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ABSTRACT
This study aimed to examine flood hazard zoning and assess the
role of check dams as effective hydraulic structures in reducing
flood hazards. To this end, factors associated with topographic,
hydrologic and human characteristics were used to develop indi-
ces for flood mapping and assessment. These indices and their
components were weighed for flood hazard zoning using two
methods: (i) a multi-criterion decision-making model in fuzzy logic
and (ii) entropy weight. After preparing the flood hazard map by
using the above indices and methods, the characteristics of the
change-point were used to assess the role of the check dams in
reducing flood risk. The method was used in the Ilanlu catchment,
located in the northwest of Hamadan province, Iran, where it is
prone to frequent flood events. The results showed that the area
of ‘very low’, ‘low’ and ‘moderate’ flood hazard zones increased
from about 2.2% to 7.3%, 8.6% to 19.6% and 22.7% to 31.2% after
the construction of check dams, respectively. Moreover, the area
of ‘high’ and ‘very high’ flood hazard zones decreased from 39.8%
to 29.6%, and 26.7% to 12.2%, respectively.
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1. Introduction

As the most destructive natural disaster across the world, flood constitute about one-
third of the global geophysical hazards (Smith and Ward 1998; Novelo-Casanova and
Rodr�ıguez-Vangort 2016; Matheswaran et al. 2019). The floods have been taken into
account as the cause for loss of life and financial damage. However, this phenom-
enon can be managed and mitigated with a range of appropriate strategies (Gan
et al. 2018; Sepehri et al. 2018). Flood hazard mapping is not a measure on its own
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to reduce flood damages; rather, it should be combined with other corrective actions.
There are several interventions such as water supply, diversion and construction of
the check dam that can be made to change the hydrological behaviour of the catch-
ments, for example changes in the flow velocity, soil erosion and sedimentation
(Yazdi et al. 2018; Ildoromi et al. 2019). While these can have significant ecological
effects over time and across space, such changes cause the natural conjunction of
river ecosystems to undergo significant alterations. In fact, when the riverbed’s slope
is corrected by measures such as check dams, the flow depth and velocity in the
downstream of check dams can be altered, and the upstream slope of the check
dams approaches the limit gradient (Bombino et al. 2008; FitzHugh and Vogel 2011;
Zema et al. 2018). In recent decades, several studies have evaluated the effect of the
check dams on catchments hydrology and geomorphology. Applying the WaTEM/
SEDEM model and six land use scenarios, Boix-Fayos et al. (2008) investigated the
effect of the presence or absence of check dams on the sediment yield of the
Rogativa basin in Spain. The results pointed to 77% reduction in the sediment load
after the construction of check dams. Ma et al. (2014), using the SWAT model,
quantified the effects of climate change, vegetation and check dams on reduction of
suspended sediment yield of a catchment in southwestern China. The results showed
that 47.8% of sediment reduction was related to rehabilitated vegetation cover, 19.8%
to climate change and 26.1% and 6.3% to check dams, and simulation bias, respect-
ively. Roshani (2003) examined the effect of check dams on the peak flow of the
flood hydrograph of catchment. Their results revealed that the slope of sub-basins, as
the main parameter, contributes significantly to the performance of check dams.
Moreover, these researchers argued that in a catchment with 536 check dams, a 31%
decrease in the peak discharge may occur, which was related to changes in the con-
centration time in the sub-catchment. After simulating the river flow in the study
area using the HEC-HMS and HEC-RAS models, Shieh et al. (2007) simulated the
effect of check dams on the river process. Bombino (2009) examined the effect of
check dams on the shapes of the channel, sediment and vegetation in the upstream
region of Calabria in southern Italy. Mizuyama (2008) reported that check dams can
prevent debris flows by changing the stream bed gradient and successive small dams
can prevent cutting of channels and drainage networks. Sediment-filled check dams
create a layer of wedge-shaped sedimentary deposits that can be used for agricultural
purposes with a yield two to three times greater than that of terraced lands and 6–10
times greater than that of hill slopes. Including the impact of check dams on flood
hazard mapping, by considering several assessment indices, is required to develop
such maps for catchments with constructed check dams. However, the complex and
non-linear behaviour relationships between indices and flood risk is a challenge for
an accurate modelling approach. Various systematic methods such as the Analytic
Hierarchy Process (AHP) (Liu et al. 2008; Stefanidis and Stathis 2013; Chakraborty
and Joshi 2016), Set Pair Analysis (SPA) (Wu et al. 2012, 2019; Guo et al. 2014),
Imprecise Shannon’s Entropy (Sepehri et al. 2019b; Lotfi and Fallahnejad 2010) and
Fuzzy Comprehensive Evaluation (Lai et al. 2015; Ildoromi et al. 2019; Sepehri et al.
2019a) have been developed to overcome this complexity. Although these methods
have been widely used to analyze flood hazard as an efficient tool, they are associated
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with weaknesses and uncertainties due to their difficult complicated design
(Fern�andez and Lutz 2010).

In this article, we have applied the change-point approach to assess the role of
check dams in reducing flood hazard using two methods of the multi-criterion deci-
sion-making (MCDM) model within a fuzzy logic framework and entropy weight.

Nowadays, change-points are widely used approach in the analysis of data series in
hydrology and engineering studies. The change-points approach has been used in
hydrology to explore the impact of human activities for example land use changes,
the construction of check dams and climate to identify potential sudden changes over
time and space (Jeon et al. 2016; Militino et al. 2018; Zhou et al. 2018; Xie
et al. 2019).

Check dams are the principal soil- and water-conservation structures in the Ilanlo
catchment, with nearly 70% of the area controlled by them. The objective of this
research is to develop a methodology to assess the effect of check dams on flood haz-
ard zoning. This will help to develop accurate hazard maps, evaluate effect of
hydraulic structure.

2. Materials and methods

2.1. Study area

The Ilanlo catchment with an area of 17 km2 is located in the northwest of Hamadan
Province, Iran (Figure 1). Temperature data from the Asadabad meteorological

Figure 1. The location of the study area.
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station shows that the temperature varies between –15 �C and þ34 �C with February
and August, representing the coldest and hottest months of the year, respectively. On
the other hand, precipitation data from the same station shows that the average
annual rainfall is 313mm. In the last decade, the study area has witnessed several
severe floods that prompted the local authorities to construct check dams to reduce
flood-induced damages. However, regional studies show that a number of these check
dams have been destroyed, either partially or completely, due to the occurrence of
flood events (Ildoromi et al. 2019).

2.2. Methodology

This study was conducted drawing on the summaries and methodologies used in
Kalantari et al. (2014), Gigovi�c et al. (2017), Malekinezhad et al. (2017) and Hazarika
et al. (2018). Therefore, an index model was developed to identify flood-prone areas
with a regional focus in Geographic Information System (GIS) environment. The pro-
posed model performs the flood hazard index using multi-criteria analysis. In general,
the flood hazard index is to identify flood-prone regions and perform comparative
analyses on different catchments. Figure 2 shows the proposed method. Initially,
information from various databases was imported to ArcGIS 10.1. After primary data
analysis, the indices were then weighted using the fuzzy logic and entropy weight
methods, and a flood index map was prepared by combining the indices. In the next
step, similar properties to the change-point were used to assess the effect of the check
dams on the reduction of flood hazards (Figure 2).

Figure 2. Flowchart for preparing flood hazard mapping.
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2.3. Flood indices

Before performing flood susceptibility assessment, it is essential to first determine the
flood-conditioning factors (Elmahdy and Mostafa 2013; Chapi et al. 2017; Al-Juaidi et al.
2018; Sepehri et al. 2019b). An acceptable flood hazard map is highly dependent on the
quality of the spatial and temporal data, which need to be acquired from the case study.
Unfortunately, many case studies, particularly in developing countries, are ungauged or
poorly gauged (Sivapalan 2003). In some cases, the number of existing gauging stations
has decreased. On the other hand, the existence of multivariate and nonlinear relation-
ships between indices and risk levels is a major intrinsic challenge to flood hazard risk
assessment (Wagener et al. 2004; Razavi and Coulibaly 2012; Sepehri et al. 2019b).
Therefore, preparing a flood hazard map in these areas is a significant challenge. The first
step in this regard is to select appropriate indices (Wagener et al. 2004; Razavi and
Coulibaly 2012; Sepehri et al. 2019b). Flood risk variables vary from region to region
based on the specific features of each (Tehrany et al. 2019). An indicator that may be
important in flood studies in a region may not be important in another area (Kia et al.
2012). In this study, the flood index is derived from the combination of topographic (i.e.
slope, plan curvature and profile curvature), hydrologic (i.e. distance to discharge channel,
soil type and land use [STLU] and topographic wetness index [TWI]) and human indices
(i.e. erosion and check dam). These indices were selected based on the data of various
case studies with similar characteristics.

2.4. Fuzzy membership function

In an evaluation system, fuzzy sets are used to show the reliability level for further
assessment. The reliability levels in a fuzzy set are used to indicate the membership
of indices in obscure sets. Zadeh et al. (1996) introduced various membership func-
tions in order to graphically represent and simplify the measurement of performance
in a fuzzy set whose values vary from 0 to 1. In an evaluation system, the selection of
membership functions and determination of their parameters are based on the prior-
ities of decision makers in the field of study. Therefore, all effective indices related to
flood hazard studies are expected to have weights of almost similar values. In this
study, two common membership functions, that is linear and Gaussian, were used to
assign weights to effective indices. Equation (1) is used for indices that have a direct
or indirect relationship with the flood degree. Gaussian membership function was
solely used for assigning a weight to the fractal dimension as sub-index for distance
to the discharge channel index (Ildoromi et al. 2019; Sepehri et al. 2019a).

f x; a, bð Þ ¼
0, x � a
x�a
b�a

1, b � x

, a � x � b

8>><
>>:

9>>=
>>; (1)

f�1 x; a, bð Þ ¼ f x; b, að Þ ¼ 1�
1, x � a

x�a
b�a

0, b � x

, a � x � b
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>>:

9>>=
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f x;m, rð Þ ¼ exp
�ðx�mÞ2

2r2

� �
(3)

Where a represents the feet or the minimum linear vector and b specifies the peak
or maximum linear vector. In Gaussian function, m is the median of input data and
r2 is the variance.

2.5. Entropy

In an evaluation system, it is a necessity to define the weights of indices to measure
their effect on the target (Smithson 1989). When a high weight is assigned to an
index, it means that it has a great effect on the target and vice versa. In other words,
an index with low weight has a smaller effect on the target. The entropy concept can
be used to provide useful information about the distribution, uncertainty, disorder
and variation of the indices as well as to assign weights to indices (Singh 1997;
Kawachi et al. 2001; Lotfi and Fallahnejad 2010). The main criteria for the entropy
weight method are as follows:

i. In order to eliminate the dimension of the indices, it is a necessity to normalize
the indices by Eqs. (4) and (5). Equation (4) is used for indices that have a direct
relationship with flood hazard degree, otherwise, Eq. (5) will be used.

P xijð Þ ¼
xij�minfxijg

maxfxijg �minfxijg (4)

P xijð Þ ¼
maxfxijg�xij

maxfxijg �minfxijg (5)

Where Xij denotes the value of the ith index (i¼ 1, 2, 3… ., m) used for flood haz-
ard zoning and subscript j (j¼ 1, 2, 3… , n) is the number considered for the pur-
pose of this study, that is flood zoning.

i. To evaluate the problem with m indexes and n targets, the entropy value pi for
the ith index can be defined as follows:

HðXÞ ¼ �ðlog2mÞ�1:
Xn

j¼1
f ðxijÞlog2½f ðxijÞ� (6)

Where fij ¼ pijPm

i¼1
pij
(fij¼ 0, it is assumed that fij ln fij ¼ 0).

2.6. Final flood hazard map

A significant point to bear in mind in the index scoring method using fuzzy logic is
that the weight of each index is considered individually and independent of
other indices.
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However, in an evaluation system, assigning weights to indices relative to each
other is an important factor that can show the importance of indices relative to each
other. Therefore, the entropy weight method is used in this study to demonstrate the
importance of the indices relative to each other (Li et al. 2010; Zeng et al. 2010; Ge
et al. 2013). Combination of the entropy weight and fuzzy logic methods provides a
better and more effective flood hazard map than when each method is applied on its
own. The final flood hazard map for each point of the study area (pixels) is calculated
using a simple multiplication of two fuzzy maps and entropy weighting:

FH ¼ 1
n

Xn
j¼1

ðf ðx; a, bÞorf �1ðx; a, bÞ
 !Fuzzylogic

�HðXÞ (7)

Where H(X) is related to entropy and f ðx; a, bÞ or f�1ðx; a, bÞ is related to the
membership function of the indices. The phrase in parentheses is related to the final
fuzzy map.

3. Results and discussion

Floods are among the most serious threats in areas and countries where other natural
hazards hardly occur. Flood in the Ilanlu watershed is affected by the above-
mentioned indices. Indices are weighted based on the following methods:

As one of the most effective flood prevention measures, check dams play a vital role
in flood control (Yazdi et al. 2018; Abbasi et al. 2019). In the study area, a large number
of check dams had been constructed in a concentrated fashion around the drainage net-
works. Given the lack of data on the storage capacity of check dams, the height of the
check dams, which is directly related to their capacity, was used as an indicator for flood
resistance. Regarding the role of check dams in reducing flood hazard, Eq. (2), which is
the inverse of Eq. (1), was used to calculate the fuzzy scores. As shown in Figure 3, areas
without any check dams had the highest fuzzy score and vice versa. The entropy values
of this index are also in the range of 0–0.34. A challenging question in this regard is to
see whether the flood hazard map of the region will change in the absence of any check
dams. In this study, a similar property to the change-point was used to answer this ques-
tion. For flood hazard mapping, a fixed map with a value of 1, which refers to areas
without any check dams, was added to other indices before the construction of check
dams. In the next step, after the construction of check dams and given their diminishing
effect on flood hazards, a number smaller than 1 (depending on the height of the check
dams) was added to other indices where the change-point occurs (Figure 4). It should
be noted that the addition of a map with a constant value of 1, instead of the index map
for the presence of check dam, changes the weighted entropy values of indices.
Therefore, they are calculated relative to other indices.

Figure 4 shows an example of how the change-point is applied to assess the per-
formance of check dams in flood hazard zoning using fuzzy logic at the point of the
study area with the metric coordinates being X: 221,726.91 and Y: 3,925,699. The
pointed black and shaded histograms related to the initial fuzzy scoring are flooding
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indexes. The only difference between these two histograms is the check dam index.
Given the diminishing role of check dams in flood hazard zoning, the height value of
the check dam index is 3.5m in the desired point. The fuzzy membership degree of
this point is then calculated to be 0.65 using Eq. (2). In the absence of any check
dams in the area (i.e. the height of the check dam is 0), the membership degree of

Figure 4. The general outline of the change-point for assessing the effect of check dams on the
flood hazard map.

Figure 3. Fuzzy membership degree and entropy value of indices.
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this function (i.e. black spot histogram) at the point is equals to 1. The black and
blue lines also show the flooding change trend that is obtained using the average
fuzzy membership rates (the left-hand side of Eq. (2)) for the two scenarios (i.e. the
presence and absence of check dams).

The two black and blue linear charts merge until they are separated by the STLU
index point. In the next step, an index map for the presence and absence of check
dams, that is the flood hazard change trend, is added.

Soil erosion is one of the most important environmental issues in the world (Yin
and Li 2001). Soil erosion hazards involve damaging the aquatic and terrestrial envir-
onment by reducing nutrients, increasing runoff and affecting aquatic life (Langdale
and Shrader 1982; Pimentel and Burgess 2013; Quinteiro et al. 2017; Mamedov and
Levy 2019). Soil erosion is divided into two major groups of water and wind erosions.
Water erosion is classified into sub-categories of sheet and gully erosion (Morgan
and Rickson 2003). This deformation is accompanied by increased degradation and
reduced permeability. There are three types of erosion in the study area, including
sheet, rill and gully erosions. Sheet erosion, which is the first form of erosion, occurs
in upstream regions of the catchment and gradually changes to gully erosion as it
progresses to downstream regions. To assign fuzzy and entropy weights to these
forms of erosion, an initial score from 0 to 10 is first assigned to them (Table 1). It
should be noted that a 0 score refers to areas in which erosion has not occurred.
Therefore, in the fuzzy entropy weight method, Eq. (1) is used for measuring this
index, where the threshold value of the function is zero (the score of the area without
erosion) and the final threshold value is related to the gully erosion score (i.e. the
final threshold of land degradation). Accordingly, the fuzzy map related to erodability
ranges from about 0.625 to 1. The entropy of this index ranges from 0.33 to 0.46 and
0.33 to 0.47 in the presence and absence of check dams, respectively (Figure 3).

Plan curvature is the curvature of the imaginary line passing through a particular
pixel that can, under certain conditions, function as the drainage point of the hill-
slopes (Zaharia et al. 2017; Siahkamari et al. 2018; Costache 2019). Therefore, fuzzy
logic and Eq. (1) were used to assign a weight to this index, such that pixels with
high plan values would have a membership degree of about 1. The entropy of this
index is changed from 0 to 0.463 and 0 to 0.464 in the absence and the presence of
check dams, respectively (Figure 3).

Profile curvature, defined as the surface curvature in the maximum slope direction,
plays a major role in the surface flow discharge velocity. Ponding will occur in
regions with negative profile values, also referred to as convex regions (Zaharia et al.
2017; Siahkamari et al. 2018; Costache 2019). Therefore, in this study, Eq. (2) is used
in the profile shape index in a way that higher profile index values indicate less sig-
nificant flood hazards. Equations (5) and (6) were used for this index in the entropy
weight method in the range of 0–0.46 and 0–0.461 in the presence and absence of
check dams, respectively (Figure 3).

Table 1. Initial scoring of the erosion index (Ildoromi et al. 2019).
Erosion type Sheet erosion Rill erosion Gully erosion

Primary score 5 6 8
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The slope parameter, defined as the elevation gradient, plays an important role in
surface and sub-surface hydrological processed such as flow direction, water table
depth and flood hazard potential estimation of different regions in the study area
(Fern�andez and Lutz 2010; Kazakis et al. 2015; Siahkamari et al. 2018). Since low-
slope regions serve as ponding areas, the fuzzy scoring of this index is similar to the
profile shape, that is low-slope areas have higher fuzzy scores than those with steep
slopes. Using Eqs. (4) and (6), the entropy of this index ranges from 0 to 0.48 and 0
to 0.49 in the presence and absence of check dams, respectively (Figure 3).

Distance to discharge channel is an important concern in the occurrence of a flood
event (Fern�andez and Lutz 2010; Kazakis et al. 2015; Sepehri et al. 2017; Siahkamari
et al. 2018). In most flood hazard studies, this index is considered alone without any
internal weights. For example, there is no distinction between upstream and down-
stream drainage networks. However, downstream areas in the drainage networks play
a key role in flood hazards due to their low slope and great width and depth.
Accordingly, four sub-indices of the drainage network in slope, fractal dimension,
stream order and the impact angle of the drainage network were considered to deter-
mine the distance-from-river index. Weights were assigned to these sub-indices using
only fuzzy membership degree.

� In mathematics, fractal is used to describe irregularly shaped or complex natural
objects. In fact, fractal is defined as an object or quantity, which is almost technic-
ally self-similar in all scales. Mandelbrot (1982) showed that the computational
accuracy of the total length of the coastline of Greta Britain, calculated by L ¼ Nr,
is dependent on the length measurement scale (r) in the sense that by decreasing
the size of r, the number of measurement scales (N) and the computational accur-
acy of the total length (L) will increase. It should be noted that this linear equation
is suitable for unbranched objects such as individual rivers or coastlines.
Therefore, it is better to use the following equations for complex features such as
drainage networks:

N ¼ rd þ c (8)

d ¼ logðNÞ
logðrÞ (9)

In this article, the box counting method of Fractalyse 2.4.1 was applied to assess
the drainage network and determine its fractal dimension. This method is similar to
the environmental measurement method applied in the above example to calculate
the length of the British coastline. The authors of this study placed all the drainage
sub-catchments of the study area on a gridded plate of specific dimensions and then
proceeded to count the grids (N) in which the drainage network was located.
Similarly, the same procedure was repeated for other grids with different sizes (r). It
should go without saying that decreasing the grid size results in an increase in the
number of grids in which the drainage network is available. In the box counting
method, a linear equation is obtained by placing log (N) and log (r) on the y and x-
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axes, respectively, whose slope is equals to the fractal dimension. The fractal dimen-
sion ranges from 1 to 2, with 1 denoting features that are linear and non-branching.
The fractal dimension approaches 2 by branching the drainage network or other fea-
tures. Given the increase of flood hazard rate by increasing the fractal dimension val-
ues of the drainage network, Eq. (1) was used for fuzzy scoring of this sub-index
(Figure 5(a)) (Ildoromi et al. 2019).

� The impact angle of the drainage network lines is one of the sub-indices that can
contribute significantly to creating flood hazards, which was obtained using the
linear directional mean (LDM) function in ArcGIS 10.1 (Eq. 10).

LDM ¼ arctan

Xn

i¼1
siinhXn

i¼1
cosh

(10)

It is worth noting that in the fractal method, the impact angle of the drainage net-
work lines lies in the fractal dimension. Additionally, only the relationship between
fractal dimension and flood hazard is examined in flood hazard studies. Therefore,
the fractal dimension values vary for a line with a fixed length and different angles.
Regarding a line that is perpendicular to the horizontal or vertical axis of the plate,
the fractal dimension is at its lowest value. As a result, the fractal dimension increases
by changing the angle to 45�. However, this does not apply to flood hazard studies.
In order to estimate the sub-index of the impact angle of the drainage network, we
used the LDM equation. The entire study area was first classified into two main sub-

Figure 5. Weight values of the distance to the discharge channel: (a) Fractal dimension factor; (b)
impact angle of drainage network lines; (c) local channel slope and (d) Stream order.
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catchments according to the Digital Elevation Model (DEM) map. The main drainage
network route in each sub-catchment was then extracted using a DEM. Finally, a
map was prepared that corresponded to the impact angle of the drainage network
lines towards the north in the clockwise direction. This was done based on the route
and direction of the main drainage network and by determining the impact of sub-
catchment drainage network lines on the main drainage. This map was in the range
of 1.5–349�. The majority of the flooding sites are naturally drainage networks that
are discharged into the main drain with a 180� angle. Therefore, the fuzzy Gaussian
function was used to weigh this index (Figure 5(b)) (Ildoromi et al. 2019).

� The local channel slope is defined as a change in the upstream altitude and route
length (Kalantari et al. 2014). In this study, this sub-index was prepared using the
drainage network and slope maps. First, a 5-m buffer was placed around each
selected point (pixel) along drainage network lines. The average gradient per pixel
along the drainage network route and inside the buffer was then calculated.
Equation (2) was used to calculate the fuzzy scores of this sub-index (Figure 5(c))
(Ildoromi et al. 2019).

� Stream order, which classifies drainage networks in terms of ranks on the basis of
their direct relationship with sub-catchment dimensions, channel dimensions and
drainage network discharge, plays a key role in hydrodynamic characteristics of a
watershed. Given the upstream-to-downstream flow of water, the stream order
value increases. Therefore, Eq. (2) was used to assign weights to this sub-index
(Figure 5(d)) (Ildoromi et al. 2019).

Finally, giving the reduction of flood hazards by increasing the distance to the dis-
charge channel, Eq. (2) was used to assign fuzzy weights to this index. Using Eqs. (5)
and (6), the entropy of this index ranges from 0 to 0.47 and 0 to 0.49 in the presence
and absence of check dams, respectively (Figure 3).

Soil type and land use provides two main indices that influence the hydrological
response of watersheds such as permeability characteristics (Wang et al. 2007;
Skilodimou et al. 2019). In the study area, both indices had a low diversity, meaning
that the study area was limited to loam and clay loam soil textures. The loam soil tex-
ture in the study area was classified based on the hydrological status, which is deter-
mined considering the surface soil texture, soil depth, surface vegetation cover and
organic matter. This classification yields two groups: loam soil texture with the
hydrological status D and loam soil texture with the hydrologic status C. In the next
step, these two soil textures were divided into 10 different classes based on five classes
of slope variation calculated according to the Jenks Natural Breaks Classification
method (In this method, the classes are distinguished based on the natural gradient
of the data.). In the study area, land use was limited to rangelands and gardens.
Therefore, land use and soil texture indices cannot show the distribution of flood
hazard in the region accurately owing to the lack of proper spatial distribution. In
order to solve this problem, an initial scoring system was developed from 1 to 10
(from the lowest to the highest flood hazard impact). Next, a number from 0 to 10
was assigned to each index and sub-index based on their role and significance.
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Finally, land use and soil texture indices were integrated using the permutation law
to create a new map (i.e. STLU) (Table 2). Since large values of this map indicate
greater flood hazard impacts, Eq. (1) was used to assign fuzzy weights to this index.
Using Eqs. (4) and (6), the entropy of this index ranges from 0.04 to 0.46 and 0.04 to
0.48 in the absence and presence of check dams, respectively (Figure 3) (Ildoromi
et al. 2019).

The TWI is a marker of topographic effects on water saturation rate, which has a
strong direct correlation with flood degree (Eq. 11). Topographic wetness index val-
ues, which vary from 0 to 20, depending on such characteristics as landscape parame-
ters and the hydrological response of the area to heavy rainfall and ground-based
flow. Accordingly, Eq. (1) was used to assign fuzzy weights to this index. Using Eqs.
(4) and (6), the entropy of this index ranges from 0 to 0.43 and 0 to 0.44, in the
absence and presence of check dams, respectively (Figure 3) (Wang et al. 2015;
Sepehri et al. 2017; Tehrany et al. 2019).

WI ¼ ln
As

tanB

� �
(11)

Where WI is the wetness index; As is the local upslope contributing area (m2)
from the flow accumulation raster and B is the local slope angle (�).

3.1. Advantages and disadvantages of the adopted method

In an evaluation system, the MCDM model is generally employed to prioritize
options from the most to the least effective (Fern�andez and Lutz 2010). In this study,
the fuzzy logic and entropy weight method, which are widely used in solving mul-
tiple-criteria decision problems as well as in sustainability and natural hazard analy-
ses, were used for flood hazard zoning. One of the most important limitations in

Table 2. Initial scoring of the STLU indices (Ildoromi et al. 2019).

 Soil Type × Land Cover (STLU) = 

Soil type Loamy 
(Group C)

Loamy 
(Group D)

Clay 

Loam 

Primary 

Score 
1 2 3 

R
ec
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e 
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n 

na
tu

ra
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ea

k 
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et
ho

d 

0-6% 1 1 2 3 

6-14% 2 2 4 6 

14_22% 3 3 6 9 

22-34% 4 4 8 12 

34-67% 5 5 10 15 

Land 

 Cover 
Garden 

Range 

lands 

Primary  

Score 
3 6 

3 6 9 

6 12 18 

9 18 27 

12 24 36 

15 30 45 

6 12 18 

12 24 36 

18 36 54 

24 48 72 

30 60 90 
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multi-criteria decision methods involves the subject of uncertainty, which can lead to
major errors in the study objectives. According to Smithson (1989) and Sepehri et al.
(2019b), fuzzy logic and entropy weight are classified among objective methods for
weight assignment to indices that eliminate any uncertainty. This is contrary to the
subjective methods specified in the introduction (such as AHP and SPA), where
weights are solely determined according to the preference of decision makers. On the
other hand, the disadvantages of these methods lie in their disregard for the signifi-
cance of indices relative to each other and the target.

After assigning weights to indices using the fuzzy logic and entropy methods as
well as providing a preliminary flood hazard map of the study area in the presence
and absence of check dams, it is necessary to introduce a classification table of flood
hazard risks in five flood susceptibility categories of ‘very high’, ‘high’, ‘moderate’,
‘low’ and ‘very low’. In this study, the internal values of the classification table were
determined using the variation of flood hazard rates in the presence of check dams
according to the Jenks Natural Breaks Classification method. The boundary condi-
tions of this table, representing the maximum and minimum flood hazard, was deter-
mined using the maximum and minimum rates of the two initial flood hazard maps,
respectively (Mahmoud and Gan 2018).

Finally, Figure 6(a) shows a flood hazard classification map in the absence of check
dams. Approximately, 26.7% of the total study area is located in the ‘very high’,
39.7% in the ‘high’, 22.7% in the ‘moderate’, 8.6% in the ‘low’ and 2.2% in the ‘very
low’ hazard zones.

Figure 6. (a): Flood map classification in the absence of check dams and (b) flood map classifica-
tion in the presence of check dams.
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As shown in Figure 6(a), the high-risk areas are mainly located in the downstream
regions of the study area near drainage networks. In order to verify the accuracy of
the map, the check dams destroyed by flood events were adapted to the map. Out of
102 destroyed check dams shown in Figure 6(a), 43 and 40 dams were located in
very-high-risk and high-risk zones, respectively. Out of the remaining 19 destroyed
check dams, 15 were in moderate-risk and 4 in low-risk zones. Given that about
81.3% of the check dams were located in very-high-risk and high-risk zones, the flood
map can be argued to be adequately accurate.

The flood hazard classification map in the presence of check dams indicates that
12.2%, 29.6%, 31.2%, 19.6% and 7.3% of the total study area are located in very-high,
high, moderate, low and very-low hazard zones, respectively (Figure 6(b)).
Comparison of the results of the two flood hazard classification maps demonstrates
that the construction of check dams reduces the percentage of very-high to moderate
hazard zones in the absence of check dams, whereas the percentage of low and very-
low hazard zones increases.

4. Conclusion

Flood events, as devastating phenomena, may occur at any location. Flood control
with a series of appropriate management measures is a necessary step in disaster
management. Flood-susceptible areas should be identified to allow forecast and ana-
lysis for effective flood management measures in the future. In this study, the fuzzy
logic and entropy weight methods were used to assess flood hazards and determine
the role of check dams in flood risk zoning. Factors associated with topographic (i.e.
plan shape, profile shape and slope), hydrologic (i.e. distance to the discharge chan-
nel, STLU and TWI) and human (i.e. erosion and check dam) characteristics were
considered as flood-zoning assessment indices. In the next step, the change-point
characteristics were used to assess the role of check dams in reducing flood hazards.
The results showed that the area of ‘very low’, ‘low’ and ‘moderate’ flood hazard
zones increased from about 2.23% to 7.34%, 8.62% to 19.62% and 22.69% to 31.23%
after the construction of check dams, respectively. Moreover, the area of ‘high’ and
‘very high’ flood hazard zones decreased from 39.76% to 29.57%, and 26.69% to
12.24%, respectively. Although the results of this assessment are not quantitative, they
can be used as a useful tool to the advantage of decision makers to implement similar
measures.
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