19,189 research outputs found

    An analysis of MRI derived cortical complexity in premature-born adults : regional patterns, risk factors, and potential significance

    Get PDF
    Premature birth bears an increased risk for aberrant brain development concerning its structure and function. Cortical complexity (CC) expresses the fractal dimension of the brain surface and changes during neurodevelopment. We hypothesized that CC is altered after premature birth and associated with long-term cognitive development. One-hundred-and-one very premature-born adults (gestational age <32 weeks and/or birth weight <1500 ​g) and 111 term-born adults were assessed by structural MRI and cognitive testing at 26 years of age. CC was measured based on MRI by vertex-wise estimation of fractal dimension. Cognitive performance was measured based on Griffiths-Mental-Development-Scale (at 20 months) and Wechsler-Adult-Intelligence-Scales (at 26 years). In premature-born adults, CC was decreased bilaterally in large lateral temporal and medial parietal clusters. Decreased CC was associated with lower gestational age and birth weight. Furthermore, decreased CC in the medial parietal cortices was linked with reduced full-scale IQ of premature-born adults and mediated the association between cognitive development at 20 months and IQ in adulthood. Results demonstrate that CC is reduced in very premature-born adults in temporoparietal cortices, mediating the impact of prematurity on impaired cognitive development. These data indicate functionally relevant long-term alterations in the brain’s basic geometry of cortical organization in prematurity

    Neuromorphometric characterization with shape functionals

    Full text link
    This work presents a procedure to extract morphological information from neuronal cells based on the variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial scales. The targeted shapes are alpha and beta cat retinal ganglion cells, which are characterized by different ranges of dendritic field diameter. Image functionals are expected to act as descriptors of the shape, gathering relevant geometric and topological features of the complex cell form. We present a comparative study of classification performance of additive shape descriptors, namely, Minkowski functionals, and the nonadditive multiscale fractal. We found that the proposed measures perform efficiently the task of identifying the two main classes alpha and beta based solely on scale invariant information, while also providing intraclass morphological assessment

    Assessment of check dams’ role in flood hazard mapping in a semi-arid environment

    Get PDF
    This study aimed to examine flood hazard zoning and assess the role of check dams as effective hydraulic structures in reducing flood hazards. To this end, factors associated with topographic, hydrologic and human characteristics were used to develop indices for flood mapping and assessment. These indices and their components were weighed for flood hazard zoning using two methods: (i) a multi-criterion decision-making model in fuzzy logic and (ii) entropy weight. After preparing the flood hazard map by using the above indices and methods, the characteristics of the change‐point were used to assess the role of the check dams in reducing flood risk. The method was used in the Ilanlu catchment, located in the northwest of Hamadan province, Iran, where it is prone to frequent flood events. The results showed that the area of ‘very low’, ‘low’ and ‘moderate’ flood hazard zones increased from about 2.2% to 7.3%, 8.6% to 19.6% and 22.7% to 31.2% after the construction of check dams, respectively. Moreover, the area of ‘high’ and ‘very high’ flood hazard zones decreased from 39.8% to 29.6%, and 26.7% to 12.2%, respectively

    Seeking for a fingerprint: analysis of point processes in actigraphy recording

    Get PDF
    Motor activity of humans displays complex temporal fluctuations which can be characterized by scale-invariant statistics, thus documenting that structure and fluctuations of such kinetics remain similar over a broad range of time scales. Former studies on humans regularly deprived of sleep or suffering from sleep disorders predicted change in the invariant scale parameters with respect to those representative for healthy subjects. In this study we investigate the signal patterns from actigraphy recordings by means of characteristic measures of fractional point processes. We analyse spontaneous locomotor activity of healthy individuals recorded during a week of regular sleep and a week of chronic partial sleep deprivation. Behavioural symptoms of lack of sleep can be evaluated by analysing statistics of duration times during active and resting states, and alteration of behavioural organization can be assessed by analysis of power laws detected in the event count distribution, distribution of waiting times between consecutive movements and detrended fluctuation analysis of recorded time series. We claim that among different measures characterizing complexity of the actigraphy recordings and their variations implied by chronic sleep distress, the exponents characterizing slopes of survival functions in resting states are the most effective biomarkers distinguishing between healthy and sleep-deprived groups.Comment: Communicated at UPON2015, 14-17 July 2015, Barcelona. 21 pages, 11 figures; updated: figures 4-7, text revised, expanded Sec. 1,3,

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased &#x22;breathiness&#x22;. Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.&#xd;&#xa;&#xd;&#xa;Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a &#x22;hoarseness&#x22; diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.&#xd;&#xa;&#xd;&#xa;Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.&#xd;&#xa;&#xd;&#xa;Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.&#xd;&#xa
    corecore