48 research outputs found

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Computer-Aided Cancer Diagnosis and Grading via Sparse Directional Image Representations

    Get PDF
    Prostate cancer and breast cancer are the second cause of death among cancers in males and females, respectively. If not diagnosed, prostate and breast cancers can spread and metastasize to other organs and bones and make it impossible for treatment. Hence, early diagnosis of cancer is vital for patient survival. Histopathological evaluation of the tissue is used for cancer diagnosis. The tissue is taken during biopsies and stained using hematoxylin and eosin (H&E) stain. Then a pathologist looks for abnormal changes in the tissue to diagnose and grade the cancer. This process can be time-consuming and subjective. A reliable and repetitive automatic cancer diagnosis method can greatly reduce the time while producing more reliable results. The scope of this dissertation is developing computer vision and machine learning algorithms for automatic cancer diagnosis and grading methods with accuracy acceptable by the expert pathologists. Automatic image classification relies on feature representation methods. In this dissertation we developed methods utilizing sparse directional multiscale transforms - specifically shearlet transform - for medical image analysis. We particularly designed theses computer visions-based algorithms and methods to work with H&E images and MRI images. Traditional signal processing methods (e.g. Fourier transform, wavelet transform, etc.) are not suitable for detecting carcinoma cells due to their lack of directional sensitivity. However, shearlet transform has inherent directional sensitivity and multiscale framework that enables it to detect different edges in the tissue images. We developed techniques for extracting holistic and local texture features from the histological and MRI images using histogram and co-occurrence of shearlet coefficients, respectively. Then we combined these features with the color and morphological features using multiple kernel learning (MKL) algorithm and employed support vector machines (SVM) with MKL to classify the medical images. We further investigated the impact of deep neural networks in representing the medical images for cancer detection. The aforementioned engineered features have a few limitations. They lack generalizability due to being tailored to the specific texture and structure of the tissues. They are time-consuming and expensive and need prepossessing and sometimes it is difficult to extract discriminative features from the images. On the other hand, feature learning techniques use multiple processing layers and learn feature representations directly from the data. To address these issues, we have developed a deep neural network containing multiple layers of convolution, max-pooling, and fully connected layers, trained on the Red, Green, and Blue (RGB) images along with the magnitude and phase of shearlet coefficients. Then we developed a weighted decision fusion deep neural network that assigns weights on the output probabilities and update those weights via backpropagation. The final decision was a weighted sum of the decisions from the RGB, and the magnitude and the phase of shearlet networks. We used the trained networks for classification of benign and malignant H&E images and Gleason grading. Our experimental results show that our proposed methods based on feature engineering and feature learning outperform the state-of-the-art and are even near perfect (100%) for some databases in terms of classification accuracy, sensitivity, specificity, F1 score, and area under the curve (AUC) and hence are promising computer-based methods for cancer diagnosis and grading using images

    Leaf recognition for accurate plant classification.

    Get PDF
    Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Durban 2017.Plants are the most important living organisms on our planet because they are sources of energy and protect our planet against global warming. Botanists were the first scientist to design techniques for plant species recognition using leaves. Although many techniques for plant recognition using leaf images have been proposed in the literature, the precision and the quality of feature descriptors for shape, texture, and color remain the major challenges. This thesis investigates the precision of geometric shape features extraction and improved the determination of the Minimum Bounding Rectangle (MBR). The comparison of the proposed improved MBR determination method to Chaudhuri's method is performed using Mean Absolute Error (MAE) generated by each method on each edge point of the MBR. On the top left point of the determined MBR, Chaudhuri's method has the MAE value of 26.37 and the proposed method has the MAE value of 8.14. This thesis also investigates the use of the Convexity Measure of Polygons for the characterization of the degree of convexity of a given leaf shape. Promising results are obtained when using the Convexity Measure of Polygons combined with other geometric features to characterize leave images, and a classification rate of 92% was obtained with a Multilayer Perceptron Neural Network classifier. After observing the limitations of the Convexity Measure of Polygons, a new shape feature called Convexity Moments of Polygons is presented in this thesis. This new feature has the invariant properties of the Convexity Measure of Polygons, but is more precise because it uses more than one value to characterize the degree of convexity of a given shape. Promising results are obtained when using the Convexity Moments of Polygons combined with other geometric features to characterize the leaf images and a classification rate of 95% was obtained with the Multilayer Perceptron Neural Network classifier. Leaf boundaries carry valuable information that can be used to distinguish between plant species. In this thesis, a new boundary-based shape characterization method called Sinuosity Coefficients is proposed. This method has been used in many fields of science like Geography to describe rivers meandering. The Sinuosity Coefficients is scale and translation invariant. Promising results are obtained when using Sinuosity Coefficients combined with other geometric features to characterize the leaf images, a classification rate of 80% was obtained with the Multilayer Perceptron Neural Network classifier. Finally, this thesis implements a model for plant classification using leaf images, where an input leaf image is described using the Convexity Moments, the Sinuosity Coefficients and the geometric features to generate a feature vector for the recognition of plant species using a Radial Basis Neural Network. With the model designed and implemented the overall classification rate of 97% was obtained

    Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends

    Get PDF
    Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given
    corecore