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Summary

Pervasive computing systems are ‘aware’ of and self-adaptive to its environment changes.
Many successes have been achieved in laboratories especially for activity monitoring. How-
ever, such systems are not widely deployed due to, not only scalability and a lack of guar-
antees for correctness and reliability, but also the fact that those systems are designed for
demonstration purpose with well controlled scenarios in a specific lab environment. Existing
approaches such as software testing and simulation are laborious and not su�cient since
only partial system behaviours are explored. Formal methods, especially model checking
techniques are needed to model and reason the real environment. In this thesis, we propose
to apply model checking techniques to systematically analyse pervasive computing systems.

First, a formal modelling framework is proposed with general modelling patterns for both
the system design such as concurrent communications, context reasoning behaviours etc.
and the environment including the human behaviours. Critical requirements concerned by
stakeholders are specified as assertions which are verifiable against the system model. Sec-
ondly, we present a systematic rule anomaly detection approach. A tool is developed to
automatically translate Drools Rules to CSP# modelling languages. Rule anomalies can
then be detected automatically by reusing existing verification algorithms. Furthermore,
MDP-based probabilistic model checking techniques are applied to perform reliability anal-
ysis. We target at three questions: 1) reliability prediction- “What is the overall reliability
of the system based on known component reliability?”; 2) reliability distribution- “To reach
a certain overall system reliability, how reliable should the sensors/networks be?”; 3) sen-
sitivity analysis- “Which node (could be a sensor or network device) has the most critical
impact to the overall reliability?”.

Last but not the least, case studies on a real-world pervasive computing system AMUPADH,
demonstrate the usefulness of our approaches. AMUPADH is designed for monitoring and
assisting elderly with dementia to live independently and is deployed in a Singapore based
nursing home. Existing model checkers such as PAT and RaPid are adopted for carrying
out verification experiments. Unexpected bugs and system flaws are exposed which are
confirmed by system engineers.

Key words: System Analysis, Model Checking, Pervasive Computing Systems,
Ambient Assisted Living System, Healthcare, Correctness Analysis, Reliability
Analysis, Case Study
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Chapter 1

Introduction

Envisioned by Mark Weiser in the 90’s, ubiquitous computing, aka pervasive computing

is becoming the new computing paradigm of the 21st century, that computers disappear

from the environment and “weaved themselves into the fabric of everyday life until they are

indistinguishable from it” [84]. Significant hardware developments such as location sensors,

wireless communication and mobile computing technologies have advanced Weiser’s vision

toward reality. Nowadays, the pervasive computing system (referred to ‘PvC system’ in the

rest of the thesis) is emerging as a promising solution to problems risen with the proliferation

of ageing population in all industrialised societies, e.g. creating enormous costs for the

need of intensive care of elder people. Such systems make it possible for elderly people

to stay in their homes longer and manage everyday tasks without significant burden for

their caregivers [56, 83, 63]. These systems usually incorporate complex technologies in a

layered architecture design: a physical layer with sensors to monitor the environment and

user behaviours; a middleware layer to manage and reason the sensed contexts so as to

be aware of what’s happening in the environment; an application services layer to make

adaptations to environment changes by invoking actuators. Consequently, PvC systems are

highly complex due to concurrent interactions among all these layers.

1
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PvC systems can be safety critical, especially for smart healthcare systems built for elderly

people. They are intelligently adaptive to the environment and fully automatic with little

or no human supervision. Consequently, an error occurred in the system could harm the

user’s safety. For example, if a call-for-help reminder fails to be sent when the elderly user

falls, he/she could be left unattended for a long time causing severe consequences. As a

result, it is essential to adequately test and verify the system before they are deployed.

However, these complex systems are developed without e↵ective techniques to guarantee

its correctness and reliability. Traditional techniques such as simulation and testing are

evidenced to be expensive and not complete. In fact, to set up all hardware devices for

testing is of high cost and time consuming. Furthermore, it is an impossible task for system

engineers to consider all possible scenarios during development.

On the other hand, formal methods, especially model checking techniques are potential

solutions to combat the weakness of these conventional methods. Model checking [37] is an

automatic technique that can establish, via exhaustive analysis of the model of a system,

whether its behaviour is correct with respect to a given specification. There are a number

of successful stories in past years [86, 52]. Recently, it gained the most attentions for

Intel’s breakthrough on validating their new processor Core i7 fully by model checking and

without using a single test case [38]. Model checking has a number of advantages compared

with traditional techniques. It is automatic and complete with counterexamples generated

to help the designers pinpoint the sources of the system flaws. Besides, model checking

techniques do not require the actual system to be deployed and they can easily scale up to

larger system models by proper abstraction and applying advanced state space reduction

algorithms.
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1.1 Summary of This Thesis

A number of formal approaches have been proposed for analysing PvC systems. However,

most of them can only be applied to some component of the systems and some of them are

not automatic which is infeasible for large systems. In this section, we summarise some of

the challenging problems and propose our solutions to them.

1.1.1 Challenging Problems

• Correctness is essential to PvC systems which are usually fully automatic with little or

even no human supervision. In order to apply model checking techniques, the foremost

step is to properly model the system. A model of a PvC system should include models

of all its components (i.e., sensors, network communication, rule-based reasoning and

application adaptation) and the interactions among them. However, up till now, there

is no modelling approaches to integrate all the component models in one framework.

Besides, the system is usually user-centred. Modelling of the user behaviours is also

important but often omitted in existing works.

• Rule-based activity recognition based on multi-modal sensor readings have been pro-

posed to enable a PvC system to be shared by multiple users [82, 29, 74]. However,

those rules are manually defined and error-prone. Incorrect or vague rules, could im-

pair the system’s capability in recognising activities, which further result in a lack

of, or inappropriate service to be o↵ered. Due to the relatively large number of rules

and various scenarios that have to be tested in actual deployments, an automatic rule

verification approach is needed while existing methods are not directly applicable.

Most of the existing approaches were developed in 1990’s for stateless rules (where

knowledge are not shared during di↵erent runs of rule evaluation) while nowadays

stateful rules are used more often in practical reasoning systems.
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• A PvC system is considered reliable when all the assistance services are delivered at

the right scenario to the right user. However, there are many causes leading to a

unreliable system, e.g., sensors (less sensors or low-capability but cheaper sensors are

used due to budget constraints [59, 65]) have limited detecting range and battery life,

signal strength of wireless network drops with the increasing of distance. Thus, relia-

bility analysis is critical for improving the quality of services provided by the system.

Nevertheless, nondeterminism caused by unpredictable user behaviours prevents the

direct use of existing techniques.

• There have been a number of smart systems being studied using formal methods

in the past years. Those case studies are considered simple in the sense of limited

concurrency. They are either single-user based or using simple sensors with less or

no use of rules. However, smart systems nowadays are complex adopting a multi-

modal sensor platform (also known as sensory data fusion) to enable multiple users

sharing the environment concurrently. Thus, large case study on a complex real-life

application is desired to show the feasibility of model checking technique.

1.1.2 Thesis Structure

To meet the challenges listed above, we propose a systematic formal analysis approach

including specific methods targeting at di↵erent problems. In summary, the contribution of

the thesis are explained below.

Correctness Analysis via Concurrent System Model Checking We propose a for-

mal framework to systematically analyse PvC systems. Firstly, modelling patterns for

unpredictable user behaviours and concurrent interactions between system components are

proposed and illustrated with examples. Furthermore, we formally specified critical prop-

erties like safety (nothing bad happens) and liveness (something good eventually happens)
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extracted from interviews of the stakeholders (system designers and caregivers of system

users). Finally, we demonstrate a case study on a smart healthcare system for mild demen-

tia patients, AMUPADH [11]. AMUPADH system has a multi-person sharing environment

which exhibits additional complexity in terms of concurrent interactions. We adopt CSP#

as the modelling language for its rich set of syntax in modelling concurrent system with hi-

erarchies. Critical properties such as deadlock freeness and guaranteed reminder service are

verified using Process Analysis Toolkit (PAT model checker) [77] (a self-contained frame-

work for modelling, simulating and reasoning of concurrent and real-time systems). Multiple

unexpected bugs such as conflicted reminders are detected at the early design stage.

Automatic Rule Anomaly Detection via Model Checking ACARP, is proposed as

an automatic rules verification approach based on exhaustive manipulation of all possible

scenarios. It is discovered that rule anomalies such as conflict rules can be represented using

formal property specifications such as reachability and liveness properties. Thus,the rules

verification problem can be transformed into a model checking problem. By adopting the

formal modelling framework proposed in the first work, a scenario model is constructed.

Further, ACARP automates the rule modelling by translating rules into CSP# modelling

language for its support of external method calls. In such a way, the rule anomalies can

be automatically detected by reusing the existing model checking algorithms e�ciently.

Experiment results show its usefulness to detect non-reachable, redundant and conflict

rules.

Reliability Analysis via MDP-based Probabilistic Model Checking Markov De-

cision Process (MDP) is chosen as the modelling formalism for its support of modelling both

probabilistic and non-deterministic choices. Based on the MDP models, three general ques-

tions of interest to end-users and developers are investigated, i.e., 1) Reliability prediction,

“what is the overall system reliability if reliability of all its components and subsystems



1.2. OUTLINE 6

are known, considering all possible user behaviours, and unreliable factors?”; 2) Reliability

distribution, “what is the reliability required on subsystems or some devices if there is an

expected reliability on overall system?”, which provides decision support for cost-e↵ective

selections of software or hardware components; 3) Sensitivity analysis, which is important to

found out the most critical parts to system reliability, based on quantitative measurement,

that relatively more e↵orts and fund can be spent on. A case study on the reminding system

of AMUPADH is demonstrated showing the system reliability is below 50%. Experiments

also suggest that increasing the reliability of Wi-Fi network is more e↵ective to improve the

system reliability than replacing certain sensors.

1.2 Outline

In this section, we briefly present the outline of the thesis and overview of each chap-

ter. Chapter 2 investigates the background information about common architectures and

features of PvC systems. It also introduces the model checking techniques developed for

concurrent, real-time and probabilistic systems respectively.

Chapter 3 illustrates a typical PvC system, AMUPADH which serves as a running example

in this thesis. AMUPADH system is a smart healthcare for assisting independent living

of elderly dementia people. The architecture includes three layers, i.e., data acquisition by

multiple sensors on physical layer, context processing and reasoning on middleware layer

and reminder service rendering on application layer.

Chapter 4 - 7 are the main chapters of this thesis and have the following structure. Following

an introduction of the specific problem and its challenges, we demonstrate our proposed

solution in details. A case study will be used to show the usefulness of our approach. Each

chapter will be closed with a discussion of related works.

Chapter 4 presents the formal modelling framework with modelling patterns for the im-
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portant components of PvC systems. We also identify the critical requirements commonly

asked by stakeholders of smart systems.

Chapter 5 applies our formal analysis approach to AMUPADH system. A number of prop-

erties are verified against the system model which includes deadlock freeness, guaranteed

reminders etc..

Chapter 6 further extends our formal analysis approach to rules verification. Considering

there are large number of rules which are being frequently changed, we design a tool for

automatic rule modelling using a translation approach. By specify rule anomalies as formal

logic expressions, we are able to detect the redundancy, and conflicts in the reasoning rules.

Chapter 7 investigates reliability analysis using MDP-based probabilistic model checking

techniques. We explore three problems which are reliability prediction based on known

reliability value of system components, reliability distribution on certain nodes upon a

reliability requirement on the system and sensitivity analysis aiming to find the most critical

component which a↵ects the system reliability.

Finally, Chapter 8 concludes the thesis with a discussion on open problems.
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Chapter 2

Background

2.1 Pervasive Computing Systems

A PvC system is an intelligent system with sensors, network and software system. It is

context-aware and automatically adaptable to environment changes such as turning on the

light when a person enters the room. Moreover, such system is no longer a static piece of

software, but a complex system build up upon technologies across multiple disciplines of

computer science and engineering, including wireless sensor network, rule-based reasoning

software, distributed computing, human computer interaction and service oriented archi-

tecture etc. This type of system first introduced by Mark Weiser [84] refers to the seamless

integration of devices into the users everyday life. Appliances should vanish into the back-

ground to make the user and his tasks the central focus rather than computing devices and

technical issues. PvC systems are gaining intense attention and are emerging. Projects

such as Oxygen [54] in MIT, Aura [17] in Carnegie Mellon University and AMUPADH [11]

in Singapore have been launched years ago to achieve an intelligent world.

A PvC system is also referred to a number of other names. For example, “Ubiquitous Com-

11
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puting”, first named by Mark Weiser and his colleges in Xerox PARC. IBM related this

notion to the slogan of “everywhere at anytime” as this technology should be pervasive.

However, Phillips likely to call it Ambient Intelligent System and “Ambient Assistive Liv-

ing” is usually adopted in healthcare domain. Researchers from UK are more familiar with

the name “Sentient Computing”. Other names such as “Context-Aware System”, “Smart

System” and “Calm Technology” are also used by researchers and industry people. How-

ever, all the names refer to the similar technology which is pervasive and intelligent. The

di↵erence between these names are purely academic said in the paper [67].

In this section, the necessary background of PvC systems is introduced. It includes the

most common architecture of the system and the important features and challenges of the

system for the research purposes of this thesis.

2.1.1 The Typical Architecture

Many approaches for implementing PvC systems are proposed in the literature [10]. These

approaches di↵er due to special requirements and conditions such as location of sensors, the

amount of possible users or the available resources of the used devices etc.. When analysing

the various design approaches in modern applications, a common architecture is identifiable.

The system usually adopts a layered design, as shown in Figure 2.1.

The first layer consists of a collection of di↵erent sensors. It is notable that the word ‘sensor’

not only refers to sensing hardware but also to every data source which may provide usable

context information. This layer seamlessly monitors the changes in the environment such

as changing of temperature, user’s presence/ absence. It also provides raw contexts to other

layers.

These raw contexts are then aggregated at the second layer, the middleware. The mid-

dleware layer is usually implemented on a centralised server for the purpose of context
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Pervasive Computing System Environment

Sensors
Pressure Sensor
RFID Reader
Vibration Sensor
Accelerometer

Middleware
Context Manager
Reasoning Engine
Adaptation Manager

Applications
Reminder Services
Actuators
Meeting Services
Alarm Services

User Behaviors
Start Projector
Cook
Sleep on Bed
Make a Phone Call
Have Lunch
Play a Game

Facilities
Projector
Microwave Oven
Bed
Mobile Phone
Chair
Tablet PC

BUS

BUS

Figure 2.1: The Common Architecture of Pervasive Computing Systems

management and reasoning. Raw context information is interpreted from sensing signals to

software understandable contexts. For example, a ‘1’ in a message from the shake sensor

on shower pipe is interpreted to be a context ‘Showering’ and some id ‘1’ in a message from

RFID reader in the shower room is known as ‘user Jane is in the shower room’. Contexts

interpreted from sensors are known as low-level contexts. The reasoning process in the mid-

dleware further combines these low-level contexts to infer high level contexts. For example,

combining the contexts ‘Showering’ and ‘user Jane is in the shower room’, a high-level

context information is inferred as ‘user Jane is taking shower’.

In the third layer, the application layer, the responsive reactions such as prompting reminder

services are implemented. Based on various high-level contexts provided from the second

layer, di↵erent pre-defined services are activated for specific scenarios. For instance, in a

smart meeting room system, the meeting service will automatically turn on the projector

when a meeting scenario is detected.

The system interacts with the environment via sensor layer to detect changes and application

layer to feedback/ adapt to changes. The architecture of PvC systems has evolved to be
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layered during the last years. This separation of detecting, processing and using contexts

is necessary in order to improve extensibility and reusability of systems. Understanding of

the common architecture is critical to analyse PvC systems. Based on the architecture, it

is able to identify the important components and their functions, find out the connections

between di↵erent layers and more importantly to extract information/ knowledge that are

shared among components.

2.1.2 Important Features and Challenges

PvC systems are complex that they usually incorporate many di↵erent technologies. They

are systems consisting of heterogeneous sub-systems yet di↵erent from any existing computer

systems [68, 71]. From the literature survey and the research experience, some of their

distinct features to the interest of this thesis are summarised as follows.

Heterogeneity The innovation of the PvC system is that it integrates all the possible

technologies developed so far to make computing devices serve people quietly. Then the

challenge is how to integrate all the heterogeneous technologies in to one framework and

make them working together smoothly. This heterogeneity exists in all the necessary parts

of the system [68]. Sensors are the most obvious example. There are enormous sensors

developed in di↵erent companies and countries and based on di↵erent standards [23]. The

system usually relies on multi-modality of these sensors which includes sensors that detect

pressure on the bed, sensors that could sense the door open/ close and sensors which moni-

tors the water flow of the shower pipe. Furthermore, the sensors usually have very di↵erent

refreshing rates. For instance, a pressure sensor may send the data every 1 millisecond while

a reed switch sensor on the door may send its data every 1 second. These di↵erent refresh-

ing rates often cause the reasoning engine to conclude false results due to the incomplete

knowledge of the environment. Moreover, this heterogeneity could be even a nightmare for
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engineers when the system is deployed in the real environments. A large team of engineers

where each one of the them is specialised in a particular technology is needed to cooperate in

the deployment. A failure happened in the system may involve multiple engineers working

together to pinpoint the source of the problem.

Thus, the heterogeneity becomes a challenge to analyse PvC systems. The analysis approach

should be able to model these inherently di↵erent devices and components. Many existing

technologies such as testing and simulation get hindered by this challenge. What’s more,

sensors and wireless networks exhibits unreliable behaviours, e.g., sensors fail from time

to time and networks get congested causing message loss. Managing the system at an

acceptable reliability rate is another key challenge.

Context-Aware and Adaptive Contexts are referred to any information that could be

used in the system, especially the information of the environment such as the time, the tem-

perature or the location where the person presents. PvC systems are aware of its contexts

and continuously adapting to the context changes [71]. These two characteristics di↵eren-

tiate PvC systems from other computing systems. The context-awareness is accomplished

by the context manager and the reasoning engine in the middleware. As introduced in

Section 2.1.1, the context manager collects and interprets the context stream sent by the

sensors and the reasoning engine combines and infers high-level, software-understandable

contexts. Adaptations to the environment changes are made based on predefined rules.

These important features further require the analysis approach be able to modelling the

shared information and the concurrent communications among components.

System of Systems The emerging system-of-systems (SoS) concept refers to a collection

of many independent, self-contained systems where their integration o↵ers more function-

ality and performance than simply the sum of these sub-systems. In a PvC system, the
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networked sensors, the business rules engines and various applications such as Bluetooth

speaker, TV and so forth are likewise systems. Thus, a pervasive computer system is an

SoS because it is an assemblage of components that are individually regarded as systems.

The PvC system also satisfies Maier’s definition of SoS or “collaborative system” [50], that

‘its components fulfilled valid purposes in their own right and continued to operate to fulfil

those purposes if disassembled from the overall system, and the components systems are

managed (at least in part) for their own purposes rather than the purposes of the whole’.

This feature requires the formal approach to have the ability of modelling and reasoning

the compositional relations between sub-systems. Besides, it is a big challenge to analyse

huge system state space yielded from the composition of sub-system state spaces.

2.2 Model Checking

Principal techniques for formally analysing complex system behaviours include testing, sim-

ulation, deductive reasoning, and model checking. Simulation and testing approaches test

system outputs with certain inputs against the expected results. However, they are very

expensive and infeasible for complex systems with various unexpected behaviours and not

complete because only a subset of possible behaviours are covered. Deductive verification

uses axioms and proof rules to prove the correctness of the systems, which can handle infinite

state systems but it is a manual approach that is time consuming and requires expertise.

Model checking is an automatic approach for verifying finite state systems. It di↵ers from

other methods in two crucial aspects: 1) it does not aim of being fully general; 2) it is fully

algorithmic and of low computational complexity1.

1The complexity of most model checking algorithms is proportional to the state space or the product of
the state space and property.
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2.2.1 Basics of Model Checking

Model checking [37] is a verification technique that explores all possible system states in a

brute-force manner. In order to formally analyse system behaviours using model checking, a

system model needs to be constructed and abstracted from the original system design using

certain formalism accepted by a model checker. Hereafter, the requirements of the systems

are specified as properties in proper logics. One common example is temporal logic, which

can assert how the behaviour of the system evolves over time. Finally, the verification of the

specification against the system model is then conducted automatically by a model checker.

The result will be returned with witness traces or counterexamples. The analysing of the

error trace may require modifications to the model and repeat the model checking process.

Since model checking needs to fully explore the system space, thus it is required for the

system model to be finite with bounded data size and finite number of processes. How-

ever, to examine the large state space using limited processors and memories remains a

big challenge in model checking domain. State-of-the-art model checkers based on explicit

state-space enumeration can handle about 108 to 109 states. Thus, the main bottleneck of

model checking techniques is the infamous problem, state space explosion. This is also a big

problem in formally analyzing pervasive computing systems due to the various communica-

tions between system components and the shared data variables which explodes the system

state space exponentially.

2.2.2 Concurrent System Model Checking

Our home grown model checker, Process Analysis Toolkit (PAT) [2] is a self-contained

toolkit to analyze concurrent systems, which supports of system modeling using CSP#,

animated simulation and automatic verification of properties specified in LTL semantics

and others.
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Figure 2.2: Architecture Design of PAT

Fig. 2.2 shows the architecture design of PAT with four components, namely the editor, the

parser, the simulator and verifier. The editor is featured with powerful text editing, syntax

highlighting and multi-documents environment. The parser compiles the system models

and the properties into internal representation which is a labeled transition system. PAT

adopts a fully automated abstraction technique to build an abstract finite state machine

from the model. Further, it weakly bi-simulates the concrete model and, therefore, we may

perform sound and complete LTL-X (i.e. LTL without the next operator) model checking

or refinement checking upon the abstraction. The simulator allows users to perform various

simulation tasks on the models: complete states generation of execution graph, automatic

simulation, user interactive simulation, trace replay and etc. Most importantly, PAT im-

plements several verification algorithms catering for safety, reach-ability, liveness properties

verification, refinement checking and etc. To achieve good performance, advanced optimisa-

tion techniques are implemented, e.g., partial order reduction, process counter abstraction,
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parallel model checking, etc. These verification algorithms perform on-the-fly exploration

of the state space. If any counterexample is identified during the exploration, then it can

be animated in the simulator for the purpose of debugging.

Modeling Languages- CSP# Modelling languages such as CSP [34] use mathematical

objects as abstractions to represent systems and processes. System behaviours are described

as process expressions combined with compositional operators, which are associated with

elegant algebraic laws for system analysis. Nonetheless, modelling systems with non-trivial

data and functional aspects using CSP remains di�cult. Solutions are proposed such as new

languages by integrating process algebras like CSP, CCS [53] with state based languages

like Z languages or Object-Z language. However, declarative languages such as Z are very

expressive but not executable. Automatically analysing system behaviours using these

languages is extremely di�cult. CSP# (short for communicating sequential programs)

proposed in [75] instead extends CSP directly with low level programs eases the modelling

and verification of computing systems. This language maximally preserves the original CSP

and treats sequential programs as atomic events.

Sequential Programs as Events Shared variables o↵er an alternative means of commu-

nication among processes. They record the global state and make the information available

to all processes.

1. #define NoOfPatient 2;
2. enum {SILENT ,FIRING};
3. var sensors[9];

where define, enum and var are reserved keywords. The former defines a global constant,

e.g., NoOfPatient which denotes the number of patients sharing the room. The middle

one is a syntax sugar for define that enumerates the global constants. Silent and firing are
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two statuses of the PIR sensor used to capture the human presence. The latter defines a

variable, e.g., sensors[9] which stores the current status of each sensor. CSP# has a weak

type system and therefore type information is not necessary for variable declaration. By

default, all the above defined are treated as integers or arrays of integers. We use PAT to

verify that the constraints hold given any system behaviour.

Composing Programs CSP# reuses high level composition operators in CSP since they

are very useful in modelling system behaviours. Furthermore, process equivalence can be

proved or disproved by appealing to algebraic laws which are defined for the operators.

A CSP# specification may contain multiple process definitions. A process definition gives

a process expression a name, which can be referenced in process expressions. The following

is a BNF description of the process expression

P ::= Stop | Skip | e{prog} ! P | ch!exp ! P | ch?x ! P |
P \X | P ; Q | P [] Q | P u Q | if b {P} else {Q} |
[b]P | PkQ | Pk | Q | P 4 Q | ref (Q)

where P ,Q are processes, e is a name representing an event with an optional sequential

program prog , X is a set of event names (e.g., {e1, e2}), b is a Boolean expression, ch is a

channel, exp is an expression, and x is a variable.

Stop is the process that does nothing. Skip = X ! Stop, where X is the special event of

termination. Event prefixing e ! P performs e and afterwards behaves as process P . If e is

attached with a program, the program is executed atomically together with the occurrence

of the event. Channel communications, ch!exp ! P and ch?x ! P are considered as events.

The former evaluates the exp (with the current valuation of the variables) and puts the value

into the tail of the respective bu↵er in there is any and behaves as P . Process ch?x ! P

gets the top element in the respective bu↵er, assigns it to variable x and then behaves



2.2. MODEL CHECKING 21

as P . If the channel is declared without a bu↵er than the sending and receiving events

have to be synchronized. Process P \ X hides all occurrences of events in X . Sequential

composition, P ; Q , behaves as P until its termination and then behaves as Q . External

choice P⇤Q is solved only by the occurrence of a visible event. On the contrast, internal

choice P u Q is solved non-deterministically. Conditional choice if b {P} else {Q} behaves

as P if b evaluates to true, and behaves as Q otherwise. Process [b]P waits until condition

b becomes true and then behaves as P . Notice that it is di↵erent from if b {P} else {Q}.
One distinguishing feature of CSP is alphabetized multi-processes parallel composition.

Let P ’s alphabet, written as ↵P , be the events in P excluding the special invisible event

⌧ . Process PkQ synchronizes common events in the alphabets of P and Q . In contrast,

process Pk | Q runs all processes independently (except for communication through shared

variables). Process P 4 Q behaves as P until the first occurrence of an visible event from

Q . A process expression may be given a name for referencing. Recursion is supported by

process referencing. The operational semantics for CSP# is attach in Appendix A.

Property Specification

PAT supports a rich family of property specification which includes safety, liveness proper-

ties. These properties are supported in two ways regarding direct support with keywords

and manually specifying using formulae of linear temporal logic.

Safety Property A safety property refers to “something bad never happens”. In general,

safety property requires the absence of deadlocks and similar critical states that cause the

system to crash.

Deadlock-free is defined as the system will never enter a deadlock state which has no out-

going transitions. Deadlock is highly undesirable and mostly caused by a design error in

concurrent systems. A typical deadlock scenario occurs when components mutually wait
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for each other to progress. Deadlock freeness checking is directly supported in PAT using

the keyword deadlockfree.

A more general form of safety property can be stated as a logic formula of the atomic

propositions, e.g., ¬(personInBedroom ^ PersonInShowerRoom) is a safety property mean-

ing that a person cannot be in two places at the same time.

Liveness Properties and Linear Temporal Logics Liveness properties mean that

“something good will eventually happen”. This property is useful in expressing the desirable

system behaviors such as if the system can fulfill its mission. For example, PvC systems for

healthcare are required to provide e↵ective help when patients are in danger. This property

can be expresses as system will eventually prompt a reminder to ask the patient to sleep

when he is sitting on bed for too long.

Model checking based on temporal logic formulae has been proved e↵ective as well as in-

tuitive. For explicit state and event based modeling languages such as CSP#, state-based

temporal logic such as Linear Temporal Logic (LTL) is a natural candidate for property

specification and verification. In the following, an interpretation of LTL based on CSP# se-

mantics is listed that this interpretation allows us to apply automata-based model checking

of temporal logic formulae constituted with both event and state propositions. Let Pr be a

set of propositions (formulated using predicates on global variables in CSP#). An extended

LTL formula is defined as follows.

� ::= p | a | ¬� | � ^  | X� | 2� | 3� | �U 

where p ranges over Pr and a ranges over ⌃. Let ⇡ = hs0, e0, s1, e1, · · · , ei , si , · · ·i be an

infinite execution. Let ⇡i be the su�x of ⇡ starting from si .
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⇡i ✏ p , si ✏ p
⇡i ✏ a , ei�1 = a
⇡i ✏ ¬� , ¬(⇡i ✏ �)
⇡i ✏ � ^  , ⇡i ✏ � ^ ⇡i ✏  
⇡i ✏ X ^ �, ⇡i+1 ✏ �
⇡i ✏ 2� , 8 j � i • ⇡j ✏ �
⇡i ✏ 3� , 9 j � i • ⇡j ✏ �
⇡i ✏ �U , 9 j � i • ⇡j ✏  ^ 8 k | i  k  j � 1 • ⇡j ✏ �

The simplicity of writing formulae concerning events is not purely a matter of aesthetics.

It may yield gains in time and space. A model satisfies � if and only if every infinite

execution of LV
P satisfies �. This above example of liveness property can then be expressed

as PatientSitOnBedTooLong ! 3Reminder Sleep.

2.2.3 Probabilistic Model Checking for MDPs

Markove Decision Processes (MDPs) are standard models for stochastic optimisation and for

modelling systems with probabilistic and nondeterministic or controlled behaviours [64, 80].

Verification algorithms designed for MDPs models are able to determine certain probabilistic

behaviours of the system such as predicting probability of reaching a goal state from an

initial state.

Markov Decision Processes

Discrete Time Markov Chains (DTMCs) and Markov Decision Processes (MDPs) are pop-

ular choices to model probabilistic systems. Given a set of states S , a distribution is a

function µ : S ! [0, 1] such that ⌃s2S µ(s) = 1. Let Distr(S ) be the set of all distributions

over S .

Definition 1 A DTMC is a tuple D = (S , init ,Pr) where S is a set of states; init 2 S is

the initial state; Pr : S ! Distr(S ) is a transition function. 2
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DTMCs are discrete stochastic processes satisfying the Markov property. A DTMC model

can be expressed by a stochastic matrix P : S ⇥ S ! [0, 1] such that
P

s02S P(s, s 0) = 1.

An element P(si , sj ) represents the transition probability from state si to state sj . A state

is an absorbing state if it has only self-looping outgoing transitions, i.e., P(si , si) = 1.

Definition 2 An MDP is a tuple M = (S , init ,Act ,Pr) where S is a set of states; init 2 S

is the initial state; Act is an alphabet; and Pr : S ⇥ Act ! Distr(S ) is a labeled transition

relation. 2

Di↵erent from a DTMC, there may be multiple distributions from a state, and each is

labeled with a di↵erent action in an MDP. Intuitively, given a state s, an action (and the

corresponding distribution) is first selected nondeterministically by a scheduler, and then

one of the successor states is reached according to the probability distribution. A scheduler

is a function deciding which action to choose based on the execution history. A DTMC can

be defined by an MDP M and a scheduler �, which we denote as M�.

With di↵erent schedulers, a state s may be reached with di↵erent probabilities. The mea-

surement of interest is thus the maximum and minimum reachability probabilities. Let B

be a set of target states. The maximum probability of reaching any state in B is denoted

as Pmax (M |= ⇧B), which is defined as: Pmax (M |= ⇧B) = sup� P(M� |= ⇧B). Similarly,

the minimum is defined as: Pmin(M |= ⇧B) = inf� P(M� |= ⇧B) which yields the lower

bound of the probability of reaching B . The supremum/infimum ranges over all, poten-

tially infinitely many, schedulers. Existence of optimal memoryless schedulers, in which the

decision for choosing next action/distribution based on the current state is independent of

the previous choices, has been proved in [9]. Based on the result, di↵erent methods have

been developed to calculate the maximum and minimum reachability probabilities. In this

proposal and the RaPiD [31] model checker we adopted, the popular method, value iteration

[9] is adopted.
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Value Iteration

Value iteration is an iterative approximation technique used to calculate the maximum and

minimum probabilities of reachability, and often yields better performance than solving

linear programs in practice [39]. In the following, we will demonstrate the application of

value iteration on finding the maximum probability for reaching any state in B from the

initial state. Let V be a vector such that, given a state s, V (s) = Pmax (M |= ⇧B) is

the maximum probability of reaching B from s. For instance, V (init) is the maximum

probability of reaching B from the initial state. First, using backward reachability analysis,

we can identify the set of states X which have non-zero probability of reaching B , i.e., B

is reachable from any state in X . Next, we iteratively build an approximation of V based

on the previous approximation. Let V i be the i -th approximation. We define V i such that

V i(b) = 1 for all b 2 B and any i ; V i(n) = 0 for all n 62 X and any i ; and for each state

s 2 X � B , we have

V 0(s) = 0;

V i+1(s) = max{Pt2S Pr(s, a, t)⇥ V i(t) | a 2 Act(s)}.

The first equation defines the initial approximation. In the second equation, Pr(s, a, t) is

the probability of reaching state t from state s through action a. V i+1(s) is set to be the

maximum probability of reaching B through any action based on the previous approxima-

tion. It can be shown that for every state s, V i+1(s) � V i(s) and we can obtain V in the

limit, i.e., limi!1V i = V . In reality, it may take many iterations before V i converges

and thus value iteration is often stopped using a number of di↵erent conditions (e.g., when

a fixed number of iterations have been reached or when the di↵erence between two succes-

sive iterations falls below a certain threshold). Minimum probability of reaching B can be

calculated similarly.



2.2. MODEL CHECKING 26

Example Consider an MDP below with the initial state S0.

S0

S1 S2

S3

↵, 0.25

↵, 0.25

↵, 0.5
�, 1

↵, 0.5

↵, 0.4

↵, 0.1

↵, 1

↵, 1

�, 1

Let the target state set B be {S2}. Note that all states have non-zero probability of reaching

B . Each transition is labeled with an action and a probability. Transitions labeled with

the same action belong to the same distribution. At state S0, there is a nondeterministic

choice between actions a and b. A scheduler decides whether to select a or b. Applying

value iteration, we have V i(S2) = 1 for any i and

V i+1(S3) = max{V i(S3), 1} = 1

V i+1(S1) = 0.1V i(S0) + 0.5V i(S1) + 0.4

V i+1(S0) = max{0.25V i(S0) + 0.5 + 0.25V i(S3),V i(S1)}

It is then easy to get V 0 = (0, 0, 1, 0); V 1 = (0.5, 0.4, 1, 1); V 2 = (0.875, 0.65, 1, 1); V 3 =

(0.96875, 0.8125, 1, 1); etc. 2

Each iteration involves a matrix-vector multiplication, which has a complexity of O(n2⇥m)

in the worst case, where n is the number of states in S and m is the maximum number of

actions from a state. Note that for sparse MDP models, the complexity is often O(n ⇥m).

The number of iterations required to achieve certain numerical precision is related to the

subdominant eigenvalue of the transition matrix [73].
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2.2.4 Real-Time Model Checking

The modeling language Stateful Timed CSP# models real time systems with a comparison

to Timed Automata and concept of timed refinement checking for verification of critical

properties.

Language Syntax of Stateful Timed CSP#

The Timed CSP# modeling language is a timed extension of Communication Sequence

Process (CSP) [34], its grammar is defined as follows.

Definition 3 (Process) A timed process is defined by the following grammar.

P = Stop | Skip – primitives
| e ! P – event prefixing
| [b]P – state guard
| if b then P else Q – if-then-else
| P⇤Q – general choice
| PkQ – parallel composition
| P ; Q – sequential composition
| P \X – hiding
| P b= Q – process referencing
| Wait [d ] – delay
| P timeout [d ] Q – timeout
| P interrupt [d ] Q – timed interrupt
| P within[d ] – react within some time
| P waituntil [d ] – wait until
| P deadline[d ] – deadline

where P and Q range over processes, e 2 ⌃ is an observable event, b is a boolean expression,

X is a set of event names and d is an integer constant.

Stop is the process does nothing but idling, also denotes deadlock. Skip states termination.

Process e ! P performs event e first and then behaves as P. Notice that e may be an
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abstract event or a data operation, e.g. written in the form of e{x = 1; y = 2; } or an

external C# program. The data operation is used to update data variables and it is assumed

to be executed atomically. A guard process is written as [b]P . If b is true, then it behaves as

P , else it idles until b becomes true. A conditional choice is written as if b then P else Q . If

b is true, then it behaves P , else it behaves Q . An unconditional choice is written as P⇤Q .

The choice to choose which process to perform accords to what events are requested by its

environment. Parallel composition is written as PkQ , where P and Q may communicate

via variables, or multi-party event synchronisation. Process P ; Q behaves as P until P

terminates and then behaves as Q immediately. P \ X hides occurrences of events in X

by replacing them with ⌧ (an unobservable event). Process P b= Q defines P to be exactly

as Q . Processes may communicate through message passing on channels. Channel bu↵er

size must be greater or equal to 0. Notice that a channel with bu↵er size 0 sends/receives

messages synchronously.

Timed process constructs can be used to capture common real-time system behaviour pat-

terns. Process Wait [d ] delays the system execution for a period of d time units then it

terminates. In process P timeout [d ] Q , the first observable event of P should occur before

d time units elapse (since the process starts). Otherwise, Q takes control over after exactly

d time units elapse. Process P interrupt [d ] Q behaves exactly as P (which may engage

in multiple observable events) until d time units elapse, and then Q takes controls over.

Process P within[d ] constrains that P must react (by engaging in an observable event)

within d time units. Process P waituntil [d ] denotes P executes for at least d time units

and process P deadline[d ] constrains P must terminate within d time units.

Compared to Timed CSP#, Timed Automata [5] which is popular for specifying real time

systems during last decades, has certain deficiencies that it is not feasible in supporting

compositional models. Timed Automata are powerful in designing real-time models with

explicit clock variables. Real-time constraints are captured by explicitly setting/reseting
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clock variables. A number of automatic verification supported for Timed Automata have

proven to be successful (e.g. UPPAAL [41], KRONOS [12] and RED [81]). However, in

industrial case studies of real-time system verification, system requirements are often struc-

tured into phases, which are then composed sequentially, in parallel and alternatively [32].

High-level requirements for real-time systems are often stated in terms of deadline, time

out, and timed interrupt. Unlike Timed CSP#, Timed Automata lack high-level composi-

tional patterns for hierarchical design. As a result, users often need to manually cast those

terms into a set of clock variables with carefully calculated clock constraints. The process

is tedious and error-prone.
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Chapter 3

A Running Example: AMUPADH

Healthcare System

AMUPADH is a project initiated in Singapore to design smart healthcare systems for mon-

itoring and assisting elderly dementia people’s daily living. Dementia is a progressive,

disabling, chronic disease common in elderly people. Elders with dementia often have de-

clining short-term memory and have di�culties in remembering necessary activities of daily

living (ADLs). However, they are able to live independently or in assisted living facilities

with little supervision.

The system developed in AMUPADH is able to monitor the patients’ behaviours using

activity recognition techniques (sensors and reasoning rules) and o↵er help to the patients

(prompt reminders through actuators such as speakers etc.). It is deployed in a bedroom

with two beds and a shower facility. Di↵erent kinds of sensors are deployed in the room to

capture environment changes. For instance, the pressure sensor under a mattress is used to

detect whether the bed is empty or occupied. Sensors communicate with the controller via

Zigbee network. The controller in the middleware interprets sensor signals into low-level

31
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Figure 3.1: AMUPADH: An Overview of the System

contexts from which high-level contexts are inferred by the reasoning engine. This reasoning

task is performed based on a set of predefined rules written in Drools1 (based on First Order

Logic). Evaluation of these rules is triggered by a sensor message or periodically by a timer.

In the case that a rule is satisfied, the system will adapt to a new state by updating internal

variables or invoking reminder services. For example, if the activity of patient sleeping on a

wrong bed is recognised, the system will prompt a reminder requesting him to use his own

bed.

3.1 Environment Data Acquisition

In the system, multiple sensors are deployed to acquire information from the home environ-

ment. For example, if someone turns on the shower tap, the shake sensor on shower pipe

1Drools Expert: http://www.jboss.org/drools/drools-expert.html
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will be triggered and change its status to Unstationary . A signal is generated and then

sent to the central system via a Zigbee network. AMUPADH adopts a multi-modal-sensor

design for user monitoring. This is due to users’ privacy concerns, video cameras are refused

in home environment.

In AMUPADH, four types of sensors are deployed in the bedroom and shower room to

monitor the activity of dementia patients as shown in Figure 3.2.

• RFID Reader is for identification and tracking. There are two readers placed beside

the doors to detect who has entered the rooms respectively and two attached to each

bed to identify who is using the bed. Each patient is wearing an RFID tag placed in

a wrist band.

• Pressure Sensor is placed under the mattress of each bed to detect activities in bed,

e.g., sitting or lying.

• Shake Sensor can detect vibration. They are attached to water pipe and soap

dispenser for sensing the usage of water tap and soap respectively.

• Motion Sensor (A.K.A. passive infrared sensor (PIR)) can measure infrared light

radiating from objects in its range. It is used to detect the presence of the patient in

the shower room.

3.2 Context Processing and Reasoning

Upon receiving a signal, the central system interprets it into low-level context, i.e., sensor events

such as “Shower Tap On”. Di↵erent low-level contexts are provided from di↵erent sensors.

They are aggregated in the inference engine for reasoning and generating high-level con-
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Figure 3.2: AMUPADH: Sensor Layout in the Bedroom

texts, activities. This task is performed by evaluating predefined activity recognition rules

based on prior knowledge of user behaviours.

Rules are written in first order logic. A typical rule is like: if a shake sensor on shower pipe

changes its status to UNSTATIONARY and lasts for 30 minutes and a PIR sensor captures

movements of someone in the washroom, an abnormal behaviour, showering for too long is

recognised. Then a message will be sent to the server indicating some person with a name

is in an abnormal state of showering for too long. The messages are sent out via a shared

bus within the central system. DroolsA typical rule are in the form of the following:

rule "Person is showering for too long"

when

Sensor ( id == "shakeShower",

shakeState == Sensor.shake_state.UNSTATIONARY,

durationInSecond >= 30 )

Sensor ( id == "pirWashroom",
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pirState == Sensor.pir_state.FIRING )

$p : Person( name != "nurse",

location == Person.person_location.WASHROOM )

$x : XMPPInterface()

then

$x.SendData( "ACTIVITY.error." + "ShowerTooLong"

+ "." + $p.getName() );

end

The condition of this rule uses two contexts from shake sensor on shower pipe and PIR

sensor (for motion monitoring) in washroom and the context of user’s location. This rule

can be interpreted as: If the shake sensor on shower pipe changes to UNSTATIONARY

and lasts for 30 minutes, PIR sensor captures movements of someone in the washroom,

an abnormal behaviour, showering for too long is recognised. Then the engine will send

a message to the server saying that some person with a name is in an abnormal state of

showering for too long. The messages are sent out via a shared bus within the central

system. The full set of 23 rules used in the system is listed in B.

Note that, AMUPADH aims for a multi-user sharing environment which is a challenging

topic in the activity recognition area. In fact, it is not only important to know about which

activity is being carried on but also who is doing this activity. This adds complexity to the

process of defining rules and lowers the accuracy of activity recognition. Faults like forget

to put person’s identity into rule conditions could result in associating an wrong activity

and subsequently wrong reactions to a wrong person.
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3.3 Adaptation: Reminder Service Rendering

The reminding system listens to the messages sent from the inference engine and decodes it.

A number of simple rules are defined to deal with reminder service rendering. For example,

upon receiving the message Activity .error .ShowerTooLong .personA, the system will invoke

the service of playing a preloaded sound reminder on bluetooth speaker located in the shower

room correspondingly. In this case, the message is transferred via bluetooth technology. In

general, di↵erent message transmitting technology are used for di↵erent rendering devices.

For instance, for reminders on mobile phones, messages are transmitted from 3G network,

while for iPAD case, the small home wide Wi-Fi network is used.

In AMUPADH, there are essentially six reminders provided for helping the patients in highly

concerned situations.

• UWB: Using Wrong Bed Since a room in the RLA is shared by 2-3 people, the elder

patient, especially new residence, tends to lie on a bed without recognising whether

its his/her own bed.

• SBTL: Sitting on Bed for Too Long Some of the agitated patients often have

sleeping problems. They are easily bothered and irritated by what is happening in

the environment. A typical symptom is that the patient will get up at midnight and

sit on the bed for very long time until assisted by nurses/caregivers.

• SNS: Shower No Soap Due to memory loss, dementia patients constantly forget the

normal steps of performing daily activity. In the taking shower activity, the patient

could forget what to do next right after the shower tap is turned on. It is reported by

the nurses that some of the patient finish the shower very fast without applying soap.

Concerned about the personal hygiene, patients presenting this behaviour need to be

helped.
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• STL: Showering for Too Long Similar to the SNS issue, some patients will stand

under the shower head for a long time. It is a critical issue that exposing in the water

for a long time could cause the patient black out. If not helped immediately, it will

even cause death to the patient.

• TNO: Tap Not O↵ It is often the case that dementia patients forget to turn o↵ the

tap after showering. In order to save water and energy, this scenario is also detected

and reminded in the system.

• WiW: Wandering in Washroom Caused by initiation problem, it is possible for

the patient to forget at any step of the taking shower activity. Thus, a wandering

behaviour is also typical and patients need to be assisted in such cases.

The smart home care system developed in AMUPADH project has been deployed in a

Singapore based nursing home, PeaceHeaven2 for a six-month real life testbed. This nursing

home has 13 separate Resident Living Areas (RLAs), each designed as an individual home-

like environment. The rooms are equipped with two/three beds with a shower facility.

Three of these rooms each of which are shared by 2 or 3 people are selected for deployment.

2Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
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Chapter 4

A Formal Analysis Framework

Pervasive computing systems aim to provide people with a more natural way to interact with

information and services by embedding computation into the environment as unobtrusively

as possible [84, 24]. They are fully automatic with little or even no human supervision.

For example, systems are built for assisting the independent living of elderly with dementia

where nurses or caregivers intervene only when receive call-for-help alerts. Thus, such

systems are life-critical. It is highly important to know if the system behaves correctly as

expected before the deployment of such systems.

Correctness analysis of these smart systems is a challenging task. Firstly, these systems

are inherently complex. Revisited the general architecture in Chapter 2, the system usually

adopts a layered design with sensors in the physical layer to acquire environment contexts;

inference engines in the middleware layer to manage and reason these contexts as well as

make adaptation decisions; services in the application layer to invoke actuators to execute

the decisions. Consequently, the heterogeneity of technology and massive ad hoc interactions

among layers make PvC systems highly complicated [23]. Faults may appear in many

situations with very di↵erent causes. For example, a false reminder that a reminder is

39
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sent to the wrong user could be caused by the malfunctioning RFID reader or a wrongly

defined reasoning rule; the conflict reminders could be caused by conflict rules or not well

calculated timing issues. Furthermore, it is impossible to exhaustively enumerate all the

possible scenarios. Various environment inputs and unpredictable user behaviours cause the

system behaviours beyond control, especially when multiple users are interacting with the

system simultaneously. Techniques like simulation and testing are time consuming and not

su�cient. System engineers have to run the system multiple times only to find out the cause

of an uncommon error. Even though, testing and simulation techniques can not provide

enough guarantee of correctness since these technology can only explore partial system

behaviours. From our experiences of working with system engineers, they usually focus on

setting up a demonstration based on selected scenarios without considering other useful

situations. In fact, the development and consideration of all possibilities when constructing

scenarios and rules is an impossible task and would either take many man-hours to find out

through actual deployment.

Formal methods especially model checking techniques are promising solutions that they do

exhaustive state space analysis and can be applied in the early design stage of complex

systems. By properly modelling the system behaviours and formally specifying the critical

requirements, it is able to automatically verify important requirements by exhaustive search

of all possible states of the system model. The violation of a requirement is usually witnessed

by a counterexample (e.g. an execution trace from the initial state of the model) which

provides a good guidance in pinpointing the source of the error. The first chanllenge to

apply this technique is to properly model the system. Unfortunately, most existing models

(e.g., TCOZ model in [21] and Ambient Calsulus model in [19]) have limited support for

modelling hierarchical structures. Besides, no general patterns regarding the modelling of

PvC systems are proposed in the literature. Henceforth, new methods are expected to be

able to model the typical behaviours of the system such as concurrent communications,
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Figure 4.1: Formal Analysis Workflow

complex control logics and hierarchical structures. Furthermore, the constructed model

should be supported by certain model checker such that automatic verification is possible

for large systems.

To meet the challenges, we propose a formal modelling framework targeting at the general

architecture of PvC systems. Based on the modelling framework, specifications of important

correctness requirements are also provided. Thus, the typical workflow of our formal analy-

sis approach is shown in Figure 4.1. Since PvC systems are user-centred, understanding and

modelling of the user behaviours are important. Thus, the workflow starts with collecting

user and system information from stakeholders (e.g., in AMUPADH, Nurses/Doctors/Engi-

neers). In particular, we need to seek answers via observing the elderly people’s behaviours

and interviewing nurses and doctors for these questions: 1) What are the targeting activ-

ities of elderly people that are critical to be monitored? 2) How does the elderly people

performing such activities? How to identify if the user is performing the activity abnor-

mally that he/she needs help? 3) How does the nurses/doctors help the user in case of an

abnormal behaviour identified? In addition, by interviewing system engineers and reading
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design documents including pseudocode of the AMUPADH system, we need to know about

4) How does the system designed to identify the abnormal behaviour and provide assistance

to the user? Meanwhile, the critical requirements such as the system will not be dead or

reminders are always sent out at certain scenarios are also collected from both the nurses/-

doctors and the system engineers. Next, with the knowledge of both the user behaviours

and system design, we can formally model them as environment model and system model

respectively. The separation of user model and system model enables the flexible reusing of

them. The critical requirements are then formally specified as properties. Finally, a model

checker is used to automatically verify properties against the system model. Counterex-

amples are usually generated as feedback to stakeholders for improving the system design.

The contributions of our work are two-folds as explained below.

Firstly, we propose modelling patterns the system design and the environment inputs. Im-

portant characteristics of PvC systems such as context-awareness, layered architecture and

concurrent communications are discussed. Modelling patterns for these features are pro-

vided and illustrated with examples. We adopt CSP# [75] as the sample modelling language

for its rich set of syntax in modelling concurrent system with hierarchies.

Secondly, we identify critical properties of PvC systems and provide their specification

patterns in corresponding logics. According to the stakeholders (designers, engineers and

users of these systems), safety requirements are essential to PvC systems. Arapinis et. al.

in [8] proposed some critical requirements of a homecare system. For instance, “Sensors are

never o✏ine when a patient is in danger” or “If a patient is in danger, assistance should

arrive within a given time”. In our work, we classify the important requirements into

safety properties (nothing bad happens) and liveness properties (something good eventually

happens). Furthermore, formal specification patterns of these properties are proposed. As

a result, we can verify the critical properties against the system model by using automatic

verification techniques like model checking [37]. Hence, design flaws can be detected at the
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early design stage.

4.1 A Modelling Framework for Pervasive Computing Sys-

tems

PvC systems are carefully designed for users who expect the system to aid in their daily

life. They are usually complex and adopt a layered architecture as introduced in Chapter

2.1.1. In this section, we discuss the important features of PvC systems layer-by-layer and

propose corresponding modelling patterns for them. Besides, environment inputs perform

an important role in PvC systems. Thus, along with the modelling of system components,

we also propose modelling patterns for di↵erent environment aspects which are usually not

included in most complex systems models.

4.1.1 Modelling Environments

PvC systems seamlessly interact with the environments and acquire context inputs from

the users and objects like TVs and Beds. To some extent, PvC systems are driven by the

environment context change (we call it scenario here). For example, a person entering a

room which is previously empty will trigger the lights to be switched on; or when the system

detects the time is 9:00pm, a take-medicine-reminder will be sent to the patient. Thus, it is

important to model the scenarios with the system design. Meanwhile, the scenario model

is also important for generating meaningful counterexamples so as to alleviate the burden

of analysing verification results.

Modelling Activities and Environment Objects User behaviours are various and

usually unpredictable. For most PvC systems, we can observe that: 1) the system usually
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targets a certain group of activities and ignores other irrelevant ones; 2) relevant user activ-

ities are determined but the order of them is unpredictable. For instance, a person enters

the bedroom, then he may directly go to sleep or he could possibly enter the shower room

for other activities. In practice, targeted activities can be provided by system designers.

We use a shower room scenario to demonstrate the modelling patterns.

In the shower room, a user performs many activities such as wandering or turning on the

shower tap. These activities can be modelled as events which are abstractions of the obser-

vations. For example, an activity represented as event exitShowerRoom is an observation

of the user’s behaviour of leaving the shower room. However, it requires more advanced

language constructs such as non-deterministic choices to model all possible orders of ac-

tivities. We explain the idea using a CSP# model of the shower room scenario. All the

possible activities the patient can do in the room are modelled as di↵erent choices and they

are enclosed into a process named PatientShowerRoom.

PatientShowerRoom() = exitShowerRoom ! PatientOutside()

⇤ turnOnTap ! PatientShowerRoom()

⇤ turnOffTap ! PatientShowerRoom()

⇤ wandering ! PatientShowerRoom()

⇤ useSoap ! PatientShowerRoom();

Here, the operator ⇤ represents the non-deterministic choice. It operates this way that the

process PatientShowerRoom randomly choose an activity such as turnOnTap to execute.

Then it may transfer control to itself again and choose useSoap to execute. It is guaranteed

that all possible orders of activities are generated using state space exploration techniques

like model checking.

However, there might exist some unrealistic orders of events. For example, there is a

sequence which contains two consecutive events of turnOnTap. Obviously, the patient
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cannot perform turning tap on activity again if the tap is turned on already. In order to

eliminate such cases, we need to model these constraints such that the patient’s behaviour is

synchronised with the status of the object being used. In fact, it is essentially the problem

of modelling synchronous behaviours. We propose to use event synchronisation in CSP#

and give an example of shower tap model in the following. Other solutions are possible such

as using a global variable or synchronous channels.

ShowerTap() = turnOnTap ! turnOffTap ! ShowerTap();

Env() = PatientShowerRoom() k ShowerTap();

The constraint of using tap behaviours is modelled as if turnOnTap event happens, it will be

disabled until the turnO↵Tap activity is performed. The two processes PatientShowerRoom

and ShowerTap are composed to be a complete model of the environment, Env . Here, the

operator k denotes parallel composition. Its operational semantic says that the executions

of the composed processes must be synchronised on common events appearing in all of them.

Interested readers can refer to [75] for more details. Here, the turnOnTap event becomes a

common event between the two processes.

Modelling Location Transitions While modelling the patients behaviours, we divide

the activities according to the locations where they can be performed. In the PatientShowerRoom

model, if the event exitShowerRoom is engaged, the process will pass control to the PatientOutside

process. Thus, only activities outside can be selected to run while activities in the shower

room are disabled. This modelling approach is to reflect the location transitions in the

model and to generate realistic sequences of activities.

Modelling Multiple Users In multiple-user sharing environment, the activities that

di↵erent users can perform in a certain location are usually the same. However, in some
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cases, these activities need to be di↵erentiated. For example, in AMUPADH, the system

tracks di↵erent patients using RFID tags. Thus, the sitting on bed behaviour performed by

patient1 and patient2 are di↵erent from the system’s point of view. We model this require-

ment using the process parameters and events with indexes. In the following, we provide

the behaviour model of the patient using bed where identify information is important.

PatientBed(i) = sitOnBed.i ! PatientBed(i)

⇤ lieOnBed.i ! PatientBed(i)

⇤ leaveBed.i ! PatientBed(i);

Parameter i in process PatientBed(i) represents the identity of the patients. This identity

variable is also attached to events so as to di↵erentiate the activities performed by di↵erent

patients.

4.1.2 Modelling System Design

PvC systems share the features such as layered architecture and concurrent communications.

A common architecture of such systems is shown in Figure 2.1. In the following, we discuss

these common features and their modelling layer by layer.

Modelling Sensor Layer

There are a lot of interesting problems in this layer. First of all, there are di↵erent commu-

nication patterns like synchronous communication or asynchronous message passing. These

communications form the basic functionality of sensors. Additionally, di↵erent sensors have

di↵erent frequencies of sending messages. For example, RFID reader sends a signal to sys-

tem every 1 second while pressure sensor sends every 10 seconds. This issue may cause the
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system to make wrong adaptations since the information of the environment may not be

completely refreshed at some time point. Finally, sensors have limited power supply and

may fail from time to time. These two problems regarding the di↵erent sending rates and

unstable working conditions of sensors create many uncertainties in PvC systems.

Nonetheless, problems might also exist in the wireless network such as message loss. We

skip this part since research of model checking wireless networks has been done extensively

in the literature [58]. The details about signal encoding/decoding and message transmission

via wireless networks are abstracted away for simplicity in our work.

Modelling Concurrent Interactions Sensors interact with the environment by detect-

ing events and report sensed contexts by transmitting signals to middleware. The be-

haviours of detecting and transmitting can be abstracted to two modelling patterns which

are synchronous events and message passings respectively. Event synchronisation has been

introduced in Section 4.1.1. As for message passing, there are di↵erent modelling patterns

in di↵erent languages. Some languages support synchronous channels through which the

sending and receiving events are synchronised. In other languages, broadcast channels or

asynchronous channels with bu↵ers are supported. In the following, we model the shake

sensor using a synchronous channel.

channel port 0;

Shake_Sensor() = (

turnOnTap ! port!Shake.UnStationary ! Skip

⇤ turnOffTap ! port!Shake.Stationary ! Skip

); Shake_Sensor();

Here, port is the synchronous channel defined for the shake sensor to communicate with mid-

dleware. Shake, UnStationary and Stationary are integer constants representing the sensor’s
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ID and possible statuses. In the model, the shake sensor sends out the signal UnStationary

when the tap is turned on. Note that CSP# supports multi-process synchronisation that

the event turnOnTap can be synchronised in all three processes.

Modelling Frequency Sensors are tuned to have di↵erent sending rates due to their

functionalities and the purpose of saving energy. However, if the rates are not carefully

calculated, the system may work incorrectly. To analyse these behaviours, we propose

to use timed modelling languages such as Stateful Timed CSP (STCSP) [76] or Timed

Automata (TA) [5]. The modelling pattern of sending rates using STCSP would be as

follows.

FSR_Sensor() = (

sitOnBed ⇣ port!FSR.Sitting ⇣ Skip

⇤ lieOnBed ⇣ port!FSR.Lying ⇣ Skip

⇤ leaveBed ⇣ port!FSR.Empty ⇣ Skip

⇤ nothing ⇣ port!FSR.Empty ⇣ Skip

); Wait[10]; FSR_Sensor();

Here, operator ⇣ denotes the urgent event in its left hand side which cannot be interleaved

by other timed events. Wait [t ] is the syntax to model the process idling for t time units.

The above process models the periodic behaviours of the pressure sensor which senses the

environment for certain activities and immediately transmits its status. Then it idles for

10 time units and starts sensing again.

Modelling Sensor Failures Sensors have limited accuracy, so that they may fail to

detect certain events. They could also run out of battery and then fail to send the signals.

Intuitively, we model this with probabilistic modelling languages such as Probabilistic CSP

(PCSP) [78] or Probabilistic Timed Automata (PTA) [39].
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RFID_Reader() =

enterBedroom.1 ! port!RFID.PersonA ! Skip

⇤ enterBedroom.2 ! port!RFID.PersonB ! Skip;

MalSensor() = pcase{ 9: RFID_Reader()

1: fail ! Skip }; MalSensor();

Here, pcase is a syntax for modelling probabilities. 9 and 1 are probability weights here.

This process models that the RFID reader works correctly with probability of 90%.

In summary, di↵erent issues in the sensor layer can be modelled using di↵erent language

constructs. Notice that the two modelling languages (i.e., STCSP, PCSP) we adopted are

both extensions of CSP# language. As demonstrated in above examples, our intention is

that it is easy to start with a simple model and extend it with richer features with minimum

e↵orts.

Modelling Middleware Layer

As shown in Figure 2.1, middleware performs the tasks of managing and reasoning contexts

as well as making adaptation decisions. Messages received from sensors will trigger an

update of the system knowledge/contexts. The status of a sensor is one kind of contexts.

Context variables are modelled using shared variables in supporting modelling languages.

Furthermore, the reasoning engine performs reasoning by evaluating predefined rules whose

conditions are propositions of context variables. A common practice for specifying rules is

to use guarded processes or if-else statements. The following example models the rule in

Chapter 3.2 in CSP#:

Rule() = if(sensors[Pressure_Sensor] == SITTING &&
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Duration[Pressure_Sensor] > 30)

res!Act.SitTooLong.1 ! Skip;

Finally, an adaptation decision will be made based on the reasoning results and sent to the

application layer to execute. This again can be modelled by message passing patterns. For

the above example, if the rule which interprets that someone is sitting on bed for more than

30 time units, a message will be sent to the application layer through the channel res.

Modelling Application Layer

Application layers vary according to di↵erent implementations. However, we may only care

about the responsive actions which will a↵ect the end users. Thus we focus on modelling

of how the adaptation decisions are executed. For instance, in the AMUPADH system, the

reminding system is modelled as follows:

Reminder() = res?status.rid.pid ! (

[status == Act]ActivateReminder(rid,pid)

⇤[status == Deact]DeactReminder(rid,pid)

); Reminder();

ActivateReminder(rid,pid) =

updatereminder[rid][pid] = true ! Skip;

By decoding the message received from middleware, the workflow of reminder system diverts

according to the status command. If it is an Act command, the system activates reminder

rid to patient pid by calling ActivateReminder(rid , pid) process. Similar logic applies for

deactivating a reminder.
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4.1.3 Compose a Complete Model

In PvC systems, di↵erent components in di↵erent layers cooperate to fulfill the system

goals. However, how to model this cooperate relations are left to be discussed till now.

From a careful study, we discover that there are three kinds of relationships between these

components which are sequential, independent and concurrent relations. Sequential relation

means the execution of the components is strictly sequential according to the workflows of

the system. Components that are completely unrelated to each other execute independently.

As for concurrently related components, they have synchronised behaviours. These rela-

tions can be well supported in hierarchical languages such as CSP#. Respectively, these

three relations can be modelled as sequential, interleave and parallel compositions using

operators ; , k | and k respectively. Examples here may reuse some process names in above

models. Note that parallel composition has been introduced in modelling activities in the

environment.

Sensors() = Shake_Sensor() k | FSR_Sensor();

Middleware() = ContextManager(); ReasoningEngine();

AdaptationManager();

Here, since each sensor in the environment works independently, the sensor layer model

Sensors() is composed by the interleave operator. On the other hand, in the middleware

layer, the three components are executed sequentially as determined in the workflow. There-

fore, the middleware model Middleware() is composed using sequential operator.

4.2 Properties of Pervasive Computing Systems

After system engineers finished the design of a PvC system, they are often asked to provide

guarantees for correctness and even safety requirements. They may be asked to answer gen-
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eral questions like “Is the system free of conflict adaptations?” or “Will the services deliver

when they are supposed to?”. These high level requirements cannot be validated against the

system thoroughly using traditional techniques like testing. However, they can be specified

and verified using formal methods. For example, using model checking technique, the first

question can be verified in the following steps. First, define the conflict adaption scenario

as a state; Secondly, use reachability verification algorithms to exhaustively search the sys-

tem state space to see if such a state is reachable. In this section, we discuss the critical

properties and propose their specification patterns.

4.2.1 Desirable Properties

Properties regarding the good behaviours of the systems are desirable.

Deadlock freeness

Deadlock freeness is one of the important safety requirements. Deadlock is a situation that

the system reaches a state where no more actions can be performed. It can lead to serious

consequences such as falling of the patient is not being alerted to a nurse. Deadlock checking

is supported in most model checking tools.

Guaranteed Services

Well designed application services determine fundamental responsive behaviours of PvC

systems. For example, in a smart meeting room, upon detection of some one entered the

room, a service will be scheduled to run that it will invoke an actuator to automatically turn

on the lights. E↵ectiveness of these services is an important measurement of the system for

the sake of users. To specify this requirement, we propose patterns of liveness properties

using Linear Temporal Logic (LTL). For example,
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#define PatientWandering (Pos_Person[1] == SHOWERROOM && WanderFlag);

#define LeaveRoomReminder (ReminderStage[WANDERING_IN_SHOWERROOM*2] 6= 0);

2(PatientWandering ! 3 LeaveRoomReminder)

Here, 2 and 3 are operators in LTL which read “always” and “eventually”. This formula

specifies the property meaning “Always when PatinetWandering situation happens, the

service LeaveRoomReminder will be eventually delivered”.

The services are usually required to be delivered in bounded time. Obviously, it is certainly

undesirable if the reminder is sent too late that even the patient has left the room. To

specify the bounded liveness properties, one can use Timed Computational Tree Logic

(TCTL) which extends CTL with clock constraints. The other possible solution is to bound

the target system model with deadline semantics in some real time modelling languages

such as STCSP.

Security

Since PvC systems carry lots of environment information including the user’s confidential

profiles, it is critical to protect privacy. Leakage of information can compromise the safety of

the user and his or her belongings. For instance, food delivery person should not have access

to the patients medical profile. Properties to describe security problem can be specified in

many kinds of logics such as LTL. For example,

2(FoodDeliveryPerson ! not (3 AccessPatientProfile))

Model checking techniques for security problems are proposed in papers such as [51].
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4.2.2 Testing Purposes

To test the system after being deployed is cumbersome considering the reengineering work-

load. Fortunately, those unwanted scenarios can be specified in properties and checked using

reachability verification algorithms.

System Inconsistency

Failures of sensors and wireless networks may cause contexts of the environment in the

system to be out of date. Thus system knowledge can be inconsistent with actual environ-

ments. By defining such conflicting states, you can test again the system model to see if

such a state is reachable.

Conflicting/ False Services

To guarantee the services being eventually delivered is not enough. It is also important

to check if these services are sent properly. Some problems have been reported by domain

experts such as conflicts of reminders [22]. These problems are especially common in multi-

user systems. For example, in AMUPADH, two conflicting reminders are prompted at the

same time that one asks the patient to leave shower room while the other asks the patient to

use soap to continue showering. This causes the confusion of the patient and could agitate

them. Another scenario is that the reminder is sent to the wrong person. These problems

can be specified in reachability properties.

Properties in rules

Rule-based reasoning engines are popular in pervasive computing systems. The correctness

of rules is essential to the correct behaviours of systems. Problems of these rules include
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duplicated rules, conflict rules and unreachable rules. This is also easy to specify. For

example, to check whether a rule is unreachable, the condition of the rule can be defined as

a state and property can be expressed as testing if the state is reachable.

4.2.3 Bounded Liveness Properties

Liveness properties properties such as guaranteed services checks if certain service is even-

tually delivered whenever an abnormal behaviour is detected. However, stakeholders often

require more than “eventually prompted”. The good behaviour should be whenever an

abnormal behaviour is detected the reminder should be prompted within a certain amount

of time. This is often referred as bounded liveness property which says something good

will happen soon, in bounded time. It usually requires the properties to hold within a

certain time bound. Bounded liveness property captures a wide range of timed require-

ments for safety critical complex systems. Taken AMUPADH system as an example, we

propose some sample properties specifying timed requirements in the following. We choose

the specification language which is supported in existing model checkers.

Guaranteed In-time Servicess

Taken example shown in 4.2.1. If the reminder is required to arrive within t time units once

this wandering behaviour is detected, we need to extend the LTL property with real time

constructs. Alternatively, we may use the timed extension of a branching time temporal

logic (CTL [15]), TCTL [33] which is usually supported or partially supported in model

checkers like UPPAAL. The guaranteed Wandering In Showerroom reminder prompted in

time is then specified as:

8 2 (PatientWandering ! 8 3t LeaveRoomReminder)
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Guaranteed In-time Reminders with Probability

In the case that, the system is modelled with probabilistic behaviours, the bounded liveness

will be changed to a liveness property bounded with both time and probability. For example,

a requirement says the Wandering In Showerroom should arrive within t time units with

a probability of 0.98 when the wandering behaviour is recognised. The property is then

specified using PCTL, a probabilistic extension of CTL as follows:

P �0.98 2 (PatientWandering ! 8 3t LeaveRoomReminder)

Bounded Message Delay

In network layer, message delay is a common problem due to network congestions. To

resolving the congestions, networks follows the policy of collision avoidance and retry mech-

anism that nodes like sensor in the network will wait for a certain time period to retransmit

its message. Thus, during the verification of network policies/ protocols, bounded message

delay is a desirable property. This requirement can be specified similarly as Guaranteed

In-time Reminders. An example is as follows:

8 2 (Node.MessageSend ! 8 3t System.MessageReceived)

Well Scheduled Reminders

One good behaviour of well scheduled reminders is that two di↵erent reminders are not

prompted to the same user within a time period t . It is specified as follows:

WanderInShowerroom.PersonA --> ShowerNoSoap.PersonA && (C_WIS - C_SNS < t)
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where C WIS and C SNS are clock readings of Wandering In Showerroom reminder and

Shower No Soap reminder respectively. Expressing properties with clock values are possible

in model checkers implemented with explicit clocks like UPPAAL.

Although formalisation of real-time requirements are strongly dependent on the specification

logic supported by model checkers, the sample property specifications we listed here are

common patterns and generally supported in popular model checkers like UPPAAL and

PRISM. However, it remained a challenging and interesting task to verify properties with

various timed requirements.

4.3 Related Work

Modeling Pervasive Computing Systems

TCOZ model of Smart Meeting Room TCOZ is essentially a blending of Object-Z

with Timed CSP, for the most part preserving them as proper sub-language of the blended

notation [49]. In [21], they manually modeled and verified the constraints and relations in the

context aware systems with a case study of a smart meeting room system. The concurrent

communicating patterns, sensor constraints and real time requirements are captured in

their model. In order to reason about important system properties and keep the size of

system model small, irrelevant implementation details such as how data transmits from

sensor to system is abstracted away. This strategy is reasonable and e↵ective. TCOZ is

concise and yet powerful for modeling system behaviors, many features of context-aware

systems can be naturally modeled using constructs of the language. However, the lack of

automated reasoning tool support, properties against the system needs to be verified by

manual proof/disproof. Thus it requires much expertise from the user which prevents this

language to be adopted widely in real system modeling.
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Advances are to be learned from TCOZ regarding the flexibility of modeling sensor con-

straints, sensor patterns and real time relations. However, our proposing approach di↵ers

with TCOZ in several aspects. First, we are aiming at proposing executable models that

can be simulated and automatically verified. TCOZ however extends from the declarative

languages are not automatically executable, thus hard to be supported in automated tools.

Additionally, in order to better locate the errors in the system, counterexamples needs to be

reported if a certain property is violated. This needs support from the language constructs

how such as trace semantics defined in CSP# languages family. However, this is not well

supported in TCOZ language.

Ambient Calculus model of Location-sensitive Smart Hospital [19] modeled an-

other mobile application in a hospital which provides location sensitive service to guide the

patient enter the proper room and prevent patient to get in dangerous places. They adopted

the Ambient Calculus [13] for the modeling and verified certain properties against the crit-

ical requirements of the system. Locality in this modeling language is very well captured

using ambients. However, only the patient’s interaction with the environment is modeled

in this case study. It is not clear of how other important features of PvC systems such as

adaptation logics and sensor communications can be modeled. And again lack of automated

reasoning tool adds more di�culty to this language to be applied in real scenario.

Verification of Pervasive Computing Systems

Fault Patterns and Automatic Identification of Context-Aware Adaptive Ap-

plications (CAAAs) Sama and Rosenblum et, al. in [70, 69] focused on analysing

the adaptive behaviour which is essential PvC systems. They identified fault patterns of

such systems based on the experience of designing electronic devices, proposed a innovative

semantic model named Adaption Finite-State Machine (A-FSM) and proposed dedicated
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verification algorithms to detecting those fault patterns based on the A-FSM. The fault

patterns as well as the causes they identified is a good summary of existing PvC systems

and the state matrix data structure further facilitates the e�cient verification algorithm

design.

Advanced techniques in their work such as A-FSM and state matrix data structure are

intuitive for representing the context-aware systems. This can be learned to our proposing

work by proper design. However, they didn’t mention how to model a system in A-FSM

or how models in other modeling language can be represented using A-FSM. In real cases,

PvC systems have various architectures and system components. Profile which can be

simply represented as states in A-FSM might be common in mobile applications but not

in PvC systems for healthcare. Thus there should be a formally definition for a state in

A-FSM in view of general PvC system. Moreover, they are able to identify fault patterns

and perform static analysis of rules to check errors in rules. However, since their rules

are priority based and the algorithms are also designed to tackle this feature, these fault

patterns and algorithms may be not applicable for general rules based reasoning engines

that doesn’t have priority. For example, the deterministic property might be unrealistic in

a smart system monitoring multiple persons because multiple rules can be triggered at the

same time by di↵erent person performing di↵erent activities in di↵erent places. The system

then diverges but this is not considered as an error.

Identifying and Formally Defining Properties in Verification of Pervasive Sys-

tems In [8], the authors proposed the key properties needs to be verified in PvC systems,

which are the security, safety and usability issues. Di↵erent property specification languages

are adopted for specifying di↵erent properties such as access control language RW for secu-

rity of patient profiles, applied Pi-Calculus for un-traceability of RFID tags. and temporal

logic for safety problems such as if a patient is in danger, assistance should arrive in given
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time. However, they didn’t discuss further on how these properties are to be checked against

which kinds of models, since there is no such modelling language that can build a model

checkable by all the mentioned properties in various specification logics.

Inconsistency Detection and Resolution Contexts gathered by sensors from the en-

vironment could be fault or inconsistent due to the limited accuracy of sensing technologies

and sensor failures. And such inconsistencies could cause serious problems to the system

such as fail to response to the environment change or adapt to false application. Wang

and Gu et. al. [82, 29] proposed ontology based context reasoning which defines rules

based on first order logic to specify the restrictions and consistencies among contexts. Xu

and Cheung proposed dynamic inconsistency detection by a semantic matching and incon-

sistency triggering approach in [89]. They further proposed a formula based incremental

checking approach based on a Consistency Computation Tree (CCT) [90]. However, these

approaches highly reply on expert knowledge in identifying and specifying those consistency

constraints as well as additional e↵ort on developing consistency checking algorithms. In

our approach, the only e↵ort is to specify a general inconsistent scenario and model checking

tools will automatically check all the state space to find such a scenario. In this work, we

propose a formal modelling framework for PvC systems. Di↵erent modelling patterns are

discussed according to the typical features of systems such as concurrent communications,

context-awareness and layered architectures. We also provide environment modelling pat-

terns which are usually not considered in modelling complex systems. Furthermore, critical

properties of safety and liveness requirements are identified and specified in proper logics

such as specifying guaranteed reminder services using LTL.



Chapter 5

Case Study: Formal Modelling and

Verification of AMUPADH System

In this case study, we applied the proposed approach in Chapter 4 to analyse the concurrent

behaviours1 in AMUPADH system. We adopt CSP# modelling language since it supports

most of the modelling patterns in the framework. Important properties are specified in

reachability semantic and LTL formulae. PAT model checker is chosen to parse the model,

build up the system state space and verify these properties. Experiment results are listed

and unexpected bugs are reported.

5.1 System Modelling

In this section, we model the environments and the system design using our framework and

use Labeled Transition Systems (LTS) for demonstration.

1Real time and probability features are not included in this work. Modelling and verification with these
two features are explored in Chapter 7 and Appendix C.

61
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Figure 5.1: Model: Patient Behaviours
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Figure 5.2: Model: Surrounding Environment Modelling

5.1.1 Environment Model

As shown in Figure 5.1 and 5.2. These LTSs can be generated using simulation function

of PAT. In Figure 5.1, there are four possible locations that a patient can reside. The

transition edges between states are labeled with patient’s activities.

This patient model should be synchronised with objects within the surrounding environ-

ment. The objects that are modelled include doors of bedroom and washroom, beds and

washroom taps. The behaviour models of the doors and beds are shown in Figure 5.2a and

5.2b respectively.
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Figure 5.3: Model: Sensor Behaviours

5.1.2 Sensor Model

Di↵erent sensors are used in AMUPADH to monitor specific behaviours of the patients.

For example, pressure sensors attached to the bed mattresses are for monitoring how the

patients use the beds. The information captured by sensors is passed from sensors to the

controller via a synchronised channel port . Every sensor possesses multiple unique states

when made available to the system. Figure 5.3 shows the modelling of sensors using the bed

RFID readers and bed pressure sensors as mentioned in Chapter 3.1. Then, we combine all

processes of sensors to one process Sensors using composition patterns.

Sensors()=Rfid_Bedroom()

k | (Rfid_Beds() k FSR_Sensors())

k | (Rfid_ShowerRoom() k PIR_ShowerRoom())

k | ShakeSensors();
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5.1.3 Controller and Reasoning Engine Model

Inside the reasoning engine, rule evaluation is triggered by two processes, namely the

MainInterface and ContextChecker processes. In order to model the periodical evalua-

tion by ContextChecker , we use a constant integer RATE to represent the interval and

Duration variable to record elapsed time. The atomic syntax used here is to ensure the

process inside the block is executed without interference from other processes.

ReasonEngine() = MainInterface() k | ContextChecker();

MainInterface() =

atomic{port?id.status ! update{sensors[id]=status;
Duration= call(setTimer,id,status,Duration)} !
FireAllRules()};MainInterface();

ContextChecker()=

atomic{update{Duration = call(tick,Duration,RATE)}
! FireAllRules()};ContextChecker();

On receiving a message from any sensor, the MainInterface updates the sensor status and

Duration. After that, the FireAllRules process is invoked to perform reasoning. In the

model above, we use the syntax call(setTimer , id , status ,Duration) to call an external static

function setTimer (written in C#) to update Duration according to the input of sensor id

and status . This is a special feature in PAT, which allows users to separate complicated

calculation from the high level model in order to have a simple model with e�cient verifica-

tion. The ContextChecker is similar to the MainInterface in updating sensor statuses and

Duration, but does so in a periodic cycle instead of using a listener.

The process FireAllRules sequentially evaluates every rule independent of the results from

previous cycles of rule evaluation and triggers proper actions such as setting a flag or sending
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a message to the reminding system. Messages are passed via a synchronous channel named

res. We model every rule in a separate process. In the following, we list one rule to illustrate

the modelling. The process Rule 14 1() models a complicated rule defined for recognising

the wandering behaviour of the dementia patient. It says if the shake sensor on shower tap

is stationary, the PIR sensor detects the patient’s presence has lasted for 15 time units, the

shower flag is still false and patient 1 is in the shower room, then patient1 is wandering

in the shower room. Consequently, the reasoning engine sets the wander flag to true and

passes a message to inform the reminding system that patient1 needs to be reminded to

leave the room.

FireAllRules() = Rule0();

...

Rule_14_1() = if(sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] � 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM){
setFlag{WanderFlag = true} !
res!Error.WanderingInShowerroom.1 ! Rule_14_2()}

else {Rule_14_2()};
...

Syntax if (cond) P1 else P2 means if the condition cond is true then process P1 is executed,

otherwise process P2 is executed. ShakeTap and, SITTING , Error andWanderingInShowerroom

are constants which denote sensor ID, sensor status, command to reminding system (the

other is Normal) and behaviour code. The rest of the rules are modelled similarly. The full

set of rules used in AMUPADH is listed in Appendix B.
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Figure 5.4: Model: Reminding System Behaviours

5.1.4 Reminding System Model

In the system, reminders are activated/ deactivated upon receiving corresponding messages

from the controller. As shown in Figure 5.4, the reminding system receives a triplet from

the controller via channel res. This triplet consists of a command, behaviour code and

patient ID. If the command is ACT , the reminder rid will be activated and prompted to

patient pid , otherwise the specified reminder will be stopped if it is active. The ACT and

DEACT are command constants corresponding to Normal and Error in rule processes.

Finally we integrate all the sub-system models together into a process named SmartRoom()

using composition patterns introduced in Section 4.1.3.

5.2 System Verification

In this section, requirements concerned by system designers and users (patients/ nurses/

doctors) are formally specified and verified. Experiments are carried on a test bed- a PC

with Intel Xeon CPU at 2.13GHz and 32GB RAM.

5.2.1 Deadlock freeness (P1)

Deadlock freeness property is directly supported in PAT using the keyword deadlockfree.

However, there is a state space explosion problem of the SmartRoom() model which is cased
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Property Result #States /m #Transitions /m Time /s
P1.1 - - - OOM
P1.2 True 1.43 2.04 815
P1.3 True 10.8 15.8 7045

Table 5.1: Experiment: Deadlock Freeness Checking

by the using of multi-value global variables. Another observation occurs to us that the

system is deployed in the bedroom and shower room where there are no sharing of sensors

between the two rooms and the patients’ behaviour is exclusive to the rooms. In this case,

the complete system state space can split into two sub-system models- SmartBedroom()

and SmartShowerRoom(). We apply deadlock freeness checking separately on this two sub-

system models. In the experiment, the modification to the system model is trivial- removing

modelling parts related to the other room from the environment model and sensor models.

The property are thus specified as the following:

P1.1 #assert SmartRoom() deadlockfree;

P1.2 #assert SmartBedroom() deadlockfree;

P1.3 #assert SmartShowerRoom() deadlockfree;

As shown in Table C.22, both sub-system models are deadlock free. However, the state

space of SmartBedroom() model is much less than the state space of SmartShowerRoom()

model as shown in column 3. It is because there are more activities monitored in shower

room than bedroom. The more activities to be monitored, the more interleaving will be

produced which will significantly boosts the state space.

Since each layer of the system as well as the environment model are independent from each

other except for channel communications, we conducted the experiments incrementally.

2OOM- Out of Memory
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Model
Bedroom ShowerRoom BothRooms

#Sts /k Time /s #Sts /k Time /s #Sts /k Time /s
env 0.028 0.005 0.008 0.005 0.082 0.010

env+snr 0.157 0.080 0.072 0.030 0.906 0.339
env+snr+mdw 17.40 7.799 56.01 23.00 8319 4017

Complete 731.5 384.2 7059 4031 OOM OOM

Table 5.2: Experiment: Component Deadlock Freeness Checking

During verification of a particular component model, we abstract away the details of other

component models leaving only the channels for receiving messages. Doing in this way,

we are able to check deadlock freeness locally for all system components and keep the

composition of component models in a manageable level. In the table 5.23, the row starts

with env represents the environment model; row env + snr represents the model composed

by environment model and sensor model; row env + snr +mdw adds middleware model into

previous one; and the last row is the complete model with all components. It turns out to

be that the complete model including bedroom and shower room scenario is too large for

verification. We split it into two sub-models according to the locations. The experiment

results show the rapid increase of state space when more components are composed.

5.2.2 Guaranteed Reminders (P2)

A well designed reminding service is very important for assisting elders with mild dementia.

We list two reminder services in the bedroom and shower room scenarios respectively as

follows. Rest of the four reminders can be specified in similar ways.

Guaranteed Lying Wrong Bed Reminder (P2.1) This property states that when a

patient is sleeping in a wrong bed, the system will always prompt the LyingWrongBed

reminder eventually.

3Sts- States
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#define LyingWrongBed (sensors[RfidBed_1] 6= EMPTY

&& sensors[RfidBed_1] 6= 1);

#define RemindedWrongBed (ReminderStage[LyingWrongbed*2 + 1] 6= 0);

#assert SmartBedroom() ✏ 2 (LyingWrongBed ! 3 RemindedWrongBed);

Here, condition LyingWrongBed specifies the scenario that someone else is sleeping on

patient1’s bed, and RemindedWrongBed defines the state the reminder is prompted.

Guaranteed Sitting Bed Too Long Reminder (P2.2)

This property states that when a patient who has troubled sleep by sitting on the bed for

too long, the system will always prompt a reminder ask him to sleep eventually.

#define TroubleSleep (sensors[PRESSUREBED_1] == SITTING

&& Duration[PRESSUREBED_1] > 30);

#define RemindedSleep (ReminderStage[SIT_BED_TOO_LONG*2 ]6= 0);

#assert SmartBedroom() ✏ 2 (TroubleSleep ! 3 RemindedSleep);

Here, condition TroubleSleep specifies the scenario that someoneis sitting on bed more than

30 time unitess, and RemindedSleep defines the state the reminder is prompted.

Guaranteed Wandering In Showerroom Reminder (P2.3)

This property states that some patient is inside the shower room but no activities are

detected that the wander flag is set to be true. In this case, the reminder asking the patient

to leave shower room will eventually be sent so as to prevent slipping/ falling of the patient.

#define WanderingInShowerRoom (Pos_Person[1] == SHOWERROOM && WanderFlag);
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#define WanderReminded (ReminderStage[WANDERING_IN_SHOWERROOM*2] 6= 0);

#assert SmartShowerRoom() ✏

2 (WanderingInShowerRoom ! 3 WanderReminded);

where condition WanderingInShowerRoom specifies the scenario where a patient is recog-

nised to be wandering in shower room, and WanderReminded defines the state the reminder

is prompted.

Guaranteed No Soap Used Reminder (P2.4)

This property states that when the system detects that no soap usage for more than 15

time units while the patient is showering, the reminder contains instructs to use soap will

eventually be sent.

#define ShowerWithoutSoap (ShowerFlag && Duration[SHAKESOAP] >= 15 &&

!SoapFlag && Pos_Person[1] == SHOWERROOM);

#define NoSoapReminder (ReminderStage[SHOWER_NO_SOAP * 2] 6= 0);

#assert SmartShowerRoom() ✏ 2 (ShowerWithoutSoap ! 3 NoSoapReminder);

where condition ShowerWithoutSoap specifies the situation that the patient is showering

which has lasted for 15 time units but there is no soap event sensed, and NoSoapReminder

defines the state the reminder is prompted.

Guaranteed Shower Too Long Reminder (P2.5)

This property states that when the system detects that a patient is showering and the

shower tap is running for more than 30 time units, the reminder Shower Too Long asking
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patient to finish shower will eventually be sent so as to prevent patient for catching cold or

faint.

#define ShowerTooLong (ShowerFlag && Duration[SHAKETAP] >= 30

&& Pos_Person[1] == SHOWERROOM);

#define EndShowerReminded (ReminderStage[SHOWER_TOO_LONG * 2] 6= 0);

#assert SmartShowerRoom() ✏ 2 (ShowerTooLong ! 3 EndShowerReminded);

where condition ShowerTooLong specifies the the condition which decides the patient is

showering for too long, and EndShowerReminded defines the state the reminder is prompted.

Guaranteed Tap Not O↵ Reminder (P2.6)

This property states that when the system detects that the shower tap is not o↵ for a long

time, the reminder Tap Not O↵ will eventually be sent.

#define TapNotOff (sensors[ShakeTap] == UNSTATIONARY

&& Duration[ShakeTap] > 30);

#define OffTapReminded ( ReminderStage[TapNotOff*2] 6= 0

|| ReminderStage[TapNotOff *2+1] 6= 0);

#assert SmartShowerRoom() ✏ 2 (TapNotOff ! 3 OffTapReminded);

where condition TapNotO↵ specifies the situation that the shower tap is turned on for more

than 30 time units, and O↵TapReminded defines the state the reminder is prompted.

The results of the verification are shown in Table 5.3. The first two reminders are checked

against the bedroom system model while the rest are against shower room model. Surpris-

ingly, all the reminders on shower room fails and it takes variant time to invalid a property

due to the depth of the bugs.
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Property Result #States /k Time /s
P2.1 LyingWrongBed (LWB) True 808.4 616.8
P2.2 SitBedTooLong (SBTL) True 798.3 607.2
P2.3 WanderingInSR (WIS) False 58.24 27.48
P2.4 ShowerNoSoap (SNS) False 196.6 107.5
P2.5 ShowerTooLong (STL) False 1018 2635

P2.6 TapNotO↵ (SNO) False 701.8 489.1

Table 5.3: Experiment: Guaranteed Reminders Checking

5.2.3 Contradict Knowledge

The following property is specified to check whether there are contradictions in the system.

For example, if the PIR sensor is in SILENT status, there should be no one in the shower

room.

#define Contradiction ( Pos_Person[1] == SHOWERROOM

&& sensors[PIR] == SILENT);

#assert SmartShowerRoom() reaches Contradiction;

5.2.4 Conflicting/False Reminders

False Reminders

False reminders are generated prompts that should not be sent to patients. In the following,

we specify a situation that the Sit Bed Too Long reminder is sent to patient1 but in fact

he is not in the bedroom.

#define FalseReminder (Pos_Person[1] 6= BEDROOM

&& ReminderStage[SitBedLong] 6= 0 );

#assert SmartBedRoom() reaches FalseReminder;
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Conflicting Reminders

In the following, ConflictReminder defines a state where two reminders (i.e. WanderingInSR

reminder and Shower No Soap reminder) are simultaneously prompted to one patient.

#define ConflictReminder ( ReminderStage[ShowerNoSoap * 2] 6= 0

&& ReminderStage[WanderingInSR * 2] 6= 0);

#assert SmartShowerRoom reaches ConflictReminder;

We tested the system model if it can reach certain false states listed above. They results are

shown in Table 5.4. The False result in first row says it is invalid that the Lying Wrong Bed

reminder will send to a wrong person. To invalidate a property requires exploring the whole

state space. Thus, the time taken in verifying the property FalseReminders : LWB is much

more than verifying the rest of the properties4. Furthermore, there are many occasions of

the reminders in the system to conflict with each other as shown in row 3 and row 5-10 in the

table. This is due to the inability of deciding the correct location of the users. Furthermore,

it is obvious that scheduling policy of reminders in AMUPADH needs to be improved.

5.3 Discovery of Unexpected Bugs

Counterexamples are returned as evidences if the system model violates certain properties.

They are of great value to system engineers to debug the system. The set of confirmed bugs

are reported as follows which are unexpected by the development team.

System implementation fails to meet requirements

4While verifying reachability properties, the model checker will stop visiting system states as soon as a
witness trace is found.



5.3. DISCOVERY OF UNEXPECTED BUGS 74

Model Fault Type Result #States /k Time /s

Bedroom
FalseReminders: LWB False 731.5 371.7
FalseAlarm: SBTL True 1.463 0.479
CR: LWB vs. SBTL True 20.6 7.89

Shower Room

InConsistency True 0.404 0.180
CR: SNS vs. WIS True 10.34 4.150
CR: SNS vs. STL True 20.98 7.898
CR: SNS vs. WNO True 10.54 3.660
CR: STL vs. SNO True 16.35 5.785
CR: STL vs. WIS True 16.35 5.767
CR: WIS vs. WNO True 5.2 1.758

Table 5.4: Experiment: Testing Faults

• Guaranteed Reminders This experiment reveals a critical problem of the system that

the system fails to monitor the patient’s location correctly. A patient exiting the

shower room with tap left on is a typical case. The two reminders, Shower Not O↵

and WanderingInSR will repeatedly prompt even though there is no one in the shower

room.

Unexpected Faults Arising out of system complexity

• False Alarm in Bedroom The result of the second property is witnessed to be valid.

Through careful investigation, we notice that the rule defined for Sit Bed Too Long

does not have an identity attached to the rule’s condition and hence this reminder is

sent to the bed’s default owner regardless of the bed’s current user.

• Conflict Reminders From the experiment results, we found many scenarios where

there are reminder conflicts. For example, a patient wandering in the shower room

tirggers the WanderingInSR reminder. He then ignores the reminder and turns on

the shower tap to play with water (A typical behaviour of a dementia patient). The

water runs for a long time that the Shower No Soap reminder is triggered, therefore

causing the system to prompt the conflicting reminders.
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Positive feedbacks are given by system designers and engineers. In general, they improved

their system by amending the rules with necessary identify information. Furthermore, in

order to precisely detect the patient’s location, they added extra PIR sensors in the bedroom

and some rules to assure the consistence among context variables.

5.4 Discussion

Usefulness We gained several observations from this case study. First, model checking

techniques can provide a very good guide on system design. From our experiences of working

with designers of the system, they usually focus on setting up a demonstration based on

selected scenarios without considering other useful situations. It is not only because of the

high cost of hardware devices but also to complete a full demonstration is time consuming.

In fact, the development and consideration of all possibilities when constructing scenarios

and rules is an impossible task and would either take many man-hours to find out through

actual deployment. In fact, some of the bugs (e.g., False Alarm) we reported are occurring

in execution of AMUPADH system and some of them are unexpected (e.g., inconsistency).

The counterexamples reported from the experiment also helped the engineers to pinpoint

the source of the bug. Besides, it is important to find unexpected bugs based on the

stakeholders requirements before deployment of the whole system. Hence the engineers can

retrieve certain normal or abnormal scenarios they are interested in based on our analysis

results.

Additionally, we observed the failure of updating the correct location information of the

patient leads to the violation of important properties. From the discussion with hardware

engineers, we learned that RFID readers have limited detection range. We may think it is

unwise to solely rely on RFID readers to track the patients. During the experiments, we

also noticed that a lot of redundant messages are sent out by the reasoning engine which
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increase the complexity of the system and slow down the verification.

Thoughts of solving state space explosion in PvC system verification The exper-

imental results reflect the typical state space explosion problem. The number of states in

checking deadlock freeness of the complete model reaches the level of 108, which is the limit

of explicit-state model checkers like SPIN and PAT. The state of art state space reduction

methods like partial order reduction may not have significant improvement of this prob-

lem. Compositional verification on the other hand draws our attention. From the deadlock

freeness checking, we noticted that if all components are locally deadlock-free, it is of great

possibility that the complete system model which is a composition of all the components is

free of deadlock. Obviously verifying a local property of a component is much easier than

verify it against the system model. Furthermore, the general architecture of PvC systems

suggests that there are almost no sharing recourses between components. The indepen-

dency between system components further proves that compositional verification could be

a feasible solution to state space explosion problem. Thus, in future, we shall explore how

composition verification techniques can be applied.

In this work, we propose a formal modelling framework for PvC systems. Di↵erent mod-

elling patterns are discussed according to the typical features of systems such as concurrent

communications, context-awareness and layered architectures. We also provide environment

modelling patterns which are usually not considered in modelling complex systems. Fur-

thermore, critical properties of safety and liveness requirements are identified and specified

in proper logics such as specifying guaranteed reminder services using LTL. To demonstrate

our approach, we present a case study of applying the modelling framework to a health-

care system for dementia patients. Critical properties are verified using PAT model checker

with unexpected bugs revealed. Experimental results and sources of the bugs are explained.

This work demonstrates the usefulness of formal methods (particularly model checking tech-



5.4. DISCUSSION 77

niques) in analysing PvC systems. Possible future works of this research could be applying

advanced techniques to tackle the state space explosion problem specially tailored for PvC

systems.
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Chapter 6

Rule Anomalies Detection: A

Model Checking Approach

The challenges facing PvC systems especially for Ambient Assisted Living (AAL) applica-

tions are in providing activity recognition of assisted people and also rendering adequate

assistive services. It become more challenging when there are multiple users sharing the

environment. A detailed interview survey is conducted in [30] showing that in a multi-user

environment, activities could be performed in sequential, interleave, concurrent and even

conflicting steps. Novel activity recognition approaches are proposed based on multi-model

sensor readings such as rule based logic reasoning [82, 29, 74, 7]. For example, if the pres-

ence of user, Alice in the shower room is detected by RFID sensor and Passive Infrared

sensor while the other sensors remain silent, the system is then aware of Alice’s wandering

in shower room that she needs help. Their approaches are more accurate and more practical

than those relies on images and videos (not accepted in practical for privacy issues).

However, the correctness the rule base remain a non-trivial problem. Incorrect or vague

rules could impair the system’s capability in determining activities, which could then result

79
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in a lack of, or inappropriate service to be o↵ered. Unreliable rules would also provide a

misleading reflection of the actual situation, which is unacceptable in mission-critical or

urgent scenarios. The task in correcting relatively large rule repositories is considerably

laborious. Therefore there is a need to construct a system that is able to verify and ensure

the specificity of rules, and to also automatically correct the erroneous rules. From our

experience of deploying a rule based activity recognition system, known as AMUPADH [11]

in PeaceHaven nursing home, we identified four challenges:

• Such a rule based AAL system incorporates a reasoning engine that performs activity

recognition based on rules that are pre-determined by domain experts, which in this

case pertains to nurses and caregivers stationed at PeaceHaven. These rules assist

the system in monitoring residents’ activities and provide the appropriate reminder

prompt to residents through reasoning.

• We observe that although monitored residents perform Activities of Daily Living that

is consistent with prior information provided by nurses, there are still occasions where

information provided by nurses is insu�cient to construct a system that can recognise

all the resident’s activities. Hence, it is possible that the system could still provide

erroneous prompts.

• We determine that these issues are a result of the rules’ inability to infer and recog-

nise all activities based only on first order descriptive logic. Rules are also created

with logic loopholes due to unawareness of actual scenarios. We are also unable to

fully capture factors involved in the changing ambient environment within our rules.

Therefore such logic flaws could only be exposed during actual deployments and due to

limited granularity and coverage of our sensors, in addition to uncertainties within the

ambient environment, the manually defined rules did not perform up to expectations.

• The resulting system thus becomes very di�cult to debug because of the relatively
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large number of rules and various scenarios that have to be tested in actual deploy-

ments to ensure the system is working.

In this work, we propose ACARP, an automatic approach which is based on exhaustive

manipulation of all possible scenarios to tackle this rule verification problem. The common

rule anomalies are defined by comparing the relations between rules such as redundant rules

are rules that have similar conditions. Instead of syntax checking, we discovered that these

anomalies can be represented as reachability and liveness properties that can be verified

against a system model. Thus, the rules verification problem is transformed into a model

checking problem. By adopting the formal modelling framework proposed in Chapter 4,

we constructed the scenario model for activity recognition. Further, ACARP automates

the rule modelling by translating rules into CSP# modelling language [75] which is an

expressive and well supported modelling language. In such as way, the rule anomalies can

be automatically detected by reusing the existing model checking algorithms e�ciently. Our

approach is applicable for general rule based PvC system since the common architecture

are adopted.

6.1 ACARP Rule Checking System

Rules and their respective rule engines are considered to be an important part of human

behaviour and activity monitoring systems. Rules can be complicated and crucial for real-

time and mission critical applications, especially for healthcare purposes. However, it is

di�cult to manually discover and correct errors within relatively large number of rules. As

evidenced in the modelling and verification of the AMUPADH system, rules can be checked

using model checking techniques, and counter examples reported by model checkers can be

used to identify possible errors in the rules. In the following subsections, we explain how

ACARP can parse Drools rules into CSP# and auto-detect rule anomalies.
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6.1.1 Drools Rule Engine

The Drools [18] reasoning engine contains rules that can be written using first order de-

scriptive logic. Rules are able to handle scenarios with multiple conditions(IFs) and conse-

quences(THENs). Context-aware reasoning engine [92] is proposed and implemented within

the AMUPADH system. However, complicated scenarios with overlapping activities cause

logic flaws and some rules are unnecessarily activated. When certain rules are changed,

other rules dependent on these modified rules can become redundant. Additional rules that

are inserted to complement present rules can also further complicate the system.

We tried overcoming these problems by appropriately classifying the rulesets into di↵erent

groups of rules. Any modifications made to a group of rules would a↵ect only rules within

the particular group. However, this is not a perfect solution as there would still be situations

where rule conflicts would occur between di↵erent rule groups which are used to monitor

the entire smart home. Therefore the model checker PAT would be used to help resolve this

problem by performing rule checking and verification.

6.1.2 System Workflow

As shown in Figure 6.1, the system is designed to incorporate a parser that takes Drools

rules and Java classes as input, so that the system can automatically produce a model in

PAT. PAT subsequently checks the newly-created rule model against the properties defined

in Section C.6. If some properties are satisfied, a counterexample will be reported. PAT then

analyses and traces the report to locate the erroneous rules and autocorrect them according

to predefined logic, or the system can also alert users to perform manual correction.
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Figure 6.1: Auto Correction System Component Diagram

6.1.3 Translating Drools rules to CSP#

We use Drools because it is a popular rules platform widely adopted in research fields and

industries. Drools Expert1 is an open source rule engine maintained by JBOSS community.

It is broadly applied in recommendation, financial security and other business systems.

The language syntax of specifying Drools rules is based on first order descriptive logic and

external methods and classes written in Java can easily be used in Drools. PAT supports

both of these features such that first order logic can be directly mapped to its form in

CSP#, and Java classes can be parsed into C# external library, which can be called in

CSP# models. Therefore, we parse Drools rule syntax into CSP# in PAT.

For usage of temporal rules with our approach, users are required to use the Real-Time Sys-

tem (RTS) module within PAT. Our approach assumes sensor inputs are true and without

uncertainty. The full syntax of Drools is quite expressive and the general pattern is shown

1Drools Expert: http://www.jboss.org/drools/drools-expert.html
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in the example below. Interested readers are encouraged to read [18] and [92] for details.

rule "Person lies on BedA, Wrong Bed"

when s1: Sensor(id == "RFID", name != "PersonA")

Sensor(id == "BedA", state == "LYING")

msg: MessageInterface()

then msg.send("Error: " + s1.getName() + " is lying on wrong bed.");

end

The above rule example obtained from the AMUPADH system clearly defines the conditions

and consequences describing the situation of a person lying on the wrong bed. The bed has

a RFID reader and pressure sensors installed. When a person other than “PersonA” uses

the bed and registers a pressure status of LYING , an alert message is sent . Note that the

symbol “s1” gives a name to an object or field that can be later quoted in the scope of this

rule and “Sensor” can be viewed as a field or a point for external method call or object

reference.

Parsing DROOLS rule to CSP#

After identifying the general pattern of Drools rules, the mapping of rules are defined in

this section.The rule engine consists of the main rule file and the Java classes that specify

global variables and external methods. We manage the parsing process as listed below:

Step 1: Extract Shared Information For the purpose of easy management, the shared

information is declared and kept in Java classes instead of rule files. This information

includes the global variables and constants.

Step 2: Mapping Rules into CSP# The parser processes the rules one at a time and

splits the rule into three parts, namely the rule name, conditions and consequences by
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reading the keywords rule, when and then respectively. We then map the Drools rule

into CSP# by mapping rule names into rule associated comments, the conditions to

ifa expressions, and the consequences into ifa statements, so as to point to the next

rule.

The two-step parsing tool automates the process of modelling rules and reduces the time

required for verifying rulesets. Human intervention might be required in rewriting certain

Java classes into C#. However, experience shows that this e↵ort is minimal, since Java

classes are seldom changed during system development.

Users who understand the context and usage of the rules are most suited for conducting

this process as the generated model’s performance is dependent on the user’s expertise

in accurately translating rules and inclusion of additional embedded semantics from Java

classes into the PAT model. However, our approach does not directly support the modelling

of rule priorities, but there are extensible work in progress. The choice of using a di↵erent

rule engine is also possible, but it would need to adhere to PAT’s input requirements.

6.1.4 Detection of Rules Anomalies

We model anomalies as properties within PAT. Based on results and feedback obtained from

the AMUPADH system deployed at PeaceHaven nursing home, we identify the following

critical properties:

� Property 1: Non-reachable rules

Non-reachable rules are trivial as some rules’ conditions are never satisfied during

ruleset execution. These rules can be unintentionally introduced by rule developers.

Although the system’s correctness is una↵ected, they add complexity to the model and

slow down the rules evaluation process. Detection of these rules is done by checking if
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every rule is reachable during the exhaustive search of system state space. Correction

by automatically removing such unnecessary rules is o↵ered by the ACARP system.

� Property 2: Redundant rules

Redundant rules are occurrences of multiple firing rules at the same system states

which producing identical or di↵erent system result. We define two kinds of redundant

rules, duplicated rules and subsume rules. The former refer to rules whose condition

parts are the same, whereas the latter applies to rules where the conditions of one rule

is a subset of the other. The detection of these rules can be done by checking if the

two rules in question are always fire together. We perform correction on these rules,

by removing one of the rules if both sets of conditions and consequences are identical.

If the consequences are di↵erent and not conflicting, we merge them into a single rule

and classify the remaining rules as conflicting rules.

� Property 3: Logically Conflicting Rules

Logically conflicting rules are rules that satisfy all conditions at a particular state,

but the consequences are not logically sound and thus are conflicting. This property

cannot be easily detected in routine system tests and the possibility in finding this

property using additional model checking techniques is still dependent on the design-

ers’ experience in finding such rules. We detect this error by checking if possible pairs

of conflicting rules can happen at the same time and analyse the rule traces, so as to

point out the conflicting pair of rules for manual correction.

6.2 Experiments and Discussion

We tested our implementation on two rulesets, which are rules used for two respective areas,

namely the bedroom and shower room. As shown in Table 6.1, the two rulesets contain rules
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Scenario #Rules #Non-reachable
#Redundant/
#Duplicated

#Conflicted

Bedroom 17 2 8/3 2
Shower Room 22 5 16/2 -
Avg. Time /s - 2.05 3.05 -

Table 6.1: Experiment: Anomaly Detection in Activity Recognition Rules

that are paired and tested for anomalies of non-reachability, redundancy and logic conflicts.

The advantage of using a model checker like PAT is that it provides feedback consisting

of counterexamples or traces of actions if any anomaly is detected, which is very useful

for analysis of our system. The traces can point out names of erroneous rules and their

respective violated properties. The activity sequence that leads to the property violation

will also be listed out.

From the experiments, we found cases of the following anomalies. In the bedroom scenario,

our system detected a rule that was non-reachable even after an exhaustive simulation of all

possible situations. We realised that it was a rule defined to recognise an activity of opening

a cupboard. However, in that particular state of the system at the time of detection, there

was no sensor deployed to detect such an activity. We subsequently confirmed that rule de-

velopers forgot to remove this rule from the repository even after the use case of recognising

cupboard usage has been previously abandoned. During the test for redundancy, ACARP

discovered five duplicated rules which were accidentally added into the rule repository for

testing and were not removed due to negligence.

Multiple pairs of logically conflicting rules were discovered within the rulesets used for our

PeaceHaven deployment of the AMUPADH system. We also observed multiple reminders

that were simultaneously prompted to the same user and we tried replicating such con-

flicting scenarios using the model checker PAT. The verification result with regards to the

reachability of this defined scenario turns out to be valid within our model, thus providing
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us with a trace that denotes the monitored user have been showering for a long period of

time, yet continues to ignore the reminder that prompts him to use the shower foam. This

was the reason that led to the triggering of two contradictory reminders that request a

user to perform activities in two di↵erent locations at the same time, which is physically

impossible. We were able to trace this situation using our ACARP system.

Discussion From the experiments, we discovered the stated anomalies as described by

our defined properties. They could be caused by changes made to the scenarios or rules.

It is impractical to manually examine and verify the validity of relatively large rulesets.

Moreover, some existing rule verification techniques can only perform simple syntax checking

which fail to detect logical conflicts. The other techniques and methodologies also could

not be used in our system due to the high level language features used within modern

rule engines, in addition to the lack of general tools and support. Hence, our approach is

required in order to provide features for modelling and also to e↵ectively detect the defined

anomalies and be able to perform customised verification for other testing purposes.

6.3 Related Work

In rules verification, anomalies are identified and classified into di↵erent categories. Vari-

ous algorithms are proposed to detect anomalies in order to build robust systems. Ligeza

and Nalepa [43] reported state-of-the-art rule representation and types of inferences. Tax-

onomies of rule anomalies are proposed regarding redundancy, consistency, completeness

and determinism. However, their rules are simple compared to context-aware rules that

are used in our system. In addition, there was no discussion regarding the detection and

resolution of anomalies too.

Drools verifier [1] from JBOSS community also performs rules verification. This tool

searches for anomalies such as redundancy and subsumption but their approach is based
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on merely syntax analysing and it lacks the ability in discovering high level semantic errors

such as conflicting rules.

Preece et al. [62] surveyed the verification of rule based systems focusing on detecting

anomalies. They described four types of anomalies regarding redundancy, ambivalence,

circularity and deficiency. Five rule verification tools are compared based on their capability

of detecting the four anomalies. They provide insights on underlying principles of rule

verification and state of the art in building a tool for carrying the task. However, their

definitions for anomalies and the surveyed algorithms are not directly applicable to our

system. Firstly, their methods are based on the syntax and semantic logics between rules

instead of the rule e↵ects on the system behavior. Secondly, the algorithms are mostly

designed for goal driven rules, such that the conditions and consequents of a rule have

strong causal connections and consequences are true only when all conditions of a rule are

satisfied. This might not necessarily be true in our ACARP system.

Researchers in [19] used Ambient Calculus to model a location sensitive smart guiding

system in a hospital. The mobility issue is well modelled and reasoned in their work using

modelling methods, but without adopting a rule-based approach. Our work is able to adopt

hierarchical modelling languages which is also supported by model checkers like PAT for

automatic verification.

Therefore, new methods for analysing rules in our ACARP system are needed in consider-

ation of our context-aware rules.

In this work, we presented a system that is able to use model checking techniques and the

model checker PAT in performing rule verification of activity recognition rules within a

smart home environment. We used Drools engine and tested our rules within a deployment

scenario at a local nursing home. In order to ensure validity of the rules, we created a

model of the rules and checked for non-reachability, redundancy and logically conflicting
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properties of the rules. These three important properties allow us to evaluate the rules and

also assist in automatic rule correction, therefore reducing reliance on human intervention

and the time needed for verifying the entire ruleset.



Chapter 7

A MDP-based Approach for

Reliability Analysis

One well-known application of PvC system is to assist elderly/ disabled people to live in-

dependently at their homes such as AMUPADH system. In the system, various hardware

devices and software components are cooperating together to produce a correct reminder

service. For examples, multiple sensors and an inference engine is used to perceive envi-

ronment changes and user intentions. Small home network is setup for communications

between distributed components. Actuators such as bluetooth speaker, IP TV or iPad are

used for prompting interactive reminder services. In general, a PvC system is considered to

be reliable when all required services are successfully delivered at the right time to the right

person. However, there are many causes leading to system failure, e.g. a critical sensor fails

or a network node malfunctions causing important messages being lost. Due to limitation

of current technology, such failures are unavoidable, thus it becomes critical to analyse and

manage the reliability in an acceptable rate.

Analysing the reliability of a PvC system is not trivial. As it is well-known, PvC systems
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are inherently complex. They are composed of multi-layers of software and hardware com-

ponents which have limited capability and accuracy. Researchers in [59], [65] reported that

the often inherent inaccurate and unreliable low-level sensors are used to detect context

information from the environment. This is probably due to cost e�ciency considerations,

i.e., less sensors or low-capability but cheaper sensors are selected due to budget constraints.

Moreover, PvC systems are often rule based where rules are manually constructed by engi-

neers with limited expert knowledge. Sometimes, two di↵erent scenarios are characterised

as similar cases because the rules defined to recognise the scenario is similar. For example, a

rule defined to recognise the abnormal behaviour, showering-for-too-long, may have similar

condition with the rule defined for tap-not-o↵ . Both of the rules depend on the same sensor

detecting shower tap on for more than certain time. It often leads to wrong and confusing

results. Wireless communication is unstable in the system as well. For instances, Zigbee

which is a low-cost, low power, wireless mesh network is adopted for communication among

sensor and network nodes such as bridge or router go down from time to time. Human er-

rors like a user forgets to wear the sensible tags could also causing the failure of the system.

Besides the complexity of the system, the feature of non-deterministic behaviour hinders

the application of most existing approaches. In PvC systems, information detected from

multiple sensors are combined in order to recognise a user activity. For example, to detect

the showering without using soap behaviour, the shake sensors on tap and soap dispenser

are needed. However, due to the unpredictable user activities, it is impossible to decide

a particular sequence of sensor activation. For instance, after entering the bedroom, the

user might sit on the bed, triggering the bed pressure sensor or he might go to washroom

directly triggering the RFID sensor for identity tracking. Thus, the order of sensor trigger-

ing is non-deterministic. All in all, an approach which is able to handle both the complex

architecture and nondeterministic behaviour is needed.

Probabilistic model checking gain great importance, especially for such complex system with
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non-deterministic behaviours. Reliability analysis is an useful application of this technique.

Some properties are of interest to end-users and developers of PvC system like “what is

the overall system reliability?”, “to reach a certain overall reliability, how reliable should

certain sensors be?” and so on. Reliability analysis by modelling system architecture

with Markov Chains is first proposed by Cheung [14] in 1980. It has been applied in

various case studies, e.g., Gokhale et al. [26] analysed the SHARPE tool for stochastic

modelling by constructing a DTMC and found out the relation between system reliability

and fault density per component (subsystem). Goseva et al. [27] performed a case study

on a system of the European Space Agency including reliability analysis and sensitivity

analysis. Wang et al. [85] analysed stock market system by construct DTMC and predicted

the system reliability. However, all these case studies are software systems. To the best

of our knowledge, there is no reliability analysis has been conducted on any PvC systems

which involves not only software systems but also networks, sensors and human activities.

In such a complex system, probability distribution of transitions among system components

are not able to obtained in most of the cases. MDPs allowing use of nondeterministic choices

to model hard-to-predict transitions are adopted for modelling of PvC systems.

In this work, three general but highly important questions related to the reliability of PvC

systems are investigated. First, “what is the overall system reliability if reliability of all

its components and subsystems are known, considering all possible user behaviours, and

unreliable factors?”. This is referred to the problem of reliability prediction. This question

is to be answered necessarily before system deployment since end users would prefer to

know how reliable the system is. Second, “what is the reliability required on subsystem or

some devices if there is an expected reliability on overall system?”. This is referred to the

problem of reliability distribution. Addressing this issue is pretty useful because we can have

specific quantitative requirement on designing software subsystems or selecting hardwares,

whose quality are highly related to cost in most of the time. Last but not the least, we are



7.1. SYSTEM MODELLING USING MDPS 94

interested in finding out the most critical parts to system reliability, based on quantitative

measurement, that relatively more e↵orts and fund can be spent on? This can be done

based on sensitivity analysis.

7.1 System Modelling using MDPs

Compared to DTMC, MDP allows us to capture both probabilistic and nondeterministic

behaviors. A central issue is: when to use nondeterministic choices and when to use proba-

bilistic choices. In general, probabilistic choices can be viewed as informed nondeterministic

choices. That is, we use a nondeterministic choice when we have no definitive information

on how the choice is resolved. For instance, if all we know is that there are two di↵erent

outgoing transitions after executing a component C , we model the two transitions using a

nondeterministic choice. If the choice is made locally and we are aware of each outgoing

transition, we can model C with a probabilistic choice. However, if the result of executing

C is correlated to its inputs, there are two cases. If the inputs are the result of execut-

ing some other component K in the system, we may either model it as a nondeterministic

choice conservatively; or we calculate the probability distribution of C ’s results based on

the probability distribution of K ’s results. If, however, the inputs of C are from an exter-

nal environment which is di�cult to predict (e.g., like the tra�c of stock transactions), a

nondeterministic choice would give us a “safer” model.

There are three major elements in an MDP model for PvC systems, i.e., the nodes, the

transitions and the reliability values. In the following, we take the model in Figure 7.1 as

an example to explain the modelling technique.



7.1. SYSTEM MODELLING USING MDPS 95

Nodes

Typically, in a general PvC systems, the sources of unreliability could be failure of sensors

and network devices, error in softwares and connection loss/transmission failure in networks.

Thus, in an MDP model of a PvC System, nodes are abstractions of sensors, software

components and network devices. To decide which device/ component are necessary to be

modelled, we need to analyse the rules which is used for reasoning. For example, in TNO

case, four sensors are related for recognising this behaviour. Besides, there are multiple

choices of playing this reminder e.g., playing on iPad, on Wi-Fi network or on Smart Phone

through 3G network. Thus, the four sensors, iPad, smart phone, Wi-Fi network and 3G

network need to be included in the model as nodes. Similarly, the Zigbee network, mini

server and rule engine are related.

In Figure 7.1, there are three types of nodes, i.e., circle nodes denote for sensors, square

nodes for hardware devices including software component residing inside, and cloud shape

nodes for networks. Double circled nodes are accepting nodes where all of them are success

nodes which are abstractions of displaying devices of reminders expect for the failure node.

The di↵erent shapes of nodes are for demonstration purpose, in an MDP model, they are

treated the same.

Transitions

In PvC systems, there are usually two types of relations between nodes happening before and

message forwarding relations. By analysing the reasoning rules, we are able to extracting

the relations between sensors. Happen before relation usually exists among sensors. It is

decidable when there is a particular order of triggering sensors. For example, in Figure 3.2,

the RFID reader is placed near the door. It is triggered earlier than other sensors in the

room if the system starts with all users outside. Thus, in the MDP model, it should be
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Figure 7.1: Bathroom Scenario- TNO: Tap Not O↵

placed in front of the rest of sensor nodes.

However, sometimes, the happen before relation is not deterministic. For instance, in the

model of Figure 7.1, there is no specific orders between shake sensors on the tap and soap

dispenser. Thus, we need to enumerate all the possible orderings. Besides, there is one

rule decides the behaviour on shake sensor on Tap solely among the two shake sensors.

Thus, there is a transition link from ShakeT to Zigbee making the ordering asymmetric.

We suggest that it is better to enumerate all the possible transition orders in the initial

model, especially when there are multiple rules defined based on similar sensors.

As for message forwarding relations, they are decided in the system design. For example, in

the TNO model, the messages are sent to the mini server via Zigbee network. Thus, Zigbee

node is placed between the sensors and mini server with transitions indicating the sequence

of messages transmission. Similar rules apply for rest of the transitions.
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Reliability Labelling

One final step is to label the nodes and transitions with reliability values. It is usually

provided by system engineers. Nodes are labelled with reliability values of the correspond-

ing devices. For transitions, there are di↵erent cases. At the initial node, the outgoing

transitions usually representing the user behaviours. In the TNO case, there is 20% of time,

the user will throw the sensible tags away (result drew from an experiment conducted by

the engineers). Thus, initially, there are 0.2 probability leading to system failure directly

as the user identity is unknown. Additionally, the happen before relations are usually non-

deterministic choices with no specific probabilities, thus by default, we assign the value 1.

As for forwarding relations, due the the signal strength, transitions to/ from network nodes

have di↵erent reliabilities. For example, in Figure 7.1, transitions from Wi-Fi node to bridge

node has the reliability of 0.8 since the bridge is placed on the wall outside the bedroom.

The nurse PC in common area is further away from the bedroom, thus the transition from

bridge to PC is as low as 0.75.

Fortunately, AMUPADH system has been deployed in a real user environment for data

collecting, the engineers are able to provide realistic estimations of device reliabilities based

on event log analysis. Since the reliability data varian on di↵erent days, we choose the best

e↵ort ones.

7.2 Reliability Analysis Problems

Based on the MDP model constructed in above section, three interesting directions of

reliability analysis is demonstrated. Figure 7.2 shows the workflow of this approach. The

approaches for reliability prediction, distribution and sensitivity analysis are shown in Figure

7.2 (a), (b), (c) respectively. In the following, each of the approaches is demonstrated.
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Figure 7.2: Workflow: (a) reliability prediction; (b) reliability distribution; (c) sensitivity
analysis

7.2.1 Reliability Prediction

As shown in Figure 7.2 (a), the reliability value of each component and an MDP model

of a system are required for calculating the overall system reliability. This is equivalent

to check the probability of the system never fails. Di↵erent methods have been developed

to calculate the maximum and minimum reachability probabilities, i.e., the probability of

reaching to the accepting states, denoted by Pr(M , a). Value iteration as introduced in

Chapter 2.2.3, is adopted for its better performance than most linear programs. Predicting

the reliability of the overall system based reliabilities of components is essentially calculating

the probability of reaching a successful state from the initial state.

There could be multiple paths in a MDPs model where each path is considered as a scheduler.

The reason for this is that there are multiple success state in addition to nondeterministic

choices of outgoing transitions. As a result, the measurement of interest is thus the maxi-

mum and minimum reachability probabilities. Let bi be a state in the set of success state B .

The lower bound of the overall system reliability is the minimum value of Pmin(M |= ⇧bi)
for each bi in B . Similarly, the upper bound is the maximum value of Pmax (M |= ⇧bi) for
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each bi in B .

7.2.2 Reliability Distribution

The approach on distributing the overall system reliability requires two inputs: (1) a relia-

bility requirement R on the overall system; (2) a parameterised system model in the form

of an MDP with weights for the components participating in reliability distribution. The

workflow is shown in Figure 7.2 (b). The goal is to find a reliability requirement on each

component whose reliability is unknown so that the overall reliability requirement is satis-

fied. The resultant requirement on component c is in the form of a reliability probability

Rc .

Given an MDP M and a scheduler �, we can obtain a DTMC M�. Assume the assigned

weight for component (in reliability distribution) i is wi , which is also given. Therefore,

each component reliability requirement can be expressed as wix , where x is a variable.

Therefore, the system reliability (i.e., Pr(M , a)) is a polynomial function constituted by

variable x only. Using numerical methods like Newton’s method, we can obtain a lower

bound on x , which is the reliability requirement we need. For multiple schedulers and we

need to guarantee that the system reliability requirement is satisfied with any scheduler.

We compute a lower bound on x for every scheduler and the maximum of the lower bounds

gives us the minimum requirement on component reliability. Based on [9], only finitely many

memoryless schedulers need to be considered. Our algorithm works as follows. First, an

unvisited memoryless scheduler � is selected. Next, using �, we perform the value iteration

method on M�. The following shows how the result vector V is updated. Assume scheduler

� chooses a distribution µs at state s: V (n+1)(s) =
P

t2S x ⇥ µs(t)⇥ V (n)(t). Once a

stopping condition is satisfied, we obtain a constraint V (init) � R and solve the equation

V (init)�R = 0 using Newton’s method to obtain a lower bound on x so that V (init) � R

is true. The steps above are repeated for all memoryless schedulers.
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The number of total memoryless schedulers equals to the product of the numbers of distri-

butions for each state, e.g., if there are ten states and two of them both have 3 distributions

and the rest has one, the number of schedulers is 9. Essentially, the more nondeterminism

there is, the more schedulers are to be considered. In practice the number of schedulers are

manageable as we are dealing with a high-level system model. Further, since each scheduler

is considered to be independent, we can parallels the computation.

7.2.3 Sensitivity Analysis

Sensitivity analysis indicates how to improve the overall system reliability e�ciently and

e↵ectively under a circumstance of limited resource. For example, if a system is shown to

be not reliable enough, based on each components reliability and the system architecture,

how to prioritize the components such that reliability improvement of a higher priority

component would result in more system reliability improvement.

The workflow for sensitivity analysis is shown in Figure 7.2 (c). In general, the sensitivity

si of the system reliability R with respect to the reliability Ri of i th component is defined as

the partial derivation of system reliability, denoted by f with respect to Ri , as in the form

�i =
�f (R

1

,R
2

,...R
i

,...R
n

)
�R

i

. However, analytical solution is hard when system is large and non-

deterministic. In our work, we only consider sensitivity analysis on one component each

time given all other components’ reliability. The sensitivity analysis problem is reduced

to calculate �i = �V (init)
�R

i

. V (init) is obtained as the same way as the one in reliability

distribution but there is only one variable in this case.

7.3 Analysing Reliability on AMUPADH system

In the beginning of AMUPADH project, we spent three months paying visits to the nursing

home for collecting requirements. By observing the patients daily life and multiple inter-
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Figure 7.3: Bedroom Scenario- UWB: Using Wrong Bed

views of nurses/doctors, two critical issues with dementia patients (caused by constantly

short memory loss and initiation problem) are raised that are sleeping behaviour in bed-

room and showering behaviour in bathroom. Furthermore, as introduced in Chapter 3.3, six

typical abnormal scenarios that requires reminder help or caregiver intervention is revisited

in the following:

� UWB: Using Wrong Bed Since a room in the RLA is shared by 2-3 people, the elder

patient, especially new residence, tends to lie on a bed without recognising whether

its his/her own bed.

� SBTL: Sitting on Bed for Too Long Some of the agitated patients often have

sleeping problems. They are easily bothered and irritated by what is happening in

the environment. A typical symptom is that the patient will get up at midnight and
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sit on the bed for very long time until assisted by nurses/caregivers.

� SNS: Shower No Soap Due to memory loss, dementia patients constantly forget the

normal steps of performing daily activity. In the taking shower activity, the patient

could forget what to do next right after the shower tap is turned on. It is reported by

the nurses that some of the patient finish the shower very fast without applying soap.

Concerned about the personal hygiene, patients presenting this behaviour need to be

helped.

� STL: Showering for Too Long Similar to the SNS issue, some patients will standing

under the shower head for a long time. It is a critical issue that exposing in the water

for a long time could cause the patient black out. If not helped immediately, it will

even causing death to the patient.

� TNO: Tap Not O↵ It is often the case that dementia patients forget to turn o↵ the

tap after showering. In order to save water and energy, this scenario is also detected

and reminded in the system.

� WiW: Wandering in Washroom Caused by initiation problem, it is possible for

the patient to forget at any step of the taking shower activity. Thus, a wandering

behaviour is also typical and patients need to be assisted in such cases.

In fact, taking shower turns out to be the most concerned issue of nursing elderly dementia

patients. In PeaceHeaven, the nurses need to monitor the showering activity of every patient.

Considering the ratio of nurses to patients is 1:15, this shower monitoring creates heavy

burden to nurses. After a careful analysis, both the SNS and STL scenarios could be

monitored by the system. A two-level reminding solution is thus provided in AMUPADH

that when the system recognises an abnormal behaviour, it will prompt a reminder to the

patient. If the behaviour remains, an alert will be sent to the nurse’s mobile phone to raise

her attention.
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Rel. UWB SBTL SNS STL TNO WiW
Schedulers 32 24 32 16 64 16

Max 0.3744 0.4190 0.3670 0.3707 0.3707 0.3707
Min 0.2956 0.2463 0.2897 0.2927 0.2897 0.2927
Time <1 ms

Table 7.1: Experiment: Reliability Prediction

7.3.1 System Modelling using MDP

In practice, it turns out to be unrealistic to model all the scenarios in one MDP model

considering the complexity and readability. Since scenarios are independent with each

other, we construct the MDP model separately for each scenario. Based on the modelling

approach introduced in Section 7.1, we present the MDP model of UWB scenario in Figure

7.3 as an example. In this case, the system heavily relies on the RFID reader to detect the

identity of the user who is using the bed. As shown in Figure 3.2, the RFID reader is placed

at one side of the bed. Since it is undecidable that which sides the user will choose to get on

bed, it is necessary to enumerate all possible orderings of RFID reader node and pressure

sensor node. As there is always a 20% chance of failure associated with RFID reader due to

the user throwing away the sensible tag, thus the model is asymmetric for di↵erent ordering

of the nodes.

7.3.2 Reliability Analysis Experiments

We conducte the experiments on six scenario models on a normal PC with 8 GB memory.

All the experiments are finished within seconds.
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Reliability Prediction

As shown in Table 7.1, the reliability of six scenarios ranges from 25% to 40% with di↵er-

ent scheduling1 which is quite low considering using the system at home with no human

supervision.

One general observation from this experiment is that the system highly relies on the RFID

sensors for identity tracking. However, the RFID sensors have the lowest reliability among

all the sensors. In fact, due to budget issues, the RFID reader used in the system has a half

meter detecting radius which makes it cheaper than others with a larger radius. Besides,

these sensors usually involve human errors such as disposing the sensible tag. Especially

for elderly dementia people since they are not very stable, the system cannot expect to rely

on them to provide critical information. Thus, our experiment result suggests the engineer

to replace this sensor for one with a larger detecting range or one does not require a tag.

Reliability Distribution

Further, we explore the reliability distribution on some nodes upon a overall reliability

requirement. Two groups of nodes are tested which are sensor nodes and network related

nodes. By fixing reliability of the network related nodes, we calculated the distribution on

sensor nodes and vice versa. We consider a uniform distribution (where all the nodes have

the equal weight) among sensors since they have a relatively similar reliability.

As shown in Table 7.2, it requires each network related node to have a reliability of 0.913

in order for all the scenarios to achieve a reliability of 0.4. However, it is impossible when

the requirement raises to 0.5. By a careful examination, we discover that the rule defined

1A scheduling in the model denotes for one possible path from the starting node to one success node.
Since there are non-deterministic choices in the model, there are multiple possible scheduling.
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Req. Nodes UWB SBTL SNS STL TNO WiW

0.4
Network 0.854 0.904 0.913 0.911 0.911 0.911
Sensor 0.886 0.938 0.941 0.923 0.923 0.923

0.5
Network 0.914 - 0.965 0.963 0.963 0.963
Sensor 0.996 - 0.995 0.994 0.994 0.994

Time /s 3.45 2.68 3.86 1.87 11.00 2.35

Table 7.2: Experiment: Reliability Distribution

for SBTL has an error. Because the engineer failed to put the user’s identity information

into the rule’s condition, this reminder will have a half chance be sent to the wrong user.

At this point, it is intuitive to ask the question that which node or group of nodes a↵ects

the system reliability heavier than the others? If improvements are made on such node(s),

it will be more e�cient. Thus, we seek the answer from sensitivity analysis.

Sensitivity Analysis

There are multiple schedulers in each MDP model as shown in Table 7.2. We choose a

typical one for demonstration and omit the rest due to page limit. As shown in Figure

7.3, the model connected in thick black links are the target schedule. It includes the most

features of other schedulers e.g., rely on multiple sensors and the RFID reader with lowest

reliability. The iPad case is chosen since playing reminders on iPad is the most common

way in practice.

Two nodes and a bundle of nodes are chosen for the experiment which are RFID reader

node, Zigbee network node, and bundle of nodes related to Wi-Fi network (their reliabilities

are dependent). Figure 7.4a shows the reliability distribution on these nodes. As we can

see, improvement on RFID reader node and Wi-Fi bundle can achieve a higher reliability

than Zigbee node. Figure 7.4b further suggests that when the reliability of these nodes

are greater then 0.7, increasing reliability of nodes in Wi-Fi bundle can achieve better
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Figure 7.4: Experiment: UWB- Sensitivity Analysis on Nodes

improvement than other nodes. In practice, increasing the reliability of a network might

be cheaper than purchasing a sensor with higher reliability, e.g., placing more bridges along

the path.

To summarise, these experiments are able to give a good estimation on the overall system

reliability. Additionally, it provides useful guidance on improving the system e�ciently,

especially in budget concerned systems. However, our approach requires knowledge on

modelling system in MDP models which make it di�cult to use for engineers without

necessary background.

7.4 Related Work

Since Cheung’s work in [14], several models and approaches on software architecture based

reliability evaluation have been studied and compared. Comprehensive surveys on the

existing approaches can be found in [36, 28, 25]. Compared to the above work, our approach

handles systems with model parameters which are hard to obtain.
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Reliability Allocation vs. Reliability Distribution Reliability distribution prob-

lem investigated in this work is similar but slightly di↵erent from the reliability allocation

problem studied in [55, 60, 35]. Given a Markov Chain model of the system architecture,

reliability allocation focuses on testing resource allocation to achieve optimal performance.

A well known reliability allocation deals with the setting of reliability goals for individual

subsystems such that a specified reliability goal is met [40]. While ensuring that a system

is su�ciently reliable, the allocation is to find an appropriate set of reliability measures

apportioned to each component, based on some optimisation goals, such as minimising the

amount of testing time [60, 48]. [48] discusses the reliability allocation which is to min-

imise the number of remaining faults given a fixed amount of testing e↵orts. Di↵erent from

algorithms on allocating testing resource [60, 35, 48], our method on reliability distribu-

tion focuses on minimising component reliability requirement, while fulfilling system level

reliability requirement.

Reliability Analysis of Conventional Software Systems vs. Pervasive Computing

Systems [66] extended the scenario specification (based on Message Sequence Charts) to

produce the reliability model the component-based software systems and used Cheung’s

model for reliability calculation. However, PvC systems are very di↵erent from the software

systems studied in their work. In fact, non-deterministic behaviours commonly exists in

the system that Cheung’s approach had no direct supporting modelling formalism. Fur-

thermore, due to those non-deterministic choices, it is not often the case, probability of all

outgoing transitions from a source state sum to one as required in Cheung’s model.

This chapter demonstrates our reliability analysis work of PvC systems using MDP based

modelling and verification approach. The models are manually constructed from the design

and implementation of the systems. Three groups of experiments are conducted to answer

the questions of “What is the overall system reliability with known reliability value of each
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nodes?”, “To reach a certain overall system reliability, how reliable should the sensors/net-

works be?” and “Which node (could be a sensor or network device) a↵ects the overall

reliability the heaviest?”. Experiments show surprising results that the overall system reli-

ability is below 50%. It is also suggested that to improve the reliability of Wi-Fi network

will be more e�cient to improve the system reliability. In future, approaches for acquiring

reliability of system components are of interest such as hypothesis testing.



Chapter 8

Conclusions

8.1 Summary

In this thesis, we have investigated ways of applying model checking techniques to analyse

complex PvC systems. In particular, we have contributed in the formal modelling of the

system and verification of its correctness, reliability and real-time requirements.

First of all, a formal modelling framework is proposed by studying the common architec-

ture of PvC systems. General modelling patterns are proposed using formal modelling

structures. The framework includes the modelling for both the environment including the

human behaviours and system design such as concurrent communications, context reasoning

behaviours etc.. Furthermore, by investigation of stakeholders (Doctors, Nurses, System En-

gineers etc.), critical system requirements are identified. They are transformed from natural

languages to formal properties such as safety and liveness properties which are checkable

using existing model checking algorithms. This approach is applied to AMUPADH system

which adopts CSP# modelling language and PAT model checker for verification. Several

unexpected bugs are revealed and we are able to locate the sources of these bugs with the

109
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help of counterexamples provided by the model checker.

Secondly, we demonstrate the work of automatic detection of rule anomalies. A tool is

developed to translate the popular industrialised rule language Drools Rules to the modelling

language of CSP# by providing the mapping relations of language constructs. Additionally,

we specified the common rule anomalies such as conflict rules in formal properties such

that the rules verification problem is transformed to a model checking one. These activity

recognition rules in AMUPADH system are verified using this approach. Our case study

found rule anomalies including non-reachable, redundant and conflict rules in the rule set

with counterexamples revealing the execution paths leading to the errors.

Qualitative system analysis helps people to identify design flaws and improve system logic,

but it does not give much intuition of how to improve the system consisting of many hard-

ware components for the sake of both correctness and reliability. For example, if some

inconsistency is found in the system, is it a better solution to replace a current sensor with

a similar sensor of higher accuracy than improve the network reliability for less message

loss. Naturally, quantitative analysis, especially probabilistic model checking techniques

are chosen to tackle such problems.

Thus, in the third part of our work, we explore MDP-based reliability analysis techniques

for improving the system design. MDP based formalism is chosen for modelling PvC sys-

tems because it has better support for modelling the non-deterministic system behaviours

than other probabilistic modelling languages. In this work, a system model is manually

constructed in MDP from the system design with reliability values and network topology

provided by system engineers. Three groups of questions are explored which are “What

is the overall system reliability with known reliability value of each nodes?”, “To reach a

certain overall system reliability, how reliable should the sensors/networks be?” and “Which

node (could be a sensor or network device) a↵ects the overall reliability the heaviest?”. The

AMUPADH system are modelled and verified using the model checker RaPid. Experiments
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show surprising results that the overall system reliability is below 50%. It is also suggested

that to improve the reliability of Wi-Fi network will be more e�cient than replacing a sensor

to improve the system reliability.

Overall, model checking techniques are found to be useful in analysing PvC systems. System

flaws can be exposed in correctness analysis, erroneous rules are detected automatically and

MDP-based reliability analysis can provide insights of improving system design. Analysing

correctness of the system with timed requirements are also important and non-trivial. It

faces the grand challenge of state space explosion. Yet, still there is lots of work to be done.

8.2 Future Challenges

Due to the various challenging issues in PvC systems, and the lack of comprehensive and

complete solutions to them, we thus propose model checking techniques to be applied and

specially tailored for these systems. In the following, we shall list the possible future research

works. They are arranged in an order that looks like a research plan that gradually leads

to the ultimate goal of formal and automated analysis of PvC systems.

8.2.1 Integrated Formal Modelling

As we explored in Chapter 4, there are di↵erent modelling languages for modelling di↵erent

system features, for example, CSP# is perfect for modelling concurrent interactions and

data processing in the system, Mobile Ambient are good at modelling location constraints,

TCOZ is most suitable for specifying timing constraints of sensors and MDP is best for

probabilistic behaviours. To model a large and hybrid system like PvC systems, any single

one of these languages is not enough.

One possible solution is to design a powerful modelling language which integrates all these
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useful language features. However, this solution produces a highly complex language that

will create an enormous challenge for defining its semantics. Compass Modelling Language

(CML) [88] is such a language proposed by Jim Woodcock and his team. It is a semantically

heterogeneous language, with state-rich imperative constructs based on VDM, communica-

tion and concurrency based on CSP, object orientation with object references, and discrete

time based on Timed CSP. In [87], they propose to use Unifying Theories of Programming

(UTP) to describe semantic domains for CML.

An alternative solution is to integrate the heterogeneous models rather than the languages

features. The idea is to create models of system components using the most suitable lan-

guages (e.g. CSP# for environment model, TCOZ for sensor models etc.) and glue/connect

these models together using proper language constructs such as interfaces. This solution

refers to the research problem of integrating heterogeneous models or describing architecture

connection. Emerged in late 1990’s, researchers has proposed Connectors [4] and Interface

Automata [20] etc. as glues of component models. This approach does not have much

limitation on the modelling languages of the system components. It is more focused on

modelling/specifying the high-level interaction among system components.

Both of the two solutions seem feasible for modelling a PvC system considering its layered

architecture and heterogeneous components. The former solution proposes a semantically

open modelling language that new language features can be included if there is a need while

the latter one is also flexible that it requires minimal e↵ort in language design. However,

for both of the approaches, defining the semantics of the resulting language remains a big

challenge. We will explore along these directions in future.



8.2. FUTURE CHALLENGES 113

8.2.2 Scalable Verification

In Chapter 5, the case study on AMUPADH evidenced the major bottleneck of applying

model checking in complex systems- State Space Explosion. For a state space larger than

108 states, most explicit-state model checking tools will fail. However, real life applications

usually have a much larger state space. It is a strong demand for us to explore more scalable

approaches. We will discuss the possible future direction in the following.

State Space Reduction Technique The two most popular reduction techniques are

partial order reduction and symmetry reduction. These techniques reduces state space re-

spectively by pruning out excessive permutable execution orders of actions and by grouping

symmetric states into equivalence classes and representing the equivalence classes with a

representative state. In fact, there are such relations existing in PvC system models. For

example, for a system shared by two patients who have the similar behaviours, the two

actions of patient A enters the bedroom and patient B enters the bedroom are independent

that either order of the two actions will have the same post state that both of the patients

are in the bedroom. Thus partial order relation exists in such a case. As for symmetry

relation, for two particular system states, a general reminder that not related to patient’s

identity is triggered in both states while one state with patient B is showering and patient

A is sitting on bed and the other with patient A showering and patient B sitting on bed,

these two states can be considered as symmetric and can be grouped.

Although these two techniques are e↵ective, they are di�cult to be applied for the reason

that the partial order or symmetric relations are highly model dependent and needs to be

discovered and defined prior to the implementation of the algorithms. Furthermore, these

methods are only useful when there are lots of such relations in the system’s state space.

To find all the possible relations are highly non-trivial and require lots of work.
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Compositional Verification Compositional verification on the other hand draws our

attention. The idea was proposed dated back to the 1980s. Representative of such works

are Assumed Guarantee by A. Pnueli in [61] and Interface Processes by E. M. Clarke et al.

in [16]. They have contributed in decomposing global safety and liveness properties into

local verifiable ones and deducing global property satisfaction from these local verification

results.

Noticing the deadlock freeness verification experiments of Chapter 5, we believe that under

some assumption, if all components are locally deadlock-free, the complete system model

which is a composition of all the components is free of deadlock. Obviously verifying a

local property of a component is much easier. Furthermore, the general architecture of this

type of systems suggests that there are no sharing recourses between components. The

independence between system components further promotes that compositional verification

could be a feasible solution in solving state space explosion problem in PvC system domain.

In future, we shall research on this direction.

Although the research problem of compositional verification has established for 30 years,

it remains a hot and tough topic. There are a few challenges for us. First of all, many

of existing works explore process level composition under the same model while we are

looking at model level composition under a model of heterogeneous models. Decomposing of

properties must be carefully dealt with taking the coupling between component models into

consideration. Furthermore, it is desirable to design automatic approaches for compositional

verification in the context of large and complex PvC systems. It is a grand challenge if we

are aiming to automatically verify a model of heterogeneous models.

Beside of the above problems, we also want to design a graphic modelling and simulation user

interface. This is because, most designers and engineers from pervasive computing domains

have limited background knowledge of formal methods. Visualisation of the modelling

process and result simulation would be more useful and more fun.
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Appendix A

Operational Semantics of CSP#

where e 2 ⌃; e⌧ 2 ⌃ [ {⌧}; x 2 ⌃ [ {X} and ⇤ 2 ⌃ [ {⌧,X}

[ skip ]

(V ,Skip)
X! (V ,Stop)

(V ,P)
e! (V 0,P 0), e 2 X

[ hide1 ]

(V ,P \X )
⌧! (V 0,P 0)

(V ,P)
x! (V 0,P 0), x 62 X

[ hide2 ]

(V ,P \X )
x! (V 0,P 0 \X )

(V ,P)
e⌧! (V 0,P 0)

[ seq1 ]

(V ,P ; Q)
e⌧! (V 0,P 0; Q)

(V ,P)
X! (V 0,P 0)

[ seq2 ]

(V ,P ; Q)
⌧! (V 0,Q)

(V ,P)
x! (V 0,P 0)

[ ch1 ]

(V ,P⇤Q)
x! (V 0,P 0)

(V ,Q)
x! (V 0,Q 0)

[ ch2 ]

(V ,P⇤Q)
x! (V 0,Q 0)

(V ,P)
⌧! (V 0,P 0)

[ ch3 ]

(V ,P⇤Q)
x! (V 0,P 0⇤Q)

(V ,Q)
⌧! (V 0,Q 0)

[ ch4 ]

(V ,P⇤Q)
⌧! (V 0,P⇤Q 0)
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[ non1 ]

(V ,P u Q)
⌧! (V ,P)

[ non2 ]

(V ,P u Q)
⌧! (V ,Q)

(V ,P)
x! (V 0,P 0)

[ int1 ]

(V ,Pk | Q)
x! (V 0,P 0k | Q)

(V ,Q)
x! (V 0,Q 0)

[ int2 ]

(V ,Pk | Q)
x! (V 0,Pk | Q 0)

(V ,P)
X! (V 0,P 0), (V ,Q)

X! (V 0,Q 0)
[ int3 ]

(V ,Pk | Q)
X! (V 0,P 0k | Q 0)

(V ,P)
⇤! (V 0,P 0)

[ inter1 ]

(V ,P 4 Q)
⇤! (V 0,P 0 4 Q)

(V ,Q)
e! (V 0,Q 0)

[ inter2 ]

(V ,P 4 Q)
e! (V 0,Q 0)

(V ,Q)
⌧! (V 0,Q 0)

[ inter3 ]

(V ,P 4 Q)
⌧! (V 0,P 4 Q 0)



Appendix B

A Complete List of Rules

Rule Rule Condition Action

0: Person entered

Bedroom

rfidBedroom.state 6= EMPTY setPersonLocation(rfidBedroom,

BEDROOM)

1: Person entered

Shower Room

rfidShowerRoom.state 6= EMPTY setPersonLocation(rfidBedroom,

SHOWERROOM)

2: Person sitting/-

lying on Bed A

rfidBedA.state == personA && pres-

sureBedA 6= EMPTY

SendMsg: ACTIVITY.normal.

(pressureBedB.state). Cor-

rectBed. personA

3: Person sitting/-

lying on Bed B

rfidBedB.state == personB && pres-

sureBedB 6= EMPTY

SendMsg: ACTIVITY.normal.

(pressureBedB.state). Cor-

rectBed. personB

4: personA sat on

Bed A for too long

(30mins)

pressureBedA.state == SITTING &&

pressureBedA.duration > 30

SendMsg: ACTIVITY. error.

SitBedTooLong. personA

5: personB sat on

Bed B for too long

(30mins)

pressureBedB.state == SITTING &&

pressureBedB.duration > 30

SendMsg: ACTIVITY. error.

SitBedTooLong. personB
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6: Person lying on

wrong bed (BedA)

rfidBedA.state != personA &&

rfidBedA.state 6= EMPTY && pres-

sureBedA.state 6= LYING

SendMsg: ACTIVITY.

error. LyingWrongBed.

(rfidBedA.state)

7: Person lying on

wrong bed (BedB)

rfidBedB.state != personB &&

rfidBedB.state 6= EMPTY && pres-

sureBedB.state 6= LYING

SendMsg: ACTIVITY.

error. LyingWrongBed.

(rfidBedB.state)

8 1: PersonA is

showering

shakeTap.state == UNSTATIONARY

&& shakeTap.duration < 40 && pir-

ShowerRoom.state == FIRING &&

personA.location == SHOWERROOM

setShowerFlag(true); SendMsg:

ACTIVITY. normal. Showering.

PersonA

8 2: PersonB is

showering

shakeTap.state == UNSTATIONARY

&& shakeTap.duration < 40 && pir-

ShowerRoom.state == FIRING &&

personB.location == SHOWERROOM

setShowerFlag(true); SendMsg:

ACTIVITY. normal. Showering.

PersonB

9 1: PersonA is

showering for too

long (30 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 120 && pir-

ShowerRoom.state == FIRING &&

personA.location == SHOWERROOM

SendMsg: ACTIVITY. error.

ShowerTooLong. personA

9 2: PersonB is

showering for too

long (30 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 120 && pir-

ShowerRoom.state == FIRING &&

personB.location == SHOWERROOM

SendMsg: ACTIVITY. error.

ShowerTooLong. personB

10 1: PersonA is

washing for too

long and tap not

o↵ (15 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 30 && pir-

ShowerRoom.state == SILENT &&

personA.location == SHOWERROOM

SendMsg: ACTIVITY. er-

ror. ShowerNotO↵. personA

SendMsg: ACTIVITY. error.

WanderingWashroom. personA
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10 2: PersonB is

washing for too

long and tap not

o↵ (15 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 30 && pir-

ShowerRoom.state == SILENT &&

personB.location == SHOWERROOM

SendMsg: ACTIVITY. er-

ror. ShowerNotO↵. personB

SendMsg: ACTIVITY. error.

WanderingWashroom. personB

11 1: PersonA is

showering with no

soap (15 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 30 && shake-

Soap.state == STATIONARY &&

shakeSopa.duration � 30 && !soapFlag

&& pirShowerRoom == FIRING &&

personA.location == SHOWERROOM

setNoSoapEvent(true);

SendMsg: ACTIVITY. error.

ShowerNoSoap. personA

11 2: PersonB is

showering with no

soap (15 mins)

shakeTap.state == UNSTATIONARY

&& shakeTap.duration � 30 && shake-

Soap.state == STATIONARY &&

shakeSopa.duration � 30 && !soapFlag

&& pirShowerRoom == FIRING &&

personB.location == SHOWERROOM

setNoSoapEvent(true);

SendMsg: ACTIVITY. error.

ShowerNoSoap. personB

12 1: PersonA just

enters and wander-

ing in washroom

(15 mins)

shakeTap.state == STATIONARY &&

pirShowerRoom.state == FIRING &&

pirShowerRoom.duration � 40 &&

!showerFlag && personA.location ==

SHOWERROOM

setWanderFlag(true); SendMsg:

ACTIVITY. error. Wandering-

Washroom. personA

12 2: PersonB just

enters and wander-

ing in washroom

(15 mins)

shakeTap.state == STATIONARY &&

pirShowerRoom.state == FIRING &&

pirShowerRoom.duration � 40 &&

!showerFlag && personB.location ==

SHOWERROOM

setWanderFlag(true); SendMsg:

ACTIVITY. error. Wandering-

Washroom. personB
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13 1: PersonA for-

got to switch o↵ the

tap or shower (15

mins)

shakeTap.state == UNSTATIONAY

&& shakeTap.duration � 40 &&

soapFlag && !noSoapEvent && pir-

ShowerRoom.state == FIRING &&

personA.location == SHOWERROOM

SendMsg: ACTIVITY. error.

ShowerNotO↵. personA

13 2: PersonB for-

got to switch o↵ the

tap or shower (15

mins)

shakeTap.state == UNSTATIONAY

&& shakeTap.duration � 40 &&

soapFlag && !noSoapEvent && pir-

ShowerRoom.state == FIRING &&

personB.location == SHOWERROOM

SendMsg: ACTIVITY. error.

ShowerNotO↵. personB

14: Reset all sensor

when non-activity

in Washroom

shakeTap.state == STATIONARY &&

shakeSoap.state == STATIONARY

&& pirShowerRoom == SILENT &&

(washFlag == true || showerFlag ==

true || wanderFlag == true)

shakeTap.resetDuration();

shakeSoap.resetDuration();

setSoapFlag(false); set-

NoSoapEvent(false); set-

ShowerFlag(false); setWan-

derFlag(false); SendMsg:

ACTIVITY. normal. Wash-

roomEmpty.*

15: Used soap shakeSoap.state == UNSTATIONARY setSoapFlag(true)

16 1: Remove

ShowerNoSoap

alert for personA

soapFlag == true && noSoapEvent

== true && personA.location ==

SHOWERROOM

SendMsg: ACTIVITY. normal.

ShowerWithSoap. personA

16 2: Remove

ShowerNoSoap

alert for personB

soapFlag == true && noSoapEvent

== true && personB.location ==

SHOWERROOM

SendMsg: ACTIVITY. normal.

ShowerWithSoap. personB



Appendix C

Case Study on A Transmission

Protocol: CSMA/CD

Transmission protocols are one kind application of real-time systems, which are policies

govern interactions among communication agents. They play an important part in computer

networks and distributed systems. Many protocols have been successfully used, but they

may su↵er from some unexpected failures. The most common faulty in protocols is the

occurrence of deadlock; others include loss of message, message destruction, and timeout.

In the attempt of verifying real-time systems, we did a case study on a simple but typical

transmission protocol CSMA/CD (Carrier Sense Multiple Access / Collision Detection) [79],

which is widely used in Ethernet networks.

In the literature, Sergio Yovine in [91] used the tool KRONOS [12] to formally verify the

CSMA/CD protocol. Timed automata is used to model the protocol which captures the

system’s time constraints in a explicit way. He used TCTL to verify important system

properties such as reachability, bounded response etc., as well as using timed-abstracting

equivalence means to compare a real time implementation of a system with an abstract and
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untimed specification of it, verifying the correctness of system behaviours. A similar case

study is done using UPPAAL model checker [6, 3] which is also based on timed automata.

However, it is a tedious and error-prone task to explicitly set/reset clock variables in in

timed automata, especially when the model size grows very large. Besides, the UPPAAL

model of CSMA/CD is abel to reach a state where there is a deadlock which is infeasible

in checking bounded most liveness properties.

In our case study, we use the modelling language STCSP to model this protocol for its

richness of timed constructs and implicit clocks which are implemented to set/rest clock

variables automatically while execution of the model. Implicit clocks have certain benefits

that it can model the compositional timed systems, to satisfy high-level system requirements

like deadline, timeout, timed interrupt, which can be composed sequentially, or in parallel.

We also use timed refinement relationship to check system correctness like KRONOS using

timed-abstracting technique. However, our refinement checking is to check whether an

implementation satisfies a specification or not. It is di↵erent from KRONOS, which uses an

extended version of branching time temporal logic named Computation Tree Logic(CTL)

with time TCTL to do timed property checking. We also show our verification results of

certain critical properties in our home-grown model checker PAT.

C.1 CSMA/CD: A Collision Detection Protocal for Local

Area Network

In Ethernet network, several agents may be connected by a single bus. A problem arises that

how to assign the usage of bus to only one of many agents who competes for. Carrier Sense,

Multiple Access with Collision Detection (CSMA/CD) protocol describes one solution to

this problem.

The simplified algorithm of CSMA/CD is shown in Fig. C.1. Roughly speaking, whenever



C.2. MODEL FOR CSMA/CD PROTOCOL 135

Figure C.1: Algorithm of CSMA/CD Protocol

an agent starts sending messages, it must first listen to the bus and wait for absence signal

before transmitting. When the absence signal comes which means the bus is idle, the agent

begins to transmit. If it detects a busy bus, it waits for a random amount of time before

another try. As for the propagation time for message to travel from source node to the

destination node via bus, an agent may listen to the bus to be idle while another agent is

sending message before the message reaches any destination. Thus, collision occurs, then all

of the agents are informed of this collision, and abort their transmission immediately. All

transmitting messages are lost and all agents should compete for the bus again by waiting

a random time.

C.2 Model for CSMA/CD protocol

As in real world, there are several important time parameters, such as di↵erent propagation

time according to various materials of network wires. In order to better model the real
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world protocol behaviour, we make the following assumptions. First we suppose that agents

communicate in the 10Mbps Ethernet with a worst case propagation (denoted here by �)

for absence signal travel of 26 µsec. Additionally, we fix that messages have a fixed length

of 1024 bytes, and the time for transmitting a complete message is assumed to be a constant

time (denoted here by �) 808 µsec, including propagation time. Besides, we don’t model

backo↵ strategy for retrying, we just assume that agent will retry within 2� (52 µsec) time

unit elapsed since the last step. Also, we make assumptions that no messages are lost during

transmitting and there’s no bu↵er for incoming messages at the agent side.

Based on the above assumptions, we then model the CSMA/CD protocol in the real-time

system module in our PAT tool. The model for this protocol consists of two components,

namely Sender (sending agent) and Bus (message transmitting channel). Sender and Bus

communicate by synchronous events, so we define this communication by pair-wise syn-

chronisation channels. In order to make all the variables and processes of this model to be

clearly aware, we list all the related contents of this model with a simplified description, as

illustrated in Table C.1.

Modeling Sender Behavior The behavior of component Sender is showed in Fig. C.2.

WaitFor process models the behavior of sender i waiting for upper level messages to come.

Trans process represents sender i completes transmitting messages within � time unit or

detects a collision within 2� (52 µsec) time unit after its sending. Retry process expresses

sender i wait for a 2� (52 µsec) time unit to re-attempt.

Initially, the sender i is in WaitFor process. When a message arrives, one of the following

transitions is executed. If the bus is not busy, the sender starts transmission. Otherwise,

if bus is busy because another sender is already transmitting, it moves to retry state, or a

collision is detected, it waits to retry. If a collision occurs while there is no message to send,

the sender i remains in WaitFor state.
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Category Name Description

Global Definition

N Constant: number of senders
channel newMess 0 Sender gets messages to send
channel begin 0 Sender starts sending message
channel busy 0 Sender senses a busy bus
channel cd 0 Sender detects a collision
channel end 0 Sender completes its transmission

Sender Behavior
WaitFor(i)

Sender i is waiting for a message from the upper
level

Trans(i) Sender i is sending a message

Retry(i)
Sender i is waiting to retry after detecting a col-
lision or a busy bus

Bus Behavior

Idle Bus is free, no sender is transmiting

Active
One sender starts transmitting and is detecting
collision

Active1 One sender is transmitting messages, bus is busy

Collision
Collision occurs and bus broadcasts the collision
information to all senders

Table C.1: Components of CSMA/CD Model

In Trans process, sender i has two transitions, which is modelled as two external choices in

PAT. If a collision is detected before 2� time unit elapsed, the sender goes to Retry process.

Otherwise, it terminates sending the message after exactly � time unit, then it goes to the

initial process.

When sender i is in Retry process, it makes a new step to resend messages before 2� time

unit elapsed since the last step. If the bus is idle, it will begin to transmit and moves to

Trans state; If the bus is busy or receives a collision, it will still be in Retry state.

Modeling Bus Behavior The behavior of component Bus is showed in Fig. C.3. Initially,

bus is in Idle process. When one sender starts sending its message, bus goes to Active

process. If bus receives a signal that sender completes sending, it moves to idle state.

Or after being in Active state for at least � time unit, bus replies busy signal to any new

attempt, which models the fact that the head of the message currently being sent has already
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WaitFor(i) = (cd?i ! WaitFor(i))

⇤(newMess!i ! ((begin!i ! Trans(i))

⇤(busy?i ! Retry(i))

⇤(cd?i ! Retry(i))));

Trans(i) = (cd?i ! Retry(i)within[0, 52])

⇤(atomic{end !i ! Skip}within[808, 808];
WaitFor(i));

Retry(i) = (newMess!i ! ((begin!i ! Trans(i)within[0, 52])

⇤(busy?i ! Retry(i)within[0, 52])

⇤(cd?i ! Retry(i)within[0, 52])));

Figure C.2: Model: the Sender

Idle = newMess?i ! begin?i ! Active;

Active = (end?i ! Idle)

⇤(newMess?i !
((begin?i ! Collision) timeout [26]

⇤(busy !i ! Active1)));

Active1 = (end?i ! Idle)

⇤(newMess?i ! busy !i ! Active1);

Collision = atomic{BroadcastCD(0)}within[0, 26]; Idle;

Figure C.3: Model: the Bus

propagated, then bus moves to Active1 state. If another sender starts sending messages

before � time unit elapsed, bus moves to Collision state where it takes no more than �

time unit to broadcast collision to all senders. We use atomic process BroadcastCD shown

in Fig. C.4 to broadcast collision to all senders. After that, bus moves to Idle state. When

bus in Active1 process, which means a sender has begun sending messages without collision,

it will respond busy signal to all request senders until the sender completes transmitting,

then bus moves to Idle state.

Composing CSMA/CD Protocol Model The whole system is executed by all senders

and bus interleave with each other. The communication is implemented by the synchronous
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BroadcastCD(x ) = if (x < N ){
(cd !x ! BroadcastCD(x + 1))

⇤
(newMess?[i==x ]i ! cd !x ! BroadcastCD(x + 1))

}
else {
Skip

};

Figure C.4: Model: the BroadcastCD process

CSMACD = (||| x : {0..N � 1}@WaitFor(x )) ||| Idle;

Figure C.5: Model: the CSMACD protocol

channel between senders and bus. We model this as Fig. C.5

C.3 Verification and Experimental Results

Verification Properties In order to formally verify our model for CSMA/CD proto-

col is correct, we define several categories of properties to check whether it satisfies some

properties. These properties in PAT can be categorized as LTL-X Model Checking, Re-

finement Checking and Timed Refinement Checking. In LTL-X Model Checking, properties

are formulated using linear temporal logic formulae without next operator, which includes

safety property and liveness property. Refinement Checking is to verify whether the sys-

tem satisfies the property by showing a refinement relationship between the system and a

model which models the property. The refinement relationship can be trace-refinement, sta-

ble failures refinement and failures/divergence refinement [34]. Timed Refinement Checking

supports refinement checking between timed models, using implicit clocks and zone abstrac-

tion mechanism.
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Deadlock Freeness (P0)

Informally, safety property states ”bad things” never happen during the execution. Dead-

lock freeness is a safety property that has to be fulfilled so that it is always possible to move

from one state to another. Deadlock freeness property in our model is defined as follows:

#assert CSMACD deadlockfree;

Timed Divergence-free (P1)

If a process performs internal transitions and timed transitions forever without engaging any

useful events, the process is said to be divergent. While the divergent system is undesirable,

for it can give unbound timer, thus disallows timed refinement checking. Timed Divergence-

free property in our model is defined as follows:

#assert CSMACD divergencefree < T >;

Collision detection in a given bounded delay (P2)

Whenever two senders are simultaneously transmitting, a collision is detected in a bounded

delay. In worst case, a sender can start sending at most � time units after another sender,

which means a collision occurs no more than � time unit after two senders simultaneously

transmit. And collision may take � time units to be propagated. So a sender will detect a

collision at most 2� (52 µsec) after it starts transmitting.

Figure. C.6 shows a model that specifies this property. Spec shows that if event begin.0 oc-

curs which means sender 0 begins transmitting, then Constrained1 happens. Constrained1

states if event begin.1 occurs thereafter which means sender 1 starts sending messages almost

simultaneously, event cd .0 or cd .1 must occur within 52 time units, otherwise, no constraints

apply, which is modeled as Relaxed process. In Spec process, if event begin.1 occurs and

then followed by event begin.0, then Constrained2 happens. Constrained2 states if event
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Spec = (newMess.0 ! begin.0 ! Constrained1)
⇤(newMess.1 ! begin.1 ! Constrianed2)
⇤Relaxed ;

Constrained1 =
((newMess.1 ! begin.1 !
((cd .0 ! Skip⇤cd .1 ! Skip)deadline[52])); Spec)

⇤Relaxed ;

Constrained2 =
((newMess.0 ! begin.0 !
((cd .0 ! Skip⇤cd .1 ! Skip)deadline[52])); Spec)

⇤Relaxed ;

Relaxed =
(⇤x : {2..N � 1}@(newMess.x ! begin.x ! Spec))

⇤
(⇤x : {0..N � 1}@((newMess.x !

(busy .x ! Spec⇤cd .x ! Spec))
⇤(cd .x ! Spec)
⇤(end .x ! Spec)));

Figure C.6: Model: the Collision detection in a given bounded delay

begin.0 occurs thereafter which means sender 0 starts sending messages almost simultane-

ously, event cd .0 or cd .1 must occur within 52 time units, otherwise, it executes Relaxed

process. In Spec process, if no constraints apply, it goes to Relaxed process. Our speci-

fication is to show whenever two senders send messages simultaneously, they will receive

collision within 52 µsec since start transmitting.

In order to verify our model satisfies this property, we use timed refinement to check this

requirement. Here, we define this in the following:

#assert CSMACD refines < T > Spec;

Experimental Results Timed refinement checking allows us to verify Collision detection

in a given bounded delay property which consists of timed transitions. We have experi-
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Property #Senders Result #States #Transitions Time /s

P0

4 Yes 787 1075 0.20
5 Yes 2789 3847 0.60
6 Yes 8851 12227 2.28
7 Yes 26109 35991 8.43
8 Yes 73123 100419 31.03
9 Yes 196997 269319 108.69
10 Yes 514915 700611 361.58

P1

4 Yes 787 1075 0.17
5 Yes 2789 3847 0.66
6 Yes 8851 12227 2.53
7 Yes 26109 35991 9.79
8 Yes 73123 100419 35.69
9 Yes 196997 269319 123.24
10 Yes 514915 700611 407.12

P2

4 Yes 787 1075 0.20
5 Yes 2789 3847 0.90
6 Yes 8851 12227 3.69
7 Yes 26109 35991 14.74
8 Yes 73123 100419 55.38
9 Yes 196997 269319 196.35
10 Yes 514915 700611 655.38

Table C.2: Experiment: Verification of CAMS/CD Protocol

mented CSMA/CD protocol on PAT for di↵erent number of senders. Table C.2 summarizes

the verification results of properties. The experiment testbed is a PC running Windows

XP3 within 2.33GHz Intel(R) core(TM)2 Duo CPU and 3.25GB memory.

From the table C.2, firstly we can see that the number of states, transitions and running

time increase rapidly with the number of senders. Secondly, we can show that PAT is ef-

fective, for it can handle thousands of states in no more than 1000 seconds. The data on

UPPAAL [3] or KRONOS [91] verifying the same models has been omitted from the table

because KRONOS just model two senders, and model in UPPAAL [3] has a deadlock, it

does not consider how to respond busy signal to request sender in multi-agents Ethernet

networks. In fact, bus just broadcasts busy signal to all senders which cause the deadlock.

Since our model does not present deadlock state, the more realistic modelling has brought
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us more states then we can verify our model more correctly.
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