26 research outputs found

    Biological Networks: Modeling and Structural Analysis

    Get PDF
    Biological networks are receiving increased attention due to their importance in understanding life at the cellular level. There exist many different kinds of biological networks, and different models have been proposed for them. In this dissertation we focus on suitable network models for representing experimental data on protein interaction networks and protein complex networks (protein complexes are groups of proteins that associate to accomplish some function in the cell), and to design algorithms for exploring such networks. Our goal is to enable biologists to identify the general principles that govern the organization of protein-protein interaction networks and protein complex networks. For protein complex networks, we propose a hypergraph model which more accurately represents the data than earlier models. We define the concept of k-cores in hypergraphs, which are highly connected subhypergraphs, and design an algorithm for computing k -cores in hypergraphs. A major challenge in computational systems biology is to understand the modular structure of biological networks. We construct computational models for predicting functional modules through the use of graph clustering techniques. The application of earlier graph clustering techniques to proteomic networks does not yield good results due to the high error rates present, and the small-world and power-law properties of these networks. We discuss the various requirements that clusterings of biological networks are required to satisfy, design an algorithm for computing a clustering, and show that our clustering approach is robust and scalable. Moreover, we design a new algorithm to compute overlapping clustering rather than exclusive clustering. Our approach identifies a set of clusters and a set of bridge proteins that form the overlap among the clusters. Finally we assess the quality of our proposed clusterings using different reference sets

    Impact of Symmetries in Graph Clustering

    Get PDF
    Diese Dissertation beschĂ€ftigt sich mit der durch die Automorphismusgruppe definierten Symmetrie von Graphen und wie sich diese auf eine Knotenpartition, als Ergebnis von Graphenclustering, auswirkt. Durch eine Analyse von nahezu 1700 Graphen aus verschiedenen Anwendungsbereichen kann gezeigt werden, dass mehr als 70 % dieser Graphen Symmetrien enthalten. Dies bildet einen Gegensatz zum kombinatorischen Beweis, der besagt, dass die Wahrscheinlichkeit eines zufĂ€lligen Graphen symmetrisch zu sein bei zunehmender GrĂ¶ĂŸe gegen Null geht. Das Ergebnis rechtfertigt damit die Wichtigkeit weiterer Untersuchungen, die auf mögliche Auswirkungen der Symmetrie eingehen. Bei der Analyse werden sowohl sehr kleine Graphen (10 000 000 Knoten/>25 000 000 Kanten) berĂŒcksichtigt. Weiterhin wird ein theoretisches Rahmenwerk geschaffen, das zum einen die detaillierte Quantifizierung von Graphensymmetrie erlaubt und zum anderen StabilitĂ€t von Knotenpartitionen hinsichtlich dieser Symmetrie formalisiert. Eine Partition der Knotenmenge, die durch die Aufteilung in disjunkte Teilmengen definiert ist, wird dann als stabil angesehen, wenn keine Knoten symmetriebedingt von der einen in die andere Teilmenge abgebildet werden und dadurch die Partition verĂ€ndert wird. Zudem wird definiert, wie eine mögliche Zerlegbarkeit der Automorphismusgruppe in unabhĂ€ngige Untergruppen als lokale Symmetrie interpretiert werden kann, die dann nur Auswirkungen auf einen bestimmten Bereich des Graphen hat. Um die Auswirkungen der Symmetrie auf den gesamten Graphen und auf Partitionen zu quantifizieren, wird außerdem eine Entropiedefinition prĂ€sentiert, die sich an der Analyse dynamischer Systeme orientiert. Alle Definitionen sind allgemein und können daher fĂŒr beliebige Graphen angewandt werden. Teilweise ist sogar eine Anwendbarkeit fĂŒr beliebige Clusteranalysen gegeben, solange deren Ergebnis in einer Partition resultiert und sich eine Symmetrierelation auf den Datenpunkten als Permutationsgruppe angeben lĂ€sst. Um nun die tatsĂ€chliche Auswirkung von Symmetrie auf Graphenclustering zu untersuchen wird eine zweite Analyse durchgefĂŒhrt. Diese kommt zum Ergebnis, dass von 629 untersuchten symmetrischen Graphen 72 eine instabile Partition haben. FĂŒr die Analyse werden die Definitionen des theoretischen Rahmenwerks verwendet. Es wird außerdem festgestellt, dass die LokalitĂ€t der Symmetrie eines Graphen maßgeblich beeinflusst, ob dessen Partition stabil ist oder nicht. Eine hohe LokalitĂ€t resultiert meist in einer stabilen Partition und eine stabile Partition impliziert meist eine hohe LokalitĂ€t. Bevor die obigen Ergebnisse beschrieben und definiert werden, wird eine umfassende EinfĂŒhrung in die verschiedenen benötigten Grundlagen gegeben. Diese umfasst die formalen Definitionen von Graphen und statistischen Graphmodellen, Partitionen, endlichen Permutationsgruppen, Graphenclustering und Algorithmen dafĂŒr, sowie von Entropie. Ein separates Kapitel widmet sich ausfĂŒhrlich der Graphensymmetrie, die durch eine endliche Permutationsgruppe, der Automorphismusgruppe, beschrieben wird. Außerdem werden Algorithmen vorgestellt, die die Symmetrie von Graphen ermitteln können und, teilweise, auch das damit eng verwandte Graphisomorphie Problem lösen. Am Beispiel von Graphenclustering gibt die Dissertation damit Einblicke in mögliche Auswirkungen von Symmetrie in der Datenanalyse, die so in der Literatur bisher wenig bis keine Beachtung fanden

    Approximation Algorithms for Geometric Networks

    Get PDF
    The main contribution of this thesis is approximation algorithms for several computational geometry problems. The underlying structure for most of the problems studied is a geometric network. A geometric network is, in its abstract form, a set of vertices, pairwise connected with an edge, such that the weight of this connecting edge is the Euclidean distance between the pair of points connected. Such a network may be used to represent a multitude of real-life structures, such as, for example, a set of cities connected with roads. Considering the case that a specific network is given, we study three separate problems. In the first problem we consider the case of interconnected `islands' of well-connected networks, in which shortest paths are computed. In the second problem the input network is a triangulation. We efficiently simplify this triangulation using edge contractions. Finally, we consider individual movement trajectories representing, for example, wild animals where we compute leadership individuals. Next, we consider the case that only a set of vertices is given, and the aim is to actually construct a network. We consider two such problems. In the first one we compute a partition of the vertices into several subsets where, considering the minimum spanning tree (MST) for each subset, we aim to minimize the largest MST. The other problem is to construct a tt-spanner of low weight fast and simple. We do this by first extending the so-called gap theorem. In addition to the above geometric network problems we also study a problem where we aim to place a set of different sized rectangles, such that the area of their corresponding bounding box is minimized, and such that a grid may be placed over the rectangles. The grid should not intersect any rectangle, and each cell of the grid should contain at most one rectangle. All studied problems are such that they do not easily allow computation of optimal solutions in a feasible time. Instead we consider approximation algorithms, where near-optimal solutions are produced in polynomial time. In addition to the above geometric network problems we also study a problem where we aim to place a set of different sized rectangles, such that the area of their corresponding bounding box is minimized, and such that a grid may be placed over the rectangles. The grid should not intersect any rectangle, and each cell of the grid should contain at most one rectangle. All studied problems are such that they do not easily allow computation of optimal solutions in a feasible time. Instead we consider approximation algorithms, where near-optimal solutions are produced in polynomial time

    Extremal problems in graphs

    Get PDF
    In the first part of this thesis we will consider degree sequence results for graphs. An important result of KomlĂłs [39] yields the asymptotically exact minimum degree threshold that ensures a graph GG contains an HH-tiling covering an xx-proportion of the vertices of GG (for any fixed x∈x ∈ (0, 1) and graph HH). In Chapter 2, we give a degree sequence strengthening of this result. A fundamental result of KĂŒhn and Osthus [46] determines up to an additive constant the minimum degree threshold that forces a graph to contain a perfect HH-tiling. In Chapter 3, we prove a degree sequence version of this result. We close this thesis in the study of asymmetric Ramsey properties in Gn,pG_n,_p. Specifically, for fixed graphs H1,...,Hr,H_1, . . . , H_r, we study the asymptotic threshold function for the property Gn,pG_n,_p → H1,...,HrH_1, . . . , H_r. Rödl and RuciƄski [61, 62, 63] determined the threshold function for the general symmetric case; that is, when H1=⋅⋅⋅=HrH_1 = · · · = H_r. Kohayakawa and Kreuter [33] conjectured the threshold function for the asymmetric case. Building on work of Marciniszyn, Skokan, Spöhel and Steger [51], in Chapter 4, we reduce the 0-statement of Kohayakawa and Kreuter’s conjecture to a more approachable, deterministic conjecture. To demonstrate the potential of this approach, we show our conjecture holds for almost all pairs of regular graphs (satisfying certain balancedness conditions)

    Discrete Mathematics : Elementary and Beyond

    Get PDF

    Design and Analysis of Algorithms: Course Notes

    Get PDF
    These are my lecture notes from CMSC 651: Design and Analysis of Algorithms}, a one semester course that I taught at University of Maryland in the Spring of 1993. The course covers core material in algorithm design, and also helps students prepare for research in the field of algorithms. The reader will find an unusual emphasis on graph theoretic algorithms, and for that I am to blame. The choice of topics was mine, and is biased by my personal taste. The material for the first few weeks was taken primarily from the (now not so new) textbook on Algorithms by Cormen, Leiserson and Rivest. A few papers were also covered, that I personally feel give some very important and useful techniques that should be in the toolbox of every algorithms researcher. (Also cross-referenced as UMIACS-TR-93-72

    Entangled graphs on surfaces in space

    Get PDF
    In the chemical world, as well as the physical, strands get tangled. When those strands form loops, the mathematical discipline of ‘knot theory’ can be used to analyse and describe the resultant tangles. However less has been studied about the situation when the strands branch and form entangled loops in either finite structures or infinite periodic structures. The branches and loops within the structure form a ‘graph’, and can be described by mathematical ‘graph theory’, but when graph theory concerns itself with the way that a graph can fit in space, it typically focuses on the simplest ways of doing so. Graph theory thus provides few tools for understanding graphs that are entangled beyond their simplest spatial configurations. This thesis explores this gap between knot theory and graph theory. It is focussed on the introduction of small amounts of entanglement into finite graphs embedded in space. These graphs are located on surfaces in space, and the surface is chosen to allow a limited amount of complexity. As well as limiting the types of entanglement possible, the surface simplifies the analysis of the problem – reducing a three-dimensional problem to a two-dimensional one. Through much of this thesis, the embedding surface is a torus (the surface of a doughnut) and the graph embedded on the surface is the graph of a polyhedron. Polyhedral graphs can be embedded on a sphere, but the addition of the central hole of the torus allows a certain amount of freedom for the entanglement of the edges of the graph. Entanglements of the five Platonic polyhedra (tetrahedron, octahedron, cube, dodecahedron, icosahedron) are studied in depth through their embeddings on the torus. The structures that are produced in this way are analysed in terms of their component knots and links, as well as their symmetry and energy. It is then shown that all toroidally embedded tangled polyhedral graphs are necessarily chiral, which is an important property in biochemical and other systems. These finite tangled structures can also be used to make tangled infinite periodic nets; planar repeating subgraphs within the net can be systematically replaced with a tangled version, introducing a controlled level of entanglement into the net. Finally, the analysis of entangled structures simply in terms of knots and links is shown to be deficient, as a novel form of tangling can exist which involves neither knots nor links. This new form of entanglement is known as a ravel. Different types of ravels can be localised to the immediate vicinity of a vertex, or can be spread over an arbitrarily large scope within a finite graph or periodic net. These different forms of entanglement are relevant to chemical and biochemical self-assembly, including DNA nanotechnology and metal-ligand complex crystallisation
    corecore