1,400 research outputs found

    Fractional clique decompositions of dense graphs

    Get PDF
    For each r4r\ge 4, we show that any graph GG with minimum degree at least (11/100r)G(1-1/100r)|G| has a fractional KrK_r-decomposition. This improves the best previous bounds on the minimum degree required to guarantee a fractional KrK_r-decomposition given by Dukes (for small rr) and Barber, K\"uhn, Lo, Montgomery and Osthus (for large rr), giving the first bound that is tight up to the constant multiple of rr (seen, for example, by considering Tur\'an graphs). In combination with work by Glock, K\"uhn, Lo, Montgomery and Osthus, this shows that, for any graph FF with chromatic number χ(F)4\chi(F)\ge 4, and any ε>0\varepsilon>0, any sufficiently large graph GG with minimum degree at least (11/100χ(F)+ε)G(1-1/100\chi(F)+\varepsilon)|G| has, subject to some further simple necessary divisibility conditions, an (exact) FF-decomposition.Comment: 15 pages, 1 figure, submitte

    Edge-decompositions of graphs with high minimum degree

    Get PDF
    A fundamental theorem of Wilson states that, for every graph FF, every sufficiently large FF-divisible clique has an FF-decomposition. Here a graph GG is FF-divisible if e(F)e(F) divides e(G)e(G) and the greatest common divisor of the degrees of FF divides the greatest common divisor of the degrees of GG, and GG has an FF-decomposition if the edges of GG can be covered by edge-disjoint copies of FF. We extend this result to graphs GG which are allowed to be far from complete. In particular, together with a result of Dross, our results imply that every sufficiently large K3K_3-divisible graph of minimum degree at least 9n/10+o(n)9n/10+o(n) has a K3K_3-decomposition. This significantly improves previous results towards the long-standing conjecture of Nash-Williams that every sufficiently large K3K_3-divisible graph with minimum degree at least 3n/43n/4 has a K3K_3-decomposition. We also obtain the asymptotically correct minimum degree thresholds of 2n/3+o(n)2n/3 +o(n) for the existence of a C4C_4-decomposition, and of n/2+o(n)n/2+o(n) for the existence of a C2C_{2\ell}-decomposition, where 3\ell\ge 3. Our main contribution is a general `iterative absorption' method which turns an approximate or fractional decomposition into an exact one. In particular, our results imply that in order to prove an asymptotic version of Nash-Williams' conjecture, it suffices to show that every K3K_3-divisible graph with minimum degree at least 3n/4+o(n)3n/4+o(n) has an approximate K3K_3-decomposition,Comment: 41 pages. This version includes some minor corrections, updates and improvement

    Clique decompositions of multipartite graphs and completion of Latin squares

    Get PDF
    Our main result essentially reduces the problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. Together with very recent results of Bowditch and Dukes as well as Montgomery on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially completed Latin squares and more generally the case of r-cliques translates into the setting of partially completed mutually orthogonal Latin squares.Comment: 40 pages. To appear in Journal of Combinatorial Theory, Series

    Approximating acyclicity parameters of sparse hypergraphs

    Get PDF
    The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx, who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending tractability of many problems in database theory and artificial intelligence. In this paper, we study the approximability of (generalized, fractional) hyper treewidth of sparse hypergraphs where the criterion of sparsity reflects the sparsity of their incidence graphs. Our first step is to prove that the (generalized, fractional) hypertree width of a hypergraph H is constant-factor sandwiched by the treewidth of its incidence graph, when the incidence graph belongs to some apex-minor-free graph class. This determines the combinatorial borderline above which the notion of (generalized, fractional) hypertree width becomes essentially more general than treewidth, justifying that way its functionality as a hypergraph acyclicity measure. While for more general sparse families of hypergraphs treewidth of incidence graphs and all hypertree width parameters may differ arbitrarily, there are sparse families where a constant factor approximation algorithm is possible. In particular, we give a constant factor approximation polynomial time algorithm for (generalized, fractional) hypertree width on hypergraphs whose incidence graphs belong to some H-minor-free graph class

    On the decomposition threshold of a given graph

    Get PDF
    We study the FF-decomposition threshold δF\delta_F for a given graph FF. Here an FF-decomposition of a graph GG is a collection of edge-disjoint copies of FF in GG which together cover every edge of GG. (Such an FF-decomposition can only exist if GG is FF-divisible, i.e. if e(F)e(G)e(F)\mid e(G) and each vertex degree of GG can be expressed as a linear combination of the vertex degrees of FF.) The FF-decomposition threshold δF\delta_F is the smallest value ensuring that an FF-divisible graph GG on nn vertices with δ(G)(δF+o(1))n\delta(G)\ge(\delta_F+o(1))n has an FF-decomposition. Our main results imply the following for a given graph FF, where δF\delta_F^\ast is the fractional version of δF\delta_F and χ:=χ(F)\chi:=\chi(F): (i) δFmax{δF,11/(χ+1)}\delta_F\le \max\{\delta_F^\ast,1-1/(\chi+1)\}; (ii) if χ5\chi\ge 5, then δF{δF,11/χ,11/(χ+1)}\delta_F\in\{\delta_F^{\ast},1-1/\chi,1-1/(\chi+1)\}; (iii) we determine δF\delta_F if FF is bipartite. In particular, (i) implies that δKr=δKr\delta_{K_r}=\delta^\ast_{K_r}. Our proof involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory, Series

    Minimalist designs

    Full text link
    The iterative absorption method has recently led to major progress in the area of (hyper-)graph decompositions. Amongst other results, a new proof of the Existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we illustrate the method by investigating triangle decompositions: we give a simple proof that a triangle-divisible graph of large minimum degree has a triangle decomposition and prove a similar result for quasi-random host graphs.Comment: updated references, to appear in Random Structures & Algorithm
    corecore