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Abstract

RESTful Web API adoption has become ubiquitous with the proliferation of REST APIs in almost all

domains with modern web applications embracing the micro-service architecture. This vibrant and expanding

adoption of APIs, has made an increasing amount of data to be funneled through systems which require

proper access management to ensure that web assets are secured. A RESTful API provides data using

the HTTP protocol over the network, interacting with databases and other services and must preserve its

security properties. Currently, practitioners are facing two major challenges for developing high quality

secure RESTful APIs. One, REST is not a protocol. Instead, it is a set of guidelines that define how web

resources can be designed and accessed over HTTP endpoints. There are a set of guidelines which stipulate

how related resources should be structured using hierarchical URIs as well as how specific well-defined

actions on those resources should be represented using different HTTP verbs. Whereas security has always

been critical in the design of RESTful APIs, there are no clear formal models utilizing a secure-by-design

approach that interweaves both the functional and security requirements. The other challenge is how to

effectively utilize a model driven approach for constructing precise requirements and design specifications so

that the security of a RESTFul API is considered as a concern that transcends across functionality rather

than individual isolated operations.

This thesis proposes a novel technique that encourages a model driven approach to specifying and verifying

APIs functional and security requirements with the practical formal method SOFL (Structured-Object-

Oriented Formal Language). Our proposed approach provides a generic 6 step model driven approach for

designing security aware APIs by utilizing concepts of domain models, domain primitives, Ecore metamodel

and SOFL. The first step involves generating a flat file with APIs resource listings. In this step, we extract

resource definitions from an input RESTful API documentation written in RAML using an existing RAML

parser. The output of this step is a flat file representing API resources as defined in the RAML input file.

This step is fully automated. The second step involves automatic construction of an API resource graph

that will work as a blue print for creating the target API domain model. The input for this step is the flat

file generated from step 1 and the output is a directed graph (digraph) of API resource. We leverage on an

algorithm which we created that takes a list of lists of API resource nodes and the defined API root resource

node as an input, and constructs a digraph highlighting all the API resources as an output. In step 3, we use

the generated digraph as a guide to manually define the API’s initial domain model as the target output with

an aggregate root corresponding to the root node of the input digraph and the rest of the nodes corresponding

to domain model entities. In actual sense, the generated digraph in step 2 is a barebone representation of

the target domain model, but what is missing in the domain model at this stage in the distinction between

xii
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containment and reference relationship between entities. The resulting domain model describes the entire

ecosystem of the modeled API in the form of Domain Driven Design Concepts of aggregates, aggregate

root, entities, entity relationships, value objects and aggregate boundaries. The fourth step, which takes

our newly defined domain model as input, involves a threat modeling process using Attack Defense Trees

(ADTrees) to identify potential security vulnerabilities in our API domain model and their countermeasures.

Countermeasures that can enforce secure constructs on the attributes and behavior of their associated domain

entities are modeled as domain primitives. Domain primitives are distilled versions of value objects with

proper invariants. These invariants enforce security constraints on the behavior of their associated entities in

our API domain model. The output of this step is a complete refined domain model with additional security

invariants from the threat modeling process defined as domain primitives in the refined domain model. This

fourth step achieves our first interweaving of functional and security requirements in an implicit manner. The

fifth step involves creating an Ecore metamodel that describes the structure of our API domain model. In this

step, we rely on the refined domain model as input and create an Ecore metamodel that our refined domain

model corresponds to, as an output. Specifically, this step encompasses structural modeling of our target

RESTful API. The structural model describes the possible resource types, their attributes, and relations as

well as their interface and representations. The sixth and the final step involves behavioral modeling. The

input for this step is an Ecore metamodel from step 5 and the output is formal security aware RESTful

API specifications in SOFL language. Our goal here is to define RESTful API behaviors that consist of

actions corresponding to their respective HTTP verbs i.e., GET, POST, PUT, DELETE and PATCH. For

example, CreateAction creates a new resource, an UpdateAction provides the capability to change the value

of attributes and ReturnAction allows for response definition including the Representation and all metadata.

To achieve behavioral modelling, we transform our API methods into SOFL processes. We take advantage of

the expressive nature of SOFL processes to define our modeled API behaviors. We achieve the interweaving

of functional and security requirements by injecting boolean formulas in post condition of SOFL processes.

To verify whether the interweaved functional and security requirements implement all expected functions

correctly and satisfy the desired security constraints, we can optionally perform specification testing. Since

implicit specifications do not indicate algorithms for implementation but are rather expressed with predicate

expressions involving pre and post conditions for any given specification, we can substitute all the variables

involved a process with concrete values of their types with results and evaluate their results in the form

of truth values true or false. When conducting specification testing, we apply SOFL process animation

technique to obtain the set of concrete values of output variables for each process functional scenario. We

analyse test results by comparing the evaluation results with an analysis criteria. An analysis criteria is a

predicate expression representing the properties to be verified. If the evaluation results are consistent with
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the predicate expression, the analysis show consistency between the process specification and its associated

requirement. We generate the test cases for both input and output variables based on the user requirements.

The test cases generated are usually based on test targets which are predicate expressions, such as the pre and

post conditions of a process. when testing for conformance of a process specification to its associated service

operation, we only need to observe the execution results of the process by providing concrete input values to

all of its functional scenarios and analyze their defining conditions relative to user requirements. We present

an empirical case study for validating the practicality and usability of our model driven formal engineering

approach by applying it in developing a Salon Booking System. A total of 32 services covering functionalities

provided by the Salon Booking System API were developed. We defined process specifications for the API

services with their respective security requirements. The security requirements were injected in the threat

modeling and behavioral modeling phase of our approach. We test for the interweaving of functional and

security requirements in the specifications generated by our approach by conducting tests relative to original

RAML specifications. Failed tests were exhibited in cases where injected security measure like requirement

of an object level access control is not respected i.e., object level access control is not checked. Our generated

SOFL specification correctly rejects such case by returning an appropriate error message while the original

RAML specification incorrectly dictates to accept such request, because it is not aware of such measure. We

further demonstrate a technique for generating SOFL specifications from a domain model via model to text

transformation. The model to text transformation technique semi-automates the generation of SOFL formal

specification in step 6 of our proposed approach. The technique allows for isolation of dynamic and static

sections of the generated specifications. This enables our technique to have the capability of preserving the

static sections of the target specifications while updating the dynamic sections in response to the changes

of the underlying domain model representing the RESTful API in design. Specifically, our contribution

is provision of a systemic model driven formal engineering approach for design and development of secure

RESTful web APIs. The proposed approach offers a six-step methodology covering both structural and

behavioral modelling of APIs with a focus on security. The most distinguished merit of the model to text

transformation is the utilization of the API’s domain model as well as a metamodel that the domain model

corresponds to as the foundation for generation of formal SOFL specifications that is a representation of

API’s functional and security requirements.



Chapter1

Introduction

1.1 Background

1.1.1 Web APIs

A web API (Application Programming Interface) is a set of functions and procedures that allow clients

access and build upon the data and functionality of an existing application available over the web through

the HTTP protocol [1]. Clients should only know about the interface and nothing about the intricacies

of its implementation. A given interface can have multiple implementations, and a client written against

the interface can switch between implementations seamlessly without any overheads. To invoke a web API

remotely, you need to have a protocol defined for inter-process communication. Examples of some protocols

that facilitate interprocess communication include CORBA, .NET Remoting, Java RMI, REST (over HTTP)

and SOAP. Java RMI provides the infrastructure-level support to invoke a Java API remotely from a nonlocal

Java virtual machine. The RMI infrastructure at the client side serializes all the requests from the client

into the wire and deserializes into Java objects at the server side by its RMI infrastructure [2]. Java RMI is

language dependent and can only be invoked by a Java client.

A SOAP-based web service provides mechanisms to build and invoke a remote API in a language and

platform agnostic manner. It utilizes an XML payload to pass a message from one end to the other. SOAP

has a defined structure, and there exist a large number of specifications that offer a guide in defining its

structure. A typical SOAP specification defines a request/response protocol between a client and a server.

Web Services Description Language (WSDL) specification defines the way you describe a SOAP service. The

security of a SOAP based service are defined by WS-Security, WS-Trust, and WS-Federation specifications.

WS-Policy provides a framework to build quality-of-service expressions around SOAP services. WS-Security

Policy defines the security requirements of a SOAP service in a standard way, built on top of the WS-Policy

framework [2]. Contrary to SOAP, REpresentational State Transfer (REST) offers a design paradigm rather

than a set of design rules and protocols. Many web APIs nowadays adopt REST[3] architectural style which

allows building loosely coupled API designs relying on HTTP and the web friendly JSON data representation

format. The loosely coupling approach makes client applications have flexibility and reusability of an API

in terms of the fact that its elements can be easily added, replaced and changed.

1
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1.1.2 Web APIs in Practice

Web APIs rely on HTTP to facilitate the communication between the host of the API also known as the

provider and the system making an API request also referred to as the consumer. By using HTTP, web APIs

can take advantage of the protocol’s standardized methods, status codes, and client server relationships,

allowing developers to write code that can automatically handle data. An API endpoint, defined as a URL

for interacting with part of an API, serves requests from an API consumer. Below are some examples of

API endpoints from a salon booking service.

http: // salonapi. com/ api/ salons

http: // salonapi. com/ api/ salons/ { salon_ id}

http: // salonapi. com/ api/ salons/ customers

http: // salonapi. com/ api/ salons/ { salon_ id}/ profile

The data being requested by an API is referred to as a Resource. A singleton resource is a unique object,

such as http://salonapi.com/api/salons/{salon_id}. A group of resources, such as http://salonapi.

com/api/salons is referred to as a collection, while a subcollection refers to a collection within a particular

resource. For example, http://salonapi.com/api/salons/{salon_id}/profile is the endpoint to access

the profile subcollection of a specific salon.

In the event a consumer requests a resource from a provider, the request passes through an API gate-

way [4]. An API management acts as an entry point to a web application. The API gateway filters bad

requests, monitors incoming traffic, and routes each request to the proper service or microservice [4]. A

microservice is a modular segment of a web app dedicated to handle a specific function and they use APIs to

transfer data and trigger actions. An API gateway can also handle additional functionalities such as security

controls like authorization, authentication, encryption of data in transit using SSL [5], load balancing and

API rate limiting.

1.1.3 RESTful Web APIs

The concept of REST was introduced by Roy Fielding in his PhD dissertation, “Architectural Styles and the

Design of Network-based Software Architectures”[3]. REST relies on HTTP protocol for data communication

and revolves around the concept of resources where each and every component is considered as a resource.

These resources are accessed via a common interface using HTTP methods such as GET for retrieving a

resource, PUT for updating a resource, POST for creating a resource and DELETE for removing a resource.

Contrary to other web services, REST is an architectural style and protocol agnostic.

http://salonapi.com/api/salons
http://salonapi.com/api/salons/{salon_id}
http://salonapi.com/api/salons/customers
http://salonapi.com/api/salons/{salon_id}/profile
http://salonapi.com/api/salons/{salon_id}
http://salonapi.com/api/salons
http://salonapi.com/api/salons
http://salonapi.com/api/salons/{salon_id}/profile
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When describing the REST design paradigm, there are two essential concepts: resources and represen-

tations. A resource is anything that can be referenced as an item by itself [1]. It is an artifact that can

be stored on a computer such as an electronic document, a row in a database, or the result of running

an algorithm. A representation or a resource representation is a document response that a server sends

when a web browser sends an HTTP request for a resource. Every resource must have a Uniform Resource

Identifier (URI). The URI uniquely identifies a resource therefore when a client makes an HTTP request to

a URL, it gets a representation of the underlying resource and makes it capable of being manipulated using

an application protocol such as HTTP. A resource can have more than one URI but a URI identifies only

one resource. A resource’s URIs may provide different information about the location of the resource or the

protocol that can be used to manipulate it.

RESTful web APIs design depends on six constraints as defined by Fielding [3]. These constraints

essentially provide a set of guidelines for an HTTP resource-based architecture:

• Uniform Interface: RESTful APIs should have a uniform interface. It is agnostic to any requesting

client thus all clients should be able to access a server in the same way.

• Client-Server Architecture: RESTful APIs should conform to a client-server architecture where

the clients consume the requested information, and servers provide the requested information.

• Stateless: The latest HTTP request made by a client is not stored in the server thus each and every

request is treated as new. If a client needs a stateful user operation such as requiring the user to

log in once then perform other authorized operations, then the client should supply all the necessary

information such as authorization tokens and headers for each request.

• Cacheability: Caching provides a mechanism of increasing request throughput by storing commonly

requested data on the client side or in a server cache. A response from an API that conforms to

REST guidelines should indicate whether the response is cacheable. The mechanism that describes the

implementation of a cacheable property is as follows. When a client makes a request for information,

it firsts check its local storage for the target information. If it doesn’t find the information, it passes

the request to the server, which checks its local storage for the requested information. If the data is

not there either, the request could be passed to other servers, such as database servers, where the data

can be retrieved.

• Layered System: The client should be able to request data from an endpoint without the knowledge

of the underlying server architecture implementation.
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• Code on demand: This guideline allows for code to be sent to the client for execution. Code on

demand establishes a technology coupling between web servers and their clients, since the client must

be able to to understand and execute the code that downloads on-demand from the server.

REST APIs have common headers similar to HTTP headers [6]. These include:

• Authorization headers pass a token or credentials to an API provider. They take the following

format Authorization: <type> <token/credentials>. The different type of authorization headers

include Basic, Bearer Token, Digest Auth, OAUTH and API Key. Basic offers a simple authentication

scheme built into the HTTP protocol. The client sends HTTP requests with an Authorization header

containing the word Basic and a base64-encoded (non-encrypted) string containing a username and

a password. Bearer Token uses an API token, a cryptic string, usually generated by the server in

response to a login request. Digest Auth communicates credentials in an encrypted form. It applies a

hash algorithm to the provided username and password. The password is converted to response and

then sent to the server. OAUTH permits client applications to access data provided by a third-party

API without exposing your login details. API Key authorization relies on a token that a client provides

when making API calls. A key-value pair is normally sent to the API either in the request headers or

query parameters.

• Content-Type headers indicate the type of media being transferred. Common Content-Type headers

for RESTful APIs include: application/json for specifying JavaScript Object Notation (JSON) [7]

as a media type, application/xml for specifying XML as a media type, and application/x-www-

form-urlencoded which specifies a format in which the values being sent are encoded and separated

by an ampersand (&), and an equal sign (=) is used between key/value pairs.

• Middleware (X) Headers take the format of X-<header> and serve different purposes. For example,

X-Response-Time as an API response indicates how long a response took to process. X-API-Key can

be used as an authorization header for API keys. X-Powered-By can be used to provide additional

information about the interfacing backend services and X-Rate-Limit can be used to tell the consumer

how many requests they can make within a given time frame.

1.1.4 RESTful Web APIs Vulnerabilities

In this section, we shall give an introductory overview of common API security vulnerabilities as documented

by the Open Web Application Security Project (OWASP) [8]. The mitigation strategies to the highlighted
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vulnerabilities will provide a set of security requirements which our proposed framework seeks to interweave

with the functional requirements as discussed in chapter 5.

1.1.4.1 Information Disclosure

A deployed API may service both private and public users. When an API share sensitive information with

unprivileged users, it exhibits an information disclosure vulnerability. Sensitive data can include any infor-

mation that attackers can leverage to their advantage such as a list of usernames and their access control

levels which attackers can use techniques such as brute-force, credentials-stuffing, or password-spraying at-

tacks. alternatively, an API can exhibit information disclosure vulnerability through verbose error messaging

which can reveal sensitive information about resources, users and the API’s underlying architecture.

1.1.4.2 Broken Object Level Authorization

Broken Object Level Authorization (BOLA) [9] vulnerabilities occur when an API consumer accesses API

resources they are not authorized to access. This occurs if an API endpoint does not have object-level access

controls. Missing object-level access control means the API won’t perform checks to make sure users can

only access their own resources. Attackers can leverage on BOLA vulnerabilities by propagating an attack

against an API endpoint via fuzzing parameters in an API’s URL path and sorting through the results to

determine the existence of BOLA vulnerabilities.

1.1.4.3 Broken User Authentication

The stateless constraint of RESTful APIs requires users to undergo a registration process in order to acquire

a unique access token. Users are then required to include this token in all of their future requests to affirm

that they are authorized to make such requests. The registration process used to obtain an API token, or

the token handling process could exhibit some weaknesses. Token handling process could be the storage

of tokens, the method of transmitting tokens across a network, or the presence of hardcoded tokens in

JavaScript source files. Attackers can use a captured token to gain access to an API endpoint or bypass

authentication.

1.1.4.4 Excessive Data Exposure

Excessive data exposure vulnerability occurs when an API endpoint responds with more information than is

needed to fulfill a request. A typical example is when an API consumer requests information for their user

account and receives information about other user accounts as well.
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1.1.4.5 Broken Function Level Authorization

APIs may expose capability functionalities of different user roles in the interfacing underlying system. API

providers will often provide different types of accounts such as public, private, administrators etc. Broken

Function Level Authorization (BFLA) occurs where a user of one role or group is able to access the API

functionality of another role or group. BFLA can be a lateral move, where an attacker or user gains usage of

the functions of a similarly privileged group, or it could be a privilege escalation, where an attacker or a user

is able to use the functions of a more privileged group. BFLA vulnerabilities occur when API’s endpoints

access controls are not implemented correctly. Sometimes, an API won’t always use administrative endpoints

for administrative functionality. Instead, the functionality could be based on HTTP request methods such

as GET, POST, PUT, and DELETE. If a provider doesn’t restrict the HTTP methods a consumer can use,

simply making an unauthorized request with a different method could indicate a BFLA vulnerability.

1.1.4.6 Mass Assignment

This API vulnerability occurs when an API consumer includes more parameters in their requests than the

application intended and the application adds these parameters to code variables or internal objects. With

this scenario, a consumer may be able to edit object properties or escalate privileges. Mass assignment

vulnerabilities are mainly a result of an API endpoint failing to sanitize its request input correctly or in

entirety. A lack of input sanitization also gives attackers capabilities of uploading malicious payloads thus

propagating other types of attacks like Cross Site Scripting (XSS attacks).

1.1.4.7 Injection Flaws

These occur when a request is passed to the API’s supporting infrastructure and the API provider doesn’t

filter the input to remove unwanted characters. The infrastructure might treat data from the request as

code and run it against its target environment. Existence of this vulnerability gives room for attackers to

conduct injection attacks such as SQL injection, NoSQL injection, and system command injection. In each

of the aforementioned injection attacks, the API delivers your unsanitized payload directly to the operating

system running the application or its database. As a result, if you send a payload containing SQL commands

to a vulnerable API that uses a SQL database, the API will pass the commands to the database, which will

process and perform the commands. SQL Injection flaws can be executed either manually by submitting

metacharacters as input to the API or using automated solution like SQLmap [10]. Metacharacters are

charaters that SQL treats as functions rather than data e.g. -- is a metacharacter that tells the SQL

interpreter to ignore the input that follows because it is a comment. A null byte like ;%00 could cause a
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verbose SQL-related error to be sent as a response resulting in Information Disclosure vulnerability.

1.1.5 Requirements Engineering and Formal Methods

Formal methods which provide techniques such as formal specification, refinement, and verification have con-

tributed significantly to the evolution of software engineering. The concept of using pre- and post-conditions

have been adopted in some programming languages to support the principle of ”design by contract” [11].

Over the recent past formal methods have seen adoption in real software projects [12] [13] [14], especially

safety critical applications. In its strict sense, formal methods adopts use of mathematical approaches and

notations in specification, design, analysis and assurance of computer systems and software [15]. Formal

methods offers a stepwise refinement approach in software development. The first step involves formaliz-

ing the customer’s informal requirements into formal specifications. To check for conformance between the

formal specification and its equivalent representation of its original informal requirements, validation ap-

proaches such as specification animation [16] [17] [18] [19] have been proposed. Inconsistencies between the

formal specifications and its equivalent informal specifications are ironed out through a refinement process

guided by the validation approaches. The refinement is an iterative process which focuses on a gradual

but ultimate process of transforming the refined formal specifications into an executable program. Each

refinement process requires a formal verification process to be performed to ensure consistency between the

refined specifications and the final executable program or a refined specifications and its predecessor. Even

though formal verification offer powerful techniques for checking consistency between the delivered systems

and their specifications, it still remains too expensive to be deployed in most software projects. To effectively

support the application of formal methods to the requirements engineering process in software development,

formal engineering [15] [20] methods are proposed.

1.1.6 Formal Engineering Methods

Formal engineering methods form a bridge between formal methods and their application, providing tech-

niques for incorporating formal methods into the entire software engineering process [15]. They provide

specifications languages that not only offer textual notations in certain formal languages but also integrate

graphical notations. The specifications include intuitive diagrams and precise textual formal specifications

integrated in a coherent manner to describe the overall system architecture and its functions. In addition, for-

mal engineering methods provide effective mechanisms and techniques that aid practitioners in constructing

formal specifications allowing them to effectively apply formal methods in practice.

Formal engineering methods also adopt rigorous but practical techniques for verifying and validating
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specifications and their equivalent executable programs. They support evolution rather than strict refinement

in specifications to programs transformations. The concept of evolution of specification means that the

construction of specifications and their equivalent programs transformed from the specifications do not

necessarily have to satisfy the strict refinement rules.

One of the most famous formal engineering method is SOFL (Structured Object-Oriented Formal Lan-

guage) method [15] [21] [22]. It offers methods and supporting techniques for specification construction,

specification transformation, and system verification and validation. Our research presented in this disser-

tation relies on the basic principles of the SOFL formal engineering method as one of the core ingredients

that makes it achieve its overarching goal of interweaving functional and security requirements of RESTful

web APIs.

1.1.7 Web API Security Requirements Specifications

When designing web API, its paramount to also consider the environment in which the API will operate as

well as the potential threats that may be leveled against the API in that environment. Threats define ways

in which a security goal may be violated with regards to any of the assets or resources provided by a deployed

API. To define mitigating measures against API attacks, one needs to consider realistic threats against an

API then zero in efforts on areas where you can identify gaps in your set of API defenses against a set of

threats. Many a times, Web API’s are self-documenting, which means they can provide information such

as their internal structure and implementation of their business logic. As such, activities for systematically

identifying threats to an API so that they can be recorded, tracked and mitigated must be put in place when

drafting APIs security requirements specifications. These activities are collectively referred to as threat

modeling.

Threat modeling [23] refers to the process analyzing a system to look for weaknesses that come from

less-desirable design choices. The goal of the activity is to identify these weaknesses before they are sub-

consciously included in the system so you can take corrective action as early as possible. Threat modelling

involves analysing a system as a collection of its components and their interaction with the outside world and

the actors that may perform actions on these systems. In system design process, threat modelling activities

offer the benefit of building cleaner architectures, well defined system trust boundaries and better documen-

tation. There are several techniques proposed for conducting API threat modeling as described here shortly

afterwards. However, the general process adopts the following steps:

• First, draw a system diagram that showcase the main logical components of your target API

• Next, focus on identifying the trust boundaries between parts of the system with the rule of thumb
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here being everything within a trust boundary should be managed by the same owner.

• After defining trust boundaries, draw arrows that highlight data flows between the different parts of

the system and across trust boundaries.

• Analyze each component of data flows within the system. While doing the analysis try to identify

threats that may compromise your API security goals while paying key attention to data flow across

trust boundaries.

• Finalize the threat modelling activity by recording threats to ensure they are tracked and managed.

It is worth noting that the goal of threat modeling is to identify general API threats rather than enu-

merating every possible attack that can be leveraged against your API. Modeling an API for threat analysis

can be done by adopting one or a combination of the following model types [23]:

• Data flow diagrams - Data flow diagrams (DFDs) [24] describe the flow of data among components

in a system and the properties of each component and flow. They provide a visual way of describing

an abstracted system. Data flow diagrams often represent a system in layers where each layer indicates

a level of abstraction. The top layer i.e. context layer represents the system interactions with external

entities such as remote systems or users. Subsequent layers drill down into more details on individ-

ual system components and interactions, until the target level of details is achieved. DFDs leverage

standard shapes that represent a process or operating unit within a system under consideration.

• Sequence diagrams - Sequence diagrams model an event based sequence of actions, providing a

context about the way a modelled system behaves under any temporal aspects required for detailed

analysis. Sequence diagrams show the order of operations used in a system communication flow,

revealing important information such as which actor initiated the communication and any steps in the

process that may introduce a security or privacy risk. This makes it easier in finding flaws in business

logic and protocol handling and can also highlight critical design failures such as system areas that

lack exceptional handling or areas where security controls are not consistently implemented.

• Process flow diagrams - Process flow diagrams [24] show the sequence and the directional flow of

operations through a system, revealing the the activity chain of events in a system rather than the flow

of specific messages and component state transitions. Process flow diagrams can be used to complement

sequence diagrams in threat modelling. For example, an activity chain from a process flow diagram can

be described by a sequence diagram using labels that indicate which segments of a system’s message

flow are bound to a specific event.
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• Fishbone diagrams - Fishbone diagrams [25] also referred to as Ishikawa diagrams, are used for

root cause analysis of a problem statement thus can help in identifying weaknesses in a system for

any given area. They offer a modelling process that can help understand the chain of events that

can lead to exploitation of a weakness. Construction of a fishbone diagram involves first defining the

effect you want to model, then identifying a set of primary causes that lead to the defined effect and

finally identifying the set of causes that drive the primary cause. For example, if we want to model

API excessive data exposure, we first define the main effect as API excessive data exposure. Next, we

identify a set of primary causes that lead to API excessive data exposure. We can identify absence

of data filtering and overly verbose error messages. Finally, we identify the set of causes that drive

the primary causes. For absence of data filtering, we can identify causes such as poor access control

implementation, broken object access authorization and an insider threat (malicious developer). For

overly verbose error messages, we can identify causes such as Improper API configuration and improper

error handling. Figure 1.1 shows an example of a fishbone diagram in a complete state with the expected

effect, primary and secondary causes.

• Attack Trees - Attack trees [26] offer an attacker-centric threat modelling approach. An attack tree

model is a rooted tree with the root node representing the goal or the desired threat modelling outcome.

Each node is labeled with an action to be taken. Construction of an attack tree involves two steps i.e.

identifying a target or goal of an attack and identifying actions to be taken to achieve the target or

goal. Attack trees provide the foundation of another threat modelling approach, Attack Defense Trees

(ADTree) [27] which give attention to both attack strategies that can compromise a target system and

their respective defense strategies.

• Attack Defense Trees (ADTrees) - Proposed by Kordy et al. [27], ADTrees focus on providing a

threat modeling approach that describes measures or paths an attacker might use to compromise a

system and mitigating measures against these attack paths as defense mechanisms. We describe the

concept of ADTrees in details in Sec. 5.2. We adopt ADTrees as our threat modeling activity of our

choice due to its capability providing both attack scenarios that can be leveraged on our target API

as well as mitigation measures that counter these attacks, which we infuse in our API specifications as

security requirements.
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API excessive
data exposure

Absence of data
filtering

Overly verbose
error messages

Poor access control
implementation

Broken object access
authorization

Insider threat(malicious
developer)

Improper API
configuration

Improper error
handling

Figure 1.1: Sample complete fishbone diagram modelling API excessive data exposure threat

1.2 Research Motivation

Increased popularity of RESTful web APIs [28] [29] has led to a demand for engineering methods for de-

veloping reliable, high quality and secure web APIs. In general, APIs development follows the conventional

engineering process of requirement analysis, API design, API code generation, API testing and maintenance.

In the domain of software engineering, the stages of requirements analysis and API design are usually merged

and referred to as the modelling phase. In this phase, the API business requirements are collected, analyzed

and elicited as specifications. The API design stage focuses on the clarification of the expected API business

functions and the design of the API architecture for implementing target API endpoints.

The expected API business functions and API architecture are implemented by a programming language

of choice in the coding stage. Once the code activity is finalized, API testing kicks off. The testing process

focuses on the logical internals of the target API, ensuring that the API performs the expected functions as

its specification defines. The specification and the delivered API provide a foundation for API maintenance.

Although modelling and testing techniques for functional and security requirements are critical in API

design, effective modelling that provide an interweaving approach for eliciting APIs functional and security

requirements are still great challenges in developing secure RESTful web APIs in practice.

1. One major challenge is that REST is a design paradigm and protocol-agnostic. It does not rely on any
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set of defined standards to describe the implementation of a RESTful API. This poses a challenge in the

development and testing for satisfiability of a RESTful API property such as security. Since RESTful

APIs expose internal business services and data to a set of public and/or private heterogeneous client

applications, the level of security offered by these APIs must be extremely high, since their breach

may cause huge financial and business integrity losses on the part of the service providers. An ideal

and secure REST API must exactly and accurately function as intended and preserve its security

properties during its operation. If a RESTful API is to provide access to some exposed business data

to a requesting client application, it must fulfill the functional requirement of the client application

without violation of its’ security properties. It must also not violate the security properties of the

system providing the data. Moreover, while each individual operation in an API may be secure on

its own, combinations of operations might not be. Therefore, adopting a model that enables the

capture and verification of error free functional and security requirements of an API is crucial in the

development of an API.

2. The other challenge is how to effectively utilize a requirement engineering model that offers both

implicit and explicit elicitation of API security requirements. Implicit by conducting model refinement

and defining model constraints that offer coverage against API threats and vulnerabilities, and explicit

by directly applying threat modeling techniques on a model using already documented API threats

and vulnerabilities.

Formal methods have been proven to offer an approach to the construction and verification for precise,

consistent and correct specifications using mathematical notations. Research reveals that formal methods

have been effective in capturing requirements, identifying errors and transforming specifications to programs

[15]. However, in practice, there exist limitations in applying formal methods like VDM [30], B-Method and

Z notation because they require high skills for abstraction and their notations offer a steep learning curve

for most engineers in the industry. In addition, their formal proof techniques and refinements are difficult

and expensive to apply in practice.

1.3 Proposed Solution

In this thesis, we propose a new practical model-driven approach that addresses the aforementioned chal-

lenges. We present an approach based on the existing Domain Driven Design [31] that utilizes a metamodel

offering a strict foundation for what an API does. The model is strict in the mathematical sense of being

precise and exact that its concepts, attributes, behaviors and relations are unambiguous. The model relies
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on domain primitives [32] which combine secure constructs to define the smallest building blocks of a do-

main, and utilizes Ecore [33] metamodel that defines the abstract syntax, the possible domain elements, and

their relations in between. We adopt Attack Defense Trees [27] as our threat model of choice for identifying

countermeasures to RESTful API security vulnerabilities.

Specifically, we have made the following new contributions. We propose, a new model-driven approach

for interweaving functional and security requirements based on Domain Driven Design principles, Ecore

metamodel and the expressive nature of SOFL process definition to describe the behaviour of our modeled

API. This encourages resolving security issues both implicitly and explicitly. Implicitly by applying strict

invariants on domain primitives [32], and explicitly by applying Attack Defense Trees (ADTrees) [27] to model

API threats and identify common documented API vulnerabilities and their associated countermeasures. By

focusing on the domain and domain primitives, many security bugs can be solved implicitly. For example,

applying a strict invariant defined as a domain primitive on an API’s POST input not only protects the API

endpoint against injection attacks but also ensures the true meaning of the input is captured. Therefore,

any malicious input not satisfying the definition is rejected and the API endpoint becomes more secure.

1.4 Summary

In this chapter, we have first introduced the background of web and RESTful APIs. We have pointed out

the major challenges in designing security aware RESTful web APIs and illustrated the motivation of our

research. We have also presented our proposed solution to tackle these challenges and the main contributions

of our research work. In the next chapter, we will discuss about the different RESTful API schemas giving

details of the role they play in API design.
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API Schema Model

2.1 Introduction

A schema model provides a contract describing what an API is, how it works, and what the end points are

going to be. A schema model ensures that everyone has a shared understanding of what an API will do

and how each resource will be represented in a complete API. There are two most popular schema modeling

systems and the markup languages used for API design:

• RESTful API Modeling Language (RAML) [34], is in YAML format that also supports JSON and

Markdown [35]

• OpenAPI, which also supports Markdown, is a JSON [7] object which may be represented either in

JSON orYAML[36]

A schema model is made up of resources and resource methods. A resource can be defined as a single

object or list within a system (collection). A resource has to have at least one Uniform Resource Identifier

(URI). A URI describes the name and address of a resource. In a strict sense, no two resources are the same.

However, at some moment in time, two different resources may point to the same data. In RESTful web

services, a resource responds to one or more of the six standard HTTP methods:

• GET - Retrieve the representation of the object or list

• PUT - Replace (update) the object

• POST - Create a new entry at the top level

• DELETE - Delete an object from the system

• HEAD – Retrieve metadata for an object

• OPTIONS – Check which HTTP methods a particular resource supports

Every resource is expected to expose the same uniform interface with similarities in the way they work.

An object’s value can be obtained by invoking a GET request to that object’s URI. If you are interested in

only getting the metadata for an object, then you can send a HEAD request to the same URI. To create a

14



API SCHEMA MODEL 15

resource, you utilize a PUT request sent to a URI that incorporates the resource’s name. Adding an object

to a resource (collection), can be accomplished by sending a PUT to a URI that incorporates the resource

name and object name. Sending a DELETE request to a URI that points to a resource or an object deletes

the target object, resource or resource collection.

2.2 RESTful Web API Domain Modelling Language (RAML)

RESTful API modelling Language (RAML) provides concise, expressive language for describing RESTful

APIs. Like a functional specification, an RAML document describes how the API will behave. RAML

is a non-proprietary, vendor neutral open specification [34]. RAML uses markdown, in human readable

description parts. In this section, we shall briefly explain the structure of an RAML document. RAML uses

Yet Another Mark up Language (YAML) as its underlying specification format. As such, all nodes such as

keys, values, and tags, in RAML specifications are case-sensitive.

Listing 2.1 below shows a sample structure of an RAML document

1 #%RAML 1.0

2 title: Salon API

3 version: 1

4 baseUri: http://localhost:8000/api/{version}

5 mediaType: application/json

6

7 uses:

8 shapes: ./dataTypes/shapes.raml

9

10 traits:

11 contentCacheable: !include ./traits/content-cacheable.raml

12 secured: !include ./traits/secured.raml

13 pageable: !include ./traits/pageable.raml

14

15 resourceTypes:

16 collection: !include ./resourceTypes/collection.raml

17 booking: !include ./resourceTypes/booking.raml

18 salon: !include ./resourceTypes/salon.raml

19 customer: !include ./resourceTypes/customer.raml

20 stylist: !include ./resourceTypes/salon.raml

21 service_category: !include ./resourceTypes/service-category.raml

22 service: !include ./resourceTypes/services.raml

23

24 securedBy: [oauth_2_0]

25 securitySchemes:

26 oauth_2_0: !include ./securitySchemes/oauth_2_0.raml

27

28 /salons:
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29 type: { collection: {response-type : shapes.SalonData[], request-type : shapes.NewSalonRequestData } }

30 get:

31 is: [pageable]

32 responses:

33 200:

34 body:

35 application/json:

36 example:|

37 {

38 "salons": [

39 {

40 "id": "6ddfty-078rty-8986533gh",

41 "business_name": "Salon Star"

42 },

43 {

44 "id": "4567-dfgty-4456789ft",

45 "business_name": "Happy Paradise"

46 }

47 {

48 "id": "t678-3456-6789hgyt",

49 "business_name": "Women Heaven"

50 }

51 ]

52 }

53

54 post:

55 is: [secured]

56 description: |

57 salon data created correctly for a salon

58 queryParameters:

59 access_token: string

60 business_name: string

61 business_type: string

62 business_description: string

63 business_phone_number: string

64 business_email: string

65 body:

66 type: shapes.NewSalonRequestData

67 responses:

68 200:

69 body:

70 application/json:

71 example: |

72 {"message": " New Salon created successfully!"}

73 ...

Listing 2.1: Sample RAML document

The following table enumerates the nodes at the root of an RAML document (Line 1 to Line 26).
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Node Description

#%RAML 1.0 (required) Indicates which markup language is used. If other
modeling compatible with RAML is used, its spec-
ified here. This is always formatted as a comment,
and any other comments in the document will start
with the same #% markup.

title (required) Tells a reader what the API is designed to do.

baseURI (required) Defines the base URL for all endpoints defined by
the API. It must be the same for all endpoints.

version When the version is included as part of the baseUri,
the specification is tied to the specified version on
this line.

mediaType Declares the default media types to use for request
and response bodies (payloads), for example ”appli-
cation/json” .

traits Declares traits for use within the API. A trait pro-
vides method-level nodes such as a description, head-
ers, query string parameters, and responses.

resourceTypes They define methods and other nodes. A resource
that uses a resource type has an inheritance rela-
tionship with its nodes. A resource type can inherit
from, another resource type. The relationship be-
tween resource types and resources is defined through
an inheritance chain pattern.

securedBy Declares the security schemes that apply to every re-
source and method in the API. The mechanisms for
secure data access, identification of requests and de-
termination of access control policies as well as data
objects visibility are defined by the security schemes.

securitySchemes Declare applicable security schemes to be applied
and used within the API.

Table 2.1: Nodes at the root of sample RAML document

More details about RAML specification can be inferred from here [34].

2.3 OpenAPI Specification

OpenAPI [37] was one of the earliest schema modeling frameworks available for web API design. An

openAPI document is a document or set of documents that defines or describes an API. OpenAPI is a JSON

onject which may be represented either in JSON or YAML. An OpenAPI definition uses and conforms to

the OpenAPI Specification. The root resource in OpenAPI requires different information that contained in
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an RAML document. Listing 2.2 below shows a sample of an OpenAPI specification focussing on its root

elements. Table 2.2 describes the specific pieces of the listed root section.

1 swagger: ’2.0’

2 # basic metadata about API

3 info:

4 title: Salon API

5 version: 1

6 # the host to call and interact with this server

7 host: localhost:8000/api/

8 # the base path which is appended to the host

9 basePath: /v1

10

11 schemes:

12 -https

13

14 consumes:

15 -application/json

16

17 produces:

18 -application/json

19

20 paths:

21 /salons

22 /salons/{salonid}

23

24 ...

25

26 /salons:

27 get:

28 description: Retrieves a list of salons from the system

29 parameters:

30 - description: String to math in the salon name

31 in: query

32 name: nameString

33 required: false

34 type: string

35 responses:

36 ’200’:

37 description: Salon list

38 schema:

39 type: array

40 items:

41 type: object

42 properties:

43 id:

44 type: string
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45 business_name:

46 type: string

47 examples:

48 application/json:

49 [

50 {

51 "id": "6ddfty-078rty-8986533gh",

52 "business_name": "Salon Star"

53 },

54 {

55 "id": "4567-dfgty-4456789ft",

56 "business_name": "Happy Paradise"

57 }

58 {

59 "id": "t678-3456-6789hgyt",

60 "business_name": "Women Heaven"

61 }

62 ]

63 ...

Listing 2.2: Sample OpenAPI document

Root section piece Description

swagger (required) Indicates the version of OpenAPI being used

info (required) A block of information related to the API description, with
the following required fields. title (required) - Represents
the tile of the documented API.version (required) - In-
dicates the version of your OpenAPI tool.

host (optional) Indicates the host only. If the host isn’t included, the sys-
tem hosting the documentation is implied.

basepath (optional) The base path for all API endpoints. This should start
with a /. If not included, it will be expected that the API
is served directly under the host’s root.

schemes (optional) The scheme (such as http://) that describes how the API
can be accessed. If not included, it will be set to the same
scheme used to access the documentation.

consumes/produces (optional) These parameters indicate the content-type sent for re-
sponses and accepted in requests.

paths (required) This is a list of the paths that will be served by the API.
This is a part of the main OpenAPI object, and the meth-
ods, parameters, and behaviors for these paths will be in-
cluded in the objects for each endpoint.

Table 2.2: Root elements of an OpenAPI Specification Document

More details of OpenAPI specification can be found here [37]. As with RAML, OpenAPI has a couple
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of tools and resources for generating OpenAPI schema compliant models. The OpenAPI framework [38]

supported by SmartBear, an API testing company, is one of the widely used tools for creating OpenAPI

schema models.

2.4 Summary

In this chapter, we have described two of the most common schema modelling languages in API design. Any

of the two schema models offer powerful tools in guiding the development of an API to meet its intended

use case. However, OpenAPI offers a very strong schema modelling language for defining what is expected

of a system which is useful for testing and creating code snippets for a set of web APIs, while RAML is

designed to support a design-first development flow and focuses on consistency. Moreover, OpenAPI is best

suited to document an existing API rather than designing an API from scratch. On the other hand, RAML

has evolved to support API design in a succinct human-centric language. As a matter of choice since our

proposed framework is focused on secure API design, we adopt the RAML in defining our source input

of our proposed framework. In the following chapter, we shall describe about RESTful Web API Security

Requirements Specifications.
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Initial Work

3.1 Introduction

Software systems are becoming ubiquitous with software applications being used in the fields of finance,

education, transport and logistics etc. With this widespread use of software applications, the security of

the data handled and stored by these applications has become more and more important. This has made

software security to be one of the most crucial and necessary features of high integrity software systems that

support high-risk industries such as the financial service. However, most software engineering methodologies

have a bias of taking the standard approach of analysis, design and implementation of software system

without considering security, and then add security as an afterthought [39]. A review of recent research

in software security reveal that such approach leads to a reasonable number of security vulnerabilities that

are usually identified after system implementation and deployment. Fixing such vulnerabilities calls for a

“patching” approach since the cost associated with redevelopment of the system at such a point may be

too high. However, the “patching” approach is not an acceptable standard in the development of high-risk

software systems. Moreover, a study conducted by Hoo, et al. [40], revealed that introducing security

analysis in the early stage of the system development cycle can reduce costs related to software development

and maintenance from 12-21%. In our publications [41], [42] we proposed security requirements engineering

frameworks, which can holistically integrate functional and security requirements of a system software, and

eventually yield software requirements that satisfy the required security requirements.

3.2 Initial Work - Concurrent Generation of Software’s Functional

and Security Requirements

To integrate security attributes into a system software, we proposed a three-step process that promotes a

systematic integration of security requirements into the software design process. The methodology works

by integrating functional requirements written in Structured Object Oriented Formal Language (SOFL)

and standard security requirements drawn from the Common Criteria for Information Technology Security

Evaluation [43] and the AICPA’s generally accepted privacy principles [44]. First, we expressed the system

software’s functional requirements in Structured Object Oriented Formal Language (SOFL), including the

21
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construction of Conditional Dataflow Diagrams (CDFDs), giving a graphical denotation of all the data flows,

data stores and processes involved in the system software. In the second step, we generated the standard

security requirements using SQUARE methodology [45]. SQUARE offers a comprehensive methodology

for security requirement engineering. It aims at integrating Security Requirements Engineering into the

mainstream software development processes [46].

The SQUARE methodology consists of nine elaborate steps, which provide a means for electing, categoriz-

ing, and prioritizing security requirements for a system software and related applications. The outcome of the

SQUARE methodology is a set of standard security requirements, broadly be classified into: Identification

requirements, Authentication requirements, Authorization requirements, Security auditing requirements,

Confidentiality requirements, Integrity requirements, Availability requirements, Non-repudiation require-

ments, Immunity requirements, Survivability requirements, System maintenance security requirements and

Privacy requirements. We integrate these standard security requirements with the functional requirements

by expressing those which apply globally to the system software as SOFL module invariants, while those

which are only applicable to a few functional processes are expressed as guard conditions of their respective

functional processes.

Our final step involves identifying vulnerabilities and threats in the functional requirements provided by

our system software. This step has a set of sub steps that include transforming the CDFD we generated

in our first step into a process tree. The process tree has the root node representing the top level CDFD

process while the parent/child nodes represent decomposed processes from the root node or a parent node.

The process tree offers the benefit of a bounded scope, enabling the traversal of all the application’s processes

from the root node to the forked child processes at the sub-nodes and end-nodes. We then traverse through

the nodes of the process tree, and conduct an attack tree analysis at each of the process node. Our goal here

is to identify potential vulnerabilities. We define the mitigation strategies of the identified vulnerabilities

as additional security requirements, which we integrate with the functional requirements either as SOFL

module invariants or as guard conditions of their associated processes. Figure 3.1 gives an overview of the

conceptual framework of the technique we proposed.

Our proposed approach in this initial work pushes for addressing the following issues: 1.) Availing to

the developer a variety of security methods and their tradeoffs. 2.) Providing a systemic integration of

security requirements into the software design. This methodology advocates for a security aware software

development process, which is a combination of a selected standard software development methodology,

formal methods techniques, and standard security functions [47]. As a precursor and a foundation of our

current works on secure design of web APIs, we also conducted research [48] focusing on a formal approach

to secure design of RESTful web APIs using Structured Object Oriented Formal Langauge (SOFL) [15]. We
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shall describe this in detail in the following section.

3.3 Initial Work - A Formal Approach to Secure Design of REST-

ful Web APIs Using SOFL

This initial work was inspired by the recent trends in wide adoption of REST architectural style in the

design of web APIs, which allows building loosely coupled API designs relying on HTTP and the web

friendly JSON data representation format. The loosely coupling approach makes client applications have

flexibility and re-usability of an API in terms of the fact that its elements can be easily added, replaced and

changed. However, REST is a design paradigm and protocol-agnostic. It does not rely on any set of defined

standards to describe the implementation of a RESTful API. This poses a challenge in the development

and testing for satisfiability of a RESTful API property such as security. Since REST APIs expose internal

business services and data to a set of public and/or private heterogeneous client applications, the level of

security offered by these APIs must be extremely high, since their breach may cause huge financial and

business integrity losses on the part of the service providers.

An ideal and secure REST API must exactly and accurately function as intended and preserve its security

properties during its operation. If a REST API is to provide access to some exposed business data to

a requesting client application, it must fulfill the functional requirement of the client application without

violation of its security properties. It must also not violate the security properties of the system providing

the data. In addition, while RESTful services can easily be invoked through a web browser or a client

application, it is still difficult for users to fully understand and evaluate their functions with respect to the

requirements in the context of target systems, because a few formal descriptions are provided with these

services. Moreover, while each individual operation in an API may be secure on its own, combinations of

operations might not be. Therefore, adopting a model that enables the capture and verification of precisely

defined functional and security requirements of an API is crucial in the development of an API.

We therefore proposed a model offering a formal practical approach to specify and verify security and

functional requirements of RESTful APIs using SOFL. Our proposed approach focused on ensuring that all

of the expected functional behaviors provided by an API and their related security requirements are captured

correctly. This is to ensure that a secure web API delivers both of its business functions and at the same

time preserve its security features and that of the system it is interfacing. To achieve this, we construct

SOFL formal but comprehensible functional and security requirement specifications from an API description

written in RESTful API modelling Language. Our approach offered 3 steps, relying on RAML definitions as
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a base for informally describing the APIs functional and security requirements. The first step yields a set of

informal functional and their related security requirements expressed in RAML security schemes definitions.

These security requirements are defined as constraints upon their associated functional requirements. They

express the APIs security goals in operational terms. We derived the informal API security requirements

taking into consideration:

• The resources exposed by the API that are to be protected.

• The security goals that are important such as confidentiality of target API resources.

• The mechanisms that are available to achieve these goals such as authentication, access control, audit

logging and rate limiting.

• The set of threats relevant to the API. We identified these threats using S.T.R.I.D.E [49] threat

modelling process, by analysing the flow of requests/responses across trust boundaries defined by the

main logical components of the API, and the target environment for deployment.

The second step focused on transformation of RAML definitions to SOFL based semi-formal specifications

by first modelling the API’s behavioral features using SOFL’s Conditional Data Flow Diagrams (CDFDs)

and then express the REST specific request methods as SOFL module processes with informal pre-post

conditions. Their related security requirements are defined as either SOFL module invariants or guard

condition in the process’ pre-post conditions.

While transforming RAML definitions to SOFL semi-formal specifications, we adopt the following rules:

• Rule 1 : Transform REST request definitions GET, POST, PUT and DELETE to SOFL processes

specified with informal pre-post conditions.

• Rule 2 : Construct CDFDs [50] for the textual semi-formal specifications so that the requirements can

be visualized. The CDFDs describe the API’s request input and output data flows.

• Rule 3 : Define REST request parameters as inputs and their types to their respective SOFL processes,

and responses as outputs of their associated SOFL processes. All data stores interacting with the

inputs and outputs are also defined.

• Rule 4 : Express the defined RAML security schemes (i.e. security requirements) as SOFL module

invariants or guard conditions in the post-condition of the relevant processes. This rule achieves the

interweaving of functional and security requirements.
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The final step involved formalization of the pre-post conditions and conducting specifications testing

to prove the satisfiability of the defined API’s functional and security requirements. The resulting formal

specifications can then be transformed into executable API code manually or semi-automatically with the

help of a supporting tool. We conducted a small experiment to validate our approach by using it to model

specifications of a RESTful online banking API. The model specifications included 1 module containing 15

processes with each process reflecting a resource to be retrieved by an API via requests made by a client

application. Our approach helped in modeling security requirements in the 15 API processes which we tested

for their conformance via specification based conformance testing techniques and confirm the reflection of

their expected behaviour in the case study implementation done using Django REST framework. This

proposed approach offered benefits such as providing a lightweight security aware model of guiding the

design of APIs and generating their equivalent SOFL formal specifications which can be used to verify

the conformance of the APIs functional and security requirements. Unlike API specifications expressed in

RAML where security requirements are just presented as annotations, our proposed approach encourages

proactive analysis of resources exposed by an API end point and how its associated security requirements

restrict the abuse of those resources by consuming clients. In other words, our proposed approach encouraged

behavioural analysis of client interaction with an API resource from a security point of view in addition to

annotating the security requirements that are expected to be satisfied by the client consuming a resource.

However, this approach had a few limitations. First, requirement engineers had to be versed with the concept

of API security so as to define the required API security requirements as described in step 1 of our proposed

approach. The risk posed by this is that, the depth of critical analysis and definition of security requirements

would only be as good as the depth of security knowledge of the engineer generating the API specifications.

Second, the generated target SOFL formal specifications were not language agnostic. In as much as SOFL can

offer many advantages in specification elicitation, it may not be the common preferred choice for engineers

generating specifications thus a specification language agnostic approach would have been more ideal. These

gaps provided inspirations as well as foundation for our current approach as described in sec. 6.

3.4 Summary

In this chapter, we discussed about our initial works which also focused on security and functional re-

quirements elicitation of software systems. We gave a brief description of the techniques we proposed and

highlighted their advantages as well as their contributions in providing a formal engineering approach for

both RESTful API and software systems requirements specifications. In the next chapter, we discuss about

related research works.
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Related Works

4.1 Related Works

Several other models targeting integration of software security attributes at the requirements levels have

been proposed by other researchers in the domain of software security requirements engineering. Security

requirements engineering is motivated by the fact that analyzing security in the early stage of the system

development cycle can significantly save costs for later system development and maintenance [40].

UMLsec [51], an extension of Unified Modelling Language works by expressing security relevant informa-

tion within UML diagrams. It encapsulates knowledge, making it available to developers in form of a widely

used design notation. In addition, UML provides a formal evaluation to check if the constraints associated

with the UMLsec requirements are fulfilled in a given specification. The extensions are suggested in form of

UML stereotypes, tags, and constraints that can be adopted and applied in various UML diagrams such as

activity diagrams as well as sequence diagrams. The stereotypes and tags provide an encapsulation of the

recurrent knowledge of security requirements such as secrecy, fair exchange, and secure communication link

that can apply in distributed object-oriented systems. UMLSec key concept of addressing security issues

lies in the assignment activity of attaching a stereotype or tag to part of a model and retrieving potential

threats to the target system. This allows for the behavior of the subsystem to be analyzed and checked for

impacts of a successful execution of the threats.

Mouratidis et al. [52] proposed the Secure Tropos methodology which is based on the principle that

security should be given focus from the early stages of software development process, and not retrofitted

late in the design process or pursued in parallel but separately from functional requirements. The Secure

Tropos modelling language works on the principle of a security constraint, a restriction that can influence the

analysis and design of a system software under development by; conflicting with some of the requirements

of the system, by restricting some alternative design solutions or by conflicting with some of the system

requirements. Often, constraints, secure dependencies, threats, security goals, tasks and resources are inte-

grated in the specifications of existing textual descriptions. The secure entities are tagged with an “s” to

indicate those tasks, goals and soft goals are security related.

In particular, security requirements can be viewed as constraints on the system software functionalities.

In [53], security concerns are integrated througout the phases of Secure Tropos agent-oriented methodology.

27
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This is from early, late requirements, all the way to architecture and detailed design. At the preliminary

early requirements phase, a Security Diagram is constructed where the stakeholders review the constraints

imposed by the security requirements. In the late requirements phase, security constraints are analyzed

against the system-to-be in the Security Diagram. The presentation of the system is portrayed with one or

more new actors, with a set of dependencies tied to other actors of the organization. During the last phase

i.e. the architectural design stage, secure capabilities, constraints and entities that the new actors introduce

are assigned to each agent of the system. This approach adopts a systematic refinement construct, where

security experts formulate goals at different levels of abstraction, ranging from high-level, strategic concerns

to low-level, technical concerns.

Lamsweerde [54] works on KAOS and introduces the notions of obstacle and anti-goal [55] to analyze

security requirements of a system. Undesired states of affairs that prevent stakeholder’s goals from being

satisfied are captured as KAOS obstacles, whereas anti-goals analyze obstacles that are intentionally imposed

by attackers. KAOS utilizes formal methods to systematically refine (security) goals that are specified in

Linear Temporal Logic (LTL), using a set of predefined refinement patterns [56]. After discovering specific

threats via anti-goal refinement, security requirements (i.e., countermeasures to the threats) are elicited

accordingly.

Misuse cases focus on representing behavior(s) that represent an abuse to the resources or services to be

offered by the system to be developed. Misuse cases are initiated by misusers. A use case diagram in Fig.

4.1 contains both, use cases and actors, as well as misuse cases and misusers for an online banking system.

The use cases are denoted by solid green arrows, misuse by solid red arrows, and solid blue arrows denote

system actions that include, extends or prevents actors use cases or misuse cases. Employing misuse cases

in security requirements definition allows for the identification of security attacks and associated security

requirements during application development. Whittle et al. [57] present a formalized representation of

misuse cases that offers intuitive way of analyzing, interpreting and presenting a misuse case model. Misuse

cases have gained popularity in representing security concerns in the early stages of software development

as they represent aspect of both problems and solutions. However, their limitation lies on their analysis

of security requirements and attacks specifically through use case specification. As such, the completeness

of coverage with regards to analysis of the security requirements analyzed via use case specification is not

guaranteed since this approach may not exhaustively provide coverage against other potential exploitation

scenarios that could be leveraged against the system.

As far as the security and modeling of web API’s is concerned, several approaches have been done in

the field of developing RESTful applications, but to the best of our knowledge, there are a few results that

provide detailed model driven techniques with a focus on paying attention to both APIs functional and
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Figure 4.1: A Use case diagram with misuse case and misusers for an Online Banking System

security requirements at the same time. Fett et al. [58] propose a rigorous, systematic formal analysis of

OpenID Financial-grade API (FAPI) based on a web infrastructure model. They first develop a precise model

of the FAPI in the web infrastructure model, including different profiles for read-only and read-write access,

different types of clients, and different combinations of security features, and use their model of FAPI to

precisely define central security properties of an API. However, their model treat API security and functional

requirements independently. Kopecky et al. [59] present hRESTS as a promising solution for providing a

microformat model for RESTful services. However, their approach focuses more on documentation and

service discovery with limited clarity on the relationship between API’s security and functional requirements

and their interdependence. Alqahatni et al. [60] introduce an approach for automatically tracing source

code vulnerabilities at the API level across project boundaries. Their approach takes advantage of Semantic

Web and its technology stack to establish a unified knowledge representation that can link and analyze

vulnerabilities across project boundaries. However, they focus at the source code level rather than the design

level. Klien et al. [61] provide an approach for showcasing how the constraints of REST and RESTful HTTP

can be precisely formulated within temporal logic. However, their focus is mainly on formal characterization

of REST for automated analysis.

Raufet al. [62] propose an approach offering a formal verification technique using Event-B for development
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of REST services. Their approach focuses on achieving the correct system architecture through refinement

and consistency verification of REST design models. Their model construct behavioral REST service inter-

faces which provide information on the specific methods that the service can invoke as well as a definition

of the pre- and post conditions provided by these methods. Their adoption of Event-B to represent their

design models encouraged scalability of their proposed framework by promoting a correct-by-construction

development approach and formal verification by proof of theorems. Their approach also supports partial

code generation which creates code skeletons of REST services with pre- and post-conditions method def-

inition. However, their approach mainly focused on addressing inconsistency issue in design and resolving

state explosion which may arise when dealing with a large number of resources.

4.2 Summary

In this chapter, we have discussed related researches. Compared with other research results, our proposed

model driven approach has some distinct merits in addressing security requirements of APIs both implicitly

and explicitly while at the same time provide a mechanism for interweaving the functional and security

requirements. We aim to achieve this by ensuring that all of the expected functional behaviors provided

by an API and their related security requirements must be captured correctly, since a secure web API is

expected both to deliver its business functions and to preserve its security features and that of the system

it is interfacing. To achieve this, we construct SOFL formal but comprehensible functional and security

requirement specifications from an API description written in RESTful API modelling Language (RAML)

[63]. Nevertheless, the development of our model driven formal engineering approach is also inspired by the

ideas and technologies presented by these related works. In the next chapter, we shall discuss about the

building blocks of our proposed approach.
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Concepts Used in Proposed Approach Buiding Blocks

In this chapter, we describe the foundational concepts that our proposed approach build on with a focus

on interweaving APIs’ functional and their respective security requirements. Our proposed approach builds

on concepts of Domain Driven Design, threat modeling with ADTrees, Ecore metamodels and SOFL. We

describe these concepts in details so as to enable the reader get accustomed to terms, notations and concepts

discussed in chapter 5.

5.1 Domain Driven Design (DDD)

Domain models provide unambiguous, strict foundation of what a system should do [31]. This by extension

provides a powerful tool that defines what a system should not do. When modeling and implementing that

model as requirements specifications, it is crucial to have some building blocks. Domain models are usually

based on value objects and entities with larger structures being presented through aggregates. An aggregate

is a conceptual boundary that you can use to group parts of the model together allowing you to treat an

aggregate as a unit during state changes. The boundary is not arbitrarily chosen but rather it is carefully

selected based on deep insights of the model. In order to express a domain model in specifications, you

need a set of building blocks which are entities, value objects and aggregates. Figure 5.1 showcase a sample

domain model for a salon booking system.

Every part of a domain model has certain characteristics and certain meaning. Entities are model objects

that have some distinct properties, unique identifiers and are responsible for coordination of the objects they

own, not only to provide cohesion but also to maintain their internal invariants. Let’s take an example

of an Online Salon Booking System (OSBS), where we have a salon class with attributes such as salon

name, address, phone number, establishment data. Every instance of entities has a unique identifier. The

ability to identify information in a precise manner as well as coordinating and controlling behavior plays

an integral role in preventing security bugs from sneaking into specifications. Thanks to this uniqueness,

we can distinguish two instances of the salon class that has the same name, and even have all the same

attribute values, by their identifiers, even if they can be interchangeable with each other. Entities are often

made up of other model objects. Some attributes and behaviors can be moved out of the entity itself and

put into other objects thereby becoming value objects or domain primitives. Value objects have no identity

that defines them but rather, they are defined by their values, they are immutable i.e. they describe some
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Figure 5.1: Online Salon Booking System Domain Model

attribute or some characteristics but carries no concept of identity, they can reference entities, they explicitly

define and enforce important constraints and can be used as attributes of entities and other value objects.

Domain primitives are distilled versions of value objects with proper invariants. These invariants enforce

security constraints on the behavior of their associated entities in our API domain model. Figure 5.1 shows

the relationships among aggregates, entities, value objects and domain primitives in DDD using a salon

service booking system example. The entity Salon represents the aggregate root. The Salon entity has

a containment relationship with the entity Booking which in turn has a containment relationship with the

entity Salon-Service. The Role value object has a referential relationship with the entity User. It is a defense

mechanism output of an ADTree analysis on the entity User that seeks to provide an invariant as a domain

primitive. This invariant strictly defines the access control roles for a User in the salon booking system.
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5.2 ADTrees Threat Modeling

Kordy et al. [27] define an ADTree as a node-labelled rooted tree describing the measures an attacker might

take to attack a system and the defenses that a defender can employ to protect the system. ADTrees are

similar to attack trees since both document potential paths that an attacker can leverage on, to compromise

a target system. They both have a tree structure with the goal of the attack as a root node of the tree and

the different mechanisms of achieving the attack goal as the leaf nodes. However ADTrees introduce the

concept of attack nodes and their antithesis defense nodes as the leaf nodes. Attack nodes in ADTrees reflect

an attacker’s (sub-)goals while defense nodes reflect countermeasures that neuter or prevent a successful

execution of their corresponding attacker’s (sub-)goals. ADTrees key contribution in security analysis lies

in the provision of refinements of attack paths and definition of a countermeasure for each defined attack

path. This means the nodes of an ADTree can be organized in a hierarchical manner with a node having

sub-nodes which represent a refinement of a parent node. These refinement correspond to sub-goals of the

same type. In some instances, you can have a parent node which does not have corresponding child nodes of

the same type. Such a node is called a non-refined node and are used to denote actions that can be viewed

as basic in attack tree threat modeling.

For every node of an ADTree, there could be a child of the opposite type that represents a defense

mechanism against an attack. Therefore, an attack node may be represented by several children illustrating

a refinement of an attack and a single child node which provides a defense mechanism against the attack.

The child node offering defense mechanism can also have several children that showcase a refinement of

the defense mechanism and a single child of opposite type i.e. an attack node that counters the defense

mechanism. While refining a node of an ADTree, one can do a conjuctive refinement where all the child

goals of the node under refinement are achieved. To achieve their parent goal, conversely, one can do a

disjuctive refinement. With disjunctive refinement of a node, one focusses on achieveing at least one of

its child goals. ADTrees core purpose is to model attack and defense scenarios on system resources to be

protected. Kordy et al. [27] view the concept of an attack–defense scenario as an interaction between a

proponent and opponent.

In their literature, the root of an ADTree represents the proponent’s main goal. If the root is defined as an

attack node, the proponent in this case will be an attacker and the opponent will be a defender. Conversely,

if the root is defined as a defense node, the proponent in this case will be a defender and the opponent an

attacker. They propose the following graphical semantics when drawing ADTrees. Attack nodes are depicted

by circles and defense nodes by rectangles, as shown in Fig. 5.2. Node relations that represent refinements
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Figure 5.2: Stored XSS ADTree threat modeling

are indicated by solid edges between the parent and child nodes, and countermeasures are represented by

dotted edges. To showcase a conjunctive refinement of a node, they use an arc over all edges connecting the

node and its children of equal type. To demonstrate an example of an ADTree, we consider a manifestation

of stored Cross Site Scripting attack scenario at an API endpoint as shown in Fig. 5.2.

Its root node is an attack, thus the main goal expressed by the tree are scenarios that can lead to

execution of a successful stored XSS attack at any given API endpoint and their respective countermeasures.

To launch a successful stored XSS attack against a web API endpoint, an attacker can choose multiple

vectors of manipulating web API’s endpoint accepting user inputs, by providing malicious input which is

later interpreted as a Document Object Model (DOM) when loaded on a browser thereby executing the target

attack. Assuming we are dealing with an API endpoint of a salon management system for updating a users

bio profile as indicated in Fig. 5.2, the following sequence of events need to happen for a successful execution

of a stored XSS attack. First, a malicious user A must register an account in the salon management system

and must provide the salon web API endpoint for updating his bio profile with a malicious XSS payload.

The API will then store the user’s bio profile alongside the malicious XSS payload. Any user who will then

access user A’s bio profile via a web browser will make the uploaded malicious payload stored alongside

user A’s bio profile to be interpreted as a DOM thereby triggering a successful execution of a stored XSS

attack. Therefore, a quick countermeasure against this kind of attacks is to sanitize input at any of the

target API endpoints. One way of achieving this is to define a string processing function that strictly
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1 ...
2 class BioDescription;
3
4 var
5 bio_description: string
6 invalid_chars: string
7 inv
8 0 < len(bio_description) <= 100
9

10 method Init()
11 post bio_description = Nil
12 invalid_chars = [’<’,’>’, ’;’, ’&’, ’#’, ’=’,’/’, ’\’, ’%’]
13 end_method;
14
15 method Set_Bio_Description(bio_description: string)
16 post bio_description = bio_description
17 end_method;
18
19 method validBio(invalid_chars: string, bio_description: string) is_valid: boolean
20 /* This method tests for existence of invalid characters in the provided bio_description string */
21 pre elems(invalid_chars) <> {}
22 post is_valid = true and inter(elems(invalid_chars), elems(bio_description)) = {} or
23 is_valid = false and inter(elems(invalid_chars), elems(bio_descriotion)) <> {}
24 end_method;
25
26 end_class;
27
28 ...
29
30 process CreateSalonCustomerProfile(validtoken: token, access_token: token, id: string, user: SalonUser, name: string, phone_number: string,
31 bio_description: BioDescription, bio: string) customer_profile: SalonCustomerProfile, error_message: string
32 ext rd salon_users_table
33 ext wr salon_customer_profile
34 pre not exists[i: inset dom(salon_customer_profile)] | i.id = id
35
36 explicit
37 begin
38 if access_token = validtoken and access_token <> nil and elems(access_token) <> {}
39 then
40 bio_description := new BioDescription
41 validbio = bio_description.validBio(bio)
42 if validbio = true and user inset(elems(salon_users_table))
43 then bio_description.Set_Bio_Description(bio)
44 customer_profile = mk_SalonCustomerProfile(id, user, name, phone_number, bio_description)

45 salon_customer_profile = override(~salon_customer_profile, {customer_profile-->user})
46 else error_message := "Bio description contains invalid characters";
47 else error_message := "Http 402, Permission Denied".
48
49 end
50
51 end_process

Listing 5.1: Sample excerpt of case study API specifications in SOFL

checks for potentially malicious characters that can be interpreted by the browser as DOM objects from our

API payload. A sample specification implementation of this counter measure is illustrated in this excerpt

listing 5.1 of our case study. The full specifications are availed via this file salon api sofl implicit.txt in our

github repository 1.

This countermeasure works towards preventing a successful execution of our attack tree root node goal.

Compared to other threat modeling techniques, Attack-Defense Trees provide an intuitive graphical repre-

sentation of different attacks which enable them bridge the gap between stakeholders coming from diverse

backgrounds. This enables them to not only detect, analyze, brainstorm, amend results of an attack analysis

and document a wide range of attacks but also define reactive countermeasures against the attacks. The

1https://github.com/Egalaxykenya/IEICE-journal-paper-emeka/blob/master/SOFL/salon api sofl implicit.txt
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stakeholders benefit by relying on a framework that provides a succinct and meaningful structure for a range

of potential attack vectors (i.e. methods of gaining unauthorized access to a system) in their system modeling

activities.

5.3 Ecore metamodels, models and modeling languages

In Model Driven Engineering (MDE) [64] metamodels and models offer the underlying building blocks. A

metamodel defines the abstract representation of a model capturing the concepts of a domain [31]. Meta-

models define the frames, rules, theories, and constraints associated with domain concepts [31] and represent

models as instances of some more abstract models. A model offers an abstraction of a system or its en-

vironment or a combination of both. A model also has a capability of deriving its elements from multiple

metamodels rather than being tied to a single metamodel. Therefore, one can define models of reality,

and models that describe models i.e. metamodels and recursively models that describe metamodels i.e.

meta-metamodels. Cadavid [65], describes a model as a composition of concepts, relationships, and well-

formedness. The concepts describe attributes of a domain being modelled, relationships describe the link

between the concept and well-formedness describes additional properties that constrain the way domain

concepts can be interlocked to form a valid model. Bézivin school of thought [66][67] describes a model as

an abstraction of an actual system which can be used to describe the system comprehensively. The intrinsic

value of models is pegged on the extent to which a model can help stakeholders take appropriate actions

to attain and maintain a system’s target goal. Models primary purposes therefore is to reduce a system’s

complexity through abstraction. MDE promotes this concept by allowing developers focus on the domain

problem rather than the technical implementation details when constructing a system’s model.

5.3.1 Modeling Languages

Modeling languages are aligned to describe aspects of a system via different sets of symbols and diagrams to

minimise the risk of model misinterpretation. MOF is the standard metamodeling language defined by the

OMG. However, Ecore, an EMF based metamodeling language is considered a mature standard primarily

because it is tailored to Java for implementation and the Eclipse platform which has a huge user base [64].

A modeling language is essentially made up of three parts:

1. An Abstract syntax which describes the structure of the language and the way different primitives can

be combined together.

2. A Concrete syntax describing specific representations of the modeling language, covering encoding
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and/or visual representation. The concrete syntax can be either textual or graphical notations.

3. Semantics which describe the meaning of the elements defined in the language and the meaning of the

different ways of combining them.

Modeling languages are broadly categorised into General Purpose modeling Languages (GPML) and

Domain Specific Modeling Languages (DSL). DSMLs are tailored for specific domains for example accounting,

finance or aviation, with motivation of making it easy for practitioners to describe elements in that particular

domain. Examples of DSMLs include SQL for relational databases and HTML for web development. A

DSML provides all the elements necessary to construct models in their target domains. These elements are a

metamodel, a graphical or textual representation of concepts specified through metamodel and the semantics

associated with the domain concepts [65]. On the other hand, GPMLs represent modeling tools that can be

applied across multiple domains such as UML and state machines.

A metamodel of a model specifies its structure and meaning. It defines the abstract syntax, the possible

elements, and their relations in between. In addition, it specifies its static semantics, the constraints for

well-formed models. There are two popular meta-metamodels. The Meta Object Facility (MOF) [68] by the

Object Management Group (OMG) which is used as meta-metamodel for the Unified Modeling Language

(UML) and Ecore [33] which is part of the Eclipse Modeling Framework (EMF) and based on Essential MOF

(EMOF) [68]. We choose Ecore because it has more freely available supporting tool.

5.3.2 Meta Object Facility and Eclipse Modeling Framework

MOF provides a semi-formal approach for defining models and metamodels. MOF was designed to provide

a standard metamodeling language for systematic model/metamodel interchange and integration [64]. The

Eclipse Modeling Framework (EMF) forms the core technology in Eclipse Development Environment for

model-driven engineering. EMF provides a rich set of model-based Model Driven Software Engineering tools

offering the following features.

First, EMF enables the definition of metamodels based on the Ecore metamodeling language. Second

it provides generator components for manipulating models programmatically, providing API interfaces for

constructing models from metamodels. Third, it provides modeling editors to build models in tree-based

editors. Morevoer, EMF comes with a powerful API covering different aspects such as serializing and

deserializing models to/from XML Metadata Interchange (XMI) as well as powerful reflection techniques.

An EMF model is a specification of a data model that can take the form of a UML class diagram or XML

schema [31]. Fig. 5.3 gives a hierarchical representation of anEcore metamodel. In Ecore, every object is an
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Figure 5.3: Ecore metamodel inheritance hierarchy extracted from [69]

EObject but the root element of an Ecore metamodel is an EPackage. An Ecore metamodel consists of the

following key concepts:

1. An Eclass - Models entities in a domain. An Elass is identifiable by name and usually contains other

features such as EAttributes, EReferences and EDatatypes

2. An EAttribute models attribute of an EClass. In the hierarchical repsentation of an Ecore metamodel,

an EAttribute represents the leaf components of instances of an EClass’s data. EAttributes have a

name and data type that define their identity.

3. An EReference models associations between classes. Associations can be bidirectional with a pairing

opposite reference. A containment associations defines a stronger type of referential relation, in which

a class contains another class.

4. An EDatatype models simple types and acts as a wrapper which denotes primitive or object types.

We use concepts of metamodeling in step 5 of our proposed approach.

5.3.3 Model Transformations

Model transformations are integral, providing mechanisms for querying, synthesizing and transforming mod-

els into other models, equivalent formal textual specifications and executable code in Model Driven Engi-
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neering. The purpose of models can be wide, spanning from communication between people to executability

of the designed software. As such, models and their transformations need to be expressed in a modeling

language with some defined notations. Transformation executions are defined based on a set of transfor-

mation rules, defined using a specific transformation language. A successful model transformation has to

maintain synchronization between source and target models. Model synchronization is often captured by

transformation rules. These ensure that a logical correspondence is established between source and target

models. Graphical models such as Ecore have been used to capture and encode the concepts of the domain

for an application, providing well defined semantics that allow for precise information exchange.

The core objective of modeling is to enable collaborative engagement among the people involved in a

project. The involved project members at any given time should be able to access the different parts of the

models being constructed by the designers. Naturally, a repository-based approach where designers share

a central repository containing the model under construction offers one approach of collaboration. This

would mean all the project stakeholders use the same set of modeling tools the designers use to navigate

through the models. However, sometimes this approach is not feasible due to overheads such as complexity of

modeling tools as most are designed to accommodate the needs of experts therefore training on non-experts

is required, as well as need for implementing some access control policies such that that some stakeholders

are only granted access to some parts of the models. Moreover, when generating formal specifications such

as SOFL from an underlying system model, there need to be consistency and synchronization between the

generated SOFL specifications that define the structural representation of the underlying model. This means

that if the formal specifications such as SOFL are to be generated manually from an underlying model, there

will be difficulties in maintaining consistency and synchronization between the underlying source model and

its equivalent SOFL specifications since a change on the underlying model must also be reflected on its

equivalent SOFL specifications.

We adopt concepts of model to text transformation in step 6 of our proposed approach. We utilize a

generic approach which takes an Ecore metamodel as a source input and yields SOFL formal specifications as

target output. The Ecore metamodel enable us create a generic template of a model that is a representation

of a RESTful APIs domain model. In particular, we check whether the produced formal specifications define

the structure of its source model which conforms to its metamodel and whether all the essential properties

are preserved by the transformation. We shall explain this in detail in chapter 5.

5.3.3.1 Epsilon Tool for Ecore Metamodel Construction and Model Management

Epsilon [70], standing for Extensible Platform of Integrated Languages for model management, is a platform

for building consistent and interoperable task-specific languages for model management tasks such as model



CONCEPTS USED IN PROPOSED APPROACH BUILDING BLOCKS 40

transformation, code generation, model comparison, merging, refactoring and validation. It offers a set

of task-specific languages for different model management operations. For example, EOL (Epsilon Object

Language) is used for direct model manipulation, including creating new models, querying, updating, and

deleting model elements and forms the core of other languages in the Epsilon suite of languages. Other

Epsilon languages include; ETL (Epsilon Transformation Language), for model-to-model transformation,

EGL (Epsilon Generation Language), for model-to-text transformation and Epsilon Validation Language

(EVL) for model validation.

5.3.3.2 Epsilon Generation Language

EGL is a template-based model-to-text transformation language that is implemented atop the Epsilon model

management platform [71] language. EGL can be used to achieve the transformation of models into various

types of textual artefacts, including executable code, images, or even formal specifications. EGL provides

several features that simplify and support the generation of text from models. These include language-

independent merging engine for preserving statically generated text (hand-written) and formatting algo-

rithms which provide mechanisms for achieving traceability that links generated text with their source

models. Epsilon offers an abstraction layer called EMC (Epsilon Model Connectivity). EMC specifies an

API against which drivers for different modelling technologies are implemented. This enables different model

management languages such as Epsilon Verification Language, Epsilon Transformation Language, Epsilon

Object Language, etc. manage models captured using different modelling technologies. An EGL program

comprises of one or more sections with a mix between static and dynamic sections. The contents of static

sections are emitted in verbatim and appear directly in the generated text. The contents of dynamic sections

are executed and are used to control the text that is generated. An EGL program comprises of one or more

sections with a mix between static and dynamic sections. The contents of static sections are emitted in

verbatim and appear directly in the generated text. The contents of dynamic sections are executed and are

used to control the text that is generated. EGL re-uses Epsilon Object Language syntax for structuring

program control flow, performing model inspection and navigation, and defining custom operations.

EGL also provides syntax for defining sections which are dynamically generated. This provides a con-

venient mechanism for generating up to date text for the dynamic sections which reflect the changes done

on the source model. Similar syntax is often provided by template-based code generators. The tag pair [%

%] is used to delimit a dynamic section. Any text not enclosed in such a tag pair is contained in a static

section. The code snippet shown in listing 5.2 illustrates the use of dynamic and static sections to form a

basic EGL template. Any EOL statement can be contained in the dynamic sections of an EGL template.



CONCEPTS USED IN PROPOSED APPROACH BUILDING BLOCKS 41

1 [% for ( i in Sequence{1..5}) { %]
2 i is [%=i%]
3 [%}%]

Listing 5.2: Sample EGL template with EOL statements

5.4 REST and REST concepts

The concept of REST was introduced by Roy Fielding in his PhD dissertation, “Architectural Styles and the

Design of Network-based Software Architectures” [3]. REST relies on HTTP protocol for data communication

and revolves around the concept of resources where each component is considered as a resource. These

resources are accessed via a common interface using HTTP methods such as GET for retrieving a resource,

PUT for updating a resource, POST for creating a resource and DELETE for removing a resource. Contrary

to other web services, REST is an architectural style and protocol agnostic. The REST architecture focuses

on providing access to a resource for a REST client to access and render it [3]. It utilizes Uniform Resource

Identifiers (URIs) in identifying each resource and provides several resource representations such as XML,

JSON, Text etc. to represent its type. For an API to be considered RESTful, it needs to satisfy the design

characteristics commonly referred to as REST constraints [3] i.e., Client-server architecture, Statelessness,

Caching, Uniform Interface, Layered systems, and/or Code on Demand (optional). A detailed description

of RESTful web APIs is given in [1].

5.4.1 ResourceType and ResourceIdentifierPatterns

A ResourceType represents a RESTful API concept that models an object and its set of properties. It

is defined as an abstract EClass with a name in our approach. It has an attribute maxResources which

specifies the number of resources allowed. The uniform interface REST constraint dictates that activities

which transcend create, read, update, and delete (CRUD) operations, must be modeled in a different way.

For example, if we are creating an Online Salon Booking API with a capability for suggesting the best salon,

a suitable workflow needs to be defined: salons can be suggested, and customers must share their reviews.

Such a suggestion can be modeled as an ActivityResourceType. An ActivityResourceType is normally a

nominalisation of an activity. A ResourceIdentifierPattern describes a URI to a ResourceType. Since we

are specifically modeling RESTful APIs and by extension adhering to REST semantics, every ResourceType

must have at least one ResourceIdentifierPattern. A ResourceIdentifierPattern is abstract and can be a

SimpleIdentifier which is described using a string or a ComplexIdentifierPattern which uses the values of

the ResourceType’s Attributes. A ResourceType contains an unordered set of named ResourceElements, like

attributes and links.
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5.4.2 DataTypes and Attributes

Attributes specify a ResourceType’s properties and conform to a defined DataType. A DataType can be

a PrimitiveDataType, a domain primitive or a CollectionType. PrimitiveDataTypes are identified by their

name, for example, integers and strings. A CollectionType represents an ordered set of values and references

the DataType of its contained elements.

5.4.3 Method, MethodType and Parameter

REST-based services use HTTP interfaces, such as GET, PUT, POST and DELETE, to maintain uniformity

across the web. The uniform interface, enforces a MethodType. A MethodType is identified by its name, that

correlates with existing HTTP verbs. A ResourceType is associated with a set of supported Methods and

must have a MethodType. The Method element defines the behaviour encoded in the API and determines

the set ofMediaTypes consumed or produced by the API. In addition, every Method can define parameters

which can be contained in a consumed MediaType or in the resource identifier.

5.4.4 Link and RelationType

Links support hypermedia as the engine of application state (HATEOAS) [3]. Each Link can define a media

type independent RelationType [72]. This means the client is aware of the relation existing between two

resources and which method requests with which meaning can be sent to the target link. A RelationType

can contain pagination information like next or previous. An InternalLink refers to one target ResourceType.

To model links to resources outside the current application ExternalLinks are used. These only go to the

extent of defining resource identifiers.

5.5 SOFL

Structured Object-Oriented Formal Language (SOFL), provides a formal but comprehensible language for

both requirements and design specifications, and a practical SOFL method for developing software systems.

SOFL integrates different notations and techniques on the basis that they are all needed to work together

effectively in a coherent manner for specification constructions and verification [15]. The SOFL method

offers the following features:

1. SOFL integrates both structured and object-oriented methods in specification construction, by lever-

aging on their advantages and to avoiding their disadvantages. Structured methods offer a top-down
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approach for constructing specifications, that starts from the top level module. The approach then

encourages decomposing high level operations defined in the modules into low level modules.

2. It supports an evolutionary three-step approach to developing formal specifications. This evolutionary

approach starts with specifications being defined informally, then semi-formally, and ultimately being

transformed to formal specification. The informal specification is usually written in a natural language.

This provides the foundation for deriving the semi-formal specification in which SOFL syntax is some-

how enforced to a certain extent providing a blend of formal and informal parts. The ultimate formal

specifications are then derived from the semi-formal specification by formalization of the informal parts.

3. It adopts rigorous review and testing for specification verification and validation. Specification veri-

fication aims to detect faults in specifications. Techniques for rigorous review are adopted from the

integration of formal proof and fault tree specification analysis methodologies that stem from safety

analysis. The reviews must be done on a precise ground, and supported by a rigorous mechanism [73]

[74]. Rigorous reviews are usually less formal than formal proofs, and are easy to conduct.

The SOFL specification language offers the following features:

1. It integrates textual and graphical notations. The graphical notation Data Flow Diagrams adopt

Petri nets [75] operational semantics and are used to describe comprehensibly the architecture of

specifications while the precise definition of the components occurring in the diagrams is achieved by

adopting VDM-SL [76], with slight modification. A formalized Data Flow Diagram, resulting from the

integration, is called Condition Data Flow Diagram (CDFD).

2. It provides a hierarchical organisation of CDFDs and their associated modules to help reduce complexity

and to achieve modularity of specifications.

3. Leverages on Classes to model complicated data flows and stores. A store is like a file or database in

a computer system. It offers data that can be accessed by processes in a CDFD or by different CDFD

in the hierarchy. The value of a store can be used and changed by a SOFL process.

A SOFL formal specification is represented as a group of modules organized in a hierarchical manner.

Every module include related processes that specify the expected functions, the datastores which specify the

data resources that can be accessed by the process, in addition to the invariants that specify the constraints

that are to be conformed by the process and data stores. The module offers an encapsulation of the data

stores, functions and invariants. A process is composed of five parts name, input ports, output ports,

pre-condition and post-condition.
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The input and output ports specify the input and output variables of the process. The pre- and post

conditions define the semantics of the process interpreted as follows: When one of the input ports is available,

it implies that all of its input variables are bound to specific values of their respective types and the process

will be executed. The result of the execution may imply that one of the output ports is made available.

This means all of their respective output variables are bound to particular values with specific types. If the

pre-condition is satisfied by the input variables before the execution, the output variables are required to

satisfy the post-condition after the process execution, provided that the execution terminates. Listing 5.3

shows a typical SOFL formal specification and its corresponding CDFD is shown in Fig. 5.4.

The SOFL formal specifications describe two modules i.e. Arithmetic and Arithmetic decom. The module

Arithmetic decom is nested within the module Arithmetic. Each module contains a number of processes where

each process describes an independent system function. Module Arithmetic consists of processes A, B and

C. Process C is represented as the decomposed module Arithmetic decom in Listing 5.3 lines 17 - 29. These

three processes are connected by data flows, which represents the overall function of module Arithmetic. The

decomposed lower level module Arithmetic decom consisting of processes E and F represent process C in

the parent module. An interpretation of the formal specifications of process A is as follows. It consists of one

input port and two output ports separated by notation |. It takes x of integer type as the input variable and

produces either y or z as the output variable. Its pre-condition is set to true and its post-condition requires

that the output variable y is equal to the square of x if x is greater than 0, and the external variable D will

be updated by the following condition D = ˜D + x; otherwise variable z will be made available. The ˜ sign

before the variable D symbolises the initial value of the variable D before it is updated by the process A.

The semantics of SOFL CDFD are interpreted as follows: In each CDFD, a process is represented by

a rectangle box with a name in the center. Each input port is denoted by a narrow rectangle on the left

part of the process box, which receives input data flows. Each output port is denoted by a narrow rectangle

to the right part of the process which produces output data flows. Multiple input and output ports are

denoted by multiple narrow rectangles to the left and right parts of the process respectively. The pre- and

post conditions are denoted by rectangles located in the upper and lower parts of the process. While using a

supporting tool, a mouse click on these areas would give access to the pre- and post conditions respectively.

In addition, CDFDs put focus of attention on data flow but not on control. Therefore, there is no explicit

linking of input and output ports within a process [77].

More details about the SOFL specifications language can be found from the SOFL book [15].
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Figure 5.4: An Example of a SOFL CDFD

5.6 Summary

In this chapter, we have described the concepts of the building blocks that we adopt in our proposed

approach. These building blocks provide foundational concepts which our proposed approach adopts at some

of its steps. SOFL provides the formal engineering specification language for the target API specifications.

ADTrees provide a threat modeling approach with provision for not only defining the attack vectors but also

defining a mitigation against each of the identified API attack vector. We utilise ADTrees in step 3 of our

proposed approach. Domain Driven Design and the concepts of defining API attack mitigation using domain

primitives enables our proposed approach achieve the concept of interweaving functional and security API

requirements. We utilize DDD concepts in step 4 of our proposed approach. Metamodeling and concepts of

Ecore metamodels enable us achieve structural modeling of our target API specifications. We adopt concepts

of metamodeling and Ecore metamodels in step 5 and concepts of model transformations in step 6. In the

following chapter, we shall describe about our proposed approach, its working mechanisms and the roles

played by each of these aforementioned building blocks.
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1 module Arithmetic
2
3 process A(x: int) y: int | z: sign
4 ext #wr D: int
5
6 pre true

7 post (( x > 0 and D = ~D + x and y = x**2) or ( x <= 0 and bound(z))
8
9 end_process;

10
11 process B(y:int) r: int
12 pre y > 0
13 post r = y * 5
14 end_process;
15
16 /* Process C decomposed into lower level processes E and F */
17 module Arithmetic_decom
18
19 process E(z: sign, q: int) i:int, j: int
20 pre (q > 0 and bound(z))
21 post ( i = q + 1 and j = q ** 2)
22
23 end_process;
24
25 process F(i: int, j: int) w: int
26 pre ( i > 0 and j > 5)
27 post w = i * j
28 end_process;
29 end_module;
30 end_module;

Listing 5.3: SOFL formal specification example



Chapter6

The Proposed Approach

In this chapter, we describe our proposed approach in details, highlighting all of its six steps and how we end

up achieving the target API specifications expressed in SOFL. Our proposed approach offers a 6 step process

(Fig. 6.1) and focuses on interweaving APIs’ functional and their respective security requirements. We adopt

concepts of Domain Driven Design, threat modeling with ADTrees, Ecore metamodels and SOFL as the

building blocks of our methodology. Our approach aims at resolving API security issues both implicitly and

explicitly. Implicitly by applying strict invariants on a domain primitive, and explicitly by applying ADTrees

to model API threats and vulnerabilities. We rely on official documented repositories such as OWASP API

security top 10 [8] and Common Vulnerabilities Exposure (CVE) [78] database as a baseline to guide

in identifying common documented RESTful API vulnerabilities. In the following subsequent sections, we

describe the 6 steps that define how our proposed approach works.

6.1 Step 1 - Resource Extraction Using RAML Parser

The first step involves generating a flat file with APIs resource listings. In this step, we parse a RESTful API

documentation written in RAML with resource definitions as input into an RAML parser [79]. A resource in

RAML is identified by its relative Uniform Resource Identifier (URI), which must begin with a slash (”/”).

A resource may refer to other resources via steps (”/”) in URIs. The resource may be a containment (child)

node or otherwise referred to as a nested resource, or non-contained resource. A nested resource will have

its URI relative to the parent resource URI. Listing 6.1 shows an excerpt of a sample RAML description

of an Online Salon Booking System API which we shall use as a running example. For purposes of brevity

we do not showcase the complete listing of the input RAML description file but a full listing of the RAML

specifications can be accessed from this github repository 1. Lines 7-14 show resources externally defined in

separate files e.g. API data shapes, resource types and the authenticating security scheme. Lines 16-55 show

sample resource type’s endpoints and their associated HTTP interfaces with their corresponding request and

response data shapes. Parsing the RAML file through an RAML parser yields a flat file (Listing 6.2) with

extracted URI resources. This step is fully automated.

1https://github.com/Egalaxykenya/IEICE-journal-paper-emeka
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1 #% RAML 1.0
2 title: SalonService API
3 baseUri: http://localhost:8000/api/{version}
4 version: v1
5 mediaType: application/json
6
7 uses:
8 shapes: ./dataTypes/shapes.raml
9

10 resourceTypes:
11 collection: !include resourceTypes/collection.raml
12
13 securitySchemes:
14 oauth_2_0: !include securitySchemes/oauth2_0.raml
15
16 /salons:
17 type:
18 collection:
19 response-type: shapes.SalonData[]
20 request-type: shapes.NewSalonRequestData
21 get:
22 description: Get a list of Salons based on the salon name
23 queryParameters:
24 salon_name:
25 displayName: Salon Name
26 type: string
27 description: Salon’s name
28 example: "Salon Paradise"
29 required: true
30 ...
31
32 post:
33 description: Salon data created correctly for salon business
34 body: shapes.NewSalonRequestData
35 delete:
36 ...
37 /{salon_id}:
38 type: ...
39 get:
40 description: Get the salon with ‘salon_id = {salon_id}‘
41 responses:
42 200:
43 body:
44 application/json:
45 example: |
46 {
47 "data": {
48 "id": "lsVx",
49 "name": "Salon Paradise",
50 "location": "Chuo Ku,Tokyo",
51 "link":"http://localhost:8000/api/v1/salons/SalonParadise"
52 },
53 "success": true,
54 "status": 200
55 }
56 ...

Listing 6.1: Sample RAML description file
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1 /salons
2 /salons/{salon_id}/service-categories
3 /salons/{salon_id}/service-categories/{category_id}
4 /salons/{salon_id}/service-categories/{category_id}/salon-services
5 /salons/{salon_id}/service-categories/{category_id}/salon-services/{service_id}
6 /salons/{salon_id}/service-categories/{category_id}/salon-services/{service_id}/bookings
7 /salons/{salon_id}/customers
8 /salons/{salon_id}/customers/{customer_id}
9 /salons/{salon_id}/customers/{customer_id}/bookings

10 /salons/{salon_id}/customers/{customer_id}/bookings/{booking_id}
11 /salons/{salon_id}/booking-payments
12 /salons/{salon_id}/customers/{customer_id}/bookings/{booking_id}/booking-payments
13 /salons/{salon_id}/stylists
14 /salons/{salon_id}/stylists/{stylist_id}/salon-services
15 /salons/{salon_id}/stylists/{stylist_id}/bookings
16 /salons/{salon_id}/users

Listing 6.2: Sample flat file with API resource listings

6.2 Step 2 - API Resource Graph Construction

The second step involves automatic construction of an API resource graph that will work as a blue print

for creating the target API domain model. The input for this step is the flat file generated from step

1 and the output is a directed graph (digraph) of API resources. We utilize the algorithm defined in

Algorithm 1 which takes a list of lists of API resource nodes and the defined API root resource node as

an input, and constructs a digraph highlighting all the API resources as an output. For example, the

following invocation Entitygraph([[salons, service-categories], [salons, salon-services]], salons) returns

({salons, service-categories, salon-services}, {(salons, service-categories), (salons, salon-services)}). It is

worth noting that in the implementation of the algorithm we had to conduct some pre-processing on the

contents of the input flat file such as stripping of (”/”) and {id}. This was meant to extract the target API

resources from resource URIs which adopt RESTful URIs pattern as depicted by a sample shown in Listing

6.2.

Figure 6.2 shows a sample API entity resource digraph automatically generated by an implementation of

the algorithm using Listing 6.2 as a source input. Note the generated digraph abstracts containment and

reference relationships between the digraph’s resource nodes. A containment relationship describes a relation

where a business object represented as a resource entity can contain one or more other business objects with

the containing business object known as the parent object while the contained objects are referred to as child

objects. A reference relationship describes a relationship between business objects that is not embedding

i.e. when you query a business object, its referenced objects are not automatically returned like the case of

containment relationships. Similar to step 1, this step is also fully automated.
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Figure 6.2: API Entity resource Graph
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Algorithm 1 API Entity resource graph

1: procedure Entitygraph(L, v): ▷ L is a list of list of resource names, v is root resource name
2: let W be an empty set of resource names
3: let V be an empty set of nodes
4: let S be an empty set of edges
5: let M be an empty map from node names to nodes
6: let r be the root node
7: for all list l of resource names in L do ▷ Extract a set of unique resource names
8: for all resource names n in l do
9: W ←W ∪ {n}

10: end for
11: end for
12: num← 1
13: r ← new Node() ▷ Node structure consists of name and order
14: r.name ← v
15: r.order ← num
16: num ← num + 1
17: M ←M ∪ {v 7→ r}
18: for all resource names n in (W \ v) do
19: x← new Node()
20: x.name ← n
21: x.order ← num
22: num ← num + 1
23: M ←M ∪ {n 7→ x}
24: V ← V ∪ {x}
25: end for
26: for all list l of resource names in L do ▷ Extract set of unique edges
27: for all pairs of adjacent resource names (m,n) in l do
28: S ← S ∪ {(M [m],M [n])}
29: end for
30: end for
31: return (V, S)
32: end procedure

6.3 Step 3 - Domain Model Construction

In step 3, we use the generated digraph as a guide to manually define the API’s initial domain model as

the target output with an aggregate root corresponding to the root node of the input digraph and the rest

of the nodes corresponding to domain model entities. In actual sense, the generated digraph in step 2 is a

barebone representation of the target domain model, but what is missing in the domain model at this stage

in the distinction between containment and reference relationship between entities. As we construct the

domain model, we rely on the encoded business logic defined in the RAML specifications to explicitly define

containment and reference relationships between domain model entities. Most importantly, we need to have

at the back of our mind that the domain model provides a broad concept that encompasses the resources we

choose for the target API and how these resources interact and relate to one another. We define the security
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schemes captured in the source RAML specifications that define invariants on related entity attributes as

domain primitives in the constructed domain model. This encourages traceability between a domain model

and the final generated SOFL specifications in step 6. The importance of an efficient domain layer is key

to a successful secure by design API implementation. APIs developed based on the domain layer ensure

businesses and security concerns gain equal priority in the view of both business experts and developers.

The defined domain model describes the entire ecosystem of the modeled API in the form of Domain Driven

Design Concepts of aggregate root, entities, entity relationships and domain primitives. Figure 6.3 shows

a sample domain model constructed from an API graph generated in step 2. We adopt UML notations to

describe the nature of relationship between any two entity resources or between entity resource and a domain

primitive modeled as a value objects.

Salons

id: string

ownerID: string

business_name: string

business_type: string

business_description: string

business_phone_number: string

business_email: string

business_addressID: string

price_range: string

created: datetime

stylists: stylistsIDS[ ]

Service-Category

id: string

ownerID: string

category_name: string

category_description: string

created: datetime

created: datetime

Salon-Service

id: string

ownerID: string

service_name: string

linked_businessID: string

service_price: double

service_duration: string

Booking

id: string

salon_customerID: string

booked_in_byID: string

stylists: stylistIDS [ ]

booked_service: string

service_date: datetime

service_started: boolean

service_completed: boolean

service_cancelled: boolean

Customers

id: string

first_name: string

last_name: string

gender: string

DOB: date-only

home_address: string

salon_branchID: string

Booking-Payment

id: string

salonID: string

payment_received_byID: string

service_paid_forID: string

payment_code: datetime

payment_date: datetime

Users

id: string

email: string

password: string

phone_number: string

user_type: string

DOB: date-only

nationality: string

Stylists

id: string

ownerID: string

first_name: string

last_name: string

phone_number:  string

salon_serviceID:  string

salon_branchID:  string

owned by

ha
s

ha
s

has

has

has

ha
s

ha
s

ha
s

has

has

Legend
1 to 1 domain relationship

1 mandatory to many optional domain
relationship

1 mandatory to many mandatory domain
relationship

(Aggregate root)
(Entity)

(Entity)

(Entity)

(Entity)

(Entity)
(Entity)

(Entity)

Aggregate
boundary

Figure 6.3: Sample domain model created from an API resource graph
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6.4 Step 4 - Threat Modeling with ADTrees

The fourth step, which takes our newly defined domain model as input, involves a threat modeling process

using ADTrees to identify potential security vulnerabilities in our API domain model and their countermea-

sures. Countermeasures that can enforce secure constructs on the attributes and behavior of their associated

domain entities are modeled as domain primitives. The output of this step is a complete refined domain

model with additional security invariants from the threat modeling process defined as domain primitives

in the refined domain model. This fourth step achieves our first interweaving of functional and security

requirements in an implicit manner. For countermeasures which involve consuming third party services such

as rate limiting, request throttling and authentication, we flag them to be modelled as guard conditions

and enforce their constraints later in the sixth step during behavioural modeling when defining the pre-post

conditions of SOFL processes in the generated SOFL scaffolds.

Likewise, we flag countermeasures to security threats such as Cross-Site Scripting attacks, which can

compromise a range of API requests relying on PUT, POST or PATCH HTTP methods to expose API

resources to their target business functionalities and incorporate them as guard conditions in the SOFL

specifications module in step 6.

The threat modelling process involves an analysis of all the domain entities for potential security vul-

nerabilities. The analysis process is a loop with the condition for proceeding to the next phase based on

completion of exhaustive analysis of all the domain model entities representing the API resources. Through

the ADTree analysis process, the domain model gets refined courtesy of new value objects being incorpo-

rated into the domain model as domain primitives. To illustrate how we achieve this with an example,

let’s conduct a threat modeling activity on the Users resource in Fig 8.2. Our salon Booking API pro-

vide end users i.e. salon owners and customers with a web user interface (web UI) where they can reg-

ister into the salon booking system. As such, our API will provide a users registration endpoint such as

http://salonapi.com/api/salons/users/register with POST,PUT and PATCH capabilities. The users will be

interacting with this endpoint via a form on a web UI. Relying on documented threats on OWASP top ten,

to conduct an ADTree analysis on the Users resource, we can establish that our endpoint can be susceptible

to Reflected Cross Site Scripting attacks (XSS) executed via an inline Javascript. XSS is a common vulnera-

bility affecting web applications in which an attacker can cause a script to execute in the context of another

site. To successfully execute an XSS attack against this API endpoint, an attacker can rely on Javascript to

submit a malicious input via the form web form that feeds our API endpoint with users registration data.

A sample malicious input crafted by attacker relying on XSS exploit is shown in listing 6.3.
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1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title> Salon Booking System</title>
5 <style>
6 body {
7 background: #35363A;
8 margin: 0;
9 }

10 <style>
11 </head>
12 <body>
13 <form id="register" action="http://salonapi.com/api/salons/users/register"
14 method="post" enctype="text/plain"
15 <input type="hidden" name=’{"x":" ’value=’","email":"==",
16 "user_type":"&lt;script&gt; alert(&apos; Haha&apos;);&lt;/script&gt;"}’/>
17 </form>
18 <script type="text/javascript">
19 document.getElementById("register").submit();
20 </script>
21 </body>
22 </html>

Listing 6.3: Sample malicious input against the salon users registration API endpoint

By default, many HTML forms set their enctype atribute to text/plain. This instructs the web browser

to format the fields in the form as plain text field=value pairs, which an attacker is exploiting to make the

output look like a valid JSON (lines 15 - 16). The attacker also includes a javascript script (line 19) to make

the form be automatically submitted as soon as its page loads.

For purposes pf brevity and clarity, the attack we are demonstrating here is rather trivial i.e. make an

alert pop up window with the words ”Haha!” appear after the form submission. However, the bottom line

is that the same technique can be used for other potentially grievous attacks. It is also worth noting here

that as an attacker, we have done some reconnaissance on our target API endpoint and know the structure

of the payload it expects.

When the form is submitted, the browser will send a POST request to: http://salonapi.com/api/salons

/users/register API end point with a Content-Type header set to text/plain with the hidden form field

as the value. Each form element is submitted as name=value pairs. The &lt;, &gt; and &apos; HTML

entities are replaced with their literal values <, >, and ’ respectively. The name of the hidden input field

is ’{”x”:”’ and the value is our malicious script. When the two are put together, our API endpoint will

see {”x”:”=”, ”email”:”==”, ”user type”:”<script>alert(’Haha!’);</script>” which appears to be like a

valid JSON input. We add the extra field ”x” to hide the equals sign the browser would have inserted when

submitting the name, value pairs. Assuming the client has no client side validation on the email field, our

API will do some server side validation on the email field and rejects the email field as invalid echoing back

the request payload in the response which will include the malicious script. Since the error response may

be served with the default Content-Type of text/html, the browser’s DOM will interpret the response as

HTML and executes the malicious script in the error response payload, resulting in a reflected XSS popup.
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Figure 6.4 gives a graphical flow of how this XSS popup attack is executed.

Web Browser Form

{"x": "....", "email":"....",
"user_type":"...."

Salon Booking API

Submit

{"email":"==", "password":"
<script>alert('Haha!');

</script>"}

Content-Type: text/plain

Content-Type: text/plain

{"error":"......", "user_type":"
<script>alert('Haha!');

</script>"}

Web Browser Form

Haha! Salon Booking API

Web client executes malicious
script on error response

payload

Form with malicious JSON like
payload

Hidden form fields with
malicious input Salon Booking API receives

the malicious request

Salon Booking API sends the
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web browser as HTML
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3

4

Figure 6.4: Reflected XSS attack flow

Similarly, an ADTree we use for threat modeling activity and define mitigation measures against this type

of attack on our API endpoint is illustrated by Fig 6.5. From our ADTree analysis, we define the following

mitigation measures which seeks to restrict/validate input from our susceptible API end point.

1. Restrict Content-Type header to application/json if the the target API consumes JSON payload which

is widely used with RESTful APIs.

2. Set security header X-XSS-Protection to ”0”. Browser based inbuilt X-XSS-protection filter was in-

troduced in Chrome, Safari and Internet Explorer to stop pages from loading when they suspect

instances of reflected XSS attacks. This header can protect users in older browsers that do not support

Content Security Policy. However, the header can create security vulnerabilities in otherwise secure

websites [80]. It is therefore recommended to use a Content Security Policy (CSP) that disables use of

inline Javascript or explicitly turn it off by setting the flag X-XSS-Protection: 0.

3. Set X-Content-Type-Options to nosniff to prevent the browser from guessing the correct Content-



PROPOSED APPROACH 57

Type for our API response. Without this header explicitly set, the browser may ignore our preferred

Content-Type header and try to make a guess. This can cause a JSON output to be interpreted as

HTML or Javascript.

4. Set X-Frame-Options to DENY to prevent our API responses from being loaded in an iframe. However,

modern browsers which support CSP can prevent responses from being loaded in an iframe but its still

a worthy defense protection mechanism for old browsers that do not support CSP.

The aforementioned mitigation measures are cross cutting i.e. can apply to any of our API endpoint that

services a POST, PUT or PATCH request from users. This therefore qualify as security constructs which we

flag them and inject in our specifications as guard conditions of SOFL specifications in step 6. The mode of

injection is by including the headers as one of the input variables in the defined SOFL process and have them

checked in the pre-post conditions whenever the SOFL process i.e. API request in this matter consumes all

of its required input variables.

XSS Attack
on Web Client

API recieves
malicious request

Malicious input submitted
in hidden HTML form

Header Content-Type
set to text/plain

API reflects malicious
input back on browser as

HTML

Browser executes
malicious script

Restrict Input

Set content header to
application/json

Set security header
X-Content-Type-Options

to nosniff

Set security header
X-Frame-Options

to DENY

set security header
X-SS-Protection to "0"

Figure 6.5: ADTree showcasing mitigation measures against Reflected XSS attack

6.5 Step 5 - API Structural Modeling

The fifth step involves creating an Ecore [33] metamodel that describes the structure of our API domain

model. In this step, we rely on the refined domain model as input and create an Ecore metamodel that our

refined domain model corresponds to, as an output. Specifically, this step encompass structural modeling

of our target RESTful API. The structural model describes the possible resource types, their attributes,

and relations as well as their interface and representations. We model entities as EClasses, value objects as

EClasses and their data type as EDataType, domain primitives as EClass and entity relations as EReferences.

The modeling of aggregates is omitted since it’s a collection of entities and value objects. While modeling a

RESTful web API using Ecore metamodels, we adhere to REST semantics i.e. a ResourceType must have at

least one ResourceIdentifierPattern. A ResourceIdentifierPattern is abstract and can be a SimpleIdentifier
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which is described using a string or a ComplexIdentifierPattern which uses the values of the ResourceType’s

Attributes. A ResourceType contains an unordered set of named ResourceElements, like attributes and

links. In the following sections, we will briefly explain the REST semantics and their equivalent modeled

representations in an Ecore metamodel.

6.5.1 ResourceType

A ResourceType models an object and its set of properties. It is defined as an abstract EClass with a

name. It has an attribute maxResources which specifies the number of resources allowed. The uniform

interface REST constraint dictates that activities which transcend create, read, update, and delete (CRUD)

operations, must be modeled in a different way.

6.5.2 Attributes and DataTypes

We map REST Attributes as EAttributes in Ecore. Attributes specify a ResourceType’s properties and

conform to a defined DataType. A DataType can be a PrimitiveDataType, a domain primitive or a Col-

lectionType. PrimitiveDataTypes are identified by their name, for example, integers and strings. Domain

primitives represents objects consisting of attributes and behaviors that were moved out of a model entity

and put into other objects. A CollectionType represents an ordered set of values and references the DataType

of its contained elements. We map REST’s DataType as EDataType in Ecore.

6.5.3 Method, MethodType and Parameter

REST-based services use HTTP interfaces, such as GET, PUT, POST and DELETE, to maintain uniformity

across the web. The uniform interface, enforces a MethodType mapped as an EOperation in Ecore, which is

identified by its name, to be defined for all existing methods, i.e., the HTTP verbs. A ResourceType mapped

as an EClass in Ecore, is associated with a set of supported Methods which must have an EOperation.

The Method element is responsible for the API behavior and determines the set of produced and consumed

MediaTypes. In addition, every Method can define parameters (EAttributes) which can be contained in a

consumed MediaType or in the resource identifier. A Parameter has a DataType mapped as EDatatype in

Ecore. A Datatype can also be a domain primitive which defines invariants that must be enforced at their

point of creation.
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6.5.3.1 Link and RelationType

Links are modelled as EReferences in Ecore metamodels. In REST semantics, links support hypermedia as

the engine of application state (HATEOAS) [3]. Each Link can define a media type independent RelationType

[72]. A RelationType can contain pagination information like next or previous. An InternalLink refers to

one target ResourceType.

6.6 Step 6 - API Behavioral Modeling and SOFL Formal Specifi-

cation Generation

The sixth and the final step involves behavioral modeling. The input for this step is an Ecore metamodel

from step 5 and the output is formal security aware RESTful API specifications in SOFL language. Our

goal here is to define RESTful API behaviors that consist of actions corresponding to their respective HTTP

verbs i.e., GET, POST, PUT, DELETE and PATCH. For example, CreateAction creates a new resource, an

UpdateAction provides the capability to change the value of attributes and ReturnAction allows for response

definition including the Representation and all metadata. To achieve behavioral modelling, we transform

our API methods into SOFL processes. A SOFL process definition is by itself a MethodType which takes

inputs as Parameters, yields outputs of either MediaType or RelationType or both, defines a pre-condition

and a post-condition, and can read or write a ResourceType to a data store. A ResourceType maps to

an EClass in our Ecore metamodel, RelationType maps to an EReference, and a Parameter maps to an

EParameter which can have a type that is either a primitive data type, or a domain primitive which defines

invariants that must be enforced at their point of creation. For example, an UpdateAction can be transformed

into a SOFL process complete with pre-post conditions where the inputs are treated as the API’s request

parameters and outputs as the response including the Representation and all metadata. The semantic

constraints of different MethodTypes are achieved naturally via the definitions of guard conditions in SOFL’s

post conditions. This step yields security aware formal RESTful API specifications as an output. While

modelling the API behaviors as SOFL processes completed with pre-post conditions and guard conditions

[15], our attention to security is drawn to:

• The resources exposed by the API that are to be protected

• Data transfer across the API’s trust boundaries and aggregate boundaries

• The security goals that are important such as confidentiality of API resources
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• The mechanisms that are available to achieve these goals such as authentication, access control, audit

logging and rate limiting

To guide the formalization process of RESTful API behavior in SOFL, we first define the following SOFL

formalization techniques with regards to a RESTful API. A RESTful API service D is defined as a set of

operations D = (o1, o2, . . . , on) where n ≥ 1. Each operation oi (1 ≤ i ≤ n) is represented by an input

and output pair of messages in the format oi = (inMsg i, outMsg i). Each input message in inMsg i is defined

as a set of input variables expressed in the format inMsg i = {v1, . . . , vj} (j ≥ 1). Similarly, each output

message outMsg i is defined as outMsg i = {v1, . . . , vk} (k ≥ 1). The potential functional behaviors are

inferred from the resources method definitions in the RAML source file which are encoded as EOperations

in our API structural model. RESTful services represent business processes which may be organized in a

hierarchical manner to represent business goals. Therefore each function can be decomposed further into

low-level business processes. The formal representation of a REST service process in SOFL therefore involves

2 steps:

• Modularize REST service associated functions into proper SOFL processes. We adopt the following

two rules during the modularization process:

– Rule 1: If a function F = {f1, ..., fm} represents a service S, we define a process Pi for each

sub-function fi (i = 1, ...,m) of F .

– Rule 2: If a function F interacts with a data item x, then we construct a data store d to represent

x. A datastore d specifies the expected data resource which is accessed by function F . It represents

a necessary RESTful API resource that is shared by several processes.

• Fully formalize the pre- and post-conditions of these processes to precisely express the expected oper-

ational semantics upon their associated services.

We formaly define a SOFL process as a five-tuple: (P, InPortSet ,OutPortSet , preP , postP)

• P is the process name

• InPortSet = {inPort1, inPort2, . . . , inPortf} is the set of input ports of P where inPort i (i = 1, . . . , f)

define an input port. Furthermore, each input port is expressed as inPort i = {vj1 , . . . , vjri } where

vk(k ∈ {j1, . . . , jri}) is a variable of this port.

• OutPortSet = {outPort1, outPort2, . . . , outPortg} represents the set of output ports of the process

P where outPort i (i = 1, . . . , g) is an output port. For each output port defined as outPort i =

{vl1 , . . . , vlsi} where vk (k = l1, . . . , lsi) defines a variable of this port.
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• preP is the pre-condition of P , which specifies the condition that the input variables need to satisfy.

• postP is the post-condition of P , which specifies the condition that the output variables are required

to satisfy.

The semantics of a process P with respect to input and output ports corresponds to the interpretation

of a CDFD diagram as described in chapter 5, section 5.5 i.e. when one of the input ports in InPortSet ,

say inPort i, is available, then it implies that all of its input variables are bound to specific values of their

respective types and that the process P will be executed. If as a result of the execution, one of the output

ports in OutPortSet , say outPortj , is made available, then it means all of its output variables are bound

to specific values of their respective types. If the input variables satisfy the pre-condition preP before the

execution of P , the output variables are required to satisfy the post-condition postP after the execution of

the process P , as long as the execution terminates.

To interweave security requirements with functional requirements at this stage, we introduce the concept

of SOFL process functional scenarios [81]. The pre- and post-conditions of a SOFL process can be transformed

into a number of independent relations called functional scenarios. Let the post-condition Ppost ≡ (C1 ∧

D1) ∨ (C2 ∧D2) ∨ . . . ∨ (Cn ∧Dn), where each Ci (i = 1, . . . , n) is a predicate called guard condition that

contains neither output variables nor output external variables of the SOFL process and Di is a predicate

called defining condition that contains at least one output variable but does not contain any guard condition

as its constituent expression [82]. Then each ˜Ppre ∧ Ci∧Di is called a functional scenario, where ˜F for logical

formula F of the input/output variables of a process denotes the value of F before starting execution of the

process. The pre- and post conditions of a process P can then be transformed into a functional scenario of the

form ≡ (˜Ppre ∧ C1∧D1)∨ . . .∨(˜Ppre ∧ Cn∧ Dn). Each functional scenario (˜Ppre ∧ Ci∧ Di) independently

defines how the output of P is defined using Di under the condition ˜Ppre ∧ Ci. Guard conditions enforce

invariants that constrain the behavior of their associated processes. In our case we define guard conditions

that enforce security constraints thereby achieving the second interweaving of API’s functional and security

requirements.

6.6.1 Semi-Automatic Generation of SOFL via Model to Text Transformations

To semi-automatically generate the formal SOFL specifications that represent the structure of an API from

its underlying model that conforms to a metamodel, we conduct model to text transformations leveraging

on the Epsilon Generation Language [71]. EGL is a model-to-text transformation language that is template

driven. EGL was natively designed to support code generation but can be extended to generate any form of

text file including formal specifications. However, it will be critical to note that our proposed approach is
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agnostic to any model-to-text transformation language. In principle, the approach can be implemented using

any other model-to-text transformation language, such as Xpand [64], MOFScript[64] and Acceleo [83].

In the generation of SOFL specifications, we generate SOFL signatures. These signatures offer a

lightweight mechanism that determine the sections of the program text that must be re-executed in response

to a change in its input source model. The generated signature elements that define a module name, a

SOFL class name, its variables, methods and method inputs and their types as well as outputs and their

types will be dynamically generated whereas signature elements such us the pre- and post conditions of

the SOFL methods as well as its class methods, will be generated statically. The dynamically generated

sections are executable sections which are evaluated with respect to the source model while the statically

generated sections are written in verbatim, and remain the same during the model to text transformation.

when a transformation is first executed, the epsilon tool generates the SOFL signatures and write them to

a non-volatile storage. When a transformation is re-executed in response to changes in the source model,

the SOFL signatures are recomputed and compared to those from the previous execution. In its dynamic

sections, EGL re-uses Epsilon Object Language syntax for structuring program control flow, performing

model inspection and navigation, and defining custom operations.

A typical model-to-text transformation is achieved using a module that comprises of one or more tem-

plates. A template is a document file with a set of parameters, which specify the data on which the template

must be executed, and a set of expressions that define the behaviour of the template. Model to text transfor-

mation languages also provide TemplateInvocations, which are used to invoke other templates and FileBlocks

which comprise of rules that can be evaluated for redirecting generated text to a file. The model to text

transformation process is achieved via a transformation engine that takes an input as source model and

outputs text. The transformation engine creates a TemplateInvocation object from an initial template which

consist of parameter values and template expressions. The execution of a TemplateInvocation involves evalu-

ation of the expressions of its template according to its parameter values. The FileBlocks are then evaluated

by writing to disk the text generated based on the rules contained within the FileBlock.

An overview of our proposed model to text generation technique adopts the same aforementioned prin-

ciples. We first have to create an Ecore metamodel and a sample model that conforms to it. We use the

Epsilon tool [84] to create our Ecore metamodel that gives a structural representation of our API using

the Emfatic textual syntax. We then generate a proper XMI-based Ecore metamodel from the Emfatic [70]

textual representation yielding a .core file. This generation process is fully handled by the Epsilon tool.

Next, we register the generated .core as an EPackage. We then register the generated .core as an EPackage.

This enables us create a model that conforms to our Ecore metamodel. The Epsilon environment provides a

wizard for achieving this as we shall illustrate in the case study section. With a model created, conforming
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to our Ecore metamodel, we then create an EGL template using our model as its source configuration and

its conforming Ecore metamodel by writing EOL scripts that read our model to extract the dynamic parts,

which are expressed in EOL syntax alongside the static SOFL signatures. We then create a .egx FileBlock

with rules which specify the output file bearing the SOFL formal specification, the source EGL template

and the location where the output file will be stored.

6.6.2 Preserving Statically Generated Text and Handling of Changes in the

Source Model

In this section, we discuss how we handle the preservation the statically generated SOFL specification text in

our model to text transformation as well as how changes in the source model are propagated to the generated

SOFL text. In real world projects, the source model would evolve over time either to incorporate new

requirements or to reflect a refinement of the previously defined requirements for the source model. To handle

this, the Epsilon tool provides a mechanism for source incremental[85] model to text transformation. This is

achieved through identification of the subset of TemplateInvocations that need to be evaluated to propagate

the changes from the source model to the generated SOFL text. To preserve the statically generated text,

the Epsilon transformation engine evaluates only the dynamic sections of a TemplateInvocation ignoring any

static sections.

Fig 6.6 describes the mechanism employed by the Epsilon model to text transformation engine for preserv-

ing static sections of the generated text as well as achieving source incremental model to text transformation.

At initialisation, the transformation engine loads an EGL template as well as its configurations into an EGL

template store which prepares access to the target source model referenced by the template. The trans-

formation engine then loads the source model (step 3) into an EOL scripts evaluator. The EOL script

evaluator reads into the provided source model and generate SOFL signatures as per the defined project’s

EOL scripts. The TemplateInvocation is then called by the project’s FileBlock which writes the target SOFL

formal specifications into a file for persistent storage. whenever the source module changes, the EOL script

evaluator returns a Boolean value hasChanged which indicates whether or not the source model differs from

the one currently referenced in the EGL template store. If the source model has changed i.e. updated, a

TemplateInvocation is executed by evaluating the dynamic sections of the template while the static sections

are output in verbatim. This has the effect for preserving the static sections of the generated text. When

the transformation is complete, the transformation engine informs the EOL scripts evaluator so that it can

persist the generated text in a storage.
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Epsilon M2T
Transformation Engine

3.  load(sourcemodel)

7. hasChanged

EGL Template Store

2. sourcemodel

5.  execute()

9.  execute()

1. load(template, configuration)

loop

EOL Scripts Evaluator

4. SOFL signature

TemplateInvocation

6. read(sourcemodel)

8. new(template, configuration)
opt

[hasChanged]

10. complete()

TemplateInvocation

Figure 6.6: A UML sequence diagram describing how the SOFL signatures are generated and how the static
sections of the signatures are preserved
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1 @namespace(uri="salonbooking", prefix="")
2 package salonbooking;
3
4 class Salon {
5 attr String salon_name;
6 attr String salon_address;
7 val Service[*] services;
8 val Stylist[*] stylists;
9 val Customer[*] customers;

10 val Booking[*] bookings;
11 }
12 class Service {
13 attr String service_name;
14 attr Double price;
15 attr ServiceCategory category;
16 }
17 class Stylist {
18 attr String stylist_name;
19 ref Service[*] services;
20 }
21 class Customer {
22 attr String customer_name;
23 ref Booking[*] bookings;
24 }
25 class Booking {
26 attr int booking_id;
27 ref Customer[1] customers;
28 ref Stylist[1] stylists;
29 ref Service[1] services;
30 ref Salon[1] salon;
31 }
32
33 enum ServiceCategory {
34 HairCut;
35 hairStyling;
36 }

Listing 6.4: Sample Ecore metamodel in EMF text

6.6.2.1 Model to Text Transformation Running Example

In this section, we present a trivial example that demonstrates the proposed approach for generating SOFL

specification that yield a structural representation of a model. The example illustrates a simple salon booking

system. The key focus of this example is to highlight the steps that lead to generation of the target textual

SOFL specifications from a source model that conforms to the salon booking metamodel. We begin by

creating an Ecore meta model of the salon booking system using Emfatic textual syntax as shown below.

Epsilon Tool also gives us a provision of generating .core file from our Ecore metamodel in Emfatic syntax

as well as its diagramatic representation as shown in Fig 6.7.

We register the generated .core file as an EPackage so as to create a model that conforms to our Ecore

metamodel. Epsilon tool provides an interface for creating a model from a metamodel and validating the

created model. This model is just a dummy representation which can be used as a bridge for enabling

other project stakeholder communicating with other project stakeholders about changes on requirements

represented by a domain model. The process is semi-automatic with Epsilon managing relations between

model entities as well as validating the datatypes of model entity attributes in conformance with the model’s

metamodel as indicated in Fig. 6.8.
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Figure 6.7: A Diagrammatic representation of Ecore meta model generated automatically by Epsilon Tool
from Source Ecore meta model in Emfatic textual syntax
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Figure 6.8: Epsilon wizard for semi-automatic generation of source model conforming to a source Ecore meta
model
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1 pre {
2 var package = Salon.all;
3 }
4
5 rule Salon2SoflClass
6
7 transform s : Salon{
8 template : "salonbooking2sofl.egl"
9 parameters : Map {"package" = package}

10 target : "home/emeka/m2t" + package + s.salon_name + ".txt"
11 }

Listing 6.5: Sample .egx file with single transformation rule

With the source model that conforms to a meta model available, the next step involves generating two

types of files, i.e .egx and .egl. The .egx file defines the rules that generate the ultimate textual file with

SOFL specifications artifacts. It specifies parameters such as the source .egl file from which it reads from

and the target physical location in which the generated textual file will be stored. The code snippet below

shows a sample .egx file with a single transformation rule indicating the source .egl file and the target storage

location of the to be generated textual file with a dynamic naming scheme.

The .egl template file is what yields the power behind the model to text transformation process. It offers a

template language tailored for model-to-text transformation (M2T). We write the static sections in verbatim

and define the dynamic sections by delimiting them using [% %] tags. The dynamic sections re-uses EOL’s

mechanism for structuring program control flow, querying the model, inspecting the model, navigating the

model and defining custom operations on the model. In general, the .egl file provides the syntax for defining

the dynamic and static output sections, which provides a convenient way for yielding textual output from

within both dynamic and static sections. A sample .egl file that generates a simple SOFL class signature is

shown in the following code excerpt in listing 6.6.

The above EGL template should yield the following SOFL class signature as a generated text file as

shown in listing 6.7.

6.7 Summary

In this chapter, we have discussed about our proposed model driven approach and explained detail the six

steps that our approach encompass. In addition, we have discussed how we can model the encoded behaviours

of a RESTful Web API as well as describe the techniques for semi-automatically generating API’s SOFL

formal specifications via model to text transformations. Considering model to text transformation has been

around for some time, positioning itself as one of the most trans-formative technologies in model driven

engineering, the need for maintaining synchronization between source and target model with support for

formal specification as the transformation target is becoming paramount. The model to text transformation
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1 [%=var salonclasses : Sequence %];
2 [%=salonclasses = Salon.all %];
3 [% for (salonclass in salonclasses){%]
4 [% if ( salonclass.Class == "Salon") {%]
5 class [%=salonclass.Class%];
6
7 type
8 [%=salonclass.salon_name%]:[%=salonclass.salon_name.type%];
9

10 var
11 SalonStore: seq of [%=salonclass.salon_name%];
12
13 method Init()
14
15 end_method;
16
17 method CreateSalon([%=salonclass.salon_name%]:[%=salonclass.salon_name.type%])
18
19 ext wr Salons:SalonStore
20
21 pre
22
23 post
24
25 end_method;
26 end_class;
27 [%}%]
28 [%}%]

Listing 6.6: Sample .egl that generates a simple SOFL class signature

technique discussed here enriches our proposed approach by encouraging synchronization between a model

and its equivalent SOFL specifications. This enables any structural change made on a model be reflected

on its equivalent SOFL representation via an automated process without the need of a specialized tool

to achieve the same. We hope our proposed approach will inspire related works focusing on generating

formal specifications that conforms to the grammar of an underlying system model. In the next chapter, we

shall discuss about specification testing, a formal engineering methodology for testing the validity of SOFL

specification generated via our proposed approach that represents a given RESTful API.
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1 class Salon;
2
3 type
4 salon_name : String;
5
6 var
7 SalonStore: seq of salon_name;
8
9 method Init()

10
11 end_method;
12
13 method CreateSalon(salon_name: String)
14
15 ext wr Salons:SalonStore
16
17 pre
18
19 post
20
21 end_method;
22 end_class;

Listing 6.7: Generated SOFL class signature
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Formal Specification Testing

7.1 Introduction

Our proposed approach yields final formal API specifications expressed as a set of system modules encapsu-

lating the functions, data resources and constraints. In particular, the API’s request methods are specified

as SOFL processes. The input and output data structures of these processes are formally defined while the

pre- and post-conditions maybe expressed in formal or informal language.

7.2 Formal Specification Testing Technique

To verify whether the interweaved functional and security requirements implement all expected functions

correctly and satisfy the desired security constraints, we can optionally perform specification testing to

verify whether the specifications reflect the user requirements. Given a process P ≡ (˜Ppre ∧ C1 ∧D1)∨ . . .∨

(˜Ppre ∧ Cn ∧Dn) where n ≥ 1, if we define a test set T , then T is said to satisfy the scenario-coverage of

P if and only if ∀i∈{1,...,n}∃t∈T · Ppre (t) ∧ Ci(t). We interpret this as: A test set T satisfies the scenario

coverage for the process P if and only if for any functional scenario, there exists a test case in T such that

it satisfies the conjunction of the pre-condition ˜Ppre and the guard condition Ci. The test set T ensures

that every functional scenario with its associated security constraint is covered appropriately. To check for

conformance of a process P specifications relative to user requirements of an API service operation o, we

generate a test case t for each functional scenario fi ≡ ˜Ppre ∧ Ci ∧ Di using concrete input values and

analyze the test results in order to determine whether violations of security constraints are detected. If r

is the result of an API service operation o indicated by user specification using a test case t, and r′ is the

animation [86](explained shortly) result of a process specification P using a test case t, if r′ of the process

P matches r, then we can confirm that process P property of operation o represents the users requirements

and its associated constraints.

Implicit SOFL specifications do not indicate algorithms for implementations. However, they are expressed

with predicate expressions involving pre and post conditions for a process and can be evaluated if all variables

involved are substituted with concrete values of their types with results of such evaluations being truth

values true or false [15]. For our specification testing, we further apply process animation technique to

obtain the set of concrete values of output variables for each functional scenario. An analysis of a test

71
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1 module Salon_API;
2 ...
3 token = string;
4 headers = composed of
5
6 SalonData = composed of
7 id = string
8 owner = SalonUser
9 business_name = string

10 business_type = string
11 business_description = string
12 business_phone_number = string
13 business_email = string
14 business_address = AddressData
15 price_range = string
16 created = Timestamp
17 end;
18 SalonTable = seq of SalonData;
19 var
20 salons_table: SalonTable
21
22 inv
23 forall[i,j: inds(salons_table)] | i <> j
24 => salons_table(i).id <> salons_table(j).id;
25
26 process AddSalon(validtoken:token, access_token:token, salon: SalonData)
27 response_message: string
28 ext wr salons_table
29 /* Pre condition: id of new salon must be unique */
30 pre not exists[i:inds(salon_table)] | salons_table(i).id = salon.id
31 post access_token = validtoken

32 and salons_table = conc(~salons_table, [salon])
33 and response_message = "HTTP 200"

34 or salons_table = ~salons_table and elems(access_token) = {}
35 and access_token <> validtoken
36 and response_message = "HTTP 401"

37 or salons_table = ~salons_table and access_token = Nil
38 and access_token <> validtoken
39 and response_message = "HTTP 401"
40
41 end_process;
42 ...

Listing 7.1: SOFL formal specification for RESTful API AddSalon

results is done by comparing evaluation results with the analysis criteria. The analysis criteria is a predicate

expression representing the properties to be verified. If the evaluation results are consistent with the predicate

expression, the analysis show consistency between the process specification and its associated requirement.

We generate the test cases for both input and output variables based on the user requirements.

7.3 Running Example

A simple running example can be used to demonstrate how we conduct specification testing to test if the

specifications meet its critical requirements and also provides the desired functionality. In our case study,

a RESTful API request operation AddSalon for creating a salon object needs to be checked on whether it

satisfies its interweaved security requirement that requires an access token i.e. guard condition to be provided

for a successful authorization for creation of a salon object. The required function on this operation is formally

given as indicated in Listing 7.1. The process AddSalon takes a validtoken, an access token and salon as
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input variables and returns an appropriate HTTP response message as an output variable. The validtoken

is a string constant used to verify the validity of the provided access token by returning a boolean value. If

we examine the pre-post conditions of the process AddSalon, we get three functional scenarios as follows:

(1) access token=validtoken and salons table = conc(˜salons table, [salon]) and response message =

”HTTP 200”

(2) access token <> validtoken and elems(access token) = {} and salons table = ˜salons table and re-

sponse message = ”HTTP 401”

(3) access token <> validtoken and access token = Nil and salons table = ˜salons table and re-

sponse message = ”HTTP 401”

We can generate test data from each functional scenario through specification animation as earlier de-

scribed. Table 7.1 shows sample test cases covering the three functional scenarios and their corresponding

results. The test cases generated are usually based on test targets which are predicate expressions, such as the

pre and post conditions of a process. To cover for functional scenario (1), we provided a test case (validtoken,

”xvfKjT”, salon) for the required input variables validtoken, access token and salon object respectively. Af-

ter executing the test case on a process specification AddSalon, the output value of variable response message

is equal to the expected output value inferred from the defining condition response message = ”HTTP 200”.

For functional scenario (2), we run the test case (validtoken, ” ”, salon) and the value of the output variable

response message corresponds to the expected results. Running the test case (validtoken, Nil, salon) for

functional scenario (3) also yields a value for the output variable that corresponds to the expected results

as per interpretation of the user requirements. Therefore, we can determine that the process specification

AddSalon does satisfy its critical requirements and as per its user requirements. Since our focus is on the

relationship between input and output variables, and security concern rather than function, to simplify our

presentation, the current test does not inspect data stores. For example, if empty access token is given to

AddSalon, then salon datastore should be untouched. In addition, the validtoken which could be provided

by a third party service such as an authenticating service, is assumed to be always valid. However, these

specifications are not explicitly captured in the test. We could incorporate data stores by extending our test

cases. It is also worth noting that when testing for conformance of a process specification to its associated

service operation, we only need to observe the execution results of the process by providing concrete input

values to all of its functional scenarios analyzing their defining conditions relative to user requirements.
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Functional Scenario Test Case Execution Result Expected Result

access token = validto-
ken and salons table =
conc(˜salons table, salon)
and response message =
”HTTP 200”

(validtoken,
”xvfKJgT”, sa-
lon )

”HTTP 200” ”HTTP 200”

access token <>
validtoken and el-
ems(access token) =
{} and salons table
= ˜salons table and re-
sponse message = ”HTTP
401”

(validtoken, ” ”, sa-
lon )

”HTTP 401” ”HTTP 401”

access token <> valid-
token and access token
= Nil and salons table
= ˜salons table and re-
sponse message = ”HTTP
401”

(validtoken, Nil, sa-
lon )

”HTTP 401” ”HTTP 401”

Table 7.1: Testing RESTful service operation AddSalon.

7.4 Summary

In this chapter, we have discussed the techniques for Specification Based Testing of RESTful web APIs

SOFL specifications generated using our proposed approach. Specifically, the technique for testing stateless

RESTful API endpoints expressed as SOFL processes are described. The construction of the functional

scenarios for each API endpoint is illustrated. In the next chapter, we shall discuss in details a case study

we conducted to demonstrate the practicability of utilizing our proposed approach on real projects.
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Case Study and Experiments

In this chapter, we present the case study and experiments, and discuss some of the challenges we uncovered.

The objective of the case study was to evaluate the effectiveness of our proposed framework in designing a

security aware RESTful web API with the goal of achieving the interweaving of functional and their related

security requirements.

8.1 Case Study Set Up and Experiments

To conduct our case study, we needed to set up the necessary software environment for Salon Booking System

and its RESTful web APIs as well as supporting tools. The following sections describe the environment, the

set up tools as well as a detailed description of the case study implementation.

8.1.1 Set up Environment and Software Tools for the Case Study

The specific software environment and tools are listed in Table 8.1 Django RESTframework is a python

Software/Environment Main Function

Django [87] v.2.2 Salon Booking System Development

Django RESTframework [88] Salon Booking REST API interfaces development

Python 3.5 [89] Environment for running Django and Django RESTframework

Postgre SQL [90] v.13.0 Database for implementing functions of the Salon Booking system

Drawio [91] Tool for drawing domain models

Eclipse Epsilon v.2.4 [92] A set of tools for creating Ecore metamodels, models that conform
to an Ecore metamodel and models to text transformation

JAVA JDK v.1.8.0 181 [93] Environment for running the Epsilon tool

ADTool [94] Attack Defense Tree tool for modelling and analysing attack de-
fense scenarios represented by attack defense trees and attack de-
fense terms

Table 8.1: Case Study Software Tools and Environment

library providing the necessary built in functionalities for developing APIs for any Django project. The

Epsilon tool offers a wide range of tools for automating model management activities such as code generation

and model management languages for; model to text transformation, model to model transformation and

model validation all which extend the same core language. The Epsilon languages are abstracted from the
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specifics of individual modelling technologies by a model connectivity layer which allows them to query and

modify models that conform to different technologies in a uniform way. More details about the Epsilon

tool can be accessed from here [95]. Drawio tool is adopted for visual construction of the domain models

of the Salon Booking System. We use the ADTool for our threat modelling activities to model and analyze

attack defense scenarios on our Salon Booking System APIs. These threat modelling activity had an end

goal of generating some security requirements that were to be inter-weaved with their related functional

requirements. More details about ADTool can be got from its project page [94].

8.2 The Case Study and Experiments of the Proposed Approach

To evaluate the effectiveness of our proposed approach, we applied our methodology to an empirical case

study of a service based on an Online Salon Booking System (OSBS). We first created RAML specifications

that defined our OSBS service. The specifications formed a foundation from which we built a domain model

representing our OSBS.

API EndPoint EndPoint Methods

/salons GET, POST

/salons/salon id GET, POST, DELETE

/salons/salon-services-categories GET, POST, DELETE

/salons/salon-services-categories/category id GET, PATCH, DELETE

/salons/salon-services GET, POST

/salons/salon-services/service id GET, PATCH, DELETE

/salons/customers GET, POST

/salons/customers/salon id/customer id GET, PATCH, DELETE

/salons/bookings GET, POST

/salons/bookings/salon id/booking id GET, POST, DELETE

/salons/stylists GET, POST

/salons/stylists/salon id/stylist id GET, POST, PATCH, DELETE

Table 8.2: Case Study API EndPoints

A total of 32 services covering the potential functions that may be used by the salon booking system

were developed. Table 8.3 give the functional aspects covered by the services. The column Salon API

EndPoints lists the prepared API endpoints that may be used by the Salon Booking System. The column

Numbers summarizes the numbers of the different functional aspects provided by the case study API. We then

modeled our domain entities which were salons, stylists, services and customers as PrimaryResourceTypes.
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API Functions Salon API Endpoints Numbers

Top level API functions ViewSalons, AddSalons 2

Single salon operations ViewSalon, CreateSalon, DeleteSalon 3

Salon service categories ListSalonCategories, CreateSalonCate-
gory, DeleteCategories

3

Salon single category actions ViewSalonCategory, UpdateSalonCate-
gory, DeleteSalonCategory

3

Salon services actions ListServices, AddServices 2

Salon single service actions ViewSalonService, UpdateSalonSer-
vice, DeleteSalonService

3

Salon customers operations ViewCustomers, AddCustomers 2

Salon customer operations ViewSalonCustomer, UpdateSalonCus-
tomer, DeleteSalonCustomer

3

Salon bookings operations ViewBookings, AddBookings 2

Individual salon bookings opera-
tions

ViewSingleBooking, AddSingleBook-
ing, DeleteSingleBooking

3

Salon stylists operations ViewStylists, AddStylists 2

Individual salon stylists opera-
tions

ViewSingleStylist, CreateStylist, Up-
dateStylist, DeleteStylist

3

Table 8.3: Case Study API Functional Aspects
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Every salon, service, stylist, and customer has a name and relevant Attributes. We defined the attributes of

each entity in our domain as value objects. For example, the salon entity had attributes such as salon id,

name, phone, email, and address. A customer entity had attributes such as customer id, name, phone and

bio description. Next, we iteratively conducted threat modeling activities using ADTrees on our domain

model entities. Our goal here was to identify potential vulnerabilities and attacks that could be leveraged

on our API resources and their appropriate countermeasures. We defined the countermeasures as security

requirements which we implicitly or explicitly interweave with their related functional requirement. For

example, the bio description attribute could have been assigned a string data type directly. However, upon

using ADTree to model threats on an API function that would persist a customer entity data shape into our

database, we identified that if the bio description were left to accept any string data type, it could make

its associated API endpoint vulnerable to stored XSS [96] attack. An attacker can include malicious script

as part of the bio description which would later be injected into a browser’s DOM [96] and wreak havoc,

whenever the affected customer entity data shape is retrieved by users with elevated privileges in our OSBS.

By strictly defining a valid string representation of a bio description with an invariant such as a custom

string processing function that checks for any script tags or advanced XSS payloads not written in plain text

such as base64 or binary, we can protect our API endpoint from stored XSS vulnerability.

We achieved this by moving bio description attribute out of the customer entity and created a domain

primitive value object CustomerBio. This implemented an invariant that protected our customer entity data

shape from stored XSS vulnerability and its potential future mutations. Moreover, it enforced validation

checks that could assert the validity of the bio description value object for a certain operation while at

the same time making it possible for our OSBS to perform any other specific action on it. This technique

whenever applied in our threat modeling process achieved implicit interweaving of functional and security

requirements. Some of the identified countermeasures constrained the behavior of our API end points without

the need for defining them as domain primitives. These countermeasures whenever incorporated in our

modelling process achieve the explicit interweaving of functional and security requirements. For example, to

protect our OSBS endpoints that implement PUT, PATCH, POST and DELETE MethodTypes, from Cross

Site Request Forgery attacks [97], we could provide a unique token among other required parameters for each

API request. We enforced such type of constraints later when doing behavioral modeling using SOFL. We

then created a metamodel representing our OSBS domain model by transforming our entities to EClasses,

value objects and domain primitives to EDataTypes, and entity relations to EReferences. Figure 8.1 shows

a sample generated Ecore metamodel of our OSBS even though we only showcase a few modeled entities for

brevity and simplicity purposes. Finally, we generated formalized RESTful API specification via behavioral

modeling of our designed metamodel. Here we transformed all the RESTful API methods for accessing
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Salon
Salon_id: EString
Name: EString
Email Address: EString

Customer
Customer_Id: EString
Name: EString
Phone: PhoneNumber

Stylist
Stylist_id: EString
Name: EString
Email: EString

Address
Street: EString
City: EString
Region: EString
Country: EString

0..1

PhoneNumber

Phone: EString

IsValidNumber()

Service
Service_Id: EString
Name: EString
Price: EDouble

CustomerBio

bio_description: EString

validBio()

services
0..n

customers

0..n

bookings
0..n

stylists

0..n

customer
0..n

bio_description 1..1
phone

1..1

1

Figure 8.1: Sample Ecore metamodel for OSBS
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the different ResourceTypes and Collections into SOFL processes with SOFL formal notation. A Collection

represents a set of ResourceTypes exposed as XML or JSON. Listing 8.2 shows an excerpt of the end result

of the API’s SOFL formal specifications. For example, a RESTful API UpdateAction that updates the

salon name of a single salon is transformed to a SOFL process UpdateSalon (lines 40-53), corresponding to

PUT HTTP verb. The process relies on the output of a Search process that yields a salon object. It then

takes the salon object, new salon name and a unique token as inputs, updates the salon’s object attribute

name and generates a status code that highlight success or failure of the process operation. The unique

token represents a security requirement that constrains the behavior of the UpdateSalon process as a guard

condition (line 52). SOFL offers its own type declarations therefore, the salon ResourceType (object) will

be declared as of a composite type, salon id, new salon name and unique token parameters as of a string

type and the data store declared as sequence type to represent a Collection of salon ResourceTypes. In

SOFL notation, a data store variable with a tilde sign e.g. ˜salondatastore(i) denotes the value of the data

store before it is updated by a SOFL process. Table 8.4 gives a summary of a subset of all the process

specifications of our case study, their number of functional scenarios and the test cases run for the functional

scenarios. Rows 1 - 11 include process specifications which our proposed approach injected an access control

security requirement to prevent Broken Object Level Authorization API vulnerability. A test relative to

original RAML specification fails in the case where injected security measure (like requirement of an object

level access control) is not respected, i.e., object level access control is not checked. Our generated SOFL

specification correctly rejects such case (i.e., error message is returned), while the original RAML specification

(incorrectly) dictates to accept such request, because it is not aware of such measure. A complete listing

of all the process specifications with their functional scenarios can be accessed via this 1 full case study

repository in the file SOFL/salon api sofl PFS.txt.

1https://github.com/Egalaxykenya/IEICE-journal-paper-emeka
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No. Process Specification Functional Sce-
narios

Test Cases Passed Test
Cases

1 RetrieveSalon 4 4 3

2 AddSalon 4 4 3

3 DeleteSalon 4 4 3

4 GetSalonService 4 4 3

5 DeleteSalonService 4 4 3

6 GetSalonCustomer 4 4 3

7 AddSalonCustomer 4 4 3

8 DeleteSalonCustomer 4 4 3

9 GetSalonBookings 4 4 3

10 GetSalonBooking 4 4 3

11 DeleteSalonBooking 4 4 3

12 AddSalonServiceCategory 3 3 3

13 GetSalonServiceCategories 3 3 3

14 GetSalonServiceCategory 3 3 3

15 DeleteSalonServiceCategory 3 3 3

16 GetSaloncategoryServices 3 3 3

17 CreateSalonService 3 3 3

18 RetrieveSalons 3 3 3

19 GetSalonCustomers 3 3 3

Table 8.4: Summary of case study process specifications
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Figure 8.2: Salon Booking System Domain Model
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Figure 8.3: Salon Booking System Refined Domain Model
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Figure 8.4: Salon Booking System Meta Model
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1 #% RAML 1.0
2 title: SalonService API
3 baseUri: http://localhost:8000/api/{version}
4 version: v1
5 mediaType: application/json
6
7 uses:
8 shapes: ./dataTypes/shapes.raml
9

10 resourceTypes:
11 collection: !include resourceTypes/collection.raml
12
13 securitySchemes:
14 oauth_2_0: !include securitySchemes/oauth2_0.raml
15
16 /salons:
17 type:
18 collection:
19 response-type: shapes.SalonData[]
20 request-type: shapes.NewSalonRequestData
21 get:
22 description: Get a list of Salons based on the salon name
23 queryParameters:
24 salon_name:
25 displayName: Salon Name
26 type: string
27 description: Salon’s name
28 example: "Salon Paradise"
29 required: true
30 ...
31
32 post:
33 description: Salon data created correctly for salon business
34 body: shapes.NewSalonRequestData
35 delete:
36 ...
37 /{salon_id}:
38 type: ...
39 get:
40 description: Get the salon with ‘salon_id = {salon_id}‘
41 responses:
42 200:
43 body:
44 application/json:
45 example: |
46 {
47 "data": {
48 "id": "lsVx",
49 "name": "Salon Paradise",
50 "location": "Chuo Ku,Tokyo",
51 "link":"http://localhost:8000/api/v1/salons/SalonParadise"
52 },
53 "success": true,
54 "status": 200
55 }
56 ...

Listing 8.1: Sample RAML description file
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1 module Salon_API;
2
3 class Address;
4
5 var
6 street, city, region, country: string
7
8 method Init()
9

10 post street = "" and city = "" and country = ""
11 and region = ""
12
13 end_method;
14
15 end_class;
16
17 type
18
19 SalonData = composed of
20 salon_id = string
21 name: string
22 email: string
23 address: Address
24 end;
25 SalonCollection = seq of SalonData;
26 var salon datastore: SalonCollection
27
28 inv /* salon_id uniquely identifies SalonData in salon datastore */
29 forall[i,j: inds(salon datastore)] | i <> j
30 => salon datastore(i).salon_id
31 <> salon datastore(j).salon_id;
32
33 process Search(search id: string) salon object: SalonData
34 ext rd salon datastore
35 pre exists([i: inds(salon datastore)] |
36 salon datastore(i).salon_id = search id)
37 post salon object inset elems(salon datastore) and salon object = search id
38 end_process;
39
40 process UpdateSalon(salon object: SalonData, validtoken: string,
41 salon name: string) status message: string
42 ext wr salon datastore
43 pre exists([i: inds(salon datastore])] |
44 salon datastore(i) = salon object)

45 post len(salon datastore) = len(~salon datastore)

46 and (forall[i:inds(~salon datastore)] |

47 (~salon datastore(i) = salon object
48 => salon datastore(i)

49 = modify(~salon datastore(i), name-->salon name))

50 and (~salon datastore(i) <> salon object

51 => salon datastore(i) = ~salon datastore(i)))
52 and validtoken <> "" and status message = "HTTP 204"
53 end_process;
54 end_module;

Listing 8.2: SOFL formal specification for RESTful API UpdateAction



Chapter9

Conclusion

The increasing demand for efficient, secure and interconnected systems powering complex business require-

ments have elicited great interests in both the industry and research communities. Development methods

and frameworks for designing, developing and deploying reliable and secure APIs are one of the most crucial

topics in software engineering. While the spread of APIs is driving more sophisticated applications that

enhances and amplify our own abilities, their is a flip side of increased risks as we become more dependent

on APIs for our critical system tasks. The more we use APIs, the greater their potential to be attacked.

With a focus on designing, modelling and developing APIs exposed over HTTP using RESTful approach,

we propose a model driven formal engineering approach to the design and development of security aware

RESTful web APIs in this dissertation. Specifically, the model driven formal engineering approach supports

the formal specification construction using the SOFL specifications language and the formal specification

based testing approach via a rigorous testing procedure.

We conducted an empirical case study by developing a Salon booking system to validate the feasibility

of our proposed model driven approach to the design of security aware RESTful web APIs as well as offered

a mechanism for generating SOFL specifications from a domain model via model to text transformation.

Specifically, our research and its novelty are summarized as follows:

9.1 Model Driven Formal Engineering Approach for Security

Aware RESTful Web APIs

We have presented a novel model driven approach for design and development of security aware RESTful

web APIs by providing mechanisms for interweaving both functional and security requirements. It tackles

the most fundamental challenge in the area of RESTful API design that is how to interweave security

requirements and functional requirements in the modelling process of building secure, robust and reliable

RESTful APIs. It also saves cost and efforts by leveraging on existing methodologies, techniques and support

tools in API design and development. The main contribution of our proposed model driven formal engineering

approach for design and development of secure RESTful web APIs is a systematic framework that offers

modelling through a four step approach covering both structural and behavioural modelling of APIs with a

focus on security. Our proposed approach suggests that security requirements can be incorporated early into
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the API design process during the domain modelling stage. That is, security requirements are constructed

as domain primitives in our domain model during the threat modelling process using attack defense trees

threat modelling technique.

The satisfiability of these API security requirements with respect to their related functional requirements

are checked via the specification testing. Compared with the related approaches (see Chapter 4) to security

aware requirements specification techniques, our proposed model driven formal engineering approach offers

a four step technique for constructing security aware formal RESTful API specification from scratch. Specif-

ically, our techniques combines the principles of domain primitives in Domain Driven Design, attack defense

trees in threat modelling, SOFL formal engineering techniques and model to text transformations. The

proposed framework can be applied for interweaving security and functional requirements in the design of

RESTful web APIs allowing for security requirements to be given an equal focus as functional requirements

during the API design and development process thus encouraging the production of secure APIs.

9.2 API formal Specification generation via Model to Text Trans-

formation

To facilitate practical generation of SOFL formal specifications of RESTful APIs, we have proposed a tech-

nique for generating SOFL formal specifications from domain models using Model to Text transformation and

Epsilon generation language. Specifically, we create a meta model that our source domain model corresponds

to then using the Epsilon Generation Language write rules that generate SOFL module specification minus

the pre- and post conditions declarations in the module processes. The pre- and post condition processes

are manually filled to generate the final formal specifications.

The most distinguished merit of the model to text transformation is the utilization of the API’s domain

model as well as a metamodel that the domain model corresponds to as the foundation for generation of

formal SOFL specifications that is a representation of API’s functional and security requirements, and the

preservation of statically generated text which encourages synchronization on changes on the source model

and the generated SOFL specifications.
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Future Work

In this chapter, we focus on the discussion of our future research plans.

10.1 Enhancement of the Proposed Approach

Our proposed model driven formal engineering technique offers a 6 step approach, that aims at providing a

secure by design approach to API design by encouraging the interweaving of both functional and security

requirements. The enhancement of the techniques especially on the automated generation of domain models

form the input source RAML document as well as automated generation of pre-/post conditions in the

generated SOFL formal specifications as a result of the model to text transformations are considered areas

of future research.

10.2 Enhancement of the Specification Testing

One major concern of specification testing is the efficiency of generating functional scenario sequences. Based

on this approach, all possible functional scenarios need to be generated. As a result, you may have instances

where the number of functional scenarios is very large is the involved API process consists of many functional

scenarios. The large number of functional scenario sequences may pose a difficulty in checking the infeasible

functional scenario sequences. A formal technique on how to appropriately construct the functional scenarios

sequences is an interesting area in our future research work.

10.3 Development of a Supporting Tool for Domain Models

Construction and Importation of security constructs from

ADTrees

A supporting tool to supplement our proposed approach is critical as some activities such as creation of

domain models from API graphs and injection of security attributes from ADtree analysis may currently

require a considerable amount of human effort and time. Most importantly, automating steps that involves

manual user interaction such as the construction of domain models from the generated API resource graph in
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Figure 10.1: Overall Framework with Sections for future work

step 2, which is currently semi-automatic will considerably reduce the human effort required in these steps.

Our future work seeks to automate this by building an integrated tool that could leverage on consuming

inputs from existing tools such as ADTree tool for construction of ADtrees, Epsilon tool for Model to Text

transformation and RAML parser. Figure 10.1 showcases the integrated framework that seek to achieve

automation of steps currently done manually using our proposed approach. Solid green arrows indicate

processes which are currently achieved manually. We plan to extend our currently developed API resource

graph generator script to provide an XML version of resource graph generator which can be consumed by

a domain model constructor. Similary, we plan to make the domain model constructor consume an XML

file generated by the current ADTree tool and filter out defense mechanisms which are injected into the

target domain model as security constructs. Furthermore, we plan to automate the construction of an Ecore

metamodel by making our domain model constructor yield an emfatic textual output of a metamodel that

a RESTful API domain model corresponds to.

The development of this supporting tool will go a long way in providing a powerful integrated environment

to support more intelligent, effective and efficient development of secure RESTful web APIs. We hope our

research work of a model driven formal engineering approach to secure design of RESTful web APIs will be

more mature for large-scale and complex API design, development and deployment through our continuous

research efforts in the near future.
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November 5, 2019, doi: 10.1007/978-3-030-41418-4 2. Co-located with The 21st International Confer-

ence on Formal Engineering Methods ICFEM 2019 Publisher: Springer International Publishing Part

of the Lecture Notes in Computer Science book series (LNCS, volume 12028, pages 13-28)
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ities in SOFL formal specifications”, in 2018 International Conference on Electronics, Information,
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COM.2018.8330613. Conference Paper. Publisher: IEEE
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Technical Workshops (First Author)

• Busalire Onesmus Emeka, Soichiro. Hidaka, Shaoying. Liu, “Semi-automatic trans-formation of ecore

metamodels to sofl based specifications,” PSJ 211th Meeting of Special Interest Group on Software

Engineering, IPSJ Technical Reports, Vol. 022-SE-211, No.9, Jul. 2022

A.2 Case Study SOFL Specifications

1

2 /* SOFL Implicit Formal Specifications for Salon API project */

3 /* Begin class declarations */

4

5 class SalonUser;

6 type

7 Year = string;

8 Month = string;

9 Day = string;

10 DOB = Year * Month * Day;

11 UserRoles = {<SALONOWNER>, <SALONCUSTOMER>} /* Set enumerating user types in the context of the salon booking system */

12 User_Selection = {<owner>, <customer>}

13

14

15 var

16 id: string

17 email: string

18 password: string

19 date_of_birth: DOB

20 nationality: string

21 city: string

22 role: UserRoles

23

24

25 inv

26

27 len(id) == 36; /* define ids as of standard UUID string type with length of 36 characters */

28

29 method Init()

30 post id = " " and email = " " and password = " " and date_of_birth = nil and nationality = " " and city = " " and role = {}

31

32 end_method;

33

34 method Set_SalonUserAttributes(id: string, email: string, password: string date_of_birth: DOB, nationality: string, city: string)

35 post id=id and email=email and password=password and date_of_birth=date_of_birth and nationality=nationality and city=city

36

37 end_method;

38
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39 method Set_SalonUserRole(role_selection: User_Selection)

40 explicit

41 begin

42 post case role_selection of

43 <owner>-->this.role := <SALONOWNER>

44 <customer>-->this.role := <SALONCUSTOMER>

45 end_case

46 end

47 end_method

48

49 end_class;

50

51 class BioDescription;

52

53 var

54 bio_description: string

55 invalid_chars: string

56 inv

57 0 < len(bio_description) <= 100

58

59 method Init()

60 post bio_description = Nil

61 invalid_chars = [’<’,’>’, ’;’, ’&’, ’#’, ’=’,’/’, ’\’, ’%’]

62 end_method;

63

64 method Set_Bio_Description(bio_description: string)

65 post bio_description = bio_description

66 end_method;

67

68 method validBio(invalid_chars: string, bio_description: string) is_valid: boolean

69 /* This method tests for existence of invalid characters in the provided bio_description string */

70 pre elems(invalid_chars) <> {}

71 post is_valid = true and inter(elems(invalid_chars), elems(bio_description)) = {} or

72 is_valid = false and inter(elems(invalid_chars), elems(bio_descriotion)) <> {}

73 end_method;

74

75 end_class;

76

77 class Price;

78

79 var

80 service_price: nat0

81

82 inv

83 0 < service_price <= 1000000

84 method Init()

85 post service_price = 0

86 end_method;

87



APPENDIX 94

88 method validPrice(price: nat0) service_price: nat0

89 post service_price = price

90 and service_price > 0 and service_price <= 100000

91 end_method;

92

93 end_class;

94

95 /* End class declarations */

96

97

98 module Salon_API;

99

100 type

101 Year = string;

102 Month = string;

103 Day = string;

104 DOB = Year * Month * Day;

105

106 hour = string;

107 minutes = string;

108 token = string;

109 User_Selection = {<owner>, <customer>}

110

111 Timestamp = Year * Month * Day * hour * minutes;

112

113 AddressData = composed of

114 address_country = string

115 address_city = string

116 address_region = string

117 postal_code = string

118 address_street = string

119 latitude = nat0

120 longitude = nat0

121 end;

122

123

124 SalonData = composed of

125 id = string

126 owner = SalonUser

127 business_name = string

128 business_type = string

129 business_description = string

130 business_phone_number = string

131 business_email = string

132 business_address = AddressData

133 price_range = string

134 created = Timestamp

135 end;

136
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137 SalonCustomerProfile = composed of

138 id = string

139 user = SalonUser

140 name = string

141 phone_number = string

142 bio_description = BioDescription

143 end;

144

145

146 SalonServiceCategoryData = composed of

147 id = nat0

148 owner = SalonUser

149 category_name = string

150 created = Timestamp

151 end;

152

153 SalonServiceData = composed of

154 id = string

155 owner = SalonUser

156 service_category = SalonServiceCategoryData

157 linked_business = SalonData

158 service_price = Price

159 service_duration = string

160 service_name = string

161 end;

162

163 SalonServiceCancellationReasonData = composed of

164 id = string

165 owner = SalonUser

166 cancellation_reason = string

167 added_date = Timestamp

168 end;

169

170 SalonBookingData = composed of

171 id = string

172 salon_customer = SalonUser

173 booked_in_by = SalonUser

174 stylist = SalonUser

175 booked_service = SalonServiceData

176 booking_creation_date: Timestamp

177 service_date: Timestamp

178 service_started = bool

179 service_completed = bool

180 service_cancelled = bool

181 cancellation_reason = SalonServiceCancellationReasonData

182 negotiate_service_price = bool

183 negotiated_price = Price

184 end;

185
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186 SalonOperationDaysData = composed of

187 id = string

188 owner = SalonUser

189 linked_business = SalonData

190 day_of_week = string

191 start_time = Timestamp

192 end_time = Timestamp

193 end;

194

195 SalonStylistData = composed of

196 id = string

197 owner = SalonUser

198 first_name = string

199 last_name = string

200 phone_number = string

201 email = string

202 salon_service = SalonServiceData

203 salon_branch = SalonData

204 working_days = SalonOperationDaysData

205 date_joined = Timestamp

206 end;

207

208 SalonTable = map SalonData to SalonUser;

209 SalonServicesCategoriesTable = seq of SalonServiceCategoryData;

210 SalonServiceTable = map SalonServiceData to SalonServiceCategoryData;

211 MapSalonServiceToSalon = map SalonServiceData to SalonData;

212 MapSalonServiceCategoryToSalon = map SalonServiceCategoryData to SalonData

213 MapSalonCustomerToSalon = map SalonUser to SalonData;

214 MapSalonBookingsToCustomer = map SalonBookingData to SalonUser;

215 MapSalonCustomerProfileToSalonUser = map SalonCustomerProfile to SalonUser;

216

217 var

218

219 /* External data stores for salon records */

220 #salons_table: SalonTable

221 #salon_services: SalonServiceTable

222 #single_salon_services: MapSalonServiceToSalon

223 #salon_services_categories: MapSalonServiceCategoryToSalon

224 #service_categories: SalonServiceCategoriesTable

225 #salon_customers_table: MapSalonCustomerToSalon

226 #salon_bookings_table: MapSalonBookingsToCustomer

227 #salon_stylist_table: map SalonStylistData to SalonData;

228 #salon_users_table: seq of SalonUsers;

229 #salon_customer_profile: MapSalonCustomerProfileToSalonUser

230

231

232 inv

233 /* Each salon category is unique

234 Each user is unique and has a unique id
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235 */

236 forall[i,j: inds(salon_services_categories)] | i <> j => salon_services_categories(i).id <> salon_services_categories(j).id;

237 forall [i,j: inds(salon_users_table)] | i <> j => salon_users_table(i).id <> salon_users_table(j).id

238

239

240

241 process CreateSalonUser(validtoken: token, access_token: token, id: string, email: string, date_of_birth: DOB, password: string,

242 nationality: string, city: string, role_selection: User_Selection ) salonuser: SalonUser, response_status: string | error_message: string

243 ext wr salon_users_table

244 pre not exists[i: inset salon_users_table] | i.id = id

245 explicit

246 begin

247 if access_token = validtoken and access_token <> nil and elems(access_token) <> {}

248 then

249 salonuser := new SalonUser

250 salonuser.SetSalonUserAttributes(id, email, password, date_of_birth, nationality, city)

251 salonuser.Set_SalonUserRole(role_selection)

252 salon_users_table := conc(~salon_users_table, [salonuser])

253 response_status := "Http 200 Ok"

254 else

255 error_message := "Http 401, Permission Denied"

256 end

257 end_process;

258

259 process CreateSalonCustomerProfile(validtoken: token, access_token: token, id: string, user: SalonUser, name: string, phone_number: string,

260 bio_description: BioDescription, bio: string) customer_profile: SalonCustomerProfile, error_message: string

261 ext rd salon_users_table

262 ext wr salon_customer_profile

263 pre not exists[i: inset dom(salon_customer_profile)] | i.id = id

264

265 explicit

266 begin

267 if access_token = validtoken and access_token <> nil and elems(access_token) <> {}

268 then

269 bio_description := new BioDescription

270 validbio = bio_description.validBio(bio)

271 if validbio = true and user inset(elems(salon_users_table))

272 then bio_description.Set_Bio_Description(bio)

273 customer_profile = mk_SalonCustomerProfile(id, user, name, phone_number, bio_description)

274 salon_customer_profile = override(~salon_customer_profile, {customer_profile-->user})

275 else error_message := "Bio description contains invalid characters";

276 else error_message := "Http 402, Permission Denied".

277

278 end

279

280 end_process

281

282 process RetrieveSalon(validtoken: token, access_token: token, salon_id: string, salonuser: SalonUser)

283 salon: SalonData, response_status: string | error_message: string
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284 /* API resource path: /salons/{salon_id} */

285

286 ext rd salons_table

287 ext rd salon_users_table

288 pre exists[i: inset dom(salons_table)] | i.id = salon_id

289 and salons_table(i) = salonuser

290 and salonuser inset(elems(salon_users_table))

291

292 post exists![i: inset dom(salons_table)] | i.id = salon_id and i = salon and salons_table(i) = salonuser and salonuser.role = <SALONOWNER>

293 and access_token = validtoken

294 and len(access_token) <> 0

295 and access_token <> nil

296 and salonuser inset(elems(salon_users_table))

297 and salons_table(salon) = salonuser

298 and salon.id = salon_id

299 and response_status = "Http 200 Ok"

300 or

301 error_message = "Http 401, Permission Denied"

302 and access_token <> validtoken

303 and len(access_token) = 0

304 and access_token = nil

305 and exists![i: inset dom(salons_table)] | i.id = salon_id | salons_table(i) = salonuser and salonuser.role = <SALONOWNER>

306 and salonuser inset(elems(salon_users_table))

307

308 end_process;

309

310 process RetrieveSalons(validtoken: token, access_token: token, resource_path: string) salons: SalonTable, response_status: string | error_message: string

311 /* API resource path: /salons */

312 ext rd salons_table

313 pre elem(resource_path) <> {}

314 post salons = salons_table

315 and access_token = validtoken

316 and elems(access_token) <> {}

317 and access_token <> nil

318 and elems(resource_path) <> {}

319 and response_status ="Http 200 Ok"

320 or

321 error_message = "Http 401, Permission Denied"

322 and access_token <> validtoken

323 and elems(access_token) = {}

324 and access_token = nil

325 and elems(resource_path) <> {}

326

327 end_process;

328

329 process AddSalon(validtoken: token, access_token:token, salon: SalonData, owner: SalonUser) added_salon: SalonData,

330 response_status: string | error_message: string

331 /* API resource path: /salons */

332 ext wr salons_table
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333 ext rd salon_users_table

334

335 pre not exists[i: inset dom(salons_table) ] | i = salon | salons_table(i) = owner

336 and owner inset elems(salon_users_table)

337

338 post exists[i: inset dom(salons_table)] | i = added_salon and salons_table(i) = owner and owner.role = <SALONOWNER>

339 => access_token = validtoken

340 and len(access_token) <> 0

341 and access_token <> nil

342 and salons_table = override(~salons_table, {salon-->owner})

343 and added_salon inset dom(salons_table)

344 and salons_table(added_salon) = owner

345 and salons_table(added_salon).role = <SALONOWNER>

346 and salons_table <> ~salons_table

347 and response_status = "Http 200 Ok"

348 or

349 error_message = "Http 401, Permission Denied"

350 and access_token <> validtoken

351 and len(access_token) = 0

352 and access_token = nil

353 and not exists[i: inset dom(salons_table) ] | i = salon | salons_table(i) = owner and owner.role = <SALONOWNER>

354 and owner inset elems(salon_users_table)

355

356 end_process;

357

358 process DeleteSalon(validtoken: token, access_token:token, salon_id=string, owner: SalonUser) deleted_salon: SalonData,

359 response_status: string | error_message: string

360 /* API resource path: /salons/{salon_id} */

361

362 ext wr salons_table

363 ext rd salon_users_table

364

365 pre exists![i: inset dom(salons_table)] | i.id = salon_id and salons_table(i) = owner and salons_table(i).role = <SALONOWNER>

366 post ~salons_table = override(salons_table, {deleted_salon-->owner})

367 => access_token = validtoken,

368 and len(access_token) <> 0

369 and access_token <> nil

370 and exists![i: inset dom(~salons_table)] | i.id = salon_id and ~salons_table(i) = owner and owner.role = <SALONOWNER>

371 and deleted_salon.owner = owner

372 and owner inset elems(salon_users_table)

373 and owner.role = <SALONOWNER>

374 and deleted_salon.id = salon_id

375 and salons_table <> ~salon_table

376 and response_status = "Http 204"

377 or

378 error_message = "Http 401, Permission Denied"

379 and access_token <> validtoken

380 and len(access_token) = 0

381 and access_token = nil
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382 and exists![i: inset dom(salons_table)] | i.id = salon_id | salons_table(i) = owner and owner.role = <SALONOWNER>

383 and owner inset elems(salon_users_table)

384 and owner.role = <SALONOWNER>

385

386 end_process;

387

388 process AddSalonServiceCategory(validtoken: token, access_token:token, category: SalonServiceCategoryData) added_category: SalonServiceCategoryData,

389 response_status: string | error_message: string

390

391 /* API resource path: /salons/salon-services-categories */

392 ext wr salon_services_categories

393 pre not exists[i: inds(salon_services_categories)] | salon_services_categories(i).id = category.id

394 post salon_services_categories = conc(~salon_services_categories, [category])

395 => access_token = validtoken

396 and len(access_token) <> 0

397 and access_token <> nil

398 and added_category.id = category.id

399 and added_category inset elems(salon_services_categories)

400 and len(~salon_services_categories) <> len(salon_services_categories)

401 and response_status = "Http 200 Ok"

402 or

403 error_message = "Http 401, Permission Denied"

404 and access_token <> validtoken

405 and len(access_token) = 0

406 and access_token = nil

407

408

409 end_process;

410

411 process GetSalonServiceCategories(resource_path: string, salon_id: string, validtoken: token, access_token: token) categories: MapSalonServiceCategoryToSalon,

412 response_status: string | error_message: string

413 /* API resource path: /salons/{salon_id}/salon-services-categories */

414 ext rd salon_services_categories

415 pre elems(request_path) <> {}

416 post forall([x: inset dom(categories)] | subset({x}, dom(salon_services_categories)) <=> true and categories(x).id = salon_id and subset(dom(categories),

417 dom(salon_services_categories)) <=> true)

418 => access_token = validtoken

419 and len(access_token) <> 0

420 and access_token <> nil

421 and elems(resource_path) <> {}

422 and response_status = "Http 200 Ok"

423 or

424 error_message = "Http 401, Permission Denied"

425 and access_token <> validtoken

426 and len(access_token) = 0

427 and access_token = nil

428

429 end_process;

430
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431 process GetSalonServiceCategory(validtoken: token, access_token: token, salon_id: string, category_id: string)

432 service_category: SalonServiceCategoryData, response_message: string | error_message: string

433 /* API resource path: /salons/{salon_id}/salon-services-categories/{category_id} */

434

435 ext rd salon_services_categories

436 pre exists[i: inset dom(salon_services_categories)] | i.id = category_id and salon_services_categores(i).id = category_id

437 post exists[i: inset dom(salon_services_categories)] | i = service_category and i.id = category_id

438 and salon_services_categories(service_category).id = salon_id

439 => access_token = validtoken

440 and len(access_token) <> 0

441 and access_token <> nil

442 and exists![i: inset dom(salon_services_categories)] | i = service_category and i.id = category_id

443 and salon_services_categories(i).id = salon_id

444 and response_message = "Http 200 Ok"

445 or

446 error_message="Http 401, Permission Denied"

447 and access_token <> validtoken

448 and len(access_token) = 0

449 and access_token = nil

450 and exists![i: inset dom(salon_services_categories)] | i = service_category and i.id = category_id

451 and salon_services_categores(i).id = salon_id

452

453 end_process;

454

455

456 process DeleteSalonServiceCategory(validtoken: token, access_token: token, salon_id:string category_id: string) deleted_category: SalonServiceCategoryData,

457 response_status: string | error_message: string

458 /* API resource path: /salons/{salon_id}/salon-services-categories/{category_id} */

459 ext wr service_categories

460 pre exists[i: inds(service_categories)] | service_categories(i).id = category_id and service_categories(i).linked_business.id = salon_id

461 post not exists[i: inds(services_categories)] | service_categories(i).id = category_id | service_categories(i) = deleted_category

462 => access_token = validtoken

463 and len(access_token) <> 0

464 and access_token <> nil

465 and service_categories = conc(~service_categories, [deleted_category])

466 and len(service_categories) <> len(~service_categories)

467 and deleted_category.linked_business.id = salon_id

468 and response_status = "Http 204")

469 or

470 error_message = "Http 401, Permission Denied"

471 and access_token <> validtoken

472 and len(access_token) = 0

473 and access_token = nil

474 and exists![i: inds(service_categories)] | service_categories(i).id = category_id

475 and service_categories(i).linked_business.id = salon_id

476

477 end_process;

478

479 process GetSalonCategoryServices(validtoken: token, access_token: token, salon_id, category_id: string) service_list: SalonServiceTable,
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480 response_message: string | error_message: string

481 /* API resource path: /salons/{salon_id}/salon-services-categories/{category_id}/salon-services

482 Get specific salon services for a specific service category

483 */

484 ext rd salon_services

485 ext rd single_salon_services

486 pre exists![i: inset dom(salon_services)] salon_services(i).id = category_id and salon_services(i).linked_business.id = salon_id

487 post subset(dom(service_list), dom(salon_services) <=> true) and forall[x: inset dom(salon_services)] | salon_services(x).id = category_id

488 and salon_services(x).linked_business.id = salon_id

489 => access_token = validtoken

490 and len(access_token) <> 0 and access_token <> nil

491 and exists![i: inset dom(salon_services)] | salon_services(i).id = category_id

492 and exists![j: inset dom(single_salon_services)] | single_salon_services(j).id = salon_id

493 and response_message = "Http 200 Ok"

494 or

495 error_message = "Http 401, Permission Denied"

496 => access_token <> validtoken

497 and len(access_token) = 0

498 and access_token = nil

499 and exists![i: inset dom(salon_services)] | salon_services(i).id = category_id and salon_services(i).linked_business.id = salon_id

500

501 end_process;

502

503 process CreateSalonService(valdtoken: token, access_token: token, user: SalonUser, category: SalonServiceCategoryData,

504 salon: SalonData, salon_service: SalonServiceData) created_service: SalonServiceData, response_status: string | error_message

505 /*

506 Create a salon service for a specific salon

507 */

508 ext rd salons_table

509 ext rd salon_services_categories

510 ext wr salon_services

511 ext wr single_salon_services

512

513 pre not exists[i: inset dom(single_salon_services)] | i = salon_service and i.id = salon_service.id

514 post single_salon_services = override(~single_salon_services, {salon_service-->salon})

515 and single_salon_services(created_service) = salon

516 and single_salon_services <> ~single_salon_services

517 and category inset(elems(salon_services_categories))

518 and salon_services = override(salon_services, {salon_service-->category}

519 and salon_services <> ~salon_services

520 and exists[i: inset dom(single_salon_service)] | i = created_service and single_salon_service(i) = salon

521 and exists[j: inset dom(salon_service)] | salon_services(j) = category

522 and response_status = "Http 200 Ok"

523 => access_token = validtoken

524 and len(access_token) <> 0

525 and access_token <> nil

526 and salons_table(salon) = user

527 and user.role = <SALONOWNER>

528 or
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529 error_message = "Http 401, Permission Denied"

530 and access_token <> validtoken

531 and len(access_token) = 0

532 and access_token = nil

533 and salons_table(salon) = user

534 and user.role = <SALONOWNER>

535

536 end_process;

537

538 process GetSalonService(validtoken: token, access_token: token, salon_id: string, service_id: string, salonuser: SalonUser)

539 salon_service: SalonServiceData, response_status: string | error_message: string

540 /* API resource path: /salons/{salon_id}/salon-services/{service_id}

541 Get salon services for a specific salon owned by a given user

542 */

543

544 ext rd single_salon_services

545 ext rd salons_table

546

547 pre exists[i: inset dom(single_salon_services)] | i.id = service_id

548

549 post exists![i: inset dom(single_salon_services)] | single_salon_services(i).id = service_id and i.id = service_id

550 and salon_service.id = service_id

551 and response_status = "Http 200"

552 => access_token = validtoken

553 and len(access_token) <> 0

554 and access_token <> nil

555 and exists[j: inset dom(salons_table)] | j.id = salon_id and salons_table(j) = salonuser

556 and salons_table(salon) = salonuser

557 and salonuser.role = <SALONOWNER>

558 or

559 error_message = "Http 401, Permission Denied"

560 and access_token <> validtoken

561 and len(access_token) = 0

562 and access_token = nil

563 and salons_table(salon) = salonuser

564 and exists[j: inset dom(salons_table)] | j.id = salon_id and salons_table(j) = salonuser

565 and salonuser.role = <SALONOWNER>

566

567 end_process;

568

569 process DeleteSalonService(validtoken: token, access_token: token, salon_id: string, service_id: string, salonuser: SalonUser)

570 deleted_service: SalonServiceData, response_status: string | error_message: string

571

572 /* API resource path: /salons/{salon_id}/salon-services/{service_id}

573 ext rd single_salon_services

574 ext rd salons_table

575

576 pre exists[i: inset dom(single_salon_services)] | single_salon_services(i).id = salon_id

577 post not exists[i: inset dom(single_salon_services)] | i = deleted_service and single_salon_services(i).id = salon_id
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578 => access_token = validtoken

579 and len(access_token) <> 0

580 and access_token <> nil

581 and single_salon_services = override(~single_salon_services, {deleted_service-->salon})

582 and deleted_service.id = service_id

583 and exists[i: inset dom(salons_table)] | i.id = salon_id and salons_table(i) = salonuser

584 and salonuser.role = <SALONOWNER>

585 and response_message = "Http 204"

586 or

587 error_message = "Http 401, Permission Denied"

588 and access_token <> validtoken

589 and len(access_token) = 0

590 and access_token = nil

591 and exists[i: inset dom(salons_table)] | i.id = salon_id and salons_table(i) = salonuser

592 and salonuser.role = <SALONOWNER>

593 end_process;

594

595 process GetSalonCustomers(validtoken: token, access_token: token, salon_id: string) customers: MapSalonCustomerToSalon,

596 response_status: string | error_message: string

597 /* API resource path: /salons/{salon_id}/customers */

598

599 ext rd salon_customers_table

600

601 pre exists[i: inset rng(salon_customers_table)] | i.id = salon_id

602 post forall[x: inset dom(salon_customers_table)] | x inset dom(customers) and customers(x).id = salon_id and subset(dom(customers),

603 dom(salon_customers_table)) <=> true

604 => exists[i: inset rng(salon_customers_table)] | i.id = salon_id

605 and access_token = validtoken

606 and len(access_token) <> 0

607 and access_token <> nil

608 and response_status = "Http 200 Ok"

609 or

610 error_message = "Http 401, Permission Denied"

611 and access_token <> validtoken

612 and len(access_token) = 0

613 and access_token = nil

614 and exists[i: inset rng(salon_customers_table)] | i.id = salon_id

615

616 end_process;

617

618 process AddSalonCustomer(validtoken: token, access_token: token, salon: SalonData, salonuser, saloncustomer: SalonUser) added_customer: SalonUser,

619 response_status: string | error_message: string

620 /* API resource path: /salons/{salon_id}/customers */

621 ext wr salon_customers_table

622 ext rd salons_table

623 ext rd salon_users_table

624

625 pre not exists[i: inset dom(salon_customers_table)] | i = saloncustomer and i.role = <SALONCUSTOMER>

626 and exists[j: inds(salon_users_table)] | j.role = <SALONCUSTOMER>
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627 post salon_customers_table = override(~salon_customers_table, {saloncustomer-->salon}) and added_customer inset dom(salon_customers_table)

628 => access_token = validtoken

629 and len(access_token) <> 0

630 and access_token <> nil

631 and exists[i: inset dom(salon_customers_table)] | i = saloncustomer and i.role = <SALONCUSTOMER> and salon_customers_table(i) = salon

632 and salons_table(salon) = salonuser

633 and salonuser.role = <SALONOWNER>

634 and response_message = "Http 200 Ok"

635 or

636 error_message = "Http 401, Permission Denied"

637 and access_token <> validtoken

638 and len(access_token) = 0

639 and access_token = nil

640 and exists[i: inds(salon_users_table)] | salon_users_table(i) = salonuser and salon_users_table(i).role = <SALONOWNER>

641 and not exists[j: inset dom(salon_customers_table)] | j = saloncustomer and j.role = <SALONCUSTOMER>

642

643

644 end_process;

645

646 process GetSalonCustomer(validtoken: token, access_token: token, salon_id: string, customer_id: string) saloncustomer: SalonUser,

647 response_status: string | error_message: string

648 /* API resource path: /salons/{salon_id}/customers/{customer_id} */

649 ext rd salon_customers_table

650

651 post exists![i: inset dom(salon_customers_table)] | i = saloncustomer | salon_customers_table(i).id = salon_id

652 => access_token = validtoken

653 and len(access_token) <> 0

654 and access_token <> nil

655 and saloncustomer inset dom(salon_customers_table)

656 and saloncustomer.id = customer_id

657 and saloncustomer.role = <SALONCUSTOMER>

658 and response_status = "Http 200 Ok"

659 or

660 error_message = "Http 401, Permission Denied"

661 and access_token <> validtoken

662 and len(access_token) = 0

663 and access_token = nil

664 and exists![i: inset dom(salon_customers_table)] | i.id = customer_id and saloncustomer.id = customer_id

665 and salon_customers_table(i).id = salon_id

666

667 end_process;

668

669 process DeleteSalonCustomer(validtoken: token, access_token: token, salon: SalonData, customer_id: string) deleted_customer: SalonUser,

670 response_status: string | error_message: string

671

672 ext wr salon_customers_table

673

674 pre exists[i: inset dom(salon_customers_table)] | i.id = customer_id

675 post salon_customers_table = override(~salon_customers_table, {deleted_customer-->salon })
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676 => access_token = validtoken

677 and len(access_token) <> 0

678 and access_token <> nil

679 and exists[i: inset dom(~salon_customers_table)] | i.id = customer_id and salon_customers_table(i) = salon

680 and deleted_customer.id = customer_id

681 and salon_customers_table(deleted_customer) = salon

682 and deleted_customer.role = <SALONCUSTOMER>

683 and response_status = "Http 204"

684 or

685 error_message ="Http 401, Permission Denied"

686 and access_token <> validtoken

687 and len(access_token) = 0

688 and access_token = nil

689 and exists[i: inset dom(~salon_customers_table)] | i.id = customer_id and salon_customers_table(i) = salon

690

691 end_process;

692

693

694 process GetSalonBookings(validtoken: token, access_token: token, user: SalonUser) bookings: MapSalonBookingsToCustomer,

695 response_status: string | error_message: string

696 /* get salon bookings for a salon customer */

697

698 ext rd salon_bookings_table

699

700 pre exists[i: inset dom(salon_bookings_table)] | salon_bookings_table(i) = user

701 post forall [x: inset dom(bookings)] | x inset dom(salon_bookings_table) and bookings(x) = user and subset(dom(bookings), dom(salon_bookings_table)) <=> true

702 => access_token = validtoken

703 and len(access_token) <> 0

704 and access_token <> nil

705 exists[i: inset dom(salon_bookings_table)] | salon_bookings_table(i) = user

706 and user.role = <SALONCUSTOMER>

707 and response_status = "Http 200 Ok"

708 or

709 error_message = "Http 401, Permission Denied"

710 and access_token <> validtoken

711 and len(access_token) = 0

712 and access_token = nil

713 and user.role = <SALONCUSTOMER>

714

715 end_process;

716

717 process GetSalonBooking(validtoken: token, access_token: token, user: SalonUser, booking_id: string) booking: SalonBookingData,

718 response_status: string | error_message:string

719 /* Get single booking for a customer */

720 ext rd salon_bookings_table

721

722 pre exists[i: inset dom(salon_bookings_table)] | i.id = booking_id and salon_bookings_table(i) = user

723 post exists![i: inset dom(salon_bookings_table)] | i.id = booking_id and booking.id = booking_id | salon_bookings_table(i) = user

724 => access_token = validtoken
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725 and len(access_token) <> 0

726 and access_token <> nil

727 and booking inset dom(salon_bookings_table)

728 and salon_bookings_table(booking) = user

729 and salon_bookings_table(boooking).role = <SALONCUSTOMER>

730 and response_status = "Http 200 Ok"

731 or

732 error_message = "Http 401, Permission Denied"

733 and access_token <> validtoken

734 and len(access_token) = 0

735 and access_token = nil

736 and exists![i: inset dom(salon_bookings_table)] | i.id = booking_id | salon_bookings_table(i) = user and user.role = <SALONCUSTOMER>

737

738 end_process;

739

740 process DeleteSalonBooking(validtoken: token, access_token: token, user: SalonUser, booking_id: string) deleted_booking: SalonBookingData,

741 response_status: string | error_message: string

742 /* API resource path: /salons/{user_id}/bookings/{booking_id}

743 Delete booking of a customer */

744

745 ext wr salon_bookings_table

746

747 pre exists[i: inset dom(salon_bookings_table)] | i.id = booking_id | salon_bookings_table(i) = user

748 post salon_bookings_table = override(~salon_bookings_table, {deleted_booking-->user}) and user.role = <SALONOWNER>

749 => access_token = validtoken

750 and len(access_token) <> 0

751 and access_token <> nil

752 and exists![i: inset dom(salon_bookings_table)] | i.id = booking_id and salon_bookings_table(i) = user

753 and salon_bookings_table(deleted_booking) = user

754 and user.role = <SALONCUSTOMER>

755 and response_status = "Http 204"

756 or

757 error_message = "Http 401, Permission Denied"

758 and access_token <> validtoken

759 and len(access_token) = 0

760 and access_token = nil

761 and exists![i: inset dom(salon_bookings_table)] | i.id = booking_id and salon_bookings_table(i) = user and user.role = <SALONOWNER>

762 end_process;

Listing A.1: Salon Online Booking System Case Study
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[58] Daniel Fett, Pedram Hosseyni, and Ralf Küsters. “An Extensive Formal Security Analysis of the
OpenID Financial-Grade API”. In: 2019 IEEE Symposium on Security and Privacy (SP). 2019,
pp. 453–471. doi: 10.1109/SP.2019.00067.

[59] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. “hRESTS: An HTML Microformat for De-
scribing RESTful Web Services”. en. In: 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology. Sydney, Australia: IEEE, Dec. 2008, pp. 619–625. isbn:
978-0-7695-3496-1. doi: 10.1109/WIIAT.2008.379. url: http://ieeexplore.ieee.org/document/
4740521/ (visited on 10/18/2021).

[60] Sultan S. Alqahtani, Ellis E. Eghan, and Juergen Rilling. “Recovering Semantic Traceability Links be-
tween APIs and Security Vulnerabilities: An Ontological Modeling Approach”. en. In: 2017 IEEE
International Conference on Software Testing, Verification and Validation (ICST). Tokyo, Japan:
IEEE, Mar. 2017, pp. 80–91. isbn: 978-1-5090-6031-3. doi: 10.1109/ICST.2017.15. url: http:
//ieeexplore.ieee.org/document/7927965/ (visited on 03/27/2020).

https://doi.org/10.1109/IWISA.2010.5473445
https://doi.org/10.1109/32.663996
https://doi.org/10.1109/32.663996
http://ieeexplore.ieee.org/document/663996/
https://doi.org/10.1109/32.879820
https://doi.org/10.1145/1081706.1081715
https://doi.org/10.1145/1081706.1081715
https://doi.org/10.1109/TASE.2013.8
https://doi.org/10.1145/1368088.1368106
https://doi.org/10.1109/SP.2019.00067
https://doi.org/10.1109/WIIAT.2008.379
http://ieeexplore.ieee.org/document/4740521/
http://ieeexplore.ieee.org/document/4740521/
https://doi.org/10.1109/ICST.2017.15
http://ieeexplore.ieee.org/document/7927965/
http://ieeexplore.ieee.org/document/7927965/


BIBLIOGRAPHY 112

[61] Uri Klein and Kedar S Namjoshi. “Formalization and automated verification of RESTful behavior”.
In: International Conference on Computer Aided Verification. Springer. 2011, pp. 541–556.

[62] Irum Rauf, Inna Vistbakka, and Elena Troubitsyna. “Formal Verification of Stateful Services with
REST APIs Using Event-B”. In: 2018 IEEE International Conference on Web Services (ICWS). 2018,
pp. 131–138. doi: 10.1109/ICWS.2018.00024.

[63] K. Hunter. Irresistible APIs: Designing web APIs that developers will love. Manning, 2016. isbn:
9781638353447. url: https://books.google.co.jp/books?id=dTkzEAAAQBAJ.

[64] M. Brambilla et al. Model-Driven Software Engineering in Practice: Second Edition. Synthesis Lectures
on Software Engineering. Morgan & Claypool Publishers, 2017. isbn: 9781627059886. url: https:
//books.google.co.jp/books?id=bXSbDgAAQBAJ.

[65] Juan Cadavid, Benoit Combemale, and Benoit Baudry. Ten years of Meta-Object Facility: an Analysis
of Metamodeling Practices. Research Report RR-7882. INRIA, Feb. 2012. url: https://hal.inria.
fr/hal-00670652.
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