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ABSTRACT 

COMPUTATIONAL FRAMEWORK FOR MODELING 

INFRASTRUCTURE NETWORK PERFORMANCE AND VULNERABILITY 

Seyed Hossein Hosseini Nourzad 

 
 
 
 
Networked infrastructures serve as essential backbones of our society. Examples of 

such critical infrastructures whose destruction severely impacts the defense or economic 

security of our society include transportation, telecommunications, power grids, and water 

supply networks. Among them, road transportation networks have a principal role in 

people’s everyday lives since they facilitate physical connectivity. The performance of a 

road transportation network is governed by the three principal components: (a) structure, 

(b) dynamics, and (c) external causes. The structure defines the topology of a network 

including links and nodes. The dynamics (i.e., traffic flow) defines what processes are 

happening on the network. The external causes (e.g., disasters and driver distraction) are 

the phenomena that impact either structure or dynamics. These principal components do 

tend to influence each other. For example, the collapse of a bridge (i.e., external cause) 

could render certain nodes and links (i.e., structure) ineffective thereby affecting traffic 

flow (i.e., dynamics). A distracted driver (i.e., external cause) on a road can also cause 

accidents that can negatively impact traffic flow. Thus, to model the performance and 

vulnerability of a network, it is necessary to consider such interactions among these 

principal components. The main objective of this research is to formalize and develop a 

computational framework that can: (a) predict the macroscopic performance of a 

transportation network based on its multiple structural and dynamical attributes (Chapter 

2), (b) analyze its vulnerability as a result of man-made/natural disruption that minimizes 
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network connectivity (Chapter 3), and (c) evaluate network vulnerability due to driver 

distraction (Chapter 4). An integrated framework to address these challenges—which have 

largely been investigated as separate research topics, such as distracted driving, 

infrastructure vulnerability assessment and traffic demand modeling—needs to 

simultaneously consider all three principal components (i.e., structure, dynamics, and 

external causes) of a network. In this research, the integrated framework is built upon recent 

developments (theories and methods) in interdisciplinary domains, such as network 

science, cognitive science and transportation engineering. This is the novelty of the 

proposed framework compared to existing approaches. Finally, the framework were 

validated using real-world data, existing studies and traffic simulated results. 
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DEFINITIONS 

Serviceability: The serviceability of a road network describes the possibility to use the road 

network during a given time period [1]. 

Performance: The performance of a road network refers to level of service of the network. 

In other words, it is a measure of network serviceability [1, 2]. 

Vulnerability: The vulnerability of a road network is the susceptibility to events that may 

result in considerable reductions in road network serviceability. The events may be 

voluntarily or involuntarily, caused by man or nature. [1] 

Structure: The structure defines the topology and geometry of a network including links 

and nodes [3]. 

Dynamics: The dynamics defines what processes are happening on the network [4]. In the 

case of road networks, dynamics refers to the traffic flow dynamics, such as congestion. 

External causes: The external causes are phenomena that impact either structure or 

dynamics. In the case of road networks, examples include disruption and driver 

distraction [5, 6]. 

Area-covering disruption: The area-covering disruptions impact multiple links within an 

area of the network [6]. The examples include flood, and heavy snow. 

Driver distraction: The driver distractions are the issues that impact the traffic dynamics 

by changing drivers’ behavior [7]. Examples include talking on cellphones and text-

messaging. 

Structural attribute: The structural attributes are the measures that quantify characteristics 

related to the structure of the network. Examples of structural attributes include 

betweenness and degree distribution [3]. 
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Dynamical attribute: The dynamical attributes are the measures that quantify 

characteristics related to the dynamics of the network [3]. Examples of dynamical 

attributes include traffic volume between origin-destination pairs [8].  

Network attributes: The network attributes are the set of all structural and dynamical 

attributes that measure the network characteristics. 

Measures of effectiveness (MOE): The MOEs are the measures that quantify the network 

performance [2, 9, 10]. In the case of road networks, macroscopic MOEs include average 

speed, delay, and traffic volume of the road segments. 

Network science: The area of science concerning the study of networks is called network 

science [11].  

Civil infrastructures: Many of civil infrastructures consist of a set of objects (called nodes) 

that are connected together with links. Therefore, we can refer to these infrastructures as 

networks. For example, in road transportation networks, the nodes and links represent 

the intersections and road segments.  

Weighted and un-weighted networks: A network can be either weighted or un-weighted 

[12]. A weighted network is a network where the links among nodes have weights 

assigned to them. In contrast, in an un-weighted network, the links does not have any 

weights assigned to them. 

Adjacency matrix: An adjacency matrix is used to represent the structure of a network. The 

adjacency matrix captures which nodes of a network are adjacent to which other nodes. 

Adjacency matrix of a weighted network G (with N nodes) is an N×N matrix where the 

entry aij is the weight of the link from node i to node j. For an un-weighted network, the 
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adjacency matrix is a matrix of ones and zeroes where a one indicates the presence of a 

connection and a zero indicates the absence of a connection [11]. 

Centrality: In network science, centrality of a node quantifies its relative importance within 

a network [13]. There are several measures that quantify network centrality. One of the 

well-known measures is the degree of a node which is the number of connections it has 

with other nodes [11]. In addition, in a weighted network, the weighted degree (aka 

strength) of a node is the total weights of its adjacent links [12]. Although node’s degree 

is a measure of centrality, it just looks at individual nodes at a time. So, it is a localized 

measure. The other measure of centrality is the betweenness centrality of a node which 

is equal to the number of shortest paths from all nodes to all others that pass through that 

node. The betweenness centrality is also defined for each individual node, and does not 

represent the connectivity of the entire network [11]. 

Connectivity: A network is connected if there are paths connecting every pair of nodes. 

There are several measures that quantify connectivity at a network-level [14-16]. For 

example, the gamma index is the ratio of the number of links (of a network) to maximal 

number of links (of a connected network with the same number of nodes) [16]. The 

gamma ranges between 0 and 1, where a value of 1 indicates a connected network. 

However, Prakash et al. (2013) showed that the best single measure of connectivity is the 

largest eigenvalue of the adjacency matrix of a network, which represents the 

connectivity of a network as a whole rather than individual links [14, 15]. For network-

wide analysis, it is better to use the largest eigenvalue instead of the localized measures, 

such as degree and betweenness. 
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CHAPTER 1. INTRODUCTION 

Networked infrastructures serve as important backbones of our society [17]. In 

President’s Commission on Critical Infrastructure Protection (PCCIP), an infrastructure 

was defined as: “the framework of interdependent networks and systems comprising of 

identifiable industries, institutions (including people and procedures), and distribution 

capabilities that provide a reliable flow of products and services essential to the defense 

and economic security of the United States, the smooth functioning of government at all 

levels, and society as a whole” [18]. In addition, the PCCIP highlighted the essential role 

of certain infrastructures that their destruction impacts the defense or economic security of 

the United States. Examples of such critical infrastructures include transportation, 

telecommunications, power grids, gas and oil storage/transportation, banking and finance, 

water supply networks, and emergency services (e.g., medical, police, fire, and rescue). 

Among them, transportation networks have a principal role in people’s everyday lives (e.g., 

citizens’ personal, communication, and economic activities) since they facilitate physical 

connectivity. Researchers have studied the performance of different types of transportation 

networks, such as road, railway, and air traveling networks [19-29]. 

Any disruption in transportation networks (e.g., due to accidents or natural disasters) 

negatively influences network vulnerability. The changes may originate from either 

external sources (e.g., heavy snow, storm, or earthquake) or internal issues (e.g., accidents) 

[6]. Therefore, it is important to analyze the impacts of disruptions and mitigate the risks 

of disruptions. In addition, it is also important to analyze the impacts of driver distraction 

that can worsen network safety and vulnerability [30]. Hence, this research focuses on 
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modeling performance and vulnerability of road networks, as an example of transportation 

networks, under normal, disrupted and distracted conditions. 

1.1 Overview of Transportation Network Modeling 

The performance and vulnerability of transportation networks have been studied from 

two different viewpoints: (a) complex networks (i.e., networks that have many elements 

with nonlinear interactions) [3, 4, 11, 12, 16, 31-37], and (b) transportation engineering [2, 

38-48]. Furthermore, the impacts of interrelation between structure and dynamics on the 

network performance was highlighted in many research studies [4, 49-51]. Examples 

include the study of onset of traffic congestion [4, 51], propagation of congestion [50], and 

cascading failure [49].  

In addition, researchers studied vulnerability of infrastructures to large-scale collapse 

in modern societies [6, 31, 48, 49, 52-56]. In particular, any disruption in a road network 

may degrade network performance [56]. For instance, the researchers investigated the 

impacts of single-link blockages on total delay over the entire road network [31]. Also, the 

researchers investigated the impacts of multiple-links blockage on the network 

performance [6, 56].  

Finally, driver distraction is the major cause of vehicle crashes in the United States 

[57]. During the last few years, different methods have been developed to analyze driver 

distraction due to performing secondary tasks. Examples include physical driving 

simulation, naturalistic experiment, statistical analysis, and computational modeling [7, 58-

76]. Among these methods, physical driving simulation is the common method to analyze 

the impacts of driver distraction [65]. However, this method is time-consuming and 

expensive [30]. Hence, the computational modeling (e.g., cognitive models) has been 
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proposed to evaluate distraction without physical simulators [30, 77-79]. Recently, the 

researchers investigated simple scenarios of multiple-drivers distraction using 

computational modeling [61]. 

1.2 Problem Statement 

The performance of a transportation network is governed by the three principal 

components: (a) structure, (b) dynamics, and (c) external causes. The structure defines the 

topology of a network including links and nodes. The dynamics defines what processes are 

happening on the network. The external causes (e.g., driver distraction) are the phenomena 

that impact either structure or dynamics. These principal components do tend to influence 

each other. For example, the collapse of a bridge (i.e., external cause) could render certain 

nodes and links (i.e., structure) ineffective thereby affecting traffic flow (i.e., dynamics). 

A distracted driver (i.e., external cause) on a road can also cause accidents that can impact 

traffic flow. Thus, to model the performance and vulnerability of a network, it is necessary 

to consider such interactions among these principal components (Figure 1.1). 

 
 

 
Figure 1.1. Problem Definition 
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The main objective of this research is to formalize and develop a computational 

framework that can: (a) predict the macroscopic performance of a transportation network 

based on its multiple structural and dynamical attributes, (b) analyze its vulnerability as a 

result of man-made/natural disruption that minimizes network connectivity, and (c) 

evaluate network vulnerability in response to driver distraction. An integrated framework 

to address these challenges—which have largely been investigated as separate research 

topics, such as distracted driving, infrastructure vulnerability assessment and traffic 

demand modeling—needs to consider all three principal components (i.e., structure, 

dynamics, and external causes) of a transportation network (Figure 1.1). 

1.3 Overview of Research Approach 

This research attempts to address the three major limitations associated with current 

approaches of evaluating performance of road transportation networks (Figure 1.2). First, 

the prevalent approaches based on Macroscopic Fundamental Diagrams (MFD) and phase 

transition models do not model multiple network measures of effectiveness (MOE) based 

on various structural and dynamical attributes [19, 45, 46]. For example, the MFDs capture 

the relationship between two network MOEs, such as density and flow. Phase transition 

models evaluate the impacts of a single network attribute (e.g., largest eigenvalue of the 

adjacency matrix) on a single measure of performance (e.g., congestion propagation). 

However, in addition to density and flow, other MOEs, such as average speed and delay of 

road networks, are also necessary to quantify the performance of a network. Second, the 

existing approaches to analyze the vulnerability of a transportation network focus mainly 

on the failure of either a single node/link or multiple links or simple scenarios of disruptions 

[6, 56, 80]. What is missing is the consideration of the impact of disruptions (e.g., heavy 
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snow, flood or earthquake) that can interrupt a number of large areas on a network.  In this 

research, these disruptions are referred to as area-covering disruptions.  Third, recent 

approaches to assess the impacts of driver distraction on road have focused on simple 

scenarios in which vehicles follow each other on a straight single-lane highway [60, 61, 

81]. However, these approaches do not evaluate the impacts of multiple distracted drivers 

in terms of overall network performance and safety. For instance, how will the traffic flow 

be impacted if 5% of drivers on road are involved in text-messaging at a given time? 

To address these challenges, the framework is built upon recent developments 

(theories and methods) in interdisciplinary domains, such as network science, cognitive 

science and transportation engineering. This is the novelty of the proposed framework 

compared to existing frameworks and approaches. Network science seeks to understand 

the underlying principles that govern the structure, dynamics and co-evolution of complex 

networks (e.g., social network, gene regulatory network and computer network). Thus, 

network science theories could help us to better understand the structure and dynamics of 

a transportation network. Similarly, cognitive science, which focuses on how information 

is represented, processed and transformed within (human or animals) nervous systems, 

could help to investigate driver distraction. The proposed framework would enable expert 

modelers to: (a) evaluate new design scenarios of transportation network and their potential 

macroscopic impact on performance, (b) analyze the vulnerability of a transportation 

network under various disruptions, and (c) understand the impact of distractive devices on 

network performance and safety. 
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Figure 1.2 depicts the relationships among the three principal components of a road 

(transportation) network: (1) Network Structure, (2) Traffic Flow Dynamics and (3) 

External Causes. 

 
 
 

 
Figure 1.2. Overview of Three Research Questions 

 
 
 
Figure 1.2 depicts the three research questions which investigate and formalize: (a) 

the network macroscopic performance based on multiple network structural and dynamical 

attributes without traffic simulation (RQ1), (b) the network vulnerability due to critical 

area-covering disruptions (RQ2), and (c) the network vulnerability due to driver distraction 

(RQ3). Section 1.5 describes in detail these three research questions. 
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1.4 Scope and High Level Assumptions 

This section lists the scope and high-level assumptions of my PhD research: 

 I limited the scope of this research to (road) transportation networks. Other 

infrastructure networks (e.g., water supply networks, power grids) and different 

transportation networks (e.g., air traveling and railway) are beyond the scope of this 

research. 

 The performance prediction model in RQ1 returns macroscopic measures of 

performance (i.e., MOEs). While it does not replace the simulation models, it is a 

useful model for pre-screening process of numerous design alternatives. The pre-

screening process is performed to select a few number of design alternatives out of 

an initial long list of alternatives. The selected alternatives will then be analyzed using 

simulation models, leading to a significant saving in time and computational 

resources. 

 The proposed research employed the road network of the Greater Philadelphia 

region. I assumed that the acquired road network is a representative real-world 

network. 

 While a driver can get distracted due to many reasons (e.g., texting, dialing, 

talking, eating, etc.), this research focused on driver distraction due to cell-phone 

dialing, conversation, and text messaging. I measured the effects of distraction via 

changes in average and deviation of speed and headway distance. However, the 

possibility of distraction-related crashes and its impacts on traffic conditions are 

beyond the scope of the current research. 
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1.5 Research Questions 

This section discussed the three major research questions associated with 

computational modeling of performance and vulnerability of (road) transportation 

networks. 

1.5.1 Predicting Macroscopic Measures of Performance based on Multiple Network 

Structural and Dynamical Attributes without Traffic Simulation (RQ1) 

As shown in Figure 1.2, the RQ1 focuses on modeling the network performance 

based on the network structure and traffic flow dynamics. The objective is to formalize and 

develop an approach that can predict the macroscopic (also referred to as network-wide) 

measures of performance for new networks without undertaking traffic simulations. This 

is especially useful for pre-screening of a long list of numerous design alternatives. While 

the proposed model does not replace simulation models, it helps us to save a significant 

amount of time and computational resources during the pre-screening process. As shown 

in Figure 1.3, the inputs of the approach are multiple structural and dynamical attributes of 

a new network, and the outputs are multiple network-wide measures of performance (i.e., 

MOEs). 

 
 
 

 
Figure 1.3. Schematic View of the Proposed Approach in RQ1 
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Motivation of RQ1 

In our previous study, we presented two simple case studies to investigate the 

relationship between network performance and network attributes. The first case was 

epidemic spreading in social networks (i.e., network of individuals linked through some 

interactions), in which individuals and their relationships are considered as network nodes 

and links [50, 82, 83]. The second case was congestion propagation in road networks, in 

which intersections and road segments are considered as network nodes and links. I chose 

these two case studies since there are some similarities between them: the epidemic spreads 

among individuals through their relationships and the congestion propagates among the 

intersections through the roads. I investigated the impacts of network structure (i.e., the 

largest eigenvalue of adjacency matrix) on epidemic spreading and congestion 

propagation. Therefore, these two simple case studies can illustrate the impacts of structure 

and dynamics on the performance of different networks. 

The epidemic spreading is a critical problem in social networks. The aim of epidemic 

spreading modeling is to reproduce actual dynamics of epidemic and to understand effects 

of network topology on epidemic spreading [3, 82]. At each time, each node could be in 

only one of the two states: (a) Susceptible (i.e., those who can catch the infection), or (b) 

Infected (i.e., those who have caught the infection and can transfer the infection). In this 

research, I focused on the Susceptible–Infected–Susceptible models, which are related to 

the diseases that do not confer immunity to their survivors (e.g., tuberculosis and 

gonorrhea). In the SIS models, the probability of epidemic spreading from an infected node 

to a susceptible node in its neighborhood is referred to as the spreading rate (equal to δ). In 
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addition, once a node gets infected, the probability of recovering from the disease and 

returning to the susceptible state is referred to as the recovery rate (equal to μ) [82]. 

In the SIS models, epidemic starts from one or a few nodes within the network. The 

epidemic will then spread from the infected nodes to their neighboring nodes (with the rate 

δ). At the same time, some of the infected nodes will recover (with the rate μ). At each time 

step, next state of each node is a function of its current state and of states of its neighbors 

on the network. Therefore, the network dynamics depends on both the spreading and 

recovery rates and specifically on their ratio (i.e., σ = δ / μ). In fact, there is an epidemic 

transition (i.e., a critical value of the ratio, c  ). In the SIS models, for c   the 

epidemic persists in the network, while for c   it does not. Wang et al. (2003) 

presented a generic solution that the epidemic threshold of any given network is Ac ,1/1    

in which A,1  is the largest eigenvalue of its adjacency matrix [83]. 

I ran computer simulations to verify the mathematical solution of the proposed 

epidemic threshold. To do so, I generated a network using the tools presented in [84]. The 

number of nodes was equal to 10000. The recovery rate was constant (μ=0.5) and the 

spreading rate changed from δ=0.00525 to δ=0.2. The largest eigenvalue of the adjacency 

matrix ( A,1 ) was equal to 90.90 leading to the epidemic threshold 011.0/1 ,1   Ac   . 

Figure 1.4 depicts the number of infected nodes in each time step for three 

simulations. Figure 1.4 (a) shows when σ was less than epidemic threshold, the epidemic 

died after 60 time step. Figure 1.4 (b) shows when σ was equal to the epidemic threshold, 

there was a fluctuation in the number of infected nodes, i.e., the network was in the 

transition phase. Figure 1.4 (c) shows when σ was more than the epidemic threshold, the 
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number of infected nodes reached a nonzero number, i.e., the epidemic persisted in the 

network. 

 
 
 

 
(a) δ=0.00525, σ = 0.0105 

 
(b) δ=0.0055, σ = 0.011 

 
(c) δ=0.1, σ = 0.2 

Figure 1.4. The Results of Three Different Simulations for Epidemic Spreading 
 
 
 
Therefore, I observed that in social networks there is an interrelation between 

network structure (i.e., largest eigenvalue of the adjacency matrix) and dynamics (i.e., the 

epidemic spreading). The knowledge of such interrelation is necessary for epidemiologist 

to assess spreading of different epidemics and to mitigate the risks of the epidemics. 



 
 

15 

 

In road networks, I conjectured that the structure (e.g., largest eigenvalue of the 

adjacency matrix) influences the dynamics (e.g., congestion propagation). To test this 

conjecture, I simulated congestion propagation in road networks. For a given road network, 

when a node is congested, the congestion may spillback to upstream nodes with the average 

propagation rate (δ). At the same time, some of the congested nodes may become 

decongested with the average relief rate (μ). In other words, each node can be in only one 

of the two states: (a) uncongested, or (b) congested. Therefore, I could simulate congestion 

propagation using a SIS model. The quantity of interest is the critical threshold associated 

to the phase transition from free-flow to congested phase [50]. 

I simulated the congestion propagation on the road network of the Island of Guam, 

which had 539 nodes and 1183 links. The largest eigenvalue of the adjacency matrix ( A,1

) was 2.819 and therefore, the transition threshold (σc) was 0.355. The simulation period 

was 4 hours (i.e., 48 five-minute time steps). 

Figure 1.5 depicts the number of nodes that were congested at each time step for three 

different simulations. Figure 1.5 (a) shows when σ < σc, the network became decongested 

after 150 minutes. Figure 1.5 (b) shows when σ ≈ σc, there was a fluctuation in the number 

of congested nodes, i.e., the network was in the transition phase. Figure 1.5 (c) shows when 

σ > σc, the number of congested nodes reached a nonzero number, i.e., the congestion 

persisted in the network. 
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(a) δ=0.044, σ = 0.177 

 
(b) δ=0.089, σ = 0.355 

 
(c) δ=0.177, σ = 0.709 

Figure 1.5. The Results of Three Different Simulations for Congestion Propagation 
 
 
 

Therefore, the results show that: (i) There was a relationship between largest 

eigenvalue, A,1 , and congestion dynamics, σ; and (ii) more importantly, this relationship 

impacted the congestion propagation. These simulations only considered one structural 

attribute and one dynamical attribute. I hypothesize that understanding the relationship 

among multiple structural (e.g., betweenness and degree) and dynamical (e.g., speed, 
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delay) attributes would enable us to perform a macroscopic analysis of performance as few 

attributes often fail to capture all the characteristics of a network. In general, different 

domain–specific network scientists in biology and social science have leveraged a number 

of attributes to capture the characteristics of their networks, such as gene regulatory 

network and social graphs [2, 10]. Different network measures, such as centrality, 

assortativity, modularity, and betweenness, are used to find critical nodes based on its 

connectivity with respect to other nodes, and to find clusters of similar nodes, etc. Details 

about different network measures can be found in [11].   

1.5.2 Modeling Network Vulnerability due to Critical Disruptions (RQ2) 

As shown in Figure 1.2 shows, any external cause (e.g., disruption) that changes the 

structure will also impact the performance of a network. Different types of disruptions may 

impact a network, ranging from the events (e.g., car accident or bridge collapse) that impact 

a single link to the events (e.g., heavy snow or storm) that impact a large area which 

includes several links. As shown in Figure 1.6, to analyze network vulnerability, the RQ2 

investigates large-scale impacts of disruptions thereby focusing on area-covering 

disruptions.  

 
 
 

 
Figure 1.6. Schematic View of RQ2 

 



 
 

18 

 

Motivation of RQ2 

In our preliminary study, I investigated how the capacity reduction of different nodes 

(in a road network) due to disruption impacts its connectivity (Figure 1.7). The network 

connectivity was represented by the eigenvalue of its adjacency matrix. In Figure 1.7, the 

x-axis represents the proportion of disrupted nodes, and the y-axis represents the drop in 

the largest eigenvalue. For the analysis, we selected 15% nodes of the network (i.e., Guam 

network) using different selection methods that include random and targeted selections. 

The targeted selection methods are based on nodes with higher degree, betweenness, 

weighted betweenness and the largest eigenvalue. I observed that targeted method based 

on the largest eigenvalue was the most effective method to minimize network connectivity. 

This observation supports the research finding of Prakash et al. (2013) where they 

concluded that the Exhaustive method was effective in minimizing network connectivity. 

 
 
 

 
Figure 1.7. Impacts of Disruptions on Guam Road Network 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Size of Disruption

L
a

rg
e

st
 E

ig
e

n
va

lu
e

 o
f 

th
e

 A
d

ja
ce

n
cy

 M
a

tr
ix

 

 
Betweenness
WeightedBetweenness
Random
Degree
Exhaustive



 
 

19 

 

1.5.3 Modeling Network Vulnerability due to Driver Distraction (RQ3) 

Finally, any external cause (e.g., driver distraction) that changes traffic flow 

dynamics will also impact the performance of a network. For example, distracted drivers 

negatively impact the traffic conditions and safety. As shown in Figure 1.8, to analyze the 

network vulnerability, the RQ3 considers network-wide impacts of distraction on traffic 

flow dynamics. 

 
 
 

 
Figure 1.8. Schematic View of RQ3 

 
 
 

Motivation of RQ3 

On July 17, 2009, 21-year-old Casey Feldman of Philadelphia was struck and killed 

by a distracted driver as she crossed the street in Ocean City, New Jersey. The distracted 

driver had taken his eyes off the road for just a few seconds. According to NHTSA’S 

National Center for Statistics and Analysis, Casey was just one of the 15,254 people killed 

in distraction-affected fatal crashes across the United States between 2009 and 2012 [85-

87]. Moreover, on average, around 20 percent of distracted drivers were distracted by the 

use of cell phones [87]. At any given daylight time across the United Stated, approximately 

660,000 drivers are using cell-phones or other electronic devices while driving, a number 
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that has held steady since 2010 [88]. All these facts and statistics highlight the importance 

of large-scale distraction simulation to quantitatively assess the impacts of distraction on 

traffic condition and safety. 

In our previous research, we started formalizing a framework to simulate large-scale 

impacts of driver distraction. We replicated an existing experiment, in which sixteen 

drivers drove in single lane straight and curved roadway [61]. We tested the three different 

experiments, where 0, 1, and 3 distracted drivers were involved. The preliminary 

investigation demonstrated that the proposed framework could account for statistically 

significant changes in speed fluctuation in the presence of a significant number of 

distracted drivers (Figure 1.9). 

 
 
 

 
Figure 1.9. Speed Fluctuations for Different Distraction Scenarios 

 
 

1.6 Dissertation Organization 

This dissertation consists of five chapters including the Introduction and 

Conclusions. The Introduction chapter provides the overview of the research problem and 
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contributions, practical implications, limitations and future research directions. The 

remaining chapters focus on the three specific research contributions (described next). 

1.6.1 Predicting Macroscopic Measures of Performance (Chapter 2) 

Chapter 2 describes an approach that addresses challenges associated with capturing 

the relationship among (i) network performance, (ii) road structure, and (iii) traffic demand. 

A computational model based on multivariate statistical analysis is developed. The model 

is proposed for pre-screening of numerous design alternatives. The model requires network 

structural and dynamical attributes as inputs and outputs the macroscopic measures of 

performance (e.g., average and standard deviation of speed and volume). I developed the 

model using a database including the Greater Philadelphia road network. The 

computational results were validated by comparing with the simulated results of a 

calibrated traffic model for the real network of the Greater Philadelphia. The model led to 

a significant saving of time and computational resources, compared to simulation models. 

In the future, the proposed framework can be used on a diverse database of road networks 

to develop a better performance prediction model. 

1.6.2 Modeling Network Vulnerability due to Critical Disruptions (Chapter 3) 

Chapter 3 explains an approach that identifies the vulnerability of different areas of 

the network due to disruptions. In the first phase of the proposed framework, the criticality 

of each individual link is evaluated by considering the large-scale impacts of link’s 

disruption. In the second phase, the critical links are clustered, leading to partitioning the 

network into different areas with different levels of criticality. The main contributions of 

the research described in this chapter are: (a) identifying a new network-wide criticality 

criterion based on network-science theories, (b) taking both road structure and traffic 
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demand into the consideration for identifying the network-wide criticality, and (c) 

clustering the network into critical and non-critical areas to have a more realistic analysis 

of natural disruptions. Also, in contrast to the existing approaches, the proposed framework 

does not require traffic simulations to quantify the criticalities. I validated the proposed 

framework on the Greater Philadelphia network for four times of a day. The computational 

results were validated by: (1) comparing with the simulated impacts of disruptions for three 

different clusters, and (2) observing the real-time traffic conditions online for several real 

incidents across the network. 

1.6.3 Modeling Network Vulnerability due to Driver Distraction (Chapter 4) 

Chapter 4 presents an integrated approach that addresses the large-scale simulation 

of driver distraction. The major contribution of this approach is the development and 

validation of a framework which addresses the existing gap of driver distraction by 

integrating a computational driver distraction model (i.e., the Distract-R) and a microscopic 

traffic simulation model (i.e., the VISSIM software). The research provides a tool to answer 

many questions that were not easy to answer before. Examples include: (i) the traffic 

conditions on a network when a significant number of drivers are distracted by different 

types (e.g., text messaging, dialing, and conversation), (ii) the areas of the network which 

are more vulnerable due to the impacts of driver distraction, and (iii) the impacts of 

changing (adding/removing) certain features of a device (i.e., adding a button to a 

cellphone) on traffic conditions. I validated the framework by replicating three existing 

case studies. Then, I employed the developed approach for a few larger-scale case studies, 

extracted from the Greater Philadelphia real network. Chapter 4 describes the framework 

and all these case studies.   
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CHAPTER 2. PREDICTING MACROSCOPIC MEASURES OF PERFORMANCE 

2.1 Introduction 

Many phenomena related to network performance depend on both network structure 

and dynamics, and specifically on the interrelation between structure and dynamics [4, 51, 

89]. For example, congestion propagation on road networks depends on both road capacity 

and traffic volume.  Thus, to evaluate the performance of networks, we have to consider 

such interrelation. 

Current studies investigated the network macroscopic performance (i.e., MOEs) 

using different approaches. For example, the Macroscopic Fundamental Diagram captures 

the relationship between two network MOEs which are density and flow [41, 45]. 

However, the MFD does not capture the impacts of changes in the network structure and 

traffic demand. Another group of approaches evaluate the impacts of changes in a single 

structural attribute on the network performance [4, 50]. For example, the researchers 

studied the impacts of nodes’ betweenness on the onset of traffic congestion [4]. In 

addition, in our previous research, we studied the impact of the largest eigenvalue of the 

adjacency matrix on the congestion propagation [50]. These existing studies do not 

incorporate a set of multiple structural and dynamical attributes, which are required to 

represent network characteristics. In addition, they do not simultaneously model multiple 

network MOEs, which are necessary to represent the network performance. 

Transportation planners and engineers typically perform traffic simulations to 

evaluate various design alternatives in order to improve the traffic conditions over an 

existing network or to build a new road network. The planners and engineers have to 

modify simulation models and run multiple simulations to evaluate the impacts of various 
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proposed changes in network structure and traffic demand. Depending on the size of a 

network, such evaluation process would be time-consuming and tedious, especially if they 

want to assess several alternatives. In this research, the objective of the first research 

question is to formalize and develop a model that can predict the macroscopic measures of 

performance (i.e., average speed and volume) for new networks without performing traffic 

simulations. The inputs of the model are multiple structural and dynamical attributes of the 

new network, and the outputs are multiple network-wide MOEs. While the proposed model 

does not replace the simulation models, it is useful for pre-screening process of numerous 

design alternatives and leads to a significant saving of time and computational resources. 

The result of such pre-screening process is a small subset of the long list of design 

alternatives which will be further analyzed using simulation models.  

I used a set of the existing structural attributes, such as the weighted degree and 

betweenness, which are presented in [3, 12, 33, 90]. I also proposed a set of dynamical 

attributes to capture various travel demand patterns across the network. The proposed 

dynamical attributes are the largest eigenvalues of an OD matrix. Then, I ran several traffic 

simulations to find network MOEs for different combinations of structural and dynamical 

attributes. In the next step, I employed a multivariate statistical method called the 

Canonical Correlation Analysis to capture the relationship among multiple MOEs and 

network attributes. Finally, using the captured relationship, I developed a model to predict 

macroscopic performance (i.e., multiple MOEs) of a new network. For the prediction, the 

model does not need the tedious task of simulation. The framework enables transportation 

modelers to understand how variations in network structure and dynamics could impact the 

macroscopic performance of design alternatives during the prescreening process. 
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2.2 Background Research 

This section reviews related background research studies. First, I present the 

overview of transportation studies. Then, I review the studies related to the structure and 

traffic flow dynamics of (road) transportation networks. Finally, I discuss the existing 

studies related to the performance of a network. 

2.2.1 Transportation Networks 

Various research studies have been performed to investigate structure and dynamics 

of different transportation networks, such as rail- and subway [19, 24-26, 34, 91-98], 

airport [12, 20, 22, 23, 99-101], urban transit [102], public transportation [16, 54, 103, 

104], and maritime transport networks [105, 106]. A specific type of transportation 

networks is an urban road network, in which the merges, diverges, and crossings can be 

considered as the network nodes, and the physical roads as the links. This section discusses 

the related studies from the viewpoints of network science and transportation engineering. 

From the Viewpoint of Network Science 

Traditionally, networks have been studied using graph theory concepts [11]. Since 

the 1950s, large-scale networks have been characterized as random graphs, which were 

first introduced by Paul Erdos and Alfred Renyi [107]. After some decades, the researchers 

discovered that some real-world networks are not random [11]. Several parallel 

developments performed during the past few years (e.g., emergence of large databases and 

increased computing power) showed the presence of three classes of networks [108-111]. 

The first class is the random graphs (e.g., road networks) [107]. They are still the 

benchmark for empirical studies. The second class, called small-world network (e.g., 

telephone call graphs), is the network in which a few set of nodes can be reached from 
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other nodes by a small number of steps [112]. Finally, the third class, called scale-free 

network (e.g., airport networks, World Wide Web links), is the network in which its degree 

distribution follows a power-law [111, 113]. 

From the Viewpoint of Transportation Engineering 

In transportation engineering, an urban road network is determined by: (1) supply-

side properties (e.g., geometry, number of lanes), which I refer to as structural 

characteristics, and 2) demand-side properties (e.g., origin-destination traffic volumes and 

driving habits of population), which I refer to as dynamical characteristics. The traffic 

demand is assigned to a physical road network by two types of traffic assignment methods: 

1) static and 2) dynamic. The static traffic assignment methods assume that link flows and 

link travel times are constant over a modeling period. Conversely, the Dynamic Traffic 

Assignment (DTA) methods assume that link flows and link travel times are time-variant 

[114, 115]. 

In the DTA, the time-varying performance of a transportation network for a given 

traffic flow pattern is estimated by modeling movement of vehicles as they travel from 

their origins to destinations [42]. The simulation-based DTA methods were developed for 

different applications, such as optimize control, or real-world transportation planning 

without interrupting real-world traffic [44, 115, 116]. The examples of real-world 

applications of the simulation-based DTA models include: DynusT [117], DynaMIT [118], 

DYNASMART [119], VISTA [44], Dynameq [120], AIMSUN [121], TransModeler [38], 

INTEGRATION [122], METROPOLIS [123]. Based on the level of details, the current 

simulation-based DTA models can be categorized into three classes: 1) macroscopic, 2) 

mesoscopic, and 3) microscopic. 
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Macroscopic models: They employ aggregate concepts (e.g., fluids theory) without 

considering individual vehicle [124, 125]. In other words, they trade off the ability to model 

individual vehicles at small time intervals for the ability to model entire metropolitan areas 

at a single aggregated time. They use a set of differential equations to represent the 

evolution of traffic over time and space. Their outputs are static and aggregated, such as 

those found in the trip assignment step in the traditional four-step process. 

Microscopic models: They model individual vehicle entities, decisions and 

interactions at time steps as small as one-tenth of a second. However, the microscopic 

models require a large amount of data and the detailed calibration of model parameters, 

and have high computational resource demands. The examples of the microscopic models 

include VISSIM [126], AIMSUN/2 [121], Paramics [127], and MITSIMLab [39]. 

Mesoscopic models: They combine different elements from microscopic and 

macroscopic approaches. They represent individual vehicles with a high degree of detail 

(such as microscopic models), but depict the activities and interactions of each vehicle with 

fewer details (such as macroscopic models). The mesoscopic simulation models do not 

necessarily locate vehicles precisely on the links of a network [128]. One mesoscopic 

approach is to group vehicles into packets that act as one entity and share speed [129]. The 

packets can be either discrete packets or continuous packets. In continuous packets, 

vehicles are distributed inside each packet, defined by the head and the tail points. In 

discrete packets, all vehicles belonging to a packet are grouped and represented by a single 

point [130, 131]. Another mesoscopic approach is the queue-server approach, such as 

DynaMIT [39] and DYNASMART [119]. In this approach, each road segment is modeled 

with two parts: a queuing and a moving part. Vehicles travel through the moving part with 



 
 

28 

 

the speed calculated using a macroscopic model until they reach the queues on the current 

segment representing congestion [39]. 

2.2.2 Structure of Transportation Networks 

Chan et al. (2011) studied 20 largest German cities for the year 2005 and proposed a 

variety of node-, link-, and cell-based attributes based on the structural and spatial 

characteristics of a road network. Their results, in addition to recent empirical studies [37, 

132, 133], have shown that topological quantitative similarities exist between road 

networks of different cities at a network level. The resultant structural attributes of the 

existing studies are summarized in Table 2.1, Table 2.2, Table 2.3, and Table 2.4. In 

general, the structural attributes can be divided into two levels: 

1) Network-wide attributes, which describe characteristics of the entire network 

(Table 2.1). 

 
 
 

Table 2.1. The Network-wide Structural Attributes of Road Networks 
Attribute Description 

Network size Number of nodes and links 

Network diameter Longest shortest path  

Average shortest path Average of all shortest paths 

Gamma index The gamma index is a measure of the density of the network. It is the 

ratio of the number of links divided by maximal number of links for a 

given number of nodes [16] 

Alpha index The alpha index is another measure of the density of the network; it is 

the ratio of the number of elementary cycles divided by maximal 

number of elementary cycles [16] 
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Attribute Description 

Compactness A measure of how much a city is ‘filled’ with roads. If we denote the 

area of a city by A and the total length of roads by ்݈, the compactness 

Ψ ϵ [0, 1] is defined as [134]: Ψ ൌ 1 െ
ସ஺

ሺ௟೅ିଶ√஺ሻమ
 

Ringness A measure of the importance of a ring and the extent that the arterials 

are organized as trees. If we denote the total length of arterials on rings 

by ݈௥௜௡௚ and the total length of all arterials by ݈௧௢௧, the ringness φ ϵ [0, 

1]  is defined as [134]: ߶௥௜௡௚ ൌ
௟ೝ೔೙೒
௟೟೚೟

 

 

Route factor The ratio is larger than one; the closer the route factor to one, the more 

efficient the network. If we denote the natural Euclidean distance by 

݀ாሺ݅, ݆ሻ, and the total ‘route’ distance as the length of the shortest path 

between i and j by  ݀ோሺ݅, ݆ሻ, the route factor (also referred to as the 

detour index or the directness [135] for this pair of nodes (i, j) is then 

given by 

ܳሺ݅, ݆ሻ ൌ
݀ோሺ݅, ݆ሻ
݀ாሺ݅, ݆ሻ

 

Eigenvalues of 

Adjacency 

Another important global view based on eigenvalues is referred to as 

spectral theory. Spectral theory studies the adjacency matrix (or the 

Laplacian) of network and connects its eigenvalues to network 

properties [136]. For instance, the largest eigenvalue of the network is 

a measure of network connectivity.  
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2) Local attributes, which describe the characteristics of either groups or individual 

nodes within a network. Such attributes can be categorized into: (a) node-based (Table 2.2), 

(b) link-based (Table 2.3), and (c) cell-based (Table 2.4) attributes [90, 92]. 

 
Table 2.2. The Local Node-based Structural Attributes of Road Networks 

Attribute Description 

spatial density Nodes with high degrees are usually located in dense urban areas, often 

close to the city centers. 

degree distribution The node degree is the number of links it has to other nodes and the 

degree distribution is the probability distribution of node degrees over 

the entire network. Researchers have studied the degree distribution in 

different road networks. For instance, Buhl et al. (2006) studied 41 road 

networks and concluded that the average node degree ranges between 

2.02 and 2.86 [35]. The reported average node degree for the US 

interstate highway network is 2.86 [33]. Recently, Chan et al. (2011) 

noted that the average node degrees of the individual cities lie within a 

narrow range between 3.17 and 3.31 [21]. 

Betweenness 

centrality 

The betweenness centrality of a node is equal to the number of shortest 

paths from all nodes to all others that pass through that node. The 

betweenness centrality is found to have a power law exponent in the 

range [1.279, 1.486]. The results indicate a strong heterogeneity of the 

network with the existence of a few central roads [137, 138]. 

Average nearest 

neighbors degree 

The average nearest neighbors degree shows whether the node is 

surrounded by large or small nodes 

Clustering coefficient The clustering coefficient is a measure of tightness and density of links, 

i.e., the measure of degree to which nodes tend to cluster together. 
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Table 2.3. The Local Link-based Structural Attributes of Road Networks 
Attribute Description 

Link length 

distributions 

The local relationships between link and node characteristics indicate 

that, on average, link lengths decrease with increasing of involved node 

degree. This signals a possible relationship with the spatial distribution 

of nodes and links within cities. 

Link angle 

distributions 

A measure of rectangularity of intersections. The link angle 

distributions have two general peaks at 90◦ (which corresponds to 

perpendicular intersections of pairs of roads) and 180◦ (which shows 

that the corresponding nodes are formed by a straight road from which 

a secondary one splits perpendicularly). 

Double-angle 

distributions 

A measure of straightness of the crossing roads. In general, nodes with 

degree ݇௡ ൌ 4 have only one sharp peak around 180◦, while nodes with 

degree ݇௡ ൌ 3 have two peaks at 180◦ and 270◦. 

curvature The ratio of link length divided by Euclidean distance between 

the two connected nodes. 

 
 
 

Table 2.4. The Local Cell-based Structural Attributes of Road Networks 
Attribute Description 

cell area Area that is formed by closed loops consisting of different links. 

topological cell 

degree 

The number of neighboring cells [139], where neighboring cells of a 

cell are the ones that have a common edge with the cell. 

geometric cell degree Also known as the cycle length [140], the number of straight road 

segments forming the cell. 

cell diameter The maximum diameter of cells. 
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Attribute Description 

cell perimeter Perimeter of the cell that is formed by closed loop consisting of 

different links. 

form factor The measure of the shape of a cell; combination of cell area and 

diameter [37]; is defined as the ratio between the actual cell area ܣ௖ 

and the area of the smallest possible circumscribed circle (ߨ. ݀௖ଶ). 

 
 
 

2.2.3 Dynamics of Transportation Networks 

In general, networks have dynamical processes running on top of them. A variety of 

possible dynamical processes was investigated, such as synchronization [141], search and 

random walk [142], and spread of ideas, infection, or computer viruses on different types 

of networks [3, 11, 82, 143, 144]. For a road transportation network, the dynamical process 

is the traffic flow [21, 55, 145]. Basically, traffic flow patterns depend on drivers’ behavior 

and ways of thinking, socio-economic environment, and time constraints [90]. Existing 

studies focused on traffic flow dynamics, such as flow of people within city and commuting 

traffic flow between different cities [37]. However, these studies did not consider the 

physical topology of a network. For instance, the link with the largest betweenness cannot 

be detected without considering the topology of the network. 

Different approaches have been proposed to identify the traffic flow pattern for a 

network. One simple approach is to consider a constant generation rate for all the nodes of 

a network. This approach assumes that a constant number of vehicles are generated at each 

time step for every node with a certain probability [4]. This approach simplifies the 

definition of traffic flow patterns, but it does not fit real-world traffic patterns. In reality, 
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traffic flow is neither random nor constant for all nodes. Another approach is to predict 

traffic volume of different links using sparse traffic counts and additional information, such 

as local land use data, time-steps, local employment, population attributes, roadway details 

[146, 147]. The limitation of such techniques is that they rarely use the topological 

attributes of a network. Instead, such approaches used statistical estimation techniques, 

such as weighted regression, or universal Kriging models [147-149]. 

Another approach is to estimate Origin–Destination (OD) matrix which provides 

traffic volumes between all pairs of geographical areas (i.e., the origins and destinations) 

[150]. The first method to estimate the OD matrices is from household interviews or partial 

traffic counts [151, 152] In general, such method fails to estimate detailed OD matrices 

because of its high data acquisition cost and low accuracy due to sparse data [151, 152]. 

The second method for estimating OD matrices is to record the number of vehicles passing 

by a section of the roads by leveraging different sensors, such as road cameras and loop 

detectors. This method is also expensive and prone to malfunctioning [151, 152]. The third 

method is to use location traces of probe vehicles at high resolutions (up to one Hz) based 

on GPS data [153]. However, they are often degraded on purpose due to privacy issues, 

and thus cannot provide detailed OD matrices at large scales. The fourth method is to utilize 

mobile phone data which can be used wherever the geographical locations of 

communications (e.g., phone calls and texts) are recorded [8]. 

Recently, Wang et al. (2012) presented a method to estimate an OD matrix with 

mobile phone data [29]. They counted the number of trips between all pairs of zones to 

obtain the distribution of travel demands. The resultant distribution is based on the number 

of the phone users. Therefore, they rescaled the distribution proportional to the population 
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size and possible transportation modes (e.g., car, carpool, public transportation, bicycle and 

walk) of each zone to find the OD matrix. 

Wang et al. (2012) considered the temporal variation of the OD matrices over a day 

[29]. Based on the observed distribution of daily traffic (Figure 2.1), they divided a day 

into four periods: (1) morning: 6 am–10 am, (2) noon & afternoon: 10 am–4 pm, (3) 

evening: 4 pm–8 pm, and (4) night: 8 pm–6 am. Then, for each period, they estimated the 

distribution of travel demands. Therefore, the spatiotemporal travel pattern over a day was 

presented by four OD matrices, for morning, noon & afternoon, evening, and night. 

 
 
 

 

Figure 2.1. The Observed Distribution of Daily Traffic Presented in [29] 
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2.2.4 Performance of Transportation Networks 

The performance of road networks has been studied from different viewpoints. A 

group of researchers has focused on the macroscopic performance of road networks [41, 

45, 46]. For instance, Geroliminis and Daganzo (2008) verified the existence of a 

Macroscopic Fundamental Diagram for an urban area. The MFD shows network 

performance by linking its measures of performance (i.e., flow and density) (Figure 2.2). 

They showed that a well-defined MFD exists if the congestion is evenly distributed, which 

is not valid for real-world networks. Recently, Geroliminis and Sun (2011) explored the 

impacts of spatial distribution of vehicles on the shape of an MFD [41]. They concluded 

that if the spatial distribution of traffic density is same for two different time intervals, the 

average flows of these two time intervals should be equal. 

The second group of researchers has studied the prediction of threshold behavior of 

networks based on a single structural attribute (e.g., betweenness) [4, 32, 47, 51]. For 

instance, Zhao et al. (2005) discussed that the node with largest betweenness can be easily 

congested, and such congestion can propagate throughout a network. Therefore, they 

defined the phase-transition as the point when the node with largest betweenness is 

congested. Sun et al. (2008) studied the dynamics of traffic congestion by deriving critical 

flow generation rate (i.e., number of generated vehicle at each time step) based on the 

characteristics of links (e.g., road length, maximum speed) [47]. Based on their results, the 

critical flow generation rate is a function of: (a) average shortest path length, (b) number 

of nodes, (c) betweenness, and (e) characteristics of the link with largest betweenness (e.g., 

road length, maximum speed). 
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Figure 2.2. An Example of MFD presented in [45] 
 
 
 
Although the current solutions for modeling network performance (e.g., MFDs or 

phase-transition models) are capable of characterizing macroscopic performance of a 

network, there exists a critical gap. The MFDs depict the relationship between two MOEs 

at a time. However, they do not show the impacts of variations in structure and dynamics 

on network performance.  Similarly, the phase-transition models consider a few structural 

attributes (e.g., betweenness and number of nodes) which do not capture the characteristics 

of a network. Therefore, a framework is needed to capture the relationship among multiple 

MOEs (at a time) and multiple structural and dynamical attributes. The advantage of having 

such a framework over the existing models (i.e., MFDs and phase-transition models) is the 

ability to predict performance of a new network based on its structural and dynamical 

attributes without performing traffic simulations. 
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2.3 Proposed Approach 

This section describes the proposed approach for modeling the performance of a road 

network under normal condition without considering disruptions or distractions. In this 

research, a framework is developed that depicts multiple macroscopic MOEs (e.g., average 

speed, delay, and volume) based on a combination of multiple structural and dynamical 

attributes. The formalization of the proposed framework is motivated by the previous 

works of Helbing (2009), and Geroliminis and Daganzo (2008; 2011) [41, 45, 46]. From a 

macroscopic viewpoint, Helbing (2009) showed that a network can be in three different 

conditions: (1) undersaturated, where the capacities of links and intersections are sufficient 

to accept all vehicles, (2) congested, where the capacities of intersections are exceeded, or 

(3) oversaturated, where the capacities of links and intersections are exceeded. They 

showed that although link-based results were different, the average over different road 

sections led to a smooth relationship between speed and density. Helbing (2009) concluded 

that one should study the relationship between network structure and traffic flow dynamics 

to understand network performance. 

2.3.1 Framework 

The proposed approach is presented in Figure 2.3. The main objective is to ascertain 

the impacts on network performance due to the variations in its structural and dynamical 

attributes through several traffic simulations. The approach is divided into four steps 

(Figure 2.3). In the first step, real road networks are assimilated. In the second step, various 

structural and dynamical attributes are identified to represent network structure and 

dynamics (i.e., traffic demand), respectively. In the third step, different traffic flow patterns 

are loaded on each network through several traffic simulations. The output is a database 
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including multiple network MOEs, structural and dynamical attributes. Finally, in the 

fourth step, the relationship among different network MOEs and attributes is captured by 

a multivariate statistical method. Based on this relationship, I propose a model to predict 

multiple MOEs for new networks based on their structural and dynamical attributes. 

 
 
 

 
Figure 2.3. Flowchart of the Proposed Approach for Research Question 1 

 
 
 

Step 1: Acquiring Real Road Networks 

The first step is to build a database including several road networks from different 

urban areas. To develop a comprehensive model, the database should represent a diverse 

range of road networks representing different network structures and traffic demands. So, 
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several road networks with different sizes should be acquired from various urban areas. 

The road networks should be modeled and calibrated by comparing with real traffic data. 

Such simulations can be performed using a macroscopic simulation software because the 

focus of the first research is to predict network-wide (i.e. macroscopic) measures of 

performance. 

Step 2: Identifying Network Attributes 

The second step is to determine the proper representations of network structure and 

traffic demand. The structural and dynamical attributes are defined as the representations 

of network structure and traffic demand. I developed an algorithm which: (i) takes required 

information (i.e., weighted adjacency matrix) of a given network as an input, (ii) processes 

the information using different tools (e.g., MATLAB, iGraph and ArcGIS), and (iii) returns 

a set of its structural attributes (e.g., weighted degree and betweenness distribution). To 

calculate these structural attributes (shown in Table 2.6), I employed iGraph which is a free 

software package for creating and manipulating different types of graphs [154]. The 

proposed structural attributes can be grouped into: (a) local attributes, such as link’s 

capacity, weighted degree, and weighted betweenness, and (b) network-wide attributes, 

such as largest eigenvalue of the weighted adjacency. The local attributes were identified 

for all individual links of the network. So, the means and standard deviations of local 

attributes are considered as the corresponding network-wide attributes. Finally, the 

proposed algorithm returns a set of network-wide structural attributes. 

The next task is to identify the representations of traffic demand. In this research, I 

used an OD matrix that captures traffic volumes between all Origin-Destination pairs for 

four different times of a day. However, the size of the OD matrix can grow quadratically 
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with the number of OD pairs, and thus the OD matrix requires significant memory for a 

large network. Thus, I proposed a subset of largest (positive) eigenvalues of the OD matrix 

to represent the traffic demand. The subset will be selected based on a sequential selection 

approach similar to the forward-search sequential feature selection presented in [155]. In 

this approach, a subset of eigenvalues is selected by sequentially adding an eigenvalue (to 

the selected subset of eigenvalues) until no improvement can be seen in performance 

prediction.  

Step 3: Running Traffic Simulations 

The third step is to assess the traffic conditions on different road networks via several 

traffic simulations. For each road network, four simulation iterations were executed by 

loading four OD matrices representing four different times of a day. Since network-wide 

MOEs (e.g., average speed, delay, and volume over capacity) are needed, there is no need 

for high-fidelity microscopic models. A macroscopic model is required to compute the 

MOEs for all links. We discussed different existing macroscopic package in Research 

Background Section. In this research, I employed the VISUM software because: (i) the 

VISSUM software returns the needed MOEs, and (ii) the calibrated traffic model of the 

Greater Philadelphia is developed in the VISUM. 

Each simulation run returns four sets of MOEs each of which is associated with a set 

of structural and dynamical attributes for the AM, MD, PM, and NT periods. The output 

of this step is an excel database that includes network MOEs for various combinations of 

structural and dynamical attributes. 
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Step 4: Developing the Performance Prediction Model 

The resultant database of the third step is used as the input for developing the 

performance prediction model using the Canonical Correlation Analysis method. In this 

research, independent variables (aka predictors) are the network structural and dynamical 

attributes, and dependent variables (aka observers) are the network MOEs. So, there exists 

multiple independent and multiple dependent variables (Figure 2.4). 

 
 
 

 
Figure 2.4. Process of Performance Prediction 

 
 
 
In multivariate statistics, multivariate regression analysis is used to predict a single 

dependent variable from multiple independent variables [156]. However, when both 

dependent and independent variables are multivariate, the Canonical Correlation Analysis 

(CCA) is used to simultaneously predict multiple dependent variables from multiple 

independent variables. The CCA has been widely used to measure linear relationship 

between two sets of multivariate variables [157, 158]. Generally, the CCA can be used as: 
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(a) an explanatory tool to investigate whether two sets of variables are related, (b) a 

prediction tool to predict dependent variables based on independent variables, and (c) a 

tool to investigate whether one set of variables relates longitudinally across two time points 

[157]. 

The CCA is aimed at identification and quantification of the interrelations between a 

p-dimensional variable X and a q-dimensional variable Y [159]. The CCA seeks for linear 

combinations of the original variables, ்ܽܺ and ்ܾܻ, that have maximal correlation. In 

mathematical terms, the CCA selects vectors ߙ ∈ ܴ௣ and ߚ ∈ ܴ௤ such that,  

ሺߙ, ሻߚ ൌ argmax
௔,௕

,ሺ்ܽܺݎݎ݋ܥ| 	்ܾܻሻ| 

The selected univariate variables, ܷ ൌ ܺ. ܸ and ߙ ൌ ܺ.  are referred as canonical ,ߚ

variates. The number of pairs of canonical variates is equal to the minimum of the 

dimensions of X and Y. In the CCA, each pair of canonical variates may provide an 

interpretation of the relationship. The ones with the highest correlations are the most 

important ones. 

Researchers investigated the use of the CCA method as a prediction tool to predict 

multiple dependent variables from multiple independent variables [160-162]. Another 

interesting output of the CCA is the loading of each variable, which shows the contribution 

of that variable in the linear combination. The loading of independent variables illustrates 

the prediction capability of the independent variables, and shows which variables are more 

important for the prediction [158]. 

In this research, I used the CCA method to predict the network MOEs. I have ݌ 

number of independent variables (i.e., network attributes) and ݍ  number of dependent 

variables (i.e., network MOEs). I employed MATLAB statistical toolbox functions (e.g., 
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canoncorr) to perform the prediction. The CCA method captures the highest correlation 

between linear combinations of MOEs and linear combinations of network attributes.  

The CCA method returns ߙ and ߚ which are the matrices of canonical coefficients 

for the ܺ (i.e., network attributes) and ܻ (i.e., MOEs). In addition, the CCA method returns 

ܭ  linear relationships between pairs of ሺߚ௞ܻ, ௞ܺሻߙ , where ܭ ൌ min	ሺ݌, ሻݍ . Using a 

regression analysis, I fitted ܭ trend lines to these ܭ graphs. The coefficients of these linear 

regressions are sorted in two vectors: ܿଵሬሬሬറ and ܿଶሬሬሬറ, 

ܻ. 	ߚ ൌ ܿଵሬሬሬറ. ሺܺ. ሻߙ ൅ ܿଶሬሬሬറ 

When the canonical coefficients are computed, they can be used to predict the MOEs 

of a new network without performing a traffic simulation. For any new network, based on 

the network structure and dynamics (i.e., ܺ଴), I can calculate: 

ܿଵሬሬሬറ. ሺܺ଴. ሻߙ ൅ ܿଶሬሬሬറ ൌ 	଴ܥ

଴ܻ. 	ߚ ൌ ଴ܥ 		
			ൈ			ఉషభ		ሺ௪௛௜௖௛	௜௦	௧௛௘	௜௡௩௘௥௦௘	௠௔௧௥௜௫	௢௙	ఉ	ሻ				
ሳልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልልሰ	 ଴ܻ. .ߚ ଵିߚ 	ൌ .଴ܥ  ଵିߚ

With that, I can predict network MOEs ( ଴ܻ) for the new network. The developed 

performance prediction model is as follows: 

଴ܻ 	ൌ .଴ܥ  ଵିߚ

In addition, the CCA method helps us to calculate the prediction capability (i.e., 

loading) of the independent variables. For that, I need to calculate the internal correlations 

of ܺ  (i.e., ߩ௑ , which is the matrix of the correlation coefficients among each pair of 

attributes ܺ ). Then, the loadings vector (i.e., ݃݊݅݀ܽ݋ܮ௑ ) of individual independent 

variables are: 

௑݃݊݅݀ܽ݋ܮ ൌ .	௑ߩ	  	ߙ
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2.4 Results 

This section presents the results of the proposed framework for the Greater 

Philadelphia region. To develop a performance prediction model that can predict the MOEs 

of any new network, one should use a diverse database including calibrated traffic models 

of various urban road networks. However, building a database of calibrated models for 

different networks requires significant amount of time, and is not within the scope of the 

proposed research. 

In this research, I obtained the road network data of the Greater Philadelphia region 

from the Delaware Valley Regional Planning Commission (DVRPC), which is a federally 

designated Metropolitan Planning Organization. The DVRPC is responsible for 

coordinating the transportation planning process conducted in the region, including 

collecting and providing data for regional studies, conducting research, and developing the 

long range transportation plan and the short-term transportation improvement program. 

As shown in Figure 2.6, the Greater Philadelphia region includes following counties: 

Bucks, Chester, Delaware, Montgomery and Philadelphia (in Pennsylvania State) and 

Burlington, Camden, Gloucester and Mercer (in New Jersey State). It is a region including 

352 municipalities in 2,439,899 acres, which serve total population of 5,626,186. 
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Figure 2.5. The Study Area (The Greater Philadelphia Region) 

 
 
 
The acquired traffic model is a calibrated model developed in the VISUM regional 

traffic simulation software. The model includes four Origin-Destination (OD) matrices for 

four different times of a day: AM Peak (6:00 AM to 10:00 PM), Midday (10:00 AM to 

3:00 PM), PM Peak (3:00 PM to 7:00 PM), and Night Time (7:00 PM – 6:00 AM). The 

DVRPC calibrated the model at a regional level by comparing the traffic simulated results 

with real traffic counts for different times of a day. Originally, the model contained around 

254,800 links. In this research, I considered important roadways, such as highways, 

arterials, and major collectors to create a medium size network of 101,909 links. This is 

done to speedup simulation run, which on average took 60 hours on our machine. 

I tested several settings (of network structure and traffic demand) by changing the 

links’ capacities and OD matrices of the Greater Philadelphia network. So, the predicted 

results are assumed to be valid for different similar variations in network structure and 

traffic demand. Though the proposed framework is validated on one network, it is scalable 

to other networks by building a database of multiple road networks. 
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I used different strategies to change the roads’ capacities and the traffic demand. 

Table 2.5 lists my strategies, in which I altered either capacities or traffic demand of either 

all links or a subset of the links based on their volume over capacity ratio (V/C). For 

example, in scenario S2, I changed the capacity of the roads whose V/C were greater than 

1. In this case, I multiplied the capacity of these links by their V/C, i.e., I increased the 

capacity of the links whose volumes were more than their capacities. 

 
 
 

Table 2.5. Different Scenarios for Changing Links’ Capacities 
Scenario Links that are subjected to 

change: 

Capacity change OD matrices 

S1 None No change Default ODs  

S2 Links whose V/C ≥ 1.0 New Capacity = V/C. Capacity Default ODs  

S3 Links whose V/C ≥ 0.6 New Capacity = 0.6 Capacity Default ODs  

S4 All links New Capacity = 1.5 Capacity Default ODs  

S5 All links New Capacity = 0.6 Capacity Default ODs  

S6 All links New Capacity = V/C. Capacity Default ODs  

S7 Randomly selected links 

(50%) 

New Capacity = 0.6 Capacity Default ODs  

S8 Randomly selected links 

(50%) 

New Capacity = V/C. Capacity Default ODs  

S9 Randomly selected links 

(50%) 

New Capacity = 1.5 Capacity Default ODs  

S10 None No change Transpose of 

default ODs 
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Scenario Links that are subjected to 

change: 

Capacity change OD matrices 

S11 Links whose V/C ≥ 0.5 New Capacity = 1/(V/C). 

Capacity 

20% increase 

S12 All links New Capacity = V/C. Capacity 25% increase 

S13 All links New Capacity = 2.0 Capacity 100% increase 

 
 
 
The weights of a weighted adjacency matrix represent the links’ capacities. So, the 

variation in the capacities led to the variation of all weighted attributes, such as weighted 

degree and betweenness. However, other structural attributes, such as number of nodes and 

links, form factor, diameter, and Gama index, remained the same. Hence, among the 

structural attributes discussed in the Background Research section, I used the eight 

structural attributes that are listed in Table 2.6. 

 
 
 

Table 2.6. Proposed Structural Attributes 
Structural Attributes 

1 Average of links’ capacities 

2 Standard deviation of links’ capacities 

3 Skewness of links’ capacities 

4 Largest eigenvalue of weighted adjacency 

5 Average of weighted degree 

6 Standard deviation of weighted degree 

7 Average of weighted betweenness 

8 Standard deviation of weighted betweenness 
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In the “Proposed Approach” section, I discussed that the dynamical attributes are 

represented as a subset of largest eigenvalues obtained using the forward-search sequential 

selection approach. In this research, I implemented this forward-search sequential selection 

approach and selected six largest eigenvalues. 

I ran the traffic simulations for each of the 13 scenarios (shown in Table 2.5) using 

the VISUM software. Each simulation run took an average of 2 days. For each road 

network listed in Table 2.5, there were four OD matrices representing four different times 

of a day. Therefore, each simulation run returned four combinations of structural and 

dynamical attributes for four different times of a day. By performing simulations, I created 

a database including 52 sets of MOEs (e.g., speed, delay and V/C) and network attributes 

(e.g., weighted degree and betweenness, capacity, and largest eigenvalues of the OD 

matrix). 

Finally, I used the CCA method to capture the relationship among different MOEs 

and network attributes. In this research, the number of variables in X and Y were 14 

(including eight structural attributes and six dynamical attributes) and six (including the 

average and standard deviation of: speed, delay, and V/C). Therefore, the number of the 

captured canonical variates (ܭ) was six: 

݌ ൌ ݍ			݀݊ܽ			14 ൌ 6	 → ܭ ൌ minሺ݌, ሻݍ ൌ 6 

 

I calculated ߙ and ߚ which were the matrices of canonical coefficients for the ܺ (i.e., 

network attributes) and ܻ  (i.e., MOEs). The ߙ  and ߚ  matrices had six columns. Each 

column of ߙ (and ߚ) contained the coefficients of individual ௜ܺ (and ௝ܻ) in the canonical 

variates. 
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The six sets of canonical variates are the linear relationships between six linear 

combinations of X and six linear combinations of Y (i.e., ܺ. .ܻ and ߙ  While one can .(ߚ

define infinite sets of canonical variates (i.e., infinite linear combinations of X and Y), 

these canonical variates are the six sets of linear combinations that have the largest 

correlations among these infinite combinations. I plotted these six linear combinations in 

Figure 2.6 in which the x-axis shows a linear combination of the network attributes (i.e., 

ܺ. .ܻ ,.and the y-axis shows a linear combinations of the MOEs (i.e (ߙ  Using a linear .(ߚ

regression analysis, I fitted six trend lines to these six sets of data. The equations of these 

trend lines are also shown on the graphs on Figure 2.6. 
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Figure 2.6. Relationships between Canonical Variates 
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The six equations of these trend lines (shown on Figure 2.6) are the basis on which I 

developed the performance prediction model. In this research, I have six unknowns (i.e., 

averages and standard deviations of the speed, V/C, and delay) and six equations. So, I can 

predict the unknowns using the system of these six linear equations. However, the 

effectiveness of a prediction depends on the goodness of fit of the captured linear 

relationships. Based on the r-squared values (i.e., measures of goodness of fit) shown on 

Figure 2.6, the first set of canonical variates had the best fit (r-squared=0.88), and the sixth 

one had the worst fit (r-squared=0.15). The r-squared values of the last three sets of 

canonical variates (i.e., Canonical Variates 4, 5, and 6) were lower than 0.7 which means 

these pairs of canonical variates were not highly correlated. Such low captured correlations 

would negatively affect the prediction of the MOEs. One possible way to improve such a 

limitation would be to assimilate a diverse database of networks which is beyond the scope 

of this research. 

The coefficients of the linear regressions (shown in Figure 2.6) were sorted in two 

vectors ܿଵሬሬሬറ and ܿଶሬሬሬറ, as: 

 
 
 

 

 
 
 

0.941 77.132

0.910 -18.323
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Based on the computed matrices of canonical coefficients (ߙ,  and vectors of (ߚ

coefficients of linear regressions (ܿଵሬሬሬറ, ܿଶሬሬሬറ), for any new network with known attributes (i.e., 

ܺ଴), I can compute: 

଴ܥ ൌ ܿଵሬሬሬറ. ሺܺ଴. ሻߙ ൅ ܿଶሬሬሬറ	

Thus, the developed performance prediction model that predicts the MOEs (i.e., ଴ܻ) 

for a new network based on its attributes (i.e., ܺ଴) is as follows: 

଴ܻ 	ൌ .଴ܥ  ଵିߚ

Although this model returns the average traffic conditions (i.e., average MOEs), it 

cannot completely replace the simulation models. Instead, this model can be used during 

the pre-screening process of numerous design alternatives for macroscopic assessments. 

The few selected alternatives can be then analyzed using detail simulation models. This 

approach (i.e., first using the proposed model for pre-screening and then using detail 

simulation models for accurate comparison) speeds up any planning or design processes 

which need the analysis of numerous alternatives. 

 
2.5 Validation 

As discussed earlier, the created database in this research contained 52 sets of MOEs 

and network attributes. Among these 52 sets, four sets were the simulated results of the 

original network of the Greater Philadelphia (i.e., S1 in Table 2.5 which represents the real 

scenarios) for four different times of a day. The other 48 sets were the simulated results of 

the altered networks (i.e., S2 to S13 in Table 2.5 which represent the altered scenarios). 

To validate the framework, I first developed the performance prediction model based 

upon the 48 sets of the MOEs and network (structural and dynamical) attributes. Then, I 

used the developed model to predict the MOEs of the four real scenarios to test the 
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effectiveness of prediction. For each of the four real scenarios, I calculated ܺ଴ and used the 

model ( ଴ܻ 	ൌ .଴ܥ  .ଵ) to predict the MOEs (i.e., ଴ܻ)ିߚ

In addition, I performed traffic simulations of these four real scenarios. By comparing 

the predicted results and the simulated results, I can evaluate the effectiveness of the 

developed model. Table 2.7 lists and compares the predicted and simulated results for the 

real scenarios. In Table 2.7, I presented the six macroscopic MOEs that are the means (i.e., 

averages) and deviations (i.e., standard deviations) of the speed, V/C, and delay for the 

AM, MD, PM, and NT periods. The results show that, on average, the difference between 

the predicted results (i.e., means and deviations of the speed and V/C) and the simulated 

results were around 6%. Considering the timesaving advantage of the proposed model over 

the simulation models (e.g., couples of seconds compared to two days), the results are 

satisfactory especially for pre-screening purposes.  

However, the model failed to predict the mean and standard deviation of the delay. 

To analyze the reason, I investigated the VISUM delay calculation method. To calculate 

the delay, the VISUM software uses a function which expresses the travel times on a road 

as a function of traffic volume (aka volume-delay function, VDF) [163]. This function 

calculates the delay as the difference between travel time for current condition and free-

flow condition. The VISUM software uses the BPR (Bureau of Public Roads) function 

which is a widely used volume-delay function as follows [164]: 

௖௨௥௥௘௡௧ݐ 	ൌ 	 .௙௥௘௘௙௟௢௪ݐ ሾ1 ൅ 0.75	ሺܸ/ܥሻସሿ 

However, the BPR function has some drawbacks [165]. For example, it is very easy 

to get large delay, if the V/C is close to or over 1. On the other hand, for the links that are 

used far under their capacity, the BPR functions yield always free flow times. These 
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drawbacks have led to unreliability in simulation results for delay that were used to develop 

the proposed model. Therefore, the model failed to predict the mean and standard deviation 

of the delay. However, I did not remove the delay results to highlight the importance of 

training-data accuracy. 

 
 
 

Table 2.7. Comparison of Simulated and Predicted Results for Real Scenarios 

 
 
 
 
I plotted the simulated results of the four real scenarios (aka test scenarios) on the 

same graphs of the predicted results (aka training scenarios) which were captured by the 

CCA method (Figure 2.7). 

 
 
 

Pred Sim Pred Sim Pred Sim Pred Sim Pred Sim Pred Sim

AM 30.3 30.2 9.6 9.7 51.4 53.6 31.5 32.2 2.0 3.3 336 13.6
MD 30.9 31.3 9.3 9.1 48.7 47.5 30.7 30.9 9.4 1.8 1752 9.2
PM 30.3 29.2 9.5 10.2 49.6 58.5 29.9 32.9 2.2 4.6 1351 18.9
NT 34.1 33.9 7.6 7.7 20.4 15.9 21.1 17.0 4.9 0.1 1132 1.8

Time of 
the day

↓
Mean Deviation

Speed V/C Delay
Mean Deviation Mean Deviation

   Notes:  Pred: Prediction Results,   Sim:Simulation Results 
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Figure 2.7. Simulated Results for Real Scenarios (i.e., test) Plotted on the Captured Canonical 

Variates 
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The closer the simulated results to the trend lines, the better the prediction 

performance. As shown in Figure 2.7, for the AM and MD periods, the simulated results 

were close to the six trend lines. This means that the model was effective in predicting the 

MOEs for the AM and MD periods. The Table 2.7 also verifies these results for AM and 

MD periods. However, for PM and NT, in some cases the simulated results were not close 

to the trend lines. So, the model failed to predict some of the MOEs during these periods 

(e.g., average V/C during the PM period). 

To conclude, currently, transportation planners have to perform many time-

consuming traffic simulation runs for numerous different design alternatives. In general, 

evaluating such alternatives require a significant amount of time and computational 

resources. However, for pre-screening process of these numerous alternatives, a 

macroscopic analysis is sufficient. Therefore, the proposed computational framework 

could help planners predict average MOEs without performing exhaustive simulations 

resulting into significant timesaving. After selection of a few alternatives, detail analysis is 

necessary via simulation runs to accurately assess traffic conditions. 

In the future, it is recommended to assimilate a diverse database of road networks to 

improve the prediction model and to investigate whether this model is scalable to other 

network types as well. In addition, after building the diverse database, it is recommended 

to consider other network attributes including: structural attributes (e.g., network diameter, 

and form factor) and dynamical attributes (e.g., spatial distributions of traffic origins and 

destinations). This would also lead to a better representation of road structure and traffic 

demand which may improve reliable performance prediction. 
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CHAPTER 3. MODELING NETWORK VULNERABILITY DUE TO CRITICAL 

DISRUPTIONS 

3.1 Introduction 

Civil infrastructure systems, such as transportation systems and electrical grids, are 

of utmost importance to our modern societies. These systems play a fundamental role in 

operation and development of various aspects of our societies, such as economy, safety and 

security. Generally, infrastructure systems can be defined as a set of interconnected 

elements that, as a whole, provide critical supports. Therefore, vulnerability assessment of 

such systems (i.e., networks) to large-scale collapse is important [6, 31, 49, 52-56, 166]. 

Small local failure may propagate through these networks causing a large-scale breakdown, 

which is termed as a macroscopic avalanche [27, 49, 167-169]. 

Among different transportation networks (e.g., roads, railways, airways, and 

waterways), road network is the most widely used infrastructure system. Hence, any 

disruption that leads to a failure of single or multiple nodes or links in a road network may 

significantly degrade its performance by decreasing an average speed or increasing an 

average delay [43, 170, 171]. The cause of such disruptions can originate either within a 

network (e.g., car crashes, or bridge collapses) leading to blockage of a single link/node, 

or from external sources (e.g., floods, landslides, snowfall, storms, earthquakes or other 

natural hazards) leading to partial/complete blockage of multiple links at a time. An 

example of multiple-links failures is area-covering disruption which is defined as the 

disruption that degrades a substantial portion of a road network within an affected area [6]. 

Berdica (2002) defined ‘vulnerability’ of a road network as its susceptibility to events that 

may result in considerable reduction in serviceability [1]. It is important to assess the 
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vulnerability of a road network in response to both single-link blockage and area-covering 

disruptions [6].  

Current research studies have focused on the impacts of failure of single links and 

ranked them based on their impacts [172, 173]. In the case of failure of multiple links, the 

researchers considered the top-ranked subset of single links as the most important subset 

of links [6]. Recently, the researchers also studied the impacts of area-covering disruptions 

which disrupt an area with a pre-defined shape (e.g., square) and size [6]. However, they 

did not investigate the impacts of disruption on a large area without any prior assumptions 

about the shape and size of the affected area. In reality, natural disruptions, such as flood, 

heavy snow, and hurricane, may simultaneously impact multiple links in an area with 

arbitrary size and shape. Hence, instead of finding a critical set of links, an interesting 

question might be to find the critical area(s) which are defined as the areas within a network 

whose disruption will significantly impact the connectivity of a network compared to the 

disruption of non-critical areas. 

3.2 Background Research 

3.2.1 Background Research on Road Disruption Analysis 

Different criteria are proposed to evaluate the impacts of disruptions on network 

performance [28, 53, 56, 174-178]. They studied disruptions based on their causes, types 

and severity. The cause refers to the origins of disruption, and can be grouped into two 

categories: (a) internal and (b) external causes [6]. Car crashes, random technical failure 

such as bridge collapse, and incidents due to road works, are labeled as internal causes, 

while natural (e.g., flood, storms, hurricanes) and anthropogenic (e.g., terrorist attack) 

hazards are external causes. The disruptions due to internal causes typically lead to capacity 
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reduction (or blockage) of a single link [6]. Thus, these research studies [28, 56, 169, 174-

176] investigated single-link failures.  

In contrast, the disruptions caused by nature may extend to large areas, and may 

impact multiple links [6]. In general, there are two types of multiple-link disruptions: (1) 

disruption of multiple links spatially scattered across a network, and (2) disruption of 

multiple links in a specific area within a network (aka area-covering disruption), which is 

typical in a transportation network. Jenelius and Mattsson (2012) studied area-covering 

disruptions that degrade a substantial portion of a road network within an affected area. To 

model an area-covering disruption, they modeled a road network by a grid of uniformly 

shaped and sized cells. Each cell represented a spatial coverage of a possible disrupting 

event. They investigated different square cell sizes to analyze the sensitivity and accuracy 

of their models. They concluded that the area affected by an area-covering disruption is 

different than that of a single link disruption [6]. However, in their models, the grid shape 

and cell size limit the shape and extent of a disruption. The severity of a disruption refers 

to the capacity reduction of links due to an event. While ordinary events, such as partial 

flooding and minor accidents, may partially reduce the capacity of a given link, 

catastrophic events such as earthquake, collapse of bridges and major accidents may 

completely reduce the capacity [172].  

Criticality criteria 

Generally, the links or nodes with higher traffic volumes are considered as critical 

(aka important) links or nodes. Two standard measures of criticality (also known as 

importance) are: (1) average annual daily traffic (AADT) and (2) volume over capacity 

ratio (V/C) [179]. The disadvantage of these measures is that they are localized measures 
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that do not consider network-wide impacts of link failure. Network-wide impacts are the 

changes in traffic conditions over an entire network due to failure of an individual node or 

link. Sullivan et al. (2010) discussed that the critical links are not necessarily the links with 

highest traffic volume, but are links with relatively higher volume and fewer alternate 

routes. This conclusion highlights the importance of network structure, which is defined as 

the arrangement of network’s various components, such as nodes and links. 

The structural characteristics have been considered as the basis of several criticality 

criteria. The examples include: (1) the change in the shortest paths between all pairs of 

nodes after disruption [180], (2) gamma index of connectivity [172], and (3) Latora-

Marchiori measure, which defines the efficiency of a network based on its topology [181]. 

These criteria are only based on network topology, and traffic flow dynamics has not been 

considered. Because of the spillback impacts of congestion, Knoop et al. (2008) discussed 

that it is important to define the criteria based on both the topology and traffic flow 

dynamics [176]. The examples of these criteria include: (1) Network Robustness Index 

(NRI) which captures an increase in delay [6, 172], (2) change in the total cost (i.e., 

distance, time or money) of travel [174], and (3) change in network accessibility defined 

based on distance, population, and traffic volume [175]. 

Existing studies has two major limitations. First, the current methods did not consider 

network-wide impacts of disruption, which are the impacts of disruption on overall network 

connectivity. So, any new criteria should be identified to consider the impacts of 

disruptions on network connectivity. Second, the existing methods for an area-covering 

disruption need prior assumptions about the size and shape of grid cells. These assumptions 

limit the occurrence of a disruption on squared-shape grid cell of a network, which may 
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not be a realistic assumption. So, any new approach is needed to analyze disruptions which 

may cover multiple areas without pre-defined shape and size. It is also important to 

investigate whether the areas’ criticality depends on the occurrence time of disruption (e.g., 

AM, MD, PM, or NT periods). 

3.2.2 Background Research on Network Science 

In general, there is a large body of research related to different types of networks [3, 

11]. Boccaletti et al. (2002) reviewed the concepts and results achieved in the study of the 

structure and dynamics of several networks, such as social network, the Internet, World 

Wide Web, genetic networks, and brain networks. Also, Albert et al. (2002) discussed the 

main categories of networks including random graphs, small-world and scale-free 

networks (discussed in Chapter 2). They also studied the interrelation between topology 

and dynamics due to attack and failure of network nodes or links. 

Application of network science in civil engineering 

The structure and dynamics of network infrastructures (e.g., transportation networks) 

have been studied from the perspective of network science [3, 11, 52, 182, 183]. The 

structure defines the topology of a network including links and nodes. Chan et al. (2011) 

studied the road networks of 20 largest cities in Germany for the year 2005, and proposed 

a variety of measures based on the structural and spatial characteristics of the road 

networks. The examples of structural measures include: number of nodes and links, node’s 

degree and betweenness, clustering coefficient (i.e., a measure of tightness and density of 

links), and link’s length probability distribution. Their results, in addition to recent 

empirical studies [37, 132, 133], have shown that there exist topological quantitative 

similarities between road networks of different cities. 
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In addition, the dynamics of a network defines what processes are happening on the 

network [4]. In the case of road networks, dynamics refers to traffic flow. Different 

approaches are proposed to identify traffic flow dynamics based on: household interviews 

[151], records of road cameras and loop detectors [152], GPS data of the location traces of 

probe vehicles [153], and mobile phone data which can be used wherever the geographical 

locations of the origins of phone calls and texts are recorded [29, 184, 185]. For instance, 

Gonzales et al. (2008) studied two different datasets of mobile phone users from two 

different areas to investigate human mobility patterns. Also, Wang et al. (2012) considered 

the temporal variations of the OD matrices over a day. Based on the observed distribution 

of daily traffic, they divided a day into four periods: (1) morning: 6 am–10 am, (2) noon & 

afternoon: 10 am–4 pm, (3) evening: 4 pm–8 pm, and (4) night: 8 pm–6 am. Then, for each 

period, they estimated the distribution of travel demands. Therefore, the spatiotemporal 

travel pattern over a day was presented by four different OD matrices representing 

morning, noon & afternoon, evening, and night [29]. 

Furthermore, the interrelation between structure and dynamics was highlighted in 

many research studies [11, 49, 50, 169]. For example, the author studied the impacts of 

network structure (e.g., largest eigenvalue) on the propagation of traffic congestion [50]. 

Researchers studied the vulnerability of infrastructures to large-scale collapse in modern 

societies [49, 186]. Winkler et al. (2010) combined hurricane damage prediction and 

topological assessment of power systems to evaluate the impacts of hurricane on network 

vulnerability. They concluded that the network vulnerability correlates directly with 

topological features, such as centrality and clustering [186]. Duenas-Osorio and Vemuru 

(2009) considered the cascading failure of infrastructures. They concluded that regardless 
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of the nature of the event, the additional performance loss due to cascading failures can be 

significantly larger than the initial loss [49]. Their conclusion indicates the importance of 

considering both structure and dynamics in vulnerability assessment of infrastructures. 

3.3 Proposed Approach 

This section discusses the research objective, approach and validation strategies for 

modeling transportation network vulnerability in response to an area-covering disruption. 

3.3.1 Objective 

The main objective of the research is to formalize and develop a framework that 

enables transportation modelers to identify various critical areas on a given road network. 

To overcome the limitations of existing studies in network-wide vulnerability assessment, 

the proposed framework builds upon network-science theories. Specifically, I employed a 

method from epidemiology [15] to define a network-wide measure of connectivity. In this 

method, the network connectivity is defined based on the largest eigenvalue of the network 

[15]. In addition, I proposed an approach based on community detection method to identify 

critical areas [187]. Thus, the important components of the framework are: (1) eigenvalue-

based measure of connectivity, and (2) community detection methods for clustering. 

3.3.2 Framework 

The overall proposed approach is presented in Figure 3.1. In the first stage, the 

criticality of individual links is determined (discussed in section Phase 1: Identifying links’ 

criticality). Then, in the second stage, a community detection (aka modularity 

optimization) algorithm is used to cluster links based on their different levels of criticality 

(discussed in Phase 2: Clustering links). The output is a collection of different clusters 

throughout the network representing different levels of criticality. 
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Figure 3.1. Overview of the Proposed Framework 

 
 
 

Phase 1: Identifying links’ criticality 

In this research, the algorithm identifies the link’s criticality based on the drop in 

network connectivity due to the link’s disruption. To do so, it defines a measure for the 

network connectivity (discussed in Phase1.1). Then, three different approaches are 

discussed to calculate the drop in the network connectivity measure and the one which is 

computationally efficient is selected (discussed in Phase1.2). Finally, the algorithm 

identifies the link’s criticality based on such a drop (discussed in Phase1.3).  
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Phase 1.1. Define network connectivity measure 

I propose the largest eigenvalue of an adjacency matrix as a connectivity 

measure.[14, 15]. There are several ways to define the adjacency matrix: (1) un-weighted 

adjacency, (2) weighted adjacency where the weights are structural measures, such as 

distance or capacity, (3) weighted adjacency where the weights are dynamical measures, 

such as traffic volume, and (4) weighted adjacency where the weights are a combination 

of structural and dynamical measures. I choose the latter one (i.e., combination of structural 

and dynamical measures) because both structure and dynamics play important roles in 

network performance [11]. To do so, I select “capacity of links” as their structural measure 

and “traffic volume” as their dynamical measure. 

To define the combined weights, I needed to investigate the relationship between 

network connectivity and the selected measures (i.e., capacity and traffic volume). 

Figure 3.2(a) shows a simple example of a weighted graph, in which the links’ weights 

represent their capacities. Figure 3.2(b) shows the same graph, but the weight of the link 

with highest capacity (i.e., link 1-4) is reduced by 50%. In contrast, Figure 3.2(c) shows 

the graph, in which the weight of the link with lowest capacity (i.e., link 1-2) is reduced by 

50%. Figure 3.2 shows the computed largest eigenvalues of adjacency matrices (λ1) for 

the three scenarios. The results indicate that when the highest-capacity link is disrupted, 

the λ1 is impacted more than the case in which the lowest-capacity link is disrupted. 

Therefore, there exists a direct (i.e., not inverse) relation between the capacity and λ1 which 

is the measure of network connectivity. 
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Figure 3.2. Change in Capacities of a Small Weighted Graph 

 
 
 
The same logic is valid for the relation between traffic volume and network 

connectivity. In other words, it is more critical if the links with larger traffic volumes are 

disrupted. Therefore, in summary, the criticality (i.e., reduction in network connectivity) 

has a direct (i.e., not inverse) relation with both the capacity and traffic volume. Hence, for 

a weighted network, I defined the weight of a link as: 

௟ݓ ൌ ܽ. ௟ܥ ൅ ܾ. ௟ܸ 

where ݓ௟ is the weight of the link, ܥ௟ is the capacity of the link, and ௟ܸ is the traffic 

volume on the link. I assumed that ܽ and ܾ are both equal to 1 2ൗ , i.e., the weight is the 

arithmetic mean of capacity and traffic volume. The traffic volumes vary based on the time 

of a day. Therefore, the weights of the links are also different for different times of a day. 

Phase 1.2. Calculate the drop in network connectivity measure 

Since the criticality of a link depends on the impact of a disruption on network 

connectivity, it is reasonable to calculate such criticality based on the drop in the largest 

eigenvalue when a given node/link is disrupted. To identify the criticality of multiple links 

in a given area, one has to consider the impacts of their simultaneous disruption. Prakash 

et al. (2013) proposed and validated an approach called Exhaustive approach (shown in 
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Figure 3.3) which greedily tries to find the links whose disruption minimizes the largest 

eigenvalue. As shown in Figure 3.3, the Exhaustive approach reduces the capacity of one 

link and computes the drop in largest eigenvalue due to this disruption. This process is 

repeated for the entire links to find the link associated with the largest drop in ߣଵ஺. Once 

such link is found, its capacity is reduced and the algorithm searches for the next critical 

link, until the point that the largest eigenvalue reaches its minimum level. 

 
 

 

Figure 3.3. Flowchart for the Exhaustive Approach 
 
 
 
I tested the Exhaustive approach on the network of Guam Island, which has 539 nodes 

and 1183 links. It took 180 minutes to sort the 1183 links of Guam network in terms of 

their criticality. Therefore, for large networks (e.g., networks with 100,000 links) it is 

reasonable to develop faster alternatives compared to the Exhaustive approach. Hence, I 

proposed two approaches based on the weighted degrees (i.e., strength) of links. I defined 

the weighted degree of a link as the average of weighted degrees of its two attached nodes. 

For example, if the weighted degrees of the attached nodes of a link are 650 and 350, the 
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weighted degree of the link is 500 (i.e., 650 ൅ 350
2ൗ ). Figure 3.4(a) shows the first 

proposed approach (aka weighted-degree approach). In the first approach, the algorithm 

sorts the links based on their weighted degrees and then disrupts links sequentially in a 

descending order of their degrees. At each step, once the link’s weight is reduced (based 

on a given severity level, for example, 60%), I compute the largest eigenvalue of the new 

weighted network. Then, criticality of the link is defined as the drop in the largest 

eigenvalue due to the disruption of the link. 

Figure 3.4(b) shows the second proposed approach (aka updating-degree approach). 

In this approach, the algorithm sorts the links based on their weighted degrees and then 

disrupts links sequentially. However, at each step after disrupting a link, the weighted 

degrees of all links are recalculated and the undisrupted links are re-sorted in a descending 

order of their degrees. 

 
 

 

Figure 3.4. Flowcharts for the Two Proposed Approaches 
 



 
 

69 

 

I also tested weighted-degree and updating-degree approaches on the network of 

Guam. Figure 3.5 shows the drop in largest eigenvalue based on the size of disruption. The 

y-axis shows the largest eigenvalue of an adjacency matrix, and the x-axis shows different 

percentages of disruption. For example, the value 0.2 on the x-axis means the disruption of 

20% of the entire links. As shown in Figure 3.5, if we disrupt 20% disruption of links using 

the Exhaustive approach, the value of the largest eigenvalue is minimized. This value (i.e., 

disruption percentages) is around 22% for the updating-degree approach and 25% for the 

weighted-degree approach. The differences among these values (20%, 22%, and 25%) 

were not significant. 

 
 
 

 

Figure 3.5. Three Methods for Finding Critical Link of Guam Island Network 
 
 
 
Table 3.1 lists the computational complexity (i.e., running time) of the three different 

approaches. The main processes of the approaches are: (1) eigenvalue computation, (2) 

sorting, and (3) weighted degree computation. In general, the computational complexities 

of the eigenvalue computation, sorting, and weighted degree computation are O(n3), O(n 
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log n), and O(n), where n is the number of links in a network [188]. Table 3.1 shows the 

number of steps for each process which is defined in terms of n. The results indicate that 

the weighted-degree approach was computationally more efficient and faster than the 

updating-degree and Exhaustive approaches. Also, on my machine, the weighted-degree 

approach took 2 minutes to reach the minimum value, while the updating-degree and 

Exhaustive approaches took 30 and 180 minutes. Hence, in this research, I selected the 

weighted-degree approach for large networks, such as the Greater Philadelphia network. 

 
 
 
Table 3.1. Computational Complexity (i.e., running time) of three Different Approaches 

Process Exhaustive Updating-degree Weighted-degree 

Eigenvalue computation, O(n3) n2 n n 

Sorting, O(n log n) - n 1 

Weighted degree computation, O(n) - n n 

Total O(n5) O(n4+n2logn+n2) O(n4+nlogn+n2) 

 
 
 

Phase 1.3. Identify link’s criticality based on the calculated drop 

The next step is to identify the link’s criticality measure based on the drop in the 

network connectivity measure (i.e., the largest eigenvalue). In Figure 3.6, the links that are 

earlier selected to be disrupted are more critical. For instance, the link ݈௔ is more critical 

than the link ݈௕. Additionally, once the minimum level of the largest eigenvalue (1ߣ௠௜௡ in 

Figure 3.6) is reached, disrupting the remained links does not impact the largest eigenvalue. 

Therefore, I define criticality of the link ݈௜ as follows: 

௜ݎܥ ൌ 	 1௜ߣ െ	1ߣ௠௜௡ 
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Figure 3.6. Defining Criticality of Links 
 
 
 
Where ݎܥ௜ (shown on Figure 3.6) is the criticality of the link ݈௜, 1ߣ௜ is the largest 

eigenvalue after disrupting ݈௜, and 1ߣ௠௜௡ is the minimum level of the largest eigenvalue. It 

is noteworthy that given a severity of disruption (i.e., β which is the % of capacity 

reduction), the minimum largest eigenvalue (1ߣ௠௜௡) for a network can be mathematically 

driven based on 1ߣ௠௔௫.  

Proof: If the capacities of entire links are reduced by β, then: 

ᇱܣ ൌ ሺ1 െ .ሻߚ  	ܣ

Where ܣ′ is the adjacency matrix after disrupting all the links and ܣ is the adjacency 

matrix before disruption. Therefore, if I define 1ߣ௠௜௡ as the largest eigenvalue of ܣ′ and 

 :ܣ 1௠௔௫ as the largest eigenvalue ofߣ

.1௠௜௡ߣ റ݁ ൌ .ᇱܣ റ݁ ൌ 	 ሺ1 െ .ሻߚ .ܣ റ݁ 	ൌ 	 ሺ1 െ .ሻߚ .1௠௔௫ߣ റ݁ 

௬௜௘௟ௗ௦
ሱۛ ۛۛሮ			1ߣ௠௜௡ ൌ 	 ሺ1 െ .ሻߚ 	1௠௔௫ߣ

This means that the minimum largest eigenvalue (1ߣ௠௜௡) is a constant multiple of the 

initial largest eigenvalue (1ߣ௠௔௫) shown in Figure 3.6. 
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Phase 2: Clustering links 

The output of the first phase is a list of criticalities of all individual links. The next 

step is to segment the network into different clusters with different levels of criticality. The 

objective is to identify critical areas of the network for developing pre- and post-disaster 

recovery strategies. The three steps of this phase are discussed next. 

Phase 2.1. Defining a weighted network 

In the first step, since the objective is to find the critical clusters, the weights of the 

link should represent their criticality. Therefore, I define the weighted network in which 

the weights of the links are the criticalities of the links (calculated in the first phase). 

Phase 2.2. Segmenting the network into clusters 

In the second step, a community detection method is employed to detect communities 

(i.e., clusters) of the weighted network. Since the assigned weights are the criticality of the 

links, the method tends to cluster critical links together by considering their criticality, 

connection and geographical closeness. The advantage of this approach is that I do not limit 

the shape, the size, and the number of clusters. 

Community detection methods 

A network can be clustered into several communities if the nodes of the network can 

be grouped into different sets of nodes such that each set is internally connected [189]. The 

intuitive definition of community states that there are more links inside a community than 

links connecting nodes of the community with the rest of the network. Researchers have 

attempted to solve community detection problem with different methods [189]. One group 

of traditional methods are graph partitioning methods in which the nodes of a network are 
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divided into a given number of groups of predefined size. So, the number and the size of 

clusters are necessary inputs of graph partitioning methods [189]. 

Another group of methods are modularity optimization methods in which the number 

and the size of clusters are automatically determined [187]. Modularity is a quality function 

which quantifies the difference between the number of links falling between groups minus 

the expected number of links in a random network with the same number of nodes and 

links. Positive values of modularity indicate the possible presence of community structure. 

Therefore, one can look for the division of a network corresponding to the large (positive) 

values of modularity [187]. One of the popular quality function of modularity is the 

Newman and Girvan modularity, which is defined as [189, 190]: 

 

Where ܳ is the modularity, ݉ is the total number of links, A is the adjacency matrix, 

݇௜ is the degree of node ݅, and ߜሺܥ௜,  ௝ሻ yields one if the nodes ݅ and ݆ are in the sameܥ

cluster, zero otherwise. 

To divide a given network into two groups, the modularity can be optimized by using 

the eigenvalues and eigenvectors of the modularity matrix B, in which [187, 189]: 

 

One can define ࢙ as the vector that partitions the graph into two clusters, ࣛ and ࣜ: 

௜ݏ ൌ ൅1 if the node ݅ belongs to ࣛ, and ݏ௜ ൌ െ1 if ݅ belongs to ࣜ. So, the modularity can 

be written as [187, 189]: 
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One can decompose ࢙ on the basis of the eigenvectors ݑ௜	ሺ݅ ൌ 1, … , ݊ሻ of modularity 

matrix B as: , with . Therefore, the Newman and Girvan modularity 

can be rewritten as: 

 

where ߚ௜ is the eigenvalue of B corresponding to the eigenvector ݑ௜. To optimize the 

modularity, Newman (2006) suggested looking for the eigenvector of B with largest 

(positive) eigenvalue, ݑଵ, and partition the nodes into two groups according to the signs of 

the components of ݑଵ: the nodes with positive components are in one group, the others in 

the other group. However, if there is no positive eigenvalue, the network is indivisible 

[187]. 

Newman (2006) extended the abovementioned method for the cases that more than 

two communities exist in the network. The presented method divides the network into two 

groups, and repeats the subdivision until the time that the groups are indivisible. 

Phase 2.3. Computing criticality of clusters 

The output of the second step is a network which is segmented into multiple clusters. 

The criticality of each cluster is then defined as the summation of criticalities of its links. 

This is because if a cluster is disrupted, its entire links are impacted by the disruption. So, 

the impact of disrupting a cluster is equivalent to the simultaneous impacts of disrupting 
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its links. Since the criticality of the links vary over the time of a day, the clustering results 

might be different for different times of a day. 

3.4 Results 

In this research, I present the results of the proposed framework for the Greater 

Philadelphia region for different times of a day. The Greater Philadelphia network and its 

calibrated traffic model which was developed by Delaware Valley Regional Planning 

Commission (DVRPC) are discussed in Chapter 2 (section 2.4). The model includes four 

Origin-Destination (OD) matrices for four different times of a day, defined as follows: AM 

Peak (6:00 AM to 10:00 PM), Midday (10:00 AM to 3:00 PM), PM Peak (3:00 PM to 7:00 

PM), and Night Time (7:00 PM – 6:00 AM). The traffic volumes over the links for four 

different times of a day were obtained by running the VISUM simulation model using four 

different OD matrices. These resultant traffic volumes were used for computing links’ 

weights for different times of a day. 

I employed iGraph which is a free software package for creating and manipulating 

different types of graphs [154]. It includes implementations for simple graph problems like 

node degree calculation, and network analysis methods, like community detection.  

The inputs of the framework were: (1) road network data, (2) traffic volumes (for the 

given time of a day), and (3) the severity level of disruption. For any road network, the 

process of detecting critical clusters can be repeated for different times of a day and 

different severity levels of disruption. Figure 3.7 shows the results for 60% severity of 

disruption during the AM Peak, Midday, PM Peak, and Night Time. The plots show the 

differences in clustering the network into critical areas for four times of a day. The red 

clusters are more critical compared to the green ones. 
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Time: AM peak; Severity of disruption: 60% Time: Mid day; Severity of disruption: 60% 

Time: PM peak; Severity of disruption: 60% Time: Night Time; Severity of disruption: 60% 
Figure 3.7. The Results for 60% Severity of Disruption at Different Times of a Day 

 
 
 
As shown on Figure 3.7, I observed the following findings: 

1 - During the AM peak, disruption of the roads around the city of Philadelphia was 

more critical compared to the roads within the city of Philadelphia and the roads in outer 

areas of the region. This might be because, during the AM peak, many of the trips were 



 
 

77 

 

towards the city of Philadelphia and so the roads around the city acted as main arteries 

from the outer areas to the city. 

2- During the PM peak, disruption of the roads within the city of Philadelphia was 

more critical than other areas. This might be because, during the PM peak, many of the 

trips began from this small area (i.e., city of Philadelphia) toward other areas of the region. 

3- During the Midday (MD) and Night time (NT) periods, the critical clusters were 

not concentrated within any specific area of the network. This might be because, during 

the MD and NT periods, the trips were spatially scattered compared to the AM and PM 

peak periods. 

The results show that criticality of any given area varies for different time of a day. 

For example, a given area can be critical during the AM period while it is non-critical 

during the PM period. These observation, once validated, could be used in the future to 

identify pre- and post-disaster strategies to alleviate the negative impacts of disrupting 

critical areas of a network, considering the time of disruption. 

In addition, the change in the severity level of disruption may also impact the 

clustering results. To evaluate such impacts, I investigated several scenarios for 10%, 30%, 

60%, and 80% severity of disruption during PM Peak (Figure 3.8). 
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Time: PM peak; Severity of disruption: 10% Time: PM peak; Severity of disruption: 30% 

Time: PM peak; Severity of disruption: 60% Time: PM peak; Severity of disruption: 80% 
Figure 3.8. The Results for Different Severity of Disruptions during PM Peak Period 

 
 
In Figure 3.8, the disruption of the red-colored clusters has severer impacts on overall 

network connectivity than the orange-, yellow-, and green-colored clusters. As Figure 3.8 

shows, severe disruption (e.g., 80%) of a small area of the network significantly impacted 

the overall connectivity. However, in the case of slight disruptions (e.g., 10%), the impacts 

of disruption were not significant, even for the disruption covering a large area of the 

network. 
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3.5 Validation 

In existing studies, researchers investigated their methods either on synthetic or real 

road networks. Researchers used different synthetic road networks to implement their 

methods and calculate the links’ criticality [172, 181, 191]. For example, Nagurney and 

Qiang (2008) implemented their method on synthetic “Single Braess” and “Coupled 

Braess” networks [181]. Also, Scott et al. (2006) and Sullivan et al. (2010) used three 

synthetic networks to test their method [172, 191]. Since these networks were synthetic, no 

real data was available for validation. Instead, validating their methods, researchers 

compared their results with other existing results on the same networks. 

In addition, vulnerability of several real road networks was investigated in previous 

research studies [28, 172, 175]. For example, Sohn (2006) examined the highway network 

in Maryland extracted from National Transportation Atlas Data (NTAD) [175]. Moreover, 

Erath et al. (2009) studied the vulnerability of Swiss national transport network containing 

30,289 links and 24,316 nodes modeled in VISUM package [28]. Also, Sullivan et al. 

(2010) used road network of the Chittenden County Metropolitan Planning Organization 

(CCMPO), Vermont. The network includes 1,397 nodes and 1,791 links modeled in 

TransCAD software. Recently, Jenelius and Mattsson (2012) used Swedish road transport 

system, consisting of 32,759 nodes and 86,940 directed links modeled in EMME/2 

package. In all these cases, validation was conducted by using simulated results. 

To do a comprehensive validation based on real world data, several real disruption 

instances in multiple various areas are needed. For each disruption instance, traffic 

conditions (e.g., average speed, delay and volume) are needed for the time of disruption 

and also average traffic conditions for the time that there is no disruption. However, such 
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data are not currently available. So, I employed two methods: (1) simulation-based 

validation, which compares the results of computational framework with the simulated 

results, and (2) observation-based validation, which observes the impacts of several real 

incidents across the network. 

3.5.1 Simulation-based Validation 

In this method, once I identified critical areas of the network, I reduced the links’ 

capacities within three samples of high-critical, medium-critical and low-critical areas in 

separate settings. Then, I simulated traffic conditions using a regional model (e.g., VISUM 

software) to compute the MOEs, such as average speed, delay and V/C. By investigating 

the changes in these MOEs (compared to the cases with no disruption), one is able to 

ascertain if the criticalities of the areas identified by the proposed method are valid. 

I used the proposed computational framework to cluster the Greater Philadelphia 

network and compute criticalities of all clusters during the PM peak for 60% severity of 

disruption. Among the clusters, I selected three sample clusters representing high, medium, 

and low criticality (Figure 3.9). For each sample cluster, I reduced capacities of the links 

within the cluster by 60%. Then, I simulated traffic conditions over the three adjusted 

networks of the Greater Philadelphia by running the VISUM models. Figure 3.9 shows the 

three selected clusters in which the red, orange, and green colors are the high-, medium-, 

and low-critical clusters. An advantage of this approach is that it does not limit the shape 

and size of clusters. 
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Figure 3.9. Three Selected Clusters: High-Critical (Red), Medium-Critical (Orange), and Low-
Critical (Green) 

 
 
 
Figure 3.10 presents the changes in traffic conditions of these three simulation runs, 

which represent the impacts of disrupting areas with high, medium, and low criticality. I 

calculated the changes in three measures, i.e., speed, delay, and V/C. To perform a 

network-wide comparison, I used the summation of the changes (in speed, delay, and V/C) 

over the entire network. 

 
 
 

 
Figure 3.10. Simulated Results for Validation 

 

Low Medium High Observed Expected Low Medium High Observed Expected Low Medium High Observed Expected

-268 -4,893 -5,989      4,915    57,071      7,436        372    20,945    25,958 

 ↑  ↑ 

 *  Note: The values are calculated by summations over the entire network.
↓ : Decrease                       ↑ :  Increase 

 ↓  ↓  ↑  ↑ 

Speed (mph) Delay (minute) Volume / Capacity (%)

Criticality of disrupted 
cluster:

Impact of 
disruption

Criticality of disrupted 
cluster:

Impact of 
disruption

Criticality of disrupted 
cluster:

Impact of 
disruption
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My hypotheses are that the more critical the disrupted area is, there is a higher 

probability of decrease in speed, increase in delay, and increase in V/C due to the 

disruption. Figure 3.10 shows that the observed simulated results were in line with these 

hypotheses, except for the delay due to disrupting the medium-critical cluster. To analyze 

the reason, I investigated the VISUM delay calculation method. To calculate the delay, the 

VISUM software uses a volume-delay function (VDF) which expresses the travel times on 

a road as a function of traffic volume [163]. This function calculates the delay as the 

difference between travel time for the current condition and the free-flow condition based 

on the V/C. The VISUM software uses the BPR (Bureau of Public Roads) function which 

is a widely used volume-delay function as follows: 

௖௨௥௥௘௡௧ݐ 	ൌ 	 .௙௥௘௘௙௟௢௪ݐ ሾ1 ൅ 0.75	ሺܸ/ܥሻସሿ 

However, the BPR function has some drawbacks [165]. For example, it is very easy 

to get large delay, if the V/C is close to or over 1. On the other hand, for the links that are 

used far under their capacity, the BPR functions yield always free flow times. These 

drawbacks of BPR function have led to some large values for delay as observed for the 

medium-critical cluster. 

In addition, to statistically test these hypotheses, I selected a large area around these 

three clusters. To do so, I created a buffer zone of 5 miles around the three clusters as 

shown in Figure 3.11. 
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Figure 3.11. The Aggregated Buffer Region around the Three Clusters 

 
 
 
The changes in the speed and V/C of each individual link (compared to prior to 

disruption) within the aggregated buffer zone shown in blue color (Figure 3.11), were used 

to perform the two-sample Kolmogorov-Smirnov test (KS-test) and t-test at 5% 

significance level (Table 3.2). In the two-sample KS-test, the alternative hypothesis is that 

the two sample sets (e.g., the change in speed of the links within the buffer zone due to 

disruption in high-critical cluster versus the change in speed of the links within the buffer 

zone due to disruption in low-critical) are from different continuous distributions. In the 

case of two-sample t-test, the alternative hypothesis is that the two sample sets come from 

populations with unequal means. 
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Table 3.2. The results of the two-sample Kolmogorov-Smirnov and t-tests 

Test 
Change in Speed Change in V/C 

KS-test t-test KS-test t-test 

High-critical vs. 

Medium-critical 

Null Rejected 

p < 0.001 

Null Rejected 

P ≈ 0.03 

Null Rejected 

p < 0.001 

Null Accepted 

P ≈ 0.06 

High-critical vs. 

Low-critical 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

Medium-critical vs. 

Low-critical 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

Null Rejected 

p < 0.001 

 
 
 
Table 3.2 shows the test results and the p-values for KS- and t-tests. The results 

illustrates that except the t-test between high-critical versus medium-critical for the V/C, 

the null hypotheses were rejected at 5% significance level, thereby statistically validating 

the existence of three different clusters representing three distinct levels of criticality. 

To visually investigate the validation results, one can plot the variations across the 

geographical area due to a disruption. For example, Figure 3.12 (a), (b), and (c) show the 

change in V/C for disruptions in the low-critical, medium-critical, and high-critical 

clusters, respectively.  
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(a) low-critical cluster  (b) medium-critical cluster (c) high-critical cluster 

Figure 3.12. Changes of V/C after Disruption Compared to before Disruption (Red: Significant 
Increase, Orange: Medium Increase, Green: Small Increase, Gray: No Increase) 

 
 
 
Figure 3.12 (a), (b), and (c) illustrate that the change is observed to be larger for the 

high-critical cluster compared to the medium-critical and low-critical clusters. This visual 

comparison is in line with my initial hypothesis. 

3.5.2 Observation-based Validation 

The next validation method is to monitor and observe several real traffic incidents 

(e.g., flooding, accident, and construction zone) across the network during two time frames: 

(1) while there is an incident, (2) when such an incident is resolved. By comparing the 

traffic conditions in these two time frames, one can ascertain if the results are valid. To do 

so, I monitored the traffic condition during AM, MD, PM, and NT periods, using two map-

based sources: 

(1) The 511 Pennsylvania website (www.511pa.com), which is part of a statewide 

travel information service. It provides reliable traffic, weather and transit 

information to travelers in Pennsylvania. Using real-time traffic data from several 

sources across the state, this website is able to provide current traffic information. 
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(2) Google Maps (www.google.com/maps), which displays traffic conditions in real-

time on major roads and highways. Recently, Waze traffic information 

(www.waze.com) have also been merged into the Google Maps. So, the real-time 

information about traffic incidents (e.g., accidents and construction zones) are 

also easily available on the Google Maps. 

Wherever I found an incident (which was not necessarily within the three selected 

clusters in simulation-based validation), I captured the real-time traffic condition. I 

continued to monitor the same locations at later times until the incident was resolved. Then, 

I recorded another capture from the same geographical area and the same time of a day. 

Figure 3.13 shows the locations where I found incidents (e.g., flooding, accident, and 

construction zone). 

 
 
 

 

Figure 3.13. Locations of Observed Real Incidents 
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Figure 3.14 to Figure 3.17 show few sample observations from real incidents during 

different times of a day. More observations are presented in Appendix B. Each figure 

contains two plots, one plot shows the traffic conditions during the incident and the other 

one shows the traffic conditions when such an incident is resolved. Figure 3.14 to 

Figure 3.17 plot the traffic conditions (i.e., average speed) by colors. The green, orange, 

and red colors show free flow, moderate traffic, and heavy traffic, respectively. 

Figure 3.14 shows an example with two simultaneous incidents (i.e., one accident on 

I-76 and one work zone on I-476) that occurred on a high-critical cluster during the MD 

period. The right plot shows the traffic condition during these disruptions while the left 

plot shows the traffic condition after these disruptions were resolved. As shown in 

Figure 3.14, the occurrence of these two disruptions led to a heavy traffic on both the 

Interstates 76 and 476, compared to the traffic condition after disruption (i.e., free flow 

condition). Therefore, the observed real traffic conditions also verify that these clusters are 

high-critical areas during the MD period. 

 
 
 



 
 

88 

 

 
Figure 3.14. Sample Observations within a High-Critical Cluster during MD Period 

 
 
 
Wherever there was a camera, I also checked the real-time camera records for 

verification purposes. Figure 3.15 shows sample camera records for during and after two 

incidents within a high-critical cluster during the MD period. The camera records on both 

I-76 and I-476 show heavy traffic conditions during the disruption while they show free 

flow condition after disruption. This observation was in line with reported traffic conditions 

on Google Map, leading to the same result about high criticality of the area during the MD 

period. 
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Figure 3.15. Sample Camera Records within a High-Critical Cluster during MD Period 
 
 
 
Figure 3.16 shows an example of an incident occurred on a medium-critical cluster 

during the PM period. The bottom plot shows the traffic conditions during the disruption 

while the top plot shows the traffic conditions after the disruption. As shown in Figure 3.16, 

the occurrence of such accident led to a moderate traffic on the Interstate 276, compared 

to the traffic condition after disruption (i.e., free flow condition). Therefore, the observed 

real traffic conditions also verify that this road segment is on a cluster which is a medium-

critical cluster during the PM period. 
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Figure 3.16. Sample Observations within a Medium-Critical Cluster during PM Period 

 
 
 
Figure 3.17 shows another example of an accident occurred on a low-critical cluster 

during the MD period. The right plot shows the traffic conditions during the disruption 

while the left plot shows the traffic conditions after the disruption. As shown in Figure 3.17, 

the traffic conditions during the accident was free flow, which was the same as the time 

when the accident was resolved. In other words, the occurrence of such accident did not 

change the traffic conditions on Interstates 76. Therefore, the observed real traffic 

conditions also verify that this road segment is on a cluster which is a low-critical cluster 

during the MD period. 
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Figure 3.17. Sample Observations within a Low-Critical Cluster during MD Period 

 
 
 
In summary, the changes in traffic conditions for these sample observations of 

disruptions were in line with the clustering results of the proposed computational 

framework. In the future, several real-time observations including observations of larger 

area-covering disruptions could be acquired for more validation attempts. 

To conclude, it is important to identify the critical areas of a network due to area-

covering disruptions. The proposed framework enables transportation modelers to divide a 

road network into several clusters based on the impacts of disruption on overall network 

connectivity. The results show that the clustering results vary based on the time of 

disruption as well as severity level of disruption. The proposed framework could help 

transportation planners to: (a) reduce vulnerability of the critical areas, (b) locate 

emergency service close to these areas, and (c) prioritize the emergency actions.
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CHAPTER 4. MODELING NETWORK VULNERABILITY DUE TO DRIVER 

DISTRACTION 

4.1 Introduction 

According to the U.S. National Highway Traffic Safety Administration  (NHTSA), 

driver distraction is a major cause of vehicle crashes in the United States [7]. Among the 

various types of distraction, cell-phone dialing and text messaging have been shown to 

significantly degrade driving performance [61, 81]. Therefore, it is necessary to consider 

vulnerability of a road network to large-scale effects of distraction. Currently, there exists 

a gap in large-scale study and simulation of distraction. Existing work (e.g., naturalistic 

experiments, laboratory experiments, statistical studies, and computational modeling) have 

primarily focused on driver distraction scenarios with either one or a few vehicles [60, 78, 

192-195]. In contrast, available software for simulating traffic with many vehicles (e.g., 

CORSIM and VISSIM) has not generally considered the effects of driver distraction on 

driver behavior. Thus, it is critical to develop a framework to assess large-scale effects of 

distraction when many distracted drivers are on the network at a given time. Also, it is 

beneficial to evaluate real-world scenarios in which different drivers are performing 

different tasks, such as text messaging, dialing and conversation at the same time. For 

example, if 5% of drivers on road use cell-phones for text messaging and another 10% for 

conversation, how will it affect traffic flow dynamics? Or in the case of an emergency, 

what are the impacts of dramatic changes in cell-phone use? Or if a button is added to or 

removed from a cell-phone, how will it change traffic conditions? In this research, I 

formalize a computational modeling framework that integrates a cognitive model of 

distraction (i.e., Distract-R) and an agent-based traffic (micro-) simulation model (i.e., 
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VISSIM). The approach is then validated using several existing experiments. The 

framework is employed to analyze the effects of text messaging, dialing and cell-phone 

conversation on several local and large-scale real-world models from China, Germany, and 

Philadelphia metropolitan areas. 

 
4.2 Background Research 

4.2.1 Background Research on Driver Distraction 

Distraction has been typically categorized into four types: (1) visual, (2) auditory, (3) 

physical, and (4) cognitive distractions [7]. Visual distraction (e.g., looking at a cell phone) 

is the case when the driver takes his/her eyes off the road and focuses on another target for 

an extended time period. Auditory distraction (e.g., listening to music) is the distraction 

when the driver focuses on auditory tasks. Physical distraction (e.g., grabbing a pen) is the 

case when the driver manipulates or searches for an object by removing his/her hand(s) 

from the steering wheel for an extended time period. Cognitive distraction (e.g., 

conversation) includes any distraction in which the driver is involved in a (typically 

intense) cognitive task. 

There are many debates regarding the forms of devices that will lead to the greatest 

degradation in driving performance. In general, the devices may be used for driving-related 

comfort (e.g., a climate-control system), driving-related information (e.g., a navigator), or 

entertainment (e.g., a radio or music system) [30]. In all these cases, driving is primarily a 

visual-manual task [7]. According to Wickens’ multiple resource theory, any device that 

requires visual and/or manual responses will cause greater degradation in driving 

performance, compared to auditory or cognitive distractions [196]. Naturalistic 

experiments at Virginia Tech Transportation Institute (VTTI) show that manual 
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manipulation of cell-phones (e.g., dialing and text messaging) increases the risk of crash 

more than auditory use of cell-phones (e.g., talking or listening). The VTTI report 

concluded that text messaging, which is a manual manipulation of cell phones, is associated 

with 23 times the risk factor compared to normal driving [58]. 

During last decade, driver distraction due to performing secondary tasks (especially 

cell-phone related tasks) has received a great deal of attention [58, 60, 61, 66, 197]. Based 

on the research methodology, I categorized existing studies into four different groups: 

Naturalistic/Observational experiments 

The naturalistic experiments record driver behavior using cameras and kinematic 

sensors in real-world driving conditions. The observational experiments aim at monitoring 

and recording driver behavior in different observation locations across an actual network. 

Although these experiments are more realistic and may better capture actual driving 

situations compared to other three groups of studies, they are expensive, time-consuming, 

and potentially hazardous. 

Researchers at the Virginia Tech Transportation Institute have conducted a number 

of naturalistic experiments [58, 193]. The researchers at VTTI showed that talking and 

listening is not as risky as visually distracting tasks. In addition, they discussed that 

“Headset” cell-phones are not safer than “hand-held” cell-phones because both involve 

answering and dialing that require eyes to be off the road. Moreover, they showed that 

“true hands-free” cell-phones (e.g., voice activated phones) are less risky because the driver 

does not have to take his/her eyes off the road for a long period of time. 

In addition, University of Massachusetts Amherst Traffic Safety Research Program 

(UMassSafe) has recently performed an observational experiment [76]. They observed 
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cell-phone use of 17,677 drivers at 145 different locations throughout Massachusetts. They 

concluded that average cell-phone use while driving was 7.0%, among which handheld use 

was 5.6% and text messaging was 1.4%. They also observed that teens used their cell-

phone for text messaging more often, compared to adults and elders. In addition, the 

observed handheld conversation rates for teens and adults were similar. 

Laboratory simulations 

Experimentation with a driving simulator is a common method to investigate driver 

distraction [7, 42, 60, 62, 64-67, 69, 71, 73, 198]. The laboratory experiments are less 

dangerous compared to the naturalistic experiments, but they are still time-consuming and 

expensive [30]. They require physical driving simulators (e.g., PatrolSim) and a database 

of highway/urban roadway with details (e.g. lanes, on- and off ramps, or overpasses) 

similar to the real world. A group of participants with different age groups based on the 

study goal are often included in these experiments. To simulate cell-phone conversation, 

as an example, participants are asked about their favorite conversations prior starting the 

simulation. During simulation, a research assistant maintains a dialog on topics of interest 

to the participant, in which the participant listens and speaks [62]. General results of 

laboratory simulations show that distracted drivers reduce their average speed [69], 

increase their speed variability [73], delay in responding to other vehicle brake [62], 

increase [66] or decrease [60, 74] following distance, and make fewer lane change [67]. 

Population-based studies 

 Some researchers conducted statistical studies using existing databases, such as 

Fatality Analysis Reporting System database, to discover the interrelation between the 

trend of crashes and secondary tasks (e.g., cell-phone use) [63, 70, 75, 194]. For example, 
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Violanti (1998) studied 223,137 crashes occurring between 1992 and 1995 in the US, and 

concluded that the risk of fatal crash for drivers who were using a cell-phone was nine 

times more than other drivers. In addition, some researchers surveyed drivers who owned 

a cell-phone and were involved in a vehicle crash [72]. For example, Redelmeier and 

Tibshirani (1997) reported that the risk of crash while using a cell-phone was four times 

greater compared to the same drivers who were not using a cell-phone. These methods are 

not as expensive and time-consuming as naturalistic and laboratory experiments. However, 

these methods disaggregate annual nation-wide data into daily state-wide data, and such 

disaggregation negatively impacts their accuracy. 

Computational modeling 

To overcome the limitations of the abovementioned three methods, researchers 

analyzed the use of cognitive models in predicting distraction [78, 79]. In computer 

science, cognitive models deal with simulating human mental task processes in a 

computerized model. Such a computational model can be used to compute, simulate, and 

predict various aspects of human behavior. For example, the IVIS DEMAND tool was 

developed to integrate a behavioral model and a library of tasks from past studies [199]. 

The outputs of the program were measures, such as single glance time, number of glances, 

and number of times the driver’s hand is off wheel. However, the user needs to collect data 

for any new task that is not in the program’s library, such as text messaging. In addition, 

cognitive models need expert modelers to produce highly trained cognitive model of 

behavior [30]. To address these limitations, Distract-R system has been developed [30]. 

Distract-R is a tool with which engineers can develop prototypes of new in-vehicle 

systems and evaluate them with respect to driver distraction. The tool allows a user to 
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specify the layout of a new device interface to be placed in the central console of a vehicle. 

It also allows for setting of some driver and environmental parameters. Then, in a few 

seconds of simulation time, Distract-R generates predictions of driver performance for 

relevant measures of lane keeping and car following. The predictions derive primarily from 

a computational cognitive model of driver behavior [78], implemented in the ACT-R 

(Adaptive Control of Thought-Rational) cognitive architecture [200], which has been 

validated for various aspects of driver performance. In running such simulations, engineers 

can obtain quick estimates of the distraction potential of new devices, helping to winnow 

many ideas down to a smaller subset to be built and tested in a more rigorous manner. 

4.2.2 Background Research on Distracted Drivers and Surrounding Traffic 

Existing studies have mainly focused on driver distraction scenarios with either one 

or a few vehicles, and have generally not looked into large-scale simulation of several 

vehicles [67, 68]. Recently, researchers have started to investigate the impacts of driver 

distraction on the surrounding traffic conditions [60, 61, 81]. For instance, Stavrinos et al. 

(2013) used laboratory simulation to analyze behavior of young adults engaged in cell-

phone conversation and text messaging. They conducted a laboratory simulation 

participated by seventy-five participants between 16 to 25 years of age. For simulating 

different traffic conditions, Stavrinos et al. (2013) changed the traffic density (i.e., number 

of vehicles on road) based on the various Levels Of Service (LOS) as defined in the 2000 

Highway Capacity Manual [201]. The free flow, stable flow and oversaturation are labeled 

as LOS A, LOS B and LOS C. They reported that distraction, especially text messaging, 

negatively impacted traffic conditions. Greater speed deviations, fewer number of lane 

changes, and more lane deviations were observed [81]. 



 
 

98 

 

In another recent study, Salvucci (2013) developed a computational cognitive model 

based on Distract-R to predict the impacts of dialing on other vehicles around the distracted 

driver’s vehicle. He simulated two distinct car-following scenarios: (1) a standard car-

following scenario, which involved 16 vehicles, one following the other on a straight 

roadway, with a lead vehicle driving at a constant speed of 48 kph, and (2) a circular car-

following scenario, which involved the same vehicles but in a circular loop of traffic. He 

repeated the simulation with 0, 1, and 3 distracted drivers and measured the mean and 

deviation of headway and speed. In both scenarios, he observed that distracted drivers 

reduced their mean speed and increased their speed deviation and headway deviation. 

4.2.3 Limitations of Existing Studies 

While existing studies investigated the impacts of distraction at driver-level, they 

have some limitations. First, the effects of simultaneous distraction of significant number 

of drivers have not yet investigated. Second, the evaluation of network-level impacts of 

distraction needs large-scale experiments, which are not easy to set up using physical 

simulators. Third, real scenarios representing different combinations of distraction types 

are challenging to define using the existing methods. For instance, currently it is not easy 

to evaluate the impacts of distraction on a large network in which 10% of drivers use their 

cell-phone for conversation, and 5% of drivers use their cell-phone for text messaging. 

Moreover, currently available software programs for simulating traffic with many vehicles 

(e.g., CORSIM and VISSIM) have not yet considered the effects of driver distraction [202]. 
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4.3 Proposed Approach 

The main objective of the research is to develop a framework which enables 

transportation modelers to predict changes in a city’s traffic conditions. To overcome the 

limitations of existing research in large-scale vulnerability assessment, this research 

focuses on formalizing a framework and integrating a cognitive model of distraction (i.e., 

Distract-R) and an agent-based traffic (micro-) simulation model (i.e., VISSIM). The 

integration mechanism is a necessary component for modeling large-scale impacts of driver 

distraction.  

The proposed framework is based on two levels of abstraction (Figure 4.1). In the 

first phase of the framework (i.e., abstraction level I), I simulate distraction of an individual 

driver in one-tenth-of-second intervals without considering complexity of the road network 

and interaction with many drivers around the driver’s vehicle. Then in the second phase 

(i.e., abstraction level II), I employ the high-resolution results of the first phase to simulate 

traffic dynamics of many vehicles on a large-scale road network for longer period of time. 

 
 
 

 
Figure 4.1. Levels of Abstraction in the Proposed Framework 

 

Integration Process

Level I

Level II

Phase 1 of the Framework

Phase 2 of the Framework

Drivers: Individual driver
Time Resolution: One-tenth of second
Road: A single-lane link
Interaction: With lead vehicle only

Drivers: Many drivers
Time Resolution: One-tenth of second to many hours 
Road: A comlex road network
Interaction: With all surrounding vehicles
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4.3.1 Framework 

The overall proposed approach is presented in Figure 1.1. In the first phase, Distract-

R is employed to generate a time profile of distraction. Then, in the second phase, large-

scale microscopic simulation of traffic is conducted by integrating the resultant distraction 

time profile (from phase 1) into a microscopic simulation model (e.g., VISSIM). 

 
 

 
Figure 4.2. Flowchart of the Proposed Approach 

 
 

Phase 1: Distraction simulation 

Two approaches may be developed to consider the impacts of driver distraction. In 

the first approach, one can conduct a separate distraction simulation for each individual 

vehicle that enters a road network. For example if 10,000 vehicles travel across the 
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network, one has to conduct 10,000 iterations of distraction simulations, which are 

computationally expensive. However, if I group drivers based on their general 

characteristics, the number of groups (i.e., driver types) can be restricted. Therefore, 

simulating multiple driver types is more computationally efficient than simulating each 

individual vehicle. 

In this research, Distract-R is employed for driver distraction simulation because it 

enables us to prototype a given device. For each distraction type (e.g., text messaging), one 

distraction time profile is estimated which shows the distraction status (yes/no) of a driver 

in each time step (10 milliseconds) for a given simulation period (see Figure 4.3). To 

generate such profile, Distract-R takes device (e.g., cell-phone) prototype, driver 

characteristics (e.g., age and driving aggressiveness), distractive task (e.g., text messaging) 

and driving environment (e.g., straight or curved road) as the inputs. After cognitive 

modeling, Distract-R outputs the distraction time profile. In this research, the outputs for 

different distraction types (i.e., text messaging, conversation, and phone dialing) are stored 

in a database that could be used by the traffic simulation model during the distraction 

period. 

Figure 4.3 shows the sample segments of three distraction time profiles. Each 

segment depicts the status of the distracted driver (either driving or performing secondary 

task) at each one-tenth of a second, between time step = 45 seconds to time step = 75 

seconds. For text messaging and dialing, the distraction time profiles were generated by 

Distract-R. However, conversation is not a visual task and the currently available Distract-

R is unable to simulate distraction due to cell-phone conversation. Instead, I had to model 

the distraction due to conversation using another way. Conversation is a continuous task 
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which requires memory retrievals at frequent intervals. Hence, a simple way to model the 

distraction due to conversation could be the inattention from driving for a short period (e.g., 

100 milliseconds) repeated in constant intervals (e.g., every 600 milliseconds). 

 
 
 

Text 
messaging: 

Dialing: 

Conversation: 

Figure 4.3. Sample 30-second-long Snapshots of Three Distraction Time Profiles 
 
 
 

Phase 2: Integrating distraction and large-scale traffic simulation 

Figure 4.2 shows the proposed approach for integrating a cognitive model for driver 

distraction and a microscopic traffic simulation model. For each vehicle that enters a 

network: 

1) A random decision is made to determine whether its driver will be distracted or 

not. For example, for 5% distraction level, 5% of all drivers will be randomly selected as 

distracted. 

2) If the driver of the vehicle is modeled as non-distracted, the behavior parameters 

of a non-distracted driver will be assigned to the driver.  

3) If the driver of the vehicle is modeled as distracted: 
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3.1) A distraction time profile is randomly assigned to the driver. This time profile is 

assigned from a database containing different time profiles for various distraction types. 

The proposed framework is able to take different probabilities for different distraction 

types as an input. For example, in the case of two distraction types (i.e., phone conversation 

and text messaging), one may give 67% and 33% probabilities to the model for phone 

conversation and text messaging. This assumption means that the drivers are twice likely 

to be distracted by conversation than text messaging. 

3.2) During a simulation period, based on the distraction time profile of the driver, 

whenever the status of a vehicle is distracted, the driver behavior will be adjusted. The 

adjustment is that the distracted driver will not respond to any acceleration/deceleration of 

the lead vehicle since his/her eye is off the road. 

This process is conducted for all vehicles entering the network during simulation 

period. 

Microscopic simulation basis 

The Distract-R simulates driving task discretely, with 0.05-second time resolution. 

To incorporate its results in traffic simulation, I need to employ a traffic simulation model 

which simulates the movement of individual vehicles at small time steps less than a second. 

Thus, I should employ a microscopic simulation model which provides a small time 

resolution close to 0.05 of a second. Additionally, the traffic simulation model should allow 

us to adjust the driving behavior of each individual vehicle at each time step, if the driver 

is distracted. Based on these concerns, I decided to employ VISSIM traffic simulation 

software which is a widely used microscopic simulation model [202]. VISSIM, developed 

by Planung Transport Verkehr, analyzes highway and street systems, transit, and 
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pedestrians and is designed to model individual vehicle movements up to 0.1 of a second 

[126]. In addition, VISSIM has an application programming interface (API) which enables 

us to adjust driving behavior at each 0.1 second. VISSIM can simulate traffic on networks 

of different sizes, from individual intersections to entire metropolitan areas. 

In VISSIM, driving behaviors such as driver’s car following, lane changing and 

lateral behaviors can be defined for different driver types. Traffic simulation in VISSIM is 

performed by randomly assigning driver types to individual vehicles and modeling 

individual vehicle movements. Therefore, each vehicle can be characterized by: (1) 

technical specifications of the vehicle, such as length, maximum speed, or potential 

acceleration and (2) driver behaviors, such as aggressiveness, desired speed, or memory of 

driver [126]. The basic idea is that a driver can be in one of the four driving modes. The 

first mode is free driving in which there is no observable influence of preceding vehicles. 

Hence, the driver reaches and maintains its desired speed. The second mode is approaching 

in which the driver adapts its speed to the lower speed of a preceding vehicle. The third 

mode is following in which the driver follows preceding vehicle by keeping a constant 

safety distant. Finally, the fourth mode is braking in which the driver decelerates when the 

distance is below the desired safety distance. 

4.4 Validation 

I validated this research by replicating the existing published experiments [61, 81]. I 

identified two laboratory-based studies which assessed the impacts of a single distracted 

driver on traffic conditions [60, 81]. These studies analyzed the impacts of distraction by a 

physical simulator with and without distraction that included phone conversation and text 

messaging. In addition, there is one recent computational study that assessed the impacts 
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of a few distracted drivers on traffic conditions [61]. I attempted to replicate the physical 

experiment performed by Stavrinos et al (2013) as well as the computational experiment 

proposed by Salvucci (2013). Furthermore, the recent VTTI naturalistic study published 

by NHTSA reported overall measures of distraction (e.g., speed fluctuation) in the case of 

phone conversation and text messaging [193]. I compare my results with these naturalistic 

results as well. 

4.4.1 Validation: case I 

I set up several experiments to replicate the research presented by Stavrinos et al. 

(2013). In their research, they focused on behavior of 75 teens and young adults operating 

a driving simulator while engaged in various distractions, such as cell-phone conversation 

and text messaging. They performed experiments on a two-lane 24-mile straight highway, 

in three different driving conditions: LOS A (6.5 vehicles per mile in right and left lane 

combined), LOS C (40 vehicles per mile in right and left lane combined), and LOS E (170 

vehicles per mile in right and left lane combined). In LOS A, the simulated vehicles 

traveled at a speed of 58 miles/h. In LOS C, the simulated vehicles traveled at 58 miles/h 

for the first 5,000 feet and slowed their speed to 41 miles/h for the rest of their travel. In 

LOS E, at the beginning they moved at 30 miles/h and after 2,000 feet they slowed down 

to 11 miles/h. 

I generated three traffic models in VISSIM for three different traffic conditions: a) 

free-flow, b) stable flow and c) oversaturated flow (Figure 4.4). Based on the Pennsylvania 

Driver's Manual, to avoid last minute moves, the driver must look 12 to 15 seconds ahead 

to see and react to things early [203]. Within this distance, on average, there might be 1, 5, 

and 6 vehicles for LOS A, LOS C, and LOS E. Therefore, in my models, I generated six 
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simulated vehicles in front and six vehicles behind my main driver’s vehicle. For each 

model, I repeated simulation three times with: (1) no distraction, (2) text messaging, and 

(3) cell-phone conversation. For text messaging condition, I employed Distract-R. I set up 

Distract-R to simulate text messaging as defined by Stavrinos et al. (2013), such as “What 

is your favorite television show?” A sample part of text messaging distraction time profiles 

is presented in Figure 4.3. 

 
 

LOS A: 
free flow 

 

 
 

LOS C: 
stable flow 

 

 
 

LOS E: 
oversaturated 

flow 

 

 
 

Figure 4.4. Snapshots of Three Different Models 
 
 
 
Stavrinos et al. (2013) reported that, overall speed deviation increased for text 

messaging versus no distraction and for conversation versus no distraction. However, no 

significant difference was reported for text messaging versus conversation. Figure 4.5 

compares my results for speed deviations with the results in Stavrinos et al. (2013) research 
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and shows that the pattern of my results looks the same as the Stavrinos’s results. To 

statistically investigate such differences among text messaging, conversation and no 

distraction, several hypothesis tests should be conducted. 

 
 

 
Figure 4.5. Comparison of the Results for Speed Deviation 

 
 
 
I conducted twelve two-sample Kolmogorov–Smirnov (KS) tests to see whether the 

traffic measures (e.g., headway distance and speed deviation) differ for no-distraction, 

conversation and text messaging cases. The Kolmogorov–Smirnov test may be employed 

to test whether two underlying probability distributions differ [204]. If the p-value of the 

test turns out to be less than a certain significance level, the two distributions differ. 

Table 4.1 shows my KS test results for speed deviation. The results show that for free-flow 

conditions, distraction did not impact speed deviation. However, for stable flow and 

oversaturated conditions, distraction negatively impacted traffic condition by increasing 

speed deviation. Table 4.1 also shows that, overall, my test results are in line with Stavrinos 

et al. (2013) results, in which I observed an increase for text messaging versus no 

distraction (p≺ 0.001), an increase for conversation versus no distraction (p≺ 0.001) and 

no significant difference for text messaging versus conversation. 
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Table 4.1. KS Test Results for Speed Deviation 

 

 
 
 

4.4.2 Validation: case II 

I set up two experiments similar to the computational experiments conducted by 

Salvucci (2013). Figure 4.6 shows configurations of the two experiments, in which sixteen 

drivers drove on a straight roadway (Figure 4.6-a) and in a circular loop (Figure 4.6-b). In 

this case, the researcher studied distraction due to cell-phone dialing. For more details of 

the experiments, interested readers can refer to [3]. 

 
 
(a) Standard Car-Following Setup: (b) Circular Car-Following Setup:

Figure 4.6. Configurations of Two Experiments Proposed by Salvucci (2013) 
 
 
Salvucci (2013) concluded that for a standard car-following scenario, headway 

distance average increased a small amount, headway deviation did not significantly vary, 

speed average decreased for some groups, and speed deviation increased. Figure 4.7(a) and 

Figure 4.7(b) show the results of ten groups of drivers from Salvucci (2013) and my 
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research respectively. Each graph line represents a group of model drivers simulated across 

three conditions, namely with 0, 1, or 3 distracted drivers (performing the dialing task) out 

of 16 total drivers. To better visualize the effects of distraction, the graphs depict the 

changes (increase or decrease) compared to the no-distraction (i.e., 0/16) case. For 

example, +30% at 1/16 for speed deviation means that when there is one distracted driver, 

speed deviation increased by 30% compared to no distraction case. It is noteworthy that 

the pattern of changes (i.e., either increasing or decreasing) with respect to the number of 

distracted drivers was considered rather than the amount of changes. For example, I wanted 

to investigate whether I can observe the same increasing pattern (rather than decreading) 

for speed deviation that was reported in Salvucci (2013) results. 

For the standard car-following scenario (Figure 4.7), my approach could capture the 

same pattern in speed average and speed deviation compared to Salvucci (2013) study. 

However, they differ in the case of headway-distance average and deviation. 

 
(a) Standard Car-Following - Salvucci (2013) Results: 

(b) Standard Car-Following – My Results: 

Figure 4.7. Standard Car-Following Results (Changes Compared to No Distraction). There Are Ten 
Graph Lines, each of Which Represents a Group of Model Drivers Simulated Across Three 

Conditions, Namely with 0, 1, or 3 Distracted Drivers. 
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For the circular car-following scenario (Figure 4.8), Salvucci (2013) reported that: 

(a) headway distance average remained constant, (b) headway deviation grew slightly, (c) 

average speed decreased, and (d) speed deviation increased. All these patterns were 

observed in my test except the speed deviation in which my results did not match to that of 

Salvucci (2013). However, the observed increase in speed deviation by Salvucci (2013) 

significantly differs from other observed patterns in this study. Assuming similar 

conditions for both standard and circular scenarios, I could not interpret the reason behind 

such an increase in speed deviation observed in the research by Salvucci (2013). 

 
 
 

(a) Circular Car-Following - Salvucci (2013) Results: 

(b) Circular Car-Following – My Results: 

Figure 4.8. Circular Car-Following Results (Changes Compared to No Distraction). There Are Ten 
Graph Lines, each of Which Represents a Group of Model Drivers Simulated Across Three 

Conditions, Namely with 0, 1, or 3 Distracted Drivers. 
 
 
 
The other interesting observation is the propagation of speed deviation between 

individual drivers. Figure 4.9 shows speed deviation of all sixteen individual drivers for 

standard and circular car-following scenarios. When drivers follow each other on a straight 

lane (i.e., standard scenario), the speed deviation starts from zero for the lead driver 
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(because it travels with a constant speed) and increases gradually. In contrast, when drivers 

drive in a circular lane, the lead driver is constrained by the last driver in the loop, thus no 

gradual increase in speed deviation is observed. In this case, the change in speed deviation 

occurs around the distracted drivers. Therefore, in overall, smaller increase in speed 

deviation is expected over all drivers compared to the standard scenario. This observation 

interprets the resultant smaller increase of speed deviation in my research (Figure 4.8(b)). 

 
 
 

 

Figure 4.9. Speed Deviation for Each Individual Driver 
 
 
 

4.4.3 Naturalistic Verification 

Naturalistic experiments at Virginia Tech Transportation Institute (VTTI) show that 

manual manipulation of cell-phones (e.g., text messaging) increases the risk of crash more 

than auditory use of cell-phones (e.g., talking and listening). The VTTI study concluded 

that text messaging, on average, lasted 36.4 seconds and was associated with 23 times the 
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risk factor compared to normal driving [58, 193]. In my first validation case, I simulated 

similar text messaging scenarios as Stavrinos et al. (2013) used. My results show that the 

average duration of generated time profile for text messaging is approximately 36 seconds 

which is in line with the VTTI naturalistic results. 

Regarding longitudinal vehicle control, the VTTI study reports significant increase 

in the speed deviation for hand-held and hands-free cell-phone use. For both of the 

validation cases in this research, I observed statistically significant increase in speed 

deviation, as observed in the VTTI naturalistic experiment [193]. 

 
4.5 Results 

This section presents real-world applications of the proposed framework in two 

different categories: local and large-scale case studies. The objectives of this section are: 

(1) to demonstrate the effects of distraction in traffic, and (2) to show how quickly one can 

employ the proposed framework for various applications. 

4.5.1 Local Case Studies 

I analyzed the impacts of distraction for two different intersections from Karlsruhe, 

Germany, and Beijing, China (Figure 4.10). The Beijing intersection (Figure 4.10-a) 

represents a busy intersection. In addition to cars, these models simulate the movement of 

pedestrian, bikes, trucks, and buses. The Karlsruhe intersection (Figure 4.10-b) represents 

a complex urban intersection including signal control, transit, bicycles and pedestrians. I 

conducted several simulations for different percentages of distraction: 0%, 5%, 10%, and 

30% of all drivers. In each case, the distracted drivers were distracted by text messaging, 

dialing, or conversation equally likely. I used the distraction profiles presented in 

Figure 4.3. 
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(a) (b) 

(c) (d) 

Figure 4.10. Snapshots of Two Intersections in: Germany (Left, (a) and (c)) and China (Right, (b) 
and (d)) 

 
 
 
Figure 4.11 shows simulated results for the two intersections. Each graph depicts five 

different measures which are the changes compared to no-distraction (i.e., 0%) case. 

Positive values show increase and negative values show decrease in the measure. The five 

measures are: speed coefficient of variation (SV), headway distance coefficient of variation 

(HV), speed average (SA), headway distance average (HA), and number lane change (LC). 

The results show that when distraction level increased, speed coefficient of variation 

(c.o.v.) and number of lane change increased significantly. Coefficient of variation is 

defined as the proportion of standard deviation to the average. However, average speed and 
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average headway distance decreased. Additionally, the observed trend of change for 

Germany intersection is approximately proportional (to the distraction level) while for 

China intersection the 5% and 10% lines differ significantly from 30% line. This means 

that the negative impacts of smaller levels of distraction on busy intersections are lower 

than that of normal intersections.  

 
 
 

Figure 4.11. Results for Germany (left) and China (right) Including Change in: Speed c.o.v. (SV), 
Headway Distance c.o.v. (HV), Speed Average (SA), Headway Distance Average (HA), and Lane 
Change (LC) , for Different Levels of Distraction (5%, 10%, and 30% of drivers). Positive Values 

Show Increase and Negative Values Show Decrease in the Measure. 
 
 
 

4.5.2 Preliminary Results on Large-Scale Case Studies 

The proposed framework enables transportation modelers to easily set up virtual 

experiments and evaluate the impact of distracted drivers on traffic conditions of large-

scale networks. As a preliminary example, I employed the framework for a real case study 

from the Philadelphia region. The model was built around the interchange of Interstates 

476 and 76 including about one mile of each interstate (Figure 4.12(a)). I conducted several 
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10-minute traffic simulations during PM hours with: (i) 0%, (ii) 5%, (iii) 10% and (iv) 30% 

of drivers distracted by text messaging, dialing, or conversation. 

The preliminary results in Figure 4.12-(c) show that when the number of distracted 

drivers increased, on average, drivers decreased their headway distance and speed. 

However, speed deviation, headway distance deviation, and number of lane change 

increased significantly. In addition to the overall results for all drivers, Figure 4.13 

categorizes the results for distracted, not distracted, and all drivers, separately. Although 

the trends of change (either increasing or decreasing) are similar for different driver 

categories, distracted drivers are affected more than the surrounding vehicles. However, 

the overall impacts of distraction may be considered significant in the sense that a sizeable 

proportion of vehicles are driving in an impaired capacity. 
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(a) I-76/I-476 Interchange Model: (b) A Sample 3D Snapshot from the Model: 

(c) The Results of Large-scale Distraction Simulation Including Change in: Speed c.o.v. (SV), 
Headway Distance c.o.v. (HV), Speed Average (SA), Headway Distance Average (HA), and Lane 

Change (LC), for Different Levels of Distraction (5%, 10%, and 30% of Drivers) : 

 
Figure 4.12. A Real-World Large-Scale Case Study from Philadelphia Region 

 
 
 

 
Figure 4.13. Difference between Distracted and Not-Distracted Drivers (The Values on Vertical Axis 

Are Relative to 0% Distracted Drivers)  
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Recent research has explored how traffic efficiency may be reduced by different 

factors, such as presence of slow vehicles and greater speed variability [5]. My preliminary 

results (Figure 4.13) indicate that, on average, distracted drivers proceed slower than 

surrounding traffic, and their presence increases speed and headway distance variability. 

Therefore, the presence of distracted drivers reduces traffic efficiency. In addition, speed 

variability in a network translates to traffic safety because deviation in speed increases the 

need for responding to sudden-onset events, and thus increases the risk of crash. Thus, my 

results may indicate a risk in traffic safety in the presence of many distracted drivers. 

In addition, with smaller number of distracted drivers (Figure 12), the changes 

(except for headway distance deviation) are significantly higher for distracted than non-

distracted drivers. However, with higher number of distracted drivers, the changes are 

comparable for distracted and non-distracted drivers. One may conclude that although the 

presence of small number of distracted drivers (e.g., less than 5%) degrades traffic 

efficiency and safety, it may not significantly affect the traffic conditions. However, larger 

number of distracted drivers (e.g., more than 10%) will cause major degradation in the 

behavior of not-distracted drivers. For example, Figure 4.13 shows that with 10% 

distraction, speed deviation of not-distracted drivers increased the same as distracted 

drivers. 

Finally, my results contribute to the discussion in the literature regarding the change 

in headway distance due to distraction. Some researchers concluded that the headway 

distance increased in the context of distraction [13], while others reported a decrease in this 

measure [8]. My preliminary results indicate a significant decrease in headway distance, 

which again might translate to decrease in traffic safety. In addition, although I expected 
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to see an increasing trend in headway deviation (by increasing distraction percentage), my 

results show a decrease in headway deviation which seems to contradict with my 

preliminary assumption. However, I may consider coefficient of variation of headway 

distance. This way, coefficient of variation of headway distance increases with the increase 

of distraction level. For example, headway coefficient of variation is 0.60, 0.67, 0.75, and 

0.93 for 0%, 5%, 10% and 30% distraction, respectively. Generally speaking, I conclude 

that distraction increases the variability in traffic conditions and as a results decreases 

traffic safety and efficiency. 
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CHAPTER 5. CONCLUSIONS 

This chapter presents the summary of my PhD research that includes the 

contributions and practical implications of the research. It also describes the limitations of 

the approach and concludes with the future research directions. 

5.1 Research Contributions 

The main objective of this research is to formalize and develop a computational 

framework that can: (a) predict the macroscopic performance of a transportation network 

based on its multiple structural and dynamical attributes (Chapter 2), (b) analyze its 

vulnerability as a result of man-made/natural disruption that minimizes network 

connectivity (Chapter 3), and (c) evaluate network vulnerability due to driver distraction 

(Chapter 4). An integrated framework to address these challenges—which have largely 

been investigated as separate research topics, such as distracted driving, infrastructure 

vulnerability assessment and traffic demand modeling—needs to simultaneously consider 

all three principal components (i.e., structure, dynamics, and external causes) of a network. 

In this research, the integrated framework is built upon recent developments (theories and 

methods) in interdisciplinary domains, such as network science, cognitive science and 

transportation engineering. This is the novelty of the proposed framework compared to 

existing frameworks and approaches. So, this PhD research has three major contributions: 

5.1.1 Performance Prediction Model 

Transportation engineers typically use travel modeling and traffic simulation to 

assess the traffic conditions. In urban road planning, planners have to evaluate various 

design alternatives in order to improve traffic conditions over an existing network or to 

build a new road network. The planners have to modify traffic models and run multiple 
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simulations to evaluate the impacts of various proposed changes in network structure and 

traffic demand. Depending on the size of a network, such evaluation would be time-

consuming and tedious, especially if they want to assess several alternatives.  

In this research, I developed a model that can predict the macroscopic measures of 

performance (i.e., average speed and volume) for new alternative designs without 

performing traffic simulations. The inputs of the model were multiple structural and 

dynamical attributes of the new network, and the outputs were multiple network-wide 

MOEs. I used a set of the existing structural attributes, such as the weighted degree and 

betweenness. I also proposed a set of dynamical attributes (e.g., largest eigenvalues of an 

OD matrix) to capture various travel demand patterns across the network. Then, I ran 

several traffic simulations to find network MOEs for different combinations of structural 

and dynamical attributes. In the next step, I employed a multivariate statistical method 

called the Canonical Correlation Analysis to capture the relationship among multiple 

MOEs and network attributes. Finally, using the captured relationship, I developed a model 

to predict macroscopic performance (i.e., multiple MOEs) of a new network. For the 

prediction, the model does not need the tedious task of simulation.  

The framework enables transportation modelers to understand how variations in 

network structure and dynamics could impact the macroscopic performance of design 

alternatives. While the proposed model does not replace the simulation models, it is useful 

for pre-screening process of numerous design alternatives and leads to a significant saving 

of time and computational resources. The result of such pre-screening process is a small 

subset of the long list of design alternatives which will be further analyzed using simulation 

models. 
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5.1.2 Critical Area Identification 

Failure of a single link or multiple links of networks is an important problem in civil 

infrastructures (e.g., road transportation networks). Such failures (i.e., disruptions) might 

be either partial or complete, caused by either man-made or natural sources. To minimize 

the risks of these disruptions, it is important to identify the critical areas of a network.  

I developed a framework that enables transportation modelers to identify various 

critical areas on a given road network. I built the proposed framework upon network-

science theories. Specifically, I employed a method from epidemiology to define a 

network-wide measure of connectivity. In this method, the network connectivity is defined 

based on the largest eigenvalue of the network. In addition, I proposed a new approach 

based on community detection method to identify critical areas of a road network rather 

than critical links. Thus, the two important contributions of the proposed framework are: 

(1) eigenvalue-based measure of connectivity, and (2) community detection methods for 

clustering. In the first stage of the framework, the criticality of individual links was 

determined. Then, in the second stage, a community detection (aka modularity 

optimization) algorithm was used to cluster links based on their different levels of 

criticality. The output is a collection of different clusters throughout the network 

representing different levels of criticality. 

In this research, I present the results of the proposed framework for the Greater 

Philadelphia region for different times of a day. The results show that the clustering results 

vary based on the time of the disruption as well as severity level of the disruption. 
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5.1.3 Driver Distraction Analysis 

According to NHTSA’S National Center for Statistics and Analysis, 15,254 people 

were killed in distraction-affected fatal crashes across the United States between 2009 and 

2012 [85-87]. On average, around 20 percent of distracted drivers were distracted by the 

use of cell phones [87]. At any given daylight time across the United Stated, approximately 

660,000 drivers are using cell-phones or other electronic devices while driving [88]. These 

statistics highlight the importance of large-scale distraction simulation to quantitatively 

assess the impacts of distraction on traffic condition and safety.  

In this research, I formalized a computational modeling framework that integrates a 

cognitive model of distraction (i.e., Distract-R) and an agent-based traffic (micro-) 

simulation model (i.e., VISSIM) to perform traffic simulation in which multiple-distracted 

drivers are distracted by various types (e.g., dialing, text messaging, and cell phone 

conversation). In the first phase of the framework, I simulated distraction of an individual 

driver in one-tenth-of-second intervals without considering complexity of the road network 

and interaction with many drivers around the driver’s vehicle. Then in the second phase, I 

employed the high-resolution results of the first phase to simulate traffic dynamics of many 

vehicles on a large-scale road network for longer period of time. The approach is then 

validated using several existing experiments. The framework is employed to analyze the 

effects of text messaging, dialing and cell-phone conversation on several local and large-

scale real-world models from China, Germany, and Philadelphia metropolitan areas. 

In general, variability in speed and headway distance increased by increasing the 

number of distracted drivers. However, on average, speed and headway distance decreased. 

All these measures corresponded to reduction in traffic safety and efficiency. Moreover, I 
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observed that the number of lane change for not-distracted drivers increased which could 

be a reaction to the reduction in speed and increase in speed variability of distracted drivers. 

5.2 Practical Implications 

The research is expected to have the following practical implications: 

5.2.1 Performance Prediction Model 

At present, transportation planners have to perform many time-consuming traffic 

simulation runs for pre-screening of numerous different design alternatives. Examples 

include identifying the locations of shopping centers and changing the operating time of 

public and private organizations to alleviate traffic congestion.  In general, evaluating such 

alternatives require changes in both structural and dynamical attributes of a network. The 

proposed model helps them to evaluate such alternatives efficiently with a few number of 

simulation runs, leading to a significant saving of time and computational resources. 

5.2.2 Critical Area Identification 

At present, the volume over capacity ratio is used as the standard measure of links’ 

importance (i.e., criticality) while it only considers the local impacts of the link failure. 

Another existing measure of importance is the total delay due to the link failure which is 

time-consuming to calculate for all links. The proposed framework could help 

transportation planners to segment a network into multiple areas based on the impacts of 

disruption on the network overall connectivity. This is especially helpful to: (a) reduce 

vulnerability of the critical areas, (b) locate emergency service close to these areas, and (c) 

prioritize the emergency actions. 
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5.2.3 Driver Distraction Analysis 

Currently, driver distraction analysis is performed using physical simulators, which 

cannot evaluate the impacts of multiple-driver distraction and changes in the design of a 

distracting device, such as a cell phone. The proposed framework enables transportation 

engineers to model the severity and impact of multiple-driver distractions due to different 

distraction types (e.g., texting, phone conversation) on traffic conditions. Examples of what 

if scenarios that could be investigated using this framework include: if 5% of drivers on 

road use cell-phones for text messaging and another 10% for conversation, how will it 

affect traffic flow dynamics? Or in the case of an emergency, what are the impacts of 

dramatic changes in cell-phone use? Or if a button is added to or removed from a cell-

phone, how will it change traffic conditions? 

5.3 Limitations and Future Research Directions 

There are a number of limitations associated with the proposed framework. The 

future research directions are recommended to address some of the existing limitations.  

5.3.1 Performance Prediction Model 

Database for Model Development and Validation: The Greater Philadelphia road 

network was used to develop and validate the proposed model. Though the proposed model 

was validated on the Greater Philadelphia network, it is scalable to other network types as 

well. In the future, it is recommended to assimilate a diverse database of road networks to 

develop the model. 

Inclusion of Additional Structural and Dynamical Attributes: I used eight structural 

and six dynamical attributes. It is recommended to consider other network attributes 

including: structural attributes (e.g., network diameter, and form factor) and dynamical 
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attributes (e.g., spatial distributions of traffic origins and destinations). This would lead to 

a better representation of road structure and traffic demand which may improve reliable 

performance prediction. 

5.3.2 Critical Area Identification 

Assumption for Traffic Pattern: In this research, I used the traffic patterns without 

considering the changes in these patterns due to disruptions. However, the traffic patterns 

might change during or after occurrence of the disruptions. For example, some people 

might either cancel their trip or change their routes. Hence, it is recommended to consider 

such changes in traffic patterns in the future.  

5.3.3 Driver Distraction Analysis 

Changes in Driver’s Behaviors: We modeled driving behavior in a computational 

environment by focusing on the changes in drivers’ longitudinal performance (e.g., speed 

and headway distance). Future research may consider the changes of lateral behavior (i.e., 

lane violation). Also, more investigations are needed to capture the real-world distraction 

time profile for cell-phone conversation. 

Accident Analysis: In this research, I focused on the impacts of multiple-driver 

distraction on overall traffic conditions, such as average speed and headway distance. In 

the future, it is recommended to simulate accidents due to cell-phone-related distraction. 

5.3.4 The Integrated Framework 

Combination of Distracted and Disrupted Conditions: In this research, I formalized 

a framework to integrate the principal components (i.e., structure, dynamics, and external 

causes) of a transportation network. In three research questions, I separately investigated 

three approaches to: (i) predict the macroscopic performance of a transportation network, 
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(ii) analyze its vulnerability as a result of man-made/natural disruption, and (iii) evaluate 

network vulnerability due to driver distraction. Future research is recommended to further 

investigate the performance and vulnerability of a network due to a simultaneous 

combination of disruption and distraction. For example, what happens if there is a severe 

flooding and 30% of drivers start to use their cell-phone (e.g., for checking the weather, 

route finding, or to reach out to their friends and family) while driving. In such cases, it is 

necessary to consider the correlations between distraction and disruption. For instance, 

during severe flooding drivers are more cautious when they need to use their cell-phone, 

compared to the normal weather. 

Interconnected infrastructures: While the scope of this research was to model the 

performance and vulnerability of a road network, it is recommended to extend this 

framework for modeling the performance and vulnerability of multiple interconnected 

infrastructures in the future. There are many real-world examples in which the occurrence 

of a disruption on one infrastructure network may lead to the performance degradation of 

other networks. For example: (i) a disruption on a power network may lead to the failure 

of water distribution networks and public transportation systems; or (ii) the disruption on 

a given area of a road network may force people to use other types of transportation (e.g., 

public transit) leading to performance degradation of those systems. Therefore, future 

research is needed to investigate the propagation of risks among multiple interconnected 

infrastructures. 
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Appendix A: List of Python Codes 

 
 
 
 

Build a graph in i-Graph (RQ1 & RQ2) 

# <<<<<<<<<< Import needed modules >>>>>>>>>> 
from igraph import * 

# <<<<<<<<<< MAIN >>>>>>>>>> 
# Build the Graph 
g = Graph() 

# Number of Nodes 
g.add_vertices(51772) 

# List of links (Node ID starts from 0) 
g.add_edges([(26219, 27169), 
(30551, 29357), 
(29366, 30551), 
(30551, 29366) 
… 
 
(25553, 25635), 
(25635, 25553), 
(10816, 10815)]) 

# Assign Weights to links: 
gw = [1500, 
680, 
680, 
680, 
… 
 
500, 
500, 
680] 
 

 

Calculate the structural attributes of a road network (RQ1) 

# <<<<<<<<<< Import needed modules >>>>>>>>>> 
import numpy 
import xlrd 
from xlwt import * 
import sys 
from igraph import * 
from operator import itemgetter, attrgetter 
import matplotlib.pyplot as plt 
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# <<<<<<<<<< Define Path >>>>>>>>>> 
if "C:\NOURZAD\RQ1Results\OD" not in sys.path: 
    sys.path.append("C:\NOURZAD\RQ1Results") 

# <<<<<<<<<< MAIN >>>>>>>>>> 
# Import weighted graph in which the weights are a function of capacity and traffic volume: 
import GraphPhillyCap11 as gr    # Import the graph which is built in another module  
g = gr.g                                         # g is the graph       
gw = gr.gw                                   # gw is the vector of weights 

# Calculate the largest eigenvalue of the weighted graph: 
eigen = g.evcent(directed=True, scale=True, weights=gw, return_eigenvalue=True) 
eigenMax = eigen[1] 

# Find the weighted degree (strength) of nodes + their Mean and St Dev: 
degreeOfNodes = g.strength(weights=gw) 
degreeMean = numpy.mean(degreeOfNodes) 
degreeStd = numpy.std(degreeOfNodes) 

# Find the weighted betweenness of nodes + their Mean and St Dev: 
bw = g.betweenness(weights=gw) 
bwMean = numpy.mean(bw) 
bwStd = numpy.std(bw) 

# Write into an excel file 
w = Workbook() 
ws = w.add_sheet('Structure') 
ws.write(0, 0, eigenMax) 
ws.write(0, 1, degreeMean) 
ws.write(0, 2, degreeStd) 
ws.write(0, 3, bwMean) 
ws.write(0, 4, bwStd) 
w.save('C:\NOURZAD\RQ1Results\Structure11.xls') 
 
 

Calculate the criticality of links and cluster them (RQ2) 

# <<<<<<<<<< Import needed modules >>>>>>>>>> 
from igraph import * 
import numpy as np 
from operator import itemgetter, attrgetter 
import matplotlib.pyplot as plt 

# <<<<<<<<<< Define functions >>>>>>>>>> 
def drange(start, stop, step): 
    r = start 
    while r < stop: 
        yield r 
        r += step         

# <<<<<<<<<< 1st STEP: Calculate the criticality of individual links >>>>>>>>>> 
# Import the weighted graph: 
import GraphPhilly    # import the graph which is built in GraphPhilly.py  
g = GraphPhilly.g 
gw = GraphPhilly.gw 
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# Assumed severity of disruption: 
severity = 0.6 

# Calculate the largest eigenvalue of the graph in normal conditions: 
eigen = g.evcent(directed=True, scale=True, weights=gw, return_eigenvalue=True) 
currentEigenMax = eigen[1] 
NumberOfLinks = g.ecount() 
linkfound = 0 
criticalLinks = [] 
Eigenvalues = [] 
largestEigenvalueExhaust = [] 
largestEigenvalue = currentEigenMax 

# Determine threshold for minimum Eigenvalue, based on severity: 
thresholdEigenvalue = (1-severity) * largestEigenvalue * (1 + 0.25 * severity) 

# Put the links' ID (from 0 to the number of links -1 ) in linksLeft vector: 
linksLeft = [e for e in range(g.ecount())] 

# The adjusted weight of links: 
gwadj = list(gw) 

# Find the weighted degree (strength) of each link: 
degreeOfNodes = g.strength(weights=gwadj) 
degreeOfLinks = [0 for x in xrange(g.ecount())] 
for e in range(NumberOfLinks): 
    edgeNode1 = g.get_edgelist()[e][0] 
    edgeNode2 = g.get_edgelist()[e][1] 
    degreeOfLinks[e]=(degreeOfNodes[edgeNode1] + degreeOfNodes[edgeNode2])/2 
sortedAllLinks = [i[0] for i in sorted(enumerate(degreeOfLinks), key=lambda x:x[1], 
reverse=True)] 

# Step-by-step, find the critical links and their associated largest eigenvalues: 
done = False 
for fractionOfDisruption in drange(0.0, 1.01, 0.01): 
    print('fractionOfDisruption',fractionOfDisruption) 

    # Compute number of links to be disrupted: 
    fraction = int(fractionOfDisruption*NumberOfLinks) 
    if (fraction-linkfound) == 0: 
        largestEigenvalueExhaust.append([fractionOfDisruption, largestEigenvalue]) 
    elif(done == False): 

        # Select critical links to be disrupted one-by-one: 
        for j in range(linkfound, fraction): 

            # Find the k which is corresponding to Max drop in largest eigenvalue: 
            kcritical = int(sortedAllLinks[j]) 

            # Adjust the weight of the "kcritical" link and calculate its largest eigenvalue: 
            gwadj[kcritical] = gwadj[kcritical] * (1-severity) 
            eigentemp = g.evcent(directed=True, scale=True, weights=gwadj, 
return_eigenvalue=True) 
            largestEigenvalue = eigentemp[1] 
            print('largestEigenvalue',largestEigenvalue) 
            criticalLinks.append(kcritical) 
            Eigenvalues.append(largestEigenvalue) 
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            # Remove it from the list of links left: 
            linksLeft.remove(kcritical) 

            # If I reach the threshold (for Min eigenvalue), stop the process: 
            if(largestEigenvalue < thresholdEigenvalue): 
                done = True 

        # In the next run, start from previous fraction:     
        linkfound = fraction 

        # Append the largest eigenvalue to the list: 
        largestEigenvalueExhaust.append([fractionOfDisruption, largestEigenvalue]) 
    else: 

        # Once I reach threshold for Min eigenvalue, append the latest largest eigenvalue for the rest: 
        largestEigenvalueExhaust.append([fractionOfDisruption, largestEigenvalue]) 

# If there is yet more links left, add them to the list with adding the largest eigenvalue too:        
numLinksLeft = len(linksLeft) 
if (numLinksLeft > 0): 
    for lk in xrange(numLinksLeft): 
        linklft = linksLeft[0] 
        criticalLinks.append(linklft) 
        linksLeft.remove(linklft) 
        Eigenvalues.append(largestEigenvalue) 

# X: Fractions of disruption: 
x = [ row[0] for row in largestEigenvalueExhaust ] 

# Y: Largest eigenvalues associated with fractions of disruption: 
y = [ row[1] for row in largestEigenvalueExhaust ] 

# Write disruption sizes, largest eigenvalues, sorted list of links based on their criticality, their 
associated eigenvalues: 
f = open(r"C:\NOURZAD\RQ2Results\DisruptionResults.txt", 'w') 
f.write('disruption size:\n') 
f.write(str(x) + '\n') 
f.write('Largest Eigenvalue associated to each disruption size:\n') 
f.write(str(y) + '\n') 
f.write('Sorted list of critical links=\n') 
f.write(str(criticalLinks) + '\n') 
f.write('List of eigenvalues associated to links=\n') 
f.write(str(Eigenvalues) + '\n') 
f.close() 
print('End of Phase I') 

# The output of previous step is the list of critical links 
##################################################################### 
# <<<<<<<<<< 2nd STEP: Cluster the links >>>>>>>>>> 
# Community Detection 
# EigenDif = Eigen - Min(Eigen) 
EigenDif = [ e - min(Eigenvalues) for e in Eigenvalues ] 

# this way:    0 < criticalityIndex < Severity 
criticalityIndex = [ ed/max(Eigenvalues) for ed in EigenDif ] 

# Find subset of critical links: 
criticalSubsetOfLinks = [] 



 
 

146 

 

# If criticalityIndex > 10% => Link is CRITICAL: 
for ln in xrange(len(criticalityIndex)): 
    if criticalityIndex[ln]> 0.1: 
        criticalSubsetOfLinks.append(criticalLinks[ln]) 

#==>> Find subset of critical nodes: 
# (The modularity optimization methods take the nodes' weights, rather than links' weights) 
nodeIsCritical = [0 for x in xrange(g.vcount())] 
for ec in criticalSubsetOfLinks: 
    edgeNode1 = g.get_edgelist()[ec][0] 
    edgeNode2 = g.get_edgelist()[ec][1] 
    nodeIsCritical[edgeNode1] = 1 
    nodeIsCritical[edgeNode2] = 1 
criticalSubsetOfNodes = [] 
for vx in xrange(len(nodeIsCritical)): 
    if(nodeIsCritical[vx] == 1): 
        criticalSubsetOfNodes.append(vx) 

# Write the critical subset of nodes in a file, "criticalNodes.txt": 
fn = open(r"C:\NOURZAD\RQ2Results\criticalNodes.txt", 'w') 
fn.write(str(criticalSubsetOfNodes)) 
fn.close() 
print('End of Finding subset of critical nodes') 

#==>> Weights of links based on their criticality 
coef = 0.01 
criticalityFloor = coef * max(EigenDif) 
criticality = [ max(ed, criticalityFloor) for ed in EigenDif ] 

# Sort the weights based on the link IDs: 
WeightsBasedOnLinksId = [0 for x in xrange(len(criticality))] 
for ln in xrange(len(criticalLinks)): 
    WeightsBasedOnLinksId[criticalLinks[ln]] = criticality[ln] 

# Calculate the criticality of nodes = Sum of criticality of connected links: 
criticalityOfNodes = g.strength(weights=WeightsBasedOnLinksId) 

# Detect modules of the weighted network: 
modules = g.community_multilevel(weights=WeightsBasedOnLinksId) 

# Number of detected modules: 
modulesNum = len(modules) 

# Write the modules in a file, "DetectedModules.txt": 
fm = open(r"C:\NOURZAD\RQ2Results\DetectedModules.txt", 'w') 
for ln in xrange(len(modules)): 
    fm.write(str(modules[ln]) + '\n') 
fm.close() 
print('End of Modularity Detection') 

#==>> Check whether the modules separate critical and non-critical nodes: 
moduleCriticality = list(modules) 
for mj in xrange(len(modules)): 
    for li in xrange(len(modules[mj])): 
        if modules[mj][li] in criticalSubsetOfNodes: 
            moduleCriticality[mj][li] = 1 
        else: 
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            moduleCriticality[mj][li] = 0 

# Write the criticality status (0 or 1) of each node in a module: 
fy = open(r"C:\NOURZAD\RQ2Results\DetectedModulesCriticality.txt", 'w') 
for ln in xrange(len(modules)): 
    fy.write(str(moduleCriticality[ln]) + '\n') 
fy.close() 

# Write the criticality ratios of all modules: 
numberOfCriticalNodes = [sum(moduleCriticality[i]) for i in range(len(moduleCriticality))] 
numberOfTotalNodes = [len(moduleCriticality[j]) for j in range(len(moduleCriticality))] 
modulesCriticalityRatio = [float(numberOfCriticalNodes[k])/numberOfTotalNodes[k] for k 
in range(len(numberOfCriticalNodes))] 
fz = open(r"C:\NOURZAD\RQ2Results\DetectedModulesCriticalityRatio.txt", 'w') 
fz.write(str(modulesCriticalityRatio)) 
fz.close() 
print('End of Finding Criticality Ratio') 

#==>> Calculate the absolute value of criticality for each modules: 
moduleAbsCriticality = list(modules) 
for mj in xrange(len(modules)): 
    for vc in xrange(len(modules[mj])): 
        moduleAbsCriticality[mj][vc] = criticalityOfNodes[modules[mj][vc]] 
sumOfMjCriticality = [sum(moduleAbsCriticality[i]) for i in 
range(len(moduleAbsCriticality))] 
fx = open(r"C:\NOURZAD\RQ2Results\DetectedModulesCriticalityAbs.txt", 'w') 
fx.write(str(sumOfMjCriticality)) 
fx.close() 
print('End of Finging absolute value of criticality for each modules') 

#==> Assign the Absolute value of criticality of modules to their nodes: 
nodeAbsCriticalityOfItsMj = [0 for x in xrange(g.vcount())] 
nodeNumberOfItsMj = [0 for x in xrange(g.vcount())] 
for nd in xrange(g.vcount()): 
    for mj in xrange(len(modules)): 
        if(nd in modules[mj]): 
            nodeAbsCriticalityOfItsMj[nd] = sumOfMjCriticality[mj] 
            nodeNumberOfItsMj[nd] = mj 
print('End of Assigning Criticality to Nodes') 

# Assign the Absolute value of criticality of modules from nodes to the links: 
# Link Criticality of Module = Max(Abs Crt assigned to two nodes of the link): 
LinkAbsCriticalityOfItsMj = [0 for x in xrange(g.ecount())] 
LinkNumberOfItsMj = [0 for x in xrange(g.ecount())] 
for e in range(NumberOfLinks): 
    edgeNode1 = g.get_edgelist()[e][0] 
    edgeNode2 = g.get_edgelist()[e][1] 
    LinkAbsCriticalityOfItsMj[e]=max(nodeAbsCriticalityOfItsMj[edgeNode1], 
nodeAbsCriticalityOfItsMj[edgeNode2]) 
    if(nodeAbsCriticalityOfItsMj[edgeNode1]==LinkAbsCriticalityOfItsMj[e]): 
        LinkNumberOfItsMj[e] = nodeNumberOfItsMj[edgeNode1] 
    else: 
        LinkNumberOfItsMj[e] = nodeNumberOfItsMj[edgeNode2] 
f1 = open(r"C:\NOURZAD\RQ2Results\LinkAbsCriticalityOfItsMj.txt", 'w') 
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f1.write(str(LinkAbsCriticalityOfItsMj)) 
f1.close() 
print('End of Assigning Criticality to Links') 

# Write the Link' Criticality of its Module on excel: 
from xlwt import * 
w = Workbook() 
ws = w.add_sheet('linkcriticalityOfMj') 
for l in xrange(65536): 
    ws.write(l, 0, LinkAbsCriticalityOfItsMj[l]) 
for l in xrange(65536, len(LinkAbsCriticalityOfItsMj)): 
    ws.write(l-65536, 1, LinkAbsCriticalityOfItsMj[l]) 
w.save('linksCrtOfMj.xls') 

# Write module number of the links on excel: 
wm = Workbook() 
wms = wm.add_sheet('linkNumOfMj') 
for l in xrange(65536): 
    wms.write(l, 0, LinkNumberOfItsMj[l]) 
for l in xrange(65536, len(LinkNumberOfItsMj)): 
    wms.write(l-65536, 1, LinkNumberOfItsMj[l]) 
wm.save('linksNumOfMj.xls') 

# Write the node' Criticality of its Module on excel: 
wv = Workbook() 
wsv = wv.add_sheet('nodesCriticalityOfMj') 
for l in xrange(len(nodeAbsCriticalityOfItsMj)): 
    wsv.write(l, 0, nodeAbsCriticalityOfItsMj[l]) 
wv.save('nodesCrtOfMj.xls') 
 

 

Replicate Stavrinos’s model for LOS A in VISSIM (RQ3) 

##### Vehicle Type description: 
    # Vehicles enter the network are either from Car or CarToBeDistracted 
    # Car: Vehicles that will not be distracted 
    # CarToBeDistracted: Vehicles that will be distracted in a time frame during simulation period 
    # CarDistracted: The vehicles with distracted parameters 
# Three vehicle classes are defined with the same names: Car, CarToBeDistracted, CarDistracted 
# Link behavior type description: 
    # Behavior of different classes of vehicles are different for each link type: 
        # Driving behavior of Car: Freeway NonDistracted 
        # Driving behavior of CarToBeDistracted: Freeway NonDistracted  
        # Driving behavior of CarDistracted: Freeway Distracted 
         
# <<<<<<<<<< Import needed modules >>>>>>>>>> 
import numpy 
import xlrd 
import win32com.client 
import random 

# <<<<<<<<<< FUNCTIONS >>>>>>>>>> 
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# Function for randomly selection of weighted items 
# Input: list of weights of items 
# Output: index of selected item 
def weighted_choice(weights): 
    totals = [] 
    running_total = 0 
    for w in weights: 
        running_total += w 
        totals.append(running_total) 
    rnd = random.random() * running_total 
    for i, total in enumerate(totals): 
        if rnd < total: 
            return i 

# <<<<<<<<<< Read Distraction Table (Distract-R output) >>>>>>>>>> 
# The profile durations are assumed to be (at least) twice the simulation duration (2*UBound) 
# When a vehicle enters, I randomly assign a number 1 =< k <= UBound as the starting point 
# So, its distraction time period is (k, k+UBound) 
# Open the excel file which contains distraction results from Distract-R 
workbook = xlrd.open_workbook('DistractionTable.xlsx') 

# Open the worksheet 'Sheet1' which contains the data 
worksheet = workbook.sheet_by_name('Sheet1') 

# Read the distraction data and store it in a matrix 
num_rows = worksheet.nrows - 1 
num_cells = worksheet.ncols - 1 
# Initiate DistractionTimeProfiles matrix (whose rows are distraction types, and columns are time 
steps) 
# Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, so I need to change the 
resolution 
DistractionTimeProfiles = [[0 for x in xrange(num_rows/2)] for x in xrange(num_cells)] 
# Store the data in DistractionTimeProfiles matrix: either distracted (1) or non-distracted (0) at 
the time step 
curr_row = 0 
while curr_row < num_rows-1: 
 curr_row += 2 
 curr_cell = 0 
 while curr_cell < num_cells: 
  curr_cell += 1 

  # HINT1: During storing, I change the rows to columns and columns to rows 
  # HINT2: I remove the title row (row=0) and the time step column (column=0) 
  # So, each row is a distraction type, and each column is a time step 
  # Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, 
  #  so I use 2*curr_cell to change the resolution. 
  if worksheet.cell_value(curr_row, curr_cell) == 1: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 0 
                else: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 1 

# Different types of distracted drivers 
distractedTypes = len(DistractionTimeProfiles) 

# % of each distraction type: A vector of weights (probabilities) of different distraction types 
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distProbabilities = [1] 

# <<<<<<<<<< Initiate VISSIM model >>>>>>>>>> 
Vissim = win32com.client.Dispatch("VISSIM.vissim") 
Vissim.LoadNet(r"C:\NOURZAD\RQ3Results\PlatformStavrinos\Platform.inp") 

# Enable evaluation parameters 
Vissim.Evaluation.SetAttValue("NETPERFORMANCE", True) 
Vissim.Evaluation.SetAttValue("LANECHANGE", True) 
Vissim.Evaluation.SetAttValue("DELAY", True) 
Vissim.Evaluation.SetAttValue("EXPORT", True) 
Vissim.Evaluation.SetAttValue("VEHICLERECORD", True) 

# <<<<<<<<<< Initiate parameters and variables >>>>>>>>>> 
# Define max number of time steps and max number of vehicles 
UBound = 6000 
MaxNumVehicles = 15 

# Status of vehicle: column 0: vehicle status (either distracted=1, or non-distracted=0), 
#                    column 1: distraction type, column 2: distraction Start Step 
distractionStatus = [[0 for x in xrange(3)] for x in xrange(MaxNumVehicles)] 

# <<<<<<<<<< Set up multiple runs >>>>>>>>>> 
NumberOfRuns = 51 
Vissim.Simulation.RunIndex = 0 
Vissim.Simulation.RandomSeed = 10 
for numrun in range(0, NumberOfRuns): 

    # Temporary for check: 
    CheckNumEntered = 0 
    CheckNumEnteredToBeDist = 0 
    CheckChangetoDist = 0 
    CheckChangetoNonDist = 0 
    VehPrev = [] 
    VehCur = [] 

# <<<<<<<<<< Add vehicles >>>>>>>>>> 
    Vissim.Simulation.RunSingleStep() 

    # Vehicle #1 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  3500) 

    # Vehicle #2 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  3250) 

    # Vehicle #3 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  3000) 

    # Vehicle #4 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  2750) 

    # Vehicle #5 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  2500) 

    # Vehicle #6 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  2250) 

    # Vehicle #7 - Might be distracted 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (200, 58, 1, 1,  2000) 
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    # Vehicle #8 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  1750) 

    # Vehicle #9 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  1500) 

    # Vehicle #10 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  1250) 

    # Vehicle #11 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  1000) 

    # Vehicle #12 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,   750) 

    # Vehicle #13 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,   500) 

# <<<<<<<<<< Run Traffic simulation in VISSIM step-by-step >>>>>>>>>> 
    for i in range(0, UBound): 

        # For each vehicle enters the network in this time step: 
        VehicleEntered = list(set(VehCur) - set(VehPrev)) 
        NumVehEnterInCurStep = len(VehicleEntered) 
        if NumVehEnterInCurStep > 0: 
            for number in VehicleEntered: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(number) 
                if Veh <> None: 
                    CheckNumEntered = CheckNumEntered + 1 

                    # If the vehicle type is "ToBeDistracted": 
                    if Veh.AttValue("TYPE")== 200: 
                        CheckNumEnteredToBeDist = CheckNumEnteredToBeDist + 1 

                        # Assign a distraction time profile to the vehicle 
                        disTypeNo = weighted_choice(distProbabilities) 
                        distractionStatus[Veh.AttValue("ID")][1] = disTypeNo 

                        # Assign a distraction start step to the vehicle 
                        disStartStep = numpy.random.randint(1,UBound) 
                        distractionStatus[Veh.AttValue("ID")][2] = disStartStep 
                         

                        # Define the distraction status array: 1=distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 1 
                    else: 

                        # Define the distraction status array: 0=non-distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 0 

        # Get the number of vehicles in the simulation 
        NumVehicles = Vissim.Net.Vehicles.Count             

        # For each vehicle in the network 
        if NumVehicles > 0: 
            for Vehicle in Vissim.Net.Vehicles: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(Vehicle.ID) 
                if Veh <> None: 

                    # If the vehicle type is "ToBeDistracted": 
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                    if distractionStatus[Veh.AttValue("ID")][0] == 1: 
                        VehDisType = distractionStatus[Veh.AttValue("ID")][1] 
                        VehDisStart = distractionStatus[Veh.AttValue("ID")][2] 

                        # If i is in its distracted time (based on its distraction time profile) 
                        if DistractionTimeProfiles[VehDisType][i + VehDisStart-1] == 1: 

                            # change the type of vehicle to "CarDistracted" 
                            Veh.SetAttValue("TYPE", 300) 
                            CheckChangetoDist = CheckChangetoDist + 1 
                        else: 

                            # change the type of vehicle to "CarToBeDistracted" 
                            Veh.SetAttValue("TYPE", 200) 
                            CheckChangetoNonDist = CheckChangetoNonDist + 1 
        VehPrev = VehCur 

        # Run simulation one single step 
        Vissim.Simulation.RunSingleStep() 
        NumVeh = Vissim.Net.Vehicles.Count 
        if NumVeh > 0: 
            VehCur=[]  
            for Vehicle in Vissim.Net.Vehicles: 
                if Vehicle <> None: 
                    VehCur.extend([Vehicle.ID]) 
    Vissim.Simulation.RunIndex = Vissim.Simulation.RunIndex + 1 
    Vissim.Simulation.RandomSeed = Vissim.Simulation.RandomSeed + 1 
    print("End of Run#",Vissim.Simulation.RunIndex) 
 

 

Replicate Stavrinos’s model for LOS C in VISSIM (RQ3) 

The same as the code for LOS A except for the vehicle volume as follows: 

# <<<<<<<<<< Add vehicles >>>>>>>>>> 
    Vissim.Simulation.RunSingleStep() 

    # Vehicle #1 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  1609) 

    # Vehicle #2 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  1477) 

    # Vehicle #3 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  1345) 

    # Vehicle #4 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  1213) 

    # Vehicle #5 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  1081) 

    # Vehicle #6 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  949) 

    # Vehicle #7 - Might be distracted 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (200, 58, 1, 1,  817) 
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    # Vehicle #8 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  685) 

    # Vehicle #9 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  553) 

    # Vehicle #10 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  421) 

    # Vehicle #11 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  289) 

    # Vehicle #12 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 2,  157) 

    # Vehicle #13 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,   25) 
 

 

Replicate Stavrinos’s model for LOS E in VISSIM (RQ3) 

The same as the code for LOS A except for the vehicle volume as follows: 

# <<<<<<<<<< Add vehicles >>>>>>>>>> 
    Vissim.Simulation.RunSingleStep() 

    # Vehicle #1 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,  398) 

    # Vehicle #2 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,  367) 

    # Vehicle #3 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,  336) 

    # Vehicle #4 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,  305) 

    # Vehicle #5 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,  273) 

    # Vehicle #6 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,  242) 

    # Vehicle #7 - Might be distracted 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 58, 1, 1,  211) 

    # Vehicle #8 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,  180) 

    # Vehicle #9 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,  140) 

    # Vehicle #10 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,  118) 

    # Vehicle #11 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,   87) 

    # Vehicle #12 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 2,   56) 
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    # Vehicle #13 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (500, 30, 1, 1,   25) 
 
 

Replicate Salvucci’s model for Standard Scenario in VISSIM (RQ3) 

##### Vehicle Type description: 
    # Vehicles enter the network are either from Car or CarToBeDistracted 
    # Car: Vehicles that will not be distracted 
    # CarToBeDistracted: Vehicles that will be distracted in a time frame during simulation period 
    # CarDistracted: The vehicles with distracted parameters 
# Three vehicle classes are defined with the same names: Car, CarToBeDistracted, CarDistracted 
# Link behavior type description: 
    # Behavior of different classes of vehicles are different for each link type: 
        # Driving behavior of Car: Freeway NonDistracted 
        # Driving behavior of CarToBeDistracted: Freeway NonDistracted  
        # Driving behavior of CarDistracted: Freeway Distracted 
         

# <<<<<<<<<< Import needed modules >>>>>>>>>> 
import numpy 
import xlrd 
import win32com.client 
import random 

# <<<<<<<<<< FUNCTIONS >>>>>>>>>> 
# Function for randomly selection of weighted items 
# Input: list of weights of items 
# Output: index of selected item 
def weighted_choice(weights): 
    totals = [] 
    running_total = 0 
    for w in weights: 
        running_total += w 
        totals.append(running_total) 
    rnd = random.random() * running_total 
    for i, total in enumerate(totals): 
        if rnd < total: 
            return i 

# <<<<<<<<<<  Read Distraction Table (Distract-R output) >>>>>>>>>> 
# The profile durations are assumed to be (at least) twice the simulation duration (2*UBound) 
# When a vehicle enters, I randomly assign a number 1 =< k <= UBound as the starting point 
# So, its distraction time period is (k, k+UBound) 
# Open the excel file which contains distraction results from Distract-R 
workbook = xlrd.open_workbook('DistractionTable.xlsx') 

# Open the worksheet 'Sheet1' which contains the data 
worksheet = workbook.sheet_by_name('Sheet1') 

# Read the distraction data and store it in a matrix 
num_rows = worksheet.nrows - 1 
num_cells = worksheet.ncols - 1 
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# Initiate DistractionTimeProfiles matrix (whose rows are distraction types, and columns are time 
steps) 
# Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, so I need to change the 
resolution 
DistractionTimeProfiles = [[0 for x in xrange(num_rows/2)] for x in xrange(num_cells)] 

# Store the data in DistractionTimeProfiles matrix: either distracted (1) or nondistracted (0) at the 
time step 
curr_row = 0 
while curr_row < num_rows-1: 
 curr_row += 2 
 curr_cell = 0 
 while curr_cell < num_cells: 
  curr_cell += 1 

  # HINT1: During storing, I change the rows to columns and columns to rows 
  # HINT2: I remove the title row (row=0) and the time step column (column=0) 
  # So, each row is a distraction type, and each column is a time step 
  # Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, 
  #  so I use 2*curr_cell to change the resolution. 
  if worksheet.cell_value(curr_row, curr_cell) == 1: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 0 
                else: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 1 

# Different types of distracted drivers 
distractedTypes = len(DistractionTimeProfiles) 

# % of each distraction type: A vector of weights (probabilities) of different distraction types 
distProbabilities = [1] 

# <<<<<<<<<< Initiate VISSIM model >>>>>>>>>> 
Vissim = win32com.client.Dispatch("VISSIM.vissim") 
Vissim.LoadNet(r"C:\NOURZAD\RQ3Results\PlatformSalvucci\PlatformSmall.inp") 

# Enable evaluation parameters 
Vissim.Evaluation.SetAttValue("NETPERFORMANCE", True) 
Vissim.Evaluation.SetAttValue("LANECHANGE", True) 
Vissim.Evaluation.SetAttValue("DELAY", True) 
Vissim.Evaluation.SetAttValue("EXPORT", True) 
Vissim.Evaluation.SetAttValue("VEHICLERECORD", True) 

# <<<<<<<<<<  Initiate parameters and variables >>>>>>>>>> 
# Define max number of time steps and max number of vehicles 
UBound = 6000 
MaxNumVehicles = 20 

# Status of vehicle: column 0: vehicle status (either distracted=1, or nondistracted=0), 
#                    column 1: distraction type, column 2: distraction Start Step 
distractionStatus = [[0 for x in xrange(3)] for x in xrange(MaxNumVehicles)] 

# <<<<<<<<<< Set up multiple runs >>>>>>>>>> 
NumberOfRuns = 11 
Vissim.Simulation.RunIndex = 0 
Vissim.Simulation.RandomSeed = 40 
for numrun in range(0, NumberOfRuns): 
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    # Temporary for check: 
    CheckNumEntered = 0 
    CheckNumEnteredToBeDist = 0 
    CheckChangetoDist = 0 
    CheckChangetoNonDist = 0 
    VehPrev = [] 
    VehCur = [] 

    # <<<<<<<<<<  Add vehicles >>>>>>>>>> 
    Vissim.Simulation.RunSingleStep() 

    # Lead vehicle 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 29.83, 1, 1, 1049.869) 

    # Vehicle #1 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  984.252) 

    # Vehicle #2 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  918.635) 

    # Vehicle #3 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  853.018) 

    # Vehicle #4 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  787.402) 

    # Vehicle #5 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  721.785) 

    # Vehicle #6 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  656.168) 

    # Vehicle #7 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  590.551) 

    # Vehicle #8 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  524.934) 

    # Vehicle #9 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  459.318) 

    # Vehicle #10 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  393.701) 

    # Vehicle #11 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  328.084) 

    # Vehicle #12 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  262.467) 

    # Vehicle #13 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  196.850) 

    # Vehicle #14 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,  131.234) 

    # Vehicle #15 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 1, 1,   65.617) 

# <<<<<<<<<< Run Traffic simulation in VISSIM step-by-step >>>>>>>>>> 
    for i in range(0, UBound): 

        # For each vehicle enters the network in this time step: 
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        VehicleEntered = list(set(VehCur) - set(VehPrev)) 
        NumVehEnterInCurStep = len(VehicleEntered) 
        if NumVehEnterInCurStep > 0: 
            for number in VehicleEntered: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(number) 
                if Veh <> None: 
                    CheckNumEntered = CheckNumEntered + 1 

                    # If the vehicle type is "ToBeDistracted": 
                    if Veh.AttValue("TYPE")== 200: 
                        CheckNumEnteredToBeDist = CheckNumEnteredToBeDist + 1 

                        # Assign a distraction time profile to the vehicle 
                        disTypeNo = weighted_choice(distProbabilities) 
                        distractionStatus[Veh.AttValue("ID")][1] = disTypeNo 

                        # Assign a distraction start step to the vehicle 
                        disStartStep = numpy.random.randint(1,UBound) 
                        distractionStatus[Veh.AttValue("ID")][2] = disStartStep 
                         

                        # Define the distraction status array: 1=distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 1 
                    else: 

                        # Define the distraction status array: 0=non-distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 0 

        # Get the number of vehicles in the simulation 
        NumVehicles = Vissim.Net.Vehicles.Count             

        # For each vehicle in the network 
        if NumVehicles > 0: 
            for Vehicle in Vissim.Net.Vehicles: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(Vehicle.ID) 
                if Veh <> None: 

                    # If the vehicle type is "ToBeDistracted": 
                    if distractionStatus[Veh.AttValue("ID")][0] == 1: 
                        VehDisType = distractionStatus[Veh.AttValue("ID")][1] 
                        VehDisStart = distractionStatus[Veh.AttValue("ID")][2] 

                        # If i is in its distracted time (based on its distraction time profile) 
                        if DistractionTimeProfiles[VehDisType][i + VehDisStart-1] == 1: 

                            # change the type of vehicle to "CarDistracted" 
                            Veh.SetAttValue("TYPE", 300) 
                            CheckChangetoDist = CheckChangetoDist + 1 
                        else: 

                            # change the type of vehicle to "CarToBeDistracted" 
                            Veh.SetAttValue("TYPE", 200) 
                            CheckChangetoNonDist = CheckChangetoNonDist + 1 
        VehPrev = VehCur 

        # Run simulation one single step 
        Vissim.Simulation.RunSingleStep() 
        NumVeh = Vissim.Net.Vehicles.Count 
        if NumVeh > 0: 
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            VehCur=[]  
            for Vehicle in Vissim.Net.Vehicles: 
                if Vehicle <> None: 
                    VehCur.extend([Vehicle.ID]) 
    Vissim.Simulation.RunIndex = Vissim.Simulation.RunIndex + 1 
    Vissim.Simulation.RandomSeed = Vissim.Simulation.RandomSeed + 1 
    print("End of Run#",Vissim.Simulation.RunIndex) 
 
 

Replicate Salvucci’s model for Circular Scenario in VISSIM (RQ3) 

The same as the code for LOS A except for the vehicle volume as follows: 

# <<<<<<<<<< Add vehicles >>>>>>>>>> 
    Vissim.Simulation.RunSingleStep() 

    # Lead vehicle 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1, 1017.06) 

    # Vehicle #1 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  951.44) 

    # Vehicle #2 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  885.83) 

    # Vehicle #3 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (200, 40, 2, 1,  820.21) 

    # Vehicle #4 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  754.59) 

    # Vehicle #5 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  688.98) 

    # Vehicle #6 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  623.36) 

    # Vehicle #7 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  557.74) 

    # Vehicle #8 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (200, 40, 2, 1,  492.13) 

    # Vehicle #9 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  426.51) 

    # Vehicle #10 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  360.89) 

    # Vehicle #11 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  295.28) 

    # Vehicle #12 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  229.66) 

    # Vehicle #13 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (200, 40, 2, 1,  164.04) 

    # Vehicle #14 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  98.43) 
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    # Vehicle #15 
    Vissim.Net.Vehicles.AddVehicleAtLinkCoordinate (100, 40, 2, 1,  32.81) 
 

 

Developed interface for VISSIM – Real scenarios (RQ3) 

This code is for the real interchange in Beijing, China. The other scenarios are the same 

with a difference in their VISSIM input file. 

##### Vehicle Type description: 
    # Vehicles enter the network are either from Car or CarToBeDistracted 
    # Car: Vehicles that will not be distracted 
    # CarToBeDistracted: Vehicles that will be distracted in a time frame during simulation period 
    # CarDistracted: The vehicles with distracted parameters 
# Three vehicle classes are defined with the same names: Car, CarToBeDistracted, CarDistracted 
# Link behavior type description: 
    # Behavior of different classes of vehicles are different for each link type: 
        # Driving behavior of Car: Freeway NonDistracted 
        # Driving behavior of CarToBeDistracted: Freeway NonDistracted  
        # Driving behavior of CarDistracted: Freeway Distracted 
# <<<<<<<<<< Import needed modules >>>>>>>>>> 
import numpy 
import xlrd 
import win32com.client 
import random 

# <<<<<<<<<< FUNCTIONS >>>>>>>>>> 
# Function for randomly selection of weighted items 
# Input: list of weights of items 
# Output: index of selected item 
def weighted_choice(weights): 
    totals = [] 
    running_total = 0 
    for w in weights: 
        running_total += w 
        totals.append(running_total) 
    rnd = random.random() * running_total 
    for i, total in enumerate(totals): 
        if rnd < total: 
            return i 

# <<<<<<<<<< Read Distraction Table (Distract-R output) >>>>>>>>>> 
# The profile durations are assumed to be (at least) twice the simulation duration (2*UBound) 
# When a vehicle enters, I randomly assign a number 1 =< k <= UBound as the starting point 
# So, its distraction time period is (k, k+UBound) 
# Open the excel file which contains distraction results from Distract-R 
workbook = xlrd.open_workbook('DistractionTable.xlsx') 

# Open the worksheet 'Sheet1' which contains the data 
worksheet = workbook.sheet_by_name('Sheet1') 

# Read the distraction data and store it in a matrix 
num_rows = worksheet.nrows - 1 
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num_cells = worksheet.ncols - 1 

# Initiate DistractionTimeProfiles matrix (whose rows are distraction types, and columns are time 
steps) 
# Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, so I need to change the 
resolution 
DistractionTimeProfiles = [[0 for x in xrange(num_rows/2)] for x in xrange(num_cells)] 

# Store the data in DistractionTimeProfiles matrix: either distracted (1) or nondistracted (0) at the 
time step 
curr_row = 0 
while curr_row < num_rows-1: 
 curr_row += 2 
 curr_cell = 0 
 while curr_cell < num_cells: 
  curr_cell += 1 

  # HINT1: During storing, I change the rows to columns and columns to rows 
  # HINT2: I remove the title row (row=0) and the time step column (column=0) 
  # So, each row is a distraction type, and each column is a time step 
  # Distract-R output resolution is 0.05 sec and Vissim resolution is 0.1 sec, 
  #  so I use 2*curr_cell to change the resolution. 
  if worksheet.cell_value(curr_row, curr_cell) == 1: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 0 
                else: 
                    DistractionTimeProfiles[curr_cell-1][curr_row/2-1] = 1 

# Different types of distracted drivers 
distractedTypes = len(DistractionTimeProfiles) 

# % of each distraction type: A vector of weights (probabilities) of different distraction types 
distProbabilities = [1,1,1] 

# <<<<<<<<<<  Initiate VISSIM model >>>>>>>>>>> 
Vissim = win32com.client.Dispatch("VISSIM.vissim") 
Vissim.LoadNet(r"C:\NOURZAD\RQ3Results\IntChina\beijing.inp") 

# Enable evaluation parameters 
Vissim.Evaluation.SetAttValue("NETPERFORMANCE", True) 
Vissim.Evaluation.SetAttValue("LANECHANGE", True) 
Vissim.Evaluation.SetAttValue("DELAY", True) 
Vissim.Evaluation.SetAttValue("EXPORT", True) 
Vissim.Evaluation.SetAttValue("VEHICLERECORD", True) 

# <<<<<<<<<< Initiate parameters and variables >>>>>>>>>> 
# Define max number of time steps and max number of vehicles 
UBound = 6000 
MaxNumVehicles = 10000 

# Status of vehicle: column 0: vehicle status (either distracted=1, or nondistracted=0), 
#                    column 1: distraction type, column 2: distraction Start Step 
distractionStatus = [[0 for x in xrange(3)] for x in xrange(MaxNumVehicles)] 

# <<<<<<<<<< Set up multiple runs >>>>>>>>>> 
NumberOfRuns = 3 
Vissim.Simulation.RunIndex = 0 
Vissim.Simulation.RandomSeed = 95 
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for numrun in range(0, NumberOfRuns): 

    # Temporary for check: 
    CheckNumEntered = 0 
    CheckNumEnteredToBeDist = 0 
    CheckChangetoDist = 0 
    CheckChangetoNonDist = 0 
    VehPrev = [] 
    VehCur = [] 

# <<<<<<<<<< Run Traffic simulation in VISSIM step-by-step >>>>>>>>>> 
    for i in range(0, UBound): 

        # For each vehicle enters the network in this time step: 
        VehicleEntered = list(set(VehCur) - set(VehPrev)) 
        NumVehEnterInCurStep = len(VehicleEntered) 
        if NumVehEnterInCurStep > 0: 
            for number in VehicleEntered: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(number) 
                if Veh <> None: 
                    CheckNumEntered = CheckNumEntered + 1 

                    # If the vehicle type is "ToBeDistracted": 
                    if Veh.AttValue("TYPE")== 200: 
                        CheckNumEnteredToBeDist = CheckNumEnteredToBeDist + 1 

                        # Assign a distraction time profile to the vehicle 
                        disTypeNo = weighted_choice(distProbabilities) 
                        distractionStatus[Veh.AttValue("ID")][1] = disTypeNo 

                        # Assign a distraction start step to the vehicle 
                        disStartStep = numpy.random.randint(1,UBound) 
                        distractionStatus[Veh.AttValue("ID")][2] = disStartStep                         

                        # Define the distraction status array: 1=distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 1 
                    else: 

                        # Define the distraction status array: 0=non-distracted 
                        distractionStatus[Veh.AttValue("ID")][0] = 0 

        # Get the number of vehicles in the simulation 
        NumVehicles = Vissim.Net.Vehicles.Count             

        # For each vehicle in the network 
        if NumVehicles > 0: 
            for Vehicle in Vissim.Net.Vehicles: 
                Veh = Vissim.Net.Vehicles.GetVehicleByNumber(Vehicle.ID) 
                if Veh <> None: 

                    # If the vehicle type is "ToBeDistracted": 
                    if distractionStatus[Veh.AttValue("ID")][0] == 1: 
                        VehDisType = distractionStatus[Veh.AttValue("ID")][1] 
                        VehDisStart = distractionStatus[Veh.AttValue("ID")][2] 

                        # If i is in its distracted time (based on its distraction time profile) 
                        if DistractionTimeProfiles[VehDisType][i + VehDisStart-1] == 1: 

                            # change the type of vehicle to "CarDistracted" 



 
 

162 

 

                            Veh.SetAttValue("TYPE", 300) 
                            CheckChangetoDist = CheckChangetoDist + 1 
                        else: 

                            # change the type of vehicle to "CarToBeDistracted" 
                            Veh.SetAttValue("TYPE", 200) 
                            CheckChangetoNonDist = CheckChangetoNonDist + 1 
        VehPrev = VehCur 

        # Run simulation one single step 
        Vissim.Simulation.RunSingleStep() 
        NumVeh = Vissim.Net.Vehicles.Count 
        if NumVeh > 0: 
            VehCur=[]  
            for Vehicle in Vissim.Net.Vehicles: 
                if Vehicle <> None: 
                    VehCur.extend([Vehicle.ID]) 
    Vissim.Simulation.RunIndex = Vissim.Simulation.RunIndex + 1 
    Vissim.Simulation.RandomSeed = Vissim.Simulation.RandomSeed + 1 
    print("End of Run#",Vissim.Simulation.RunIndex) 
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Appendix B: Samples of Observation-Based Validation 

 
 
 

 
Sample Observations within a Low-Critical Cluster during MD Period 

 

 
Sample Observations within a Medium-Critical Cluster during MD Period 
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Sample Observations within a High-Critical Cluster during MD Period 

 

 

 
Sample Observations within a High-Critical Cluster during AM Period 
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Sample Observations within a High-Critical Cluster during AM Period 
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