438 research outputs found

    Maximum Power Point Tracking Algorithm for Advanced Photovoltaic Systems

    Get PDF
    Photovoltaic (PV) systems are the major nonconventional sources for power generation for present power strategy. The power of PV system has rapid increase because of its unpolluted, less noise and limited maintenance. But whole PV system has two main disadvantages drawbacks, that is, the power generation of it is quite low and the output power is nonlinear, which is influenced by climatic conditions, namely environmental temperature and the solar irradiation. The natural limiting factor is that PV potential in respect of temperature and irradiation has nonlinear output behavior. An automated power tracking method, for example, maximum power point tracking (MPPT), is necessarily applied to improve the power generation of PV systems. The MPPT methods undergo serious challenges when the PV system is under partial shade condition because PV shows several peaks in power. Hence, the exploration method might easily be misguided and might trapped to the local maxima. Therefore, a reasonable exploratory method must be constructed, which has to determine the global maxima for PV of shaded partially. The traditional approaches namely constant voltage tracking (CVT), perturb and observe (P&O), hill climbing (HC), Incremental Conductance (INC), and fractional open circuit voltage (FOCV) methods, indeed some of their improved types, are quite incompetent in tracking the global MPP (GMPP). Traditional techniques and soft computing-based bio-inspired and nature-inspired algorithms applied to MPPT were reviewed to explore the possibility for research while optimizing the PV system with global maximum output power under partially shading conditions. This paper is aimed to review, compare, and analyze almost all the techniques that implemented so far. Further this paper provides adequate details about algorithms that focuses to derive improved MPPT under non-uniform irradiation. Each algorithm got merits and demerits of its own with respect to the converging speed, computing time, complexity of coding, hardware suitability, stability and so on

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Fractional-Order PID Controllers for Temperature Control:A Review

    Get PDF
    Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications

    State feedback based fractional order control scheme for linear servo cart system

    Get PDF
    Fractional order control schemes are being actively investigated for various systems. Fractional order concept is incorporated in integral (I), proportional integral (PI), proportional derivative (PD) or proportional integral derivative (PID) controller to investigate the performance of different state variables of the system. These techniques are often used for the purpose of technology transfer but very scanty research has so far been conducted using state space approach. The current investigation is initiated to observe the effect of fractional order controller using state space approach for the system's performance while tracking the position and regulating the speed of a linear servo cart system. Integer order controller based on proportional derivative (PD) approach is also shown for comparison. Simulation responses are presented and analyzed, in this investigation. The superiority of state space approach based fractional order controller is shown in the results. The paper contains a literature review on several control techniques used to control position and speed of a servo-cart system. An over view of mathematical modeling of servo cart system and a description of a proposed fractional controller is presented in this paper. A brief description of integer order control scheme is also presented. Simulated results are compared and discussed for both fractional order controller and integer order controller at the end of this paper

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems

    Get PDF
    Introduction. In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but its parameters require optimization. Novelty. In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. Purpose. The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. The proposed algorithm is compared with current metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zwe-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis, and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems.Вступ. В електроенергетичній системі потужність синхронних генераторів змінюється внаслідок збурень або різких змін навантаження. Ці зміни в потужності серйозно впливають на стабільність енергетичної системи та якість електроенергії. Синхронний генератор оснащений автоматичним регулятором напруги для підтримання напруги на його клемах на рівні номінальної напруги. Декілька методів управління використовуються для поліпшення реакції системи автоматичного регулятора напруги, однак пропорційний інтегральний похідний контролер (PID-контролер) є найбільш часто використовуваним контролером, але його параметри вимагають оптимізації. Новизна. У цій роботі хаотична послідовність, заснована на логістичній схемі, гібридизується за допомогою оптимізації рою частинок, щоб знайти оптимальні параметри PID для системи автоматичного регулятора напруги. Ініціалізація на основі хаотичної послідовності логістичної схеми та найкращий глобальний вибір дозволяють алгоритму вийти із локальної мінімальної стагнації та покращити швидкість збіжності, що дає найкращі оптимальні параметри. Мета. Основною метою запропонованого підходу є поліпшення перехідної реакції системи автоматичного регулятора напруги шляхом мінімізації максимального перевищення, часу встановлення, часу наростання та пікових значень напруги на клемах і усунення помилки у стаціонарного стані. Методи. У процесі настройки параметрів техніку оптимізації рою хаотичних частинок кілька разів пропускали через запропоновану гібридну цільову функцію, яка враховує переваги двох найбільш часто використовуваних цільових функцій з мінімальною кількістю ітерацій,і знайдено оптимальне значення коефіцієнту підсилення PID. Запропонований алгоритм порівнюється з сучасними метаевристичними алгоритмами, включаючи звичайну оптимізацію рою частинок, вдосконалений алгоритм нирок та інші. Результати. Для оцінки ефективності об'єднуються характеристики інтеграла у часі, помноженого на похибки у квадраті, та цільових функцій Цве-Лі Гейнга. Крім того, проводяться аналіз у часовій області, аналіз у частотної області та аналіз стійкості, щоб показати кращу ефективність запропонованого алгоритму. Результат показує, що автоматичний регулятор напруги, налаштований на хаотичну оптимізацію рою частинок, заснований на поліпшенні виходу PID в перевищеннях,часі налаштування та значенні функції перевищує на 14,41 %, 37,91 %, 1,73 % нещодавно запропонований нирковий алгоритм та на 43,55 %, 44,5 %, 16,67 % перевищує звичайні алгоритми оптимізації рою частинок. Поліпшення перехідної реакції ще більше покращує стабільність автоматичного регулятора напруги для систем електроенергетики

    Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems

    Get PDF
    Introduction. In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but its parameters require optimization. Novelty. In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. Purpose. The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. The proposed algorithm is compared with current metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zwe-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis, and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems.Вступ. В електроенергетичній системі потужність синхронних генераторів змінюється внаслідок збурень або різких змін навантаження. Ці зміни в потужності серйозно впливають на стабільність енергетичної системи та якість електроенергії. Синхронний генератор оснащений автоматичним регулятором напруги для підтримання напруги на його клемах на рівні номінальної напруги. Декілька методів управління використовуються для поліпшення реакції системи автоматичного регулятора напруги, однак пропорційний інтегральний похідний контролер (PID-контролер) є найбільш часто використовуваним контролером, але його параметри вимагають оптимізації. Новизна. У цій роботі хаотична послідовність, заснована на логістичній схемі, гібридизується за допомогою оптимізації рою частинок, щоб знайти оптимальні параметри PID для системи автоматичного регулятора напруги. Ініціалізація на основі хаотичної послідовності логістичної схеми та найкращий глобальний вибір дозволяють алгоритму вийти із локальної мінімальної стагнації та покращити швидкість збіжності, що дає найкращі оптимальні параметри. Мета. Основною метою запропонованого підходу є поліпшення перехідної реакції системи автоматичного регулятора напруги шляхом мінімізації максимального перевищення, часу встановлення, часу наростання та пікових значень напруги на клемах і усунення помилки у стаціонарного стані. Методи. У процесі настройки параметрів техніку оптимізації рою хаотичних частинок кілька разів пропускали через запропоновану гібридну цільову функцію, яка враховує переваги двох найбільш часто використовуваних цільових функцій з мінімальною кількістю ітерацій,і знайдено оптимальне значення коефіцієнту підсилення PID. Запропонований алгоритм порівнюється з сучасними метаевристичними алгоритмами, включаючи звичайну оптимізацію рою частинок, вдосконалений алгоритм нирок та інші. Результати. Для оцінки ефективності об'єднуються характеристики інтеграла у часі, помноженого на похибки у квадраті, та цільових функцій Цве-Лі Гейнга. Крім того, проводяться аналіз у часовій області, аналіз у частотної області та аналіз стійкості, щоб показати кращу ефективність запропонованого алгоритму. Результат показує, що автоматичний регулятор напруги, налаштований на хаотичну оптимізацію рою частинок, заснований на поліпшенні виходу PID в перевищеннях,часі налаштування та значенні функції перевищує на 14,41 %, 37,91 %, 1,73 % нещодавно запропонований нирковий алгоритм та на 43,55 %, 44,5 %, 16,67 % перевищує звичайні алгоритми оптимізації рою частинок. Поліпшення перехідної реакції ще більше покращує стабільність автоматичного регулятора напруги для систем електроенергетики

    PSO-backstepping controller of a grid connected DFIG based wind turbine

    Get PDF
    The paper demonstrates the feasibility of an optimal backstepping controller for doubly fed induction generator based wind turbine (DFIG). The main purpose is the extract of maximum energy and the control of active and reactive power exchanged between the generator and electrical grid in presence of uncertainty. The maximum energy is obtained by applying an algorithm based on artificial bee colony approach. Particle swarm optimization is used to select optimal value of backstepping’s parameters. The simulation is carried out on 2.4 MW DFIG based wind turbine system. The optimized performance of the proposed control technique under uncertainty parameters is established by simulation results

    Photovoltaic MPPT techniques comparative review

    Get PDF
    corecore