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ABSTRACT

Plants are the most important living organisms on our planet because they are
sources of energy and protect our planet against global warming. Botanists were
the first scientist to design techniques for plant species recognition using leaves. Al-
though many techniques for plant recognition using leaf images have been proposed
in the literature, the precision and the quality of feature descriptors for shape, tex-
ture, and color remain the major challenges. This thesis investigates the precision
of geometric shape features extraction and improved the determination of the Mini-
mum Bounding Rectangle (MBR). The comparison of the proposed improved MBR
determination method to Chaudhuri’s method is performed using Mean Absolute
Error (MAE) generated by each method on each edge point of the MBR. On the
top left point of the determined MBR, Chaudhuri’s method has the MAE value of
26.37 and the proposed method has the MAE value of 8.14.

This thesis also investigates the use of the Convexity Measure of Polygons for the
characterization of the degree of convexity of a given leaf shape. Promising results
are obtained when using the Convexity Measure of Polygons combined with other
geometric features to characterize leave images, and a classification rate of 92% was
obtained with a Multilayer Perceptron Neural Network classifier. After observing
the limitations of the Convexity Measure of Polygons, a new shape feature called
Convexity Moments of Polygons is presented in this thesis. This new feature has
the invariant properties of the Convexity Measure of Polygons, but is more precise
because it uses more than one value to characterize the degree of convexity of a
given shape. Promising results are obtained when using the Convexity Moments
of Polygons combined with other geometric features to characterize the leaf images
and a classification rate of 95% was obtained with the Multilayer Perceptron Neural
Network classifier.

Leaf boundaries carry valuable information that can be used to distinguish be-
tween plant species. In this thesis, a new boundary-based shape characterization
method called Sinuosity Coefficients is proposed. This method has been used in
many fields of science like Geography to describe rivers meandering. The Sinuosity
Coefficients is scale and translation invariant. Promising results are obtained when
using Sinuosity Coefficients combined with other geometric features to character-
ize the leaf images, a classification rate of 80% was obtained with the Multilayer
Perceptron Neural Network classifier.

Finally, this thesis implements a model for plant classification using leaf images,
where an input leaf image is described using the Convexity Moments, the Sinuosity
Coefficients and the geometric features to generate a feature vector for the recogni-
tion of plant species using a Radial Basis Neural Network. With the model designed
and implemented the overall classification rate of 97% was obtained.
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Chapter 1

General Introduction

1.1 Introduction

The use of image processing in the process of plant recognition has become a very
important research topic in recent years [28] because of the variety of plant species,
the availability of many leaf image databases and the advance in computational
power. In order to help scientists and non-scientist to easily recognize a given plant
species, new tools and processes need to be designed.

The value of a system for the recognition of plant species can greatly be increased
if it helps to precisely identify a given plant species. The main purpose of a system
for plant species recognition using leaf image is to narrow down the possible plant
species and improve the recognition process, using information such as shape, color
and texture.

In a typical plant recognition system using leaf images, the user has a leaf im-
age as input, that he or she is interested in and wants to find the associated plant
species. Possible application areas of plant classification include environmental pro-
tection, farming, medical science, remote sensing, geographic information system,
education and museum catalogues. There are already some systems that facilitate
plant recognition using leaf images [69].

Conventional shape descriptors are proving to be incapable of capturing certain
variations on the leaf shape, especially if each shape descriptor produces a single
value. It is demonstrated that leaves with different shape can produce the same
shape feature; this explains the necessity to combine many shape features to char-
acterize a given leaf image. To overcome the problems posed by single value, shape
descriptors, features such as the 7 invariants moments, designed by Hu, are used
to characterize a given leaf shape [56].

Leaf teeth patterns have been investigated by very few authors. It is claimed
that there is no algorithm able to accurately characterize teeth pattern on a plant
leaf [28]. The design of new shape descriptors emerged as an alternative research
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area to address the problem of leaf shape characterization [63]. Features such as
Convexity Measure of Polygons [136] are also used to characterize a shape, but they
are found to be efficient when combined with other shape features.

In the general framework for plant classification using leaf images, first a noise
removal algorithm is applied to the leaf image, followed by the binarization, then
the edge detection algorithm is applied to the binary image to extract the boundary
and finally, the feature extraction is applied to the boundary. After the features
of the leaf image are extracted, the classification is performed using the extracted
features for the recognition.

1.2 Motivation

More than 300000 plant species have been identified and grouped using the system-
atic plant classification designed by Linnaeus [76]. Even for a trained botanist, it is
very difficult to apply the classification model of Linnaeus, because of the number
of rules and the fact that these rules require strong observation capabilities from the
botanists. Image processing techniques are introduced to facilitate the recognition
process of plant species, by automating the analysis of plant parts such as leaves
and stem, to improve the recognition rate and time respectively [69].

Therefore, an appropriate system with features extraction and the classification
algorithms is required. The features combined for the description of a given leaf
image should be simple enough so that it can be easily computed and applicable to
different types of leaf images. In order to reliably identify a given plant, botanists
need a fast and accurate method for the characterization of leaf images.

1.3 Problem Statement

Plant recognition using leaf images has been a challenging problem due to the wide
variety of plant species and the limitation of the leaf image 2D used to represent
a plant leaf which is a 3D structure by nature [28]. Although existing methods
have made progress in the field, the recognition of plant species using leaf images
remains an ongoing research topic as there is a need for further improvement.

Plant recognition using leaf images is roughly organized into the following cat-
egories, based on the processing order.

• Shape.

• Veins extraction and characterization

• Margin analysis

• Texture feature

2



• Other surface-based methods

• Classifiers

During the process of leaf recognition, feature extraction has received the highest
attention among all other steps used in the recognition process. Early works on
leaf recognition focused on using low-level features like shape, color and texture,
to characterize leaf images. A histogram of RGB values [130] or values of other
color models such as color moments [87], co-occurrence of color [121] and invariant
color model [109] are the techniques used to extract color features from a given leaf
image. Even though color is very important in visual perception, it cannot always
be used to recognize leaf images because leaf color changes during the seasons, as
shown in Figure 1.1, where the fresh and the dry version of the same leaf presents
different colors.

Figure 1.1. Dry and fresh leaves

In computer vision, texture was proved to be very useful to solve many prob-
lems, like remote sensing and inspection. Because of that, it became an obvious
choice for the design of a system for plant recognition using leaf images. The appli-
cations of texture to analyzed leaf images include, Gabor Filter [77], Low’s texture
energy maps [40] and wavelet coefficients [79]. As a color feature, texture features
have problems in finding similarities between leaf images, mostly because of the
windowing approach used to extract texture features.

The most popular approaches for leave images, characterization are the shape
features. But image segmentation is a very difficult problem, especially if the input
image has a complicated background [122]. That complexity makes it difficult to
accurately compute shape features. Some applications of leaf characterization using
shape include, Elliptic Fourier Descriptors (EFD), contour signature, landmark and
linear measurements, shape features, polygon fitting and fractal dimension.

The application of EFD to leaf shape analysis is based on the analysis of shape
on the frequency domain. The EFD harmonic numbers and the coefficients are
used to generate the shape features [52, 68, 127].

3



Contour signature is based on the analysis of the sequence of points representing
the leaf shape boundary. The Centroid Contour Distance (CCD) [82, 125] is an
example of contour signature techniques used for a leaf shape analysis.

The main issue when recognizing plant species using leaf images is the differ-
entiation of plant species that look alike. Landmark and linear measurements are
used to differentiate the leaves of plant species that look alike. Landmark features
are presented in [28].

Shape features, such as Rectangularity, Circularity and Aspect Ratio are very
similar to linear features and are used to represent a given shape using a single
value. Polygon Fitting and Fractal dimension are real numbers used to quantify the
dimensionality of a given shape, and can be used as input to a classifier. Minkowski-
Bouligan multi-scale is the method used in [8, 16, 81] to generate fractal dimension
features for a leaf shape analysis. Polygonal representation was applied in [35, 58]
using a series of superimposed triangles for the classification.

Veins are the leaf vessels which transport nutrients, water and minerals. Botanists
found that the pattern of veins on a given leaf are unique and can be used to differ-
entiate plant species. Vein analysis was used in [28, 86] to recognize plant species.
The issue with vein analysis is the segmentation process required to magnify the
vein on a given leaf; this process sometimes requires a chemical treatment.

Leaf margins are very useful for botanists because they can use them to recognize
a given plant and to have an idea of the plant environment. In [38, 105, 108] authors
performed the analysis of teeth and tooth pattern to recognize leaf images.

Leaf hair, surface gland and stomata are some of the surface-based features of
a plant leaf that can be used to recognize a given plant species. The 3D nature of
some of these features makes it difficult to use them. Authors in [25, 80, 113] use
a method such as quantitative hair analysis to characterize a given plant leaf.

The last phase in the recognition process is the classification. In this phase, a
given leaf based on the input feature is assigned to the corresponding group based
on the input feature. In [36, 51, 129] authors designed new classification techniques,
such as the Moving Media Center hypersphere (MMC) to improve the recognition
of plant leaves.

1.4 Thesis Objectives

This research aims to propose an accurate plant recognition model using leaf images
by accurately characterizing a given leaf shape. The specific objectives of this
research are:

1. To introduce new shape features to accurately describe a given leaf shape and
compare them with other shape features.

2. To design new features for the characterization of the leaf boundary.
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3. To design an accurate and time efficient model for plant classification using
leaf images.

1.5 Thesis Contributions

The major contributions of this thesis include:

1. An improvement of Chaudhuri method for the determination of the Minimum
Bounding Rectangle (MBR), by using a construction based technique for the
determination of the rectangle corner points. The proposed improvement,
reduce significantly the error inccured when using Chaudhuri method for the
determination of the MBR.

2. The design of a boundary based shape characterizer: the Sinuosity Coeffi-
cients. The Sinuosity Coefficients are used to evaluate the degree of mean-
dering of a given shape, they are obtained by dividing the shape into sections
and evaluating the degree of meandering of each section. The sinuosity Co-
efficients is a set of values representing the degree of meandering of a given
leaf shape.

3. Investigate the application of the Convexity Measure of polygons for the char-
acterization of a leaf shape. The main limitation of the Convexity Measure
of Polygons is the fact that it uses a single value to characterize a given
shape. To address the limitation of the Convexity Measure of Polygons the
Convexity Moments of Polygons were designed by considering all the values
generated during the determination of the Convexity Measure of Polygon and
calculating new values such as the Mean, Min, Standard deviation, Mode to
represent the degree of convexity of a given shape.

4. The design of an accurate model for plant classification using leaf images,
based on the combination of Geometric features, Convexity Moments of Poly-
gons, Sinuosity Coefficients and the RBF classifier. Each component of the
model was selected based on their capability, accuracy and robustness when
characterizing and recognizing input leaf images.

1.6 Thesis Outline

Chapter 2 presents a review of the state of plant classification using leaf images,
other approaches used to analyze and represent plant leaves, a review of classifiers
used for the recognition of plant species. In Chapter 3, the preprocessing and shape
descriptor methods are presented, they all grouped as background for the study.
In Chapter 4, the comparison of the MBR determination algorithms is performed.
Chapter 5 presents the Convexity Measure of Polygons and the Convexity Moments
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of Polygons, when applied to leaf characterization. The Sinuosity Coefficients are
presented in Chapter 6, Chapter 7 presents the experimental results and discussion
of this study. Chapter 8 draws the conclusion and outline the future works of this
study.
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Chapter 2

Literature Review

2.1 Introduction

For more than a decade, the use of leaf images to recognize plant species has
been explored in image processing. Each author performing plants classification
research using leaf images, focused their work on two main streams. The first
of these streams is the leaf analysis approach in which the authors are designing
or combining lower level features, such as shape, texture or color descriptors to
recognize leaf images. The second stream is based on the improvement of an existing
classifier or the design of a new classifier to recognize leaf images. Based on these
observations a taxonomy of the contributions in the field of plants classification is
proposed in Figure 2.1.

Figure 2.1. Overview of the literature on leaf classification

2.2 Leaf Analysis Methods

In plant morphometric research there are many aspects of plant structure and ap-
pearance, such as leaf shape, texture and vein structure, that are used to recognize
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a given plant [28]. Leaf shape, texture, vein structure and leaf margin are of great
importance to discriminate between plant species. In the literature, leaf shape
received more attention than any other characteristics when using image process-
ing techniques for the recognition process. The characterization and extraction of
these characters from the plant leaf is another larger and more complex system that
comes with his challenges.

2.2.1 Shape descriptors

There are many reasons why leaf shape is used for the recognition of plant species.
The discriminative power of the shape, as presented by [134] is one of the main
reasons why it is popular in the field of leaf recognition. It is possible to find leaves
from the same plant with different details, as shown in Figure 2.2, but when the
species are different, the shapes are often also different, as presented in Figure 2.3.
This property is used by botanists to recognize plant species. Leaf shape is the

Figure 2.2. Sample of leaf images from a single Quersus Nigra [28]

characteristic that non-experts mostly use to recognize plant species compared to
the margin and vein structure. Shape characteristics are easy to extract, especially
if the considered leaf image has a uniform background. The availability of well-
known shape descriptors is another reason why shape features are so popular in
the leaf recognition process. Many botanists are familiar with the shape features
used in image processing. Figure 2.4, below, describes some features of a leaf, using
botanical terms.

The age and diseases are some of the causes of irregular variations observed in
leaf shape, but the general structure of the leaf remains unchanged. Leaf recognition
using color can be affected by their age because most leaves turn brown with age.

Elliptic Fourier Descriptors

Khul et al., [68] states that Elliptic Fourier Descriptors (EFD) are the most popular
shape descriptors used for leaf image recognition. With EFD, leaf shape is analyzed
in the frequency domain, rather than the spatial domain.The leaf image outline
is described using a set of Fourier harmonics; only 4 coefficients will be used to
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Figure 2.3. Sample of leaf shapes [28]

describe each harmonic. The Fourier descriptors are formed by a set of coefficients.
The quality of EFD depends on the number of harmonics, the higher the number
of harmonics, the better the description will be. It is demonstrated in [52] that 10
Fourier harmonics are necessary to accurately discriminate between plant species,
but it requires the use of Principal Component Analysis (PCA) to reduce the size of
the feature vector, and hence improve the recognition rate. White et al., [127] were
the first authors to use the EFD and they demonstrated that it outperforms the
landmark approach and that the EFD are rotation translation and scale-invariant.
The main advantage of EFD is the possibility to reconstruct the shape using the
descriptors, as shown in Figure 2.5.

A comparison of EFD with other shape descriptors was performed by MCLellan
et al., [81]. The capability of EFD to discriminate between plant species was also
proved. Additionally, the authors identified some key points on leaf shapes that
can be used to differentiate most leaves with regular lobes. EFD was found to be
equivalent to the methods (such as centroid radi) used for the comparison. The
combination of EFD with the simple shape analysis method designed by Goodal et
al., [47], was investigated by Hearn et al., [52] to recognize 2420 leaf images of 151
different species composing a database created by the authors. A recognition rate
of 72% was obtained. One of the successful applications of EFD to leaf classification
was designed by Du et al., [37]. They achieved a classification rate greater than
80% with the Radial Basis Probabilistic Neural Network (RBPNN). In recent years,
the application of EFD to plant classification, using leaf images, was performed by
Tomaszewski et al., [119], who used EFD to analyze the changes in shape between
dried and fresh leaves. The authors concluded that the change in shape is directional
and, during the recognition process of leaf images, shape features are better than
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Figure 2.4. Leaf parts [28]

texture and color features. N Liu et al., [77], N Ahmed et al., [3] are other recent
examples of applications of EFD to plant classification using leaf images. Ray et al.,
[102] extended the work on eigenshape analysis, which is a method closely related to
EFD, and applied it to leaf shape analysis. The proposed approach is based on the
use of recognizable landmarks to divide a given leaf boundary into segments. The
main issue with this method is the use of landmarks because it is almost impossible
to identify similar landmarks when leaf images are from different plant species.

Contour Signature

Many authors in [82, 84] used Contour Signature to characterize leaf shape. A
shape Contour Signature is a sequence of values calculated by using points taken
on a given shape, beginning at a reference point and tracing the outline either
clockwise or anti-clockwise direction.

The Centroid-Contour distance (CCD) is one of the simplest applications of the
contour signature [82]. In the CCD, the signature is represented by the sequence of
distances between the shape centroid and the points forming the shape. Another
example of CCD is the centroid angles and the sequence of tangents of a given
shape. EFD and CCD are used for the representation of shape as vectors which
satisfies the rotation, translation and scale invariant. The scale invariant is obtained
after normalization.

In an attempt to increase the recognition rate of leaf images using CCD, Meade
et al., [82] correlated the frequency of points on the shape with the curvature extend,
to identify a consistent starting point for CCD and avoid the signature alignment
before they could compare leaf shapes. Authors such as Wang et al., [124, 125],
applied a thinning-based method to the leaf shape.

A time-series shapelet method was used by Ye et al., [131] on CCD to recognize
leaf shapes using matching approaches. For the allowed time-series to be applied,
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Figure 2.5. Fourier description of a given leaf shape, when more harmonics are
used, the better the description [28]

local features need to be matched rather than compared to enable the time-series
analysis. The self-intersection is the major difficulty in the application of CCD
to shape analysis. Self-intersection is a region of the leaf where part of the leaf
overlaps with another part of the same leaf.

Mokhtarian et al., [84] proposed a solution to the issue of self-intersection on leaf
images. The proposed solution is based on the consideration that the darker regions
of the leaf image are the overlapping regions; they use these regions to extract the
overlap and use the Curvature Scale Space (CSS) to compare the regions. The
drawback of this method is the need for a specific type of illumination to make the
darker regions visible.

Landmark and linear measurements

Landmarks and linear measurement are also used to characterize plant leaves. Be-
tween related organisms there is a biologically defined point that can be used to
differentiate them; it is the landmark. A suitable set of landmarks to solve a specific
problem requires the knowledge of an expert in the specific domain of the problem.

Bookstein et al., [13] used local maxima or local minima as landmarks for the
characterization of a given shape. The organism shape will be characterized using
linear and angular measurement between landmarks.

Landmarks are easily understood by humans and have been applied success-
fully for the recognition of animal species. To differentiate between two closely
related species of Dioscorea, Haigh et al., [50] use leaves length combined with the
measurement of petiole and flower.
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Jensen et al., [61] use the angle and distances separating manually located leaf
edges. The variations were also studied using wrap deformation. Young et al.,
[132] use the landmark method for the analysis of the variation between plants
of the same species growing in different conditions. The authors’ experiment also
considered the images of plants at different ages to see which age provides better
accuracy.

Ling et al., [74] uses a closely related method of the landmark method known
as inerdistance for the recognition of leaf images. The inerdistance method looks
at the shortest routes between shape points without passing outside of the shape.

Because of the automatic detection of landmarks (leaf apex, leaf tips), error,
created during the construction of the leaf images database (irregularities in the
leaf structure) and the fact that, when a given leaf is asymmetric and the main vein
does not align with the shape’s primary axis, it is difficult to measure the length
of the leaf. These are the limitations of the landmark methods and are the reason
why landmark and linear measurement methods often involve manual interactions.

The inconsistency in available landmarks between different species, as shown in
Figure 2.3, is another major problem observed when using landmark methods. This
inconsistency is the reason why most studies using landmarks require the usage of
well-known landmarks.

Corney et al., [30] use landmarks such as leaf tips and petiole (it is the thin
stalk that connects the leaf blade to the stem) insertion points to design a system
for plant classification. In order to improve the recognition rate, they combined
the landmark features with other features, such as leaf area, length, perimeter and
blade length.

Phylogenetic reconstruction, using morphological data, nuclide acid or protein,
has been considered to be one of the most significant developments in comparative
biology in the past 30 years. The difference between these methods is the fact that
they use shared derived characters for the leaf recognition.

Shape features

Shape features are similar to linear measurements. They are used to analyze the
outline of a given shape. There are a wide variety of quantitative shape descriptors
that can be easily calculated and used to describe a given shape; including, Aspect
Ratio, Rectangularity, Circularity and Perimeter ratio, etc..., are some examples.
Pauwels et al., [95] uses specific features, such as ”lobedness measure” to quantify
the dimension of the lobe of a given shape and use it for the recognition process.
Other authors use more general shape descriptors, such as the Hu 7 invariant mo-
ments [56]. Hu 7 invariant moments are statistical descriptors of shapes; which are
rotation, translation and scale invariant. A detailed review of invariant moments
used for shape recognition is provided by Flusser et al., [41].

Lee et al., [72] show that region-based features, such as aspect ratio and com-
pactness, are more useful than boundary-based features because boundary-based
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features depend on the identification of meaningful landmark points. They found
out that using quantitative shape features as input for the nearest neighbor clas-
sifier produced better results than a contour-based features, on their selected data
set of 60 species.

Du et al., [36] designed a classifier named Moving Media Center Hypersphere to
classify leaf images, using quantitative shape features, and uses a series of hyper-
sphere for the classification. The authors achieved a classification of 78%. Wang
et al., [122] designed an improved version of this work and achieved a better clas-
sification rate. Wu et al., [128] combined shape features with an artificial neural
network to recognize 32 species of Chinese leaf images and compare the result with
other classifiers and found, it to outperform some of them.

Even with the promising results obtained with shape features, it is still difficult
to analyze leaf variations using them. The difficulty or the impossibility of re-
constructing shapes, using shape features, is the reason why understanding shapes
using shape features are difficult, even if some shape features are easy to under-
stand. The fact that there are many ways in which a given shape can be altered
without changing the values of its shape feature, is another limitation of shape
features.

Cope et al., [28] noticed that any attempt to describe leaf shapes using 5 -10
geometric shape features to describe a given leaf shape is not enough. McLellan
et al., [81] demonstrated that some shape features are highly correlated, which
contributes to making the task of selecting independent variable for the recognition
very difficult.

Polygon fitting and fractal dimension

A real number representing how complex a given shape fills the space to which
it belongs, is the fractal dimension. The fractal dimension is used to quantify
the dimensionality of a given shape and can be used as input to a classifier. The
Minkowski-Bouligand method is one of the popular methods used to define and
calculate an object’s fractal dimension. The popularity of this method is due to its
precision and the multi-scale version of the method.

Leaf identification using fractal dimension has been done by many researchers.
Combining of fractal dimension with other features was done by McLellan et al., [81]
to analyze leaf images. The Minkowski-Bouligan multi-scale produces feature points
and their position can be used for shape recognition, Plotze et al., [98] are among
the first authors to use this method for shape recognition. Backes et al., [8], used
the Minkowski-Bouligan multi-scale, but, in their case they compared it with the
Fourie descriptor of the considered shape. Bruno et al., [16] combined a Minkowski-
Bouligan multi-scale estimate of fractal dimension with linear discriminant analysis
to design a system for plant identification. One of the limitations of the fractal
dimension was found by McLellan et al., who show that, for any given shape its
fractal dimension is highly correlated with the perimeter to area ratio.
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Even with the classification rate of 100% obtained by Plotze et al., [98] on a
small dataset of 10 species of Passifora, the capabilities of fractal dimension to
explain shape variations remain limited. The wide variety of plant species, as
shown in Figure 2.3, is the reason why a single value of complexity cannot be used
to describe a given leaf. This suggests that fractal dimension can only be combined
with other features to characterize leaf shape.

The polygonal representation of leaves was used by Du et al., [35] to recognize
leaf shape. Im et al., [58] used a series of super-imposed triangles to describe the
leaf outlines, then performed the normalization and registration of those triangles
for the classification process. Im et al., [58] used this method to correctly classify
14 species of Japanese plants. However, the use of this method required the use of
some approximations which may limit the applicability of the method to general
shape analysis.

2.2.2 Vein extraction and characterization

After shape, veins are the next features used to recognize plant species. Veins are
the structures used by a given leaf to transport water, minerals and other important
plant substances. Researchers usually exploit the pattern of veins on the leaf to
recognize them. Leaf veins can be used to differentiate plant species because the
overall vein pattern remains almost the same within a given species. In order
to visualize leaf veins, it is sometimes necessary to use a high definition camera to
magnify them, but sometimes a given leaf needs to undergo a chemical treatment to
make the veins visible. Figure 2.6 describes the type of veins on a given leaf image.
Many techniques have been used for the extraction and the characterization of veins

Figure 2.6. Leaf veins structures [28]

with some promising results. Clarke et al., [27] compared two manual methods for
veins extraction: scalar space analysis and smooth edges detection. The results
obtained with their method showed some hopes for the automatic analysis when
vein structures are easily extracted. Cope et al., [29] identifies vein pixels by using a
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classifier improved by genetic algorithms. The proposed method was able to detect
the main and secondary veins, but the method is time consuming, depends on the
initial population. Li et al., [73] used Independent Component Analysis (ICA)
designed by Camon to extract leaf venation. The method was not better than a
simple edges detection when applied to a complete leaf image. Mullen et al., [86]
used artificial ant swarms to detect the venation and outlines on the leaf image
via an edges detection method. Works based on the combination of thresholding
and the neural network approach produced the best results for veins extraction.
Fu et al., [43] used that method to extract veins on a leaf image; however, it is
important to note that the images used by Fu were taken using a fluorescent light
to enhance the veins, which limit the use of the images. Furthermore, B-splines
method was used by Kirshgessner et al., [67]to extract the veins on the leaf image.
Morphological Laplacian operator and Fourier high pass filter were used by Plotze
et al., [98] to extract leaf venation. Most studies on leaf recognition, using leaf
veins, focused on the extraction and very few on the analysis. The pattern of end
points and branch points of veins were used by Park et al., [93] to characterize the
vein structures. Figure 2.7 presents some examples of veins structures. Nam et al.,
[90] applied a classification approach to a graphical representation of leaf veins to
characterize their structure.

Figure 2.7. Leaf venations types [28]

2.2.3 Margin analysis

The outer edges of the lamina often contain a pattern of teeth, which are small
serrated portions of the leaf that are distinct from the typically larger and smoother
lobes. Figure 2.8 presents some leaf margins. Leaf margins have been used by very
few authors to recognize leaf species, even though they are very useful features for
botanists. Royer et al., [106] claim that ”no computer algorithm can reliably detect
leaf teeth” as yet. The possible reason for this is the fact that not all plant species
have teeth, or it may be that they are damaged or missing parts before or after
specimen collection, or because it is difficult to automatically acquire and measure
teeth patterns.
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Figure 2.8. Leaf margins types [28]

For many species, teeth are a very important feature for recognition. Botanists,
use qualitative descriptors of tooth curvatures, as stated by Ellis et al., [38]. Royer
et al., [105] demonstrated that the size and number of teeth are useful climate
indicators and of growth patterns; they can also be used to understand prehistoric
climates. The process of leaf recognition using margins requires the leaf features
vector to contain margin features that are combined with other measurements.
Tooth length and width, taken manually and used alongside other leave features,
were used by Clark et al., [24, 25, 26] and Rumpunen et al., [108]. The superiority
of multilayer perceptron classifier over a computer generated taxonomic key for
identifying species using morphological traits, was demonstrated by Clark et al.,
[24]. The recognition of plant species using self-organized maps extracted from
similar morphological traits are described in [25].

McLellan et al., [81] considered adjacent angles and used the sum of angles
connecting them, and use them as features; the histogram of angles was used by
Wang et al., [125]. If the leaf is sufficiently undamaged, then leaf margin and teeth
number measurements are very useful features for species identification. Cope et
al., [28] stated that combining leaf margin features with vein features will produce
a better leaf recognition system because teeth usually have small vein patterns
running through them.

Cem et al., [65] proposed a new method for leaves boundary analysis based on
corner region extraction and analysis, then combined it with well-known features
extraction and classification to classify plant leaves. The proposed system achieved
a classification rate of 71% on leafsnap dataset.

Guillaume et al., [20] proposed a new technique based on the design of a sequence
to represent leaf margins, where the teeth are viewed as symbols of a multivariate
real values alphabet. The sequence obtained, is used to characterize the teeth
pattern of a given leaf image, but as any shape analysis techniques the quality of
the description depends on the boundary extraction (segmentation) algorithm.
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2.2.4 Texture features

Natural and traditional texture analysis techniques can be used to recognize plant
species. Multi-scale fractal dimension and deterministic tourist work for texture
analysis was used by Backes et al., [8] to recognize plant species. When Gabor
filter array was used by Casanova et al., [19] on a larger dataset to demonstrate the
ability of the filter, to analyze leaf texture by calculating the energy for the response
of each applied filter, they achieved some promising results. Wavelet transforms
and support vector machines were presented by Liu et al.,[77]. A classification rate
of 80% was achieved by Cope et al., [28], on a dataset of 32 species of Quersus using
the co-occurrence of a different scale of Gabor Filter. Other approaches for leaves
texture analysis include Grey-scale co-occurrence matrix and Fourier descriptors.

All the previous methods for leaves texture analysis were based on windowing
obtained through traditional techniques. An electronic microscope was used by
Ramos et al., citeramos to create leaf textural images and Backes et al., [8] used a
magnified cross section of leaf epidermis. The main limitation of these methods is
the difficulty to obtain them in larger scales. To provide a complete analysis of a
given leaf, it might be important to combine texture features to outline-based shape
analysis. To provide a complete analysis of a given leaf, it might be important to
combine texture features to outline-based shape analysis.

2.2.5 Other surface based methods

On the leaf surface there are other features that can be used to identify a given
plant species, such as leaf hair, surface gland and stomata. The 3D nature of these
features is the reason why it is difficult to use them for the design of an automated
system. Clark et al., [25] used quantitative hair descriptors in a self-organized
map to recognize plant species. The proposed feature was manually identified and
described, which made the automation almost impossible. Ma et al., [80] described
a 3D imaging and modelling method of leaf shaping based on volumetric information
to improve the understanding of a given leaf. The combination of many 2D images
of the same scene to extract a 3D representation, followed by the use of 2D and
3D images for the segmentation using normalized cut, was performed by Teng et
al., [117] to find leaf boundaries. Similarly, Song et al., [113] designed a system
where stereo images were analyzed using self-organized maps and stereo matching
to model a surface on which the dimension of a given plant leaf can be obtained. The
stomata, which are pores used to regulate gaseous and water exchanges of a given
plant, are located on the leaf surface. Research shows that the size and distribution
of stomata are closely related to CO2 and the climate. The review of data collected
on fossil leaves, performed by Royer et al., [107] shows that the density of stomata
on fossil leaves is inversely related to the local concentration of CO2 for a period
of time. Hetherington et al., [53] discusses the effect of environmental changes
and the impact on stomata morphology. A thorough botanical description and
manual measurement of leaf stomata of more than 300 species was performed by

17



Zarinkamar [133]. He then argued that these measurements can be used to recognize
plant species. Fernandez [39] used a mathematical method to analyze a digital
microscopic image. The authors analysis is based on measures such as correlation
and entropy to characterize the texture and patterns found on the digitized images.
Cope et al., [28] claim that combining the previous lamina features with other leaf
features will certainly improve the recognition rate.

2.3 Other approaches for leaf analysis

2.3.1 Symmetry

Symmetry can be found in man-made and natural environments [78]. The ability
to detect and use symmetry is innate to humans, but it is not easy to automate the
detection and the analysis of this useful insight. The symmetry of plant leaves has
been used by botanist for centuries during the process of plant recognition [75].

Computational Symmetry proposed by Liu [78], is one of the approaches used in
Computer Vision to formalized and used symmetry for object analysis. The follow-
ing points are the motivations behind the design of the Computational Symmetry.

• Symmetry can be found every where.

• Symmetry is intellectually stimulating.

• Symmetry can be useful or harmful.

• There are very few for the analysis of natural symmetry.

Liu [78], demonstrated using a series of applications that Computational Sym-
metry can be used in fields such as medical image analysis to detect brain cancer,
by generating a line of symmetry that separate the brain in two hemispheres and
compare both hemispheres to detect variations.

Milner et al., [83], proposed an application of the symmetry for plant recognition
by analyzing the symmetry of the leaf veins. Compared to Liu method this method
is based on the use of two values used to measure the symmetry level of the leaf
veins. The first value is LoA (Local Approach) this value represent the minimum
energy used to transform leaf veins into symmetric structure. The second value is
GoA (Global Approach) this value gives the amount of energy globally required to
transform the leaf veins into symmetric structures. Promising results were during
the classification of leaf images using the two measures, these results remain lower
than the one obtained with traditional approaches, but are better than the state
of the art of plant characterization using symmetric measures. In this study leaf
veins are not used for the recognition.
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2.3.2 Modeling

In Computer Vision recognizing natural objects remain a very difficult task. One
of the approaches used to solve the recognition problem is the use of modeling
techniques such as Fractals [54]. Fractals are considered as mathematical objects
representing a redundant patterns, they have been applied in many fields of science
such as Physics, Computer vision and Medical sciences. L-Systems (Lindenmayer
Systems) are formal grammars that can be interpreted as determining the move-
ments of a turtle drawing algorithm [110]. The L-system is an example of fractal
that have been used successfully to model and recognize natural plants and trees

Holliday et al., [54] used L-system fractals to model and recognized plants.
They started by using L-system to model an input plant, extract linear features
and general shape properties from the model and use them for the recognition.
Due to the lack of precision of the proposed model a more precise L-system was
proposed in [110].

Samal et al., [110], proposed a plant recognition system based on a stochastic
L-system. The proposed L-system is used to model natural plants and features
such as the length of the branch, the principal axis, the moment of inertia and
the symmetry are extracted from the model and used for the recognition. The
stochastic L-system has the advantage of being more precise than the context free
L-system used in [54].

The leaf model created by the L-system is not precise enough to be used for
the recognition of plant species. The L-system can be a very good tool for the
characterization of compound leaves, which remain a challenge when recognizing
plant with leaf images.

2.4 Classifiers

During the recognition process, classifiers such as KNN, MLP, RBF and Naive
Bayes, are used to associate an input leaf image described using shape, texture or
color features, to the corresponding plant species. In the literature neural network
(such as MLP) and distance-based classifiers (KNN) are used for the recognition
steps when leaf images are characterized using shape features. Improving the clas-
sifiers is the second direction used by the authors to increase plant recognition
rate.

A classifier based on the maximum likelihood approach and well suited for mixed
data types is the Logistic Classifier [5], the classification process with the Logistic
Classifier maximized the expression in equation (2.1) for a 2 classes problem.

max
Θ
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where:

qj(x; Θ) = is the posterior probability of wj given x.
Θ = a set of unknown parameters.

xji = the ith sample from wj.

K-NN and Parzen classifiers are the two well known non parametric decision
rules. They are similar in nature, but in practice provides different results [60].
Both classifiers are based on the computation of the distance between the patterns
in the training set and the test pattern. The two classifiers depending on the size
of the training set require a large amount of computation, which can be reduced
by using a Vector Quantitization technique to reduce the size of the training set
[44, 45].

A Bayes classifier is an example classifier based on the construction of decision
boundaries by optimizing error criterion such as MSE [60]. The goal of this type of
classifier is to minimize the error between the classifier output and the target value
[101].

The multilayer perceptron, is a neural network based classifier that provides
in addition to classifying an input pattern a confidence in the classification, this
confidence can be used to reject an input in case of doubt [60]. when it is time
to handling outlier the radial basis function is better than the sigmoid function.
Compare to a multilayer perceptron the radial basis neural network hidden neurons
are added until a predefined performance is obtained [60].

A decision tree is a special type of classifier [15, 23, 100], its training process is
based on an iterative selection of the most important features at each node. The
selection criteria of the feature and the creation of the tree is based on Fisher’s
criterion which are: the nodes purity and the information contain. The advantages
of a tree classifier are based on the speed and the ability to interpret the decision
in terms of individual rules [60].

The introduction of the support vector machines by Vapnik and other authors
is considered as one of the most interesting development to design classifiers [17].
With support vectors the optimization criterion is the margin width between class.
For a two classes problem derived by the support vector classifier is defined by the
decision function in equation(4.21).

D(x) =
∑
∀xi∈S

αiλiK(xi, x) + α0 (2.2)

where:

S = is the support vector set.
λi = the label of the object xi
αi > 0 = the parameter optimized during training.
K = is the kernel function (it can be a dot product).
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Table2.1 presents the most commonly used classifiers and some of their charac-
teristics.

Table 2.1. Description of the Common Classification methods [60]

Method Property Comments

Template matching
Assign patterns to the most similar

template.

The templates and the metric have to be

supplied by the user; the procedure may

include nonlinear normalizations; scale

(metric) dependent.

Nearest Mean Classifier
Assign patterns to the nearest class

mean.

Almost no training needed; fast testing

scale (metric) dependent

Subspace Method
Assign patterns to the nearest class

subspace.

Instead of normalizing on invariants, the

subspace of the invariants is used;

scale(metric) dependent.

1-Nearest Neighbor Rule
Assign a patterns to the class of the

nearest training pattern.

No training needed; robust performance;

slow testing; scale (metric) dependent.

k-Nearest Neighbor Rule

Assign patterns to the majority class

among k nearest neighbor using a

performance optimized value for k.

Asymptotically optimal; scale (metric)

dependent; slow testing

Bayes plug-in

Assign pattern to the class which has

the maximum estimated posterior

probability.

Yield simple classifiers(linear or qua-

dratic) for Gaussian distributions; sensi-

tive to density estimation errors.

Logistic Classifier
Maximum likelihood rule for logis-

tic (sigmoidal) posterior probabilities

Linear classifier; iterative procedure; opti-

mal for a family of different distributions

(Gaussian); suitable for a mixed data type

Parzen Classifier

Bayes plug-in rule for Parzen den-

sity estimates with performance

optimized kernel.

Asymptotically optimal; scale (metric)

dependent; slow testing.

Fisher Learner

Discriminant

Linear classifier using MSE

optimization

Simple and fast; similar to Bayes plug-in

for Gaussian distributions with identical

covariance matrices.

Binary decision tree
Find a set of threshold for a pat-

tern-dependent sequence of features

Iterative training procedure; overtraining

sensitive; needs pruning; fast testing.

Perceptron
Iterative optimization of a linear

classifier

Sensitive to training parameters; may

produce confidence values.

Multi-layer Perceptron

(Feed-Forwarrd Neural

Network)

Iterative MSE optimization of two

or more layers of perceptrons (neu-

rons) using sigmoid transfer func-

tions.

Sensitive to training parameters; slow

training; non linear classification function;

may produce confidence values; overtrain-

ing sensitive; needs regularization.

Radial Basis Network

Iterative MSE optimization of two

or more layers of perceptrons (neu-

rons) using sigmoid transfer functions

Sensitive to training parameters; nonlinear

classification function; may produce

confidence values; overtrain-ing sensitive;

needs regularization; maybe robust to outliers

Support Vector Classifier

Maximizes the margin between the

classes by selecting a minimum

number of support vectors.

Scale (metric) dependent; iterative; slow

training; nonlinear; overtraining sensitive;

good generalization performance.

The following classifiers have been designed and used for leaves classification.
Moving Media Center Hyperspheres (MMC), designed by Ji-Xiang et al., [36], uses
a series of hyperspheres to classify leaf images using geometric features. The clas-
sification process is based on the construction of a hypersphere representing each
leaf class. The center of each hypersphere is occupied by an element that is de-
termined by using the multi-dimensional median of the element contained in the
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class under consideration. Ji-Xiang et al., demonstrated that MMC is close to a
KNN classifier, but with the advantage that it can work with a smaller dataset and
obtain better results. The Convolutional Neural Network (CNN) is a feed-forward
neural network inspired from the animal visual cortex. CNN has been applied for
object recognition, video analysis and natural language recognition with promising
results.

In [129] CNN is used for plant classification using coloured leaf images, they
use the PReLU (Parametric Rectified linear unit) instead of ReLU(Rectified Linear
Unit) to construct the CNN. A classification rate of 94.5% was achieved. He et
al., [51] introduced the single connected layer (SCL) for the CNN construction
and demonstrated that the usage of SCL improves the classification rate. A direct,
acyclic, graph-based, multi-class, least squares, twin support vector machine (DAG-
MLSTSVM) was used by Tomar et al., [118] to recognize leaf images using shape
and texture features.

2.5 Conclusion

In this chapter, a review of methods for plant classification using leaf images was
presented. All the reviewed works can be organized using two main streams: the
leaf analysis stream and the classifier stream. The leaf analysis stream is based on
features such as shape, texture and color used to describe a given leaf image. The
extraction of these features is a delicate and difficult operation, because of challenges
such as noises on the input leaves image and the precision of the method used to
extract the features. Color and texture features are found to be difficult to use as
leaf images characterizers because when a given leaf is drying the color is changing
and the texture as well. In the literature, shape features are the most popular leaf
images characterizers because they can be used to characterize fresh and dry leaf
images of the same species. Even with the promising results obtained with the shape
features, they are sensitives to noises and the lack of precision of the extraction
process is another limitation because it can affect the overall recognition rate. Other
authors introduce leaf analysis techniques such as symmetry and modeling. The
symmetry analysis uses the leaf symmetric property to recognized plant species,
and the plant modeling provides a better understanding of plant structure and
can contribute to the recognition process. The classifier stream is based on the
improvement of the recognition process by improving or customizing pre-existing
classifiers or by designing new classifiers. The next chapter proposed a review of
shape features used for leaves image characterization.

22



Chapter 3

Background

3.1 Introduction

Many image databases have been created and made available online to be freely ac-
cessible. The necessity of developing effective tools to search, analyze and use those
images to solve real life problems is in demand. When describing images, shape fea-
tures are for many the most natural and simple features. However, describing and
representing shape is a very difficult task. Certainly because most real life objects
are naturally 3D and image databases contain 2D images, meaning the analysis of
images is made with one dimension lost. The loss of one dimension results in a par-
tial representation of the object. Noise, defect, distortion and occlusion are some
other issues affecting the shape features extraction process. The Shape features are
used to describe objects interior or boundary. Some of the commonly used shape
features belong to the following families: shape signature, shape invariant, shape
context, signature histogram, shape matrix and curvature. The common method
used to evaluate the effectiveness of shape features is based on how they allow the
retrieval of images with similar shape. Dengsheng et al., [134], state that, compar-
ing shape features based on how they allow the retrieval of similar images, is not
sufficient to evaluate the effectiveness of shape features because some important
characteristics of shape features can be left out.

A good shape-base recognition system requires a shape descriptor to have a
rotation, translation and scale invariant properties and be robust enough to pro-
vide an accurate description. A good shape descriptor should be able to provide a
description of any object. A lower computational cost is another very important
characteristic of a shape descriptor because a higher computation cost means max-
imum uncertainty which can affect the quality of the feature. This chapter presents
the image pre-processing operations and some of the shape descriptors used for the
characterization of objects.
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3.2 Image Pre-processing

The following section provides some details on all the pre-processing techniques
used during the experimentations.

3.2.1 Grayscale transformation

A grayscale representation of an image is used for features extraction in place
of color images because they offer the advantages of not being computationally
expensive and they produce images that are easy to manipulate. Color images
are maybe of limited benefit for many applications and can introduce unnecessary
information and increase the amount of training data necessary to achieve a good
performance [66].

Kanan et al., [66] demonstrated that a grayscale transformation has a consider-
able impact on the quality of a given object recognition system. They also demon-
strated that Luminace, a gray scale transformation method, produces grayscale
images that are adequate for many applications.

Luminance presented in [99] is based on human brightness perception using
a weighted combination of Red, Green and Blue (RGB) channels, as presented in
equation (3.1). Luminance is the grayscale representation method use in this thesis.

l = 0.2989 ∗R + 0.5870 ∗G+ 0.1140 ∗B (3.1)

All images in the dataset are transformed from a color image into a grayscale image.
In fact, converting the image into grayscale image will preserve the shape of the
leaf; thereby not impacting negatively on the end result.

3.2.2 Image thresholding

Thresholding is the simplest segmentation technique used to create a binary repre-
sentation of an input image, using equation (3.2).

f(x, y) =

{
0 if f(x, y) > T

255 if f(x, y) 6 T
(3.2)

The difficulty with using the thresholding method is determining the threshold (T )
which depends on the input image.

In this thesis, the following assumptions were made for the determination of the
threshold T .

• The input image is supposed to have two principal regions.

• If there is prior knowledge of the distribution of gray level values, it is possible
to minimize the pixel classification error.
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• The gray level values follow a Gaussian distribution for some special case
[114].

• The probability of a given pixel value is given by the following mixture:
P (z) = P (z | background)P (background) + P (z | object)P (object) or

P (z) = Pb
1√

2πσb
e
− (z−µb)

2

2σ2
b + Po

1√
2πσo

e
− (z−µo)2

2σ2o (3.3)

Where:
Pb(z) and Po(z) are the probability distribution of background and object.
µb, µo : the means of the distributions.
σb, σo: the standard deviations of the distributions
Pb, Po: the a-priori probabilities of background and object pixels.

The following steps can be used to determine T :

• Find the histogram h(z) of the input image to be binarized

• Assign values to the following parameters (µb, µo, σb, σo, Pb, Po) such that the
model P (z) = PbPb(z)+PoPo(z) fits h(z) minimizing Error = 1

N

∑N
i=1(P (zi)−

h(zi))
2

• Choose T based on the above formula.

3.2.3 Edges detection

For the edges detection purpose, Sobel operator is used, because it can detect edges
and their orientation [46]. A Sobel operator is obtained from the Prewit operator by
increasing the weight on the central coefficients. Haldo et al., [115] show that using
2 as a central value of the mask provides image smoothing. Sobel edges detection
is implemented using the masks in Figure 3.1. Sobel operators are better localizer

Figure 3.1. 3x3 Sobel masks

and less subject to the aliasing effect because of the Gaussian shape of [1 2 1]. The
Sobel filter is fast and robust.
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3.2.4 Thinning transform

To make sure the extracted image boundary is one pixel wide, a sequential thinning
by structuring element L obtained from the Golay alphabet, described in equation
(3.4), is applied to the extracted image boundary.

L1 =

0 0 0
∗ 1 ∗
1 1 1

L2 =

∗ 0 0
1 1 0
∗ 1 ∗

 ... (3.4)

3.3 Shape Description and Representation

All the techniques used to represent and describe shape can be organized in two
classes: region-based (or interior-based) method and contour-base (or boundary-
base) methods. The differences between these methods depends on the part of the
object from which the shape features are extracted. Each class is further divided
into structural and global method depending on whether the shape feature de-
scribes the object shape as a whole or as a combination of segments. The complete
organization of shape features is presented in Figure 3.2 as described in [134]; some
sections of the hierarchy will be discussed in the following sections.

Figure 3.2. Organization of shape description and representation techniques [134]

3.4 Contour-based Shape Description and Rep-

resentation Techniques

Structural and global modeling are the two approaches used to represent a given
shape. The continuous or global approach is used to describe the integral object
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shape, and does not divide the object shape into sub-parts. The values generated by
the global descriptors can be used to measure shape similarity [134]. The discrete or
structural approach divides the object shape into segments using a specific criterion.
Object shape can also be characterized using string or tree. When using string or
tree to represent a given shape, evaluating shape similarity is the same as evaluating
a graph similarity.

3.4.1 Global methods

A multi-dimensional features vector is usually generated from the shape boundary
using a global contour shape representation technique. The Euclidean distance (or
any other metric can be used) of two feature vectors characterizing two objects can
be used to evaluate the degree of similarity of the two objects. The next section
presents some global methods for shape characterization.

Simple shape descriptors

These are the common global feature descriptors such as, Circularity (equation
(3.5)), area, Eccentricity (equation (3.6)), major axis orientation, and bending en-
ergy are some of the common examples of global shape descriptor as presented in
[14].

Circularity =
Perimeter2

area
(3.5)

Eccentricity =
Length of the major axis

Length of the minor axis
(3.6)

The global shape features are mostly used as filters, because they can only
discriminate objects with larger shape differences. They are not suitable for stan-
dalone shape discrimination system. Figure 3.3 presents some figures with their
associated circularity and eccentricity. Figure 3.3 a and 3.3 b have the same cir-
cularity; in this case, the eccentricity is a better descriptor. Peura and Livarienen
[97] developed other simple descriptors, such as Convexity, Ratio of principal axis,
Circular variance and Elliptic variance.

Shape Signature

A one-dimensional function derived from a given shape boundary points is an ap-
proach known as shape signature. The Centroid distance, complex coordinates, tan-
gent angle, cumulative angle, curvature area and cord length, presented in [32, 135]
are some examples of shape signatures. To satisfy the translation and scale invariant
properties, shape signatures are usually normalized, but for the rotation invariant
property, some authors use shift matching which requires the identification of the
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Figure 3.3. Shape Eccentricity and Circularity

best match between two shapes [134]. The problem with the matching process is
the fact that it is computationally expensive, which makes it very difficult to use
for real time applications. Another problem associated with shape signature fea-
tures is its sensitivity to noise, which might cause some error during the recognition
process. Therefore, in order to use a shape signature for object recognition, some
additional processing operations, such as noise removal and thinning, are required
to increase the robustness of the extracted features. One of the solutions to the
rotation invariance of a shape signature descriptor is to convert the signature to a
histogram.

Boundary moments

A shape signature usually generates many values that are sometimes difficult to
analyze. The Boundary moments can be used to reduce the dimensionality of a
given shape boundary and improve the recognition time. Lets consider Z(i) a shape
signature, mr the rth moment, µr the central moment evaluates in equation (3.7),
as presented in [114].

mr =
1

N

N∑
i=1

[Z(i)]r and µr =
1

N

N∑
i=1

[Z(i)−m1]r (3.7)

Where N is the number of boundary points, mr and µr are generally normalized
to obtain m̄r and µ̄r which are rotation translation and scale invariant. The main
advantage of the boundary moments is the fact that they easy to implement; but
it remains difficult to link the values of the moments to the shape appearance.

Scale space method

The scale space method was introduced because of the noise sensitivity and bound-
ary variation problems observed when using other shape analysis methods. Object
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shape representation using a scale space method is done by tracking the position
of the shape inflexion points using low pass Gaussian filters of variable width. As
the width (σ) of the Gaussian filter increases the boundary of the generated edges
become smoother and significant inflexion are eliminated as presented in Figure
3.4. The main difficulty of the scale space method is the interpretation of the final

Figure 3.4. Object boundary as the value of the width (σ) increases [134]

result which is generally an interval tree. The interval tree obtained by the scale
space was first interpreted by Asada and Brady in [6]. The Gaussian filter and the
second derivative is used to generate the interval tree and the detection of the tree
branches from higher scales to lower scales is the base for the interpretation of the
interval tree. The variations are interpreted as corner, end, crank, bump/dent and
smooth join. Asada and Brady’s, interpretation method was extended by Mokhtar-
ian et al., [85] into shore lines interpretation, also known as curvature scale space
(CSS). Geodesic topology is another interpretation of the scale space interval tree
proposed by Daoudi et al., [31]. The classification of objects using this method is
based on the use of a geodesic distance measure.

3.4.2 Structural methods

Structural methods divide a given shape into small segments called primitives. In
the literature the common method used for the boundary decomposition is the
polygonal approximation, curve fitting and curvature decomposition [96]. The re-
sult of a structural method is represented as a string, as shown in equation (3.8).

S = s1, s1, ..., sn, (3.8)

Where si can be a length, a maximal curvature, a bending energy, an average
curvature or an orientation. The generated string S can be used as the input to a
given classifier. Chain code representation, polygon decomposition, smooth curve
decomposition, a scale space method, syntactic analysis and shape invariant are
some of the applications of structural methods for shape analysis.
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Polygon decomposition

Applied in [48, 49], shape boundary is divided into line segments by polygonal
approximation. The primitives are the polygon vertices. The features extracted
from each primitive is represented as four length strings which contain the distance
from each vertex, the interval angle and the x , y coordinates. These features are
not scaled, translation and rotation-invariant. The similarity between two shapes
described by this method is by using the editing distance of the two strings [134].

Smooth curve decomposition

This technique was developed by Berreti et al., [11], and is an extension of the
model presented in [48]. This extension is based on the description of a given shape
using a series of tokens generated from the curvature zero crossing points from
the Gaussian smoothed boundary. Each token generated for a given shape contains
features such as, maximum curvature and orientation. The weighted Euclidean
distance can be used to evaluate the similarity between two tokens. The presence
of the orientation in the token removes the rotation invariant property from the
feature property.

Scale space method

This method is based on a feature by feature matching followed by model matching,
as presented in [11, 48]. The curvature-turned smoothing techniques are used to
obtain the shape primitives. Each primitive will produce values such as segment
descriptors, composed of ordinal position, segment’s length and curvature-turned.
To describe a given shape, a string of segment descriptors is created for each shape,
as presented in equation 3.9.

A = (SA1 , S
A
2 , ..., S

A
N) (3.9)

Where N , is the number of boundary points. The main problem with this technique
is the fact that it is not scale-invariant.

Syntactic analysis

The phenomenon supporting the composition of a natural scene is equivalent to a
composition of a language, and is the base of syntactic analysis. The representation
of a shape as a set of predefined primitives is the goal of a syntactic method. The
syntactic analysis is based on a set of predefined primitives called codebook and
the actual primitives are the codewords. Equation (3.10) presents an example of
shape representation using syntactic analysis.

S = dbabcbabababababa (3.10)

The shape matching (recognition) is equivalent to the string matching problem.
The syntactic shape analysis is based on the theory of formal language.
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3.5 Region-based Shape Description and Repre-

sentation Techniques

The region-based techniques are based on all the pixels used to represent a given
object shape; not only the boundary pixels. Moment descriptors are the common
approach used in shape region descriptors. Grid Method, Convex hull, Shape matrix
and Medial axis are some of the common region-based methods. Region-based
methods can be divided into global and structural methods like the boundary-based
methods, depending on whether the considered shape can be divided in sub-parts
or not [134].

3.5.1 Global methods

The global methods within the region-based shape descriptors generates a numeric
features vector that describes a given object shape as a whole. To evaluate the
similarity between two object shapes, a metric distance can be applied to their
features vector. The following lines describe some region-based methods.

Geometric moment invariants

Hu in [57] was the first to publish a significant paper on the use of Moment invariants
for the analysis of two dimensional images in pattern recognition applications. His
approach, based on equation (3.11), is inspired by the works of Boole, Cayley and
Sylvester [134].

mpq =
∑
x

∑
y

xpyqf(x, y), p, q = 0, 1, 2, ..... (3.11)

Where x, y represents pixels coordinates, f(x, y) the pixel intensity at the coordi-
nates (x, y) and p, q are used to evaluate the moment order.

The geometric moments are obtained using the combination of lower order mo-
ments and based on the desired properties, such as rotation, translation and scale-
invariance. Many authors, such as Sonka et al., [114] have used the geometric
moments for objects recognition. The few invariant moments derived from the
lower order moments are not sufficient to describe a given shape. This represents
one of the main problems faced when using geometric moments, plus and the fact
that higher-order moments are difficult to derive. In [92] it was demonstrated that
geometric moments are suitable for the description of simple shapes.

Generic Fourier descriptor

Zhang et al., [134] developed the Generic Fourier descriptors (GFD) to overcome
the limitations of the Zernike moment descriptors, such as, the complexity of the
kernel and the necessity to normalize the shape into a unit disk. The fact that
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radial and circular features captured by the Zernike moments are not consistent.
The problems posed by Zernike moments can result in a significant loss of features
that are important for the shape description. Equation (3.12) is used to generate
the GFD of a given input 2D polar image.

PF2(ρ.φ) =
∑
r

∑
i

f(r, θi)exp[j2π(
r

R
ρ+

2π

T
φ)], (3.12)

Where 0 ≤ r < R and θi = i(2π
T

)(0 ≤ i < T ); 0 ≤ ρ < R, 0 ≤ φ < T The radial
frequency resolution and angular frequency resolution are represented as T and R
respectively. The GFD are the normalized coefficients. The advantage of GDF is
the fact they easy to compute, the features generated from them are pure spectral
features and they have better retrieval performance.

Elliptic Fourier Descriptors

The Fourier descriptor features used in this paper are derived from the coefficients
of the Fourier series approximating the boundary of the leaf image; the series is
described in Kuhl and Giardina [68]. The coefficients an, bn, cn, dn, are described as
follows:

an =
L

2n2π2

P∑
p=1

∆xp
∆lp

(Cos
2nπlp
L
− bnCos

2nπlp−1

L
) (3.13)

bn =
L

2n2π2

P∑
p=1

∆xp
∆lp

(Sin
2nπlp
L
− bnSin

2nπlp−1

L
) (3.14)

cn =
L

2n2π2

P∑
p=1

∆yp
∆lp

(Cos
2nπlp
L
− bnCos

2nπlp−1

L
) (3.15)

dn =
L

2n2π2

P∑
p=1

∆yp
∆lp

(Sin
2nπlp
L
− bnSin

2nπlp−1

L
) (3.16)

3.5.2 Structural methods

Region-based structural methods divide a given object shape region into parts that
can then be used to represent and describe the object shape, as with the contour
structural method.

Convex hull

Lets consider two points x1 and x2 in a region R, if the segment x1x2 is inside the
region R, then R is said to be convex. The convex hull of a region R is the smallest
convex region H, satisfying R ⊂ H. The convex Hull is a very useful tool for the
analysis of shape variation.
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Medial axis

A skeleton can be used to describe a given region shape. In [32] a skeleton is defined
as a connected set of medial lines along a considered figure limbs. In [12] Blum’s
medial axis transforms are used to represent the skeleton method. The bold region
in Figure 3.5 is the skeleton of the rectangular shape.

Figure 3.5. Construction of the skeleton of a rectangular shape [134]

3.6 The Seven Invariant Moments

Hu’s seven invariant moments are computed from the central moments. They are
very useful for shape description and classification [36]. The discrete form of the
geometrical moment of order p+ q is defined as:

Mpq =
N∑
x=1

M∑
y=1

xpyq. (3.17)

where:

p, q = 0,1,2,....
N ×M = the image size.

Consequently, a set of seven invariant moments (Ph1, Ph2, ..., Ph7) can be derived
from the normalized central moments as in [128].

3.7 Geometrical Features

The rectangularity (R) represents the ratio between the leaf area (Aleaf ) and the
area of the minimum bounding rectangle. It evaluates how close the leaf shape is,
to a rectangle shape.

R =
Aleaf

Dmax ×Dmin

(3.18)
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The aspect ratio (A)is the ratio between the maximum length(Dmax) and the
minimum length(Dmin) of the minimum bounding rectangle

A =
Dmax

Dmin

(3.19)

The sphericity (S) is expressed by the following equation:

S =
ri
rc

(3.20)

where:

ri = represents the radius of the in-circle of the leaf.
rc = the radius of the ex-circle of the leaf.

The ratio between the length of the main inertia axis and the minor inertia
axis of the leaf, determines the accent of the leaf. It evaluates how much an iconic
section deviates from being circular [7].

E =
EA
EB

(3.21)

The circularity (C) is defined by all the contour points of the leaf image.

C =
µR
σR

(3.22)

Where

µR =
1

N

N−1∑
i=0

||(xi, yi)− (x̄, ȳ)||

and

σR =
1

N

N−1∑
i=0

(||(xi, yi)− (x̄, ȳ)|| − µR)2

Form Factor (F ) compares the perimeter of the equivalent circle to the
perimeter of the leaf shape. It is also used to describe surface irregularity and
is given by the following equation:

F =
4πAleaf
P 2
leaf

(3.23)

Area ratio of the convex hull (CA) is defined as the ratio between the
leaf area and the area of its associated convex Hull polygon (equivalent to the
surface-based Convexity Measure). It is expressed by the following equation:

CA =
AC
AROI

(3.24)
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3.8 Other shape descriptors

In this section the application of tree-based data structure will be presented. Kd-
tree is a tree based data structure that can be used for shape analysis. Kd-tree have
been successfully used to solve problems (search, indexing, and space partitioning)
but very few authors used the Kd-trees for shape analysis.

Bauckhage in [9], proposed a modified Kd-tree for shape analysis, the proposed
Kd-tree is constructed by combining the properties of traditional tree models such
as R-tree and Kd-tree. A top-down approach is used for the construction of the
proposed tree model. The modified Kd-tree is used to describe both the boundary
and the region of the object of interest by extracting salient points and parts of
shapes. With the help of the serialization the modified Kd-tree describing a given
object, can be easily transformed into feature vectors that can be submitted to a
statistical classifier.

3.9 Conclusion

In the literature, shape features can be organized into two main groups contour-
based or region-based shape representation methods. A contour-based shape fea-
ture uses the boundary pixels to characterize the object shape, and a region-based
shape feature uses the interior pixel to characterize the object shape. A contour-
based or region-based shape feature can be a structural method if it uses a series
of values to characterize a given shape or global method if it used a single value to
represent a given shape. Contour-based shape features are sensitive to small varia-
tions, are computationally expensive, require the boundary extraction algorithm to
be accurate, these features are not invariant to all similarity transforms, but they
provide a clear and understandable description of the object shape and can be used
for the reconstruction of objects shape. Region-based shape features are easy to
compute, are not computationally expensive the drawback of this method is the
loss of precision. Many shape features have been designed and used to characterize
objects, but the precision and the computational cost of these features remain a
current problem. The next chapter described and compare methods used for the
computation of the minimum bounding rectangleof an input leaf image.
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Chapter 4

Minimum Bounding Rectangle

Computation

4.1 Introduction

The first step in the recognition process of plant species using leaf images is the pre-
processing of the input leaf images. The pre-processing step is usually followed by
the feature extraction process. In the literature, shape, texture and color features
are the most popular image representation methods because they are well defined
and can be easily computed from raw images. In this chapter, the pre-processing
step contains operations such as, thresholding to transform the input image into a
binary image, boundary extraction using edges detection algorithm and a thinning
operation to make sure that the output shape is one pixel wide.

The Minimum Boundary Rectangle computation is also a very important oper-
ation because the quality of many low-level features, such as, rectangularity, aspect
ratio and eccentricity depend on the precision of the minimum bounding rectangle
computation. For the feature extraction process, we will be discussing all the low-
level features used during the experimentation. In this thesis, shape features are
computed from the leaf region and the leaf boundary and used for the representa-
tion of leaf images. Our main goal was to design a system for leaves recognition
using leaf shape, so only shape features were used for the construction of our sys-
tem. However, all the algorithms used in this thesis for leaves features extraction
can also be used for a more general problem, such as object recognition.

The rest of this chapter summarizes all the techniques used during the pre-
processing step, then describes a newly developed approach for the minimum bound-
ing rectangle computation; finally, it presents some of the low-level features used
during the feature extraction process.
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4.2 Minimum Bounding Rectangle

One of the most important tasks in computer vision is the computation of geo-
metric features. Some of the features used to characterize shape are: aspect ratio,
elongation and circularity [46, 114]. Minimum Bounding Rectangle (MBR) can be
used to compute many other features, such as the real aspect ratio, rectangularity
and eccentricity, which are very important tools for image analysis as they can be
used in various domains [38, 89]. The MBR is defined as the smallest rectangle that
contains every point in the region, with the condition that the rectangle boundaries
are aligned with the major and minor axis of the object of interest [22].

The determination of the Oriented Bounding Box or Minimum Bounding Rect-
angle have been implemented using many Heuristic, such as R−tress [104], R∗-trees
[111], R+-trees [10], the Principal Component Analysis(PCA) [34] and the Least
Square method [22].

One of the popular and stable approach for the determination of the Mini-
mum Bounding rectangle is based on the use of the Principal Components Analysis
(PCA). The PCA method uses orthogonal transformations that transform a set
of observations of possible correlated variables into a set of values of linearly un-
correlated variables called principal components [34]. The determination of the
Minimum Bounding Rectangle of a set of points using the PCA method start with
the determination of the axes of the MBR using the PCA of the set of points, fol-
lowed by the determination of the Oriented Bounding Box using the projection of
each point set on the axes.

This thesis presents an improvement of a method of finding MBR, proposed
in [22], in order to reduce some of the defects observed due to the object initial
angulation, caused by aliasing effect and obtain a result comparable to the PCA ap-
proach. MBR construction is based on the determination of the object boundaries,
followed by the boundary centroid determination and the boundary orientation
for the determination of the major and minor axis; the major and minor axis are
then used to determine the rectangle edges [22]. Bookstein [13], Rosin [103] and
Forsyth [42] conducted much important research in the domain of shape analysis.
They approximated a finite set of points using a rectangle as a model. The pro-
cess of constructing a rectangle using the parametric and non-parametric Bayesian
paradigm is discussed in [126]. Using the perimeter and the surface of the object
of interest, Alt and Hurto [4] describe an approach for fitting convex polygons in
a rectangle of the smallest size. Even though these methods give the possibility
of fitting a discrete set of points in a rectangle, they are computationally very ex-
pensive. The method presented in this thesis is inspired by the one in [22] with
a difference in the determination of the rectangle edges. Instead of solving the
systems of equations to obtain the intersection of lines, a set of approximations is
used.

The rest of this section is organized as follows: First, the description of Chaud-
huri’s method to determine the MBR of an object and outline its drawbacks; sec-
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ondly, the proposed method is discuss; then the PCA approach for the determina-
tion of the minimum bounding rectangle will be presented; followed by the experi-
mental results of a comparative study of the methods.

4.2.1 Computation of the Minimum Bounding Rectangle
Least Square Method

Lets consider I the binary image to be processed. Given a set of boundary points
(xi, yi)i=1,...,n the method proposed by Chaudhuri et al., [22] for the construction of
the MBR, focuses on the following:

Determination of the boundary centroid. The centroid, (x̄, ȳ), is the average
of the coordinates of the boundary points, defined as:

(x̄, ȳ) = (
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi) (4.1)

Determination of the image orientation and the image principal axis.
These are the perpendicular axis dividing the object into four parts. To determine
the principal axis, boundary point coordinates are considered and the formula given
in equation (4.2) is used to obtain the object orientation, θ.

tan 2θ =

2
n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

[(xi − x̄)2 − (yi − ȳ)2]
(4.2)

This formula is obtained by using the equation (4.3) of the line passing through the
centroid with the angle θ.

x tan θ − y + ȳ − x̄ tan θ = 0 (4.3)

and the perpendicular distance from that line to an edge point is defined as:

pi = (xi − x̄) sin θ − (yi − ȳ) sin θ (4.4)

Determination of the lower and further points associated with each
axis.
These are the points associated with each principal axis. They are obtained using
the following property:

If f(a, b)


> 0 then (a, b) is above
= 0 then (a, b) is on f(x, y) = 0
< 0 then (a, b) is below

(4.5)
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Where f(a, b) is the value obtained using equations (4.6) or (4.7) by considering
the coordinates (a, b) of the shape points. Considering the principal axis equations,
bounding points are organized into upper and lower further points. The equations
of these axes are:

(y − ȳ)− tan θ(x− x̄) = 0 (4.6)

(y − ȳ) + cot θ(x− x̄) = 0 (4.7)

To determine the upper and lower points, the distance associated with each lower
and upper point is computed using the following equation:

Pi = (xi − x̄) sin θ − (yi − ȳ) cos θ (4.8)

Determination of the rectangle corner points. These points are the inter-
section of lines passing at the upper and lower points associated with each axis,
and are obtained using the formulae in equations (4.9) to (4.12).

(tlx =
x1 tan θ + x3 cot θ + y3 − y1

tan θ + cot θ
, tly =

y1 cot θ + y3 tan θ + x3 − x1

tan θ + cot θ
) (4.9)

(trx =
x1 tan θ + x4 cot θ + y4 − y1

tan θ + cot θ
, try =

y1 cot θ + y4 tan θ + x4 − x1

tan θ + cot θ
) (4.10)

(blx =
x2 tan θ + x3 cot θ + y3 − y2

tan θ + cot θ
, bly =

y2 cot θ + y3 tan θ + x3 − x2

tan θ + cot θ
) (4.11)

(brx =
x2 tan θ + x4 cot θ + y4 − y2

tan θ + cot θ
, bry =

y2 cot θ + y4 tan θ + x4 − x2

tan θ + cot θ
) (4.12)

Figure 4.1 presents MBR corner point positions tl = (tlx, tly), tr = (trx, try), bl =
(blx, bly), br = (brx, bry). A drawback of this method is that it produces inaccurate
values of the rectangle edge coordinates. Figure 4.2 shows an example in which the
method works perfectly and another example in which it does not. This problem
is due to the fact that all the formulae for the calculation of the object orientation
and the coordinates of the corner points of the rectangle are in the continuous
domain, and their approximation in the discrete domain does not always represent
the reality.
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Figure 4.1. Minimum Bounding Rectangle corner point coordinates

(a) (b) (c)

(d) (e) (f)

Figure 4.2. MBR construction using Chaudhuri’s method. (a) MBR is accurately
constructed. (b),(c),(d),(e),(f) MBR is not properly detected

4.2.2 Minimum Bounding Rectangle Proposed Method

This method is inspired by Chaudhuri’s one. It uses equations (4.1) to (4.7) in a
similar way to the previous method. The difference is in the determination of
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the rectangle edge points. Algorithms (1) and (2) describe the process of the
construction of the rectangle edge points.

Algorithm 1 Construction of the set A
Input: Im.

for p ∈ Im do
if Q1(p) ≈ 0 then

A1 = A1 ∪ {p}
if Q2(p) ≈ 0 then

A2 = A2 ∪ {p}
A = A1 ∪ A2

Output: A,A1, A2

Algorithm 2 Determination of rectangle edge points
Input: A1, A2, Im.

B = ∅
for p ∈ Im do

if (Q4(p) = 0) ∨ (Q3(p) = 0) then
B = B ∪ {p}

if (p ∈ A1) ∧ (Q3(p) = 0) then
tl = p

if (p ∈ A2) ∧ (Q3(p) = 0) then
bl = p

if (p ∈ A1) ∧ (Q4(p) = 0) then
tr = p

if (p ∈ A2) ∧ (Q4(p) = 0) then
br = p

Output: tl, bl, tr, br, B

Let Im be the set of all pixels of the image. A is the set of pixels of the two lines
associated with the upper and lower points of Im with respect to the main axis
and is parallel to it, respectively (xuA, yuA) and (xlA, ylA). B is the set of pixels of
the two lines associated with the upper and lower points of Im with respect to the
minor axis and is parallel to it respectively (xuB, yuB) and (xlB, ylB). Let Q1, Q2 be
the equations of the lines associated with A1 and A2 respectively, with A = A1∪A2

and Q3 , Q4 the equations of the line associate to B3 and B4 respectively, with
B = B3∪B4. Let tl, tr, bl, br be the set of rectangle corner edge points as presented
in Figure 4.1 Q1, Q2, Q3, Q4 are defined as:
For all p ∈ Im with p = (xp, yp) and θ the initial angle of the boundaries we have:

Q1(p) = xp tan θ + yuA − xuA tan θ − yp. (4.13)
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Q2(p) = xp tan θ + ylA − xlA tan θ − yp. (4.14)

Q3(p) = xp tan θ + yuB − xuB tan θ − yp. (4.15)

Q4(p) = xp tan θ + ylB − xlB tan θ − yp. (4.16)

We have the following properties: A⊂Im and B⊂Im Algorithm (1) focusing on
the determination of the set of pixels A. Algorithm (2) determines the rectangle
edge points, by considering the intersection of Im, A and B, where Im is the image
pixels, B is the set of pixels associated with the lines parallel to the minor axis and
A is the set of pixels associated with the lines parallel to the major axis. Figure 4.3
represents the construction of the MBR of a given shape image using the proposed
method.

(a) Binary Image (b) Boundary (c) Thinning boundary

(d) Upper and lower points
and axis (e) MBR

Figure 4.3. Process of construction of MBR from the original binary image to the
drawing of MBR around the original image.

The proposed approach is applied to the images used to test Chaudhuri’s method.
Figure 4.5 presents the results obtained when applying algorithms (1) and (2) to
an image. It can be noticed from Figures 4.2(a) and 4.5(a) that the two methods
produce identical results. While the proposed method still produces good results in
Fig. 4.5(b), Chaudhuri’s method fails to detect correct boundaries in Figure 4.2(b).
As with Chaudhuri’s method, the proposed method produces MBR’s corner points.
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(a) (b)

Figure 4.4. MBR construction using the proposed method

4.2.3 Minimum Bounding Rectangle PCA Method

Performing data dimensionality reduction by identifying the most important di-
rection is the principal motivation behind the use of the PCA [62]. PCA uses
orthogonal transformations that transform a set of observations of possible corre-
lated variables into a set of values of linearly correlated variables called principal
components. It is a heuristic frequently used for the computation of the Minimum
Bounding Rectangle of a set of points because of the following advantages:

• It isolate Noises.

• It Eliminate effect of rotation.

• It Separate out the redundant degree of freedom.

Lets consider S = {a1, a2, ..., am} a set of point in R2 with a1 = (x1, y1) and
c = (x̄, ȳ) the centroid of S. The following steps need to be followed to create the
Oriented Bounding Box (or the Minimum Bounding Rectangle).

Evaluate the coordinates of the centroid of S

The centroid is the average position of all point in the set S. Equation (4.17)
describes the centroid of the points in the set S.

C = (x̄ =
1

m

m∑
i=1

xi, ȳ =
1

m

m∑
i=1

yi) (4.17)
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Determine Covariance Matrix of the points in S

The covariance is used to measure how linear is the relationship between two given
variables, if the covariance is small it means the variables are independent. In the
case of the set S the covariance is evaluate using the matrix in equation (4.18).

A =

[
cov(x, x) cov(x, y)
cov(x, y) cov(y, y)

]
(4.18)

Where cov(x, y) is describe in equation (4.19).

cov(x, x) =

∑n
i=1(xi − x̄)(yi − ȳ)

n− 1
. (4.19)

Calculate the eigenvalues and eigenvectors of the Covariance Matrix

At this step the eigenvalues will be used to determine the eigenvectors that defined
the angular orientation of the set of points in S. The eigenvalues are obtained using
equation (4.20). The eigenvector associate to a given eigenvalue are obtained using
equation (4.21) define the orientation of the set of points.

det(A− λI) = 0 (4.20)

AV = λV (4.21)

The oriented Bounding Box is obtained by the projection of each point on the axes
defined by the eigenvectors. Figure: 4.5 presents the result of the application of the
application of the PCA on two leaf images to determine the Minimum Bounding
Rectangle.

(a) (b)

Figure 4.5. MBR construction using the PCA Method

To achieve a better precision during the determination of the Oriented Bounding
Box the process require the construction of the Convex Hull of the set of points S
which in return increases the the complexity of the method to O(nlog(n).
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4.3 Experimental Results and Comparative Study

of the Three Methods

An experimental study based on 50 leaves of 10 different plants is conducted in
order to prove the accuracy of the proposed methods. To evaluate the effectiveness
of each method, we adopted the Mean Absolute Error (MAE) method. MAE
measures how close points detected by each method are to the one calculated
manually. Given a set of n shapes (Si)i=1,...,n, for each shape Si, the four cor-
ner points [(xi(pos, t), yi(pos, t))]pos∈{TL,BL,TR,BR}, are computed for each method.
t ∈ {M,C, P}, where TL, BL, TR, BR represent Top Left, Bottom Left, Top
Right,and Bottom Right respectively, and M,C and P represent Manual, Chaudhuri
and Proposed methods respectively. The errors are calculated as follows:

• For the x coordinate, xei(pos, t), the deviation from the manually calculated
coordinate is:

xei(pos, t) = |xi(pos, t)− xi(pos,M)| (4.22)

• For the y coordinate, yei(pos, t), the deviation from the manually calculated
coordinate is:

yei(pos, t) = |yi(pos, t)− yi(pos,M)| (4.23)

where t ∈ {C,P}. It is then possible to compute the Mean Absolute Error for each
corner point position (pos) and each method t, MAE(pos, t), for all n shapes as:

MAE(pos, t) =
1

2n

n∑
i=1

(xei(pos, t) + yei(pos, t)) (4.24)

The errors incurred when computing the MBR corner points of the 50 shapes pre-
sented above, are shown in Table 4.1.

Table 4.1. MAE Inccured for each method and for each corner point of the MBR

Methods
Chaudhuri PCA Proposed

Position of the corner points

Top Left 26.37 8.1 8.14
Top Rigth 28.40 8.25 8.34
Bottom Left 19.09 8.40 8.34
Bottom Right 192.24 10.38 10.32

It can be seen that the proposed method consistently outperforms Chaudhuri’s
one. Figures 4.6a to 4.6h, show the errors incurred by each method to compute
the four corner points when applied to each of the 50 leaves in the data set. They
depict how the proposed method consistently computes the points more accurately.
For instance, Figure 4.6h presents the leaves’ numbers vs errors incurred when
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computing the y coordinate of the bottom right corner point of the MBR using
the two methods. It shows that the error incurred by the proposed method is very
close to 0, compared with Chaudhuri’s one because the proposed method lowers
the impact of the aliasing effect during MBR determination process. In Table: 4.1
the error inccured by the PCA method and the proposed method are very close.

Table:4.2 summarized the comparison of the three methods, we can see that all
the methods have the same complexity, but when using the Convex Hull on the
PCA it increase the complexity for the PCA method. The PCA method have been
applied to dimension 2, 3 and are proven to be efficients in those dimension. The
proposed method and the Chaudhuri have only been applied to dimension 2.

Table 4.2. Comparison of three Methods

Proposed Method PCA Method Chaudhuri Method

Least Square method Principal Component analysis Least Square method

Complexity:O(n) Complexity: O(n) or O(nlog(n)) Complexity: O(n)

Applicable on R2 Applicable on Rd Applicable on R2

Not Sensitive to aliazing effect Not Sensitive to aliazing effect Sensitive to aliazing effect

890 ms(for a (3000*3000pixels) image) 860 ms(for a (3000*3000 pixels) image) 890 ms(for a (3000*3000 pixels) image)
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(a) Leaves numbers vs errors incurred when computing the x coordinate of the Top left
corner point of the MBR using the two methods.

(b) Leaves numbers vs errors incurred when computing the y coordinate of the Top left
corner point of the MBR using the two methods.
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(c) Leaves numbers vs errors incurred when computing the x coordinate of the bottom
left corner point of the MBR using the two methods.

(d) Leaves numbers vs errors incurred when computing the y coordinate of the bottom
left corner point of the MBR using the two methods.
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(e) Leaves numbers vs errors incurred when computing the x coordinate of the Top right
corner point of the MBR using the two methods.

(f) Leaves numbers vs errors incurred when computing the y coordinate of the Top right
corner point of the MBR using the two methods.
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(g) Leaves numbers vs errors incurred when computing the x coordinate of the bottom
right corner point of the MBR using the two methods.

(h) Leaves numbers vs errors incurred when computing the y coordinate of the bottom
right corner point of the MBR using the two methods.

Figure 4.6. Leaves numbers vs errors incurred when computing MBR edges points
coordinates
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4.4 Conclusion

In this chapter, the three MBR construction algorithms were presented and com-
pared. The MBR determination is very important for feature extraction steps. To
overcome the errors committed when extracting shape features, a new method for
the determination of the Minimum Bounding Rectangle is presented. The proposed
method was derived from Chaudhuri et al., [22] method and has the advantage of
being lesser sensitive to the aliasing effect and produces results closers to the pop-
ular PCA method. In the next chapter, the Convexity Measure of Polygons and
the Convexity Moments of Polygons are described and used for the recognition of
plant species using leaf images.
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Chapter 5

Convexity Measure of Polygons

and Convexity Moments of

Polygons

5.1 Introduction

Shape features are very popular in the field of plant recognition using leaf images.
However, most of the commonly used features have failed to capture certain specific
variations on the leaf shape. These variations can be used to improve recognition
accuracy. In this thesis, one of the solutions proposed for improvement of plant
recognition using leaf images is the introduction of a boundary-based convexity
estimator for the analysis of leaf shape.

A given shape can be characterized using a convexity estimator. In this thesis, a
convexity estimator known as Convexity Measure of Polygons is used for the anal-
ysis of leaf shapes. The Convexity Measure is a boundary-based shape which was
proved by Zunic et al., [136] to be better than a surface-based convexity estimator
because it is more sensitive in measure boundary defects.

The Convexity Measure of Polygons is an improved version of the Convexity
Measure based on the ratio between the Euclidean perimeter of the considered shape
and the Euclidean perimeter of its associated Convex Hull. The main advantage of
the Convexity Measure of Polygons is the ability to provide a convexity estimation
of shape with holes, which is particularly important during the analysis of deformed
leaves.

The Convexity Measure of polygons was found by Zunic et al., [136] to be
ineffective when used alone to characterize objects. The authors further state that
the New Convexity Measure of Polygons needs to be combined with other shape
features to obtain an accurate system. Based on the limitations of the Convexity
Measure of Polygons, a new shape characterizer is derived from the Convexity
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Measure of Polygons. The Convexity Moments of Polygons are more accurate than
the New Convexity Measure of Polygons, certainly because it uses more values to
characterize a given shape.

The rest of this chapter is organized as follows: Section 2 presents the Convexity
Measure of Polygons, followed by an application to the classification of leaf images.
The Convexity Moments of Polygons and an application to leaf image recognition
is presented in Section 3.

5.2 Convexity Measure of Polygons

A set of points, A, is convex if the straight line segment joining any two points in A
is contained in A [136]. The Convexity Measure of Polygons, is a numerical value
that is used to represent the probability that a straight line joining two points in
A lies entirely in A.
The Convexity Measure of Polygons has the following properties [136]:

• The value of the Convexity Measure is in (0,1].

• For a given shape, the Convexity Measure can be arbitrarily close to 0.

• The Convexity Measure of a convex set is equal to 1.

• The Convexity Measure is invariant under similarity transformation.

In the literature, there are two types of Convexity Measure: surface-based Convex-
ity Measures and boundary-based Convexity Measure [136]. The first approach for
the determination of the Convexity Measure of polygons was based on the convex
Hull polygon(CH). C1, C2 and C3 of a shape S were defined as:

C1 =
Area(S)

Area(CH(S))
. (5.1)

C1 is a surface-based Convexity Measure that is obtained by dividing the area of
the shape by the surface of the associated convex Hull polygon.

C2 =
Area(MCS(S))

Area(S)
. (5.2)

C2 is a surface-based Convexity Measure that is obtained by dividing the area of
the minimum convex set (MCS) of shape S by the surface of shape S.

C3 =
Per(CH(S))

Per(S)
. (5.3)

C3 is a boundary-based Convexity Measure that obtained by dividing the perimeter
of the convex Hull of shape S by the perimeter of shape S.
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5.2.1 New Convexity Measure of Polygons

The new definition of the Convexity Measure of Polygons, introduced by Zunic et
al., [136] was designed because of the incapacity of other Convexity Measures to
include huge defects. In addition, this measure can evaluate small variations on a
shape and is the first element in the leaf feature vector used in this chapter. The
Convexity Measure of Polygons defined by Zunic et al., [136] is evaluated as:

C (P ) = min
α∈[0,2π]

Per2 (R (P, α))

Per1 (P, α)
, (5.4)

where:

α = Rotation angle
P = Shape Parameter (Polygon)
R = The optimal rectangle
Per2 = Perimeter by projection on axis
Per1 = Euclidian perimeter

In equation (5.4), the perimeter of the polygon P is fixed and the perimeter of
the bounding rectangle noted R(P, α) depends on the value of α. C(P ) is equivalent
to the following equation.

C(P ) = min
{
Per2(R(P,αi))
Per1(P,αi)

|i = 1, 2, ..., n
}

(5.5)

where

Per2(R(P, αi)) = g̃i ∗ cos(αi) + f̃i ∗ sin(αi),

P er1(P, αi) = c̃j ∗ cos(αi) + d̃j ∗ sin(αi).

g̃i, f̃i, c̃j, d̃j are the constants obtained using the l1 metric (Manhattan) and l2
metric (Euclidean) of the rectangle edges and the polygon(shape) edges. Equa-
tion(5.8) to equation (5.9) describe each constant as demonstrated in [136].

c̃j =
n∑
i=n

l2(ei)(aj,i ∗ cosφi + bj,i ∗ sinφj) (5.6)

d̃j =
n∑
i=n

l2(ei)(bj,i ∗ cosφj − aj,i ∗ sinφi) (5.7)

f̃i =
4∑
i=n

l2(bi)cosφ (5.8)
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g̃i =
4∑
i=n

l2(bi)sinφ (5.9)

Where ei, 1 ≤ i ≤ n are the shape edges. bi are the rectangle edges.

This equation(5.5) represents the computational process of C(P ). Figure 5.1 presents
some leaves with their associated Convexity Measure.

Figure 5.1. Convexity Measure of Polygon of selected leaves

In order for the Convexity Measure of Polygons (Zunic et al., [136]) to be used
for shape characterisation, it has to be combined with other Convexity Measures
or features to increase the recognition rate [136], this is the main limitation of the
convexity measure as a feature. The Convexity Measure of Polygons only expresses
how convex or concave a given shape is; however, it is also important to have
another descriptor for the surface.

5.3 Convexity Moments of Polygons

The Convexity Moments of Polygons, designed based on the limitation of Convexity
Measure of Polygons are calculated using all the values generated by the formula
of the Convexity Measure of Polygons in equation (5.1). A set of statistical char-
acterizers (mean, standard deviation, mode, min) are applied to the 361 generated
values using equation(5.1) (by considering the value of the Convexity Measure for
each rotation angle in [0, 2π]), to obtain the Convexity Moments of a given leaf
shape. Each statistical characterizer is selected for the following purposes;

- The Mean (Arithmetic mean): to obtain a single piece of data that describes
the whole set, the mean is intended to be a measure of central tendency of all the
361 values. It represents the average value of all the convexity measure calculated
by equation (5.1).

X =

∑
xi
n

(5.10)

With
xi ∈

{
Per2(R(P,αi))
Per1(P,αi)

| i = 1, 2, ..., n
}
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- The mode is the most frequently occurring value in the set C.

C =
{

Per2(R(P,αi))
Per1(P,αi)

| i = 1, 2, ..., n
}

- The min is the smallest value in the set C it is the actual value of the Con-
vexity Measure of Polygons; it is expressed as :

Min = min
{

Per2(R(P,αi))
Per1(P,αi)

| i = 1, 2, ..., n
}

- The standard deviation: to evaluate the variation between the values in the
set. It expresses the average variation between the values obtain using equation
(5.1)

σ =

√∑
(xi −X)2

n− 1
(5.11)

These Convexity Moments are rotation, translation and scale-invariant because
they are based on the values generated by the equation (5.1) as demonstrated by
Zunic et al., [136] to be rotation, translation and scale-invariant. The values used
here to represent the Convexity Moments of Polygons are the one that require every
few computations and provide good results as shown in Chapter 7. The Convexity
Measure and the Convexity Moments of Polygons have the same complexity which is
O(n2). Figure 5.2 present some images with the corresponding Convexity Moments.

Figure 5.2. Convexity Moments of Polygon of selected leaves

5.4 Conclusion

This chapter describes two boundary-based shape features descriptors, the Convex-
ity Measure of Polygons and the Convexity Moments of Polygons. The Convexity
Measure of Polygons is a value used to describe the degree of convexity of a leaf
image and is proven to be better than the surface-based convexity measure. Based
on the limitation of the Convexity Measure of Polygons, this thesis proposed the
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Convexity Moments of polygons derived from the Convexity Measure of Polygons
and will be proved in Chapter 7. In the next chapter, the Sinuosity Coefficients are
designed and used for plant classification using leaf images.
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Chapter 6

Sinuosity Coefficients

6.1 Introduction

The leaves have valuable information about the plant’s environment and can help
to identify the species to which a plant belongs [75]. Botanists use information from
leaves, such as the tooth pattern on the leaf margin and whether or not it is jagged
or smooth [94]. The sinuosity of a given curve represents the degree of meandering
of that curve. Sinuosity has been extensively used in the domain of medical science
for the analysis of the meandering of a spinal column [116] and in Hydrography to
evaluate the degree of meandering of a river [70].

In this thesis, a typical leaf shape is divided into sections and the Sinuosity
Coefficients (SC) are computed from each section to construct a set of features
for leaves classification. To demonstrate the accuracy of the proposed features,
all the datasets (LeafSnap, FLAVIA, UCI) will be used for the experiment. The
first experiment is used to assess the ability of the SC to characterize a leaf shape.
Here the leaf shape will be divided into 4 and then 8 sections to see which divi-
sion provides better results. The second experiment is designed to assess whether
combining the SC with other geometrical features, such as rectangularity, circular-
ity, sphericity and aspect ratio, will improve the classification rate obtained in the
previous experiment.

The rest of this chapter is organized as follows: Section 6.2 discusses the use
of the sinuosity measure in the literature and presents the image preprocessing for
the extraction of the Sinuosity Coefficients. In Section 6.3, the sinuosity measure
and Sinuosity Coefficients are presented with the Fourier descriptors. The chapter
conclusion is in Section 6.4.
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6.2 Application of Sinuosity Measure

The sinuosity measure has been applied in many fields of science, such as Geography,
Biology and Medical Science as a parameter to explain other natural phenomena;
for example, the meandering of a river. In [70], the sinuosity measure was used to
evaluate the degree of meandering of a river. It was explained that meandering in
the case of a river is the result of an erosion process tending toward the most stable
form in which the variability of certain essential properties, such as velocity and
depth are minimized.

Jaekel et al., [59] presents an application of the sinuosity measure for the char-
acterisation of the webbing on a salamander foot to demonstrate the morphological
changes performed on the animal foot to adapt to a given surface. Alain T. et al.,
[116] developed a method for the analysis of spine meandering for the early detec-
tion of spine deformation. Because of the growing interest in spatial exploration,
Lazarus et al., [71] used the sinuosity measure to demonstrate that there were rivers
on the surface of Mars by analysing the planet surface to detect deep meandering
shapes.

6.2.1 Image Preprocessing

Let ξ be a leaf color image; the features for the characterization of ξ will be ex-
tracted from the image greyscale. Let I be the binary representation of the gray
scale components of ξ. Considering a set of boundary points (xi, yi)i=1,...,n of the
binary image I, the elements, used for the construction of the Minimum Bounding
Rectangle (MBR) in [22, 64] and describe in Chapter 4 will be used.

Figure 6.1. Points Maximizing the Distance Pi.

The considered points are the ones maximising Pi on equation (4.8) on a given
segment, as shown in Figure 6.1 (UH: Uppermost Horizontal point, LH: Lowermost
Horizontal point, LV: Lowermost Vertical point, UV: Uppermost Vertical point).
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6.3 Features Extraction

6.3.1 Sinuosity Measure

Lets consider (xi, yi), i = 1, 2, ..., n the coordinates of points composing the curve l.
If l is a continuously differentiable curve, having at least one inflexion point, then
the sinuosity of l is equal to the ratio between the length of l and the length of the
straight line joining the two end points A(x0, y0) and B(xn, yn) of l. The sinuosity
measure of the curve l is expressed by the following equation:

Sl =

n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2√
(xn − x0)2 + (yn − y0)2

(6.1)

The values generated by equation (6.1) are from 1 (for a straight line) to infinity
(closed loop where the shortest path length is zero) or for an infinitely long curve
[71]. Let us consider a curve formed by two inverted semicircles located in the same
plane. The sinuosity measure of this curve is: S = π

2
≈ 1.5708. In order to evaluate

the sinuosity measure of a curve C, one should make sure that C is continuous
between its two, ends. Generally the sinuosity measure is evaluated in dimension
two, but it is also valid in dimension three [116]. The basic classification of the
sinuosity is either Strong : 1 � S or Weak : S ≈ 1). This basic classification is
the point of interest of this paper because the sinuosity measure will provide the
information needed for the classification of the leaf edge into two groups (smooth
leaf=”Weak” edge and jagged leaf=”Strong” edge).

6.3.2 Sinuosity Coefficients

The sinuosity measure of a complete leaf boundary is infinite because leaf shape
is a closed contour. In order to apply the sinuosity measure to a leaf contour, a
leaf shape can be divided into four or more different parts, as presented in Figure
6.1. In order to obtain the leaf shape Sinuosity Coefficients, the sinuosity measure
of each of the following curves (UV, UH), (UV, LH), (LV, UH) and (LV, LH) was
evaluated using equation (6.1). The Sinuosity Coefficients of a leaf shape is a vector
of sorted values of the sinuosity measure of the curves composing the leaf shape.
Figure 6.2 presents some leaves with their associated Sinuosity Coefficients.

Translation Invariance

Let us consider the curve (UV, UH) in Figure 6.3 and a distance d of the line joining
the two ends of the curve. Since the translation of the curve will not change the
length of the curve, the expression in equation (6.1) will not change either.
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Figure 6.2. Sinuosity coefficients of four leaf shapes

Figure 6.3. Leaf shape information

Proof: Let us consider (xi, yi), i = 1, 2, ..., n as the coordinates of points compos-
ing the curve (UV, UH) of the original curve and d the length of the line joining the
two ends of the curve. Let us consider (UV 1, UH1) the image of (UV, UH) using the
translation of vector concept (Tx, Ty), (ai, bi), i = 1, 2, ..., n points of (UV 1, UH1)
and d1 the length of the line joining the two ends of (UV 1, UH1). Let us show that
d(UV 1, UH1) = d(UV, UH)

d(UV 1, UH1) =
n∑
i=1

√
(ai − ai−1)2 + (bi − bi−1)2

=
n∑
i=1

√
((xi + Tx)− (xi−1 + Tx))2 + ((yi + Ty)− (yi−1 + Ty))2

=
n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 = d(UV, UH)

which implies: d(UV 1, UH1) = d(UV, UH) and d=d1 since the translation
maintains the shape of the curve.

Hence:

Sl = d(UV,UH)
d

= d(UV 1,UH1)
d1

Scale Invariance

Applying a scale to an object is to multiply the dimensions by a constant, k. Con-
sidering the curve (UV, UH) putting it into scale k means multiplying it by the
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constant, k, which means that the shortest path joining UV and UH is also multi-
plied by k. Taking this information into consideration, the expression in equation
(6.1) will not change, as shown in the following proof.
Proof: Using the scale transformation of coefficient k applied to the curve (UV, UH)
we have the following relation:

d(UV 1, UH1) =
n∑
i=1

√
(ai − ai−1)2 + (bi − bi−1)2

=
n∑
i=1

√
(xi ∗ k − xi−1 ∗ k)2 + (yi ∗ k − yi−1 ∗ k)2

=
n∑
i=1

∗k ∗
√

(xi − xi−1)2 + (yi − yi−1)2 = k ∗ d(UV, UH)

Sl = d(UV,UH)
d

= k∗d(UV,UH)
k∗d = d(UV 1,UH1)

d1

6.4 Conclusion

Leaves boundary carries important information that can be used to differentiate be-
tween plant species. In this chapter, the Sinuosity Coefficients were used to describe
the degree of meandering of leaf images. This new feature is proven theoretically
to be translation and scale invariant and accurately describe leaf images. Exper-
imentally the 8 Sinuosity Coefficients provide the best results. The next chapter
describes a model for plant classification using leaf images which use the Convexity
Moments of Polygons, the Sinuosity Coefficients, some geometric features and the
RBF classifier.
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Chapter 7

Results and Discussions

7.1 Introduction

Experimental setup, results and discussion of plant classification using leaf images
are presented in this chapter. Leaf images are described using the Convexity Mea-
sure of Polygons, the Convexity Moments of Polygons and Sinuosity Coefficients,
described in this thesis. A detailed discussion is done on the performance compari-
son of the proposed techniques to the results achieved in the literature and followed
by the combination of those techniques.

7.2 Experimental Setup

The description of the system development environment and the performance eval-
uation measures used in the experiments and presented in this section.

7.2.1 System development environment

The algorithms for the extraction of the Convexity Measure of Polygons, the Con-
vexity Moments of Polygons, the Sinuosity Coefficients and the determination of
the Minimum Bounding Rectangle were implemented using Java on an Intel Core
i7 CPU (2.93 GHz, 4.00 GB RAM).

7.2.2 Performance evaluation

In literature, the classification rate is the most used performance measures. To
compare two leaf recognition systems, the use of the same dataset is needed. The
common measures used for performance evaluation are Mean Square Error (MSE),
Specificity, Sensitivity and Classification rate. These are the measures already
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proposed in information retrieval and pattern recognition literature to evaluate
a given recognition system. These measures will be computed for a given leaf
recognition system to evaluate how it performs on a given dataset. Specificity and
Sensitivity are the two traditional measures used to evaluate pattern recognition
problems.

The Sensitivity (Equation (7.1)) represents the proportion of positive that are
recognized as such. The Specificity (Equation (7.2)) is the proportion of negative
that are identified as such. For a given recognition process, a high Sensitivity
implies that many leaf images are well classified.

Sensitivity =
TruePositive

(TruePositive+ FalseNegative)
(7.1)

Specificity =
TrueNegative

(TrueNegative+ FalsePositive)
(7.2)

Accuracy =
TrueNegative+ TruePositif

(TrueNegative+ TruePositif + FalsePositive+ FalseNegative)
(7.3)

For many recognition systems, the illustrations used are the ROC (Received
operator curve) and the curve representing the classification rate per species.

7.2.3 Performance Assesment

The leaf recognition system presented in this thesis starts with an input image ξ. A
given user provides an image to the system and receives a plant species as output.
The problem of assigning a given leaf image to a possible plant species is equivalent
to the similarity problem between images, which is not well defined in the literature
because of the number of unjustified heuristics.

Like other approaches for plant classification using leaf images, the classifiers
are trained and tested using features extracted from leaf images. Here we suppose
that similar images have similar feature vectors. For example, leaves from plant of
different species have different feature vectors.

Given the relevant plant species B1, the irrelevant plant species Bj, j = (2, ..., n)
for an input image ξi where n is the total number of species. The classification error
for the image ξi is computed as:

P (error) ≡ 1

n

n∑
j=2

[P (ξi assign to Bj belongs to B1)

+P (ξi assign to B1 belongs to Bj)]

(7.4)
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During the classification process, our goal is to minimize P (error). The ideal
classifier will be the one providing the smallest value for P (error).

In case of a Bayes classifier, minimizing P (error) in equation (7.4) should use
the following rule:

ξi belongs to

{
B1 if ∀Bj(j = 2, ..., n), P (B1 | ξ1) > P (Bj | ξ1)

Bj otherwise
(7.5)

After defining the classification process, the remaining problem is the definition
of the appropriate model for leaves recognition. The proposed system for plant
classification using leaves images is divided into three steps:

• Image Preprocessing (Image enhancement and noise removal, segmentation)

• Feature extraction

• Classification

This thesis describes the solutions proposed for the second step and compared
each solution available in the literature to finally design a model for plant recogni-
tion using leaf images, based on the combination of the design shape features.

7.3 Experimental Setup

7.3.1 Databases for experimentation

To evaluate the performance, of the proposed model, three leaf image databases
were used. The leaf image databases are:

1. Flavia Database:
FLAVIA contains more than 1600 leaf images from more than 32 different
species of plants [128]. Each leaf image was capture with a high resolution
camera on a uniform white background. The plants used to create FLAVIA
are from the Nanjin University and the Yat-Sent arboretum. These plant
species are common in the Yangtze Delta. The combination of high resolution
images and the uniform background makes the feature extraction process easy.
Samples of leaf images in FLAVIA are given in Appendix A.

2. UCI Database:
UCI contains more than 400 leaf images from more than 32 different species
of plants [112]. Each leaf image was captured with an IPad2 camera on a
uniform colored background. The 24-bit RGB images have a resolution of
720*920 pixels. Samples of leaf images in UCI are given in Appendix B.
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3. LeafSnap Database:
The LeafSnap dataset contains 185 species from the Northeastern United
States [69]. LeafSnap is composed of 23147 Lab images and 7719 field im-
ages. The Lab images are high quality images of pressed leaves from the
Smithsonian collection on controlled backlight and front lit versions, with
several samples per species. The field images are low quality images taken us-
ing mobile phones and are characterized by a varying amount of blur, noise,
shadow and illumination which further complicates the feature extraction
process. Samples of leaf images in LeafSnap are given in Appendix C.

7.3.2 Experimental protocol

For the experimentation process, training and testing sets are separated. For a
given database, the overall dataset or a randomly selected number N of leaf images
using equation (7.6) defined in [88], is used. Equation (7.6) is used to calculate
the sample size that is representative of the overall dataset, which is the initial
population. Where n

′
is the sample size in case of a finite population; N is the

population size(dataset size); Z is the Z−Statistic for a level of confidence, which
is usually equal to 1.96; P is the expected proportion; d is the precision generally
equal to 0.05. For FLAVIA dataset, the minimum sample size obtained using the
formula is equal to, 292 leaf images.

n
′
=

NZ2P (1− P )

d2(N − 1) + Z2P (1− P )
(7.6)

During the experimentation 2/4 of the data will be used for the training process,
1/4 for the testing and the rest for the validation process.

7.3.3 Classifiers

In the classification process, three well-known pattern classifiers will be used: MLP,
KNN and RBF. They have been used to solve problems such as pattern classification
and the approximation of functions. There are strengths and weaknesses associated
with each classifier. Despite the high computational cost of the MLP and the
sensitivity to the overfitting problem, the MLP has the ability to detect complex
nonlinear relations between related and non-related variables. The RBF is very easy
to design; the capabilities are very good and it performs robustly, even when there
are noises on the input. Depending on the problem, each classifier will perform
differently.

KNN is a non parametric method used for classification and regression. The
quality of a KNN classifier is closely related to the number of instances to classify.
In all the experiments, the MLP configuration will depend on the number of inputs.
For the first two experiments based on the LeafSnap dataset, the input layer will
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have 4 or 8 neurons, based on the number of input features. 184 neurons were used
for the output layer because there are 184 species. There will be 2 hidden layers of
100 neurons each (100 neurones were obtained experimentally as the configuration
of the MLP producing the best results). The function used in the neurons in the
output and hidden layer was the hyperbolic tangent function to take advantage of
the differentiability and non-linearity properties. In addition the following parame-
ters are used: 500 training epochs with a learning rate of 0.1, minimum performance
gradient of 1e-6, a maximum training time of 120 Sec, a validation check of 500 and
a performance goal of 0. In the case of RBF, the configuration is based on a Mean
Square Error (MSE) goal of 0, spread of 0.1, 4 and also 8 neurons in the input layer
for the first experiment. The proposed RBF classifier contains one hidden layer
on which some neurons are added until it meets the specified mean square error
goal. The training step stops when 400 neurons are reached on the hidden layer,
as shown in [2]. The implementation of the classifiers that are used in this thesis
are the one available in MATLAB Machine learning.

7.4 Exprimental Results and Discussion

7.4.1 Convexity Measure and Convexity Moments of Poly-
gons

Convexity Measure of Polygons

The experiments were conducted using FLAVIA. The leaf database is composed of
more than 1600 plant leaves from more than 30 species [128]. We randomly chose
400 leaves from 20 species, 1600 leaves from 32 species and 100 leaves from 5 species
(the 1600 plant leaves from 32 species represent all the available species in FLAVIA).
The experiments were organized in two phases. First, the leaves were characterized
using the geometrical features and the seven invariant moments. Secondly, the
seven invariant moments and the geometrical features were combined with the New
Convexity Measure of Polygons to characterize a leaf image.

Table 7.1 presents the accuracy of the proposed method with and without the
Convexity Measure of Polygons (Zunic et al., [136]) in the feature vector. In the
first row with the Convexity Measure of Polygons, the Multi-Layer Perceptron
(MLP) achieved an average of 92% of well classified leaves with an area under
the Received Operating Characteristic curve (ROC) equaling 0.993. Without the
Convexity Measure of Polygons, 86% of well classified leaves with the area under
the ROC curve equaled 0.98.
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Table 7.1. Comparative study of classifiers and Convexity Estimators

With the Convexity Measure Without the Convexity Measure of Polygons

%of good classify AUC average % of good classify AUC average

Multilayer Perceptron(400) 92% 0.993 86% 0.98
K-Nearest Neighbour(400) 87.5% 0.971 85% 0.921
Naive Bayes(400) 80.94% 0.969 79.2% 0.966

Multilayer Perceptron(100) 99% 0.993 97% 0.97
K-Nearest Neighbour(100) 99% 0.971 97% 0.9
Naive Bayes(100) 90% 0.969 80.2% 0.95

Multilayer Perceptron(1600) 95% 0.993 92% 0.99
K-Nearest Neighbour(1600) 92% 0.971 89.5% 0.95
Naive Bayes(1600) 89% 0.969 80.2% 0.98

The experimental phase is organized in three different processes to show how
efficient the proposed model is when used in various conditions. Finally, to complete
the experimentation, the proposed method is applied to a large dataset with 1600
leaves and a classification rate of 96% was obtained. This classification rate shows
that the proposed method remains consistent, even with a larger dataset. The
classification rate and the Area Under the ROC Curve (AUC) clearly show that the
Convexity Measure of Polygons (Zunic et al., [136]) contributes to the improvement
of the classification rate and to the efficiency, of the proposed model.

In Table 7.2 present the comparison the classification of leaf images using the
combination of the Convexity Measure of Polygons and Geometric features, to other
methods in the literature, the following observations can be made. As did Panagi-
otis et al., [120] here 100 images of leaves are used to illustrate how the proposed
method is more efficient when applied to a small number of leaves. We obtained a
classification rate of 99% with the Convexity Measure of Polygons (Zunic et al.).
In the feature set, it shows that the Convexity Measure of Polygons contributed
significantly to the discrimination process of leaf shapes, even with a small dataset.
We then applied the proposed method to a medium dataset which had 400 leaves.
In this case, a classification rate of 92% shows again how efficient the proposed
method is when applied to a medium size dataset, when the Convexity Measure of
Polygons (Zunic et al., [136]) is used.
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Table 7.2. Comparative study of the proposed method with some methods in the literature

Autors Method Feature Nb Leaves Nb species Rate Algorithm Drawback Advantages in classification

Panagiotis et al., [120] Plants leaves classifi-
cation based on mor-
phological feature

Shape 100 4 99% NN Fuzzy incomplete
experiment

Fast classification

Jixian et al., [36] Leaf shape based
plant species recogni-
tion

Shape 400 20 91% MMC Model evalua-
tion

Fast with the MMC

Stephen et al., [128] A leaf recognition Al-
gorithm for plant clas-
sification using PNN

Shape 1800 32 90% PNN the method is
not completely
automatic

Fast classification

Benoit et al., [33] Weed leaf recognition
in complex natural
scene by model guided
edge pairing

Shape 10 1 60% rating process incomplete
methode

Adaptative method

Aakif et al., [1] SMSD, FD Shape 1600 32 95% BPNN Model evalua-
tion

Adaptative method

Caglayan et al., [18] SMSD,CM, CH Shape+color 1600 32 96% RBF Model evalua-
tion

Adaptative method

Chaki et al., [21] CT, Hu Moments Shape 1600 32 50% MLP Model evalua-
tion

Adaptative method

Wang et al., [123] ENS and CDS Shape+Texture 1600 32 98.8% SVM Model evalua-
tion

Adaptative method

Hsiao et al., [55] SIFT Shape 1600 32 95% MLP Model evalua-
tion

Adaptative method

Nguyen et al., [91] HOG Shaper 1600 32 85% SVM Model evalua-
tion

Adaptative method

Proposed approach Leaf Classification
using Convexity
Measure of Poly-
gons

Shape 400 20 92% MLP Convexity
measure time
complexity
with big im-
ages

Accurate

Proposed approach Leaf Classification
using Convexity
Measure of Poly-
gons

Shape 1600 32 95% MLP Convexity
measure time
complexity
with big im-
ages

Accurate

Proposed approach Leaf Classification
using Convexity
Measure of Poly-
gons

Shape 100 4 99% MLP Convexity
measure time
complexity
with big im-
ages

Accurate
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Convexity Moments of Polygons

The experiment was conducted using the FLAVIA leaf images database presented
by Wu et al., [128]. 400 leaf images of 20 species of plant were used for the ex-
perimentation. In the classification process, two pattern classifiers Multi-Layer
Perceptron (MLP) and Radial Basis Function (RBF) were used.

In all experiments the MLP configuration depended on the number of inputs.
For the first experiments, the input layer will have 5 neurons based on the number
of input features. 20 neurons were used for the output layer because there are 20
species and there will be 2 hidden layers of 100 neurons each. The function used in
the neurons in the output and hidden layer was the hyperbolic tangent function,
in order to take advantage of the differentiability and non-linearity properties. In
the case of RBF, the configuration is based on a Mean Square Error (MSE) goal
of 0, spread of 0.1, 4 and also 8 neurons in the input layer for the first experiment.
The proposed RBF classifier contains one hidden layer on which some neurons are
added until it meets the specified mean square error goal.

The considered features were extracted from the leaf boundary (Convexity Mea-
sure, Convexity Moments, Geometric Features). For the first experiment, each of
the leaf boundaries is described using the Convexity Moments and four geometric
features as described in Chapter3. For the second experiment, each of the leaf
boundaries is described using the Convexity Measure of Polygons and four geo-
metric features. The Convexity Measure of Polygons and Convexity Moments are
combined with the geometric features because Zunic et al., [136] stated that, to
obtain a better classification rate, the Convexity Measure needs to be combined
with other shape features. For the classification purpose, 2/4 of the dataset were
used for the training process, 1/4 of the rest for the testing and the remainder for
validation.

Table 7.3. Comparative study of the two shapes characterizers

Convexity Measure

+ Geometric Feature

Convexity Moments

+ Geometric Feature

Properties (rotation, translation,scale) invariant (rotation, translation,scale) invariant

Number of Features 5 features 7 features

Classification Rate
RBF(95%), Naive Bayes(68%),

MLP(92%)

RBF(97%), Naive Bayes(75%),

MLP(95%)

MSE
RBF(0.012), Naive Bayes(0.016),

MLP(0.0186)

RBF(0.006), Naive Bayes(0.052),

MLP(0.065)

Specificity
RBF(0.845), Naive Bayes(0.801),

MLP(0.787)

RBF(0.918),Naive Bayes(0.879),

MLP(0.854)

Sensitivity
RBF(0.922), Naive Bayes(0.901),

MLP(0.882)

RBF(0.924), Naive Bayes(0.930),

MLP(0.943)
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Table 7.3 presents the results of the classification of leaf images using the two
shape features. A classification rate of 95% with the Convexity Measure of Polygons
and 97% with the Convexity Moments using the Radial Basis Neural Network
(RBF) classifier was obtained.

Figure 7.1. Classification rate for each species with the Convexity Moments of
Polygons

Figure 7.2. Classification rate for each species with the Convexity Measure of
Polygons

Figure 7.1 and Figure 7.2 presents the classification rate per species with the
Convexity Moment of Polygons and the Convexity Measure of Polygons. The recog-
nition rate is improved when using the Convexity Moment of Polygons.
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An MSE, a sensitivity and specificity of 0.012, 0.845 and 0.922 are respectively
obtained using the Convexity Measure of Polygons, with the RBF as classifier.
An MSE, a sensitivity and specificity of 0.006, 0.918 and 0.924 are respectively
obtained with the Convexity Moments of Polygons, with the RBF as classifier.
These results are proof that the Convexity Moments are better features compared
with the Convexity Measure of Polygons. The good results observed with the
Convexity Moments are due to the number of features used to characterize a leaf
shape and because they consider the information that was left out by the Convexity
Measure of Polygons.

The leaf species that were not recognized are species 3, 9, 11, 13, 15, 16 and
19 because in terms of shape the leaf look a like and produce approximately the
same Convexity Measure, the Convexity Moments produces promising results with
the RBF classifier but the lowest classification rate was obtained with the Naive
Bayes classifier. As long as the leaf images look different the Convexity Measure
will produce similar values, which means the convexity Measure alone is a weak
descriptor and needs other descriptors to accurately describe a given shape. The
convexity moments uses more feature features to characterize a given, as shown in
Figure 7.1 these features are able to describe the small variation on the leaf shape,
which makes it easy for the classifier to recognize plant species, this means the
Convexity Moments are strong features.

7.4.2 Sinuosity Coefficients

For each selected leaf image used for the experiment, the associated grey scale im-
age will be used during the feature extraction process. A sorted vector of sinuosity
measure of each curve composing the leaf shape was extracted (Sinuosity Coeffi-
cients), followed by the extraction of the geometrical features and the 4 Fourier
descriptors. For the first, second, third and fourth experiments, the geometrical
features (4 features), 4 sinuosity (4 features), 8 sinuosity (8 features) and 4 Fourier
descriptors (4 features) are respectively used to recognize leaf images. On the fifth,
sixth and seventh experiments, the 4 sinuosity, 8 sinuosity and 4 Fourier descriptors
are combined with the geometrical features to recognize leaf images. A total of 8,
12, and 8 features are used respectively for the classification.

The choice of four Fourier descriptors was made because the sinuosity measure
also uses four values. The experimentation is performed using all the species in
LeafSnap, FLAVIA and UCI databases. For the classification phase, 1/2 of the
data set was used for training, and 1/4 for testing and the rest for validation.
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Table 7.4. Performance evaluation of the three features on LeafSnap dataset

Geometric Features 4 Sinuosity Coefficients 8 Sinuosity Coefficients Fourrier Descriptors

MLP RBF MLP RBF MLP RBF MLP RBF

MSE 0.016 0.015 0.0274 0.018 0.006 0.003 0.007 0.012

Specificity 0.910 0.920 0.840 0.960 0.894 0.980 0.860 0.878

Sensitivity 0.921 0.930 0.940 0.980 0.974 0.985 0.950 0.965

Classification Rate 70% 80% 65% 88% 80% 92% 78% 89%

Table 7.5. Comparative study of the Sinuosity Coefficients and Elliptic Fourier
descriptor on LeafSnap dataset

4 Sinuosity Coefficients+

Geometric Features

8 Sinuosity Coefficients+

Geometric Features

Fourier Descriptors+

Geometric Features

MLP RBF MLP RBF MLP RBF

MSE 0.015 0.047 0.012 0.004 0.048 0.005

Specificity 0.820 0.920 0.810 0.916 0.830 0.901

Sensitivity 0.916 0.967 0.955 0.987 0.947 0.970

Classification Rate 76% 92% 82% 93% 80% 91%

Table 7.6. Comparative study of the Sinuosity Coefficients and Elliptic Fourier
descriptor on FLAVIA and UCI datasets

8 Sinuosity Coefficients + Geometric features Elliptic Fourier Descriptors + Geometric features

FLAVIA UCI FLAVIA UCI

MLP RBF KNN MLP RBF KNN MLP RBF KNN MLP RBF KNN

MSE 0.007 0.005 0.001 0.0076 7.5 ∗ 10−4 0.006 0.0012 0.054 0.013 0.0718 0.0011 0.0201

Specificity 0.8414 0.9439 0.776 0.211 0.9902 0.495 0.619 0.9232 0.201 0.1373 0.9740 0.1301

Specificity 0.9952 0.998 0.901 0.9935 0.999 0.950 0.9904 0.9974 0.9910 0.9927 0.9997 0.99901

Classification Rate 80% 94% 78% 52% 98% 50% 70% 92% 70% 27% 97% 30%

Table 7.4 presents the classification results when using geometrical features, 4
sinuosity, 8 sinuosity and 4 Fourier descriptors as leaf features on the LeafSnap
dataset. A classification rate of 70% was obtained using the MLP (Multilayer
Perceptron) and 80% when using the RBF with the geometrical features as input.
A classification rate of 80% was obtained with MLP and 92% with the RBF when
using the 8 Sinuosity Coefficients.
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Table 7.5 presents the results of the classification when using the geometric fea-
tures combined respectively to the 4 Sinuosity Coefficients, 8 Sinuosity Coefficients
and to the Elliptic Fourier descriptors respectively to characterize the leaves on
LeafSnap. A classification rate of 82% was obtained with MLP when using the
combination of geometrical features and 8 Sinuosity Coefficients and 93% with the
RBF on the database. Finally, a classification rate of 80% was obtained with MLP
and 91% with RBF respectively, using the 4 Elliptic Fourier descriptors combined
with the geometric features.

Table 7.6 presents the classification results when using geometrical features com-
bined with the 8 sinuosity and 4 Fourier descriptors to characterize leaf images
from FLAVIA and UCI datasets. A classification rate of 80% was obtained using
the MLP (Multilayer Perceptron) and 94% when using the RBF on the FLAVIA
dataset. A classification rate of 27% was obtained with MLP and 97% with the
RBF when using the 4 Fourier descriptors on the UCI dataset.

The classification results of the geometric features with MLP are shown in the
third row, second column and third column of Table 7.4. A classification rate of
70% is obtained, with a Mean Square Error (MSE) of 0.0160. A classification rate
of 80% with an MSE of 0.015 was also obtained when the geometrical features were
used to characterize the shape of a leaf image with RBF as a classifier. These results
show that the boundary-based shape features are able to recognize more than half
of the leaf images.

The results of the Sinuosity Coefficients and MLP classifiers are shown in the
third row, column four and five of Table 7.5. A classification rate of 65% was
obtained, with an MSE of 0.0274 with the MLP classifier. A classification rate
of 88% with an MSE of 0.018 was also obtained with the RBF classifier. These
results show that the 4 Sinuosity Coefficients capture the leaf shape, structure but
not with a high precision. That precision is improved when using the 8 Sinuosity
Coefficients

The classification results when the 4 Sinuosity Coefficients are combined with
geometrical features using MLP as the classifier are shown in the third row and
column two of Table 7.5. A classification rate of 76% and an MSE of 0.015 were
obtained. A classification rate of 90% and a MSE of 0.0047 were also obtained
with the RBF classifier when using the 4 Sinuosity Coefficients combined with the
geometrical features to characterize the shape of the leaf images. The results in
Table 7.5 shows that 4 Sinuosity Coefficients combined with the geometric features
are more efficient than the 4 Sinuosity Coefficients.

From the results obtained in this study, it is clear that the Sinuosity Coefficients
are good descriptors of leaf shape. However, further classification improvement was
obtained by combining the 8 Sinuosity Coefficients with geometrical features com-
pared to the combination of the geometrical features to the 4 elliptical Fourier
descriptors as shown in Table 7.6. The MLP performed poorly compared to the
RBF on the overall dataset. The lower results observed are due to the fact that
some leaves look alike and produce similar feature values, for instance species 11, 13,
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25 and 24 also because the dataset contains compound leaves which makes features
extraction difficult. Compound leaf description is the weakness of the shape fea-
tures because there is a high possibility that some compound are partially occluded
which impact the shape description. On Table 7.6 the results of the combination of
the proposed feature with other geometric features produce some promising results.
Which prove that combining the proposed feature to other geometric features re-
duced the miss classification rate. The leaves that are creating issues are species
(1, 26,17 and 38), because they look alike or are compound leaf images. The supe-
rior performance of the RBF over MLP has also been reported in the literature, as
presented by Adetiba et al. [2], it is based on the ability of the RBF to detect the
variations that exist between plant species and the fast training time.

7.4.3 Combination of Convexity Moments of Polygons and
Sinuosity Coefficients

Each shape features used to construct the proposed model is selected based on the
specific aspect of a given leaf shape it describes. Rectangularity, sphericity, aspect
ratio and form factor represent the geometric features and are used to describe the
interior of a given leaf image. Sinuosity coefficients are used to characterize the
object shape boundary and provide a local value to describe each section of a given
leaf shape. Convexity Moments of polygons described the overall leaf shape by
providing a series of values to represent the degree of convexity of the consider leaf
image. To complete the proposed model The Radial Basis neural network (RBFNN)
classifier was used to associate a given input leaf image to the corresponding plant
species. The structure of the proposed model is present in Figure 7.3,
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Figure 7.3. Proposed model for plant classification

The proposed system is evaluated using the complete FLAVIA dataset, the clas-
sification results are presented in Table 7.7. Where on the first line, the specificity
is 0.820, the sensitivity is 0.870 and an accuracy of 78% with MLP classifier. On
the third line, the specificity is 0.992, the sensitivity is 0.960 and an accuracy of
97% with RBF classifier.

Table 7.7. Experimental Results with the proposed model

MSE Specificity Sensitivity Accuracy

KNN 0.0192 0.820 0.87 78%

MLP 0.0180 0.978 0.91 95%

RBF 0.0160 0.992 0.96 97%

These results show that the proposed model is recognizing plant species accu-
rately, because fewer errors are made during the recognition process. The source of
classification error made by the proposed model is because the database contains
deform leaves (that create issues during the feature extraction), the database also
contains plant species that have similar leaf shape which constituted a problem as
described in [86]. The plant species such as species 11 and 13, are the example of
species that were misclassified because they look a like in terms of shape.
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7.5 Conclusion

This Chapter presents the experimentation process used to evaluate the designed
shape features and the proposed model for plant classification when used to recog-
nize plant species using leaf images. When compared to the results available in the
literature, the proposed model presents some promising results. The next chapter
concludes this research work and presents the future work that can be considered
to further the research in the field of plant classification using leaf images.
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Chapter 8

Conclusion and Future Works

The online availability of a wide variety of leaf images of various plant species,
significantly facilitates the design of systems for plant recognition using leaf images.
Plant recognition using leaf images is considered to be one of the popular research
areas in computer vision. The recognition process of a given plant using an input
leaf image can be divided into three phases: preprocessing, feature extraction and
recognition. In the related literature, shape feature received more attention than
any other feature. The popularity of shape features is because they are easy to
understand and most plant species can be differentiated using their leaf shape.
The issues with shape features are the fact that they are not easy to extract, they
are noise-sensitive, and are sensitive to small variations. Another issue with leaf
characterization is the fact that there is no efficient algorithm that can be used to
characterize the tooth pattern on a given leaf boundary. During the recognition
process a given leaf image is described as a set of feature values that can be used
as input for a classifier.

8.1 Contributions

In this thesis, the goal has been the design of a shape-based plant recognition
system using leaf images by focusing our attention on the feature extraction level.
Furthermore, an attempt to provide a solution to the problem of leaf boundary
analysis by designing new boundary-based features which also have a high potential
of giving promising improvement in recognition process was proposed.

The first research attempts for the conception of a system for plant recognition
using leaf images was the improvement of the Minimum Bounding Rectangle com-
putation because many shape features (such as Rectangularity, Circularity, Aspect
Ratio) are closely dependent on the minimum bounding rectangle. By improving
the computational process of shape feature, we also improved leaf recognition ac-
curacy, as presented in Chapter 3. The improvement on Chaudhuri method gave
a new method that produces results comparable to the popular PCA method for
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the determination of the Minimum Bounding Rectangle (or the oriented Bounding
Box). The MAE (Maximum Error Encure) was used to evaluate the accuracy of the
method compared with a human point of view of a Minimum Bounding Rectangle,
the choice of the human point of view is because there is no reference available for
the construction of the Minimum Bounding Rectangle.

The second attempt was the introduction of the Convexity Measure of Polygons
for the characterization of a given leaf shape. Convexity Measure of Polygons is a
boundary-based shape feature and has proven to be better than the region-based
Convexity Measure because it can be used to evaluate the convexity of an open
shape. During the experimental process, the Convexity Measure was combined
with other shape features and the model obtained yielded some promising results.
A classification rate of 92% was obtained when using the geometrical feature alone
to characterize a given leaf shape and a significant improvement of 3% was obtained
when combining the Convexity measure of polygons with the geometric features.
The Convexity Measure of Polygons provides additional information for the char-
acterization of the leaf shape.

The Convexity Measure of Polygons uses a single value to characterize a given
shape and this makes its usage difficult in characterizing a given shape. To address
the problem, we derived a new shape feature known as the Convexity Moments of
polygons which characterize a given shape using 4 different values compared with
the use of a single value used by the Convexity Measure of Polygons. Like the
Convexity Measure of Polygons, the Convexity Moments of Polygons are invariant
to similarity transformations. The Convexity moments use a set of 4 values to
characterize the degree of convexity of a given shape. The Convexity Moments of
Polygons have proven to be better than the Convexity Measure of Polygons because
they use more values to represent the convexity of a given shape. When using the
Convexity Moments of Polygons a classification rate of 97% was obtained which
represent a significant improvement of 5% compared to the Convexity Measure of
Polygons. Both shape descriptors have the same complexity with a small variation
on the running time use for the computation of the statistical descriptors.

The third attempt was the design of the Sinuosity Coefficients to address the
problem of leaf boundary characterization. The Sinuosity Coefficients are values
used to characterize the degree of meandering of a given leaf boundary. In order
to obtain satisfactory results, the Sinuosity Coefficients need to be combined with
other shape features, sinuosity measure only provides information about the bound-
ary of a given object, not the overall structure. There is a limit to the number of
times a given shape can be divided to apply the sinuosity coefficient. Experimen-
tally, we found that the optimal number of times a given shape can be divided by 8.
A classification rate of 93% was obtained when combining the Sinuosity Coefficients
to other geometric features. The experiment showed the Sinuosity Coefficients com-
bined with other geometric features are better descriptors compared to 4 Fourier
descriptors combine with other geometric features.

The last attempt was the design of a model for plant classification using leaf
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images. The proposed model was designed by combining the Sinuosity Coefficients,
Convexity Moments, other shape features (Geometric features) and the Radial Ba-
sis Function Neural Network. The choice of each of the components of the proposed
models, was based on the results obtained when using each of them for the recogni-
tion of plant leaves. The proposed model has provided promising results with the
leaf image database used for the experiment. An average classification rate of 97%
was obtained by the proposed model.

8.2 Findings

The leaves that are misclassified during all the experiments are either deformed or
are compound leaves. This constitutes one of the future research problem in the
field of plant recognition using leaf image. The possible solution to the recognition
of the deformed leaves might be the use of the symmetry because some leaves are
naturally symmetric. For the compound leaf analysis a possible solution might be
the use of modeling techniques that could help to understand the structure of the
compound leaves hence facilitate the recognition process.

8.3 Future works

The future works of this thesis are based on the improvement of the proposed model,
by adding textural features on the feature set, followed by the conceptualization
of an ontology for plant classification. The ontology will exploit the hierarchical
nature of the techniques used by botanists to recognize plant species. The use of the
symmetric method to design a model for the recognition of deformed plant leaves,
and the design of a model for the description of compound leaf using modeling
techniques.
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Appendix A

FLAVIA Database

Figure 1.1. Sample of leaf images in FLAVIA Database
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Appendix B

UCI Database

Figure 2.1. Sample of leaf images in UCI Database
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Appendix C

LeafSnap Database

Figure 3.1. Sample of leaf images in LeafSnap Database
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