20 research outputs found

    Generic Methodology for Formal Verification of UML Models

    Get PDF
    This paper discusses a Unified Modelling Language (UML) based formal verification methodology for early error detection in the model-based software development cycle. Our approach proposes a UML-based formal verification process utilising functional and behavioural modelling artifacts of UML. It reinforces these artifacts with formal model transition and property verification. The main contribution is a UML to Labelled Transition System (LTS) Translator application that automatically converts UML Statecharts to formal models. Property specifications are derived from system requirements and corresponding Computational Tree Logic (CTL)/Linear Temporal Logic (LTL) model checking procedure verifies property entailment in LTS. With its ability to verify CTL and LTL specifications, the methodology becomes generic for verifying all types of embedded system behaviours. The steep learning curve associated with formal methods is avoided through the automatic formal model generation and thus reduces the reluctance of using formal methods in software development projects. A case study of an embedded controller used in military applications validates the methodology. It establishes how the methodology finds its use in verifying the correctness and consistency of UML models before implementation

    Probabilistic Semantics for RoboChart A Weakest Completion Approach

    Get PDF
    We outline a probabilistic denotational semantics for the RoboChart language, a diagrammatic, domain-specific notation for de- scribing robotic controllers with their hardware platforms and operating environments. We do this using a powerful (but perhaps not so well known) semantic technique: He, Morgan, and McIver’s weakest completion semantics, which is based on Hoare and He’s Unifying Theories of Programming. In this approach, we do the following: (1) start with the standard semantics for a nondeterministic programming language; (2) propose a new probabilistic semantic domain; (3) propose a forgetful function from the probabilistic semantic domain to the standard semantic domain; (4) use the converse of the forgetful function to embed the standard semantic domain in the probabilistic semantic domain; (5) demonstrate that this embedding preserves program structure; (6) define the probabilistic choice operator. Weakest completion semantics guides the semantic definition of new languages by building on existing semantics and, in this case, tackling a notoriously thorny issue: the relationship between demonic and probabilistic choice. Consistency ensures that programming intuitions, development techniques, and proof methods can be carried over from the standard language to the probabilistic one. We largely follow He et al., our contribution being an explication of the technique with meticulous proofs suitable for mechanisation in Isabelle/UTP

    Reducing the Length of Field-replay Based Load Testing

    Get PDF
    With the development of software, load testing have become more and more important. Load testing can ensure the software system can provide quality service under a certain load. Therefore, one of the common challenges of load testing is to design realistic workloads that can represent the actual workload in the field. In particular, one of the most widely adopted and intuitive approaches is to directly replay the field workloads in the load testing environment, which is resource- and time-consuming. In this work, we propose an automated approach to reduce the length of load testing that is driven by replaying the field workloads. The intuition of our approach is: if the measured performance associated with a particular system behaviour is already stable, we can skip subsequent testing of this system behaviour to reduce the length of the field workloads. In particular, our approach first clusters execution logs that are generated during the system runtime to identify similar system behaviours during the field workloads. Then, we use statistical methods to determine whether the measured performance associated with a system behaviour has been stable. We evaluate our approach on three open-source projects (i.e., OpenMRS, TeaStore, and Apache James). The results show that our approach can significantly reduce the length of field workloads while the workloads-after-reduction produced by our approach are representative of the original set of workloads. More importantly, the load testing results obtained by replaying the workloads after the reduction have high correlation and similar trend with the original set of workloads. Practitioners can leverage our approach to perform realistic field-replay based load testing while saving the needed resources and time

    Socio-Technical Security Modelling: Analysis of State-of-the-Art, Application, and Maturity in Critical Industrial Infrastructure Environments/Domains

    Get PDF
    This study explores the state-of-the-art, application, and maturity of socio-technical security models for industries and sectors dependent on CI and investigates the gap between academic research and industry practices concerning the modelling of both the social and technical aspects of security. Systematic study and critical analysis of literature show that a steady and growing on socio-technical security M&S approaches is emerging, possibly prompted by the growing recognition that digital systems and workplaces do not only comprise technologies, but also social (human) and sometimes physical elements

    Applying Model Checking to Pervasive Computing Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Formal Engineering Approach for Interweaving Functional and Security Requirements of RESTful Web APIs

    Get PDF
    RESTful Web API adoption has become ubiquitous with the proliferation of REST APIs in almost all domains with modern web applications embracing the micro-service architecture. This vibrant and expanding adoption of APIs, has made an increasing amount of data to be funneled through systems which require proper access management to ensure that web assets are secured. A RESTful API provides data using the HTTP protocol over the network, interacting with databases and other services and must preserve its security properties. Currently, practitioners are facing two major challenges for developing high quality secure RESTful APIs. One, REST is not a protocol. Instead, it is a set of guidelines that define how web resources can be designed and accessed over HTTP endpoints. There are a set of guidelines which stipulate how related resources should be structured using hierarchical URIs as well as how specific well-defined actions on those resources should be represented using different HTTP verbs. Whereas security has always been critical in the design of RESTful APIs, there are no clear formal models utilizing a secure-by-design approach that interweaves both the functional and security requirements. The other challenge is how to effectively utilize a model driven approach for constructing precise requirements and design specifications so that the security of a RESTFul API is considered as a concern that transcends across functionality rather than individual isolated operations.This thesis proposes a novel technique that encourages a model driven approach to specifying and verifying APIs functional and security requirements with the practical formal method SOFL (Structured-Object-Oriented Formal Language). Our proposed approach provides a generic 6 step model driven approach for designing security aware APIs by utilizing concepts of domain models, domain primitives, Ecore metamodel and SOFL. The first step involves generating a flat file with APIs resource listings. In this step, we extract resource definitions from an input RESTful API documentation written in RAML using an existing RAML parser. The output of this step is a flat file representing API resources as defined in the RAML input file. This step is fully automated. The second step involves automatic construction of an API resource graph that will work as a blue print for creating the target API domain model. The input for this step is the flat file generated from step 1 and the output is a directed graph (digraph) of API resource. We leverage on an algorithm which we created that takes a list of lists of API resource nodes and the defined API root resource node as an input, and constructs a digraph highlighting all the API resources as an output. In step 3, we use the generated digraph as a guide to manually define the API’s initial domain model as the target output with an aggregate root corresponding to the root node of the input digraph and the rest of the nodes corresponding to domain model entities. In actual sense, the generated digraph in step 2 is a barebone representation of the target domain model, but what is missing in the domain model at this stage in the distinction between containment and reference relationship between entities. The resulting domain model describes the entire ecosystem of the modeled API in the form of Domain Driven Design Concepts of aggregates, aggregate root, entities, entity relationships, value objects and aggregate boundaries. The fourth step, which takes our newly defined domain model as input, involves a threat modeling process using Attack Defense Trees (ADTrees) to identify potential security vulnerabilities in our API domain model and their countermeasures. aCountermeasures that can enforce secure constructs on the attributes and behavior of their associated domain entities are modeled as domain primitives. Domain primitives are distilled versions of value objects with proper invariants. These invariants enforce security constraints on the behavior of their associated entities in our API domain model. The output of this step is a complete refined domain model with additional security invariants from the threat modeling process defined as domain primitives in the refined domain model. This fourth step achieves our first interweaving of functional and security requirements in an implicit manner. The fifth step involves creating an Ecore metamodel that describes the structure of our API domain model. In this step, we rely on the refined domain model as input and create an Ecore metamodel that our refined domain model corresponds to, as an output. Specifically, this step encompasses structural modeling of our target RESTful API. The structural model describes the possible resource types, their attributes, and relations as well as their interface and representations. The sixth and the final step involves behavioral modeling. The input for this step is an Ecore metamodel from step 5 and the output is formal security aware RESTful API specifications in SOFL language. Our goal here is to define RESTful API behaviors that consist of actions corresponding to their respective HTTP verbs i.e., GET, POST, PUT, DELETE and PATCH. For example, CreateAction creates a new resource, an UpdateAction provides the capability to change the value of attributes and ReturnAction allows for response definition including the Representation and all metadata. To achieve behavioral modelling, we transform our API methods into SOFL processes. We take advantage of the expressive nature of SOFL processes to define our modeled API behaviors. We achieve the interweaving of functional and security requirements by injecting boolean formulas in post condition of SOFL processes. To verify whether the interweaved functional and security requirements implement all expected functions correctly and satisfy the desired security constraints, we can optionally perform specification testing. Since implicit specifications do not indicate algorithms for implementation but are rather expressed with predicate expressions involving pre and post conditions for any given specification, we can substitute all the variables involved a process with concrete values of their types with results and evaluate their results in the form of truth values true or false. When conducting specification testing, we apply SOFL process animation technique to obtain the set of concrete values of output variables for each process functional scenario. We analyse test results by comparing the evaluation results with an analysis criteria. An analysis criteria is a predicate expression representing the properties to be verified. If the evaluation results are consistent with the predicate expression, the analysis show consistency between the process specification and its associated requirement. We generate the test cases for both input and output variables based on the user requirements. The test cases generated are usually based on test targets which are predicate expressions, such as the pre and post conditions of a process. when testing for conformance of a process specification to its associated service operation, we only need to observe the execution results of the process by providing concrete input values to all of its functional scenarios and analyze their defining conditions relative to user requirements. We present an empirical case study for validating the practicality and usability of our model driven formal engineering approach by applying it in developing a Salon Booking System. A total of 32 services covering functionalities provided by the Salon Booking System API were developed. We defined process specifications for the API services with their respective security requirements. The security requirements were injected in the threat modeling and behavioral modeling phase of our approach. We test for the interweaving of functional and security requirements in the specifications generated by our approach by conducting tests relative to original RAML specifications. Failed tests were exhibited in cases where injected security measure like requirement of an object level access control is not respected i.e., object level access control is not checked. Our generated SOFL specification correctly rejects such case by returning an appropriate error message while the original RAML specification incorrectly dictates to accept such request, because it is not aware of such measure. We further demonstrate a technique for generating SOFL specifications from a domain model via model to text transformation. The model to text transformation technique semi-automates the generation of SOFL formal specification in step 6 of our proposed approach. The technique allows for isolation of dynamic and static sections of the generated specifications. This enables our technique to have the capability of preserving the static sections of the target specifications while updating the dynamic sections in response to the changes of the underlying domain model representing the RESTful API in design. Specifically, our contribution is provision of a systemic model driven formal engineering approach for design and development of secure RESTful web APIs. The proposed approach offers a six-step methodology covering both structural and behavioral modelling of APIs with a focus on security. The most distinguished merit of the model to text transformation is the utilization of the API’s domain model as well as a metamodel that the domain model corresponds to as the foundation for generation of formal SOFL specifications that is a representation of API’s functional and security requirements.博士(理学)法政大学 (Hosei University

    Model-connected safety cases

    Get PDF
    Regulatory authorities require justification that safety-critical systems exhibit acceptable levels of safety. Safety cases are traditionally documents which allow the exchange of information between stakeholders and communicate the rationale of how safety is achieved via a clear, convincing and comprehensive argument and its supporting evidence. In the automotive and aviation industries, safety cases have a critical role in the certification process and their maintenance is required throughout a system’s lifecycle. Safety-case-based certification is typically handled manually and the increase in scale and complexity of modern systems renders it impractical and error prone.Several contemporary safety standards have adopted a safety-related framework that revolves around a concept of generic safety requirements, known as Safety Integrity Levels (SILs). Following these guidelines, safety can be justified through satisfaction of SILs. Careful examination of these standards suggests that despite the noticeable differences, there are converging aspects. This thesis elicits the common elements found in safety standards and defines a pattern for the development of safety cases for cross-sector application. It also establishes a metamodel that connects parts of the safety case with the target system architecture and model-based safety analysis methods. This enables the semi- automatic construction and maintenance of safety arguments that help mitigate problems related to manual approaches. Specifically, the proposed metamodel incorporates system modelling, failure information, model-based safety analysis and optimisation techniques to allocate requirements in the form of SILs. The system architecture and the allocated requirements along with a user-defined safety argument pattern, which describes the target argument structure, enable the instantiation algorithm to automatically generate the corresponding safety argument. The idea behind model-connected safety cases stemmed from a critical literature review on safety standards and practices related to safety cases. The thesis presents the method, and implemented framework, in detail and showcases the different phases and outcomes via a simple example. It then applies the method on a case study based on the Boeing 787’s brake system and evaluates the resulting argument against certain criteria, such as scalability. Finally, contributions compared to traditional approaches are laid out
    corecore