2,016 research outputs found

    Worst-Case Scenarios for Greedy, Centrality-Based Network Protection Strategies

    Full text link
    The task of allocating preventative resources to a computer network in order to protect against the spread of viruses is addressed. Virus spreading dynamics are described by a linearized SIS model and protection is framed by an optimization problem which maximizes the rate at which a virus in the network is contained given finite resources. One approach to problems of this type involve greedy heuristics which allocate all resources to the nodes with large centrality measures. We address the worst case performance of such greedy algorithms be constructing networks for which these greedy allocations are arbitrarily inefficient. An example application is presented in which such a worst case network might arise naturally and our results are verified numerically by leveraging recent results which allow the exact optimal solution to be computed via geometric programming

    Benchmarking Measures of Network Influence

    Get PDF
    Identifying key agents for the transmission of diseases (ideas, technology, etc.) across social networks has predominantly relied on measures of centrality on a static base network or a temporally flattened graph of agent interactions. Various measures have been proposed as the best trackers of influence, such as degree centrality, betweenness, and kk-shell, depending on the structure of the connectivity. We consider SIR and SIS propagation dynamics on a temporally-extruded network of observed interactions and measure the conditional marginal spread as the change in the magnitude of the infection given the removal of each agent at each time: its temporal knockout (TKO) score. We argue that the exhaustive approach of the TKO score makes it an effective benchmark measure for evaluating the accuracy of other, often more practical, measures of influence. We find that none of the common network measures applied to the induced flat graphs are accurate predictors of network propagation influence on the systems studied; however, temporal networks and the TKO measure provide the requisite targets for the hunt for effective predictive measures

    Optimal Vaccine Allocation to Control Epidemic Outbreaks in Arbitrary Networks

    Full text link
    We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network

    Containing epidemic outbreaks by message-passing techniques

    Get PDF
    The problem of targeted network immunization can be defined as the one of finding a subset of nodes in a network to immunize or vaccinate in order to minimize a tradeoff between the cost of vaccination and the final (stationary) expected infection under a given epidemic model. Although computing the expected infection is a hard computational problem, simple and efficient mean-field approximations have been put forward in the literature in recent years. The optimization problem can be recast into a constrained one in which the constraints enforce local mean-field equations describing the average stationary state of the epidemic process. For a wide class of epidemic models, including the susceptible-infected-removed and the susceptible-infected-susceptible models, we define a message-passing approach to network immunization that allows us to study the statistical properties of epidemic outbreaks in the presence of immunized nodes as well as to find (nearly) optimal immunization sets for a given choice of parameters and costs. The algorithm scales linearly with the size of the graph and it can be made efficient even on large networks. We compare its performance with topologically based heuristics, greedy methods, and simulated annealing

    Traffic Control for Network Protection Against Spreading Processes

    Full text link
    Epidemic outbreaks in human populations are facilitated by the underlying transportation network. We consider strategies for containing a viral spreading process by optimally allocating a limited budget to three types of protection resources: (i) Traffic control resources, (ii), preventative resources and (iii) corrective resources. Traffic control resources are employed to impose restrictions on the traffic flowing across directed edges in the transportation network. Preventative resources are allocated to nodes to reduce the probability of infection at that node (e.g. vaccines), and corrective resources are allocated to nodes to increase the recovery rate at that node (e.g. antidotes). We assume these resources have monetary costs associated with them, from which we formalize an optimal budget allocation problem which maximizes containment of the infection. We present a polynomial time solution to the optimal budget allocation problem using Geometric Programming (GP) for an arbitrary weighted and directed contact network and a large class of resource cost functions. We illustrate our approach by designing optimal traffic control strategies to contain an epidemic outbreak that propagates through a real-world air transportation network.Comment: arXiv admin note: text overlap with arXiv:1309.627

    Optimal Resource Allocation for Network Protection Against Spreading Processes

    Get PDF
    We study the problem of containing spreading processes in arbitrary directed networks by distributing protection resources throughout the nodes of the network. We consider two types of protection resources are available: (i) Preventive resources able to defend nodes against the spreading (such as vaccines in a viral infection process), and (ii) corrective resources able to neutralize the spreading after it has reached a node (such as antidotes). We assume that both preventive and corrective resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We analyze these questions in the context of viral spreading processes in directed networks. We study the following two problems: (i) Given a fixed budget, find the optimal allocation of preventive and corrective resources in the network to achieve the highest level of containment, and (ii) when a budget is not specified, find the minimum budget required to control the spreading process. We show that both resource allocation problems can be solved in polynomial time using Geometric Programming (GP) for arbitrary directed graphs of nonidentical nodes and a wide class of cost functions. Furthermore, our approach allows to optimize simultaneously over both preventive and corrective resources, even in the case of cost functions being node-dependent. We illustrate our approach by designing optimal protection strategies to contain an epidemic outbreak that propagates through an air transportation network
    • …
    corecore