6 research outputs found

    Carbon supported aluminium trifluoride nanoparticles functionalized lithium manganese oxide for the development of advanced lithium ion battery system

    Get PDF
    Magister Scientiae - MSc (Chemistry)A novel lithium ion (Li-ion) battery cathode material has been investigated for potential mobile technology energy storage applications. I have successfully synthesized Lithium Manganese oxide (LMO), reduced Graphene Oxide (rGO) and Aluminium trifluoride (AlF3). The cathode coated nanocomposite was compiled of the aforementioned materials to give [AlF3LiMn2O4-rGO]. A single-phase spinel was observed from X-ray diffraction (XRD) studies with a high intensity (111) plane which indicates good electrochemical activity. No alterations to the crystal structure were observed after forming the composite nano-cathode material. Fourier transfer infrared (FTIR) spectroscopy showed the vibrational spectrum of LiMn2O4 with a with asymmetric MnO6 stretching confirming that the spinel was formed

    Obtenci贸n de materiales cat贸dicos basados en los sistemas LiCoO2 y LiMn2O4 con aplicaci贸n en bater铆as secundarias

    Get PDF
    1 recurso en l铆nea (87 p谩ginas) : ilustraciones color, tablas, figuras.The magnitude of the environmental impact has been significant in recent years due to natural and anthropogenic effects, for the reason that other energy alternatives have been created to mitigate the effect of the use of hydrocarbons in these means of transport, allowing advancement in the design of electric cars that work by means of electrochemical accumulators. This project was limited to the synthesis and characterization of olycline and spinel polycationic oxides in LiCoO2 and LiMn2O4 systems, through the polymerizationcombustion method with citric acid, to obtain solids with conductive properties as cathode components in advanced systems (cellular, computers, cameras) and sustainable energy generation. To achieve this objective, is to implement a series of characterization techniques, which enable the evaluation of the chemical aspects specified in infrared spectroscopy (FTIR), visible ultraviolet (UV-Vis), thermogravimetric analysis (TGA-DTA), reduction analysis programmed temperature (TPR-H2) and adsorption isotherms (BET-N2). In a similar way, the most relevant aspects have been evaluated from the point of view of the chemical technique, X-ray analysis (XRD), X-ray photoelectronic spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) were performed. The best characterized materials were tested by means solid state impedances (IS), to establish the efficiency of the synthesis process and identify key aspects related to the potential applications of these oxides in the manufacture of lithium-ion batteries, during the development of the project, was relevant the participation of the Universitat Jaume I (UJI) from Spain, which contributes with the characterization for some samples of current research. The project looked to provide new technical knowledge to the process of synthesis of new ceramic materials, alternative systems at high levels of reliability, as an alternative system for the production of clean energy based on the use of new technologies that use electrochemical accumulators. Finally, the proposal was framed within the possibilities for the identification of new instruments that allow a future in the construction of electrochemical systems of autonomous and sustainable functioning, seeking the final implementation and the transfer of the technology derived from the present investigation.La magnitud de la afectaci贸n ambiental ha ido creciendo significativamente en los 煤ltimos a帽os por efectos naturales y antropog茅nicos, dentro de los cuales tenemos la contaminaci贸n producida por los autom贸viles, por esta raz贸n, se han creado alternativas energ茅ticas para mitigar el efecto del uso de hidrocarburos en estos medios de transporte, permitiendo avanzar en el dise帽o de autos el茅ctricos que funcionan por medio de acumuladores electroqu铆micos. En este contexto, este proyecto se basa en la s铆ntesis y caracterizaci贸n de 贸xidos policati贸nicos tipo olivina y espinela basados en los sistemas LiCoO2 Y LiMn2O4, mediante el m茅todo de polimerizaci贸n-combusti贸n con 谩cido c铆trico, para obtener s贸lidos con propiedades conductoras para el dise帽o de componentes cat贸dicos en sistemas avanzados (celulares, computadoras, c谩maras) y sostenibles de generaci贸n energ茅tica. Para lograr este objetivo se pretenden implementar una serie de t茅cnicas de caracterizaci贸n, que posibiliten evaluar los aspectos qu铆micos de estructura y de reactividad basadas en espectroscop铆a infrarroja (FTIR), ultravioleta visible (UV-Vis), an谩lisis termogravim茅trico (TGA-DTA), an谩lisis de reducci贸n a temperatura programada (TPR-H2) y de isotermas de adsorci贸n (BET-N2). De forma similar se pretende evaluar los aspectos m谩s relevantes desde el punto de vista qu铆mico-estructural basados en t茅cnicas de caracterizaci贸n por espectroscop铆a Raman, difracci贸n de rayos X (XRD), espectroscop铆a fotoelectr贸nica de rayos X (XPS) y microscop铆a electr贸nica de trasmisi贸n de alta resoluci贸n (HR-TEM). Los s贸lidos m谩s relevantes fueron sometidos a pruebas de impedancias de estado s贸lido (IS), para establecer la eficacia del proceso de s铆ntesis e identificar aspectos clave relacionados con las aplicaciones potenciales de estos 贸xidos en la fabricaci贸n de bater铆as de i贸n-litio. Durante el desarrollo del proyecto se cont贸 con el apoyo de la Universitat Jaume I (UJI), de Espa帽a, la cual contribuy贸 con algunas t茅cnicas de caracterizaci贸n para el an谩lisis de los materiales aqu铆 planteados. De esta forma, el proyecto busc贸 aportar conocimientos espec铆ficos al proceso de s铆ntesis de nuevos materiales cer谩micos, cuyas composiciones han provisto altos niveles de confiabilidad, estabilidad y conducci贸n, como sistema alternativo para la producci贸n de energ铆a limpia basada en el aprovechamiento de las nuevas tecnolog铆as utilizando acumuladores electroqu铆micos.Bibliograf铆a: p谩ginas 86-87.Maestr铆aMag铆ster en Qu铆mic

    Obtenci贸n de materiales cat贸dicos basados en los sistemas LiCoO2 y LiMn2O4 con aplicaci贸n en bater铆as secundarias

    Get PDF
    1 recurso en l铆nea (87 p谩ginas) : ilustraciones color, tablas, figuras.The magnitude of the environmental impact has been significant in recent years due to natural and anthropogenic effects, for the reason that other energy alternatives have been created to mitigate the effect of the use of hydrocarbons in these means of transport, allowing advancement in the design of electric cars that work by means of electrochemical accumulators. This project was limited to the synthesis and characterization of olycline and spinel polycationic oxides in LiCoO2 and LiMn2O4 systems, through the polymerizationcombustion method with citric acid, to obtain solids with conductive properties as cathode components in advanced systems (cellular, computers, cameras) and sustainable energy generation. To achieve this objective, is to implement a series of characterization techniques, which enable the evaluation of the chemical aspects specified in infrared spectroscopy (FTIR), visible ultraviolet (UV-Vis), thermogravimetric analysis (TGA-DTA), reduction analysis programmed temperature (TPR-H2) and adsorption isotherms (BET-N2). In a similar way, the most relevant aspects have been evaluated from the point of view of the chemical technique, X-ray analysis (XRD), X-ray photoelectronic spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) were performed. The best characterized materials were tested by means solid state impedances (IS), to establish the efficiency of the synthesis process and identify key aspects related to the potential applications of these oxides in the manufacture of lithium-ion batteries, during the development of the project, was relevant the participation of the Universitat Jaume I (UJI) from Spain, which contributes with the characterization for some samples of current research. The project looked to provide new technical knowledge to the process of synthesis of new ceramic materials, alternative systems at high levels of reliability, as an alternative system for the production of clean energy based on the use of new technologies that use electrochemical accumulators. Finally, the proposal was framed within the possibilities for the identification of new instruments that allow a future in the construction of electrochemical systems of autonomous and sustainable functioning, seeking the final implementation and the transfer of the technology derived from the present investigation.La magnitud de la afectaci贸n ambiental ha ido creciendo significativamente en los 煤ltimos a帽os por efectos naturales y antropog茅nicos, dentro de los cuales tenemos la contaminaci贸n producida por los autom贸viles, por esta raz贸n, se han creado alternativas energ茅ticas para mitigar el efecto del uso de hidrocarburos en estos medios de transporte, permitiendo avanzar en el dise帽o de autos el茅ctricos que funcionan por medio de acumuladores electroqu铆micos. En este contexto, este proyecto se basa en la s铆ntesis y caracterizaci贸n de 贸xidos policati贸nicos tipo olivina y espinela basados en los sistemas LiCoO2 Y LiMn2O4, mediante el m茅todo de polimerizaci贸n-combusti贸n con 谩cido c铆trico, para obtener s贸lidos con propiedades conductoras para el dise帽o de componentes cat贸dicos en sistemas avanzados (celulares, computadoras, c谩maras) y sostenibles de generaci贸n energ茅tica. Para lograr este objetivo se pretenden implementar una serie de t茅cnicas de caracterizaci贸n, que posibiliten evaluar los aspectos qu铆micos de estructura y de reactividad basadas en espectroscop铆a infrarroja (FTIR), ultravioleta visible (UV-Vis), an谩lisis termogravim茅trico (TGA-DTA), an谩lisis de reducci贸n a temperatura programada (TPR-H2) y de isotermas de adsorci贸n (BET-N2). De forma similar se pretende evaluar los aspectos m谩s relevantes desde el punto de vista qu铆mico-estructural basados en t茅cnicas de caracterizaci贸n por espectroscop铆a Raman, difracci贸n de rayos X (XRD), espectroscop铆a fotoelectr贸nica de rayos X (XPS) y microscop铆a electr贸nica de trasmisi贸n de alta resoluci贸n (HR-TEM). Los s贸lidos m谩s relevantes fueron sometidos a pruebas de impedancias de estado s贸lido (IS), para establecer la eficacia del proceso de s铆ntesis e identificar aspectos clave relacionados con las aplicaciones potenciales de estos 贸xidos en la fabricaci贸n de bater铆as de i贸n-litio. Durante el desarrollo del proyecto se cont贸 con el apoyo de la Universitat Jaume I (UJI), de Espa帽a, la cual contribuy贸 con algunas t茅cnicas de caracterizaci贸n para el an谩lisis de los materiales aqu铆 planteados. De esta forma, el proyecto busc贸 aportar conocimientos espec铆ficos al proceso de s铆ntesis de nuevos materiales cer谩micos, cuyas composiciones han provisto altos niveles de confiabilidad, estabilidad y conducci贸n, como sistema alternativo para la producci贸n de energ铆a limpia basada en el aprovechamiento de las nuevas tecnolog铆as utilizando acumuladores electroqu铆micos.Bibliograf铆a: p谩ginas 86-87.Maestr铆aMag铆ster en Qu铆mic

    Fragmented Carbon Nanotube Macrofilms as Adhesive Conductors for Lithium-Ion Batteries

    No full text
    Polymer binders such as poly(vinylidene fluoride) (PVDF) and conductive additives such as carbon black (CB) are indispensable components for manufacturing battery electrodes in addition to active materials. The concept of adhesive conductors employing fragmented carbon nanotube macrofilms (FCNTs) is demonstrated by constructing composite electrodes with a typical active material, LiMn<sub>2</sub>O<sub>4</sub>. The adhesive FCNT conductors provide not only a high electrical conductivity but also a strong adhesive force, functioning simultaneously as both the conductive additives and the binder materials for lithium-ion batteries. Such composite electrodes exhibit superior high-rate and retention capabilities compared to the electrodes using a conventional binder (PVDF) and a conductive additive (CB). An <i>in situ</i> tribology method combining wear track imaging and force measurement is employed to evaluate the adhesion strength of the adhesive FCNT conductors. The adhesive FCNT conductors exhibit higher adhesion strength than PVDF. It has further been confirmed that the adhesive FCNT conductor can be used in both cathodes and anodes and is proved to be a competent substitute for polymer binders to maintain mechanical integrity and at the same time to provide electrical connectivity of active materials in the composite electrodes. The organic-solvent-free electrode manufacturing offers a promising strategy for the battery industry
    corecore