-time attributes of thecomponents, Hadad et al. [HKGL03]

devised a planning system which is capable of dealing with incomplete knowledge in its real-

time component. The architecture of this system consists ofindependent planning and real-time

scheduling agents, where the real-time scheduling agent isresponsible for keeping the set of

pending actions of the planning agent up-to-date and the planning agent triggers the execution of

real-time scheduling actions.

Dean et al. [BD89, DKKN95] pursued extensive investigations on the problem of assigning

optimal computational resources to planning algorithms. As their two basic schemes, they distin-

guish between theprecursorand therecurrentdeliberation models. In the precursor deliberation

model, a scheduling quantum is set in advance before starting the computation and subsequent

execution of the resulting schedule, whereas in the recurrent deliberation model, calculation and

execution of schedules are interleaved. The target of planning itself is not necessarily a time-

related problem. However, the more general results of artificial intelligence planning research

can be applied to temporal planning problems; specifically,the work on deliberation scheduling

can complement the ideas of TCDS mentioned above. Obviously, dynamic real-time scheduling

requires decisions to be interleaved with execution, so that from the above alternatives only the

recurrent deliberation model is applicable. The deliberation scheduler decides on which decision

procedure to allocate computational resources at which time by projecting into the future the

expected times of occurrence of individual events. The objective function of the overall system

is simply the sum of all values of individual activities, andno provision is made for possible
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interaction of tasks. The goal of the deliberation scheduler is to maximise the objective function,

such that the computational resources are optimally distributed among the decision procedures.

Two algorithms were suggested for the deliberation scheduling problem. The first one, called

DS-1, requires less knowledge on the shape of performance profiles; only the local values at a

specific time are necessary, whereas DS-2 assumes a completea priori knowledge of the perfor-

mance profiles. Both algorithms schedule backwards from a given time in the future; whereas

DS-1 allocates resources for fixed-size time intervals, DS-2 allocates resources for intervals be-

tween two consecutive deadlines. If the necessary information is available, DS-2 is preferable

over DS-1, because the additional knowledge of the future behaviour can be used to potentially

produce superior results.

The work on deliberation scheduling provided the means for introducing the notion of quality

or value into our meta scheduling scheme. The recurrent deliberation model is in fact very similar

to the aforementioned TCDS, where the former is described ina more general way and can

also be applied to domains other than temporal planning. Apart from the incentives in meta

scheduling, DS-1 and DS-2 also contributed to the interval-oriented resource distribution of the

sliding-window schedulers in this thesis.

5.3.3 Meta Scheduling for the Quality / Utility Problem

We adopted ideas from both models described above to allow meta scheduling within the frame-

work for quality / utility scheduling and the solution alternatives of chapter 3.

First, we make a few simplifying assumptions to allow for a shorter description of the method-

ology and also to greatly reduce the implementation effort required. We assume that scheduling

algorithms are ideally parallelisable and equally well executable on every processor. This way,

the scheduling effort can be distributed uniformly among the processors. Furthermore, the costs

of communication between scheduler components running on different processors and of migra-

tion of components from one processor to another are neglected. In other words, the hardware

architecture appears to the meta scheduler as a single processor insofar as it does not decide on

which part of the scheduling algorithm to execute on which processor.4 Although these may seem

rather significant simplifications, these preconditions can be relaxed in a very straight-forward

manner. The meta scheduler can be extended to share the same view of the multi-processor ar-

chitecture as the application scheduler; it need not necessarily distribute the scheduling effort

uniformly among the processors, but may instead take into account restrictions on the set of

4An alternative simplification would be to require that all scheduling activities take place centrally, i.e., on one

processor only.
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processors on which the scheduling algorithm (or some of itscomponents) are actually exe-

cutable, and at which speed. On the same line, communicationcosts can be taken into account in

the same way for the meta scheduler and the application scheduler alike, e.g., by adding constant

delays on dataflow dependencies crossing processor boundaries or on migration actions moving

the same task or scheduler component from one processor to another.

As in TCDS, we let the meta scheduler decide on its own portionof the available computation

time. We use similar heuristics to decide on this schedulingquantum by opting for one of the

following:

• Choose the scheduling quantum smaller than or equal to the minimum difference between

the remaining time needed for each task to reach a minimum quality and the time remaining

for it to retain a minimum utility; this can be seen as a value-based equivalent to the slack

time in the traditional real-time parameter set.

• Decide on a small fixed integerz before runtime; let the scheduling quantum be lower or

equal toz times the average task interarrival time, just as was the case for TCDS.

• Choose the scheduling quantum smaller than or equal to the minimum of the previous two

values.

From the work on deliberation scheduling we used the idea of interleaving scheduling ac-

tions and executing application tasks. As we only have complete knowledge of the quality and

utility functions of the application tasks, but not of the application scheduler, we were only able

to use the DS-1 algorithm to arrange scheduling phases and executions of application tasks on

a timeline. Starting from the end of the scheduling window (for the sliding-window schedul-

ing alternative) or the maximum time in the future reached byforward simulation of the state

transition graph (for the decision-theoretic scheduling alternative), we reserve certain time inter-

vals for subsequent scheduling phases, so that applicationtasks cannot be executed during these

times. Our aim is to minimise the deteriorating effects of reduced resources available to applica-

tion tasks. In the given problem setting, DS-1 frequently delays subsequent scheduling phases as

much as possible to minimise unaccessible time intervals for tasks in the near future. The reason

for not simply opting for the heuristic of maximally delaying scheduling phases is that it can be

shown to perform well only if the release times of task instances are known for certain and if the

window size or state set is large enough to cover a representative subset of all task instances; for

periodic task sets, this would mean to span an interval equalling the least common multiple of

all task periods. Note that the basis for the decision on whento award processing time to make

scheduling decisions comes from the same objective as in TCDS for modifying the scheduling

quantum, namely to minimise interference with applicationtasks.
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To summarise, in the basic meta scheduling scheme for quality / utility scheduling, we

adopted ideas from real-time research to decide on a reasonable scheduling quantum and ideas

from artificial intelligence planning research to find a suitable timing pattern for the scheduling

phases.

5.4 Closed-Loop Meta Scheduling

So far, we have only used data not related to prior decisions for meta scheduling; in this section,

we add a feedback component to our model to allow closed-loopmeta scheduling.

In our two-stage scheduling model, adaptivity means for themeta scheduler to dynamically

decide on an optimal compromise in the effort-quality tradeoff based on the monitoring of the

interaction between scheduler and application.

We therefore change the prior meta scheduling model such that data are collected during the

execution of application tasks informing the meta scheduler about the consequences of its deci-

sions. Graphically, this is represented by the feedback edge in figure 5.5 received by integrating

the open-loop meta scheduling model (figure 5.4) with the closed-loop scheduling scheme (figure

5.1b).

Figure 5.5: Closed-loop meta scheduling

5.4.1 Distributed vs Centralised Adaptation

Two major approaches can be recognised in the research community on adaptive real-time sys-

tems. The first one closely links the adaptation of service levels to the specific application and

can make use of problem-specific and algorithm-specific parameters as well as knowledge on the

available resources to adapt the workload appropriately tomaximise overall system performance

(figure 5.6a). The second kind of adaptive scheduling mechanisms is situated either at the kernel

or middleware level and is performed by system software, namely a quality-of-service manager,

a resource manager or a resource kernel (figure 5.6b). It is easier for central system software
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to monitor all tasks and manage the available resources thanit is for distributed agents situ-

ated within the individual tasks to share information and coordinate decisions. However, system

software can hardly exploit application-specific data for its computations.

a) distributed b) centralised

Figure 5.6: Distributed and centralised adaptation

Within the context of this work, quality-of-service managing is an integral component of the

value-based scheduler; in this regard, our model is clearlyof the centralized class of adaptation

schemes.

Several models have been proposed that allow to explicitly modify task parameters in or-

der to facilitate meeting goals. Among these are the elasticbandwidth server by Buttazzo and

Abeni [BA02] and heterogeneous computing by Venkataramanaand Ranganathan [VR99]. An

overview of the information possibly available to adapt schedules and the behaviour of sched-

ulers, although on a more general level than real-time scheduling, is given by Sauer in [Sau99].

These models are, however, outside the scope of the problemswe are dealing with, because

we consider these parameters (e.g., the period lengths of tasks) to be invariable or at least outside

the degrees of freedom for the user or scheduler to decide. The values we concentrate on mod-

ifying in our adaptive scheduling scheme are the schedulingallowance and algorithm-specific

parameters, but under no circumstances the attributes of the individual tasks making up an appli-

cation.

5.4.2 Feedback Mechanism for Meta Scheduler

We are going to apply a control-theoretic approach described in [LSTS99] to monitor the per-

formance of the scheduler and adapt the scheduling effort tothe behaviour of the environment.

A PID controller was chosen in our model due to its simplicityto implement, its applicability

despite a lack of an exact description of the future behaviour of a system and its stability for first

and second order dynamic systems.
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Let sai ∈ [0; 1] denote the scheduling allowance for thei-th scheduling phase. The schedul-

ing allowance is the manipulated variable of the PID controller. For simplicity we again assume

the scheduling algorithm can be executed in parallel on the hardware architecture without any

additional overhead, though other schemes might be possible depending on the suitability of the

hardware and the scheduling algorithm for migration and parallelization. Further, let∆i ∈ N de-

note the length of thei-th phase (scheduler phase and partial schedule). The length of the current

partial schedule is generally smaller than the scheduling window or maximum forward simula-

tion time. Instead of introducing a second variable for a controller to operate on, we decided on

the following heuristic: the length of the current phase,∆i, is the minimum of

• the scheduling window size or the maximum forward simulation time

• the maximum of

– a user-defined constant minimum partial schedule length∆min

– the distance from the start of the current partial schedule to the time of the earliest

deviation of the estimated task instance release times fromtheir actual values

We define the start times of thei-th phase as follows:

t1 = 0 ti+1 = ti + ∆i

In other words, the latest time rescheduling can take place is obviously when the precalculated

schedule has reached its end. However, if task release timesdiffer from what has previously been

estimated, the scheduler is not accurate any more and rescheduling should take place earlier.

However, to avoid too frequent rescheduling, a lower bound can be set until which rescheduling

is at least deferred. Figure 5.7 shows the case when rescheduling need not be delayed once

release times need to be updated, because the minimum partial schedule length has already been

reached. In thei-th scheduling window, the scheduler is awarded a computation time ofsai ·∆i,

Figure 5.7: Scheduling window and partial schedule length
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the application tasks receive an allocation of(1 − sai) · ∆i time units.

As the controlled variable of the controller, we use the change in value density (the slope of

the respective value functions) for the root task instanceI1
T0

between two consecutive phases,

expressed by

slopei :=
vI1

T0
,~q,~u(~τ , ti+1) − vI1

T0
,~q,~u(~τ, ti)

∆i

∆slopei := slopei − slopei−1

whereti is the start time of a new scheduling phase (figure 5.8).

Figure 5.8: Change in value density

∆min must not be chosen too small; otherwise, the sets of active task instances considered for

each partial schedule may not be comparable, and the controller might not be able to stabilise.

The system behaviour is monitored for the duration of a phaseand the controller parameters

are adapted at the beginning of a new phase. This means that the decisions made due to the

behaviour of the application in one phase influence the behaviour only for the next phase. It is

therefore important that the task set in consecutive intervals is approximately the same in order

for the controller parameters to be appropriate. For example, the monitored data for phase 1

in figure 5.9a) result in scheduler parameters which will hopefully be suitable for the second

phase, because the task set is similar, albeit not equal. In the example of 5.9b), the task sets in

consecutive phases are often hardly comparable, so that it will be difficult for the controller to

stabilise; sequences of equal task sets for consecutive phases take turns with consecutive phases

with completely different task sets.
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a) long phases b) short phases

Figure 5.9: Stability for long and short scheduling phases

Obviously, above definition for∆slopei is valid only for i > 1. Therefore, as a starting

point, we use a different definition forslope0 based on the development of value during the first

scheduling phase. For this purpose, we need a parameterω ∈]0; 1[ to mark one certain point of the

scheduling phase during its lifetime, namely after reaching a certain percentage of its allowance.

In analogy to task instances, letτsi
denote the local time function. For the first invocation of the

scheduler, global time equals the local time of the scheduling phase, because no application task

can execute before the first partial schedule has been generated. Therefore, the scheduler has

exclusive processor access at the beginning, and for0 ≤ t < sa1 · ∆1 : τs1(t) ≡ t.

We then defineslope0 as the terminal gain between the values afterω · ∆i time units of

scheduling and the final value of the schedule for the first phase:

slope0 :=
vI1

T0
,~q,~u(~τ , sa1 · ∆1) − vI1

T0
,~q,~u(~τ , ω · sa1 · ∆1)

(1 − ω)∆1

The definition for the special case of the first scheduler phase is shown in figure 5.10.

Figure 5.10: Terminal gain
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Note that we now do not monitor the actual value of the partialschedule after execution

any more, but merely predict the value of the first partial schedule. We could use this definition

throughout the runtime of the system, but it seems preferable to apply actual data rather than

estimates once these are available. Alternatively, it would be possible to leave the scheduling al-

lowance unchanged for the first two phases, so that adaptation starts later. This would, of course,

mean we need not introduce handling for the special case of the first scheduling phase.

There is a tradeoff between the scheduling allowance on the one hand and both the value

density and the terminal gain, so that both of these can be approximated by concave functions of

the scheduling allowance (compare figure 5.3). It is the aim of the controller to find the optimal

scheduling allowance with the slope being approximately 0.Note that the performance profile

of the scheduler can have local maxima, but these can usuallybe left very quickly due to the

dynamics of the system and the resulting changes in the profile. Whereas the position of the

global maximum stabilises over the course of several phases, the position of local optima does

not.

As the set point, we choose a slope of 0, such that the error function for scheduling phasei is

erri := ∆slopei.

The set point of 0 is chosen due to the following motivation:

• If the slope is negative, too much effort has been spent on scheduling in the preceding

phase, taking too much of the computation time from the application tasks; the scheduling

allowance should be decreased.

• If the slope is positive, it is likely that an even higher allocation of computational resources

could result in even better schedules. To exploit this potential, the scheduling allowance

should be increased.

The integral and derivative parts of the controller measureover a distance ofspi ∈ N0 and

spd ∈ N0 phase numbers;Cd ∈ R, Cp ∈ R andCi ∈ R are user-defined constants. Error terms

erri are defined to be 0 for negativei.

Finally, we can define the control function as follows:

sai+1 = sai − Cd ·
erri − erri−spd

spd
− Cp · erri − Ci ·

spi∑

j=0

erri−j

The initial scheduling allowance,sa1, must be provided by the user.

To summarise, the feedback mechanism needs the following parameters:
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• the initial scheduling allowancesa1

• the minimum partial schedule length∆min

• the allowance percentageω to calculate the terminal gain

• the window sizespd for the derivative controller component

• the window sizespi for the integral controller component

• the constant factorCd for the derivative controller component

• the constant factorCi for the integral controller component

• the constant factorCp for the proportional controller component



130 CHAPTER 5. THE COST OF SCHEDULING AND ADAPTIVITY



Chapter 6

Case Studies

The path of precept is long, that of example

short and effectual.

Seneca

After having introduced a theoretical framework for quality / utility scheduling in the preced-

ing chapters, we will now give evidence of real-world applications which can be modelled very

naturally in the scheme we presented. Note that the originalproblems were taken from literature

and are not applications we have been working on ourselves. Our contribution is the systematic

modelling and subsumption of these problems under quality /utility scheduling. From the origi-

nal data available on the specification of these applications, we extract the necessary information

to develop suitable task sets with hierarchy and dependencygraphs, release specifications, and,

of course, quality and utility functions. Having achieved this, we make the original problems

accessible to simulation in the environment we will describe in the following chapter. The per-

formance of scheduling algorithms for these applications can be tested prior to deploying them

to the original system, which is more difficult with the ad hocdescription. The relevance of the

general quality / utility scheduling model for describing and simulating existing real-world prob-

lems can be shown. We want to point out that dedicated scheduling algorithms for special cases

of the general problem may outperform solutions for the general problem, especially for the big

classes of applications exhibiting only either quality or timeliness flexibility. However, solutions

to the general problem can serve as a basis for competitive analysis.

131
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6.1 Eye Movement Tracking in Laser-Optical Surgery

Fritzsche et al. [FCS+02] describe an application the purpose of which is to keep track of the

movements of the eye during a laser surgery and to automatically adjust the laser position ap-

propriately, enabling the surgeon to concentrate on the operation plan without taking care of

possible eye movements himself. Before the surgery, pictures of the retina of the patient’s eye

are taken. These pictures form the basis for an offline map of so-calledlandmarksin the image

of the vasculature, i.e., significant features which are unique in their properties and, more impor-

tantly, their position relative to each other. At run-time,these landmarks are compared to those

found in images taken online. If this comparison succeeds with high probability and within short

time limits, the software is able to compute the position of the patient’s eye at any time and thus

play a vital role in assisting the human surgeon.

The following sections demonstrate the suitability of our quality / utility model to describe

this application. Specifically, [SRS+01] and [LSR+02] point out both the quality-flexible and the

real-time aspects of the application, which we are going to map into sets of quality and utility

functions.

6.1.1 Task Hierarchy

We refer to the main activities to be performed (image grabbing, landmark extraction from this

image and landmark-based image matching for spatial referencing [SRS+01]) collectively as

eye movement trackingand model this part of the application as one main task (eye movement

tracking) with three subtasks (image grabbing, landmark extraction and image matching). Eye

movement tracking itself is only one part of a bigger surgeryassistance system; other components

which rely on eye movement tracking are a safety system preventing the laser equipment from

harming the patient and a laser positioning system to automatically keep the relative position of

laser and eye constant despite possible eye movements. Thismeans an additional hierarchy level

with the surgery assistance task as the root node and severalsubtasks. Furthermore, landmarks

are extracted from an image by an iterative algorithm calledvectorisationor exploratory tracing.

The exploratory tracing algorithm proceeds in three stages: finding seed points, verifying them

and tracing vessels starting from the seed points. Again, these stages are mapped into subtasks of

the landmark finding task. The top-down design of the application into a hierarchy of increasingly

fine-granular tasks up to a set of atomic computational entities follows very naturally from the

original (mostly verbal) description. This way, the entireapplication can be modelled in terms of

a task/subtask tree as defined earlier in this thesis.

The components of the surgery assistance application must be executed regularly; the natural
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way to simulate this behaviour is by modelling these activities as periodic tasks. Of course, the

restriction applies that at most one non-sporadic task exists on each path of the hierarchy graph

from the root node to a leaf. Subtask instances are released synchronously with the instances

of the parent in our model. This resembles reality better than the frequently used mapping of

the application into a set of independent low-level tasks with periodic release specifications,

especially when taking into account minor fluctuations in release times (jitter), which usually

apply to a series of tasks, not only to a single one.

6.1.2 Dependency Graph

At several levels in the task hierarchy, data dependencies between tasks induce precedence con-

straints. In our model, this required order of execution is represented by a (value) dependency

graph spanned between task nodes. Examples are the orders ofexecutionimage grabbing→

landmark finding→ image matchingfor the subtasks of theeye movement trackingtask and

seed point finding→ seed point verifying→ seed point tracingfor the subtasks of thelandmark

findingtask.

Let us look a little closer at the details of the stages of landmark finding, as they are important

for the following discussion of quality flexibility.

In the first stage, a grid is laid across the image and the grid entries are analysed with re-

gard to contrast and brightness levels. A one-dimensional edge-detection operator and local non-

maximum suppression are used to find edges in the image. Seed points for the subsequent vec-

torisation are found by determining spatially close high-contrast edge points and calculating the

mid-point between these, assuming that edge points being close to each other belong to the same

vessel; of course, this is not always correct.

The second stage starts by filtering from the set of seed points those which can be related

to a pair of strong parallel edges; the two strongest edges related to such a point are found by

exploring the neighbouring pixels. Thresholds apply to both the strength of these two edges as

well as the angle between them: The original point is not considered a seed point for vectorisation

if either one of the two edges is not strong enough or the anglebetween them is beyond a given

maximum.

The actual vectorisation takes place in the third stage; starting from a seed point, the two

borders of the corresponding vessel are explored separately to determine the direction of the

vessel in the neighbourhood of the latest point found. The vessel direction is assumed to cut

the directions of the borders into halves. Vessels are traced independently for each seed point;

these tracing activities can therefore be implemented by one task each. Once the seed points

have been determined, the tracing algorithm works iteratively and the set of tracing tasks can
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find an increasing number of crossovers and bifurcations with a longer computation time. At

any time of the tracing algorithm, an intermediate result isavailable through the vessel segments

and the landmarks found so far. More precise maps can be received by directly building on the

intermediate results.

6.1.3 Quality Flexibility

Increasing the computation time of the landmark detection algorithm can increase both the num-

ber and the quality of the landmarks and thus improve the likelihood of successful image match-

ing. Landmark sets can be compared to the landmark map computed offline at an early stage.

If comparison with a relatively small set of landmarks is successful, computation time can be

saved by avoiding to calculate an abundance of redundant additional ones; if comparison is not

successful, on the other hand, the partial result can be readily improved upon until the landmark

set is sufficient.

Each seed point defines an independent tracingactivity modelled as a task instance. The

problem of assigning computational resources to tracing tasks is a typical value-based scheduling

problem, as the distribution of CPU time between these tasksdetermines to a great extent how

well the system performs, i.e., how reliable the landmark matching is. The obvious parameters

on which to base the decision of assigning resources to tracing tasks are the strength of the edges,

the thickness of the vessel, or a combination thereof. This way one can hope that following thick

vessels which show high contrast to their environment will ultimately lead to finding prominent

landmarks. The application therefore is quality-flexible,as the accuracy of the spatial referencing

depends on the quality of the extracted landmarks, and the number and quality of these features

rise monotonically with the computational effort.

Figure 6.1 shows a series of consecutive stages during the landmark extraction algorithm. The

set of landmarks is rated according to criteria like number,relevance, or quality. The quality of

individual landmarks is calculated from local properties like the thickness and the strength of the

segments involved. The overall quality of a landmark map is derived in an additive manner from

the qualities of individual landmarks. Although these properties cannot be seen on the series of

images, it is obvious that an increasing number of landmarksis found along prominent vessels

starting from the seed points.

Blood vessels generally decrease in diameter in the direction of blood flow. In the two-

dimensional projection, these vessels appear with diminishing width, and seed points for vec-

torisation are usually found at the thicker ends. Followingthe vessel, we are less and less likely

to find more prominent landmarks as computation time of the search increases, as both width and

contrast of the vessel relative to its environment are components of the quality of crossings and
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from [SSR+03], reprinted with kind permission from the authors

Figure 6.1: Incremental landmark detection

bifurcations found. We can therefore assume the quality function to be concave and bounded.

Furthermore, we assume quality functions for tracing tasksthat start from better seeds have a

higher maximum quality. See figure 6.2 for example quality functions. The functions have the

same shape, but the tracing task for the high-quality seed point (a) can achieve higher quality

than the one for the low-quality seed point (b).

a) for task with high-quality seed point b) for task with low-quality seed point

Figure 6.2: Quality functions for tracing tasks

This heuristic definition of quality functions based upon the seed point quality can be adapted

at run-time, assigning more appropriate shapes of quality functions to tracing tasks if necessary.

6.1.4 Alternative Tasks

Another standard methodology for landmark extraction, according to [SSR+03], is based on

adaptive segmentation of the digital image, skeletonisation to find edges and subsequent branch
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point analysis or application of interest operators. This approach requires extensive pixel process-

ing, often specialised hardware, scales poorly with image size, and does not provide useful partial

results. This is to say that no landmarks can be detected at all before the algorithm has completed,

so that vectorisation is usually preferred. However, once the skeletonisation algorithm produces

a result, this is usually better than the one received by vectorisation in the same time. Therefore,

it is reasonable to opt for the skeletonisation approach when its timely completion can be guar-

anteed at worst-case conditions, so that its higher accuracy can be exploited. Our quality / utility

scheduling model is general enough to include alternative implementations of parts of the appli-

cation simply by applying different local value functions.In previous chapters we demonstrated

theand/or classification of nodes in the task hierarchy to distinguishbetween components and

alternative implementations of a task.

6.1.5 Spatial Referencing

The current position of the eye is determined by spatial referencing of a current picture of the

retina to an offline image of the patient’s retinal vasculature constructed from pictures taken prior

to the surgery (the central big image of figure 6.3F).

This means that the current image is compared to the bigger offline image; if the comparison

is successful, the relative position of the current image can be uniquely determined with a high

level of confidence. A region within the map of the vasculature is marked according to the surgery

plan; the laser is supposed to aim within this area. The current laser position is shown in the most

recently taken picture (figure 6.3G) by a cross-hair symbol.Spatial referencing allows to map

the cross-hair from the current picture into the offline image and to easily recognise whether the

position is within the destination area.

Comparison takes place for a set of characteristic patternsin the images calledlandmarks.

Landmarks in the retinal vasculature of the human eye are bifurcations and crossovers of vessels

in the projection onto the observation plane.

It is hard to compare individual landmarks, because the properties may vary significantly for

different images, one major cause being the viewing angle. Remember the sphere of the retina

is mapped onto two-dimensional images. Therefore, the spatial referencing algorithm compares

the positions of landmarks relative to each other. To this end, landmarks are grouped together

into configurations of two or three landmarks; these configurations are stored in the landmark

map calculated offline as “quasi-invariant feature vectors”. At runtime, the landmarks found

are indexed, i.e., grouped together according to the same rules that were applied during the

generation of the reference map, and subsequently comparedto the configurations in the map to

find the most similar ones.
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from [SRS+01], reprinted with kind permission from the authors

Figure 6.3: Referencing of current picture

The final step in spatial referencing is to try to transform the set of features in the online

image into a feature set in the offline map, respecting the neighbourhood relationship. A loop of

verification of this transformation and refinement process increases the accuracy of matching. If

the transformation finally is sufficiently unambiguous, theposition of the online image relative

to the offline image can be determined.

6.1.6 Safety Subsystem

One of the subsystems making use of the spatial referencing information is the safety subsystem;

the laser positioning system is the other one, but it is too complex to describe here.

As an energy exposure at the wrong location within the eye or for too long a duration at the

same location can result in disastrous damages to the patient, it is necessary to determine the

exact position of the laser within the area of surgery with only minor tolerable deviations. Speci-

fying the desired location of the laser on an image of the retina taken before the beginning of the
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surgery, the optical surgeon relies on the assisting technical equipment to track the movements

of the patient’s eye accurately and adjust the laser position accordingly. However, if the system

cannot calculate the position of the laser relative to the eye with very high certainty, it has to

signal that it has lost track of the eye movement, and the laser has to be switched off for safety

reasons. This measure ought to be a rare exception; system performance degrades with an exces-

sive number of track losses, because switching off the laserincreases the duration and the cost

of the surgery and decreases the utilisation that can be achieved for the (presumably expensive)

equipment.

We can identify as the primary goal the reduction of false-negative track loss classifications

(the position cannot be determined accurately, but the laser is not switched off). The reduction

of false-positive track loss classifications (the laser is switched off although the position could

actually be properly calculated) is the secondary goal. Thespatial referencing system has to

locate the laser position regularly in very small intervals. For simplicity, we assume that this

tracking frequency equals the frame grabbing rate of the optical equipment and remains constant

during the surgery. The ratio of successful laser locating attempts to the number of images taken

(the locating rate) as well as the ratio of correct classifications to the numberof images (the

classification rate) depend on factors like the quality of the landmarks in the patient’s retina, the

extent of eye movement, and, of course, the performance of the tracking application. Ideally, both

values are close to 1. In reality, the locating rate cannot beinfluenced intentionally very much;

in general, it is assumed invariable for each individual surgery. A threshold is used to decide on

classifications and should be chosen with care to work reasonably on the tradeoff between the

two classes of false classifications. Summing up, we receivethe diagram of figure 6.4 for the

operation modes of the eye movement tracking application.

track loss detected no track loss detected

track loss desired mode in case of track loss,

but should be exceptional

false negative: avoid on all ac-

counts for safety reasons

no track loss false positive: avoid to prevent

unnecessarily high costs

normal operating mode

Figure 6.4: Operating modes of eye movement tracking application

6.1.7 Timeliness Flexibility

The application exhibits rather obvious global timing aspects, namely the constraints posed on

the spatial referencing algorithm by both the given frame rate and medical parameters. The utility
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of a classification decreases with increasing time between the time of taking an image and the

successful spatial referencing; the frame grabbing rate, though, poses a hard deadline on the

computation. The first of these two constraints results in utility functions remaining constantly

high up to some critical point when it gradually becomes moredangerous not to make a decision

on whether the laser position is still known or not. The second constraint is responsible for the

sudden drop in utility; a decision must obviously be made prior to the next image being received

(see figure 6.5a)).

a) constant initial phase b) linear decrease from the beginning

Figure 6.5: Utility functions for tracing tasks

An alternative would be a linear decrease in utility right from the beginning, rendering fast

decisions always preferable (see figure 6.5b)). The utilityfunction can either be applied directly

to each tracing task or to a common parent node, as all computations belonging to one invocation

of the position detection algorithm share the same timing constraints.

The laser can operate in different modes with different levels of energy exposure, influencing

the necessary frame rate (decisions have to be made faster for higher energy levels) and thus the

utility functions of tasks.

Scheduling for the eye movement tracking application must be done dynamically for a chang-

ing set of tasks. The quality of the online images as well as the structure of the vasculature in

the current area of interest determines the number of seed points and thus the number of tracing

tasks. The time available for spatial referencing may also influence the number of seed points

that can be found and hence, again, the number of tracing tasks.

6.1.8 Application Graph

Figure 6.6 shows part of a high-level model of the eye movement tracking application specified

in the editor of our simulation environment for scheduling problems (see following chapter).
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Figure 6.6: Task graph for the surgery assistance application
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The graph exhibits all major elements of our model previously described, i.e., a processor at

the bottom, method nodes defined to be executable on this typeof processor, and a task tree built

upon these methods. Note that in this case, the root node of the movement tracking subtree is the

only periodic task of the subtree, and that the landmark extraction can be implemented in two

different ways, indicated by anor type node. The pixel-oriented alternative is only shown in a

very high-level description.

The vectorisation task is implemented by a subgraph to find seed points, a filter algorithm

to detect false seed points, and an iterative tracing procedure. Remember that tracing is usually

performed by a set of activities simultaneously, modelled as individual instances of the tracing

task. Instance specifications as well as quality and utilityfunctions are parameters of the nodes

of the graph and not shown in the figure. Finally, dependency relationships exist between the

phases of the algorithm, such that the qualities achieved byone task may influence the quality

that can be reached by others. For example, a poor set of seed points does certainly not foster the

hope of finding accurate traces in the digital image.

Remember that the model shown is only a partial description of the eye movement tracking

application, and that this application in turn is only part of a bigger surgery assistance system.

6.2 Adaptive Video Streaming Applications

To show that the model introduced in earlier chapters is not only applicable to pure processor

scheduling, we will now give examples where the critical resource is in fact primarily network

bandwidth.

Streaming video transmission has earned close attention byboth academia and industry in

recent years. The advances in network technology have made it economically possible for a

wider range of users than before to access stored video data over networks and also transmit

live video data. While transmission on networks with guaranteed quality of service poses less of

a problem, the wide-spreadinternet protocol(IP) and its transport-level protocols such asuser

datagram protocol(UDP) andtransmission control protocol(TCP) offer no such guarantees. The

challenge is the provision of reliable and scalable video streaming techniques on the basis of the

best-effort internet services.

6.2.1 Background

In their survey paper [WHZ+01], Weng et al. identify the main issues for real-time transmission

of video data over the internet asbandwidth, delay, andloss managementand the key elements

of streaming video systems as follows:
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• video compression

• application-layer QoS control

• continuous media distribution services

• streaming servers

• media synchronisation mechanisms

• protocols for streaming media

Of these, several can be sources of flexibility to adapt to changing environmental conditions,

especially fluctuations in bandwidth. Problems occurring due to changing bandwidth are pri-

marily delay and loss of data packets. Both of these may obviously lead to the video appearing

unacceptable to the human viewer. Note that in many cases it cannot be determined whether a

packet has gone lost or it is only delayed; the effects remainthe same in either case.

First, the choice of video compression algorithm has a big influence on the ability of the

streaming video system to scale the quality of transmitted data and thus adapt to changing levels

of bandwidth in real-time. Obviously, raw video data usually consumes too much of the available

bandwidth, making compression schemes a necessary part of any such system. Scalable com-

pression mechanisms like the SPEG (scalable MPEG) extension to MPEG-1 or the FGS (fine

granular scalability) encoding of MPEG-4 prioritise blocks of data according to several criteria

like frame type (I-, P-, or B-frame) or significance of bits belonging to the layers of the raw data.

For example, the compression algorithm may split the original bit stream into two or more layers

of base and enhancement data. Each additional layer available to the receiver of the bit stream en-

ables it to improve on the quality of the data encoded in the base layer. The compression scheme

may allow for spatial, temporal, and signal-to-noise ratioscalability, meaning the ability to adapt

the image size, the frame rate, or the quality of individual frames, respectively. An example for

a scalable compression / decompression scheme with discrete cosine transformation is shown in

figure 6.7 ([WHZ+01]).

After the transformation, a quantisation module selects part of the information to yield the

base layer video stream. The same information is subtractedfrom the original stream to gain the

enhancement layer video stream. The decompression is able to reconstruct a basic version of the

original video from the base layer stream alone. If the enhancement layer stream is available, its

data can be added to produce an improved version of the video stream.

Using an adaptive compression scheme is a first step to scale the performance of a video

streaming application to the available bandwidth. The nextone is to establish a control mech-

anism with the goal of selecting only the most important datato be transmitted at each time
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a) compression b) decompression

Figure 6.7: Example scalable compression / decompression scheme

instant. Data loss and delay occur when the network is congested; one obvious method to avoid

congestion is to adapt the transfer rate of the video stream.The compression algorithm is in-

structed to produce no more data than estimated to be transferable without congestions. There

areanalytic techniquesto decide on the transfer rate based on the packet size, end-to-end de-

lays for the non-congested network, and the estimated packet loss ratio, as well asprobe-based

approachesscaling the transfer rate according to the loss rate for somepredefined probe data.

Another way to match the rate of the original video stream with the target transfer rate is by

means of one or a series of filters to discard from the video stream the less relevant data. The

most obvious alternatives areframe-dropping filtersandlayer-dropping filters. While the former

eliminate all or part of the frames of a certain type (in ascending order of importance), the latter

remove packets belonging to improvement layers of the stream.

Relying on possibly small subsets of the original data to preserve minimum levels of infor-

mation contained in the original video stream, errors can have much more serious effects. Errors

in the transmission can be controlled by means of adding redundant data to allow automatic re-

pair of damaged packets or retransmission of missing packets. Note, however, that adding data is

contrary to the original goal of reducing bandwidth need, and that retransmission is only feasible

if the maximum allowed delay of data is bigger than the round trip time of the video streaming

application (the time needed for the signal of a packet missing to arrive at the sender and the

packet to finally arrive at the receiver). Errors can also be concealed by temporal and / or spatial

interpolation of neighbouring frames; the applicability,though, depends largely on the content of

the video sequences. In the following sections, however, wewill simplify the models by mostly

not dealing with error handling issues in order to be able to emphasise on the quality and time-

liness aspects of a streaming video system. In practice, however, error handling mechanisms are

an integral component of such a system.

For the sake of brevity, we will not state any details of the other components of a video

streaming application, although they may also exhibit potential for performance adaptation, es-
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pecially as far as the architecture of the streaming server is concerned. We will instead start to

describe two specific models for such an application.

6.2.2 Live Video Streaming Applications

Compared to video streaming from stored data, live video streaming usually has the additional

requirement of low latency between the time of data generation at the sender and display of the

video at the receiver. For this reason, excessive bufferingto cope with bandwidth fluctuations and

enhance video quality is not an option in this case. Live video streaming applications generally

impose direct timing constraints on the travel time of data between the sender and the receiver.

It is this class of live video streaming applications we are going to deal with in the following.

Flexible timing constraints as well as varying quality for the video stream make is suitable for

quality / utility modelling.

As mentioned before, we can identify two approaches of adapting the transmission rate to the

available bandwidth. One of them utilises the properties ofthe compression scheme, the other

one the attributes of the transmitted packets to achieve this goal. We are going to show example

models for both schemes.

6.2.3 Filter-Based Adaptation

The Priority Drop or Priority Progress Streaming (PPS) algorithm by Huang et al. [HKWF03]

suggests to group the packets of the video stream into disjoint sets of packets with time stamps

according to their time relative to the start of the video. These groups are sorted in descending

order of priority as prescribed by the scalable compressionalgorithm. The data prepared in such

way can now be used to adapt to bandwidth fluctuations withoutchanging the parameters of

the compression algorithm and the target transmission rate. From each time window, the least

significant packets are dropped at its end.

6.2.3.1 Description

Figure 6.8 shows an example of the transmission of a video stream under PPS with the bandwidth

being bigger than the data rate. The original data are grouped into windows and sorted according

to priority. Due to the high bandwidth compared to the data rate, no packets need to be dropped.

This kind of control is very fine-granular and can act promptly upon changes in the available

bandwidth, because the packets are dropped at the very moment they are delayed due to network

congestion. The scheme is also very easy to implement, readily applicable to video multicast and
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Figure 6.8: Example PPS data stream without delay or congestion

broadcast applications with possibly different transfer rates to each receiver and does not require

any form of feedback information from the receiver.

The problem of this scheme is the additional latency introduced by reordering packets in a

time window. Furthermore, the Priority Drop algorithm may not always produce good results

for video transmission, especially if the data rate at the sender is much higher than the available

bandwidth. A compression algorithm aware of at least the order of magnitude of the target trans-

fer rate may perform more elaborate computations to reduce the size of data than an algorithm

completely unaware of this information.

6.2.3.2 Flexibility

If the data rate exceeds the available bandwidth, the network may become congested. Such a

situation is depicted in figure 6.9.

Some packets of the third window cannot be transferred and must be dropped. In terms of

quality / utility scheduling, the transfer of video data cannot be achieved with the highest quality.

On the other hand, PPS deals with increased delays by puttingoff the receiving deadlines. As

this incurs temporary annoying pauses in the video display,it is certainly not a desired effect and

should be penalised. In the quality / utility scheduling model, this can easily be done by stating

that the transfer does not operate at its highest utility level any more. Note that PPS deadlines

are not hard, but rather flexible ones; otherwise, shifting them in the way proposed would not be

possible. Figure 6.10 shows the case of receiving deadlinesbeing missed and put off.
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Figure 6.9: Example PPS data stream with congestion

Figure 6.10: Example PPS data stream with delay

6.2.3.3 Application Graph

Figure 6.11 is a model of the PPS live streaming video system.The sender compresses the raw

data before grouping the packets into time windows and sorting them according to priority. The

system tries to transmit all packets via the TCP connection,but discards those whose time win-
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Figure 6.11: PPS streaming video application
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dows have already reached their ends. The receiver collectsthe packets arriving from the network,

uncompresses them and feeds them into the display module. The communication is strictly uni-

directional, and the sender does not receive any feedback onthe status of the network or the

quality of the video display at the receiver. Buffered communication as in this example was not

considered in the scheduling algorithms described earlier. However, is does not incur additional

constraints if we can assume the buffers do not under- or overflow, which should be the case dur-

ing normal operation of the video stream. Note that the application consists of three components;

we cannot apply centralised scheduling to the components ofthis distributed application. Finally,

note that the resource access edges for the buffers do not convey the direction of dataflow, which

can be graphically represented in the design tool only for synchronised communication.

a) quality function for TCP transmit b) utility function fornetwork root task

Figure 6.12: Quality and utility functions for PPS tasks

The quality function of the transmit method is value-discrete, as there is only a finite number

of adaptation levels possible according to the number of packets of each window that can be

transmitted successfully (figure 6.12a)). However, the execution times of all methods on both

the sender and the receiver CPU can be assumed to be constant;therefore, their quality functions

only have two possible values. The utility function for the root node of the network tree measures

the timeliness of the data arrival; as there is an initial deadline, it should be assumed that data

arriving before this time achieve highest utility. After the deadline the utility decreases; in the

original problem description, the deadlines themselves are changed. One possibility for defining

an appropriate utility function can be seen in figure 6.12b).

6.2.4 Compression-Based Adaptation

Monitoring and probing the bandwidth at runtime together with an appropriate feedback mech-

anism allows to tune the parameters of the compression algorithm such that it can achieve the
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highest possible quality of the video stream for the target bandwidth. Further advantages are

fine-granular adaptation and little latency incurred by this method, because packets do not have

to be collected and sorted before sending them. One major drawback of this approach is the diffi-

culty to find accurate values for the target transmission rate, because the available bandwidth may

change unpredictably, possibly rendering void the assumption of extrapolation of past values into

the future. An inaccurate target bandwidth leaves us with the original problems of data loss and

delay, the network being either under-utilised or congested. A second drawback is the need for

feedback information from the receiver to the sender, resulting in possible inaccuracies due to

the delay on the return path; once the information is available at the sender, the circumstances

may have changed considerably.

6.2.4.1 Description

The ideas for the following example were taken from the worksby Rejaie et al. [RHE99, Rej99]

on a mechanism for the adaptation of the target rate called RAP (rate adaptation protocol) and

by Liu and Zarki [LZ98] on a similar adaptive source rate control system (ASRC). Both of

these are based on the heuristics of additively increasing the rate if more bandwidth is available

and multiplicatively decreasing it if the network appears to be congested. This scheme has been

shown to provide a good tradeoff between the ability of making use of surplus bandwidth and

a fast reaction upon network congestion; it is specifically known that this kind of adaptation

converges to a fair share of service between the streaming application and other traffic on the

same network. The decision on the target data transmission rate (stated as fine-granular as in

bits) is usually made upon parameters like the frame rate, error rate, and buffer content.

6.2.4.2 Flexibility

The flexibility of a video streaming application of the adaptive source rate type with regard to

quality lies within the ability of the compression algorithm to target different data rates and the

transmission system to work on a network with varying available bandwidths and accordingly

varying data rates produced by the sender. Utility can be expressed in exactly the same way as

for the filter-based approach.

6.2.4.3 Application Graph

Figure 6.13 shows an example model for the adaptive source rate approach to adaptive streaming

video. The main activities of the sender remain unchanged compared to the previous model. The
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Figure 6.13: Adaptive source rate streaming video application
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raw data must be compressed and packetised before being sentvia the network connection. How-

ever, now it also has to perform two additional tasks, namelyexplicit error handling and frame

rate adaptation. Receiving feedback from the network (signalling congestion) or the receiver

(signalling a missing frame or requesting retransmission of packets due to irreparable errors),

the sender has to take appropriate action. It may have to adapt the frame rate, reserve some por-

tion of the available bandwidth for retransmission if the network conditions are less reliable, and

perform retransmission of the requested packets. The edgesfrom and to the adaptive controller

task represent these dependencies. Apart from data collection, decompression and display, the

receiver has to check the data for missing packets and errorsand produce appropriate feedback

messages for the sender. Of course, the feedback messages use the same network resources as

the original data. Note that it is necessary to adapt the quality function of the transmit task as a

reaction to the adaptation of the target data rate.1 If the target rate is low, little allocation of the

bandwidth of the network should result in a rapid increase ofquality (i.e., packets successfully

transferred). However, the maximum quality is probably very small, because the data to transfer

has deliberately been limited to a minimum. On the other hand, a high target bandwidth means

that the transmission can be expected to reach a comparatively high quality (many packets can be

transferred successfully), but it may take longer to reach higher quality levels. These two shapes

of quality functions are shown in figure 6.14.

a) quality function for low target rate b) quality function for high target rate

Figure 6.14: Quality functions for transmission task

As can be clearly seen from the quality functions, an inappropriate choice of target band-

width reduces the transmission quality which can potentially be reached. If the target bandwidth

1Changes of the quality function were not explicitly discussed in previous chapters, but pose no problem for our

dynamic scheduling algorithms as long as these changes do not occur during the evaluation of the function. This

can easily be achieved by constraining changes of this kind to the beginning or the end of scheduling phases. In the

previous examples, it was already mentioned that quality functions may be adapted at runtime if deemed appropriate

to account for more accurate quality profiles becoming available by monitoring.
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is significantly higher than the available one, the transmission task will receive less service than

expected and would perform better if the data had been prepared for a smaller target bandwidth.

Compare the two quality functions for small execution times, e.g., 1. On the other hand, under-

estimation of the bandwidth has a similar effect; compare the functions for a higher execution

time, e.g., 5.



Chapter 7

Simulation Environment

Man is a tool-using animal. Without tools

he is nothing, with tools he is all.

Thomas Carlyle

An integrated specification and simulation environment called PaSchA (Passau Scheduling

Analysis) for scheduling problems was implemented for the purpose of modelling real-time ap-

plications and testing the scheduling algorithms of this work and others for such example appli-

cations as well as for generic loads. This chapter briefly describes this tool set; more details and

a series of screen shots of the graphical user interfaces of the PaSchA components can be found

in the appendix.

7.1 Architecture

PaSchA was designed as a set of tools communicating via message-passing mechanisms on the

one hand and shared files on the other. An overview of the architecture of the PaSchA system

can be seen in figure 7.1.

The core of the tool set is a discrete-time simulator which iscapable of applying a wide range

of scheduling algorithms to processor and resource scheduling problems with several kinds of

timing constraints. Example problems serving as input for the simulator are represented as graph

structures and can be generated either by a human application designer using the graphical editor

or with the help of a graph generator. The exchange of problemspecifications between editor

and generators on the one hand and the simulator on the other takes places via so-called applica-

tion graph files. The other source of input to the simulator isa library of scheduling algorithms

153
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Figure 7.1: Architecture of the PaSchA system

available as JavaTM 1 byte code; the library of scheduling algorithms can be easily extended by

the user. The interaction between the simulation of the behaviour of an application and the deci-

sions of the scheduler made upon the information provided bythe simulator component results

1Java is a registered trademark of Sun Microsystems, Inc.
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in a stream of events that is passed on to the visualisation components. A series of visualisation

modes has been implemented to display the data of interest tothe user. Further components of

PaSchA facilitate the automatic or semi-automatic derivation of benchmark results for schedul-

ing problems, recording and playing of log files, and interfaces to connect PaSchA to external

software tools.

The remainder of this chapter consists of a short section on the model used to specify appli-

cations for PaSchA and a more detailed description of the components.

7.2 Application Model

This section serves to give a short overview of the structureof PaSchA application models. A

PaSchA application model contains specifications of both a software application and the target

hardware architecture on which to execute it. Both of these components are stored within an

application graph (7.2). The individual layers consist of sets of nodes spanning several graph

structures, both within the layers and crossing the layer boundaries.

Application

hierarchical task network

Methods

library of basic algorithms






Software layer

Target architecture

heterogeneous multiprocessor system

}
Hardware layer

Figure 7.2: High-level view of a PaSchA application graph

7.2.1 Hardware Layer

The hardware specification consists of a set of processor types along with an optional set of

further resources.

PaSchA allows applications to target heterogeneous multiprocessor architectures as their ex-

ecution platform. The attributes of processor types give information on how many instances of

each processor type are available and which speed modes are defined for this type of processor.

Speed modes of processors are assigned a further attribute specifying power consumption; in

general, faster speed modes result in higher power consumption.
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Non-processor resources contain information on how many units of the resource are available

and whether units can be returned to the pool of resources after use or they are consumed and

never become available again.

7.2.2 Software Model

The software model comprises two kinds of nodes, namely methods and tasks. Methods can be

thought of as basic algorithms available to the applicationdesigner as an algorithm library, and

an application is built upon this layer of simple algorithmsby tasks specifying, e.g., a hierarchy

as well as timing and precedence constraints.

7.2.2.1 Methods

Methods are executable on exactly one type of processor. A function mapping time to some

scalar value domain correlates the processor time assignedto the method with the value of the

overall performance of the application derived from this assignment. This concept generalises the

widely used assumption of fixed execution times for components of an application. Obviously,

fixed execution times can be modelled very simply. Both the run-to-completion assumption and

the anytime execution paradigm have been implemented in PaSchA. In the first case, a stochastic

distribution can be specified for the execution time of methods; the simulation component (rep-

resenting the outside world) decides on an execution time for each method, and the scheduling

algorithm cannot influence, but only estimate and monitor the progress of a method. Prior to its

completion, a method does not yield any positive value to theapplication. In contrary to the run-

to-completion assumption, under the anytime execution paradigm methods can contribute to the

system performance before they have finished. Furthermore,it is the scheduling algorithm which

has to determine when to terminate a method. By definition, a method can be executed for an

arbitrarily long time in the anytime model. By convention, the function mapping execution time

to value should be nondecreasing for all methods. In the PaSchA terminology, methods relying

on the scheduler to terminate them are of typeanytime, methods obeying the run-to-completion

assumption are of typestochastic, as the simulator decides on the execution time according to

some stochastic distribution. Both the time-value function for anytime type methods and the sto-

chastic distribution for run-to-completion methods can bespecified in a discrete form as a table

of defining points or by coding them directly as Java methods.
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7.2.2.2 Tasks

Based upon the library of methods, applications are defined by the application developer as a

hierarchical task network consisting of a set of task nodes and two distinct graph structures on

them, namely a task hierarchy and a dependency graph.

During simulation, instances of tasks are generated according to the instantiation and release

time specifications; instance numbers are assigned to instances to receive a unique order of in-

stances for each task on the one hand and the correct correlation of instances of different tasks on

the other. Each task node in the application graph is characterised as being instantiated eitherpe-

riodically, aperiodically, or sporadically. Periodic and aperiodic tasks are instantiated infinitely

many times for each parent node instance, whereas sporadic tasks are instantiated exactly once

for each parent node instance (or exactly once if this node isthe root of the hierarchy graph).

Of the many possibilities to specify stochastic distributions for release times, geometric and

uniform distributions were implemented in PaSchA, as they appeared to be sufficient for most

models of scheduling problems. Geometric distributions (the discrete equivalent to the mem-

oryless exponential distribution) are mostly used for aperiodic tasks, where it is assumed that

instances are released at a given minimum distance in time, but with a probability otherwise

remaining constant. Uniform distributions are used for periodic tasks, where release times are

known to be within a (usually small) interval of time around the period start (the maximum

jitter).

Timing constraints can be modelled in PaSchA in two ways. Thefirst one is by traditional

deadlinesposed on the tasks, i.e., by specifying either in absolute time or relative to the release

time of a task instance the latest time when the instance mustfinish its execution. The second

one is the more fine granular specification ofutility by means of pointwise constant functions

of the time passed since the release of a task instance. One other important attribute of tasks is

thequality aggregation function. This function serves to calculate values representing thetask’s

progress from the values observed for the child nodes. Two classes of quality aggregation func-

tions were implemented in PaSchA. The first one only takes into account child node instances

of the same number as the parent, the other one calculates theparent node quality from all child

nodes present at a given time. Maximum, minimum, sum, and arithmetic mean are the functions

implemented in both of these categories. A value density quality aggregation function as well as

an interface for user-defined functions are available.

7.2.2.3 Edges

As mentioned above, two graph structures are defined on the task nodes. The first one is a tree

called thetask hierarchy. In the case of PaSchA, the task hierarchy is an AND/OR tree, so that the
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subnodes of a task may either represent components (for AND type nodes) or alternative imple-

mentations (for OR type nodes) of the parent node. To avoid instance explosion, a phenomenon

where an infinite number of instances with an infinite number of children each are generated

during simulation, PaSchA does not allow more than one non-sporadic task node along any path

from the root node of the hierarchy to a leaf.

The second graph structure defined on the task nodes is the dependency graph, which is di-

rected, but need not necessarily be acyclic or contiguous. Two different kinds of dependency

edges were implemented in PaSchA. The first one is calleddata dependencies, which represent

hard precedence constraints, i.e., a task (rather, its instances) may not be executed prior to the

termination of its predecessor nodes. The other one is called quality dependencies, the purpose

of which is to indicate that the quality of the target node of the edge is influenced by the qual-

ity of the source node. It is not illegal to execute the targetnode prior to the termination of the

source node; usually, the objective function of a schedulerwould penalise wrong execution or-

ders. However, it is possible to combine both kinds of dependency edges for the same pair of task

nodes. Dependency edges are also allowed between method nodes, where their interpretation is

analogous to the one given for task nodes.

Two kinds of edges cross the borders of the layers given in figure 7.2. First, method usage

edges connect tasks and methods, where the method node must always be the target node. Note

that each leaf node of the task hierarchy graph must use (i.e., be implemented by) at least one

method. Processor and resource access edges cross the border from software to hardware layer.

Each method is executable on exactly one type of processor, so that accordingly each method

node is associated with exactly one processor type node and an optional set of other resource

nodes.

7.3 I/O Components

The two ways to create application graphs for PaSchA are the graphical editor and specialised

graph generators.

7.3.1 Editor

Here we give a brief description of the functionality of the PaSchA graphical editor; for more

details refer to the appendix. The editor implements a multi-document interface, so that the user

can work on several application graphs at the same time. The main panel shows one of the graphs

at a time, other open graphs can be selected from the tab list.Apart from the usual functions like

copy, paste, load, save, undo, redo, andprint, the editor allows insertion of the different kinds of
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nodes and edges and opens additional dialogues when necessary to edit their properties. Further

features of the editor are zooming (with different sets of important attributes of nodes repre-

sented graphically for different zoom levels) and several layout options. Finally, the graphical

editor automatically searches for scheduling algorithm classes within its installation directory.

An algorithm can be selected and parameterised to test the validity of the application graph for

the specific scheduling algorithm. Note that not all graphs that can be specified in PaSchA’s gen-

eral model are suitable for every algorithm. Figure 7.3 shows the main window of the graphical

editor with a complete application graph.

Figure 7.3: Example application graph in the graphical editor

7.3.2 Graph Generators

A second way to create PaSchA application graphs is by using specialised graph generators.

This is especially useful for automatic generation of generic example problems with certain
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characteristics for extensive benchmarking. A graph generator is generally intended to produce

reasonable input for one class of scheduling algorithms only. Sets of parameters are provided

either via an application programming interface (API) or a graphical user interface (GUI), which

the generator algorithm uses to produce suitable example graphs and write them either to the file

system or a database. A generator for quality / utility problems is described in the appendix.

7.3.3 Application Graph Files

Application graph files store graphs in XML format and are used for data transfer between the

components; the XML scheme also simplifies switching between database and file systems as

data repository.

7.4 Simulation Components

The simulator is the core of the tool set; the actual simulator is accompanied by two auxiliary

components: an editor to create configuration files and a graphical user interface to simplify its

usage.

7.4.1 Configuration Editor

The configuration editor is a little tool that allows to bind together an application graph with

appropriate layout information, a path on the file system to store log files, parameters for the

statistics view mode (see section 7.6), a scheduling algorithm, and a set of scheduler-specific

parameters into one file. User interfaces to edit scheduler-specific parameters must be provided

by the individual scheduler classes. The appropriate scheduler-specific dialogue is opened once

the scheduler has been selected from the drop-down list. This list is generated by the configu-

ration editor on the basis of the Java class hierarchy, so that new schedulers become available

automatically.

7.4.2 Simulator User Interface

The graphical user interface of the simulation tool (figure 7.4) shows a list of configurations and

pre-recorded log files that are to be simulated (in the case ofconfigurations) or played (in the

case of log files) simultaneously. Entire lists of configurations and log files can be saved and

loaded as play lists within the graphical user interface. Execution of play lists can take place in

three modes: as fast as possible, with a minimum delay for each step, or in single-step mode
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with user interaction. Visualisation modes can be selectedseparately for each entry in the play

list. Simulation of configurations and playing of log files can be started, paused, and stopped via

the tool bar of the user interface. The functionality of the simulator is also accessible via calling

options for the simulator, which is important for automaticbenchmarking.

Figure 7.4: Graphical user interface of simulator

7.4.3 Simulator

The PaSchA simulator component is time-discrete and communicates with its environment via

the file system (configuration editor, graph editor, graph generators, log writer) and message

passing mechanisms (visualisation). Its general purpose is to manage the system state for each

simulation of a configuration and to provide information necessary for the scheduler to act and

for the visualisation modes to display. The most important data the simulator must make avail-

able to the outside world are the current time, the release ofnew task instances, their assignment

of resources and computation time, their progress, quality, and, finally, their termination. Fur-

thermore, processor and resource usage are information needed by other components. The states

of all task and method instances are determined by finite-state machines. Both schedulers and the

simulator itself may only take action on a task or method instance according to the state transition

diagrams in figures 7.5 and 7.6.

The main part of the simulator is a (potentially infinite) loop performing the same basic

actions at every time step. The three top-level phases of a simulator cycle are performing changes

to the system state taking place due to the time progressing,invoking the scheduler, and - after

the end of the scheduling phase - interpreting and reacting appropriately upon the decisions made

by the scheduler.
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Figure 7.5: Task state transition diagram

Figure 7.6: Method state transition diagram

7.5 Log Components

The simulator may write the entire event stream generated bythe simulator loop and the sched-

uler to a log file via the log writer component. This log file canbe played by a log player so

that the same system behaviour can later be studied without having to run the simulator and

the scheduling algorithm on the same input data again. The log player produces the same event

stream as previously generated by the interaction between scheduler and simulator. This event

stream is passed on to the selected visualisation components just as any stream originating from

current simulation runs.
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7.6 Visualisation Components

The visualisation components receive their input from the simulator or log player and display

relevant data from the event streams resulting from the (live or recorded) interaction between the

simulation of the behaviour of an application and the decisions made by the scheduler. The dif-

ferent visualisation modes focus on different aspects of the available data as we will demonstrate

in this section.

7.6.1 Log View Mode

This view mode simply translates the event stream into a human-readable form. All information

that can be derived from the behaviour of simulator and scheduler is accessible this way; however,

the representation is obviously not very easy to understandand mostly suitable for debugging

purposes.

7.6.2 Time View Mode

This view mode is an extended form of Gantt charts, displaying the state of the task set on a

common time line. Information like the release and termination of instances, their activation and

usage of resources and processors as well as the quality values achieved by individual nodes can

be shown over a rather wide time range. On the other hand, the level of detail is comparatively

small. The states of the nodes are colour-coded and additionally reflected by the width of the

corresponding lines. For processors and other resources, the current utilisation is coded into the

width of the line. Quality values show up above the respective node for the relevant time instants.

User interaction for this view mode includes depth-first, breadth-first and manual sorting of rows,

selection of the task set to display, indentation, display of static node attributes within the name

tag, and zooming of the display area. Figure 7.7 shows the time view for an example simulation

run.

7.6.3 Graph View Mode

The graph view mode shows the application graph in the same layout as the graph editor; during

the simulation or log playing, task states, value changes and other dynamic parameters of the

nodes are displayed within the nodes in addition to the pictograms used in the graph editor. Again,

states are both colour-coded (the node assumes various baseor frame colours) and represented

by symbols to allow the state to be recognisable on monochrome media. For processors and

other resources, their utilisation is shown within the nodeat all times. This mode gives a more
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Figure 7.7: Time view mode

detailed view of the task states at a specific time, but does not allow the same big picture of the

development of states over time, even though an additional slider allows to view the system state

at different times in the past. Figure 7.8 is a screenshot of PaSchA’s graph view mode.

Figure 7.8: Graph view mode
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7.6.4 Statistics View Mode

Finally, the statistics view mode gives the user the opportunity to derive secondary data on the

application and the schedule. Among the quantities that canbe included here are processor util-

isation, residence time or waiting time of tasks, or the number of ready or working tasks at any

time. From any individual quantity, several additional pieces of information can be recorded, e.g.,

arithmetic and geometric mean, median, minimum, maximum, and standard deviation. Diagrams

can be plotted in either linear or logarithmic scale and exported to an image file to facilitate the

inclusion into text documents. An example can be seen in figure 7.9.

Figure 7.9: Statistics view mode

7.7 Scheduler Components

Scheduling algorithms for the PaSchA system must be implemented in Java and extend the sched-

uler base class provided by the system. As a minimum requirement, a scheduler class must im-

plement three methods:

• a validity test to determine whether a given application graph is suitable for the scheduling

algorithm

• an initialising method for the scheduler, which is typically the main place of action for

static schedulers

• a method for execution at each point in simulator discrete time, which is used for dynamic

schedulers and for dispatchers in static scheduling schemes
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The scheduler base class provides some basic sanity checks and additional auxiliary functions

that may simplify the implementation of scheduling algorithms. Among the optional components

of a scheduler class is a scheduler-specific graphical user interface to edit the parameters in the

configuration editor.

7.8 Benchmark and External Components

In order to perform automatic benchmark tests for scheduling algorithms, the appropriate ap-

plication graph or generator configuration along with the necessary parameter sets are defined

within Java test cases. The input data as well as the results produced by the scheduler and its

interaction with the simulator are stored in a database for later evaluation. Test cases may use

stored application graphs as input or generate generic loads with a graph generator. The decision

in favour of specialised Java implementations for automatic benchmarking instead of a propri-

etary language description or a graphical tool was made due to the higher flexibility.

Apart from the support of database access, another example for an external tool that can be

connected to PaSchA is the commercial linear constraint solving software CPLEXR©2. The inter-

face to this linear programming application is especially useful for calculating optimal solutions

to many scheduling problems as a basis for performance evaluation for other algorithms.

2CPLEX is a registered trademark of ILOG, Inc.



Chapter 8

Experimental Results

Part of the inhumanity of the computer is

that, once it is competently programmed

and working smoothly, it is completely

honest.

Isaac Asimov

This chapter documents the results gained from simulation of generic example applications

with the various scheduling algorithms emphasising different parameter settings for schedulers

or certain characteristics of the application graph. We arefirst going to introduce some of these

criteria that can be calculated from an application graph offline. After that, the performance of

the schedulers introduced in earlier chapters will be evaluated according to these criteria. These

experimental data were gained by simulation in the PaSchA environment (cf. chapter 7) on an

Intel PentiumR©4 CPU1 with 2.0 GHz and 224 MB RAM running Java version 1.4.1 and Eclipse

3.02.

8.1 Application Parameters

As a first, simple example application to demonstrate a set ofparameters used during the bench-

mark tests, consider the graph of figure 8.1 with root taskT0 and subtasksT1, . . . , T4 in the task

1Intel and Pentium are registered trademarks of Intel, Inc.
2Eclipse is available from the Eclipse Foundation under Common Public License and Eclipse Public License

agreements.
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hierarchy (continuous lines), empty dependency graph and usage specifications (dashed arrows)

for methodsM1, . . . ,M6 running on a single processorP (not shown).

Figure 8.1: Example application

Assume the following release specifications for tasks:

task instantiation type additional information

T0 sporadic –

T1 sporadic –

T2 periodic perT2 = 5, jT2 = 2

T3 aperiodic iatT3 = 2, pT3 = 0.5

T4 sporadic –

Let the quality and utility functions be as follows:

∀t ≥ 0 : uT0(t) = uT1(t) = uT4(t) = 1

uT2(t) =






1 if 0 ≤ t < 3

0.6 if 3 ≤ t < 5

0 if t ≥ 5

uT3(t) =






1 if 0 ≤ t < 2

0.3 if 3 ≤ t < 3

0 if t ≥ 3

qM1(n) =






0 if n < 2

0.3 if 2 ≤ n < 4

0.8 if n ≥ 4

qM2(n) =






0 if n < 3

0.6 if 3 ≤ n < 4

0.9 if n ≥ 4

qM3(n) =






0 if n < 4

0.5 if 4 ≤ n < 5

1.0 if n ≥ 5

qM4(n) =






0 if n < 2

0.3 if 2 ≤ n < 4

0.7 if n ≥ 4

qM5(n) =






0 if n < 3

0.8 if 3 ≤ n < 4

0.9 if n ≥ 4

qM6(n) =






0 if n < 3

0.5 if 3 ≤ n < 4

1.0 if n ≥ 4
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8.1.1 Method Execution Times

In quality-flexible models, the run-to-completion assumption does not apply. Therefore, there is

no execution time inherent to a method. Instead, it is part ofthe duties of the scheduler to decide

on the execution time of each method instance. However, we can rate the execution time of a

method relative to a given real value; the threshold execution time is the minimum processing

time needed for an instance of the method to surpass this threshold in quality:

Definition 36 (Quality threshold and threshold execution time)

For ϑq ∈ [0; 1] (the quality threshold), we define the threshold execution timeηϑq

M ofM

as

η
ϑq

M :=

{
min{n ∈ LTP,Ik

M
: qP,M(n) ≥ ϑq, P ∈ P, k ∈ N0} if there is such an n

∞ otherwise

For the example graph and a quality threshold of 0.8, we receive the following execution

times:

η0.8
M1

= 4 η0.8
M2

= 4 η0.8
M3

= 5 η0.8
M4

= ∞ η0.8
M5

= 3 η0.8
M6

= 4

8.1.2 Task Deadlines

Similarly, in timeliness-flexible models, there is no scalar deadline for tasks. We can, however,

define deadlines relative to a real value; the threshold deadline is the maximum time allowed for

an instance of the task before its utility drops below this given threshold:

Definition 37 (Utility threshold and threshold deadline)

For ϑu ∈ [0; 1] (the utility threshold), we define the threshold deadlineδϑu

T as follows:

δϑu

T :=

{
min{t ∈ GT : t > 0 ∧ uT (t) ≤ ϑu} if there is such at

∞ otherwise

In the example application and for a utility threshold of 0.1, we have

δ0.1
T0

= ∞ δ0.1
T1

= ∞ δ0.1
T2

= 5 δ0.1
T3

= 3 δ0.1
T4

= ∞

8.1.3 Mean Interarrival Time

The number of instances of each task in any given interval of time is of course determined by

the frequency of instance releases or the mean time between consecutive instance releases of the



170 CHAPTER 8. EXPERIMENTAL RESULTS

same task. In our model, only a small number of different release specifications were introduced,

so that it is easy to state the mean interarrival time for a task as follows:

Definition 38 (Mean interarrival time)

The mean interarrival time for a taskT is defined as:

iatT =






∞ if T ∈ T1

perT ′ if T ′ ∈ a(T ) ∩ Tp

iatT ′ + 1
pT ′

− 1 if T ′ ∈ a(T ) ∩ Ta

In the given example, we receive for the mean interarrival times:

iatT0 = ∞ iatT1 = ∞ iatT2 = 5 iatT3 = 2 + 1
0.5

− 1 = 3 iatT4 = perT2 = 5

8.1.4 Threshold Utilisation

For unstructured task sets under the run-to-completion assumption, utilisation is usually defined

as the sum of the quotient of execution time and interarrivaltime for each task. The two differ-

ences in our situation are the lack of a unique execution timeon the one hand and the hierarchical

task structure on the other. We solve the first problem by parameterising the definition for utilisa-

tion by a quality threshold and using threshold execution times, and the second one by a recursive

definition along the hierarchy of the tasks. We are primarilyinterested in long-term utilisation

levels (i.e., in permanent overload situations). We therefore define the contribution from spo-

radic tasks as 0. Definitions for transient overloads shouldinclude non-zero contributions from

sporadic tasks and depend also on threshold deadlines, not only on the mean interarrival times

of tasks. Furthermore, we assume that a method not being ableto reach the desired minimum

quality (i.e.,ηϑq

M = ∞) may use up to one full cycle of the calling task in computation time3.

Utilisations for subtasks are summed up to yield the utilisation of the parent task. We define the

(long-term) threshold utilisation of an application as follows:

Definition 39 (Threshold utilisation)

The threshold utilisation for a taskT and quality thresholdϑq is defined as

U
ϑq

T :=
1

iatT
·
∑

M∈c(T )∩M

min(iatT , η
ϑq

M )+
∑

T ′∈c(T )∩T

U
ϑq

T ′ where
1

∞
:= 0.

3hence the minimum operator in the definition of the thresholdutilisation; the definition always restricts the

allocation to a task to one full cycle of the calling task, even if η
ϑq

M
is finite.
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The threshold utilisationUϑq

T′ for a task setT′ with root nodeT0 is defined as the threshold

utilisation of the root nodeUϑq

T0
.

In the example, the utilisation for a quality threshold of 0.8 is

U0.8
T1

=
1

iatT1

· (min(iatT1 , η
0.8
M1

) + min(iatT1 , η
0.8
M2

)) =
1

∞
· (4 + 4) = 0

U0.8
T4

=
1

iatT4

· (min(iatT4 , η
0.8
M3

) + min(iatT4 , η
0.8
M4

)) =
1

5
· (5 + 5) = 2

U0.8
T2

=
1

iatT2

· min(iatT2 , η
0.8
M5

) + U0.8
T4

=
1

5
· 3 + 2 = 2.6

U0.8
T3

=
1

iatT3

· min(iatT3 , η
0.8
M6

) =
1

3
· 3 = 1

U0.8
T0

= U0.8
T1

+ U0.8
T2

+ U0.8
T3

= 0 + 2.6 + 1 = 3.6

8.1.5 Standard Deviation of Task Release Times

The instance density of non-sporadic tasks equals their release frequency. However, for sporadic

tasks higher in the hierarchy, the instance density is the average rate of release of any of its direct

or indirect children. This is a first step to compute an aggregate value for the standard deviation

of task release times from their estimate along the task hierarchy.

The instance density of a task (sub)tree is defined as

Definition 40 (Instance density)

The instance density of a taskT is defined as:

idT := max
( 1

iatT
,
∑

T ′∈c(T )∩T

idT ′

)

The standard deviation of the release time of a task is computed locally for each task regard-

less of its position within the hierarchy.

Definition 41 (Standard deviation of release time)

The standard deviation of the release time of taskT is

stdT :=






0 if T ∈ Ts

jT
2

if T ∈ Tp√
1−pT

pT
if T ∈ Ta

The definitions of the weighted average standard deviation of the release times for child
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tasks ofT and the aggregate standard deviation of release times depend on each other. From

the standard deviations of the child node release times, aggregate values are computed as given

below. If the instance densities among the children of a taskare non-zero, they are used as

weights to calculate the weighted sum of the standard deviations of the child node release times.

Otherwise, the arithmetic mean is computed instead.

Definition 42 (Weighted average standard deviation of release times for children)

The weighted average standard deviation of the release times for the child nodes of

taskT is

stcdT :=






0 if T ∩ c(T ) = ∅
1

|T∩c(T )| ·
∑

T ′∈T∩c(T ) std
∗
T ′ if ∀T ′ ∈ T ∩ c(T ) : idT ′ = 0

1P
T ′∈T∩c(T ) idT ′

·
∑

T ′∈T∩c(T ) idT ′ · std∗T ′ otherwise

Definition 43 (Aggregated standard deviation of release times)

The aggregated standard deviation of release times for a tree with root nodeT is

std∗T := max(stdT , stcdT )

The aggregated standard deviation of release times for the root taskstd∗T0
is a measure for the

degree of nondeterminism in the application graph. If all release times are deterministic, we know

that std∗T0
= 0. With decreasing reliability of the release time estimates, std∗T0

increases. The

values calculated at each level in the hierarchy are weighted by the frequency of the respective

child tasks or subtrees as far as possible.

The example application has following values for instance densities and standard deviations

of release times:

T idT stdT stcdT std∗T

T1 0 0 0 0

T4
1
5

0 0 0

T2
1
5

1
1
5
·0
1
5

= 0 1

T3
1
3

√
1−0.5
0.5

= 1.42 0 1.42

T0
8
15

0
0·0+ 1

5
·1+ 1

3
·1.42

0+ 1
5
+ 1

3

= 1.26 1.26
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8.2 Basic Performance Tests for Scheduling Algorithms

In the first series of benchmark tests we primarily rate the correlation of execution time of the

scheduler and the value of the resulting schedules for task sets with deterministic release times.

The tests in this section do not take into account the cost of scheduling as additional load on

the processor(s). In other words, these performance test are aimed at the simple model without

feedback mechanism we introduced in the first four chapters of this thesis.

Whereas interrupting the search and optimisation algorithms at an arbitrary time is usually

possible for unstructured task sets or flat hierarchy graphs, the hierarchical structure and the

resulting recursive calling order of the algorithm for individual nodes renders the interruptible

anytime model unfeasible for general application graphs. Therefore, the execution time of the

schedules is determined via the choice of appropriate parameters. In terms of the classification

scheme of section 1.3.2, the scheduling task is of the parametrisation type of flexibility. The

parametrisation schemes of scheduling algorithms are not very fine-granular; this explains the

irregular distribution of sampling points in the time-value diagrams of this section. Of course,

the application tasks are of the external termination type (figure 1.3).

Parameters common to all our scheduling algorithms are the quality and utility threshold used

to limit the search space. They should be chosen as a reasonable compromise between closeness

to the original specification (high quality threshold and low utility threshold) and efficiency of

scheduling. Lower quality thresholds prevent minor quality changes in the initial phase of meth-

ods from being taken into account during the optimisation process; higher utility thresholds allow

the scheduler to remove tasks unlikely to contribute to the overall performance at an early stage.

Both of these effects reduce the size of the search space.

In order to compare different algorithms and parameter settings for them, we apply them to

the same application with the following characteristics:

number of tasks 10

task instances within 100 simulation steps 80

average number of quality levels per method 6

average number of utility levels per task 6

threshold utilisationU0.1
T0

0.98

threshold utilisationU0.5
T0

2.87

threshold utilisationU0.8
T0

3.96

aggregate standard deviation of release timesstd∗T0
0

The hierarchy graph is flat, i.e., it consists of a root node, one layer of child tasks and the

underlying method layer. The main factors influencing the complexity of the scheduling problem
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are the number of task instances within the scheduling window (depending on the number of

tasks and their mean interarrival time), the number of utility levels per task and the utilisation for

given quality thresholds. The impact of the aggregate standard deviation of release times depends

on the type of scheduling algorithm and the strategy for dealing with unexpected application

behaviour.

8.2.1 Simulated Annealing Algorithm

As the parameters for the simulated annealing scheduler (initial temperature, minimum temper-

ature, cool-down factor, number of search steps in temperature equilibrium) are quite complex

in their influence on the performance of the scheduling algorithm, they were set automatically

according to a givenratio of search steps and the size of the search space: For a given search

space sizess(T′, J) and arbitrary temperatures

Tempstart > Tempend > 0,

we define

#rep :=
⌈√

ratio · ss(T′, J)
⌉

cF :=

(
Tempend
Tempstart

) 1
#rep

The search ratio is the primary source of altering the computation time of the algorithm.

Further parameters are the size of the scheduling window andthe minimum delay between

consecutive scheduling phases. Rescheduling takes place no earlier than the minimum delay

from the previous scheduling phase and obviously no later than the end of the partial schedule.

We will present test results for scheduling with different window sizes and generally adapt the

minimum delay accordingly, such that the window size is a fixed multiple of the minimum delay

for different runs of a test series.

Next, parameters exist for the size of the local cache of solutions for each task node, for the

computation or estimation of the search space size, and the translation of the search space size

into probabilities for the selection of intervals during the search (compare section 3.1.2.4). Fi-

nally, minimum and maximum numbers of search steps and the distance in processing time units

covered by a single search step can be set manually. We will not, however, present experimental

results for these parameters, as they either do not seem to influence performance significantly or

a very limited range of reasonable values for them is determined by the other parameters and the

given application graph.
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Figure 8.2: Window size - value diagram for simulated annealing (deterministic release times)

Figures 8.2 and 8.3 show the original relationship between parameter settings for the simu-

lated annealing scheduler on the one hand and the schedule value and the execution time on the

other.

The parameter-value diagram in figure 8.2 gives evidence of the fact that a larger scheduling

window results in an increased knowledge of the future set ofactive tasks and can thus im-

prove the achievable value for the schedules. It appears that the profiles for different settings of

the search ratio have different optimal window sizes (ws); these are generally smaller for lower

search ratios. The scheduling effort increases with both search ratio and window size, both of

these parameters directly influencing the number of search steps to be covered by the optimisa-

tion algorithm (figure 8.3). However, as our test conditionsare not ideal due to the limited time

resolution and interferences by the operating system and competing applications, the monitoring

of the execution time constitutes only an approximation of the real values.

Instead of working with the original diagrams for executiontime and schedule value in rela-

tion to scheduler parameters, we derive diagrams on the direct correlation of time and value as in

figure 8.4 in the remainder of this section. The performance of the scheduler rises with compu-

tation time and reaches a plateau for all window sizes; for smaller window sizes, the slope of the

profile is steeper at the beginning, but the maximum value is higher than for bigger scheduling

windows.
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Figure 8.3: Window size - effort diagram for simulated annealing (deterministic release times)

8.2.2 Tabu Search Algorithm

The parameters of the tabu search algorithm are the length ofthe tabu list, the number of di-

versification steps for one invocation and the number of normal search steps before triggering

a diversification step. We use the window size (ws) and the length of the tabu list to generate

parameter / value and parameter / time diagrams analogous tofigures 8.2 and 8.3; from these we

can derive the performance profiles of figure 8.5.

The performance profiles show that the value of the schedulesrises with increasing compu-

tational effort, and that higher values are achieved fasterfor shorter scheduling windows, i.e.,

smaller problem sizes. However, the performance of the scheduler is considerably and consis-

tently lower than that of the simulated annealing alternative. Our conclusion is that the set of di-

versification steps chosen is too simple. As stated in the literature, tabu search is a metaheuristic

whose performance depends largely on the one of the originalheuristics it guides. One promising

possibility to investigate could be to use tabu search as a metaheuristic to guide the simulated

annealing algorithm. In other words, our simulated annealing algorithm could be improved by

adding a tabu list for local search steps and allowing diversification, i.e., restarting simulated

annealing search from points outside the current neighbourhood.
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Figure 8.4: Effort / value diagram (simulated annealing, deterministic release times)

8.2.3 Lagrange Multiplier Algorithm

The parameters for the scheduler based on Lagrange multipliers are the approximation scheme

for the discrete original functions (quadratic functions,quadratic splines, or B-splines) and the

size of the scheduling window. The execution time of the algorithm can be influenced via the

granularity of the functions, i.e., the number of defining points for interpolation. However, the

scalability of the algorithm by these means is limited (by the generally small numbers of qual-

ity levels for methods and utility levels for tasks) and dominated by the window size and the

corresponding size of the search space.

The performance of the algorithm depends primarily on the window size and the homogeneity

of the task release times (especially the period lengths forperiodic tasks) with this window size.

The performance diagram of figure 8.6 shows that execution time is primarily determined by the

window size and has no detectable correlation with the valueof the schedules. The algorithm

scales very badly with both the input parameters and the execution time, such that the value is
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Figure 8.5: Effort / value diagram (tabu search, deterministic release times)

approximately constant for a specific setting of the window size.

8.2.4 Decision-Theoretic Algorithm

The parameters for the policy iteration algorithm of the decision-theoretic scheduler are primarily

the discounting factor (df) and the size of the state envelope, where the envelope size determines

the execution time of the algorithm.

The performance profiles of figure 8.7 show that the maximum values that can be reached

with small discounting factors are quite low, because the scheduler has hardly any knowledge

of the future behaviour of the application. This drawback ofthe decision-theoretic scheduler can

be counteracted by higher values for the discounting factor. However, the processing time to

reach reasonably good results is unpleasantly high, the reason being the overhead of calculating

state sets despite the much simpler representation of task instances with deterministic release

times. What the performance profile also shows is that the scheduler requires a relatively long
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Figure 8.6: Effort / value diagram (Lagrange multipliers, deterministic release times)

processing time before producing first results; the primaryapplication area are task sets with less

predictable release times, as we will see later.

8.3 Performance Tests for Task Sets with Nondeterministic

Release Times

Now we investigate the influence of nondeterminism in the release times of tasks.

In the previous section, the tabu search and Lagrange multiplier approaches appeared to be

little promising. Therefore, we concentrate on the simulated annealing and decision-theoretic

algorithms in the following.

For our experiments we first use a set of applications consisting of flat hierarchies of tasks

with the characteristics of table 8.1.
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Figure 8.7: Effort / value diagram (Markov decision processes, deterministic release times)

task setT std∗T0
U0.1
T0

U0.3
T0

U0.6
T0

U0.9
T0

maxT∈T δ
0.2
T

T1 0.00000 0.98741 2.46423 3.41979 4.09370 10

T2 0.41044 0.97807 2.44473 3.39069 4.06217 9

T3 0.79595 0.95944 2.40746 3.33390 3.99484 10

T4 1.72208 0.91164 2.31875 3.19334 3.80954 10

T5 3.14647 0.85090 2.13014 2.93888 3.54606 8

T6 5.37465 0.75421 1.92909 2.65997 3.16834 10

T7 9.48683 1.80000 4.80000 6.40000 7.80000 9

Table 8.1: Characteristics of task sets with tight deadlines

We rate these task sets as having tight deadlines with a maximum being lower than or equal

to 10 for utility threshold 0.2.
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Modifying the utility functions for these tasks, we can increase the threshold deadlines with-

out changing the utilization values4. This way, we receive sets of tasks with lenient deadlines,

the minimum being greater than or equal to 20 for utility threshold 0.2 (table 8.2).

task setT std∗T0
U0.1
T0

U0.3
T0

U0.6
T0

U0.9
T0

minT∈T δ
0.2
T

T1 0.00000 0.98741 2.46423 3.41979 4.09370 25

T2 0.41044 0.97807 2.44473 3.39069 4.06217 22

T3 0.79595 0.95944 2.40746 3.33390 3.99484 20

T4 1.72208 0.91164 2.31875 3.19334 3.80954 21

T5 3.14647 0.85090 2.13014 2.93888 3.54606 21

T6 5.37465 0.75421 1.92909 2.65997 3.16834 21

T7 9.48683 1.80000 4.80000 6.40000 7.80000 24

Table 8.2: Characteristics of task sets with lenient deadlines

8.3.1 Simulated Annealing Algorithm

A test series for the simulated annealing scheduler workingon the sets of tasks with tight dead-

lines and an overall scheduling effort of approximately 700ms for each simulation run resulted

in the diagram of figure 8.8.

The performance of the scheduler decreases rapidly with rising aggregate standard deviation

of release times. The best choice of window size seems to be a very small value matching the

quick decisions that have to be made with increasingly unreliable estimates of task release times.

The same algorithm was applied to the modified task sets for anoverall scheduling time of

approximately 2000ms; the longer scheduling time seems reasonable if the task deadlines are

less tight, even though we do not consider the cost of scheduling explicitly in this section.

For the task sets with lenient deadlines, a higher window size is preferable, because inter-

esting increases in quality for a task may take place even at acomparatively long time after its

release, unlike in the previous case (see figure 8.9). Furthermore, the performance of the algo-

rithm at higher levels of nondeterminism is better than in the previous case. Intuitively, inaccurate

estimates of release times can be tolerated more easily if there is a longer time available to deal

with the deteriorating effects.

4These are defined via quality functions only.
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Figure 8.8: Nondeterminism / value diagram (simulated annealing, tight deadlines)

8.3.2 Decision-Theoretic Algorithm

The decision-theoretic scheduler in general requires longcomputation times to yield initial re-

sults, but the generation of alternative solutions can be beneficial if the release times of task

instances are not very well predictable. The same task sets as above were scheduled by the

decision-theoretic approach with an overall scheduling time of approximately 5000ms, resulting

in the performance profiles of figure 8.10.

Of course, the performance of the scheduler decreases with rising aggregate standard devi-

ation of release times, because the frequency of state transition steps ending in states outside

the current state envelope increases. However, the performance degradation appears to be less

dramatic than for the simulated annealing alternative withrescheduling. Note, though, that the

computation time of the decision-theoretic scheduler is much higher in this example. Comparing

the individual performance profiles, there seems to be an optimal value for the discount factor,
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Figure 8.9: Nondeterminism / value diagram (simulated annealing, lenient deadlines)

which we assume to be related to the influence of the time intervals most interesting to the tasks

of this application in the evaluation of the objective function. With the maximum threshold dead-

line of 10, assume the interesting quality and utility changes for a task are centred around time

5 after its release. If we want to match this time with the one when the influence of the task is

equal to 0.5, we can deduce that we have to choose a discounting factor of(0.5)1/5 = 0.87.

If the second set of applications is chosen for evaluation with a scheduling time of approx-

imately 5000ms, the profiles of figure 8.11 are the results. The main difference is the order of

performance profiles for different discounting factors. With deadlines being later in these ap-

plications, a higher discounting factor is preferable, giving more emphasis to later scheduling

decisions.
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Figure 8.10: Nondeterminism / value diagram (decision-theoretic, tight deadlines)

8.3.3 Comparison of Schedulers

Comparing the simulated annealing and decision-theoreticschedulers for sets of 10 tasks sim-

ilar to the ones above, but including both tasks with short and long threshold deadlines and a

scheduling time of approximately 1000ms, we receive the performance profiles of figure 8.12.

The main contribution of this experiment was the finding thatthe decision-theoretic scheduler

can actually outperform the rescheduling scheme with simulated annealing at higher levels of

nondeterminism (i.e., bigger deviations of the release times from their estimates).

8.4 Performance Tests for Different Utilisation Levels

In this section, we are going to present benchmark tests on task sets with different utilisation lev-

els for the simulated annealing and decision-theoretic scheduler. Rising overload of the proces-
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Figure 8.11: Nondeterminism / value diagram (decision-theoretic, lenient deadlines)

sor(s) means the scheduling problem becomes more complex, so that a performance degradation

can be expected.

8.4.1 Deterministic Release Times

The task sets we are going to use first have deterministic release times and the utilisation speci-

fications of table 8.3.

8.4.1.1 Simulated Annealing Algorithm

The simulated annealing algorithm degrades gracefully under increasing overload, as the perfor-

mance profiles of figure 8.13 demonstrate.
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Figure 8.12: Nondeterminism / value diagram (decision-theoretic and simulated annealing)

task setT std∗T0
U0.1
T0

U0.3
T0

U0.6
T0

U0.9
T0

T1 0 0.30054 0.81970 1.11281 1.34732

T2 0 0.44781 1.21274 1.62199 2.01347

T3 0 0.67996 1.74952 2.32516 2.88144

T4 0 1.10524 2.62990 3.55418 4.42521

T5 0 1.79931 4.65933 6.47665 7.66358

Table 8.3: Characteristics of task sets with deterministicrelease times

The tasks have mostly large slack times (the time differencebetween service requirements

and deadline for a given utility threshold), such that comparatively large settings for the window

size yield the best results. Note that the performance profile for the smallest window size is quite

low, but it does not seem to be influenced very much by increasing loads. As it can make deci-
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Figure 8.13: Utilisation - value diagram (simulated annealing, deterministic release times)

sions very quickly, it is obviously least affected by the rising problem size and hence increasing

computational effort which makes finding optimal schedulesin overload situations difficult.

8.4.1.2 Decision-Theoretic Algorithm

The decision-theoretic scheduler also degrades gracefully in overload, albeit at a lower level than

the simulated annealing scheduler. In the example application with the performance profiles of

figure 8.14, the highest values are achieved with a discounting factor between 0.85 and 0.9.

8.4.2 Nondeterministic Release Times

A second series of benchmark tests is performed on modified task sets with non-zero standard

deviations of the task release times. As changing the release jitter of periodic tasks does not influ-

ence the mean interarrival time and hence the utilisation, it is possible to compare performance

profiles gained this way directly to the ones for task sets with deterministic release times. The
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Figure 8.14: Utilisation - value diagram (decision-theoretic, deterministic release times)

utilisation specifications for the modified task sets equalsthe one of table 8.3, but the aggregate

standard deviation of release times,std∗T0
, ranges from 6.30 to 7.87 for the task sets.

8.4.2.1 Simulated Annealing Algorithm

Nondeterministic release times do not seem to have an additionally deteriorating effect on in-

creasing load; even though the performance profiles of figure8.15 for the task sets with non-zero

standard deviations for the release times are lower than theones gained for deterministic release

times, the performance of the algorithm still degrades gracefully in overload.

8.4.2.2 Decision-Theoretic Algorithm

The decision-theoretic approach outperforms the simulated annealing scheduler for sets of tasks

with badly predictable release times also in case of high load, as the performance profiles of 8.16

demonstrate.
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Figure 8.15: Utilisation - value diagram (simulated annealing, nondeterministic release times)

8.5 Performance Tests for Feedback Mechanism

Up to now, performance tests were made under the simplifyingassumption that scheduling costs

are small enough to be neglected. However, for complex algorithms used within dynamic sched-

ulers executed on the same processor(s) as the application tasks, this assumption is not realistic.

A first step to take into account the cost of scheduling is a fixed reservation of processing time

for the scheduler within any window. However, this method isnot very flexible, as the appropri-

ate percentage of processor reservation for the schedulingalgorithm cannot easily be determined

before runtime, and the requirements may even change over time.

The approach taken in chapter 5 of this thesis was to make flexible reservations of processing

time for the scheduler and use a PID controller to adapt this scheduling allowance to the current

parameters of the application. Two series of tests will be described in this section. One demon-

strates the stability of the controller, and the other showsthat the flexible allocation of processing

time to a scheduler outperforms a fixed reservation for the scheduler.
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Figure 8.16: Utilisation - value diagram (decision-theoretic, nondeterministic release times)

We test a series of task sets with different characteristicsin their utilisation levels, short and

long task lifetimes according to their threshold deadlines, standard deviations of release times,

etc.:

task set #tasks std∗T0
U0.3
T0

U0.6
T0

U0.9
T0

T1 10 0 0.81970 1.11281 1.34732

T2 10 1.65 1.21274 1.62199 2.01347

T3 10 2.23 1.74952 2.32516 2.88144

T4 10 3.98 2.62990 3.55418 4.42521

T5 10 5.48 4.65933 6.47665 7.66358

Although the influence of these and other parameters not mentioned in this chapter (e.g., ho-

mogeneity of period lengths) is complex, we can see that the scheduling allowance stabilises after

a small number of scheduling phases for all these applications. We use the simulated annealing
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scheduler with a search ratio of 0.1 and a window size of 20, start with a scheduling allowance

of 0.2 and set the controller parameters as follows:

Cp Ci Cd spi spd

0.3 0.6 0.1 5 5

Unfortunately, we are not able to give an analytical backingfor the setting of the controller

parameters. The setting we use was gained by experiment prior to the actual benchmark tests for

the scheduling algorithms. The choice of parameters has to take into account properties of an

application influencing the ability of the meta scheduling controller to stabilise, especially the

frequency and regularity of task releases and the level of nondeterminism. Optimal controller

parameters are therefore specific to an application. There is evidence that a PI controller rather

than a PID controller could also be appropriate for the meta scheduling in our problem setting.

8.5.1 Stability

Starting from a scheduling allowance of 0.2, the simulations for different task sets show different

tendencies to assume a certain value during the course of several scheduling phases (figure 8.17).

Figure 8.17: Flexible scheduling allowance with PID controller



192 CHAPTER 8. EXPERIMENTAL RESULTS

The changes during the initial phases are in general bigger than in later ones. The ability of

the system to stabilise to some extent depends on factors like the predictability of the release

times, the load on the processor, and the size of the scheduling window.

8.5.2 Flexible vs Fixed Scheduling Allowance

The value of the schedules gained for a fixed percentage of theprocessing time reserved for the

scheduler can be compared to the one achieved with the PID controller meta scheduling scheme.

Figure 8.18: Comparison between fixed and flexible scheduling allowance

Figure 8.18 shows that in most cases, a fixed reservation cannot compete with the flexible

scheme, because the time allocation to the scheduler is either too small to compute sufficiently

good schedules or it reduces the cpu time available to application tasks too much. In some cases,

the performance of a fixed reservation scheme is better than the one of the flexible scheme.

However, the latter one is still preferable for several reasons. First, the ideal reservation is difficult
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to decide on before runtime. Second, the initial number of scheduling phases to find an optimal

setting of the allowance is not significant in the long run. Third, the optimal allowance may

change over time, so that no fixed reservation scheme can be appropriate.
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Chapter 9

Scientific Context

I love deadlines. I love the whooshing

sound they make as they fly by.

Douglas Adams

Work expands to fill the time available for

its completion.

C. Northcote Parkinson

This chapter intends to give an overview of related work in the areas of both artificial intelli-

gence and real-time scheduling research relevant for this thesis.

9.1 Flexible and Value-Based Scheduling

To distinguish flexible scheduling schemes from others withobjectives defined implicitly via

parameters like deadlines, period lengths, user-defined priorities, etc., the termvalue-based

schedulinghas been coined, being used for a wide variety of schemes withsomeexplicit notion

of valuefor tasks. As this explicit value is directly related to flexibility in scheduling schemes,

we will use the termsvalue-based schedulingandflexible schedulinginterchangeably.

9.1.1 Assignment of Value to Tasks

Before investigating the use of value in scheduling algorithms, a problem frequently neglected

has to be mentioned, i.e., the finding of a suitable value assignment to the tasks of a given real-

world problem.

195
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The basic idea of value-based scheduling is to rate the tasksto schedule by a scalar real value

or a real-valued function which simplifies comparisons between them. Ideally, a first step should

be a formal proof that a value-based formulation for a given application exists. After that, typical

relations between the tasks which can be derived from the application semantics are:

• preference: an asymmetric relation saying one object is more valuable than another one

• indifference: a reflexive and symmetric relation indicating two objects are comparable, but

cannot be distinguished from each other (at least not with the data currently available)

• incomparability: an irreflexive and symmetric relation expressing that neither of the objects

is more valuable than the other one

From these starting points, a complete ordering can gradually be inferred. Note that in gen-

eral, above relations cannot be derived from the application completely and free of conflicts.

Therefore, the next step is to eradicate inconsistencies inthe preference relations between tasks.

Consider the following importance relation on three tasks:

T1 T2 T3

T1 = ≤ ≥

T2 ≥ = ≤

T3 ≤ ≥ =

Obviously, this relation cannot be expressed by any scalar real-valued attribute assigned to

the tasks, because the relation is not transitive.

Burns et al. [BPB+00] state that value functions should be cardinal, i.e., defined on all tasks

and additive, so that a cumulative value can be calculated for the task set. Our definition of value

functions for AND type nodes is derived from these ideas.

A further contribution of this work is the notion of alternatives for tasks, where the cumulative

value of the task is defined as the maximum value of any alternative (figure 9.1). We used these

ideas for the value functions of OR nodes in our model.

Burns et al. distinguish between several sources of the value attribute of a service, namely

• the quality of the output produced

• the time at which the task completes

• the history of previous invocations

• the condition of the environment
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Figure 9.1: Cumulative value for set of alternatives

• the state of the computer system

• the importance of the task

• the completion probability of the task

The two sources of flexibility addressed in this thesis referto the first two items in this

list, so that we can rate relevant related work in several subcategories for each of the following

directions:

Quality-flexible schemesowe their level of flexibility to the possible variations of quality, such

that tasks may trade off quality for computation time and thus be able to meet their dead-

lines.

Timeliness-flexible schemesowe their level of flexibility to the fact that they do not havehard

deadlines. Whereas the execution times of tasks in such schemes are fixed or unknown, the

value of a computation may decrease gradually with later termination.
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9.1.2 Quality Flexibility

In terms of quality, we distinguish between four levels of flexibility; these are as follows:

run-to-completion: Scheduling schemes relying on the traditional run-to-completion paradigm

are not quality-flexible. The scheduler cannot influence theexecution time or the quality

of tasks, and scheduling decisions do not include these issues.

method selection: Method selection schemes are the simplest way of going beyond the run-to-

completion assumption and trading off computation qualityfor execution time; they work

on a set of run-to-completion tasks, of which one is to be selected by the scheduler. In

order to facilitate finding valid schedules, one of these alternatives for every task should

be a quick fall-back method performing the absolute minimumof computation for the

task. Method selection schemes use the scheduler model of figure 1.2 with the execution

parameters being the information which alternative of eachtask to choose.

contract schemes:Contract schemes require accurate prior knowledge of the relationship be-

tween certain parameters of the algorithms which implementindividual tasks of an ap-

plication, their service time requirements and the qualityto be expected. The idea is to

fine-tune the service requirements of a task by appropriately setting algorithm-specific

parameters, e.g., repetition numbers for loops or the resolution for image processing algo-

rithms. The simplest contract scheme allows a direct setting of the service times of tasks.

Contract schemes rely on single implementations for each task, computations are not nor-

mally considered interruptible, and no intermediate results are gained when aborting them

prematurely. They use the scheduler model of figure 1.2 with the execution parameters

being the service times for each task and possibly algorithmspecific parameters. Note that

parameters cannot be changed once computation has commenced.

iterative refinement: In iterative refinement algorithms, the assumption is that aprimary solu-

tion is available very quickly (conceptually at the very beginning), and a higher number of

iterations improves on this initial solution. For example,so-called milestone methods pro-

duce intermediate results at pre-defined instants of time (milestones), and sieve functions

generate new (presumably better) solutions by performing aseries of operations (sieves)

on them. Iterative refinement schemes use the scheduler model of figure 1.3.

9.1.3 Timeliness Flexibility

Just like for the category of quality flexibility, we distinguish between several levels of flexibility

for the timeliness of tasks. These are:
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no timing constraints: Scheduling schemes without explicit timing constraints include those

outside the scope of real-time research as well as scheduling schemes guaranteeing real-

time operations implicitly under certain conditions. Analytic results justify the usage of

parameters other than timing constraints (user-defined priorities, period lengths, etc.) to

model real-time applications.

scalar deadlines: Traditional deadline schemes are the simplest way to address timing con-

straints in applications directly. Several categories of deadlines have been described; scalar

deadlines may be attributed properties likehard (missing the deadline for one task means

failure of the entire application) orfirm (missing the deadline for one task means it does

not contribute to the performance of the application any more). We rate soft deadlines with

a gradual decay of an explicit value for the task once the deadline has passed as belonging

to one of the following two classes.

extensions to deadlines:Several models extending the simple notion of deadlines canbe found,

starting with certain kinds of soft deadline schemes. More general formulations of timing

constraints than with deadlines can be achieved, e.g., by requiring only a certain percentage

of deadlines to be held or by comparing time stamps of tasks with their estimated execution

time to minimise the average lateness of tasks in an application. Models of this category

allow for a limited level of flexibility in the timeliness of tasks.

utility functions: Real flexibility in the timing constraints of tasks can be achieved through

explicit functions of the time, which we introduced earlierin this work asutility functions.

As with deadlines, utility functions can be specified in absolute time or relative to the

release time of tasks.

9.1.4 Classification

Figure 9.1 gives an overview of the combinations of flexibility classifications we could deter-

mine within existing scheduling schemes. The problem classof this thesis is primarily the one

with highest flexibility in both directions (entry no. 16). Blank entries in the table indicate that

scheduling schemes for the corresponding combinations could not be found. In the following

sections, we will give examples for the entries in this table.
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Table 9.1: Classification table for scheduling schemes

9.2 Run-to-Completion Tasks without Utility Functions

This section deals with scheduling schemes in the first column of table 9.1, specifically with

entries 1, 5, and 9.

9.2.1 Models without Timing Constraints

This category comprises many kinds of simple scheduling algorithms like first-come-first-serve

(FCFS), scheduling with user-defined priorities, or rate-monotonic scheduling (RMS). All of

these algorithms make their decisions based on informationother than quality levels or timing

constraints. These parameters may be directly determined by the user or derived from proper-

ties of the task set (release order, period lengths). Depending on analytic results available for

individual algorithms, they are generally rated as belonging to the category of real-time or non-

real-time scheduling algorithms, respectively. In general, e.g., RMS is considered a real-time

algorithm[LL73] (and is, in fact, one of the most wide-spread real-time scheduling algorithms

due to its simplicity), whereas FCFS is not considered a real-time algorithm. These classifica-

tions are based upon data like the maximum latency of tasks, ameasure for the suitability of

scheduling algorithms for real-time computations. This class of algorithms can be found in entry

no. 1 of the classification table 9.1.
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9.2.2 Deadline Models

The most straight-forward way to introduce explicit timingconstraints into the development of

real-time scheduling algorithms is by means of deadlines, i.e., the latest time when the execution

of individual tasks must be finished. Starting from the pioneering work by Liu and Layland

[LL73], deadline scheduling schemes have been investigated thoroughly. Well-known examples

of this class of scheduling algorithms are earliest-deadline-first (EDF) and least-slack-time-first

(LST), with priorities determined exclusively or at least partially by deadlines. Deadline schemes

are frequently further divided according to the consequences of missed deadlines. For example,

missing hard deadlines usually means a complete failure of the entire application, whereas a

missed firm deadline merely means that the task does not contribute to the overall performance

of the application any more. In our classification table 9.1,this class of scheduling algorithms

can be found at position 5.

9.2.3 Extended Deadline Models

This section describes a collection of extensions to deadline scheduling schemes which we rate

into category 9 of table 9.1.

9.2.3.1 Discrete Utility Models

McElhone and Burns [MB00] oppose complex concepts of time-dependent utility; they argue

that these are unsuitable for real-time systems, especially if scheduling is to take place dynam-

ically and concurrently on the same processor as the application tasks. Instead, they attempt to

develop a simplified computational model which is rich enough to allow complex requirements

to be mapped onto it on the one hand, but itself requires minimal run-time support on the other

hand. Tasks belong to one of five types with different scalar utilities (values), abortability clas-

sifications (e.g., not abortable for mandatory tasks, abortable before start for medium tasks and

abort at any time for low utility tasks), execution time specifications (bounded or unbounded),

schedulability guarantees (online or offline), and deadline types (hard, firm, soft).

9.2.3.2 End-to-End Deadlines

End-to-end deadlines pose timing constraints at higher-level objects (work items) than on low-

level tasks. The approach traditionally taken is to break down an application into atomic tasks

and derive timing requirements for these tasks (artifact deadlines) from the actual timing re-

quirements of the application (specificationor end-to-end deadlines) at design time. Scheduling
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and schedulability analysis then takes place on the basis ofsuch a set of tasks with associated

deadlines. However, it has been noted that a certain degree of flexibility might be lost due to

assignment of possibly inappropriate or too conservative deadlines.

Goforth et al. [GHWB95] advocate the opinion that schedulability analysis should be part of

the design process and not be done on a set of atomic tasks. Theapplication itself is responsible

for prioritising these work items, not a general-purpose scheduler without any knowledge of the

semantics of a specific application. This way, the application has control over which parts of an

application may be discarded in case of overload.

The advantage of not giving up the information provided by the original requirements spec-

ification at an early stage could be shown to be especially beneficial in the area of real-time

networking, as [RKJZ99] demonstrates with an ATM network traffic scheduling scheme; in fact,

the term end-to-end constraints has its roots in the research on real-time networks. An interesting

multimedia application platform making explicit use of end-to-end constraints was developed in

[NPB02].

9.2.3.3 Window Constraints

Another means of flexibility in the timeliness of real-time applications is relaxing the requirement

of every single task instance to finish before its deadline. Instead, it is sometimes sufficient to

demand that at leastm out of any window ofk consecutive instances of a task can meet their

deadlines.Window constraints, weakly hard constraintsand(m, k)-firm deadlinesare different

names for the same concept.

As an example, consider one of the algorithms presented by Ramanathan et al. in [Ram97,

Ram99, HR95]; it uses the following function to guarantee thatm out of k instances of a task

with (m, k)-constraint are classified as mandatory, i.e., they must meet their deadlines:

task instancei is

{
mandatory ifi =

⌊
k
m
·
⌈

(i−1)·m
k

⌉⌋
+ 1

optional otherwise

The weakly-hard real-time model by Bernat et al. [Ber98, BBL01, BB97] introduces toler-

ance functions defining maximum times for task instances to run beyond their deadlines.

Balbastre et al. [BRC02] present a model for(m, k)-firm deadlines such that the constraint

is fulfilled if the computation time reaches a minimum level for all tasks and can be allowed a

certain extra amount form out ofk consecutive task instances. The most interesting result ofthis

work is an upper bound for the extended computation time which can be awarded to the tasks

without jeopardising the schedulability of a task set.
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Mittal et al. [MMM00] attempt to schedule hybrid task sets consisting of hard real-time and

quality-of-service degradable (primarily (m,k)-firm) tasks composed of mandatory and optional

parts on multi-processor systems using a set of simple admission control and quality adaptation

heuristics.

9.2.3.4 Clock-Based Scheduling

The approach taken by clock-based scheduling algorithms isto make decisions according to

task-local times advancing only when the task executes on a processor. The primary aim of

clock-based scheduling was traffic control in networks [Zha91]. However, it has also successfully

been applied to processor scheduling. The major advantage of clock-based algorithms is that they

allow for a very natural modelling of mixed sets of real-timeand non-real-time (best-effort) tasks.

Whereas for real-time tasks the run-to-completion assumption applies and timing constraints may

be flexible to varying degrees, the computation time of best-effort tasks is flexible. Hence, this

group of scheduling algorithms can be classified in entries 4and 9/13 of table 9.1. However,

the problems are distinct from quality / utility scheduling, as the two aspects of flexibility never

apply to the same task in clock-based scheduling algorithms.

The BERT (for Best-Effort and Real-Time) scheduler by Bavier et al. [BPM99, BP00] is

derived from the simple idea of proportional share scheduling, which allocates some percentage

of computational resources to individual tasks. BERT uses virtual clocks and a simple grid of four

different classes of tasks (unimportant real-time, unimportant best-effort, important real-timeand

important best-effort) to express criticality and importance of tasks. Under certain conditions,

real-time tasks may steal CPU time from others to meet their timing constraints.

The BVT (Borrowed-Virtual-Time) model by Duda and Cheriton([DC99]) is more complex

than the BERT scheduler, as it works with a potentially infinite number of dynamically assigned

priorities instead of a small number of task classes. This means a more fine-granular modelling

of a problem, but also incurs higher computational overhead.

9.2.4 Evaluation and Correlation to this Thesis

Survey publications like [Liu00] and [Che02] cover many of the research directions in both

dynamic and static priority scheduling schemes like EDF, RMS, or the models we collectively

referred to as extended deadline models.

Scheduling schemes for tasks without timing constraints are not within the focus of this

work. Deadlines can be modelled easily in our scheme, but thesimple scheduling heuristics

mentioned above did not influence the more complex algorithms in this thesis. Even though
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interesting theoretic results have evolved from this classof algorithms and their simplicity of

implementation makes them easy to apply to many real-world problems, these schemes are not

ideally suited in contexts where assumptions like independence of tasks and a-priori knowledge

of the execution times do not hold. Furthermore, myopic simple scheduling heuristics like EDF

tend to show drastically bad performance in case of transient or permanent overloads; in many

contexts, violation of timing constraints can be toleratedto some degree, as long as the system

performance degrades gracefully at high load.

End-to-end deadlines gave the incentive for the hierarchical task model of this thesis, where

timing constraints can be imposed at any level. Just as in thework on end-to-end constraints cited

in this section, we try to lose as little of the flexibility of the original problem as possible during

the design process by specifying timing constraints on as high a level as possible. Window con-

straints cannot be expressed in the quality / utility scheduling model; we nevertheless included

them as an important kind of flexible timing constraints outside the limits of our work. We use

the idea of local time from clock-based scheduling schemes for the notation of quality functions

and the value functions derived from them; we do not, however, adapt the simple heuristics for

scheduling algorithms from these clock-based schemes.

9.3 Models with Limited Quality Flexibility

This section deals with scheduling schemes in the second andthird column of table 9.1, specifi-

cally with entries 2, 6, 7, and 10.

9.3.1 Method Selection Schemes

In method selection schemes, the scheduler decides on an alternative for each task; execution

times and quality of the alternatives must be known or at least assessable with sufficiently high

accuracy.

9.3.1.1 Task Pair Scheduling

Streich et al. [Str94, GKS95] describe a model they call taskpair scheduling. The motivation be-

hind task pair scheduling is that tasks with complete a-priori knowledge on worst-case execution

times and rather exact knowledge on the release times are notrealistic for many applications.

Streich at al. use an upper bound on execution time for a certain high percentage of invo-

cations, e.g., 90%. This parameter is called optimistic-case execution time (OCET). In task pair

scheduling, each real-time task is represented by a soft anda hard task. If the scheduler is able to
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reserve enough resources to execute the soft task, the soft task is chosen for execution. Otherwise

the hard task is selected. The system has to ensure that at least all hard tasks can be executed in

a timely manner. The scheduler needs to know the worst-case execution times of all hard tasks

and the optimistic-case execution time of all soft tasks. Deadlines are specified for task pairs and

apply to the soft task and hard task components alike.

Several properties distinguish task pair scheduling from imprecise computation scheduling

with mandatory and optional components (see below):

• The successful termination of the hard task is not a precondition for the execution of the

soft task.

• Hard and soft tasks are not computationally correlated, i.e., executing the soft task for some

time does not reduce the execution time of the correspondinghard task.

• Task pair scheduling is optimistic inasmuch as it executes the soft task if the probability

that it can finish before its deadline is sufficiently high.

The scheduler which is suggested for task pairs runs soft tasks in round-robin fashion; obvi-

ously these tasks have to be preemptive. Hard tasks, on the other hand, are non-preemptive, must

be guaranteed offline and are run as late as possible according to their deadline and worst-case

execution time, but with higher priority than any soft task.Task pair scheduling works on tasks

with and without deadlines and belongs to both entries 2 and 6of table 9.1.

9.3.1.2 Design-to-Time Model

The design-to-time model was presumably introduced by D’Ambrosio [D’A89], and the term

seems to have been coined by Bonissone and Halverson [BH90].Our description of design-

to-time scheduling was largely taken from the extensive work by Garvey and Lesser [GL93,

Gar96, GL96b, GL96a]. Design-to-time scheduling assumes that in general multiple methods

with different execution times and quality values are available to implement individual tasks of

an application, so that the tradeoff between solution quality and the timeliness of computations

can be exploited. Hence, it clearly falls into the method selection category of models.

Although there is a finite number of alternatives (called methods) available for each task,

these alternatives do not necessarily represent only distinct points in the service time / quality

plane; in other words, alternatives may be described by stochastic distributions with regard to

both quality and service time requirements. Design-to-time scheduling can handle both soft and

hard deadlines. The additional overhead incurred through method selection pays off primarily in
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overloaded systems, i.e., in cases when it is not possible toexecute the optimal solution for all

tasks.

Even though different algorithms for the same problem are not always available, alternative

implementations can frequently be derived from the original one by using one or a combination

of the following operations:

• approximation of input or intermediate data

• use of approximative instead of optimal (sub)algorithms

• skipping optional steps

Garvey and Lesser devised a controller architecture for dynamically allocating resources to

tasks at a high level and a micro-scheduling unit to execute the tasks at low level. A feedback

mechanism from the execution subsystem to the high-level controller may trigger rescheduling

if necessary because of inaccurate predictions or unexpected events. The scheduling algorithm

is executed every time the low-level subsystem triggers it;the algorithm is repair-based. i.e., it

starts with the best-quality alternative of every task and decreases service levels until the schedule

becomes feasible.

In recent years, design-to-time scheduling has evolved into a new model called design-

to-criteria scheduling [WL00], taking into account not only time, but also more general data.

Design-to-time and design-to-criteria schedulers can be classified to numbers 6 and 10 of table

9.1.

9.3.2 Contract Schemes

In contract schemes, the scheduler must decide on appropriate parameters for each task; an ac-

curate knowledge of the influence of the parameters on execution time is essential. The simplest

contract scheme is to set the execution times for all tasks directly.

9.3.2.1 RTA∗ Search

Korf adapted the A∗ search algorithm for real-time operation; he called the real-time heuristic

search algorithm RTA∗ [Kor85, Kor87, Kor88, Kor90]. Whereas the average-case andworst-case

time needed for the original A∗ search algorithm may differ significantly, the execution time of

the modified algorithm can be controlled much better. The basic idea is to limit the search to

a finite horizon and apply a pruning mechanism on the search tree, so that the algorithm can

commit to action in constant time. This algorithm can be executed for any given search horizon
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(and hence, in any given computation time), but useful intermediate results are not generated.

Although RTA∗ is a rather specific kind of algorithm, it can be seen as a forerunner of more

general contract schemes.

9.3.2.2 Contract Anytime Algorithms

Russel and Zilberstein [RZ91, Zil93] suggested the conceptof contract anytime algorithms. Con-

tract anytime algorithms can be allocated an arbitrary computation time and are guaranteed to

produce a reasonable result for any such allocation. However, they must know in advance (i.e.,

before they are scheduled for execution) how much of the computational resources are available

to them. If they are terminated prior to the execution time for which they were initially intended,

they need not achieve any positive quality. To distinguish them from the anytime algorithms de-

scribed by Boddy and Dean (see below), Russel and Zilberstein call the latter onesinterruptible

anytime algorithms.

Every interruptible anytime algorithm can be trivially interpreted as a contract algorithm by

simply discarding the result of the computation if it is interrupted prematurely. On the other

hand, Zilberstein [Zil93] showed that a contract anytime algorithm can be transformed into an

interruptible anytime algorithm such that it achieves at least the same quality for any allocation of

computation time as the original algorithm if awarded four times the original allocation. Figure

9.2 shows this relationship.

Figure 9.2: Performance profiles for interruptible and contract anytime algorithms

In their work, Russel and Zilberstein suggest to create a newcontract anytime algorithm from

a set of (contract and interruptible) anytime algorithms together with a deadline. They develop a

methodology calledlocal compilationthe purpose of which is to decide how much time within

an interval each of the original anytime algorithms is awarded. Local compilation can only be

performed on sets of independent tasks or of tasks with a linear or tree-structured precedence
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graph. For more general directed acyclic precedence graphs, Russel and Zilberstein have to resort

to heuristics.

We can find contract schemes only in entry 7 of table 9.1, because they intrinsically always

need deadlines associated with tasks.

9.3.3 Evaluation and Correlation to this Thesis

Method selection has been incorporated into quality / utility scheduling via theand/or hierarchy

of tasks. As method selection in our model is part of the overall resource allocation algorithm,

we cannot make use of the heuristics of the schemes mentionedin this section. We do, however,

adapt from the design-to-time model the various sources of flexibility in the time / quality trade-

off (approximation, skipping of optional steps, etc.) and map these into our quality functions

during the design process. With the theorem on contract and interruptible anytime algorithms,

we can incorporate contract anytime tasks into the quality /utility scheduling model, which uses

interruptible anytime tasks.

9.4 Timeliness-Flexible Schemes

Instead of using hard deadlines, more flexibility can be achieved by employing functions of the

time (not the execution time of tasks) to express a more fine-granular notion of urgency. All of

the approaches in this section are based on the run-to-completion assumption, and their source

of flexibility lies in the continuous utility function rating timeliness of tasks.

9.4.1 Repair-Based Best-Effort Scheduling

Locke and Jensen [JLT85, Loc86] developed a first model employing time-dependent utility

functions (which they callvalue functions). In this model, tasks are assumed to have arbitrary

release times, so that the additional information on the easier dynamics of periodic tasks is not

exploited. Tasks can be started, preempted and resumed at any time after their release time. A

dynamic scheduler is responsible for making decisions on which tasks to execute whenever a new

task is released or when a task terminates. Precedence constraints are not treated explicitly in this

model; it is assumed that tasks are only released to the system and hence to the scheduler when

all of their precedence constraints are satisfied. Apart from the release time, further attributes of

a task are its expected execution time, its deadline and a value function. All tasks are supposed

to be resident in memory, which is a common assumption in real-time computing, and the target

architecture is a shared-memory multi-processor system. The value function is usually defined
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such that it has some discontinuity at the deadline or is at least not differentiable in this point, as

can be seen in the example value function of figure 9.3, which has a linear decrease prior to the

deadline and an exponential decrease after the deadline.

Figure 9.3: Best-effort value function

Specific value functions used in the simulation work of Lockeare of the form

V (t) =

{
K1 +K2 · t−K3 · t

2 +K4 · e
K5·t if t ≤ deadline

K ′
1 +K ′

2 · t−K ′
3 · t

2 +K ′
4 · e

K ′
5·t if t > deadline

The objective function to drive the scheduler is simply the sum of the values of all finished

tasks (or, rather, the tasks assumed to finish before some point in the future). As optimal solutions

to this scheduling problem are usually intractable, heuristic methods are employed, based on two

perceptions:

• On a single processor, a set of tasks with precisely known release times, execution times

and deadlines, earliest-deadline-first scheduling (i.e.,scheduling according to increasing

deadlines) is known to be optimal, as long as the utilisationnever exceeds 1.

• On a single processor, a set of tasks with precisely known release times and execution

times and scalar utility values awarded to them when they finish, value-density scheduling

(i.e., scheduling according to decreasing values ofutility
execution time

) is optimal.

The repair-based scheduling algorithm proposed (Clark calls it LBESA for Locke’s Best-

Effort Scheduling Algorithm) can be outlined as follows: First, tasks are ordered by increasing

deadlines. If all value functions have constant values prior to their deadlines and the processor is

not overloaded, the schedule is known to be optimal. For all other value functions, it is assumed

that the decrease in value prior to the deadline of a task is relatively small, so that for non-

overloaded systems it can still be expected that the schedules gained are close to optimal.
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Overloads cannot be determined with certainty, as the execution times cannot be taken for

granted. If the probability of an overload exceeds a given threshold, the overload is counteracted

by removing tasks according to a predefined heuristic. Some of the heuristics suggested are

• static value density (Locke): remove task with minimal value(t)
computation time

• dynamic value density (Aldarmi and Burns [AB99]): remove task with minimal
value(t)

remaining computation time

• strongly dynamic value density (Aldarmi and Burns): removetask with minimal
value(t)

(remaining computation time)2

• strongly dynamic timeliness density (Aldarmi and Burns): remove task with minimal
value(t−computation time)

(remaining computation time)2

• BE-h (Mossé et al. [MPR99]): two-stage static value density; classify tasks into long-

runners and short-runners, remove long-runner with minimal value density if there is any,

remove short-runner with minimal value density if there is no long-runner

• BE-v (Mossé et al.): find the tasks with lowest value density(lvd) and lowest value (lv),

remove lvd if value density(lv)
value density(lvd)

≥ expected utility(lv)
expected utility(lvd)

and lv otherwise

• simplified-rolling-horizon-Nwt-rule (Morton and Pentico [MP93]): define the partial

makespan as the sum of all execution and idle times up to the first tardy task (with the

expected completion time being after its deadline); removethe task with the smallest ratio
current value

(partial makespan for task set including the task)−(partial makespan for task set without the task)

The heuristics of Mossé et al. aim at reducing the problem that tasks with short execution

times are not treated favourably by the static value densitymechanism in the original work by

Locke, because the processor reservation for them is easilyswallowed up by minor fluctuations

in the processor load. Aldarmi and Burns want to avoid the effect that tasks are aborted shortly

before their completion, which can easily happen with Locke’s algorithm. The objective of the

heuristic by Morton and Pentico is to remove a task with little contribution to overall performance

and high potential of reducing lateness of other tasks.

Tokuda, Wendorf et al. [TWW87, Wen88] investigated the problem of deliberation costs for

best-effort scheduling performed concurrently on the sameprocessor as the application tasks and

demonstrated the performance limitations of this scheduling algorithm.

Clearly, best-effort scheduling belongs to entries 13 and 14 of table 9.1, as it incorporates

both finding appropriate time intervals to execute the tasksand method selection by discarding

component tasks of an application.
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9.4.2 Constructive Scheduling with Time-Value Functions

Chen and Muhlethaler investigate the problem of schedulinga set of non-preemptive tasks with

an associatedtime value function(i.e., a function of time like the value function in the best-

effort model) on a single processor [CM96, MC92]. They assume tasks to be in one of several

phases depending on the time (unavailable, available, optimal, availableanddead) and suggest

to model these phases within one function of the time, as demonstrated in figure 9.4.

Figure 9.4: Time value function

Figures 9.5a), 9.5b), and 9.5c) show examples of time-valuefunctions describing hard, firm,

or soft deadlines, respectively. Note that the arrow in figure 9.5a) indicates that the value as-

sociated with a task having passed its hard deadline is−∞. Figure 9.5d) shows the time-value

function of a task with steeply ascending or descending edges at the borders of the positive-

valued interval. Examples can be found in multimedia applications, where an early display of a

video frame is considered as bad as a late display.
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Figure 9.5: Typical time-value functions describing deadlines

Unlike Locke with his repair-based model, Chen and Muhlethaler propose a construc-

tive scheduler. LetT be a set ofn tasks released at time 0 with execution timesp1, . . . , pn
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and time value functionsf1, . . . , fn. Provided that the processor is never idle before all tasks

have finished, a schedule for the set of non-preemptive tasksconsists of a sequence of tasks

σ = (σ(1), . . . , σ(n)). For a given sequenceσ, the finishing time of taskσ(k) is tk :=
∑k

i=1 pσ(i),

and the objective of the scheduler can then be expressed as finding a sequence such that the sum

of the values gained is maximal among all possible sequences:

max
σ

n∑

k=1

fσ(k)(tk)

The approach taken to solve this ordering problem is to partition the task set such that opti-

misation can be performed locally on the task subsets. For this purpose, a time-dependent prece-

dence relation is introduced between tasks. A taski is said toprecedetask j at time t if the

objective function evaluates to a higher value for

σ = (σ(1), . . . , σ(k), i, j, σ(k + 3), . . . , σ(n))

than for

σ = (σ(1), . . . , σ(k), j, i, σ(k + 3), . . . , σ(n)).

Taski is said tostrongly precedetaskj at timet if i precedesj at timet′ for all t′ ≥ t.

Chen and Muhlethaler were able to prove that all optimal sequences for the task set are

concatenations of optimal sequences for the task subsets gained by partitioning the set according

to the strong precedence relation. If there is an irreducible optimal decomposition, then it is

unique. The problem of finding optimal sequences has now beentransformed into the problem

of finding the optimal irreducible decomposition and subsequently optimal sequences for the

subsets of the task set. Both heuristics and optimal local optimisation algorithms for several

objective functions are presented in the work of Chen and Muhlethaler. Discarding tasks is not

possible in this model, so that the sorting algorithm suggested belongs to entry 13 of table 9.1.

9.4.3 Evaluation and Correlation to this Thesis

Utility functions like the ones described in this section are used in all quality / utility scheduling

problems. Both best-effort scheduling and the constructive mechanism provide ample examples.

However, the non-preemptive model by Chen / Muhlethaler is not very closely related to quality /

utility scheduling. On the other hand, the computational model introduced by Locke is very sim-

ilar to ours. We also use some of the heuristics for default actions in the MDP-based scheduler,

when calculating more accurate strategies (i.e., defined onmore tasks) cannot be afforded.
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9.5 Quality-Flexible Schemes

In iterative refinement scheduling schemes, the scheduler has to decide on the amount of service

time allocated to each task on the basis of continuous monotonically increasing performance

profiles or quality functions.

9.5.1 Anytime Algorithms

The origin ofinterruptible anytime algorithms(anytime algorithmsfor short) can be seen in the

context of application-specific subsystems to introduce real-time requirements into planning sys-

tems. Dean and Boddy [DB88, BD89] presented the notion of anytime algorithms, where for an

arbitrary execution time, a reasonable result can be received from the algorithm. Rising computa-

tion time results in a higher or equal quality of the computation, such that a performance profile

can be derived which is monotonically increasing (and convergent) with the service time of a

task. Underlying iterative refinement algorithms (e.g., heuristic search or dynamic programming

algorithms) have, however, been studied prior to the introduction of the general concept of any-

time algorithms. Due to the original area of application, Dean and Boddy refer to their own ideas

as time-dependent planning problems. The termanytime algorithmsarose from later works on

deliberation scheduling, the explicit reasoning on the cost of calculating plans ([Bod91, BD94]).

Zilberstein [Zil93] distinguishes between various quality metrics for anytime algorithms, of

which these are regarded as most useful:

certainty: The metric of certainty can be used for classification problems. Imagine objects must

be classified as belonging to one of several categories; a certainty metric indicates the

probability that the result of classification is correct. Asmore and more evidence can be

collected over time backing an assumption of class membership, the level of certainty is a

function of computation time.

accuracy: The accuracy of results means the distance of results from anexact answer. Accu-

racy metrics define a error term decreasing with computationtime, applicable, e.g., to the

position detection of autonomous robots with the error being the distance of the estimated

position to the actual current position.

specificity: For certain algorithms, although a computation always yields correct results, an in-

crease in computation time may still mean an increase in quality, namely by increasing

detail, for example through a higher image resolution in image-processing software. In

these cases, the specificity metric is frequently employed.
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a) run-to-completion b) linearly increasing with maximum

c) continuously differentiable d) value-discrete

Figure 9.6: Typical performance profiles describing anytime behaviour

Figure 9.6a) shows the performance profile for a task with fixed execution time, figure 9.6b) a

linearly increasing performance profile with maximum value, figure 9.6c) a continuously differ-

entiable performance profile, and figure 9.6d) a value-discrete (piecewise constant) performance

profile. Figure 9.7 compares a set of design-to-time quality-time tradeoffs to the performance

profile of an anytime algorithm.

Figure 9.7: Design-to-time vs anytime algorithms
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Zilberstein introduces three types of performance profilesinstead of the single one in the orig-

inal concept; this facilitates coping with the uncertaintyof information available to the scheduler.

These types of performance profiles are:

expected performance profile: The expected performance profile maps the computation time

awarded to an anytime algorithm to the expected quality of the results. This is the kind of

performance profile introduced by Boddy and Dean [BD89, DB88] and Horvitz [Hor87,

Hor88] (see below), and it is especially useful if the variance of the expected quality is

small or even zero, as in this case it offers very accurate (oreven complete) information on

the performance.

performance distribution profile: The performance distribution profile of an algorithm is a

function that maps computation time to a probability of the quality of the results. Hence, it

offers a more general description of the performance. Performance distribution profiles are,

however, more difficult to be gained and to be evaluated. Their application is recommended

for larger values of variance in the expected quality.

performance interval profile: The performance interval profile maps the computation time of

an algorithm to the upper and lower bounds of the quality of the results. This can be seen as

a compromise between the expected performance profile and the performance distribution

profile: Performance interval profiles offer a compact representation and in general a suf-

ficiently good estimate of performance distribution profiles (the performance distribution

profile is replaced by a linear approximation).

Anytime algorithms have been used in schedulers with or without deadlines and are therefore

rated into entries 4 and 8 of table 9.1.

9.5.2 Flexible Computations

Simultaneously, but independently from Dean and Boddy, Horvitz developed a model for ac-

tivities of an application calledflexible computationsin a series of publications [Hor87, Hor88,

EG91]. This model is very closely related to anytime algorithms. Focuses of this work are prac-

tical flexible implementations for existing real-world problems and complexity issues especially

for traditional and flexible sorting algorithms.

Horvitz calls performance profilesvalue functionsand defines their properties as:

value continuity: Value functions are surjective functions into the continuous interval [0;1].

value monotony: Value functions are monotonically increasing with servicetime.
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convergence: Value functions converge to an optimal value.

Flexible computations are classified into categories 4 and 5of table 9.1, just like anytime

algorithms.

9.5.3 Imprecise Computations

One decisive property of flexible scheduling schemes from real-time computing research is that

they employ a two-stage strategy: the primary goal is to guarantee all (hard) deadlines (usu-

ally offline); maximising some kind of overall value is only the secondary goal, and trading off

missed deadlines for higher value is never an option [BB01].Hence, a certain minimum ser-

vice level is usually required from all tasks in order to classify a schedule as feasible. In this

regard, flexible real-time scheduling schemes combine the solution strategies of satisficing and

optimising, whereas artificial intelligence scheduling schemes usually employ purely optimising

techniques and do not require a minimum service level, so that it is not possible to guarantee

hard constraints.

The basic model of imprecise computations is as follows: Tasks have a known worst-case

execution time, a deadline, and possibly a positive weight to express a relative importance of

the tasks. Tasks in the imprecise computation model are defined to be preemptive. They consist

of a mandatory and an optional part, and the optional part cannot start execution before the

mandatory part has finished. In imprecise computation scheduling, a task is calledcompleted

if its mandatory part has been assigned sufficient units of processing time. If a task was able

to complete its optional part, it is calledprecisely scheduled; otherwise it is calledimprecisely

scheduled. A schedule is calledpreciseif all the tasks are precisely scheduled, andcompleteif all

mandatory parts of tasks can be executed. A scheduling algorithm for imprecise computations

is calledoptimal if it always finds a precise schedule whenever it exists, and acomplete, but

imprecise schedule with maximum value whenever a complete,but no precise schedule exists.

The quality of optional computations is expressed by a monotonically decreasing error function

or a monotonically increasing reward function.

The error function for an individual task is a function of thedistance of the computation time

awarded to the optional part of a task and its (worst-case) execution time:

ǫi = Ei(oi − σi)

whereoi is the execution time of the optional part of thei-th task andσi the service time allocated

to this task. The simplest (and probably most widely used) definition for the error function is this

distance itself:

ǫi = oi − σi
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Liu et.al. [SLC89, SLC92, LLS+91] describe several definitions of error functions for task

sets, calling themperformance metrics, and investigate the existence of solutions for the corre-

sponding scheduling problem on a single processor.

• minimisation of weighted sum, maximum, or arithmetic mean of the task errors

• minimisation of number of discarded optional tasks

• minimisation of the number of tardy tasks (optional tasks exceeding some acceptable error)

• minimisation of the average response time

Burns, Bernat et al. [BB01, BB02, BBB02] propose a model for scheduling systems that

guarantee hard deadlines for mixed sets of periodic, aperiodic, and sporadic tasks and use spare

resources to maximise total system quality. One degree of freedom to address is the strategy

when to use slack times (intervals of time when processors are not reserved for the mandatory

part of any task) to schedule optional parts for execution. Probably the most common approach

is eager slack usage, i.e., to make slack available for running non-hard components as soon as it

is available. Eager slack usage means that mandatory parts of tasks are delayed as far as possible

in order to be able to execute optional parts as soon as possible. Eager slack usage is not optimal,

because the low-value optimal parts of the task may delay themandatory part of a second task

and ultimately prevent the high-value optional part of the second task from execution. However,

the opposite strategy, namelylazy slack usage, can have similar deteriorating effects on the per-

formance. In this case, mandatory parts are always executedas soon as possible, and all optional

parts are run as background tasks. This may lead to unnecessary idle times of the processor

and hence suboptimal schedules. Both suboptimal simple heuristics and standard optimisation

techniques are frequently used for scheduling flexible computations.

Periodic task sets are an important special case with strongconnections to practical real-time

applications and therefore deserve special consideration. Their analysis is based on utilisation

levels of error-noncumulative periodic tasks (errors of task instances being independent of each

other), which can be calculated from execution times and period lengths. Examples for error-

noncumulative applications are found in the area of multimedia where tasks receive, process

and transmit video, audio, or image data, and in informationretrieval applications. Liu et al.

[SLC89, SLC92, LLS+91] rate various heuristics for prioritising the optional parts of periodic

tasks on multi-processor architectures:

least utilisation: static priorities, suitable for linear error functions

least attained time: dynamic priorities, suitable for convex error functions
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first-come-first-serve: dynamic priorities, suitable for concave error functions

shortest period: static priorities, suitable for all error functions

earliest deadline: dynamic priorities, suitable for all error functions

Castorino and Ciccarella [CC00a, Cas96] concentrate on scheduling error-cumulative peri-

odic imprecise computations with hard deadlines for the mandatory and(1, k)-firm deadlines for

the optional part of the tasks.k is called the cumulative rate of a task. Error-cumulative models

are quite common, e.g., in route tracing or real-time control applications for complex industrial

plants. The usual approaches to scheduling error-cumulative tasks treat all instances as indepen-

dent tasks [Leu91, LLS+91] or apply hands-on heuristics [Che92, FL97]. Unfortunately, these

solutions are frequently expensive or perform poorly. Castorino and Ciccarella showed it is pos-

sible to transform sets of error-cumulative periodic flexible computations with harmonic period

lengths and equal cumulative rates to equivalent sets of error-noncumulative tasks in polynomial

time, so that the above heuristics become applicable.

Aydın et al. [AMMA99, AMM00, AMA01, AMMA] prove that in fact the performance of

lazy slack usage and eager slack usage can be arbitrarily small compared to the optimal sched-

uler1. Hence, the approach suggested is not to decouple the objectives of meeting deadlines for

mandatory parts and minimise the error in resource allocation to optional components, in contrary

to the models for imprecise computation scheduling described above. Giving up the two-stage

approach can significantly increase complexity, but, at thesame time, the quality of the resulting

schedules. However, in some special cases, practical solutions can be found for the more com-

plex scheme of following both objectives simultaneously. For the important class of independent

periodic tasks with non-increasing, differentiable and convex error functions to be scheduled on

a uniprocessor system, it can be shown that there are constant optimal service times for each task,

such that optimal schedules can always be constructed with every instance of a task allowed the

same optimal computation time. With these fixed execution times, the results of classical periodic

task scheduling can be applied on imprecise computations.

Deadlines for the mandatory parts of tasks are an integral component of the scheduling algo-

rithms for imprecise computation. We rate this kind of algorithms as belonging to no. 8 of table

9.1.
1The terminology is different in this work; in particular, the problem is described in terms of maximising a

reward function rather than minimising an error function.



9.5. QUALITY-FLEXIBLE SCHEMES 219

9.5.4 IRIS (Increased Reward with Increased Service) Tasks

The IRIS (increased reward with increased service) model issimilar to the imprecise computation

approach, but in the IRIS model there is no upper bound to the execution time of tasks. The IRIS

task model assumes concave reward functions for all tasks, so that the reward itself increases, but

marginal reward (the first derivative of the reward function) decreases with increasing service.

However, reward functions need not be convergent, as is the case for anytime algorithms. Prob-

ably the direct predecessor to the IRIS task model was the application of so-called approximate

processing techniques within real-time schedulers (e.g.,by Decker and Lesser [DLW90]).

Dey, Kurose et al. [DKT+93b, DKT93a] investigate the case of dynamically scheduling a

set of independent tasks which arrive randomly over time on asingle processor. One further

assumption is that the release times of tasks are identically distributed. The scheduler is non-

anticipative, i.e., it does not take into account any tasks prior to their release time, and it may

preempt and resume tasks at any time. Tasks are not composed of smaller components in this

basic model of IRIS tasks.

The scheduler works in two phases: first, an optimisation phase running every time a new

task arrives in the system determines the optimal service time for each task; second, a low-level

scheduling algorithm like EDF determines the execution order on the tasks. The performance

metric used is the average reward rate, i.e., the average accrued reward per unit time; upper

bounds on the reward rate can be found for special cases, e.g., for task sets with the same reward

function for all tasks and arbitrary distributions of release times, and for task sets with arbitrary

reward functions and Poisson-distributed release times.

The approach of Dey, Kurose et al. to solve the nonlinear resource allocation problem is as

follows: Consider the interval of time starting from the current time and ending with the latest

deadline of all tasks currently active. Then partition thisinterval into a set of disjunctive smaller

intervals such that the deadlines of the tasks form the borders of these intervals. The scheduling

problem is now equivalent to the problem of allocating service time to the tasks within such

intervals so that the average reward rate is maximised. Obviously, two conditions must hold:

• resource constraint: the sum of service allocations to tasks in any interval is lower than or

equal to the interval length

• non-negative allocation: avoid negative allocations, because they do not have a physical

interpretation

Note that the exact position of the service allocation to tasks is irrelevant for this algorithm, i.e.,

schedules with the same allocations within each interval are considered equivalent. Both optimal

and suboptimal search techniques are described in [DKT+93b].
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Çam [Ç00b] extended the idea of IRIS tasks to composite tasks of possibly several mandatory

and optional subtasks, thus making is possible to model optional components of tasks, logically

group related or dependent tasks. This model generalises both the IRIS task model and the im-

precise computation model, as mandatory components need not necessarily be executed prior to

optional components of the same task. In fact, the number of possible combinations of compo-

nents to form a task such that it best suits the available resources is much bigger than in the case

of working with two components only. For each task, a family of alternative sets of component

tasks is gained by leaving out the least rewarding components. It is assumed that the components

of a composite task are released at the same time. Unlike the basic IRIS model by Dey et al., Çam

does not use a two-level scheduler, in order to avoid the disadvantages of losing optimum when

separating decisions on different objectives. The scheduler scheme suggested by Çam instead

can be sketched as follows: Whenever a new composite task arrives, its laxity and processing

time are examined. If the laxity is greater than the processing time, the scheduler is invoked.

Otherwise, the call to the scheduling algorithm is postponed until there are few tasks waiting for

execution (e.g., less than tasks waiting to be scheduled).

Arguing that most schemes for flexible scheduling are too complex to be of practical use for

embedded real-time systems, Sugawara and Tatsukawa [ST89]and Liu et al. [Liu88] suggest

very simple schemes for sets of periodic tasks with a finite number of service levels each. Small

tables of service / quality pairs (segments of discrete performance profiles) are used to store

the information needed on the time / quality tradeoff - hencethe namestable-based scheduling

(Sugawara and Tatsukawa) andsegmented computation model(Liu et al.).

The IRIS model belongs to both categories 4 and 8 of table 9.1.

9.5.5 Evaluation and Correlation to this Thesis

Quality functions of our scheduling model can be interpreted as performance profiles of any-

time algorithms and flexible computations or reward functions of IRIS tasks. Again, we did not

adopt the actual scheduling algorithms from these schemes.Many ideas on how to deal with the

cost of scheduling came from the work on deliberation scheduling with anytime tasks, and we

use convergent, monotonically increasing quality functions resembling the value functions for

flexible computations. Tasks with two components like imprecise computations or bigger sets

of mandatory and optional components like in the IRIS model can be achieved in the quality /

utility scheduling model through the task hierarchy. Mandatory and optional components can be

distinguished by their utility functions and appropriate dependencies between them. However,

we do not make explicit use of the semantic differences between these two classes of tasks. Our

schedulers never operate in two stages, but solve all problem aspects in the original formulation;
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the work described in this section includes both single-stage and two-stage algorithms. A very

valuable contribution was the work by Dey, Kurose et al., which provided us with the idea for

the class of sliding-window quality / utility schedulers.

9.6 Scheduling with Precedence Constraints

Precedence constraints can arise, e.g., from dataflow dependencies or access to shared resources

and are typically specified as a precedence graph. Dependingon the interpretation of the nodes

and the edges in the graph (e.g., nodes being tasks, jobs, task instances, etc.), the precedence

graph may be a tree structure, a directed acyclic graph or a general directed graph. However,

many classical scheduling algorithms for real-time systems require tasks to be independent of

each other. The usual method of transforming an acyclic precedence graph into a set of indepen-

dent tasks is by delaying the release times of all tasks untilthe latest possible finishing time of

all predecessors and similarly strengthening the deadlineconstraints such that they are at most

equal to the earliest possible release times of the successors. Transformation of release times

takes place in breadth-first manner starting from the root nodes, transformation of the deadlines

in reverse breadth-first manner starting from the sinks of the graph. Both components of the

technique use the worst-case execution times of tasks to determine the necessary shift in release

times and deadlines; the methodology is typically rather pessimistic, i.e., it classifies task sets as

non-schedulable that would in effect be very well feasible.Altenbernd backed this argumentation

and suggested an alternative scheme which he proved to be less pessimistic [Alt96, AH98].

9.6.1 Precedence Constraints in Timeliness-Flexible Scheduling Schemes

Naturally, scheduling schemes with end-to-end constraints operate with dependency graphs, as

this kind of constraints is typically defined on chains or more general directed graphs of tasks.

The BERT scheduler has rudimentary provision of precedenceconstraints: applications con-

sist of chains of operations calledpaths; no other topology of dependency graphs is allowed. The

model of McElhone and Burns uses the concept of release time and deadline transformation to

handle precedence constraints and allows to annotate taskswith an and/or attribute similar to

[Gil93]; predecessors ofand type nodes are interpreted as its components, predecessorsof or

type nodes as alternatives of the successor.

The DASA algorithm (Dependent Applications Scheduling Algorithm) by Clark [Cla90]

builds on the work by Locke on best-effort scheduling. It constrains the shape of the allowed

time-value functions to binary ones evaluating to a constant positive value before the deadline

and to 0 from the deadline onwards. An application is made up of a hierarchy of tasks (the author
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calls the components at different levels activities, tasksand phases). In this model, Clark was

able to define a dynamic scheduler for a set of interdependentpreemptive tasks. The precedence

graphs in his model must be directed and acyclic; an interesting fact is that these constraints are

not known a priori, but arise dynamically at run-time primarily due to the mutual exclusion prob-

lem for shared resources; this involves that the direction of a precedence constraint for a task pair

connected by a mutual exclusion relationship (i.e., havingcritical sections on the same resource)

may be reversed. On the other hand, of course, some precedence constraints must not change

their direction, e.g., those originating from a producer-consumer relationship. Just like Locke’s

best-effort scheduling algorithm, DASA is most suited for overloaded systems, where there is ac-

tually a selection to be made between which tasks to execute and which ones to discard. DASA

degrades gracefully under high loads, unlike more simplistic, especially static-priority schemes.

The scheduling decisions of DASA are based on value-density, taking into account the estimate

of future active tasks whose precedence constraints can be fulfilled to derive a so-called potential

value density. Schedules are constructed in a repair-basedmanner, discarding computations with

low potential value density until the schedule becomes feasible.

Zlokapa [Zlo93] follows a similar path, although he claims to present primarily a framework

for dynamic scheduling algorithms rather than a specific algorithm. However, the framework he

suggest lends itself very easily to handling timeliness-flexible task sets of the best-effort class

with precedence constraints. The methodology is based on the perception that many applications

can be modelled as a set of task groups rather than one amorphous set of tasks. In hard-real time

task models, these task sets are executed as atomic entities; if an abort is necessary after the start

of the task group, a rollback has to take place on all computations of the group. On the other

hand, non-atomic groups, which can be found in flexible scheduling schemes, do not need this

so-called end-to-end scheduling, so a rollback is not normally required in case of task abortion.

Based on the perception that many dynamic scheduling algorithms make their decisions either at

release time (by means of a schedulability test, resulting in the new task to be either accepted or

rejected) or at dispatch time by looking at the prospective gain from each task as late as possible

(like in Locke’s work), Zlokapa claims that both of these alternatives have undesirable effects:

at dispatch time, it might be too late to take alternative actions, while testing schedulability at

release time can easily be very pessimistic, as decisions are by nature made in FCFS manner.

The goal is to find an optimal point of time when to take the scheduling decisions for each

task, the so-calledpunctual point. The methodology calledwell-timed schedulingis compatible

with precedence constraints. Part of the scheduling decisions can be made offline: the schedul-

ing algorithm calculatesreflective parametersfor individual tasks by processing their successor

tasks, so that at run-time the precedence graph does not haveto be processed for each scheduling

operation.
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9.6.2 Precedence Constraints in Quality-Flexible Scheduling Schemes

The design-to-time model allows to specify so-called nonlocal effects between tasks (rather be-

tween a task and a method). Nonlocal effects can affect the duration and/or the quality of the

recipient (the target node in terms of a graph structure). Aneffect is based on the quality of the

originating task at the time the recipient begins execution. If a recipient is involved in more than

one nonlocal effect, evaluation for all of these takes placeat the same time, and no effect requires

more than one evaluation of the originating node. Examples for nonlocal effects are:

enables: This kind of nonlocal effect means that the enabling task must have a quality above a

threshold or the enabled method will receive zero quality when it is executed.

facilitates: If a task is connected to a method via afacilitateseffect, then if the facilitating task

has nonzero quality, then the facilitated method will have proportionally reduced duration

and increased quality.

hinders: Contrary to afacilitateseffect, ahinderseffect means that if the hindering task has

nonzero quality, then the hindered method will have proportionally increased duration and

decreased quality.

In Zilberstein’s work on the compilation of anytime algorithms, performance profiles are con-

ditional on the quality of their inputs. This way, dependencies between tasks can be expressed ex-

plicitly. However, the evaluation of tasks’ qualities influencing their successor nodes takes place

only during the compilation procedure. By definition, the contract anytime algorithms which

are the result of the compilation cannot be altered or adapted at a later time. More precisely,

the scheduler cannot react to changes in task qualities affecting other tasks via dependencies at

run-time.

Imprecise computation models either do not take into account precedence constraints at all

or employ the simple transformation scheme for release times and deadlines mentioned earlier

[CC00a]. The same seems to be true for the IRIS and flexible computations models. One of the

rare attempts for scheduling quality-flexible applications with interdependent tasks was made by

Hull at al. Starting with work on scheduling linear chains ofimprecise computations [HFL96,

HFL95], the model finally handles general directed acyclic graphs. At any time, each task has

vectors of input and output qualities as well as a vector of resource allocations. Value functions

are defined to map a given vector of input qualities and resource allocations (especially processor

time) to a vector of output qualities. An example for one-dimensional vectors of input and output

qualities and cpu time as the only resource is given in figure 9.8.
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Figure 9.8: Example input quality dependent value function

Information from these functions is used to decide at run-time on an optimal distribution of

the resources between the tasks currently waiting for service; the algorithm is myopic, as it does

not take into account tasks possibly being released in the future, even if this information might

be readily available, e.g., for periodic tasks.

An interesting idea going into the direction of method selection especially for interdependent

task sets is the introduction ofand/orprecedence graphs by Gillies [Gil93, GL95].Andnodes in

this model represent the traditional definition that a task becomes only ready for execution once

all of its predecessor nodes have finished.Or tasks, however, only require one of their predecessor

nodes to finish in order to be able to run. Although this way is becomes much easier for tasks

to fulfill the precedence constraints, the scheduling decision itself does not: Gillies could prove

that even for the simplest configurations where there is any choice to make (oneor task with two

predecessors, same release times, no deadlines), the problem remains NP-complete. One of the

heuristics suggested gradually prunes the precedence graph, leavingor type tasks with only the

predecessor node representing the shortest path to a root node.

9.6.3 Evaluation and Correlation to this Thesis

We did not opt for guaranteeing a specific order of execution of tasks, like the extension to best-

effort scheduling by Zlokapa suggests. Clark’s DASA algorithm is also unsuitable, because it

relies on relationships between tasks defined via resource access conflicts and we do not model
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any other resources besides the processor(s). To us, nonlocal effects like in the design-to-time

model and the quality-dependent value functions used in theworks of Zilberstein and Hull et al.

are more promising. We formulated the influence of the value of predecessor tasks on the value

of their successor tasks similarly to Hull. Usingand/orgraphs, as Gillies proposed, allows us to

use different mechanisms of aggregating value locally for different types of tasks

9.7 Adaptive Scheduling

In our problem class, the scheduler has to adapt its own allocation of processor time dynamically.

The following ideas gave incentives to this end.

9.7.1 Imprecise Computations

Feiler and Walker [FW01] suggest an adaptive scheduling mechanism for sets of periodic in-

cremental and design-to-time tasks. As these tasks can be composed of mandatory and optional

parts (imprecise computations), the scheduler has to guarantee the execution of some compu-

tations before being able to reason about optimising the quality of the others, measured by the

deadline miss ratio. At design time, the maximum worst-caseexecution times of tasks are de-

termined which are allowed while maintaining a feasible schedule. At runtime resources are

allocated beyond this statically known worst-case guarantee. The allocation of this additional

service time is driven by utility functions defined on the utilisation of tasks. The core of the abil-

ity of the system for adaptivity is the dispatch agent. An eligibility list of tasks is kept throughout

the runtime of the application, containing tasks in an orderindicating their level of improvement

that is estimated to be possible when allocating additionalresources to them; several policies

are described for making such estimates. The two kinds of dispatch agents suggested by the

authors are the Incremental Adaptive Dispatch Agent, whichcommunicates with the scheduler

independently from the dispatcher for the mandatory computations. On the other hand, the Tun-

able Adaptive Dispatch Agent communicates with the scheduler only via the mandatory task

dispatcher; it is noted that the second alternative usuallyperforms better than the first one, as

less context switches are needed and a better control of the implications of optional on manda-

tory computations reduces the risk of missing deadlines. The feedback data transmitted from the

dispatch agent to the scheduler are the actual execution times of tasks and the utilisation of the

processors.
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9.7.2 Dynamic Window Constrained Scheduling

West [Wes00] investigated feedback control within a scheduling scheme for window-constrained

applications called Dynamic Window Constrained Scheduling (DWCS). The primary context for

this scheme is communication networks, but the applicability of the methodology to processor

scheduling is also demonstrated. The terminology resembles the origins of this work in real-time

networking research: packets are transmitted in streams, and loss tolerances describe the maxi-

mum number of packets within any fixed-size series of consecutive packets whose transmission

may be delayed or disturbed (the window constraint). The deadline miss ratio is the parameter

which is monitored and fed back to the scheduler to adapt the dispatch priorities which form

the result of the scheduling decisions. A reservation scheme is responsible for guaranteeing a

minimum service level offline, and surplus resources are allocated at runtime to maximise over-

all quality. The core of the system is a modified constant-bandwidth-server scheduling algo-

rithm trying to allocate each of the packet streams sufficient resources (measured in terms of the

bandwidth). At runtime, priority in resource allocation isgiven to the stream with lowest loss-

tolerance. Loss-tolerance values of all streams are updated regularly in discrete steps; they are

increased if the stream was allocated service time and decreased if this was not possible.

9.7.3 Control-Theoretic Feedback Mechanism

The work of Lu, Stankovic et al. [SLST99, LSTS99, Lu01] presents a control-theoretic ap-

proach to feedback scheduling. A general scheduling framework was developed including a PID

controller to achieve the ability of a scheduler to adapt itself according to the consequences

of prior actions. The first implementation of a feedback policy was derived from the well-

known earliest deadline first (EDF) algorithm and called feedback-controlled EDF (FC-EDF)

[SLST99, LSTS99]. Later on, also rate-monotonic and deadline monotonic scheduling were im-

plemented within the same framework [Lu01]. Several possible choices of feedback policies

(regarding the monitored variable) were investigated, including feedback utilisation control (FC-

U) and feedback miss ratio control (FC-M). A PID controller was chosen because it does not

require precise knowledge on the dynamics of the system; stability can be guaranteed for first

and second order dynamic systems. The advantage of applyinga well-known theory instead of an

ad-hoc feedback function is that results from very different areas of research could be applied in

the work of Lu, Stankovic et al. to derive upper and lower performance bounds, a fact that makes

a scheduling algorithm for task sets with unpredictable release and execution times more reliable.

Later work [LSA+00, Lu01] employs two PID controllers instead of only one; both the miss ratio

and the utilisation are included in the adaptation mechanism at the same time. The new feedback
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policy is called feedback utilization/miss ratio control (FC-UM), the EDF-based scheduling al-

gorithm FC-EDF2. Abeni et al. [APB00] build on this work by adding an outer control loop to

tackle the known problem of adapting the parameters of the PID controller. Unfortunately, proper

settings for the constants of such a controller are frequently outside the intuition of the designer.

An additional outer control loop can partly alleviate the problem of finding suitable values, but

obviously adds to the complexity and the scheduling overhead.

The advantage of the scheme by Steere at al. [SGG+99] is that only those tasks whose per-

formance requirements are not known a priori are under the control of the feedback mechanism.

This can greatly reduce the complexity of computations, depending on the application. The ser-

vice requirements of other tasks are measured in terms of therepetition rate and the portion

of the resources allocated within any such period. Especially the adaptation of the task periods

means an additional degree of freedom not normally encountered in similar scheduling models

and is limited to certain application scenarios, e.g., in the multimedia, web services or speech

recognition areas.

9.7.4 Adaptation of Scheduling Effort

Going further than the work of Dean and Boddy on deliberationscheduling, Horvitz recognised

the importance not only of suitably distributing the time spent calculating schedules, but also

of finding an optimum balance between the time spent scheduling and the time spent execut-

ing these. For this purpose, Horvitz uses decision-theoretic meta-reasoning techniques (meta-

reasoning meaning the reasoning on the value of reasoning itself), for which he describes a se-

ries of desirable properties, such as the ability of finding close-to-optimal solutions in resource-

bounded environments, where the resource bounds apply likewise to the meta-reasoning compo-

nent and the target components of meta-reasoning.

Horvitz recognised that the cost of deliberation can be directly addressed in the value func-

tions by deriving from the original (so-called object-related) value functions secondary (so-called

comprehensive) value functions depending on the time spentpreparing for and actually carrying

out the scheduling algorithm. Lettp be the time needed to prepare for the scheduling algorithm,

tb the time spent executing the scheduling algorithm,ts a relatively small time spent scheduling

the tasks of preparation and executing the scheduling algorithm,Vo : R × R → R be the object-

related value function andVd : R → R be a function rating the cost of deliberation. Then the

comprehensive value functionVc : R × R → R is defined as

Vc(tp, tb) = Vo(tp, tb) − Vd(ts + tp + tb)
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Assumingts to be constant, the goal is to find optimal values fortp andtb such that the compre-

hensive value is maximal:

max
tp,tb

Vc(tp, tb)

In many cases, also the parametertp can safely be assumed to be constant, so that the problem

is reduced to maximising the comprehensive value function by finding an appropriate schedul-

ing effort tb. Figure 9.9 demonstrates two examples for the calculation of comprehensive value

functions from object-related value functions and deliberation value functions [HB90],t∗b being

the optimal value fortb.

Figure 9.9: Example value functions for flexible computations

9.7.5 Evaluation and Correlation to this Thesis

We cannot give offline guarantees for mandatory parts of tasks as in [FW01], and we do not

consider window constraints explicitly in our scheduling algorithms. However, we did adopt

some details from the works of Lu, Stankovic at al. and by Horvitz. Lu and Stankovic suggested

the control-theoretic approach to adaptivity of a system, and Horvitz recognised the importance

of finding a balance between the time spent scheduling and thetime spent executing.
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Conclusion

That which separated and distinguished me

from others, mattered. That which no one

else said or could say, was what I had to

say.

André Gide

[L’immoraliste]

In this chapter, we are going to briefly summarise the main topics of this work and assess its

possible implications, but also its limitations. We conclude with some ideas for future work in

the area of quality / utility scheduling.

10.1 Achievements

In this thesis we presented a general model for applicationswith flexible timing constraints under

the anytime execution paradigm. Both utility functions representing a generalised form of dead-

lines and quality functions as the performance profiles of anytime algorithms have been used

before, but not within one model and for the same task set. Utility and quality functions map

time domains into real values; however, the time domains aredistinct. As both the timeliness

and the quality of computations are expressed by functions of a time domain, quality / utility

scheduling lacks both the explicit notion of deadlines and that of given execution times for tasks

found in most traditional real-time scheduling schemes. Objective functions have to be defined

taking into account these global and task-local time aspects. Instead of concentrating on exactly

one objective function, we propose a set of properties we require any prospective objective func-

229
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tion to hold. All other parts of the model rely on this set of rather general properties for objective

functions only.

Objective functions for the scheduling algorithms are defined such that both an early termi-

nation of execution and a longer execution time yield highervalues for each task; it is the goal of

the scheduler to trade off timeliness for quality of each task. In addition to these conflicting ob-

jectives, a second tradeoff is present in dynamic scheduling environments, where the scheduling

algorithm shares computational resources with the actual application tasks; both too high and too

small a share of processor time reserved for the scheduler yield inferior results. Unlike schedul-

ing schemes using simple inexpensive heuristics, our scheduling algorithms with their possibly

complex optimisation and search procedures involved cannot ignore the cost of scheduling. We

therefore need to handle the cost of scheduling explicitly in an additional component in the

system called a meta scheduler, responsible for distributing processing time between the main

scheduler and the application task.

We were able to demonstrate the applicability of our model toexisting real-world problems

and the feasibility of dynamic scheduling algorithms for the problem class we introduced. The al-

gorithms we proposed are primarily based on local-search optimisation like simulated annealing

and decision-theoretic methods like policy iteration for Markov decision processes.

The work includes the development of an integrated specification and simulation environ-

ment for scheduling problems and algorithms. Its main components are a graphical editor, graph

generators, a time-discrete simulator, visualisation tools, an extensible library of scheduling al-

gorithms and a database-supported benchmarking system.

10.2 System Model

Our work assumes tasks to be arranged in a task/subtask hierarchy with additionaland/or at-

tributes, forming a tree structure to represent an application. In addition to this, value dependen-

cies were introduced as a value-based equivalent to precedence constraints and span a second

graph structure on the same task set. The leaves of the task hierarchy tree access the methods of

a library of basic algorithms as the most elementary entities of operation.

The model is general enough to allow heterogeneous multiprocessor systems as the target

architecture. Tasks are preemptive, and we do not consider context switch costs. However, we do

prohibit migration of tasks between processors, because itseems too unrealistic to assume zero

cost for this in fact very expensive procedure. Tasks are generally divided into separate units of

operation with exactly the same implementation in terms of the underlying methods or subtask

structure. These units are invoked in strictly determined order and are called instances of the
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task. The schedulers do not need to know exact release times of task instances (in which case,

scheduling could be done offline). However, we assume a stochastic distribution for the release

times to be known. In many cases, these release times are (approximately) equidistant; such

periodic tasks have been investigated along with other distributions of release times for tasks.

10.3 Interpretation of Experimental Data

Experimental results show that the scheduling algorithms we developed are primarily overload

methods. At utilisation levels below 1, simple heuristics like utility-density scheduling1 can

achieve the same value for schedules with much smaller effort. Only if there is potential to

make decisions not only when to execute tasks, but also whichones to execute and which ones to

discard or on their overall execution time, the more complexalgorithms of this thesis show their

benefits.

Simulation also demonstrates that the performance of the scheduling algorithms degrades

gracefully in overload, especially if the scheduling window is chosen big enough, so that a good

estimate of the set of ready task instances in the near futureis available at any time. If the

scheduling window is too small, the scheduler has very little data on the long-term benefit of

allocating processor time to individual tasks. Remember that both possible quality increases

and utility decreases beyond the end of the scheduling window are not taken into account for

scheduling decisions. However, it has to be noted that at higher utilisation levels the scheduler

needs a considerably longer computation time to find an optimal solution, which can, of course,

be explained by the larger search space. In any case, schedule qualities converge for rising effort.

Another important parameter influencing the performance ofthe schedulers is the accuracy of

the release time estimate and hence the stochastic distribution of release times. If the variance of

release time distributions is small, partial schedules calculated for the task set of the near future

need hardly any corrections during execution. On the other hand, if the estimates are not very

reliable, schedule adaptations and rescheduling are frequently necessary; with rising variance,

the choice between decreasing schedule quality and increasing scheduling effort becomes more

difficult. In our model for the release types of tasks, a big variance results from a large maximum

release jitter of periodic tasks and small release probabilities of aperiodic tasks. We also found

that the local-search class of our schedulers is in general more susceptible to the influence of the

uncertainty in the release times than the decision-theoretic scheduler, which calculates alternative

actions for less likely situations in advance.

1a generalisation of the well-known EDF scheduler prioritising tasks with steepest decrease of utility
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Finally, in our experiments we could show that the PID controller is able to stabilise and find

appropriate values for the scheduling allowance within a small number of scheduling phases. The

flexible scheme for deciding on the scheduling allowance usually outperforms a fixed reservation

of processor time for the scheduler.

10.4 Potentials and Limitations

Quality / utility scheduling can be applied to a wide range ofexisting real-world scenarios. It

can hence serve as the basis of comparison between similar problems and the specific solutions

devised for them. Scheduling algorithms for the general quality / utility problem can be applied

to all classes of problems which can be subsumed under the more general model.

Hard deadlines can easily be represented by utility functions. However, it depends on the

performance of the optimisation algorithm whether these can be met. Similarly, execution or-

ders contradicting precedence constraints are not forbidden in our model, but only penalised

by the objective function. We can therefore not guarantee any specific order of tasks; however,

wrong execution orders, just like missed deadlines, can be assigned large or even infinite penal-

ties. Many approaches to flexible scheduling can be expressed within the quality / utility model,

among them end-to-end constraints, anytime algorithms, best-effort scheduling and others. Oth-

ers do not fit into our framework, e.g., window constraints.

Both the objective functions and the scheduling algorithmswe suggested rely on discrete

local and global times and do not easily extend to continuoustime domains. The quality / utility

scheduling model as presented here is therefore not applicable to continuous-time problems,

even though we sometimes use continuous definitions of quality and utility functions, implicitly

assuming discretisation whenever necessary.

10.5 Open Problems and Future Work

The assumption in this thesis was that context switch costs are small and can be ignored. Further-

more, migration of tasks, i.e., continuing computation of atask on a different processor from the

one it had been running on before preemption, was disallowedaltogether. Finally, communica-

tion costs for tasks with dataflow dependencies executed on different processors were not taken

into account. However, with a suitable cost model, these restrictions can be lifted. Context switch

costs depend on the amount of local data for each task; these usually include register contents,

the local heap, etc. (the task control block). As a first attempt, context switch costs could be as-

sumed constant for each processor; a more sophisticated model would allow to parameterise this
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specification to accommodate task-specific memory requirements. Context switch costs should

be modelled together with general communication costs; thedifference between the cost mod-

els for task migration and inter-task communication is merely in the granularity of the task set

derived from an application. In general, communication costs are more difficult to assess than

context switch costs. They depend on factors like the topology of a multiprocessor or distributed

system, network bandwidth, or bus capacity.

Another direction of research are possible simplificationsof the original problem setting for

which significantly more efficient solutions exist. If we look at one of the original objective

functions on a task setT′
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′)),

we see that complexity problems arise from the potential forresource allocation to a task at any

time after its release and the maximum operator requiring the objective function to be evaluated

at any point in time. For these reasons, the value of a schedule depends on the exact position of

resource allocations on the timeline. As an alternative, the objective function

∑

T∈T′

uT (sT ) · qT (τT (sT ))

with sT being the stopping time of taskT simplifies the search for an optimal schedule, because

the objective function needs to be evaluated only once, namely at its stopping time; no further

computing time can be allocated after that. Once we decide onan order for the release and

stopping times of tasks and the execution time for all tasks,we know an optimal schedule exists

which at any time executes the ready task with the earliest stopping time. Appropriate orders of

stopping and execution times of tasks can be found by local search, just as in the schedulers we

described in this thesis; however, the search space is much smaller for the modified problem. It

can be hoped that real-world applications can be linked to this modified problem class.

An important issue of future work will be the analysis of the PID controller and its para-

meters. Our hope is to gain analytical results to be able to make a better informed choice of

parameters. It remains to be seen whether a PID or a PI controller is best suited for the quality /

utility meta scheduler.

Obviously, the applicability of quality / utility scheduling to real-world problems should be

demonstrated not only by modelling and simulation. The deployment of specialised schedulers

to real quality and timeliness flexible applications is a step yet to be taken.
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berechnung in Pascha. Technical report, Lehrstuhl für Rechnerstrukturen, Fakultät

für Mathematik und Informatik, Universität Passau, 2004.

[Liu88] J. Liu. Timing constraints and algorithms. InReport on the Embedded AI Lan-

guages Workshop, 1988.

[Liu00] J. Liu. Real-Time Systems. Prentice-Hall, 2000.

[LL73] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-

time environment.Journal of the ACM, 30:46–61, January 1973.

[LLS+91] J.W.S. Liu, K.J. Lin, W.K. Shih, A.C. Yu, J. Y. Chung, and W. Zhao. Algorithms

for imprecise computations.IEEE Computer, 24:58–68, 1991.

[Loc86] C.D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,

Carnegie-Mellon University, 1986.



242 BIBLIOGRAPHY

[LSA+00] Ch. Lu, J.A. Stankovic, T.F. Abdelzaher, G. Tao, S.H. Son, and M. Marley. Perfor-

mance specifications and metrics for adaptive real-time systems. InProceedings of

the IEEE Real-Time Systems Symposium, 2000.

[LSR+02] G. Lin, C.V. Stewart, B. Roysam, K. Fritzsche, and H.L. Tanenbaum. Predictive

scheduling algorithms for real-time feature extraction and spatial referencing: Ap-

plication to retinal image sequences. IEEE Transactions onBiomedical Engineer-

ing, October 2002.

[LSTS99] Ch. Lu, J.A. Stankovic, G. Tao, and S.H. Son. Designand evaluation of a feedback

control EDF scheduling algorithm. InProceedings of the IEEE Real-Time Systems

Symposium, 1999.

[Lu01] Ch. Lu. Feedback Control Real-Time Scheduling. PhD thesis, University of Vir-

ginia, 2001.

[Luc04] D. Lucic. Implementierung der Utility-Function und Korrektur der Qualitätsberech-
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Grundlage Markovscher Entscheidungsprozesse. Master’s thesis, Fakultät für

Mathematik und Informatik, Universität Passau, 2004.

[Zha91] L. Zhang. Virtual clock: A new traffic control algorithm for packet-switched net-

works. ACM Transactions on Computer Systems, 9(2):101–124, May 1991.

[Zil93] S. Zilberstein. Operational Rationality through Compilation of Anytime Algo-

rithms. PhD thesis, University of California at Berkeley, 1993.

[Zim04] R. Zimmermann. Implementierung eines Client/Server-Systems zur Anbindung

von PASCHA an CPLEX. Technical report, Lehrstuhl für Rechnerstrukturen,

Fakultät für Mathematik und Informatik, Universität Passau, 2004.

[Zlo93] G. Zlokapa.Real-Time Systems: Well-Timed Scheduling and Scheduling with Prece-

dence Constraints. PhD thesis, University of Massachusetts, 1993.

[ZR87] W. Zhao and K. Ramamritham. Simple and integrated heuristic algorithm for

scheduling tasks with time and resource constraints.Journal of System and Soft-

ware, 7:195–205, 1987.

[ZRS87a] W. Zhao, K. Ramamritham, and J. Stankovic. Preemptive scheduling under time

and resource constraints.IEEE Transactions on Computers, C-36(8):pp 949–960,

August 1987.

[ZRS87b] W. Zhao, K. Ramamritham, and J. Stankovic. Scheduling tasks with resource re-

quirements in hard real–time systems.IEEE Transactions on Software Engineering,

SE-13(5):564–677, May 1987.



Appendix A

List of Symbols

Symbol Type Context Description Page

#rep ∈ N0 simulated

annealing

number of search steps within

a temperature level

53

αP,I ∈ (LTP,I)
LTFP,I×GT extended

model

allocation function of method

instance I with regard to

processorP

73

αP,I ∈ (LTP,I)
LTFP,I×GT extended

model

local allocation function for

task instanceI with regard to

processorP

84

αT ∈ (LTT )LTFT ×GT basic

model

allocation function 21

αT ∈ (LTT )
LTFT ×J

≥ϑ

T,[t0;t0+ws[,T′
reactive

scheduling

allocation function in terms of

elementary intervals

48

∆i ∈ N meta

scheduling

size of thei-th partial schedule 122

∆min ∈ N meta

scheduling

user-defined minimum partial

schedule length

123

∆slopei ∈ R+
0 meta

scheduling

change in value density

between two consecutive

scheduling phases

123

δϑu

T ∈ GT ∪ {∞} results threshold deadline 169

η
ϑq

M ∈
⋃
k∈N0

LTP,Ik
M
∪ {∞} results threshold execution time 168

ϑq ∈ R+
0 results quality threshold 168

247
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Symbol Type Context Description Page

ϑu ∈ R+
0 reactive

scheduling

utility threshold 45,

169

λ ∈ R Lagrange

optimisa-

tion

Lagrange multiplier 61

ν ∈ N0 local

search

number of ready tasks 58

π ∈ ÂŜ∪{s0,sout,serr} MDPs policy 65

σI,~τ ∈ GT extended

model

earliest time of processor allo-

cation to instanceI

107

~τ ∈ LTFI′ extended

model

vector of local time functions

for method instances inI′
73

~τ ∈ LTFI′ extended

model

vector of local time functions

for instances inI

84

τP,I ∈ (LTP,I)
GT extended

model

local time function of method

instance I with regard to

processorP

73

τP,I ∈ (LTP,I)
GT extended

model

local time function for task in-

stanceI with regard to proces-

sorP

84

τT ∈ LTFT basic

model

local time function 21

τT ∈ (LTT )
J
≥ϑ

T,[t0;t0+ws[,T′ reactive

scheduling

local time function in terms of

elementary intervals

48

τT ∈ (GT ∪ {∞})LTT basic

model

local timeliness function 21

ϕT ∈ N0 extended

model

phase shift of periodic or ape-

riodic taskT

76 /

77

ψ ∈ N0 local

search

number of time units to distrib-

ute

58

A ≡ T′ MDPs set of possible actions 64

Â ⊆ A MDPs action envelope 64

a ∈ (2T)T∪M extended

model

ancestor relation in the task hi-

erarchy

81
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Symbol Type Context Description Page

at′ ∈ T(t) MDPs task running at timet′ ≤ t 63

c ∈ (2M)T extended

model

child function for tasks 74

c ∈ (2IM)IT extended

model

child function for task in-

stances

75

c ∈ (2T∪M)T extended

model

child function in the task hier-

archy

80

c ∈ (2IT∪IM)IT extended

model

child function in the instance

hierarchy

80

Cd ∈ R meta

scheduling

constant factor for derivative

component of PID controller

126

cF ∈]0; 1[ simulated

annealing

cool-down factor 54

Ci ∈ R meta

scheduling

constant factor for integral

component of PID controller

126

Cp ∈ R meta

scheduling

constant factor for propor-

tional component of PID con-

troller

126

delay ∈ (N0)
Ts×Ts extended

model

delay in distance numbers on

dependency edges

101

erri ∈ R meta

scheduling

error function for PID con-

troller

125

f ∈ RRn

Lagrange

optimisa-

tion

objective function for La-

grange multiplier optimisation

61

GT ≡ N0 basic

model

global time 17

g ∈ RRn

Lagrange

optimisa-

tion

constraint function for La-

grange multiplier optimisation

61

IM′ ≡
⋃

M∈M′

IM extended

model

set of all instances of methods

M ∈ M′
72

IT′ ≡
⋃

T∈T′

IT extended

model

set of all instances of tasks in

T′
74
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Symbol Type Context Description Page

IM (enumeration) extended

model

set of all instances of method

M

72

IT (enumeration) extended

model

set of all instances of taskT 74,

82

IkM ∈ IM extended

model

k-th instance of methodM 72

IkT ∈ IT extended

model

k-th instance of taskT 74

iatT ∈ N0 extended

model

minimum interarrival time of

aperiodic taskT

77

iatT ∈ N0 ∪ {∞} results mean interarrival time of task

T

169

idT ∈ R+
0 results instance density of taskT 171

impTh ∈ R tabu search threshold for classifying the

relative improvement

58

JT′ ⊆ 2GT reactive

scheduling

set of elementary intervals for

task setT′
44

J
≥ϑu

T′,[t0;t0+ws[
⊆ 2GT reactive

scheduling

set of elementary intervals for

tasks inT′ within scheduling

window[t0; t0+ws[ above util-

ity thresholdϑu

45

JT ⊆ 2GT reactive

scheduling

set of elementary intervals for

taskT

43

JT,[t0;t0+ws[ ⊆ 2GT reactive

scheduling

set of elementary intervals for

taskT within scheduling win-

dow [t0; t0 + ws[

44

J
≥ϑu

T,[t0;t0+ws[ ⊆ 2GT reactive

scheduling

set of elementary intervals for

taskT within scheduling win-

dow [t0; t0 + ws[ above utility

thresholdϑu

45

J
≥ϑu

T,T′ ⊆ 2GT reactive

scheduling

set of elementary intervals for

taskT at granularity of task set

T′ above utility thresholdϑu

46
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Symbol Type Context Description Page

J, J1, . . . ∈ JT reactive

scheduling

elementary intervals for taskT

Jmax ∈ J
≥ϑu

T′,[t0;t0+ws[
reactive

scheduling

interval with latest start time 52

jT ∈ N0 extended

model

maximum release jitter of peri-

odic taskT

76

LTP,I ≡ N0 extended

model

set of local time instants of

method instanceI with respect

to processorP

72

LTP,I ≡ N0 extended

model

set of local time instants for

task instanceI with regard to

to processorP

84

LTT ≡ N0 basic

model

local time for taskT 17

LTFI′ ≡
∏

P∈P,I∈I′

LTFP,I extended

model

set of vectors of local time

functions for method instances

in I′

73

LTFI′ ≡
∏

P∈P,I∈I′

LTFP,I extended

model

set of all possible vectors of lo-

cal time functions for instances

in I′

84

LTFT′ ≡
∏

T∈T′

LTFT basic

model

set of vectors of local time

functions for tasks inT′
21

LTFP,I ≡ (LTP,I)
GT extended

model

set of all possible local time

functions for method instance

I on processorP

73

LTFP,I ⊆ (LTP,I)
GT extended

model

set of all possible local time

functions forI on processorP

84

LTFT ≡ (LTT )GT basic

model

set of possible local time func-

tions for taskT

20

lLength ∈ N0 tabu search maximum length of the tabu

list

58

maxDiv ∈ N0 tabu search maximum number of diversifi-

cation steps

58
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Symbol Type Context Description Page

maxImp ∈ N0 tabu search maximum number of normal

search steps without notice-

able improvement before trig-

gering a diversification step

58

lss ∈ (N0)
N0×N0 local

search

size of the local search space

for one interval

58

M (enumeration) extended

model

set of all methods 72

M1,M2, . . . ∈ M extended

model

methods 72

N general set of positive natural numbers

N0 general set of natural numbers

n, n1, . . . ∈ LTT basic

model

local time instants for taskT

P (enumeration) extended

model

set of processors 71

P1, P2, . . . ∈ P extended

model

processors 71

Pr(s, a, s′) ∈ [0; 1] MDPs probability of going from state

s to s′ when executing actiona

64

perT ∈ N0 extended

model

period length of periodic task

T

76

pred ∈ (2T)T extended

model

predecessor function for task

dependency graph

100

pred ∈ (2IT)IT extended

model

successor function for instance

dependency graph

102

pT ∈ [0; 1] extended

model

release probability of aperi-

odic taskT

77

pT (t) ∈ [0; 1] MDPs probability of taskT being re-

leased at timet

64

QFM′ ≡
∏

M∈M′,P∈P

QFM,P
extended

model

set of vectors of all possible

quality functions for methods

in M′

73



253

Symbol Type Context Description Page

QFT′ ≡
∏

T∈T′

QFT
basic

model

set of all possible vectors of

quality functions for tasks in

T′

19

QFM,P ≡ (R+
0 )

∪k∈N0
LT

P,Ik
M extended

model

set of possible quality func-

tions for methodM on proces-

sorP

73

QFT ≡ (R+
0 )LTT basic

model

set of possible quality func-

tions for taskT

19

~q ∈ QFT′ basic

model

vector of quality functions for

tasks inT′
19

~q ∈ QFM′ extended

model

vector of quality functions for

methods inM′
73

qP,M ∈ R
∪k∈N0

LT
P,Ik

M extended

model

quality function of methodM

on processorP

72

qT ∈ (R+
0 )LTT basic

model

quality function of taskT 18

R general set of real numbers

R+
0 general set of non-negative real num-

bers

R ∈ RŜ MDPs reward function 65

rI ∈ GT extended

model

release time for task and

method instances

75

rT ∈ GT basic

model

release time of taskT 17

S ≡
⋃

t∈GT

St MDPs set of possible states 64

St ⊆

GT × T(1)| . . . |T(t) × 2T

MDPs set of possible states at timet 63

Ŝ ⊆ S MDPs state envelope 64

s = (t,

〈a0, . . . , at〉,

T(t))

∈ St MDPs state at timet 63

sai ∈ [0; 1] meta

scheduling

scheduling allowance for thei-

th scheduling phase

122
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Symbol Type Context Description Page

serr ∈ S MDPs state used for illegal transitions64

slopei ∈ R+
0 meta

scheduling

value density: value gain ini-

th scheduling phase divided by

the length of the partial sched-

ule

123

sout ∈ S MDPs state used for legal transitions

outside the envelope

64

spd ∈ N meta

scheduling

window size for derivative

component of PID controller

126

spi ∈ N meta

scheduling

window size for integral com-

ponent of PID controller

126

sProbJ ∈ [0; 1] local

search

probability of selection of in-

tervalJ during search

60

ss
∈ (N0)

2T×2
J
≥ϑu
T,[t0;t0+ws[ local

search

size of the search space within

scheduling window

59

stcdT ∈ R+
0 results weighted average standard de-

viation of release times of chil-

dren of taskT

171

stdT ∈ R+
0 results standard deviation of release

time for taskT

171

std∗T ∈ R+
0 results aggregated standard deviation

of release time for taskT and

its children

171

T (enumeration) basic

model

set of all tasks 15

T′,T′′, . . . ⊆ T basic

model

task sets 17

T∞ ⊆ T extended

model

set of tasks with infinitely

many instances

82

T1 ⊆ T extended

model

set of tasks with exactly one

instance

82

T′
J ⊆ T reactive

scheduling

set of ready tasks within inter-

val J

47
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Symbol Type Context Description Page

T(t) ⊆ T MDPs set of tasks released up to time

t ∈ GT

63

T, T1, . . . ∈ T basic

model

tasks 15

Tempend ∈ R+
0 simulated

annealing

minimum temperature 52

Tempstart ∈ R+
0 simulated

annealing

start temperature 52

t, t1, . . . ∈ GT basic

model

global time instants

UFI′
T ≡

∏

I∈I′
T

UFI extended

model

set of vectors of all possible

utility functions for task in-

stances inI′T

78

UFT′ ≡
∏

T∈T′

UFT basic

model

set of all possible vectors of

utility functions for tasks inT′
20

UFI ≡ (R+
0 )GT extended

model

set of possible utility functions

for task instanceI

78

UFT ≡ (R+
0 )GT basic

model

set of possible utility functions

for taskT

20

U
ϑq

T ∈ R+
0 results threshold utilisation 170

~u ∈ UFT′ basic

model

vector of utility functions for

tasks inT′
21

uI ∈ (R+
0 )GT extended

model

utility function for task in-

stanceI

78

uT ∈ (R+
0 )GT basic

model

utility function of taskT 19

uT ∈ (R+
0 )

J
≥ϑ

T,[t0;t0+ws[,T′ reactive

scheduling

utility function in terms of ele-

mentary intervals

48

Vπ ∈ RŜ MDPs discounted sum of rewards 65

v~q,~u ∈ (R+
0 )LTFT′×GT basic

model

value function for vectors of

quality and utility functions

~q ∈ QFT′, ~u ∈ UFT′

22
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Symbol Type Context Description Page

v~q,~u ∈ (R+
0 )

LTFT′×J
≥ϑ

T,[t0;t0+ws[,T′
reactive

scheduling

value function for vectors of

quality and utility functions

~q ∈ QFT′ , ~u ∈ UFT′ in terms

of elementary intervals

48

v~q,~u ∈ (R+
0 )LTFI

M′×GT extended

model

value function for vectors of

quality and utility functions

~q ∈ QFIM′
, ~u ∈ UFIT′

79

vI,~q,~u ∈ (R+
0 )

LTF
I′
T
∪I′

M

×GT extended

model

value function for task in-

stanceI ∈ I′
T

and vectors

of quality and utility functions

~q ∈ QFIM′
, ~u ∈ UFIT′

85

v∗I,~q,~u ∈ (R+
0 )

LTF
I′
T
∪I′

M
×GT extended

model

value function for task in-

stanceI ∈ I′
T
, vectors of qual-

ity and utility functions~q ∈

QFIM′
, ~u ∈ UFIT′

and unit

value edge weights in depen-

dency graph

104

v‡I,~q,~u ∈ (R+
0 )

LTF
I′
T
∪I′

M
×GT extended

model

value function for task in-

stanceI ∈ I′
T
, vectors of qual-

ity and utility functions~q ∈

QFIM′
, ~u ∈ UFIT′

and non-unit

value edge weights in depen-

dency graph

107

v•I,~q,~u ∈ (R+
0 )

LTF
I′
T
∪I′

M

×GT extended

model

value function for task in-

stance I ∈ I′
T
, vectors of

quality and utility functions

~q ∈ QFIM′
, ~u ∈ UFIT′

, non-

unit value edge weights in de-

pendency graph and one-time

value flow

107

weight ∈ [0; 1]T×T extended

model

weight on dependency edges 101



Appendix B

Proofs

B.1 Sum of Product with Outer Hold Operator

We have to prove that the function

v~q,~u(~τ, t) := max
t′≤t

∑

T∈T′

uT (t′) · qT (τT (t′))

is consistent with the properties of value functions.

1. global time monotony

For any~q ∈ QFT′ , ~u ∈ UFT′, ~τ ∈ LTFT′ andt ∈ GT

v~q,~u(~τ, t+ 1) = max
t′≤t+1

∑

T∈T′

uT (t′) · qT (τT (t′))

= max

(
∑

T∈T′

uT (t+ 1) · qT (τT (t+ 1)),max
t′≤t

∑

T∈T′

uT (t′) · qT (τT (t′))

)

≥ max
t′≤t

∑

T∈T′

uT (t′) · qT (τT (t′))

= v~q,~u(~τ , t)

2. allocation history monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , t1 ∈ GT, ~τ , ~τ ′ ∈ LTFT′

such that

∀t′ ∈ {0, . . . , t1} : ∀T ∈ T′ : τT (t′) = τ ′T (t′)

257
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Then the following is true fort ∈ GT, t ≤ t1:

v~q,~u(~τ , t) = max
t′≤t

∑

T∈T′

uT (t′) · (qT (τT (t′))

= max
t′≤t

∑

T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)

3. allocation amount monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , T ′ ∈ T′, ~τ , ~τ ′ ∈ LTFT′

with

∀t ∈ GT : ∀T ∈ T′\{T ′} : τT (t) = τ ′T (t)

∀t ∈ GT : τT ′(t) ≤ τ ′T ′(t)

As quality functions are monotonically increasing with local time, and quality and utility

values are non-negative, we know that

v~q,~u(~τ, t) = max
t′≤t

∑

T∈T′

uT (t′) · qT (τT (t′))

= max
t′≤t



uT ′(t′) · qT ′(τT ′(t)) +
∑

T∈T′\{T ′}
uT (t′) · qT (τT (t′))





= max
t′≤t



uT ′(t′) · qT ′(τT ′(t)) +
∑

T∈T′\{T ′}
uT (t′) · qT (τ ′T (t′))





≤ max
t′≤t



uT ′(t′) · qT ′(τ ′T ′(t)) +
∑

T∈T′\{T ′}
uT (t′) · qT (τ ′T (t′))





= max
t′≤t

∑

T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)

4. allocation time monotony

follows from 3

5. reducibility to utility intervals

Let ~q ∈ QFT′, ~u ∈ UFT′ and~τ, ~τ ′ ∈ LTFT′ with
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∀T ∈ T′ : uT (t1) = . . . uT (t2)

∀t ≤ t1 : ∀T ∈ T′ : τ ′T (t) = τT (t)

and

∀T ∈ T′ : τ ′T (t2) = τT (t2)

Then

v~q,~u(~τ , t2) = max
t′≤t2

∑

T∈T′

uT (t′) · qT (τT (t′))

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τT (t′)), max
t1≤t′≤t2

∑

T∈T′

uT (t′) · qT (τT (t′))
)

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

∑

T∈T′

uT (t2) · qT (τT (t′))
)

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τ ′T (t′)), uT (t2) ·
∑

T∈T′

qT (τT (t2))
)

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τ ′T (t′)), uT (t2) ·
∑

T∈T′

qT (τ ′T (t2))
)

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

∑

T∈T′

uT (t2) · qT (τ ′T (t′))
)

= max
(

max
t′<t1

∑

T∈T′

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

∑

T∈T′

uT (t′) · qT (τ ′T (t′))
)

= max
t′≤t2

∑

T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t2)

6. utility monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , q′T ′ = q′′T ′′, τ ′T ′ = τ ′′T ′′

∀t ∈ GT : u′T ′(t) ≤ u′′T ′′(t)
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As qualities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) = max

t′≤t

∑

T∈T′

u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t



u′T ′(t′) · q′T ′(τ ′T ′(t′)) +
∑

T∈T′\{T ′}
u′T (t′) · q′T (τ ′T (t′))





= max
t′≤t



u′T ′(t′) · q′′T ′′(τ ′′T ′′(t′)) +
∑

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))





≤ max
t′≤t



u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′)) +
∑

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))





= max
t′≤t

∑

T∈T′′

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)

7. quality monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , u′T ′ = u′′T ′′, τ ′T ′ = τ ′′T ′′

∀n′ ∈ LTT ′, n′′ ∈ LTT ′′ : n′ ≡ n′′ ⇒ q′T ′(n′) ≤ q′′T ′′(n′′)

As utilities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) = max

t′≤t

∑

T∈T′

u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t



u′T ′(t′) · q′T ′(τ ′T ′(t′)) +
∑

T∈T′\{T ′}
u′T (t′) · q′T (τ ′T (t′))





= max
t′≤t



u′′T ′′(t′) · q′T ′(τ ′′T ′′(t′)) +
∑

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))





≤ max
t′≤t



u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′)) +
∑

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))
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= max
t′≤t

∑

T∈T′′

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)

�

B.2 Sum of Product with Inner Hold Operator

We have to prove that the function

v~q,~u(~τ, t) :=
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′))

is consistent with the properties of value functions.

1. global time monotony

For any~q ∈ QFT′ , ~u ∈ UFT′, ~τ ∈ LTFT′ andt ∈ GT

v~q,~u(~τ, t+ 1) =
∑

T∈T′

max
t′≤t+1

uT (t′) · qT (τT (t′))

=
∑

T∈T′

max
(

max
t′≤t

uT (t′) · qT (τT (t′)), uT (t+ 1) · qT (τT (t+ 1)
)

≥
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′))

= v~q,~u(~τ , t)

2. allocation history monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , t1 ∈ GT, ~τ , ~τ ′ ∈ LTFT′

such that

∀t′ ∈ {0, . . . , t1} : ∀T ∈ T′ : τT (t′) = τ ′T (t′)

Then the following is true fort ∈ GT, t ≤ t1:

v~q,~u(~τ, t) =
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′))

=
∑

T∈T′

max
t′≤t

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)
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3. allocation amount monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , T ′ ∈ T′, ~τ , ~τ ′ ∈ LTFT′

with

∀t ∈ GT : ∀T ∈ T′\{T ′} : τT (t) = τ ′T (t)

∀t ∈ GT : τT ′(t) ≤ τ ′T ′(t)

As quality functions are monotonically increasing with local time, and quality and utility

values are non-negative, we know that

v~q,~u(~τ, t) =
∑

T∈T′

max
t′≤t

uT (t′) · qT (τT (t′))

= max
t′≤t

(uT ′(t′) · qT ′(τT ′(t))) +
∑

T∈T′\{T ′}
max
t′≤t

(uT (t′) · qT (τT (t′)))

= max
t′≤t

(uT ′(t′) · qT ′(τT ′(t))) +
∑

T∈T′\{T ′}
max
t′≤t

(uT (t′) · qT (τ ′T (t′)))

≤ max
t′≤t

(uT ′(t′) · qT ′(τ ′T ′(t))) +
∑

T∈T′\{T ′}
max
t′≤t

(uT (t′) · qT (τ ′T (t′)))

=
∑

T∈T′

max
t′≤t

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)

4. allocation time monotony

follows from 3

5. reducibility to utility intervals

Let ~q ∈ QFT′, ~u ∈ UFT′ and~τ, ~τ ′ ∈ LTFT′ with

∀T ∈ T′ : uT (t1) = . . . uT (t2)

∀t ≤ t1 : ∀T ∈ T′ : τ ′T (t) = τT (t)

and

∀T ∈ T′ : τ ′T (t2) = τT (t2)
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Then

v~q,~u(~τ, t2) =
∑

T∈T′

max
t′≤t2

uT (t′) · qT (τT (t′))

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τT (t′)), max
t1≤t′≤t2

uT (t′) · qT (τT (t′))
)

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

uT (t2) · qT (τT (t′))
)

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τ ′T (t′)), uT (t2) · qT (τT (t2))
)

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τ ′T (t′)), uT (t2) · qT (τ ′T (t2))
)

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

uT (t2) · qT (τ ′T (t′))
)

=
∑

T∈T′

max
(

max
t′<t1

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2

uT (t′) · qT (τ ′T (t′))
)

=
∑

T∈T′

max
t′≤t2

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t2)

6. utility monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , q′T ′ = q′′T ′′, τ ′T ′ = τ ′′T ′′

∀t ∈ GT : u′T ′(t) ≤ u′′T ′′(t)

As qualities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) =

∑

T∈T′

max
t′≤t

u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t

(u′T ′(t′) · q′T ′(τ ′T ′(t′))) +
∑

T∈T′\{T ′}
max
t′≤t

(u′T (t′) · q′T (τ ′T (t′)))

= max
t′≤t

(u′T ′(t′) · q′′T ′′(τ ′′T ′′(t′))) +
∑

T∈T′′\{T ′′}
max
t′≤t

(u′′T (t′) · q′′T (τ ′′T (t′)))
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≤ max
t′≤t

(u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′))) +
∑

T∈T′′\{T ′′}
max
t′≤t

(u′′T (t′) · q′′T (τ ′′T (t′)))

=
∑

T∈T′′

max
t′≤t

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)

7. quality monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , u′T ′ = u′′T ′′, τ ′T ′ = τ ′′T ′′

∀n′ ∈ LTT ′, n′′ ∈ LTT ′′ : n′ ≡ n′′ ⇒ q′T ′(n′) ≤ q′′T ′′(n′′)

As utilities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) =

∑

T∈T′

max
t′≤t

u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t

(u′T ′(t′) · q′T ′(τ ′T ′(t′))) +
∑

T∈T′\{T ′}
max
t′≤t

(u′T (t′) · q′T (τ ′T (t′)))

= max
t′≤t

(u′′T ′′(t′) · q′T ′(τ ′T ′(t′))) +
∑

T∈T′′\{T ′′}
max
t′≤t

(u′′T (t′) · q′′T (τ ′′T (t′)))

≤ max
t′≤t

(u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′))) +
∑

T∈T′′\{T ′′}
max
t′≤t

(u′′T (t′) · q′′T (τ ′′T (t′)))

=
∑

T∈T′′

max
t′≤t

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)

�

B.3 Sum of Product with Additional Conditions

We have to prove that the function

v~q,~u(~τ, t) =
∑

T∈T′

uT (t) · qT (τT (t))
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with the constraint

∀T ∈ T : ∀t ∈ GT : uT (t+ 1) · qT (τT (t+ 1)) ≥ uT (t) · qT (τT (t))

is consistent with the properties of value functions.

1. global time monotony

For any~q ∈ QFT′ , ~u ∈ UFT′, ~τ ∈ LTFT′ andt ∈ GT

v~q,~u(~τ , t+ 1) =
∑

T∈T′

uT (t+ 1) · qT (τT (t+ 1))

≥
∑

T∈T′

uT (t) · qT (τT (t))

= v~q,~u(~τ, t)

2. allocation history monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , t1 ∈ GT, ~τ , ~τ ′ ∈ LTFT′

such that

∀t′ ∈ {0, . . . , t1} : ∀T ∈ T′ : τT (t′) = τ ′T (t′)

Then the following is true fort ∈ GT, t ≤ t1:

v~q,~u(~τ , t) =
∑

T∈T′

uT (t) · qT (τT (t))

=
∑

T∈T′

uT (t) · qT (τ ′T (t))

= v~q,~u(~τ ′, t)

3. allocation amount monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , T ′ ∈ T′, ~τ , ~τ ′ ∈ LTFT′

with

∀t ∈ GT : ∀T ∈ T′\{T ′} : τT (t) = τ ′T (t)

∀t ∈ GT : τT ′(t) ≤ τ ′T ′(t)

As quality functions are monotonically increasing with local time, and quality and utility

values are non-negative, we know that
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v~q,~u(~τ , t) =
∑

T∈T′

uT (t) · qT (τT (t))

= uT ′(t) · qT ′(τT ′(t)) +
∑

T∈T′\{T ′}
uT (t) · qT (τT (t))

= uT ′(t) · qT ′(τT ′(t)) +
∑

T∈T′\{T ′}
uT (t) · qT (τ ′T (t))

≤ uT ′(t) · qT ′(τ ′T ′(t)) +
∑

T∈T′\{T ′}
uT (t) · qT (τ ′T (t))

=
∑

T∈T′

uT (t) · qT (τ ′T (t))

= v~q,~u(~τ ′, t)

4. allocation time monotony

follows from 3

5. reducibility to utility intervals

Let ~q ∈ QFT′, ~u ∈ UFT′ and~τ, ~τ ′ ∈ LTFT′ with

∀T ∈ T′ : uT (t1) = . . . uT (t2)

∀t ≤ t1 : ∀T ∈ T′ : τ ′T (t) = τT (t)

and

∀T ∈ T′ : τ ′T (t2) = τT (t2)

Then

v~q,~u(~τ , t2) =
∑

T∈T′

uT (t2) · qT (τT (t2))

=
∑

T∈T′

uT (t2) · qT (τ ′T (t2))

= v~q,~u(~τ ′, t2)
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6. utility monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , q′T ′ = q′′T ′′, τ ′T ′ = τ ′′T ′′

∀t ∈ GT : u′T ′(t) ≤ u′′T ′′(t)

As qualities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) =

∑

T∈T′

u′T (t) · q′T (τ ′T (t))

= u′T ′(t) · q′T ′(τ ′T ′(t)) +
∑

T∈T′\{T ′}
u′T (t) · q′T (τ ′T (t))

= u′T ′(t) · q′′T ′′(τ ′′T ′′(t)) +
∑

T∈T′′\{T ′′}
u′′T (t) · q′′T (τ ′′T (t))

≤ u′′T ′′(t) · q′′T ′′(τ ′′T ′′(t)) +
∑

T∈T′′\{T ′′}
u′′T (t) · q′′T (τ ′′T (t))

=
∑

T∈T′′

u′′T (t′) · q′′T (τ ′′T (t)

= v ~q′′, ~u′′(
~τ ′′, t)

7. quality monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , u′T ′ = u′′T ′′, τ ′T ′ = τ ′′T ′′

∀n′ ∈ LTT ′, n′′ ∈ LTT ′′ : n′ ≡ n′′ ⇒ q′T ′(n′) ≤ q′′T ′′(n′′)

As utilities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) =

∑

T∈T′

u′T (t) · q′T (τ ′T (t))

= u′T ′(t) · q′T ′(τ ′T ′(t)) +
∑

T∈T′\{T ′}
u′T (t) · q′T (τ ′T (t))
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= u′′T ′′(t) · q′T ′(τ ′T ′(t)) +
∑

T∈T′′\{T ′′}
u′′T (t) · q′′T (τ ′′T (t))

≤ u′′T ′′(t) · q′′T ′′(τ ′′T ′′(t)) +
∑

T∈T′′\{T ′′}
u′′T (t) · q′′T (τ ′′T (t))

=
∑

T∈T′′

u′′T (t′) · q′′T (τ ′′T (t)

= v ~q′′, ~u′′(
~τ ′′, t)

�

B.4 Tasks with Mandatory and Optional Service Times

We want to show that the definitions of the quality and utilityfunctions, together with the service

guarantees, fulfill the requirements for the aforementioned kind of value functions.

For the product of quality and utility the following is true:

1. t 6= 2i − 1 for all i ∈ N, i ≥ 1

⇒ t < 2i − 1 ∨ t > 2i − 1

⇒ (t+ 1 < 2i ∧ t < 2i) ∨ (t+ 1 ≥ 2i ∧ t ≥ 2i)

⇒ (uTi
(t+ 1) = uTi

(t) = 1) ∨ (uTi
(t+ 1) = uTi

(t) = 1
2
)

⇒
(
uTi

(t+ 1) · qTi
(τTi

(t+ 1)) − uTi
(t) · qTi

(τTi
(t)) = qTi

(τTi
(t+ 1)) − qTi

(τTi
(t))
)
∨

(
uTi

(t+1)·qTi
(τTi

(t+1))−uTi
(t−rTi

)·qTi
(τTi

(t)) = 1
2
qTi

(τTi
(t+1))− 1

2
qTi

(τTi
(t))
)

It remains to show thatqTi
(τTi

(t+ 1)) − qTi
(τTi

(t)) ≥ 0.

(a) τTi
(t+ 1) = τTi

(t)

qTi
(τTi

(t+ 1)) − qTi
(τTi

(t)) = qTi
(τTi

(t)) − qTi
(τTi

(t)) = 0

(b) τTi
(t+ 1) = τTi

(t) + 1

i. τTi
(t) = 0 ⇒ τTi

(t+ 1) = 1

⇒ qTi
(τTi

(t+ 1)) − qTi
(τTi

(t)) = qTi
(1) − qTi

(0) = (1
3
)2i−1 − 0 > 0

ii. 0 < τTi
(t) < 2i+1 ⇒ 0 < τTi

(t+ 1) ≤ 2i+1

⇒ qTi
(τTi

(t)) = (1
3
)2

i−τTi
(t)

∧ qTi
(τTi

(t+ 1)) = (1
3
)2

i−τTi
(t+1)

⇒ qTi
(τi(t+ 1)) = (1

3
)2i−τTi

(t)−1 = (1
3
)−1 · (1

3
)2i−τTi

(t)

= 3 · (1
3
)2i−τTi

(t) = 3 · qTi
(τTi

(t))

⇒ qTi
(τTi

(t+ 1)) − qTi
(τTi

(t)) = 2 · qTi
(τTi

(t)) ≥ 0
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iii. τTi
(t) ≥ 2i+1 ⇒ τTi

(t+ 1) ≥ 2i+1

⇒ qTi
(τTi

(t+ 1)) = qTi
(τTi

(t)) = 1

⇒ qTi
(τTi

(t+ 1)) − qTi
(τTi

(t)) = 0

2. t = 2i − 1

τTi
(t+ 1) − τTi

(t) = τTi
(2i) − τTi

(2i − 1) = αTi
(τTi

, 2i − 1) = 1

t+ 1 ≤ 2i ∧ t ≤ 2i ⇒ τTi
(t+ 1) ≤ 2i ∧ τTi

(t) ≤ 2i

qTi
(τTi

(t+1))

qTi
(τTi

(t))
=

qTi
(τTi

(t)+1)

qTi
(τTi

(t))
=

( 1
3
)
2i−τTi

(t)−1

( 1
3
)
2i−τTi

(t)
=

( 1
3
)−1

( 1
3
)0

= 3

uTi
(t+1)

uTi
(t)

=
uTi

(2i)

uTi
(2i−1)

=
1
2

1
= 1

2

⇒ uTi
(t+ 1) · qTi

(τTi
(t+ 1)) − uTi

(t) · qTi
(τTi

(t))

= 1
2
uTi

(t) · 3qTi
(τTi

(t)) − uTi
(t) · qTi

(τTi
(t))

= 3
2
uTi

(t) · qTi
(τTi

(t)) − uTi
(t) · qTi

(τTi
(t))

= 1
2
uTi

(t) · qTi
(τTi

(t)) ≥ 0

�

B.5 Maximum of Product with Hold Operator

We have to prove that the function

v~q,~u(~τ , t) := max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

is consistent with the properties of value functions.

1. global time monotony

For any~q ∈ QFT′ , ~u ∈ UFT′, ~τ ∈ LTFT′ andt ∈ GT

v~q,~u(~τ, t+ 1) = max
t′≤t+1,T∈T′

uT (t′) · qT (τT (t′))

= max

(
max
T∈T′

uT (t+ 1) · qT (τT (t+ 1)),

max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

)

≥ max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

= v~q,~u(~τ , t)



270 APPENDIX B. PROOFS

2. allocation history monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , t1 ∈ GT, ~τ , ~τ ′ ∈ LTFT′

such that

∀t′ ∈ {0, . . . , t1} : ∀T ∈ T′ : τT (t′) = τ ′T (t′)

Then the following is true fort ∈ GT, t ≤ t1:

v~q,~u(~τ , t) = max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

= max
t′≤t,T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)

3. allocation amount monotony

Let ~q ∈ QFT′, ~u ∈ UFT′ , T ′ ∈ T′, ~τ , ~τ ′ ∈ LTFT′

with

∀t ∈ GT : ∀T ∈ T′\{T ′} : τT (t) = τ ′T (t)

∀t ∈ GT : τT ′(t) ≤ τ ′T ′(t)

As quality functions are monotonically increasing with local time, and quality and utility

values are non-negative, we know that

v~q,~u(~τ , t) = max
t′≤t,T∈T′

uT (t′) · qT (τT (t′))

= max
t′≤t

(
max

(
uT ′(t′) · qT ′(τT ′(t)), max

T∈T′\{T ′}
uT (t′) · qT (τT (t′))

))

= max
t′≤t

(
max

(
uT ′(t′) · qT ′(τT ′(t)), max

T∈T′\{T ′}
uT (t′) · qT (τ ′T (t′))

))

≤ max
t′≤t

(
max

(
uT ′(t′) · qT ′(τ ′T ′(t)), max

T∈T′\{T ′}
uT (t′) · qT (τ ′T (t′))

))

= max
t′≤t,T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t)

4. allocation time monotony

follows from 3
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5. reducibility to utility intervals

Let ~q ∈ QFT′, ~u ∈ UFT′ and~τ, ~τ ′ ∈ LTFT′ with

∀T ∈ T′ : uT (t1) = . . . uT (t2)

∀t ≤ t1 : ∀T ∈ T′ : τ ′T (t) = τT (t)

and

∀T ∈ T′ : τ ′T (t2) = τT (t2)

Then

v~q,~u(~τ , t2) = max
t′≤t2,T∈T′

uT (t′) · qT (τT (t′))

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τT (t′)), max
t1≤t′≤t2,T∈T′

uT (t′) · qT (τT (t′))
)

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τ ′T (t′)),max
T∈T′

(uT (t2) · max
t1≤t′≤t2

qT (τT (t′)))
)

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τ ′T (t′)),max
T∈T′

(uT (t2) · qT (τT (t2)))
)

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τ ′T (t′)),max
T∈T′

(uT (t2) · qT (τ ′T (t2)))
)

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τ ′T (t′)),max
T∈T′

(uT (t2) · max
t1≤t′≤t2

qT (τ ′T (t′)))
)

= max
(

max
t′<t1,T∈T′

uT (t′) · qT (τ ′T (t′)), max
t1≤t′≤t2,T∈T′

uT (t′) · qT (τ ′T (t′))
)

= max
t′≤t2,T∈T′

uT (t′) · qT (τ ′T (t′))

= v~q,~u(~τ ′, t2)

6. utility monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , q′T ′ = q′′T ′′, τ ′T ′ = τ ′′T ′′

∀t ∈ GT : u′T ′(t) ≤ u′′T ′′(t)
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As qualities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) = max

t′≤t,T∈T′
u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t

(
max

(
u′T ′(t′) · q′T ′(τ ′T ′(t′)), max

T∈T′\{T ′}
u′T (t′) · q′T (τ ′T (t′))

))

= max
t′≤t

(
max

(
u′T ′(t′) · q′′T ′′(τ ′′T ′′(t′)), max

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))

))

≤ max
t′≤t

(
max

(
u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′)), max

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))

))

= max
t′≤t,T∈T′′

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)

7. quality monotony

Let T′,T′′ ⊆ T with T ′ ∈ T′, T ′′ ∈ T′′ andT′\{T ′} = T′′\{T ′′}

and

~q′ ∈ QFT′ , ~q′′ ∈ QFT′′ , ~τ ′ ∈ LTFT′ , ~τ ′′ ∈ LTFT′′ , ~u′ ∈ UFT′ , ~u′′ ∈ UFT′′ , with

r′T ′ = r′′T ′′ , u′T ′ = u′′T ′′, τ ′T ′ = τ ′′T ′′

∀n′ ∈ LTT ′, n′′ ∈ LTT ′′ : n′ ≡ n′′ ⇒ q′T ′(n′) ≤ q′′T ′′(n′′)

As utilities are non-negative, we know that

v~q′, ~u′(
~τ ′, t) = max

t′≤t,T∈T′
u′T (t′) · q′T (τ ′T (t′))

= max
t′≤t

(
max

(
u′T ′(t′) · q′T ′(τ ′T ′(t′)), max

T∈T′\{T ′}
u′T (t′) · q′T (τ ′T (t′))

))

= max
t′≤t

(
max

(
u′′T ′′(t′) · q′T ′(τ ′T ′(t′)), max

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))

))

≤ max
t′≤t

(
max

(
u′′T ′′(t′) · q′′T ′′(τ ′′T ′′(t′)), max

T∈T′′\{T ′′}
u′′T (t′) · q′′T (τ ′′T (t′))

))

= max
t′≤t,T∈T′′

u′′T (t′) · q′′T (τ ′′T (t′))

= v ~q′′, ~u′′(
~τ ′′, t)
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B.6 Local Search Space Size

For an elementary intervalJ = [ts; te[, we want to find out the number of possible assignments

of the available units of processor time (equal to the lengthof the interval) to the tasks in this

interval. We defineν :=
∣∣∣T′

J

∣∣∣ andψ := te − ts.

First, we prove the following:

ψ∑

ψ′=0

(
ψ′ + ν − 1

ψ′

)
=

(
ψ + ν

ψ

)

• ψ = 0:
0∑

ψ′=0

(
ψ′ + ν − 1

ψ′

)
=

(
ν − 1

0

)
= 1 =

(
0 + ν

0

)

• ψ → ψ + 1:

ψ+1∑

ψ′=0

(
ψ′ + ν − 1

ψ′

)
=

(
ψ + 1 + ν − 1

ψ + 1

)
+

ψ∑

ψ′=0

(
ψ′ + ν − 1

ψ′

)

=

(
ψ + ν

ψ + 1

)
+

(
ψ + ν

ψ

)

=
(ψ + ν)!

(ψ + 1)!(ν − 1)!
+

(ψ + ν)!

ψ!ν!

=
ν(ψ + ν)! + (ψ + 1)(ψ + ν)!

(ψ + 1)!ν!

=
(ψ + ν + 1)(ψ + ν)!

(ψ + 1)!ν!

=
(ψ + 1 + ν)!

(ψ + 1)!ν!

=

(
ψ + 1 + ν

ψ + 1

)

The number of possible assignment ofψ units of computation time onν tasks withψ ≥ 0

andν ≥ 1 is given by the recursive definition:

lss(ψ, 1) = 1

lss(ψ, ν + 1) =

ψ∑

ψ′=0

lss(ψ′, ν)
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The recursion can be resolved into

lss(ψ, ν) =

(
ψ + ν − 1

ψ

)

• ν = 1: (
ψ + 1 − 1

ψ

)
=

(
ψ

ψ

)
= 1 = lss(ψ, 1)

• ν → ν + 1:

lss(ψ, ν + 1) =

ψ∑

ψ′=0

lss(ψ′, ν)

=

ψ∑

ψ′=0

(
ψ′ + ν − 1

ψ′

)

=

(
ψ + ν

ψ

)

�

B.7 Influence of Homogeneity of Interval Lengths

Let ν ∈ N0 andψ1, ψ2, ψ
′
1, ψ

′
2 ∈ N0 with ψ1 + ψ2 = ψ′

1 + ψ′
2 and|ψ1 − ψ2| ≤ |ψ′

1 − ψ′
2|.

Then

lss(ψ1, ν) · lss(ψ2, ν) ≥ lss(ψ′
1, ν) · lss(ψ

′
2, ν)

Proof:

Without loss of generality, we assumeψ1 ≤ ψ2 andψ′
1 ≤ ψ′

2.

Defineψ := ψ1 + ψ2 = ψ′
1 + ψ′

2 and∆ := ψ2−ψ1

2
,∆′ :=

ψ′
2−ψ1′

2
. By definition,0 ≤ ∆ ≤ ∆′.

Therefore

∆ ≤ ∆′ ⇒ ∆2 ≤ ∆′2

⇒ ∀i ∈ N0 : (
ψ

2
+ i)2 − ∆2 ≥ (

ψ

2
+ i)2 − ∆′2

⇒ ∀i ∈ N0 : (
ψ

2
− ∆ + i)(

ψ

2
+ ∆ + i) ≥ (

ψ

2
− ∆′ + i)(

ψ

2
+ ∆′ + i)

⇒ ∀i ∈ N0 : (ψ1 + i)(ψ2 + i) ≥ (ψ′
1 + i)(ψ′

2 + i)
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⇒
ν−1∏

i=1

(ψ1 + i)(ψ2 + i) ≥
ν−1∏

i=1

(ψ′
1 + i)(ψ′

2 + i)

⇒
ν−1∏

i=1

(ψ1 + i) ·
ν−1∏

i=1

(ψ2 + i) ≥
ν−1∏

i=1

(ψ′
1 + i) ·

ν−1∏

i=1

(ψ′
2 + i)

⇒
(ψ1 + ν − 1)!

ψ1!
·
(ψ2 + ν − 1)!

ψ2!
≥

(ψ′
1 + ν − 1)!

ψ′
1!

·
(ψ′

2 + ν − 1)!

ψ′
2!

⇒
(ψ1 + ν − 1)!

ψ1!(ν − 1)!
·
(ψ2 + ν − 1)!

ψ2!(ν − 1)!
≥

(ψ′
1 + ν − 1)!

ψ′
1!(ν − 1)!

·
(ψ′

2 + ν − 1)!

ψ′
2!(ν − 1)!

⇒

(
ψ1 + ν − 1

ψ1

)
·

(
ψ2 + ν − 1

ψ2

)
≥

(
ψ′

1 + ν − 1

ψ′
1

)
·

(
ψ′

2 + ν − 1

ψ′
2

)

⇒ lss(ψ1, ν) · lss(ψ2, ν) ≥ lss(ψ′
1, ν) · lss(ψ

′
2, ν)

�
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Appendix C

Components of the PaSchA Project

This chapter contains screenshots and short descriptions (mostly in tabular form) of many of the

user interfaces of the PaSchA components and some other items of interest on the project in order

to give the reader an overview of both their functionality and limitations. The screenshots of this

chapter are not included in the list of figures of the main text.

C.1 Editor

C.1.1 Menu and Toolbar Elements

Standard elements like new/open/save/close, undo/redo orcut/copy/paste are omitted.

select from DB load application graph from database

auto-reload graphs switch to activate/deactivate automatic reloading of previously opened

graphs when starting editor

save to DB save application graph to database

print print current application graph

export as image save current application graph in bitmap format

select all highlight all elements of current graph

unselect all change all selected objects to unselected

insert . . . menu choose one of the modes of operation for mouse clicks: eitherselect-

ing/moving/editing elements or inserting new ones (tasks,methods, re-

sources, hierarchy edges, dependencies)

show grid switch to display/hide a rectangular grid on the painting pane

adjust grid change the distance of grid lines

277
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connect rect switch to layout the hierarchy edges in rectangular fashionor as direct

connections

layout invoke an automatic layout algorithm for the graph

show edges switch to display/hide the hierarchy edges

show dependenciesswitch to display/hide the dependency edges

zoom level select one of four zoom levels with different sizes and levels of detail for

nodes

algorithm drop-down list to select a scheduling algorithm for which this graph is

intended; entries are names of subclasses of scheduler baseclass

param open the parameter dialogue for the selected scheduling algorithm

check check whether the graph complies with the correctness test for the selected

scheduling algorithm together with the algorithm-specificparameters

C.1.2 Object-Specific Elements

The following attributes are common to all node types:

ID unique, not editable identifier

name character string description, only relevant to human application

designer

C.1.2.1 Processors

dialogue pictogram

resource type invariable, equalsprocessor

units number of processors of this type available
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processor type unique character string description to be referenced by methods

interrupt time context switch costs, defaults to 0

user-defined properties optional list of additional properties

power management drop-down list of available power management models

speed steps available speed steps for this processor

C.1.2.2 Resources

dialogue consumable resource non-consumable resource

resource type eitherconsumableor non-consumable

units number of units of this resource available

user-defined properties optional list of additional properties

C.1.2.3 Methods

main dialogue for anytime method with

discrete quality function

main dialogue for stochastic (run-to-

completion) method with continuous

probability distribution function



280 APPENDIX C. COMPONENTS OF THE PASCHA PROJECT

quality function of anytime

method

probability distribution of

stochastic method
critical sections dialogue

Pictogram: a) name, b) method

and execution type, c) general

method symbol

discrete,

anytime

discrete,

run-to-completion

continuous,

anytime

continuous,

run-to-completion

method type eitherdiscreteor continuous; refers to the type of specification

of the quality or distribution function

runtime type eitheranytimeor stochastic; refers to the execution paradigm:

execution time determined by the scheduler (anytime) or by the

simulator according to a probability distribution (stochastic)

execution times opens dialogue to enter discrete specification of quality function

(runtime typeanytime) or probability distribution (runtime type

stochastic); only for method typediscrete

critical sections opens dialogue to edit list of critical sections; only for runtime

typestochastic

worst-case duration worst-case execution time of method together with a switch for

activation/deactivation; only for runtime typestochastic

quality function name of Java method implementing the quality function (map-

ping execution time to quality); only for method typecontinu-

ous
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time function name of Java method implementing the probability distribution

for execution times; only for method typecontinuousand run-

time typestochastic

executing processor processor type on which this method is executable

create new opens dialogue to create new processor type

user-defined properties optional list of additional properties

C.1.2.4 Tasks

main dialogue

utility function dialogue

user-defined properties dialogue

pictogram: a) name b) instantiation type

c) importance d) logical type e) quality

function

instantiation

types:

logical

types:sporadic aperiodic periodic and or atomic
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quality functions:

instance-based

minimum

instance-based

maximum

instance-based

sum

instance-based

average
user-defined

time-based

minimum

time-based

maximum
time-based sum

time-based

average
density

task type eithersporadic, periodic, or aperiodic

importance type eithermandatory, high, medium, low, or background

base priority integer value for initial priority

log type eitherandor or

interruptable switch for preemptive/nonpreemptive tasks

release time release time of task together with a switch for activa-

tion/deactivation (inactive meaning release time of 0)

rel. jitter the interval width for a uniform distribution of the release

time of the first instance together with a switch for activa-

tion/deactivation

start probability probability for a geometric distribution of release time ofthe

first instance together with a switch for activation/deactivation

deadline the value of the deadline specification together with a switch for

activation/deactivation

deadline type eitherrelativeto the release time orabsolute(in fact, relative to

the parent node’s release time)

utility function opens dialogue to edit the discrete utility function for this task

user-def. properties set of optional user-defined properties

period period length (only forperiodictasks)

cont. release jitter jitter value for second and subsequent instances together with a

switch for activation/deactivation (only forperiodictasks)

min. interarrival time minimum interarrival time between instances (only foraperi-

odic tasks)
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interarrival prob release probability for second and subsequent instances together

with a switch for activation/deactivation (only foraperiodic

tasks)

quality function defining the value of an instance of this node as one of:

• sum of the corresponding child instance values
• maximum of the corresponding child instance values
• minimum of the corresponding child instance values
• arithm. mean of the corresponding child instance values
• sum of all prior child instance values
• maximum of all prior child instance values
• minimum of all prior child instance values
• arithmetic mean of all prior child instance values
• average value gain of child instances per time unit
• calculated according to a user-provided method

user quality function name of Java method implementing the user-defined quality

function

C.1.2.5 Dependency Edges

dialogue

dataflow dep. if selected, this edge describes a precedence constraint; the succes-

sor node must not start before the predecessor has finished

quality dep. if selected, this edge describes a value (quality) dependency; the

value of the predecessor node influences the value of the successor

node

weight the level of influence of the predecessor on the successor node in a

value dependency

delay the distance in instance numbers of nodes depending on each other
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C.2 Graph Generator

Three graph generators were developed to provide generic loads for a static scheduling and power

management problem, to produce graphs in the TGFF format, and to generate test graphs for the

quality / utility scheduling problem of this work; only the latter one will be described here.

Graph generator for quality/utility graphs

C.2.1 Menu and Toolbar Items

The standard items are omitted.

save to database switch to enable/disable writing of graphs to database

save to file switch to enable/disable writing of graphs to file system

check test whether the parameters are consistent

generate generate a set of graphs and write them to the database and/orfile

system
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C.2.2 Input Parameters for Generator Algorithm

name name of a parameter set

description additional comment on the parameter set

utility threshold 1 the utility threshold for the first of three tuples of parameters to

direct the utilisation incurred by the graphs to generate (see below)

qth 1 the quality threshold for the first of three tuples of parameters to

direct the utilisation incurred by the graphs to generate (see below)

load 1 in the quality / utility scheduling model, utilisation is defined on

the basis of quality thresholds (to determine minimum execution

times) and utility thresholds (to define minimum utility deadlines);

test graphs should exhibit a utilisation of approximatelyload 1 if

the corresponding thresholds (the two preceding parameters) are ap-

plied; to this end, utility and quality functions in the graph have to

be modified simultaneously; with a complex definition of load, a

large number of tasks and methods with irregular AND/OR hierar-

chy trees and several threshold/load tuples, this is difficult to do by

hand

utility threshold 2/3 two further utility thresholds

qth 2/3 two further quality thresholds

load 2/3 see explanation forload 1

number of instances number of task instances to be generated from a graph within the

calculation horizon (determining the period lengths, minimum in-

terarrival times, and release probabilities)

calculation horizon size of time window into the future; basis for assessing the number

of instances

arrival probability

aper. tasks min/max

minimum/maximum value for the arrival probability of aperiodic

tasks

jitter per. tasks

min/max

minimum/maximum jitter value for periodic tasks

arrival probability

first instance min/max

minimum/maximum value for the arrival probability of first in-

stance of tasks

jitter first instance

min/max

minimum/maximum jitter value of first instance of tasks
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probability

first instance jitter

approximate percentage of tasks having a jitter specification (uni-

form distribution) for their first instance; only either jitter, arrival

probability, or none of these can be specified

arr. prob. approximate percentage of tasks having an arrival probability spec-

ification (geometric distribution) for their first instanceof a task

directly start approximate percentage of tasks having neither jitter nor release

probability specifications for their first instances, so that the release

time is given deterministically

height min/max minimum/maximum height of hierarchy graph

tasks fan out min/max minimum/maximum fan-out value of non-leaf nodes in hierarchy

graph

number of methods

min/max

minimum/maximum number of methods in graph

number of tasks

min/max

minimum/maximum number of tasks in graph

number of processors

min/max

minimum/maximum number of processor types in graph

number of graphs number of graphs to be generated

seed random seed to make results reproducible

used switch to turn on/off random seed usage

number of processors

per type min/max

minimum/maximum number of instances of processor type

processor fan in

variance

variance of number of methods executable on each processor type;

influences how evenly distributed the load among processorsis

probability

’periodic’ tasks

approximate percentage of leaf task nodes being periodic ordirect

or indirect children of periodic tasks

probability

’aperiodic’ tasks

approximate percentage of leaf task nodes being aperiodic or direct

or indirect children of aperiodic tasks

probability

’sporadic’ tasks

approximate percentage of leaf task nodes being sporadic and not

direct or indirect children of any periodic or aperiodic tasks

probability ’or’ tasks approximate percentage of inner task nodes being of logicaltypeor

probability

’and’ tasks

approximate percentage of inner task nodes being of logicaltype

and

utility steps min/max minimum/maximum number of steps in utility functions
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quality steps min/max minimum/maximum number of steps in quality functions

number of vertices in a

cc min/max

minimum/maximum number of vertices in a connective component

(maximum contiguous subgraph) of the dependency graph

quality dep fan in

min/max

minimum/maximum fan-in value of non-source nodes in depen-

dency graph

quality dep fan out

min/max

minimum/maximum fan-out value of non-sink nodes in dependency

graph

delay min/max minimum/maximum delay value for dependency edges

weight min/max minimum/maximum weight for dependency edges

max number of cc

of qualitydep.

maximum number of connective components of the dependency

graph

C.3 Simulator

C.3.1 Graphical User Interface – Menu and Toolbar Items

Standard items are omitted.

properties open the configuration editor for the selected configuration; if no

configuration has been selected, open the file system browserfirst

new config create a new configuration and open the configuration editor for it

add config add a configuration or a log file to the play list

remove remove a configuration or a log file from the play list

preferences open the preferences dialogue

up arrow move selected configuration or log file upward in play list

down arrow move selected configuration or log file downward in play list

init initialise all configurations and log files in the play list (must not

have previously been initialised)

init+start initialise and start all configurations and log files in the play list

(must not have previously been initialised)

start start all configurations and log files in the play list (must have pre-

viously been initialised)
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stop stop all running simulation and log playing threads

cleanup remove all simulation and log playing threads and close all visuali-

sation windows

three state buttons displayed separately for each configuration and log file to alter the

visualisation preferences; states: grey: use defaults forthe visuali-

sation mode defined in preferences, green: override defaultsettings

to force display of the visualisation mode, red: override default set-

tings to force hiding of the visualisation mode; the four buttons refer

to the time view (TV), graph view (GV), log view (LV), and statis-

tics view (SV), respectively

C.3.2 Graphical User Interface – Preferences

simulator preferences dialogue visualisation preferences dialogue

search paths list of absolute file system paths from which to start the search for

relative paths

trigger type either immediate(simulate as fast as possible), with afixed delay

between steps, or insingle-step modewith user interaction

ms duration in ms for fixed delay

use random seed switch to turn on/off usage of a random seed for reproducibleresults

random seed slider select a value for the random seed
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automatically stop si-

mulation after . . . steps

switch to turn on/off automatic stopping and input field for number

of steps

time view show switch to turn on/off time view visualisation mode by default

graph view show switch to turn on/off graph view visualisation mode by default

log view show switch to turn on/off log view visualisation mode by default

statistics view show switch to turn on/off statistics view visualisation mode bydefault

use global visualiza-

tion settings only

allow/disallow overriding of default settings for visualisation

C.3.3 Configuration Editor

Configuration editor with simulated-annealing parameter dialogue (lower half)
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task graph name of application graph file

scheduler name of a scheduler class

logfile optional name of a log file to write simulation results to

statistics button to show/hide statistics parameter section

global non-object-related statistics data: number of ready tasks, number of

ready methods, number of working tasks, number of working meth-

ods, time consumption of a scheduling step, number of deadlines

missed, number of working processors

processors shows the list of processor types of the selected application graph;

statistics item for each processor type: utilisation

resources shows the list of resources of the selected application graph; statis-

tics item for each resource: usage

tasks shows the list of tasks of the selected application graph; statistics

items for each task: quality, deadline missed, waiting time, interrupt

time, residence time, interarrival time

methods shows the list of methods of the selected application graph;statis-

tics items for each method: quality, waiting time, interrupt time,

residence time

scheduler-specific

parameter section

the lower part of the configuration editor contains a dialogue which

can optionally be provided by the scheduler class to allow setting of

the parameters for the scheduling algorithm

C.3.4 Simulator Main – Simulation Cycle

A high-level description of the simulator main loop is shownbelow.

The states of task and method instances within a hierarchy are not independent of each other.

For example, an instance of an OR type task is considered active if one or more of its children

are active, and an instance of an AND type task is only considered finished if all of its children

are finished. Therefore, it is necessary to regularly calculate new states for some nodes in the

instance graph starting from those leaves where changes have appeared. These state changes are

performed in the functionbottomUpPropagateStatus . The next action in the first phase of

the simulator loop is to determine the set of finished run-to-completion type methods, followed

by the creation of new instances of tasks and methods, if necessary. Note that in general these



C.3. SIMULATOR 291

instances are not released (i.e., made known to the outside world) at the same point in time, but

are created ahead of the prospective release time to cope with jitter and data dependency effects.

The following steps are the release of instances (i.e., making them known to the outside world

and ready for execution) and checking whether methods enteror leave some critical section and

whether all precedence constraints can be met. The final actions prior to invoking the scheduler

are the detection of missed deadlines and removing finished instances.

After the scheduler has run, the simulator has to react to itsactions by propagating state

and quality changes in bottom-up manner starting from the leaves and removing any nodes the

scheduler may have decided to terminate.

procedure simulator;

var schedulingHorizon;

begin time := 0; state := startState;

while error 6= true andtime < schedulingHorizon do

begin

bottomUpPropagateStatus(state, time); // parent state defined over child states

determineFinishedMethods(state, time); // for run-to-completion methods

createNewNodeInstances(state, time); // well ahead of release time

releaseNodes(state, time); // once release time has arrived

checkForCriticalSections(state, time);

activateOrBlock(state, time); // according to critical sections and resource allocation

checkDeadlines(state, time);

detectFinishedNodes(state, time); // do not yet remove; may need data later

removeOldNodes(state, time); // if data are no longer needed

executeScheduler(state, time); // pass on control to the scheduler

bottomUpPropagateStatus(state, time);

bottomUpPropagateQuality(state, time);

detectFinishedNodes(state, time); // for anytime methods

removeOldNodes(state, time);

time := time+ 1;

end

end
Simulator main loop
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C.4 Visualisation

C.4.1 Time View

At run-time, the time view visualisation mode has several options, which can be accessed via the

context menus of the name tag window to the left and the painting area to the right:

name tag window context menu painting area context menu

remove single row hide entry for one object (task, method, etc.)

remove selected rows hide entries for set of objects

insert row insert entry for object

change single row

height

change the height of one entry

change selected row

height

change the height of several entries

set default task height change default height for all task entries

set default method

height

change default height for all method entries

set default resource

height

change default height for all resource entries

set default processor

height

change default height for all processor entries

show log-type show/hide logical types of tasks (AND/OR) in the name tag
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show quality function show/hide quality function of tasks (sum,tsum,max,tmax,. . . ) in the

name tag

show method-type show/hide method type (discrete anytime, discrete stochastic, con-

tinuous anytime, continuous stochastic) in the name tag

indentation switch on/off indentation of elements according to position in hier-

archy

detect atomic nodes turn on/off display of logical type ATOMIC for leaf nodes

depth-first-search sort entries according to depth-first search

breadth-first search sort entries according to breadth-first search

unsorted sort entries manually by drag-and-drop

adjust time step width change width of unit-time rectangles for all entries in the painting

area

set scroll mode when the painting area is full, scroll it to the left to accommodate

new time steps

set rotate mode when the painting area is full, gradually overwrite its contents start-

ing from the left

Additionally, when selecting a rectangle in the painting area, this rectangle is magnified to fit the

painting area.

C.4.2 Graph View

Graph view context menu

zoom 100% nodes are shown largest with biggest set of properties

zoom 70% nodes are shown second largest with second biggest set of properties

zoom 40% nodes are shown second smallest with second smallest set of properties

zoom 10% nodes are shown smallest with smallest set of properties

show hierarch. edges show/hide hierarchy edges

show dependencies show/hide dependency edges

detect atomic nodes turn on/off display of logical type ATOMIC for leaf nodes
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C.4.3 Log View

A sample output of the log view window is shown below; for eachtime step, three sets of events

are generated: one by the simulator before invoking the scheduler, one by the scheduler, and one

by the simulator after return of control from the scheduler.

Log view mode

C.4.4 Statistics View

Statistics view options
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checkboxes selection of graphs to plot; for each object-related or non-object-related

statistics item registered to be monitored in the configuration editor, sev-

eral pieces of data can be generated and displayed; these are:

• current value
• minimum
• maximum
• median
• sum
• arithmetic mean
• geometric mean
• standard deviation
• variance

with dots /

without dots

add / hide symbols to the colour-coded graphs; additional symbols are

convenient for monochrome media

actual line / fixed

line (+ line pos.)

switch between a vertical line being displayed at the current or some

fixed time

save image + file

name

save a bitmap representation of the current graphs to the filesystem under

the given name

min. / max. value minimum and maximum values for the graphs

log. / lin. scale switch between linear and logarithmic scale

C.5 Web Site and References

Online information on the PaSchA project along with download instructions can be found at the

following address:

http://lrs.fmi.uni-passau.de/˜pascha

The application model was introduced in [Ehr02]. Implementation details can be found for

the graphical user interfaces in [Jün01], for graph generators in [Wei04], and for the benchmark

components in [Fli04]. Certain aspects of the visualisation and simulator components are ad-

dressed in [Sch02, Lim04, Luc04, Mül04]. The CPLEX interface is described in [Zim04], and

the adaptation of various scheduling algorithms for PaSchAin [Dem02, Sch04a, Zac04, Bus04].


