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Fractional clique decompositions of dense graphs

Richard Montgomery∗

Abstract

For each r ≥ 4, we show that any graph G with minimum degree at least (1− 1/(100r))|G| has a fractional
Kr-decomposition. This improves the best previous bounds on the minimum degree required to guarantee a
fractional Kr-decomposition given by Dukes (for small r) and Barber, Kühn, Lo, Montgomery and Osthus (for
large r), giving the first bound that is tight up to the constant multiple of r (seen, for example, by considering
Turán graphs).

In combination with work by Glock, Kühn, Lo, Montgomery and Osthus, this shows that, for any graph
F with chromatic number χ(F ) ≥ 4, and any ε > 0, any sufficiently large graph G with minimum degree at
least (1− 1/(100χ(F )) + ε)|G| has, subject to some further simple necessary divisibility conditions, an (exact)
F -decomposition.

1 Introduction

Given a graph F , a graph G has an F -decomposition if we can cover the edges of G exactly with edge-disjoint
copies of F . The study of such decompositions dates back at least as far as 1847, when Kirkman [14] showed
that any complete graph Kn on n vertices has a triangle (K3-)decomposition if and only if n ≡ 1 or 3 mod 6. As
the edges in a triangle decomposition of Kn are partitioned into triangles, we must have 3|e(Kn). Furthermore,
the n − 1 neighbours of each vertex v are divided into pairs forming triangles with v, so we must have 2|n − 1.
In combination, this gives rise to the necessary and sufficient condition on n for the existence of a triangle
decomposition of Kn.

It was not until the 1970’s that Kirkman’s theorem was generalised by Wilson [16, 17, 18, 19] to consider
F -decompositions of cliques for more general graphs F . If a graph G has an F -decomposition, then it follows
immediately from the partition of E(G) into copies of F that e(F ) divides e(G). Furthermore, by considering
the copies of F used in the decomposition around each vertex, we can see that the highest common factor
of the degrees of the vertices in F must divide the degree of each vertex in G. If G satisfies both of these
necessary conditions, then we say G is F -divisible. For each graph F , Wilson [16, 17, 18, 19] showed that any
sufficiently large F -divisible complete graph has an F -decomposition. In 2014, the long-conjectured generalisation
of Wilson’s theorem to hypergraph cliques F was proved in a breakthrough result of Keevash [13]. Very recently,
an independent, combinatorial, proof of this generalisation was given by Glock, Kühn, Lo and Osthus [10], who
then built on their methods to give a full generalisation of Wilson’s theorem to arbitrary hypergraphs F [9].

In general, we do not expect a simple characterisation of the F -divisible graphs which have an F -decomposition.
For example, Dor and Rasi [3] have shown that determining whether a graph has an F -decomposition is NP-
complete if F has a connected component with at least 3 edges. It is therefore natural to ask instead if all
sufficiently dense F -divisible graphs have an F -decomposition. Much of the work in this area has been motivated
by the following beautiful conjecture of Nash-Williams on triangle decompositions.

Conjecture 1.1 (Nash-Williams [15]). There exists N ∈ N such that, if G is a K3-divisible graph on at least N
vertices with δ(G) ≥ 3|G|/4, then G has a K3-decomposition.

The first progress towards Conjecture 1.1 was given by Gustavsson [11], who showed, for each graph F ,
that there is some constant ε(F ) > 0 such that every sufficiently large F -divisible graph G satisfying δ(G) ≥
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(1−ε(F ))|G| has an F -decomposition. The bound on ε(F ) claimed by Gustavsson left much room for improvement,
showing only that ε(F ) ≤ 10−37|F |−94. In recent years, a rich seam of progress was initiated by Barber, Kühn,
Lo and Osthus [2] by relating F -decompositions in dense graphs to fractional F -decompositions.

Given a graph F , we say that a graph G has a fractional F -decomposition if we may (non-negatively) weight
the copies of F in G so that each edge in E(G) is in copies of F with total weight 1. That is, letting F(G) be the
set of all copies of F in G, there is some function ω : F(G)→ [0, 1] so that, for each e ∈ E(G), we have∑

F ′∈F(G):e∈E(F ′)

ω(F ′) = 1.

In 2014, Barber, Kühn, Lo and Osthus [2] introduced an innovative iterative absorption method capable of turning
an approximate F -decomposition in an F -divisible graph G with high minimum degree into an F -decomposition,
where an approximate F -decomposition is a disjoint set of copies of F in G covering most of the edges of G. Haxell
and Rödl [12] had demonstrated that a large graph with a fractional F -decomposition must have an approximate
F -decomposition. This allowed Barber, Kühn, Lo and Osthus [2] to give much improved bounds on ε(F ) by using
bounds on the minimum degree required to guarantee an appropriate fractional F -decomposition.

The methods in [2] were subsequently developed and extended by Glock, Kühn, Lo, Osthus and the current
author [8]. In order to describe this accumulated progress, for each graph F and integer n, let δ∗F (n) be the least
δ > 0 such that any graph G with n vertices and δ(G) > δn has a fractional F -decomposition. For each graph F ,
let δ∗F = lim supn→∞ δ∗F (n). The main results in [8] imply the following.

Theorem 1.2 (Glock, Kühn, Lo, Montgomery, Osthus [8]). Let F be a graph, let ε > 0, and let χ = χ(F ). Any
sufficiently large F -divisible graph G with δ(G) ≥ (max{δ∗Kχ , 1− 1/(χ+ 1)}+ ε)|G| has an F -decomposition.

Aside from its own intrinsic interest, determining the value of δ∗Kr for each r therefore has a significant part
to play in the study of decompositions of dense graphs. In particular, to prove Conjecture 1.1 asymptotically it
is sufficient to show that δ∗K3

≤ 3/4 (as already followed from the results in [2]).
In the particular case of triangles, increasingly good bounds on δ∗K3

were given by Yuster [20], Dukes [5, 6]
and Garaschuk [7], before Dross [4] gave an elegantly efficient proof that δ∗K3

≤ 0.9. For each r ≥ 4, Yuster [20]
showed that δ∗Kr ≤ 1− 1/(9r10) and gave a construction showing that δ∗Kr ≥ (1− 1/(r + 1))n. Dukes [5, 6] used
tools from linear algebra to show that δ∗Kr ≤ 1−2/(9r2(r−1)2), before Barber, Kühn, Lo, Osthus and the current
author [1] were able to generalise and extend Dross’s methods for fractional triangle decompositions to show that
δ∗Kr ≤ 1− 1/(104r3/2).

In this paper, we show that, for each r ≥ 4, δ∗Kr ≤ 1 − 1/(100r). This improves the known upper bound for
δ∗Kr for each r ≥ 4, and confirms, up to the constant 100, the correct dependence of δ∗Kr on r.

Theorem 1.3. Let r ≥ 4. If a graph G has minimum degree at least (1− 1/(100r))|G|, then G has a fractional
Kr-decomposition.

In combination with Theorem 1.2, this implies the following.

Corollary 1.4. Let F be a graph with χ(F ) ≥ 4 and let ε > 0. Any sufficiently large F -divisible graph G with
δ(G) ≥ (1− 1/(100χ(F )) + ε)|G| has an F -decomposition.

Consideration of Turán graphs with χ(F ) − 1 classes (for example) confirms Corollary 1.4 is tight up to the
constant that appears before χ(F ). We have not sought further small improvements in the corresponding constant
in Theorem 1.3, where they would complicate the proof for little gain. Substantial new ideas appear needed to
approach the conjectured value of δ∗Kr .

At the very highest level, our methods to prove Theorem 1.3 take the same form as those used in [1]. We
find an initial weighting of some cliques in G which is close to a fractional Kr-decomposition, before making local
adjustments to correct this to a fractional Kr-decomposition. Within this framework, however, our methods are
entirely different. We introduce a simple and efficient way to make the adjustments to the initial weighting, and
use a much improved initial weighting of the cliques in G (in comparison to the simple, (essentially) uniform,
initial weighting used in [1]).
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In particular, we find the following simple observation useful: A graph G has a fractional Kr-decomposition
if we can randomly pick an r-clique in G (with some well-chosen probability distribution) so that the probability
an edge e is in this r-clique is constant across all the edges e ∈ E(G). This observation, seen by using a weighting
on the r-cliques proportional to the probability distribution, is trivial. However, the perspective it brings allows
us to use a random process to select a random r-clique of G, before translating this to an initial weighting which
would be more difficult to conceive or describe directly.

The rest of this paper is organised as follows. After describing our notation, we give a more detailed sketch
of our methods in Section 2. In Section 3, we find an initial weighting of the cliques in our graph, before, in
Section 4, correcting this to give a fractional Kr-decomposition. Aside from the elementary, but slightly involved,
calculation required to prove a key lemma (Lemma 2.1), which we defer to Section 6, Sections 3 and 4 give the
simplest exposition of our methods for finding a fractional Kr-decomposition using a minimum degree bound
with, up to a constant, the correct dependence on r (proving Lemma 4.3). In Section 5, we then make some
improvements to a central lemma in Section 3 (Lemma 3.6) to reduce the bounds used by our methods, and hence
prove Theorem 1.3. In Section 6, we give the calculation required to prove Lemma 2.1.

1.1 Notation

A graph G has vertex set V (G), edge set E(G), and minimum degree δ(G). For each r ≥ 2, we denote by Kr(G)
the set of copies of Kr, the clique with r vertices, in G. Where the graph used is clear from context we will use
Kr = Kr(G). For a set E ⊆ V (G)(2), we denote by G+ E and G− E the graphs with vertex set V (G) and edge
sets E(G) ∪ E and E(G) \ E respectively. In particular, we often use this when E is a matching, i.e. a set of
independent edges. For each e ∈ V (G)(2) we let G− e = G− {e} and G+ e = G+ {e}.

For a graph G, we denote by Ḡ the complement of G – the graph with vertex set V (G) and edge set V (G)(2) \
E(G). For each v ∈ V (G), N(v) is the set of neighbours of v, and N c(v) = V (G)\N(v), the set of non-neighbours
of v. When we have a weighting wK , K ∈ Kr(G), of the r-cliques in a graph G, we say for each edge e ∈ E(G)
that the weight over e is

∑
K∈Kr(G):e∈E(K) wK . Given any event A, we let

1A =

{
1 if A occurs,
0 otherwise.

2 Proof Sketch

In order to aid our sketch, let us recap very briefly the methods used by Barber, Kühn, Lo, Osthus and the current
author in [1], where methods originated by Dross [4] were extended and generalised. In order to find a fractional
Kr-decomposition of a graph G with high minimum degree in [1], an initial (essentially uniform) weighting was
given to the subgraphs of G isomorphic to Kr, before a series of small local changes to this weighting were
made (using structures called ‘gadgets’) to correct this weighting to a fractional Kr-decomposition. In contrast,
here we make our initial weighting using a random process which is capable of getting far closer to a fractional
decomposition than a simple uniform weighting of cliques (see Section 2.1). We use this, in fact, to get close to
a fractional K2r+2-decomposition of the graph G. We then make our corrections ‘within the (2r + 2)-cliques’ to
convert this to a fractional Kr-decomposition of G (see Section 2.2).

For each part of the proof, it is crucial that we can show that any complete graph with at least 2r+ 2 vertices
has a fractional Kr-decomposition, even if we remove an arbitrary matching. Such a clique with removed edges is
sufficiently symmetric that we may give a fractional Kr-decomposition directly, but as the calculation is slightly
involved we defer it to Section 6. We state the required result here, however, for reference.

Lemma 2.1. Let r ≥ 3 and k ≥ 2r + 2. If M ⊆ E(Kk) is a matching, then Kk −M has a fractional Kr-
decomposition.

We will give our first initial weighting in Section 3, before returning to it in Section 5 to make improvements.
We do this in order to give, in Sections 3 and 4, as clean as possible an exposition of our methods to demonstrate
there is some ε > 0 such that, for all r ≥ 3, any graph G with minimum degree (1 − ε/r)|G| has a fractional
Kr-decomposition (see Lemma 4.3).
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In order to find our initial weighting we gain from (variations of) the following simple observation. If we can
pick a random r-clique H from a graph G so that each edge in G is equally likely to appear in E(H), then G has
a fractional Kr-decomposition. Indeed, the weights wK = e(G) · P(H = K)/

(
r
2

)
, K ∈ Kr, will form a fractional

Kr-decomposition of G.
We will use a random process to weight subgraphs H ⊆ G with δ(H) ≥ |H|−6 so that each edge is given total

weight close to 1 (that is, for each edge the sum of the weight of the subgraphs containing that edge is close to 1).
If each such subgraph H has at least 32r+62 vertices, then we can find a fractional K2r+2-decomposition of H by
partitioning the non-edges of H into 5 matchings (using a little extra structure in our particular graphs H) and
repeatedly applying Lemma 2.1. We then improve our methods in Section 5, using more structure that naturally
arises in the subgraphs H to reduce their size to only 18r + 18 vertices. The method for initially weighting these
subgraphs H remains the same and we will now give a representative sketch of this process, picking a random
subgraph with 50r vertices.

2.1 Our initial weighting

Let G be a graph with 50rm vertices and δ(G) ≥ (1 − 1/(100r))|G| ≥ |G| −m/2. We will sketch how to pick a
random subgraph H of G with 50r vertices so that δ(H) ≥ |H| − 6 and every edge is approximately equally likely
to appear in H (c.f. Lemma 3.2). We do so by describing a random process which chooses a subgraph H with
|H| = 50r and δ(H) ≥ |H| − 3 in which every vertex is equally likely to appear in H, before describing how to
alter this process so that each edge is approximately equally likely to appear in H (at the expense of weakening
the degree condition to δ(H) ≥ |H| − 6).

We choose the vertices {a1, . . . , a50r} of H randomly in 50r stages. At stage i, we choose a subset Ai of m
vertices to consider, from vertices in G that have not yet been considered, and then pick a vertex ai ∈ Ai uniformly
at random. By including in Ai all the non-neighbours of ai−1 that have not yet been considered (of which there
are at most m/2), we ensure that every non-neighbour of ai−1 is considered at stage i or earlier. Thus, each
vertex ai has no non-neighbours in V (H) except for itself and possibly ai−1 or ai+1, and therefore the final graph
H satisfies δ(H) ≥ |H| − 3. Precisely, we carry out the following process for each i, 1 ≤ i ≤ 50r.

• Pick Ai ⊆ V (G) \ (
⋃
j<iAj) uniformly at random subject to |Ai| = m and N c(ai−1) \ (

⋃
j<iAj) ⊆ Ai

(possible as |N c(ai−1)| ≤ m/2).

• Pick ai ∈ Ai uniformly at random.

Each vertex is considered exactly once in this process, and added to V (H) with probability 1/m. If the two
vertices in an edge e are considered in different stages, then the probability that e appears in H is 1/m2. If an
edge appears within some set Ai, then it cannot appear in H. Some edges in G may be much more likely than
others to appear within some set Ai, and thus be less likely to appear in H. The resulting variation in how likely
each edge is to appear in H can (for some graphs G) be too much to later correct using our methods, and therefore
we need alter this random process.

Consider then taking twice as many vertices in Ai (that is, 2m vertices) at each stage (for only 25r stages in
total), and picking two vertices ai and bi from Ai to add to V (H). By including any unconsidered non-neighbours
of ai−1 or bi−1 in Ai, we can ensure H is still almost complete, in fact satisfying δ(H) ≥ |H| − 6. An edge
that appears in some set Ai may now possibly appear in H, an improvement on the first process. However, this
probability is too small (close to 1/2m2) compared to edges whose vertices are considered at different stages (still
1/m2).

Fortunately, an edge is only significantly more likely than others to appear in Ai if it appears in (N c(ai−1) ∪
N c(bi−1)) \ (

⋃
j<iAj) ⊆ Ai (as the other vertices in Ai are chosen randomly from the remaining unconsidered

vertices). As this set is a subset of Ai with size at most m = |Ai|/2, we will be able to choose ai and bi from Ai so
that any edges in (N c(ai−1) ∪N c(bi−1)) \ (

⋃
j<iAj) appear in H with probability 1/m2, but so that each vertex

in Ai still appears in V (H) with probability 1/m (otherwise we will alter the probability an edge appears in H if
its vertices are considered at different stages). Thus, we will be able to choose our subgraph H so that each edge
is in H with roughly the same probability.

The precise process we use is given in the proof of Lemma 3.2, and is depicted in Figure 1.
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2.2 Correcting the weighting

Suppose we have a graph G along with a weighting wK , K ∈ K2r+2, of the (2r+ 2)-cliques in G so that each edge
in G has total weight at least 1 and at most 1 + 1/(2r). (Such will be the result of our initial weighting.) We will
convert this into a fractional decomposition of G into subgraphs with 2r + 2 vertices which are complete except
for some independent non-edges – say the set of such subgraphs in G is M. As each of the subgraphs in M has
a fractional Kr-decomposition by Lemma 2.1, we can combine fractional Kr-decompositions of the subgraphs in
M, and the fractional decomposition of G into subgraphs in M, to get a fractional Kr-decomposition of G.

Suppose then an edge e ∈ E(G) is given weight 1 + λ by the weighting of (2r+ 2)-cliques, with 0 ≤ λ ≤ 1/2r.
Consider what would happen if, for each clique K ∈ K2r+2 containing e, we replaced the weight wK on K by
wK/(1 + λ) and added weight (1− 1/(1 + λ))wK to K − e. We get a weighting of the graphs in M such that the
weight on e is 1, and the weight on the other edges is unchanged, while only weight (1−1/(1+λ))wK ≤ wK/(2r+1)
has been moved from any clique K containing e.

For each K ∈ K2r+2, we could similarly adjust the weight on any independent set of edges M in E(K)
simultaneously by moving weight from K to K − M . Furthermore, by moving weight from K to K − E for
different subsets E ⊆ M , we can make different corrections to the weight on different edges in M . As each such
clique K ∈ K2r+2 can be covered by 2r + 1 sets of independent edges, we will see that we can make controlled
adjustments of up to wK/(2r+ 1) to the weight on the edges in K without decreasing the weight on K to become
negative. Making appropriate such adjustments for each clique in K ∈ K2r+2 will allow us to decrease the weight
on each edge until it is exactly 1 by moving weight off the cliques K ∈ K2r+2 and onto other subgraphs in M.
This is carried out in Section 4, to prove Lemma 4.2, which in combination with the initial weighting lemma
(Lemma 3.6, and its improvement Lemma 5.4) proves Theorem 1.3.

3 Choosing an almost-complete random subgraph

In this section we will show that, given some minimum degree condition in a graph G, we can find a weighting
wK , K ∈ Kr, so that, for each e ∈ E(G), 1 − 1/r ≤

∑
K∈Kr:e∈E(K) wK ≤ 1. As sketched in Section 2, we will

use a random process to pick a subgraph H in G with δ(H) ≥ |H| − 6 so that every edge in G is roughly equally
likely to appear within H (proving Lemma 3.2). Each subgraph H will be large enough that we can show H has
a fractional Kr-decomposition, and we can combine this with the weighting from the probability distribution on
such graphs H to get the required approximate fractional Kr-decomposition of G.

In fact, the random graph H will have the stronger property that it contains a spanning subgraph H ′ which
is isomorphic to a graph of the following form.

Definition 3.1. For each integer r ≥ 1, let Mr be the graph with vertex set {a1, b1, . . . , ar, br} which has every
edge present between sets {ai, bi} and {aj , bj} if i /∈ {j − 1, j, j + 1}, and no other edges.

Note that, for each r ≥ 3, δ(Mr) = 2r − 6. Using Lemma 2.1 repeatedly, we can show that any graph H with
32r + 62 vertices which contains a copy of M16r+31 has a fractional Kr-decomposition (see Lemma 3.6). Later,
in Section 5, we will carry out some more work to allow us to use graphs H with only 18r + 18 vertices (see
Lemma 5.4).

3.1 Our initial probability distribution

We are now ready to give our random process. Note that the following lemma will be applied eventually with r
replaced by a larger function of r. We will also use a divisibility condition on the number of vertices in G in this
lemma; this, as we shall see, we can assume by duplicating vertices in our initial graph.

Lemma 3.2. Let r ≥ 3 and let G be a graph with n = 2rm vertices and δ(G) ≥ n − m/2. Let M be the set
of induced subgraphs of G with 2r vertices which contain a copy of Mr. Then, with an appropriate probability
distribution, we may randomly select a graph M ∈M so that, for each e ∈ E(G),

1− 4

r
≤ m2 · P(e ∈ E(M)) ≤ 1. (3.1)
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A1

a1 b1

A2

a2 b2

A3

a3 b3

A4

a4 b4
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ar−1br−1 ar br

B = V (M)

A1,1

A1,2

Ar,1

Ar,2

B2 B5
B3

B4

Br

Figure 1: The random process used to select the set B = {a1, b1, . . . , ar, br} which forms the vertex set of the
random subgraph M . At each stage i, 1 ≤ i ≤ r, a set of vertices Ai = Ai,1 ∪ Ai,2 is considered, from which we
select two vertices ai and bi. For i ≥ 2, Ai,1 is chosen to contain any non-neighbours of ai−1 and bi−1 which have
not yet been considered (the vertices in the set Bi).

Proof. Let B = {a1, b1, . . . , ar, br} be a random subset of V (G) picked according to the following method, which
is depicted in Figure 1: Let B1 = ∅ and carry out the following steps for 1 ≤ i ≤ r.

S1 If i > 1, let Bi = (N c(ai−1) ∪N c(bi−1)) \ (
⋃
j<iAj), noting that |Bi| ≤ m.

S2 Let Ai,1 be the set Bi combined with an (m − |Bi|)-sized subset of V (G) \ ((
⋃
j<iAj) ∪ Bi) selected inde-

pendently and uniformly at random.

S3 Let Ai,2 be an m-sized subset of V (G) \ ((
⋃
j<iAj)∪Ai,1) selected independently and uniformly at random,

and let Ai = Ai,1 ∪Ai,2.

S4 Let {ai, bi} be a pair of distinct vertices from Ai chosen independently at random so that

P({ai, bi} = {a, b}) =

{
1/m2 if {a, b} ⊆ Ai,1 or {a, b} ⊆ Ai,2
1/m3 otherwise.

(3.2)

Let M = G[B]. We will show that M is a random subgraph in M which satisfies (3.1) for each e ∈ E(G).
In the process above, we found a random partition (Ai)

r
i=1, and selected 2 vertices from each set Ai to form

B, so that |B| = 2r. Note further that, for each i < r, N c(ai) ∪N c(bi) ⊆ Bi+1 ∪ (
⋃
j≤iAj). Therefore, for each

i < r and j > i+ 1, aj , bj ∈ Aj are neighbours of ai and bi. Thus, M ∈M.
Therefore, it is only left to show that (3.1) holds for each e ∈ E(G). We will show this by conditioning on how

the vertices of e appear in the random partition.
Fix an edge e = uv ∈ E(G), and note that if u appears in Ai, but v has not appeared in Aj , j ≤ i, then

the probability that e ∈ E(M) is 1/m2. Indeed, in this case u and v were selected to be in B independently at
random, with (by symmetry) probability 1/m, so that

P
(
uv ∈ E(M)|∃i s.t. u ∈ Ai and v /∈

⋃
j≤i

Aj
)

= 1/m2. (3.3)
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This also holds with u and v switched, so we only need consider the case when u and v first appear in the same
set Ai. In this case, the edge uv appears in M with the distribution in (3.2), so that

P(uv ∈ E(M)|∃i and j s.t. {u, v} ⊆ Ai,j) = 1/m2, (3.4)

and
P(uv ∈ E(M)|∃i s.t. u ∈ Ai,1 and v ∈ Ai,2) = 1/m3. (3.5)

By (3.3), (3.4) and (3.5), and the symmetric cases with u switched with v, we therefore have

P(e ∈ E(M)|@i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅) = 1/m2

and
P(e ∈ E(M)|∃i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅) = 1/m3.

Thus,

P(e ∈ E(M)) = P(@i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅) ·
1

m2
+ P(∃i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅) ·

1

m3

=
1

m2
−
(

1

m2
− 1

m3

)
· P(∃i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅),

so that
1 ≥ m2 · P(e ∈ E(M)) ≥ 1− P(∃i s.t. V (e) ∩Ai,1, V (e) ∩Ai,2 6= ∅). (3.6)

We will show the following claim.

Claim 3.3. For each i ∈ [r], P(v ∈ Ai,2|u ∈ Ai,1) ≤ 2/r.

Claim 3.3 implies that (3.1) holds for the edge uv, as required. Indeed, we have

P(∃i s.t. v ∈ Ai,2 and u ∈ Ai,1) =

r∑
i=1

P(v ∈ Ai,2|u ∈ Ai,1)·P(u ∈ Ai,1)

≤ (2/r)·
r∑
i=1

P(u ∈ Ai,1) ≤ 2/r.

In combination with the symmetric case with u switched with v, and (3.6), this implies (3.1). Therefore, it is left
only to prove Claim 3.3.

Proof of Claim 3.3. Firstly, if i ≤ 3r/4, we have

P(v ∈ Ai,2|u ∈ Ai,1) ≤ P
(
v ∈ Ai,2|u ∈ Ai,1∧v /∈

(⋃
j<i

Aj
)
∪Ai,1

)
=

m

2(r − i)m+m
≤ 2

r
.

We therefore can assume that i > 3r/4. It is plausible that P(v ∈ Ai,2|u ∈ Ai,1) ≤ 2/r, as, if u ∈ Ai,1, then in the
above process it seems far more likely that v appears in

⋃
j<i(Aj \ Bj) than in Ai,2, as the former set is at least

(i− 1) times as large as the latter. Conditioning on u ∈ Ai,1, however, might reduce the probability v appears in
the former set, so we will prove carefully that P(v ∈ Ai,2|u ∈ Ai,1) ≤ 2/r.

We need to consider the random process up to and including the choice of Ai,2 (when we will certainly know
whether v ∈ Ai,2 or not). In particular, we consider the space of all the possible choices that can be made during
this part of the process. That is, all possible choices of

X := (A1,1, A1,2, a1, b1, . . . , Ai−1,1, Ai−1,2, ai−1, bi−1, Ai,1, Ai,2).

Note that
Y = (Ā1,1, Ā1,2, ā1, b̄1, . . . , Āi−1,1, Āi−1,2, āi−1, b̄i−1, Āi,1, Āi,2) (3.7)

is a possible value for X if
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• Ā1,1, Ā1,2, . . . , Āi,1, Āi,2 are disjoint sets with size m in V (G),

• for each j ∈ [i− 1], āj , b̄j ∈ Āj,1 ∪ Āj,2, and

• for each j ∈ [i− 1], N c(āj) ∪N c(b̄j) ⊆ (
⋃
j′<j(Āj′,1 ∪ Āj′,2)) ∪ Āj,1.

To calculate P(v ∈ Ai,2|u ∈ Ai,1) we need to consider all possible such Y for which, in addition, u ∈ Āi,1 – let
Z be the set of such sequences. Furthermore, let Z ′ be the set of such sequences in Z for which v ∈ Āi,2. We
therefore have

P(v ∈ Ai,2|u ∈ Ai,1) =
P(X ∈ Z ′)
P(X ∈ Z)

.

Calculating this fraction is complicated by the fact that P(X = Y ) is likely to differ across Y ∈ Z. Thus, let
us partition Z into classes Z1, . . . ,Z`, for the smallest possible `, so that there are p1, . . . pk > 0 such that, for
each k ∈ [`] and Y ∈ Zk, P(X = Y ) = pk. For each k ∈ [`], let Z ′k = Zk ∩ Z ′. We will show the following claim.

Claim 3.4. For each k ∈ [`], |Z ′k| ≤ 2|Zk|/r.

If Claim 3.4 holds, then

P(v ∈ Ai,2|u ∈ Ai,1) =
P(X ∈ Z ′)
P(X ∈ Z)

=

∑
k∈[`] pk|Z ′k|∑
k∈[`] pk|Zk|

≤ max
k∈[`]

{
|Z ′k|
|Zk|

}
≤ 2

r
,

and hence Claim 3.3 holds. It is sufficient then to prove Claim 3.4.

Proof of Claim 3.4. Fix k ∈ [`]. Create an auxilliary bipartite graph H with vertex classes Zk \Z ′k and Z ′k, where
Y Y ′ is an edge for Y ∈ Zk \ Z ′k and Y ′ ∈ Z ′k exactly when Y can be transformed into Y ′ by switching v with
some other vertex.

Note that, for each Y ∈ Zk \ Z ′k labelled as in (3.7), v has to be switched with some vertex in Āi,2 in order to
get a sequence in Z ′k. Thus, for each Y ∈ Zk \ Z ′k, dH(Y ) ≤ m. We will show, for each Y ′ ∈ Z ′k, dH(Y ′) ≥ mr/2,
whence

(mr/2) · |Z ′k| ≤
∑
Y ′∈Z′

k

dH(Y ′) = e(H) =
∑

Y ∈Zk\Z′
k

dH(Y ) ≤ m|Zk \ Z ′k| ≤ m|Zk|,

and thus Claim 3.4 follows.
Fix then Y ′ = (Ā′1,1, Ā

′
1,2, ā

′
1, b̄
′
1, . . . , Ā

′
i−1,1, Ā

′
i−1,2, ā

′
i−1, b̄

′
i−1, Ā

′
i,1, Ā

′
i,2) ∈ Z ′k. Recall the steps S1–S4 in the

random process. Note that S1 is deterministic and, for each j ≤ i, the probability of each possible choice at S3
is always the same. For each j ≤ i, the probability of each possible choice at S2 depends exactly on the size of
(N c(aj)∪N c(bj)) \ (

⋃
j′<j Aj′). For each j < i, the probability of each possible choice at S4 depends on whether

each of aj and bj appears in Aj,1 or Aj,2.
Thus, noting that, for each j < i, {ā′j , b̄′j} ⊆ N c(ā′j) ∪ N c(b̄′j), we can switch any vertices not in {u} ∪(⋃
j<i(N

c(ā′j) ∪N c(b̄′j)
)

in Y ′ and get a sequence with the same probability of occurence as Y . Therefore, if we

take Y ′ and switch v with any vertex in
(⋃

j<i(Ā
′
j,1 ∪ Ā′j,2)

)
\
(⋃

j<i(N
c(ā′j)∪N c(b̄′j)

)
then we get a sequence in

Zk \ Z ′k. Therefore,

dH(Y ′) ≥
∣∣∣( ⋃
j<i

(Ā′j,1 ∪ Ā′j,2)
)∖( ⋃

j<i

(N c(ā′j) ∪N c(b̄′j)
)∣∣∣ ≥ 2(i− 1)m− 2(i− 1)m/2 = (i− 1)m ≥ mr/2,

as required. This completes the proof of Claim 3.4, and hence the lemma.

3.2 Turning to our initial weighting

We will now show our (appropriately-sized) random subgraph H has a fractional Kr-decomposition using the
following lemma, before later improving our methods in Section 5.

Lemma 3.5. Let r ≥ 3 and ` ≥ 1. Let G be a graph on at least 2`r + 2`+1 − 2 vertices so that E(Ḡ) can be split
into ` matchings. Then, G has a fractional Kr-decomposition.
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Proof. We will prove the lemma for all r ≥ 3 using induction on `. When ` = 1, the lemma follows directly
from Lemma 2.1. Let ` > 1 and assume then that the lemma holds for ` − 1, and let G be a graph on at least
2`r + 2`+1 − 2 = 2`−1(2r + 2) + 2` − 2 vertices so that E(Ḡ) can be split into ` matchings.

Let E(Ḡ) = E1 ∪ E2, where E1 is a matching and E2 can be split into ` − 1 matchings. Let M be the set
of induced subgraphs of G with 2r + 2 vertices and no two vertices in the same edge in E2. By the inductive
hypothesis, G + E1 has a fractional K2r+2-decomposition. Each copy of K2r+2 in G + E1 has the same vertex
set as a graph in M, and therefore G has a fractional decomposition into graphs in M. By Lemma 2.1, each
subgraph in M has a fractional Kr-decomposition, and thus G has as well.

We can now combine Lemmas 3.2 and 3.5 to give our initial weighting.

Lemma 3.6. Let r ≥ 3 and let G be a graph with n = (32r + 62)m vertices and δ(G) ≥ n−m/2. Then, there is
a set of weights wK , K ∈ Kr, such that, for each edge e ∈ E(G),

1− 1

r
≤

∑
K∈Kr:e∈E(K)

wK ≤ 1. (3.8)

Proof. Let M be the set of induced subgraphs of G with 32r + 62 vertices which contain a copy of M16r+31. By
Lemma 3.2, we may find non-negative weights pM , M ∈M, so that, for each e ∈ E(G),

1− 1

r
≤ 1− 4

16r + 31
≤

∑
M∈M:e∈E(M)

pM ≤ 1. (3.9)

The set E(M̄16r+31) can be covered by 5 matchings, and hence, for each M ∈M, E(M̄) can as well. Therefore, by
Lemma 3.5, each M ∈M has a fractional Kr-decomposition, so there exist non-negative weights wM,K , K ∈ Kr,
such that, for each e ∈ E(G), ∑

K∈Kr:e∈E(K)

wM,K = 1{e∈E(M)}.

For each K ∈ Kr, let wK =
∑
M∈M pM · wM,K ≥ 0. Then, for each e ∈ E(G),∑

K∈Kr:e∈E(K)

wK =
∑
M∈M

pM ·
∑

K∈Kr:e∈E(K)

wM,K =
∑
M∈M

pM · 1{e∈E(M)}. (3.10)

Combining (3.9) and (3.10) shows that the weights wK , K ∈ Kr, satisfy (3.8).

4 Tidying up the approximate fractional decomposition

The aim of this section is to prove the following lemma, which shows that a graph with an approximate fractional
K2r+2-decomposition has a fractional Kr-decomposition.

Lemma 4.1. Let r ≥ 3 and let G be a graph for which there is a set of non-negative weights wK , K ∈ K2r+2,
such that, for each e ∈ E(G),

1− 1

2r + 1
≤

∑
K∈K2r+2:e∈E(K)

wK ≤ 1. (4.1)

Then, G has a fractional Kr-decomposition.

We then use this lemma to deduce from Lemma 3.6 that any graph G with minimum degree at least (1 −
1/(128r + 252))|G| has a fractional Kr-decomposition (see Lemma 4.3). In order to prove Lemma 4.1, we first
show that we can weight the r-cliques of K2r+2 to achieve any particular weight over each edge, as long as these
weights lie in [1− 1/(2r + 1), 1]. The proof of the following lemma was sketched in Section 2.2.
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Lemma 4.2. Let r ≥ 3 and f : E(K2r+2) → [1 − 1/(2r + 1), 1]. Let Kr = Kr(K2r+2). Then, there is a set of
non-negative weights wK , K ∈ Kr, such that, for each e ∈ E(K2r+2),∑

K∈Kr:e∈E(K)

wK = f(e).

Proof. As is well-known, we can find disjoint matchings M1, . . . ,M2r+1 such that
⋃
iMi = E(K2r+2). Let M be

the set of matchings M ⊆ E(K2r+2). By Lemma 2.1, for each M ∈M, we can choose weights wM,K ≥ 0, K ∈ Kr,
so that, for each e ∈ E(K2r+2), ∑

K∈Kr:e∈E(K)

wM,K = 1{e/∈M}. (4.2)

Now, for each i ∈ [2r + 1], label the edges in Mi as ei,1, . . . , ei,r+1, so that f(ei,1) ≤ f(ei,2) ≤ . . . ≤ f(ei,r+1).
For each M ∈M, let

wM =


f(ei,j+1)− f(ei,j) if M = {ei,1, . . . , ei,j} for some i ∈ [2r + 1], j ∈ [r]
1− f(ei,r+1) if M = {ei,1, . . . , ei,r+1} for some i ∈ [2r + 1]
1−

∑
i∈[2r+1](1− f(ei,1)) if M = ∅

0 otherwise.

(4.3)

As f(ei,1) ≥ 1− 1/(2r+ 1) for each i ∈ [2r+ 1], we have w∅ ≥ 0. As f(ei,r+1) ≤ 1, and due to the ordering of the
edges in each matching Mi, the weights wM , M ∈M, give a non-negative weighting of the matchings in M. For
each K ∈ Kr, let

wK =
∑
M∈M

wM · wM,K , (4.4)

so that wK , K ∈ Kr, is a non-negative weighting of Kr.
Note that, for each i ∈ [2r + 1] and j ∈ [r + 1], we have∑

j′<j

w{ei,1,...,ei,j′} = f(ei,j)− f(ei,1), (4.5)

and, for each i ∈ [2r + 1], we have ∑
j∈[r+1]

w{ei,1,...,ei,j} = 1− f(ei,1). (4.6)

Therefore, for each e ∈ E(G), letting i and j be such that e = ei,j , we have∑
K∈Kr:e∈E(K)

wK
(4.4)
=

∑
M∈M

wM ·
∑

K∈Kr:e∈E(K)

wM,K
(4.2)
=

∑
M∈M

wM · 1{e/∈M}

= w∅ +
∑
i′ 6=i

∑
j′∈[r+1]

w{ei′,1,...,ei′,j′} +
∑
j′<j

w{ei,1,...,ei,j′}

(4.6),(4.5)
= w∅ +

∑
i′ 6=i

(1− f(ei′,1)) + f(ei,j)− f(ei,1)

(4.3)
= 1− (1− f(ei,1)) + f(ei,j)− f(ei,1) = f(ei,j),

as required.

We can now prove Lemma 4.1 by using Lemma 4.2 on each (2r + 2)-clique of G simultaneously.

Proof of Lemma 4.1. For each e ∈ E(G), let ze = (1 + 1/(2r)) ·
∑
K∈K2r+2:e∈E(K) wK , so that, using (4.1), we

have 1 − 1/(2r + 1) ≤ 1/ze ≤ 1. For each K ∈ K2r+2, using Lemma 4.2, take non-negative weights wK,K′ ,
K ′ ∈ Kr = Kr(G), so that, for each e ∈ E(G),∑

K′∈Kr:e∈E(K′)

wK,K′ = (1/ze) · 1{e∈E(K)}. (4.7)
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For each K ′ ∈ Kr, let wK′ =
∑
K∈K2r+2

(1 + 1/(2r))wK · wK,K′ , so that we have a non-negative weighting of

Kr. Then, for each e ∈ E(G), we have∑
K′∈Kr:e∈E(K′)

wK′ =
∑

K∈K2r+2

(1 + 1/(2r))wK ·
∑

K′∈Kr:e∈E(K′)

wK,K′

(4.7)
=

∑
K∈K2r+2

(1 + 1/(2r))wK · (1/ze) · 1{e∈E(K)}

=
(

(1 + 1/(2r))
∑

K∈K2r+2:e∈E(K)

wK

)
/ze = 1.

Thus, the weights wK′ , K ′ ∈ Kr, form a fractional Kr-decomposition of G.

We can now conclude from Lemma 3.6 and Lemma 4.1 the following weakened form of Theorem 1.3.

Lemma 4.3. Let r ≥ 3. If a graph G has minimum degree at least (1−1/(128r+252))|G|, then G has a fractional
Kr-decomposition.

Proof. Let m = |G| and form a graph G′ by copying each vertex of G 64r + 126 times, where two vertices
in G′ have an edge between them if and only if the two original vertices did in G. Then, we have δ(G′) ≥
|G′| − (64r + 126)|G|/(128r + 252) = |G′| −m/2.

By Lemma 3.6, there is a set of weights wK , K ∈ K2r+2 := K2r+2(G′), such that, for each e ∈ E(G′),

1− 1

2r + 2
≤

∑
K∈K2r+2:e∈E(K)

wK ≤ 1.

Thus, by Lemma 4.1, G′ has a fractional Kr-decomposition.
Each r-clique in G′ has vertices which are copied from some shared r-clique in G. Let τ : Kr(G′) → Kr(G)

be the natural projection so that, for each K ∈ Kr(G′), V (K) is a set of copies of vertices in V (τ(K)). For
each K ∈ Kr(G), letting wK = (1/k2) ·

∑
K′∈Kr(G′):τ(K′)=K wK′ , with k = 64r + 126, then forms a fractional

Kr-decomposition of G.

5 Improving on Lemma 3.6

To improve on Lemma 3.6, we essentially consider the following question: For how small a value of ` can we show
that any graph G with 2` vertices containing a copy of M` has a Kr-decomposition (see Definition 3.1)? For
Lemma 3.6, where we used ` ≥ 16r + 31, we simply used Lemma 2.1 applied several times (via Lemma 3.5). In
this section, we will improve this to use ` ≥ 9r+ 8 in Lemma 5.3 (taking also that ` is even to simplify the proof).
We will first define a new graph Wk and show that, for sufficiently large k, any graph with a spanning copy of
Wk has a fractional Kr-decomposition.

Definition 5.1. Let Wk be a complete k-partite graph with classes of size 4 on the vertex set [4k].

Lemma 5.2. Let r ≥ 3, k ≥ (3r + 2)/2, and let G be a graph with 4k vertices which contains a copy of Wk.
Then, G has a fractional Kr-decomposition.

Proof. Using that G contains a copy of Wk, divide the set V (G) into A1, . . . , Ak so that each set Ai has size 4
and G contains all the edges between different sets Ai. Let E ⊆ E(G) be the set of edges of G which lie within
some set Ai. Let M be the set of all subgraphs M ⊆ G with |M | = 2r + 2 vertices and δ(M) ≥ |M | − 2. By
picking M ∈M randomly, we will weight the subgraphs inM so that each edge in G is given total weight 1. As,
by Lemma 2.1, each subgraph M ∈ M has a fractional Kr-decomposition, this implies that G has a fractional
Kr-decomposition.

Pick I ⊆ [k] randomly so that |I| = r + 1, and, starting with V0 = ∅, for each i ∈ I, pick uniformly and
independently a random subset of Ai with size 2 and add it to V0. Let M = G[V0]. Note that M ∈M.
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If e ∈ E(G) \ E lies between Ai and Aj , then

P(e ∈ E(M)) = P(i, j ∈ I) · 1/4 =

(
r+1
2

)
4
(
k
2

) ,
and, if e ∈ E lies within Ai, then

P(e ∈ E(M)) = P(i ∈ I) · 1/6 = (r + 1)/(6k) ≥
(
r+1
2

)
4
(
k
2

) ,
as k ≥ (3r+ 2)/2. Note that, if we delete any set of edges in E from M , then the resulting subgraph is still inM.
Therefore, we can alter our probability distribution to get a random subgraph M ′ ∈M so that, for every e ∈ E(G),
we have P(e ∈ E(M ′)) =

(
r+1
2

)
/4
(
k
2

)
. Thus, normalising appropriately, we can find weights wM , M ∈M, so that,

for each e ∈ E(G),
∑
M∈M:e∈E(M) wM = 1. As every graph in M has a fractional Kr-decomposition, G itself

then has a fractional Kr-decomposition.

We can now show that, if ` ≥ (9r + 8)/2, then any graph containing a spanning copy of M2` has a fractional
Kr-decomposition. We do this by fractionally decomposing such a graph into subgraphs with a spanning copy of
Wk or C̄4k (for some appropriate k), where C4k is the cycle on 4k vertices. By using Lemma 5.2 and Lemma 3.5
respectively to find a fractional Kr-decomposition of these subgraphs, we will get a fractional Kr-decomposition
of the original graph.

Lemma 5.3. Let r ≥ 3 and ` ≥ (9r + 8)/2. If G is a graph with 4` vertices which contains a copy of M2`, then
G has a fractional Kr-decomposition.

Proof. Let k = d(3r+ 2)/2e. Label V (G) as V = {a1, b1, . . . , a2`, b2`} so that G has all edges between sets {ai, bi}
and {aj , bj} if i /∈ {j−1, j, j+1}, which is possible as G contains a copy of M2`. LetM be the set of all subgraphs
H ⊆ G with |H| = 4k which contain a copy of either C̄4k or Wk.

Note that, for any graph H with 4k ≥ 4r + 6 vertices which contains a copy of C̄4k, the set E(H̄) can be
covered by two matchings. Therefore, by Lemma 3.5, any such graph H has a fractional Kr-decomposition. In
combination with Lemma 5.2, then, each graph in M has a fractional Kr-decomposition.

For each j ∈ [`], let Aj = {a2j−1, b2j−1, a2j , b2j}. For each i ∈ {0, 1, 2}, pick a random induced subgraph Ci of
G with |Ci| = 4k according to the following procedure:

• Select a subset I ⊆ [`] with |I| = 2k uniformly and independently.

• For each j ∈ I,

– if i = 0, let V (Ci) ∩Aj = {a2j−1, b2j−1} or {a2j , b2j} with probability 1/2,

– if i = 1, let V (Ci) ∩Aj = {a2j−1, a2j} or {b2j−1, b2j} with probability 1/2, and

– if i = 2, let V (Ci) ∩Aj = {a2j−1, b2j} or {b2j−1, a2j} with probability 1/2.

• For each j /∈ I, let V (Ci) ∩Aj = ∅.

Then, pick i ∈ {0, 1, 2} uniformly and independently, and let C = Ci. Note that C0 contains a copy of Wk and
C1 and C2 both contain a copy of C̄4k. Therefore, C ∈M.

Let E ⊆ E(G) be the set of edges of G which each lie within some set Ai. If e ∈ E(G) \E lies between Ai and
Aj , then

P(e ∈ E(C)) = P(i, j ∈ I) · 1/4 =

(
2k
2

)
4
(
`
2

) ,
and if e ∈ E lies within Ai, then

P(e ∈ E(C)) = P(i ∈ I) · 1/6 = k/(3`) ≥
(
2k
2

)
4
(
`
2

) .
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Note that deleting any set of edges in E from C gives another subgraph in M. Therefore, we can alter our
probability distribution to give a random subgraph C ′ ∈M so that P(e ∈ E(C ′)) =

(
2k
2

)
/4
(
`
2

)
.

That is, normalising appropriately, we can find weights wM , M ∈ M, so that, for each e ∈ E(G), we have∑
M∈M:e∈E(M) wM = 1. Recalling that every graph in M has a fractional Kr-decomposition, G then has a

fractional Kr-decomposition.

We can now use this improved fractional decomposition of graphs containing a spanning copy of M2` to improve
on Lemma 3.6.

Lemma 5.4. Let r ≥ 3, ` = d(9r+ 8)/2e and let G be a graph with n = 4`m vertices and δ(G) ≥ n−m/2. Then,
there is a set of weights wK , K ∈ Kr, such that, for each edge e ∈ E(G),

1− 1

r
≤

∑
K∈Kr:e∈E(K)

wK ≤ 1. (5.1)

Proof. LetM be the set of induced subgraphs of G with 4` vertices which contain a copy of M2`. By Lemma 3.2,
we can find non-negative weights pM , M ∈M, so that, for each e ∈ E(G),

1− 1

r
≤ 1− 4

2`
≤

∑
M∈M:e∈E(M)

pM ≤ 1.

By Lemma 5.3, each graph in M has a fractional Kr-decomposition. Similarly to the proof of Lemma 3.6, we
can combine these fractional Kr-decompositions with the weighting of the graphs in M to get a weighting wK ,
K ∈ Kr, which satisfies (5.1).

Subject only to the remaining proof of Lemma 2.1, we can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let ` = d(18r + 26)/2e. Note that we can assume n = 4`m ≤ (36r + 54)m ≤ 50rm by
copying each vertex 4` times. Then, we have δ(G) ≥ |G| −m/2. By Lemma 5.4, there is a set of weights wK ,
K ∈ K2r+2, such that, for each edge e ∈ E(G),

1− 1

2r + 2
≤

∑
K∈K2r+2:e∈E(K)

wK ≤ 1.

Thus, by Lemma 4.1, G has a fractional Kr-decomposition.

6 Proof of Lemma 2.1

It remains only to show that any complete graph Kk on k ≥ 2r+ 2 vertices with any set of independent edges M
removed, Kk −M , has a fractional Kr-decomposition, thus proving Lemma 2.1. We will easily be able to show
that we may assume that k = 2r + 2 and 1 ≤ |M | ≤ r. Then, up to symmetry, there are three types of edges
in K2r+2 −M : edges with 0, 1, or 2 vertices in edges in M . We will consider three types of r-clique in Kk −M
defined by the number of vertices they contain in M . By adding weight uniformly to each clique of one type we
can add weight to the edges of Kk −M so that the same weight is added to edges of the same type. By choosing
three different weights to add to the three different types of cliques, we can control the amount of weight added
to each type of edge and gain a fractional Kr-decomposition of Kk −M .

Proof of Lemma 2.1. Note that we can assume that G has 2r + 2 vertices. Indeed, if G has more than 2r + 2
vertices, then by giving the induced 2r+2 vertex subgraphs of G an appropriate uniform weight we can fractionally
decompose G into graphs with 2r + 2 vertices each of which only lacks edges in some matching.

Let G then be a graph with vertex set [2r + 2] so that M := E(Ḡ) is a matching. Let k = |M |, and let A be
the set of vertices in some edge in M , so that |A| = 2k. If k = r + 1 or 0, then adding weight 1 to every r-clique
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in G weights the edges of G uniformly (due to the symmetry in G), and hence, by normalising these weights
appropriately, we can find a fractional Kr-decomposition of G. Let us assume then that 1 ≤ k ≤ r.

For each i ∈ {0, 1, 2}, let Ei = {e ∈ E(G) : |V (e) ∩ A| = i}. If we can find a non-negative weighting wK ,
K ∈ Kr, so that, for each i ∈ {0, 1, 2}, ∑

K∈Kr

|E(K) ∩ Ei| · wK = |Ei|, (6.1)

then, by the symmetry in G, we can easily convert this into a fractional Kr-decomposition of G. Indeed, given
such a weighting wK , K ∈ Kr, for each K ∈ Kr let

w′K =
1

|{K ′ ∈ Kr : |V (K ′) ∩A| = |V (K) ∩A|}|
∑

K′∈Kr:|V (K′)∩A|=|V (K)∩A|

wK′ . (6.2)

Note that, for each ` ∈ {0, 1, . . . , k}, w′K is the same for each K ∈ Kr with |V (K)∩A| = `. Due to the symmetry
in G, then, for each i ∈ {0, 1, 2}, ze :=

∑
K∈Kr:e∈E(K) w

′
K is the same, zi say, for each e ∈ Ei. Furthermore, for

each ` ∈ {0, 1, . . . , k} and i ∈ {0, 1, 2}, |Ei ∩ E(K)| is the same for each K ∈ Kr with |V (K) ∩ A| = `. Thus, for
each ` ∈ {0, 1, . . . , k} and i ∈ {0, 1, 2}, we have from (6.2) that∑

K∈Kr:|V (K)∩A|=`

|Ei ∩ E(K)| · w′K =
∑

K∈Kr:|V (K)∩A|=`

|Ei ∩ E(K)| · wK . (6.3)

Therefore, for each i ∈ {0, 1, 2},

|Ei| · zi =
∑
e∈Ei

ze =
∑
e∈Ei

∑
K∈Kr:e∈E(K)

w′K =
∑
K∈Kr

|E(K) ∩ Ei| · w′K
(6.3)
=

∑
K∈Kr

|E(K) ∩ Ei| · wK
(6.1)
= |Ei|,

and hence zi = 1. That is, for any e ∈ E(G),
∑
K∈Kr:e∈E(K) w

′
K = 1. Thus, it is sufficient to find a non-negative

weighting that satisfies (6.1).
For each k′, 0 ≤ k′ ≤ k, if an r-clique has k′ vertices in A, then it contains k′(k′ − 1)/2 edges in E2, k′(r− k′)

edges in E1 and (r− k′)(r− k′ − 1)/2 edges in E0. Furthermore, |E2| = 2k(2k− 2)/2, |E1| = 2k(2r+ 2− 2k) and
|E0| = (2r + 2 − 2k)(2r + 1 − 2k)/2. Note that there exists an r-clique in G with k′ vertices in A if 0 ≤ k′ ≤ k
and r − k′ ≤ 2r + 2− |A| = 2r + 2− 2k, or, equivalently, max{0, 2k − r − 2} ≤ k′ ≤ k.

Thus, to prove the lemma it is sufficient to find max{0, 2k − r − 2} ≤ k1, k2, k3 ≤ k and x, y, z ≥ 0 for which
we have  1

2k1(k1 − 1) 1
2k2(k2 − 1) 1

2k3(k3 − 1)
k1(r − k1) k2(r − k2) k3(r − k3)

1
2 (r − k1)(r − k1 − 1) 1

2 (r − k2)(r − k2 − 1) 1
2 (r − k3)(r − k3 − 1)

 ·
xy
z


=

 k(2k − 2)
2k(2r + 2− 2k)

(r + 1− k)(2r + 1− 2k)

 . (6.4)

Now, if 2k − r − 2 ≥ 0, then taking k1 = k, k2 = k − 1, k3 = 2k − r − 2,

x =
2(r + 1− k)(2(r − k)2 + kr + 5r − 4k + 2)

r(r − 1)(r + 2− k)
,

y =
2k(3r − 2k + 2)

r(r − 1)
and z =

2k(k − 1)

r(r − 1)(r + 2− k)

satisfies (6.4). As k ≤ r, we have k−1 > 2k−r−2, so that 2k−r−2 ≤ k1, k2, k3 ≤ r and, as r ≥ 3 and 1 ≤ k ≤ r,
we have x, y, z ≥ 0.

If 2k − r − 2 < 0, then taking k1 = k, k2 = k − 1, k3 = 0,

x =
4(r + 1− k)

r − 1
, y =

4k

r − 1
, and z =

2(r + 1− k)

r(r − 1)

satisfies (6.4), where x, y, z ≥ 0 as k ≤ r and r ≥ 3. Thus, for all possible values of k, G has a fractional
Kr-decomposition.
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