Our main result essentially reduces the problem of finding an
edge-decomposition of a balanced r-partite graph of large minimum degree into
r-cliques to the problem of finding a fractional r-clique decomposition or an
approximate one. Together with very recent results of Bowditch and Dukes as
well as Montgomery on fractional decompositions into triangles and cliques
respectively, this gives the best known bounds on the minimum degree which
ensures an edge-decomposition of an r-partite graph into r-cliques (subject to
trivially necessary divisibility conditions). The case of triangles translates
into the setting of partially completed Latin squares and more generally the
case of r-cliques translates into the setting of partially completed mutually
orthogonal Latin squares.Comment: 40 pages. To appear in Journal of Combinatorial Theory, Series