58 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Interference mitigation in D2D communication underlaying LTE-A network

    Get PDF
    The mobile data traffic has risen exponentially in recent days due to the emergence of data intensive applications, such as online gaming and video sharing. It is driving the telecommunication industry as well as the research community to come up with new paradigms that will support such high data rate requirements within the existing wireless access network, in an efficient and effective manner. To respond to this challenge, device-to-device (D2D) communication in cellular networks is viewed as a promising solution, which is expected to operate, either within the coverage area of the existing eNB and under the same cellular spectrum (in-band) or separate spectrum (out-band). D2D provides the opportunity for users located in close proximity of each other to communicate directly, without traversing data traffic through the eNB. It results in several transmission gains, such as improved throughput, energy gain, hop gain, and reuse gain. However, integration of D2D communication in cellular systems at the same time introduces new technical challenges that need to be addressed. Containment of the interference among D2D nodes and cellular users is one of the major problems. D2D transmission radiates in all directions, generating undesirable interference to primary cellular users and other D2D users sharing the same radio resources resulting in severe performance degradation. Efficient interference mitigation schemes are a principal requirement in order to optimize the system performance. This paper presents a comprehensive review of the existing interference mitigation schemes present in the open literature. Based on the subjective and objective analysis of the work available to date, it is also envisaged that adopting a multi-antenna beamforming mechanism with power control, such that the transmit power is maximized toward the direction of the intended D2D receiver node and limited in all other directions will minimize the interference in the network. This could maximize the sum throughput and hence, guarantees the reliability of both the D2D and cellular connections

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Iterative Energy-Efficient Stable Matching Approach for Context-Aware Resource Allocation in D2D Communications

    Get PDF
    Energy efficiency (EE) is critical to fully achieve the huge potentials of device-to-device (D2D) communications with limited battery capacity. In this paper, we consider the two-stage EE optimization problem, which consists of a joint spectrum and power allocation problem in the first stage, and a context-aware D2D peer selection problem in the second stage. We provide a general tractable framework for solving the combinatorial problem, which is NP-hard due to the binary and continuous optimization variables. In each stage, user equipments (UEs) from two finite and disjoint sets are matched in a two-sided stable way based on the mutual preferences. First, the preferences of UEs are defined as the maximum achievable EE. An iterative power allocation algorithm is proposed to optimize EE under a specific match, which is developed by exploiting nonlinear fractional programming and Lagrange dual decomposition. Second, we propose an iterative matching algorithm, which first produces a stable match based on the fixed preferences, and then dynamically updates the preferences according to the latest matching results in each iteration. Finally, the properties of the proposed algorithm, including stability, optimality, complexity, and scalability, are analyzed in detail. Numerical results validate the efficiency and superiority of the proposed algorithm under various simulation scenarios

    Spatial Domain Management and Massive MIMO Coordination in 5G SDN

    Get PDF
    In 5G mobile communication systems, massive multiple-input multiple-output (MIMO) and heterogeneous networks (HetNets) play crucial roles to achieve expected coverage and capacity across venues. This paper correspondingly addresses software-defined network (SDN) as the central controller of radio resource management in massive MIMO HetNets. In particular, we identify the huge spatial domain information management and complicated MIMO coordination as the grand challenges in 5G systems. Our work accordingly distinguishes itself by considering more network MIMO aspects, including flexibility and complexity of spatial coordination. In our proposed scheme, SDN controller first collects the user channel state information in an effective way, and then calculates the null-space of victim users and applies linear precoding to that null-space. Simulation results show that our design is highly beneficial and easy to be deployed, due to its high quality of service performance but low computation complexity

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Game Theoretical Approaches for Wireless Networks

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 김성철.In this dissertation, I introduce three algorithms, which are connectivity reconstruction game (CRG), adaptive sector coloring game (ASCG), and asymmetric transmission game (ATG), by mainly using supermodular game and exact potential game with considerations of various objectives (e.g., energy consumption and interference management) in wireless sensor and cellular networks. My main contributions are threefold: 1) connectivity relaxation (energy saving) in wireless localization2) intercell interference coordination in wireless cellular networks3) interference minimization in wireless ad-hoc relay networks. The corresponding explanations are as follows. 1) In geographically dense and energy limited wireless sensor networks, connectivity based localization with full power transmission can be inefficient in terms of energy consumption. In this work, I propose a distributed power control based connectivity reconstruction game, which takes into considerations of both energy efficiency and the quality of localization. The proposed scheme results in a better performance with an improved 61.9% reduction in energy consumption while maintaining the performance of localization at a level similar to the conventional algorithm with full power transmission. 2) Inter-cell interference coordination (ICIC) is a promising technique to improve the performance of frequency-domain packet scheduling (FDPS) in downlink LTE/LTEA networks. However, it is difficult to maximize the performance of FDPS using static ICIC schemes because of insufficient consideration of signal-to-interference-and-noise ratio (SINR) distribution and user fairness. On the other hand, dynamic ICIC schemes based on channel state information (CSI) also have difficulty presented in the excessive signaling overhead and X2 interface latency. In order to overcome these drawbacks, I introduce a new concept of ICIC problem based on geometric network information (GNI) and propose an ASCG as a decentralized solution of the GNI based ICIC problem. Furthermore, I develop an ASCG with a dominant strategy space noted as ASCGD to secure a stable solution through proving the existence of Nash equilibrium (NE). The proposed scheme provides better performance in terms of system throughput gain of up to about 44.1%, and especially of up to about 221% for the worst 10% users than static ICIC schemes. Moreover, the performance of the CSI based ICIC, which require too much computational load and signaling overhead, is only 13.0% and 5.6% higher than that of ASCG-D regarding the total user throughput and the worst 10% user throughput, respectively. The most interesting outcome is that the signaling overhead of ASCG-D is 1/144 of dynamic ICIC schemes one. 3) In this work, I introduce the new concept of temporal diversity utilization based on asymmetric transmission to minimize network interference in wireless ad-hoc networks with a two-hop half-duplex relaying (HDR) protocol. Asymmetric transmission is an interference-aware backoff technique, in which each communication session (source-relay-destination link) adaptively chooses a certain subset of spectrallyorthogonal data streaming which should be delayed by the duration of one time-slot (i.e., half of one subframe). I design the problem in the HDR scenario by applying the concept of asymmetric transmission, and evaluate the game-theoretical algorithm, called ATG, to derive the suboptimal solution. I show that ATG is an exact potential game, and derive its convergence and optimality properties. Furthermore, I develop an approximated version of ATG (termed A-ATG) in order to reduce signaling and computational complexity. Numerical results verify that two algorithms proposed showsignificant synergistic effects when collaborating with the conventional methods in terms of interference coordination. Ultimately, the energy consumption to satisfy the rate requirement is reduced by up to 17:4% compared to the conventional schemes alone.1 INTRODUCTION 1 1.1 Application of Supermodular Game for Connectivity Relaxation in Wireless Localization 2 1.2 Application of Exact Potential Game for Effective Inter-Cell Interference Coordination in Wireless Cellular Networks 3 1.3 Application of Exact Potential Game for Interference Minimization in Wireless Ad-hoc Relay Networks 7 1.4 Dissertation Outline 11 2 APPLICATION OF SUPERMODULAR GAME: Distributed Power Control based Connectivity Reconstruction Game inWireless Localization 13 2.1 Brief Introduction 13 2.2 System Model 13 2.3 Proposed Power Control Algorithm 14 2.3.1 Reliability Function 14 2.3.2 Game Formulation 15 2.3.3 Convergence Properties of CRG 17 2.4 Simulation Results 20 3 APPLICATION OF EXACT POTENTIAL GAME: Adaptive Sector Coloring Game for Geometric Network Information based Inter-Cell Interference Coordination in Wireless Cellular Networks 24 3.1 Brief Introduction 24 3.2 Network Model 26 3.2.1 System Preliminaries 26 3.2.2 Determination of Time Policy 27 3.2.3 Two-Stage Framework of RB Allocation 27 3.3 PROBLEM FORMULATION: Geometric Network Information based ICIC 28 3.3.1 Outline 28 3.3.2 What Is the GNI 28 3.3.3 Temporal Perspective: Why GNI 29 3.3.4 Spatial Perspective: How do I Design a Suitable Utility Function 29 3.3.5 GNI based ICIC Problem 33 3.4 ADAPTIVE SECTOR COLORING GAME 33 3.4.1 Design of ASCG 33 3.4.2 ASCG with a Dominant Strategy Space 35 3.4.3 Summary of System Operation 40 3.5 PERFORMANCE EVALUATION 41 3.5.1 Simulation Settings and Baselines for Comparison 41 3.5.2 SINR Distribution and Average User Throughput 43 3.5.3 Signaling Overhead for ICIC and FDPS 47 3.5.4 Reduction of Feasible ASCG Strategy Space 49 4 APPLICATION OF EXACT POTENTIAL GAME: Asymmetric Transmission Game for Interference Coordination in Wireless Ad-hoc Relay Networks 51 4.1 Brief Introduction 51 4.2 Problem Formulation 52 4.2.1 System Preliminaries 52 4.2.2 The Concept of Asymmetric Transmission for Interference Coordination: A Simple Example 53 4.2.3 Optimization Problem 54 4.3 Asymmetric Transmission Game 55 4.3.1 Game Formulation 55 4.3.2 Convergence and Optimality Properties of Asymmetric Transmission Game 55 4.3.3 Approximated Version of Asymmetric Transmission Game . . 58 4.4 Simulation Results 61 4.4.1 Parameters Settings 61 4.4.2 Network Interference in One-shot Game 62 4.4.3 Individual Power Consumption in One-shot Game 66 4.4.4 Total Energy Consumption in 1000-shot Games 70 4.4.5 Complexity Analysis for Varying K and M 71 5 CONCLUSION 74 Appendix A Derivation of number of partitions for extracting the dominant feasible strategy set 76 Appendix B Derivation of the cardinal number of the dominant feasible strategy set 78 Appendix C Existence of NE in ASCG-D 79 Appendix D The Required Signaling overhead of ASCG-D 82 Bibliography 83 Abstract (In Korean) 93Docto

    Insights on Significant Implication on Research Approach for Enhancing 5G Network System

    Get PDF
    With the exponential growth of mobile users, there is a massive growth of data as well as novel services to support such data management. However, the existing 4G network is absolutely not meant for catering up such higher demands of bandwidth utilization as well as servicing massive users with similar Quality of service. Such problems are claimed to be effectively addressed by the adoption of 5G networking system. Although the characteristics of 5G networking are theoretically sound, still it is under the roof of the research. Therefore, this paper presents a discussion about the conventional approach as well as an approach using cognitive radio network towards addressing the frequently identified problems of energy, resource allocation, and spectral efficiency. The study collects the existing, recent researches in the domain of 5G communications from various publications. Different from existing review work, the paper also contributes towards identifying the core research findings as well as a significant research gap towards improving the communication in the 5G network system
    corecore