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Abstract

The main contribution of this thesis is approximation algorithms for several
computational geometry problems. The underlying structure for most of
the problems studied is a geometric network. A geometric network is, in its
abstract form, a set of vertices, pairwise connected with an edge, such that
the weight of this connecting edge is the Euclidean distance between the pair
of points connected. Such a network may be used to represent a multitude
of real-life structures, such as, for example, a set of cities connected with
roads.

Considering the case that a specific network is given, we study three sep-
arate problems. In the first problem we consider the case of interconnected
‘islands’ of well-connected networks, in which shortest paths are computed.
In the second problem the input network is a triangulation. We efficiently
simplify this triangulation using edge contractions. Finally, we consider indi-
vidual movement trajectories representing, for example, wild animals where
we compute leadership individuals.

Next, we consider the case that only a set of vertices is given, and the aim
is to actually construct a network. We consider two such problems. In the
first one we compute a partition of the vertices into several subsets where,
considering the minimum spanning tree (MST) for each subset, we aim to
minimize the largest MST. The other problem is to construct a t-spanner of
low weight fast and simple. We do this by first extending the so-called gap
theorem.

In addition to the above geometric network problems we also study a
problem where we aim to place a set of different sized rectangles, such that
the area of their corresponding bounding box is minimized, and such that a
grid may be placed over the rectangles. The grid should not intersect any
rectangle, and each cell of the grid should contain at most one rectangle.

All studied problems are such that they do not easily allow computation
of optimal solutions in a feasible time. Instead we consider approximation
algorithms, where near-optimal solutions are produced in polynomial time.
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Chapter 1

Introduction

Networks are fundamental structures, which we regularly encounter in our
everyday lives. In its most abstract form, a network consists of elements that
are somehow connected. A well-known example is, of course, the internet,
with millions of computers connected all over the world. Other examples
include neural networks, which aim to represent how neurons are connected
in the brain, and social networks which represent how people are connected
through, for example, family relations.

Figure 1.1: Illustration of the problem known as the seven bridges of Königsberg.
(Picture published under the GNU Free Documentation License.)

Because of their fundamental nature, it is not surprising that scientific
exploration of networks began early. One of the more famous examples is
a mathematical problem known as the seven bridges of Königsberg or the
Euler path problem, named after the famous mathematician Leonhard Euler
(1707-1783) who finally solved the problem. At that time the river Pregel
ran through Königsberg in such a way that two small islands in the center
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2 Introduction

of town were formed, see Fig. 1.1. The two islands were connected with
each other and the town mainland through seven bridges, thus forming a
land-bridge network. It was said that the town’s people, at their Sunday
walks, tried to find a path such that each bridge was crossed exactly once,
and such that they ended up at the same spot where they started. No one
had succeeded and it was not known whether or not it was at all possible.

Figure 1.2: Euler represented the bridge-land network using only edges and points.
Such a representation is known as a graph. (Picture published under the GNU Free
Documentation License.)

Euler indeed managed to show that no such path existed. To do this
he represented the land-bridge network using points and edges, as shown in
Fig. 1.2, where the points were used to represent land, and the edges were
used to represent bridges. Such a representation of a network is denoted a
graph.

1.1 Geometric networks and graphs

In this thesis we consider a special kind of networks, called geometric net-
works, and their representation, so-called geometric graphs. In a geometric
network the actual physical and geometric properties of the network, such
as placement, distance and angle between elements, are of primary interest.
As an example, a railroad network would be classified as geometric, while a
social network would not.

In Fig. 1.3 the so-called P̊agat̊agen railway network in the south of Swe-
den is represented using a geometric graph. The points represent towns,
and an edge represents railway between two towns. Further, an edge has
the same weight as the distance between the two towns that it connects. In
a similar manner, geometric graphs can be used to represent a multitude
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Figure 1.3: (a) A simplified representation of the so-called P̊agat̊agen railway net-
work in the south of Sweden. (b) Distances between cities, in kilometers.

of real-life geometric networks, such as molecular structures or electronic
circuits.

1.2 Algorithms

For most people, daily use of computers include the use of, for example,
email, web browsing and word processing programs. Such programs are
nowadays so fast and simple that they, in effect, hide what really goes on
inside the computer on which they run. What computers mainly do, as the
name implies, is to compute. As an example, when a user sends an email, a
transfer path through the computer network must be computed in order to
allow efficient transmission.

During computation, millions or even billions of very simple operations,
such as adding two numbers or changing the value of a memory cell, are per-
formed. Thus, whenever something needs to be computed, we must create
an algorithm (see Fig. 1.4 for an example), that is, a step-wise description
of which basic operations to perform. One may compare an algorithm to
a cooking recipe, which is, similarly, a step-by-step instruction on how to
prepare a meal.
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Algorithm GridPack(S, ǫ′)
1. bestV al←∞, n← |S|, α = β =

√
1 + ǫ′, γ = 1√

1+ǫ′−1
2. for each 1 ≤ i, j ≤ logα nc do

3. Si,j ← ∅
4. for each r ∈ S do

5. i← ⌈logα width(r)⌉
6. j ← ⌈logα height(r)⌉
7. Si,j ← Si,j ∪ {r}
8. end

9. for k ← 1 to n2c·f(α,β,γ) do

10. G← GenerateGrid(α, β, γ, k, n, c)
11. val← TestGrid(G, {S}1≤i,j≤log

α
nc, α, β, γ)

12. if val < bestV al then

13. bestV al← val and bestGrid← G

14. end

15. Output PackIntoGrid(S, bestGrid)

Figure 1.4: An example algorithm. Each row contains a small number of basic
operations.

Algorithms implemented on a computer are known as computer pro-
grams. What an algorithm, or computer program, basically does is that it
takes an input, such as a map, and computes an output, such as a shortest
path between two cities, using a finite number of basic operations.

In this thesis we suggest mainly algorithms for geometric network prob-
lems. See Section 5.3.3 for an example, where Steps 1 to 4 describe the
algorithm.

1.3 Algorithm analysis

When suggesting an algorithm two things need to be shown. The first thing
is that the suggested algorithms are correct, and the second that they are
efficient.

Let us first consider the efficiency. Efficiency can be measured in many
ways, such as how fast an algorithm is or how much computer memory it
requires. One way to determine whether or not an algorithm is sufficiently
efficient, is to actually create a computer program and test it. As an exam-
ple, in Section 4.6 the results of such tests are described.

Another way is to perform a theoretical analysis, where we, regarding
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speed, simply count the number of basic operations that will be performed.
The fewer operations performed, the faster the algorithm.

Next, let us consider correctness, that is, we want the algorithms to do
what they are intended to do. As an example, if we propose an algorithm
and state that it computes the shortest path between two cities, we must
mathematically prove this statement.

For an example, see Section 5.3.3, Theorem 5.8, where both efficiency
and correctness are shown.

1.4 Approximation algorithms

Even though a modern computer can perform millions of basic operations
per second, some problems are still so hard that they are not computable
within reasonable time. As an example, there is a famous problem known as
the traveling salesman problem (TSP), where a salesman wants to visit all
towns within his sales area exactly once. The problem is then to compute
the shortest path for him to travel.

All known algorithms for this problem are such that if we increase the
number of towns that the salesman wants to visit by one, then the number
of performed basic operations may multipliy by a constant factor. Thus, for
sufficiently large instances this problem, in the worst case, requires months
instead of seconds in order to compute the shortest path.

Clearly this is not a reasonable approach, and instead of computing the
absolute shortest path, we consider algorithms that compute a path that is
almost a short as the shortest path. We say that such an algorithm is an
approximation algorithm. Once we do this simple relaxation of the problem,
algorithms are possible that will solve the traveling salesman problem within
seconds or less.

In this thesis we do not study the traveling salesman problem directly,
but we consider problems that are similarly hard to solve efficiently, and
thus, require approximation algorithms. See Section 7.1 for an example.

1.5 Studied problems

Next we consider in greater detail the geometric graph problems studied, and
also describe the approximation algorithms constructed for these problems.
When constructing algorithms it is often helpful to know some of the basic
properties of the geometric graph. As an example, a graph may have few or
many edges, or be more or less well-connected. Here we mainly consider four
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Figure 1.5: The three figures models parts of the transportation network in Norway,
Sweden and Finland. (a) The domestic railway network in the three countries (not
complete). (b) The railway connections between the countries together with the
main air and sea connections within, and between, Norway, Sweden and Finland.
(c) The two networks combined into one graph.

different kinds of geometric graphs, t-spanners, triangulations, trajectories
and minimum spanning trees, each with its own specific basic properties.

Finally, we also study a geometric packing problem from the VLSI in-
dustry, where the underlying structure is not a geometric graph.

1.5.1 t-spanners

Fig. 1.5 illustrates part of the Nordic transportation network. One observa-
tion one can make is that there are better travel connections within a country
than between countries. The network within one country is an example of
a t-spanner, that is, a network that is rather well connected.

More specifically, when we build, for example, a railway network, it is
usually not possible to have railway between every pair of cities. As an
example, in Fig. 1.3 we see that if we want to go from Svedala to Ystad
we have to travel via Skurup. Fortunately, the detour will not be that long
compared to the distance, as the crow flies, between Svedala and Ystad.
However, if we go from B̊astad to Osby then we will have to take quite
a long detour via Hässleholm, Åstorp, Helsingborg and Ängelholm. A t-
spanner is a network such that no matter which two cities we travel between
the detour will not be that long.

In Chapter 2 we consider the case exemplified by Fig. 1.5, where we
construct an algorithm which pre-processes the network, and which then al-
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lows fast computation of approximate shortest paths. A possible application
for such an algorithm would be in automated travel planning, where short
and cheap travel routes are desired. Further, in Chapter 6 we show how to
construct a t-spanner fast and simple. The constructed t-spanner has the
added property that the total weight of all its edges is low.

1.5.2 Triangulations

A triangulation is a geometric graph where all faces (except the outer face)
are triangles, see Fig. 1.6. When storing a complex physical structure on
a computer, it is often not possible to represent and store that structure
exactly. As an example, the human form is simply too detailed for exact
representation. Instead an approximate structure is needed, and for this
purpose triangulations are commonly used. Triangulations are used in vari-
ous fields, such as computer graphics and geographical information systems
(GIS).

Figure 1.6: A human head represented using a triangulation, here in three different
levels of detail.(Picture from the GNU Triangulated Surface Library [1].)

In Chapter 3 we give an algorithm that simplifies a triangulation in
several steps, resulting in a simplification hierarchy. Such a hierarchy can,
for example, be used in computer graphics, where objects are commonly
viewed at various distances, thus requiring different levels of detail. Again,
see Fig. 1.6, where a human head is represented using three different levels
of detail.
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1.5.3 Trajectories

Next we consider trajectories. In recent years location aware technology,
such as GPS, has become increasingly accessible. This technology is used, for
example, for real-time maps to be used in cars. The technology also enables
collection of movement data, which is used, for example, by biologists to
analyze animal movement. Such data is typically represented in a geometric
graph as shown in Fig. 1.7, where each trajectory corresponds to a single
individual. Each point in the graph corresponds to a location of an animal,
and an edge represents movement between two locations.

Figure 1.7: Trajectories representing the movement of three separate animals.

In Chapter 4 an algorithm is constructed which computes leaders in a
group of moving animals. Computing such leaderships is of value, among
other things, to biologists in order to analyze group behavior among animals.

1.5.4 Minimum Spanning Trees

In Chapter 5 we consider a problem from the ship building industry. The
aim is to cut ship pieces from a sheet of metal using several robots moving
over the sheet, see Fig. 1.8. Time is of importance, and thus we want
to minimize the distance traveled by the robots. This problem is closely
related to the traveling salesman problem described in Section 1.4, only we
have several salesmen or robots. We give an approximation algorithm for
this problem, which computes a cutting path for the robots such that the
total cutting time is minimized.

More specifically, the algorithm uses a geometric graph called a minimum
spanning tree (MST). Assume that you have, for example, a number of offices
that are connected using as little phone cable as possible, the corresponding
geometric graph is then a minimum spanning tree. The algorithm computes
several MST’s, one for each robot, so that the largest MST is minimized.



1.5 Studied problems 9

Figure 1.8: Ship pieces on a sheet of metal to be cut out by several robots.

Each such MST can then easily be transformed into an approximate traveling
salesman path for each robot.

1.5.5 Chips on Wafers

One of the main physical components when building a computer is the so-
called computer chip, which has a rectangular shape, see Fig. 1.9a. Chips
are in turn constructed on so-called wafers, on which many chips of different
sizes are often simultaneously constructed. One problem is that the wafer
is expensive, and thus, it is desirable to pack the chips such that they use a
minimum area.

(a) (b)

Figure 1.9: (a) A set of chips. (b) Chips grid packed on a wafer.

After construction the chips are cut out, and for technical reasons these
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cuts must be made all across the wafer. Thus, the chips must be packed
using a grid, such that no chip crosses the grid, and such that each cell of
the grid contains at most one chip, see Fig. 1.9b.

In Chapter 7, we construct an algorithm that computes a grid packing
that is arbitrarily close to the optimal packing.

1.6 Definitions

1.6.1 Preliminaries

A vertex v = {v1, v2, . . . , vd} is an element in d-dimensional real space R
d.

An edge e between two vertices u and v, denoted (u, v), is the set

(u, v) = {αu + (1− αv) : α ∈ R, 0 ≤ α ≤ 1}.

We denote the distance between two vertices u and v as |uv|, where

|uv| =
(

d
∑

i=1

|ui − vi|t
)1/t

,

for some 1 ≤ t ≤ ∞. That is, distances are measured according to some
metric Lt, where the L2 metric is assumed, unless otherwise stated.

A polygonal chain is specified by a sequence of vertices p1, p2, . . . pn, and
edges (pi, pi+1), 1 ≤ i < n. A simple polygonal chain is such that only
two consecutive edges (pi, pi+1) and (pi+1, pi+2) intersect, and only at their
common vertex pi+1, 1 ≤ i ≤ n − 2. A polygonal chain is called closed if
p1 = pn. A simple polygon is an area in the plane bounded by a simple
closed polygonal chain.

For a more thorough introduction to computational geometry, see for
example the book by de Berg, van Kreveld, Overmars and Schwarzkopf [46].

1.6.2 Euclidean graphs

A Euclidean graph G = (V,E) is a set of vertices V and a set of edges
E, where the weight |e| or |(u, v)| of an edge e = (u, v) ∈ E is such that
|e| = |(u, v)| = |uv|. An edge is directed if we decide an order on its end
vertices, and it is undirected otherwise. A directed edge e = (u, v) is said to
be directed from u to v. A Euclidean graph G = (V,E) is a:

• t-spanner, if there exists a path between every pair of vertices u, v ∈ V
of total length at most t · |uv|.
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• Triangulation, for d = 2, if G is planar and consists of a simple polygon
P , such that all points and edges of G are in the interior of P and
such that no more interior edges can be added to E while maintaining
planarity.

• Minimum Spanning Tree, abbreviated MST, if it consists of a tree
that spans all the vertices of V , such that the total weight of E is
minimized.

• Trajectory Graph, if the graph consists of a number of polygonal
chains, such that each vertex in V is included in exactly one polygonal
chain.

1.6.3 Complexity

Consider the real RAM [134] model of computation, an algorithm A, and a
possible input i for A. Let TA(i) denote the number of primitive operations
performed by A on i before terminating. Furthermore, let I denote the set
of all possible inputs for A, and let |i| denote the size of i. We perform
worst-case analysis, and thus define a time complexity function

TA(n) = max
i∈I,|i|=n

{TA(i)}.

A space complexity function SA(n) is defined in a similar manner. Further,
we disregard multiplicative factors in the space and time complexity, and
use complexity classes as described by Knuth [103].

O(g(n)) denotes all functions f(n), where there exist positive constants
k and n0 such that f(n) ≤ k · g(n) for all n ≥ n0.

Ω(g(n)) denotes all functions f(n), where there exist positive constants
k and n0 such that f(n) ≥ k · g(n) for all n ≥ n0.

Θ(g(n)) denotes all functions f(n), where there exist positive constants
k1, k2 and n0 such that k1 · g(n) ≤ f(n) ≤ k2 · g(n) for all n ≥ n0.

An algorithm A is called a polynomial time algorithm if TA(n) = O(nj),
for some constant j.

1.6.4 Approximation algorithms

An optimization problem consists of a set of instances I. Each instance i ∈ I
is associated with a pair (F, c), where F is the set of feasible solutions, and
where c is a mapping c : F → R. That is c defines a cost c(f) for each
solution f ∈ F . An optimization problem can be either a maximization or
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a minimization problem, and below we consider the minimization version.
The maximization version can be defined in a similar manner. The problem,
then, is to find a solution f ∈ F , such that

c(f) ≤ c(y),∀y ∈ F.

Let OPT denote a solution f for which this holds. We say that an algorithm
A is a k-approximation algorithm, if A, for any instance i ∈ I given as input,
finds a solution f ′ ∈ F such that

c(f ′) ≤ k ·OPT.

In this thesis we consider approximation algorithms that find such a solution
in polynomial time. Further, a (1 + ε)-algorithm which takes an instance
i ∈ I and an arbitrarily small real constant ε > 0 as input is called a
polynomial time approximation scheme, or a PTAS for short.

Not all optimization problems have known polynomial time algorithms,
where NP-complete problems is a well-known example. Thus, instead ap-
proximation algorithms are considered. For further description and defi-
nition of concepts such as optimization and NP-complete problems, see for
example the book on combinatorial optimization by Papadimitriou and Stei-
glitz [131].

1.7 Thesis outline

This thesis consists of three separate parts. In the first part we consider
problems where a specific network is given as input, in the second we consider
problems where a network is computed, and in the third part other geometric
optimization problems are considered.

Part I: Processing Networks

Chapter 2. We consider “islands” of t-spanners, where we construct
a data structure which can be used to answer approximate shortest path
queries. More formally, let H1 = (V, E1) be a collection of N pairwise vertex
disjoint O(1)-spanners where the weight of an edge is equal to the Euclidean
distance between its endpoints. Let H2 = (V, E2) be the graph on V with
M edges of non-negative weight. The union of the two graphs is denoted
G = (V, E1 ∪ E2). We present a data structure of size O(M2 + n log n) that
answers (1 + ε)-approximate shortest path queries in G in constant time,
where ε > 0 is constant.
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Chapter 3. We consider the problem of simplifying a planar triangle
mesh using edge contractions, under the restriction that the resulting ver-
tices must be a subset of the input set. That is, contraction of an edge must
be made onto one of its adjacent vertices, which results in removing the
other adjacent vertex. We show that if the perimeter of the mesh consists of
at most five vertices, then we can always find a vertex not on the perimeter
which can be removed in this way. In order to maintain a higher number
of removable vertices under the above restriction, we study edge flips which
can be performed in a visually smooth way. A removal of a vertex which is
preceded by one such smooth operation is called a 2-step removal. More-
over, we introduce the possibility that the user defines “important” vertices
(or edges) which have to remain intact. Given m such important vertices
or edges we show that a simplification hierarchy of size O(n) and depth
O(log(n/m)) can be constructed by 2-step removals in O(n) time, such that
the simplified graph contains the m important vertices and edges, and at
most O(m) other vertices from the input graph. In some triangulations,
many vertices may not even be 2-step removable. In order to provide the
option to remove such vertices, we also define and examine k-step removals.
This increases the lower bound on the number of removable vertices.

Chapter 4. Widespread availability of location aware devices (such as
GPS receivers) promotes capture of detailed movement trajectories of peo-
ple, animals, vehicles and other moving objects, opening new options for a
better understanding of the processes involved. In this chapter we inves-
tigate spatio-temporal movement patterns in large tracking data sets. We
present a natural definition of the pattern ‘one object is leading others’,
which is based on behavioural patterns discussed in the behavioural ecology
literature. Such leadership patterns can be characterised by a minimum time
length for which they have to exist and by a minimum number of entities
involved in the pattern. Furthermore, we distinguish two models (discrete
and continuous) of the time axis for which patterns can start and end. For
all variants of these leadership patterns, we describe algorithms for their
detection, given the trajectories of a group of moving entities. A theoretical
analysis as well as experiments show that these algorithms efficiently report
leadership patterns.

Part II: Computing Networks

Chapter 5. To better handle situations where additional resources are
available to carry out a task, many problems from the manufacturing indus-
try involve dividing a task into a number of smaller tasks, while optimizing
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a specific objective function. We consider the problem of partitioning a
given set S of n points in the plane into k subsets, S1, . . . ,Sk, such that
max1≤i≤k |MST (Si)| is minimized. Variants of this problem arise in ap-
plications from the shipbuilding industry. We show that this problem is
NP-hard, and we also present an approximation algorithm for the problem,
in the case when k is a fixed constant. The approximation algorithm runs
in time O(n log n) and produces a partition that is within a factor (4/3 + ε)
of the optimal if k = 2, and a factor (2 + ε) otherwise.

Chapter 6. The gap property was introduced by Chandra et al. [30],
who also proved the Gap Theorem. The theorem states that if a directed
edge set of a point set V in Rd fulfills certain properties then the total
weight of the edges in the set is bounded by O(log n · wt(MST (V ))). One
of the constraints is that every vertex only can have one outgoing edge. In
this chapter we extend the theorem and prove that a similar bound can be
proven even though many edges have the same vertex as source as long as
their sinks are not too close to each other.

We believe that the extended theorem can be applied to a wider range of
geometric graphs and as an example we show how it can be used to develop
a very simple algorithm to construct a t-spanner of low weight.

Part III: Assorted Problems

Chapter 7. A set of rectangles S is said to be grid packed if there exists
a rectangular grid (not necessarily regular) such that every rectangle lies
in the grid and there is at most one rectangle of S in each cell. The area
of a grid packing is the area of a minimal bounding box that contains all
the rectangles in the grid packing. We present an approximation algorithm
that given a set S of rectangles and a real constant ε > 0 produces a grid
packing of S whose area is at most (1+ ε) times larger than an optimal grid
packing in polynomial time. If ε is chosen large enough the running time
of the algorithm will be linear. We also study several interesting variants,
for example the smallest area grid packing containing at least k ≤ n rectan-
gles, and given a region A grid pack as many rectangles as possible within
A. Apart from the approximation algorithms we present several hardness
results.

1.8 Publications

Chapters 2 to 7 each correspond to a published paper. Below each chapter
and corresponding publication is given.
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Processing Networks





Chapter 2

Approximate Distance

Oracles for Graphs with

Dense Clusters

The shortest-path (SP) problem for weighted graphs with n vertices and
m edges is a fundamental problem for which efficient solutions can now be
found in any standard algorithms text, see also [47, 68, 136, 156, 155]. Lately
the approximation version of this problem has also been studied extensively
[6, 37, 48]. In numerous algorithms, the query version of the SP-problem fre-
quently appears as a subroutine. In such a query, we are given two vertices
and have to compute or approximate the shortest path between them. Tho-
rup and Zwick [157] presented an algorithm for undirected weighted graphs
that computes (2k − 1)-approximate solutions to the query version of the
SP problem in O(k) time, using a data structure that takes expected time
O(kmn1/k) to construct and utilizes O(kn1+1/k) space. It is not an approx-
imation scheme in the true sense because the value k needs to be a positive
integer. Since the query time is essentially bounded by a constant, Thorup
and Zwick refer to their queries as approximate distance oracles. The time
of pre-processing was recently improved by Baswana and Sen in [19].

We focus on the geometric version of this problem. A geometric graph
has vertices corresponding to points in R

d and edge weights from a Euclidean
metric. Throughout this chapter we will assume that d is a constant. A
geometric graph G = (V, E) is said to be a t-spanner for V, if for any two
points p and q in V, there exists a path of length at most t times the
Euclidean distance between p and q. For geometric graphs, also, considerable
previous work exists on the shortest path and related problems. A good

19
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Figure 2.1: The three figures models parts of the transportation network in Norway,
Sweden and Finland. (a) The domestic railway network in the three countries (not
complete). (b) The railway connections between the countries together with the
main air and sea connections within, and between, Norway, Sweden and Finland.
(c) The two networks combined into one graph G.

survey can be found in [126], see also [14, 32, 33, 35, 60, 61, 153]. The
geometric query version was recently studied by Gudmundsson et al. [79,
80] and they presented the first data structure that answers approximate
shortest-path queries in constant time, provided that the input graph is a t-
spanner for some known constant t > 1. Their data structure uses O(n log n)
space and can be constructed in time O(m+ n log n).

In this chapter we extend the results in [79, 80] to hold also for “islands”
of t-spanners, i.e., a set of N vertex disjoint t-spanners inter-connected
through “airports” i.e. M edges of arbitrary non-negative weight. We con-
struct a data structure that can answer (1 + ε)-approximate shortest path
queries in constant time. The data structure uses O(M2 + n log n) space
and can be constructed in time O(m+(M2 +n) log n), where m is the total
number of edges. Hence, for M = O(

√
n) the bound is essentially the same

as in [79, 80].

We claim that the generalization studied is natural in many applications.
Consider for example the freight costs within Norway, Sweden and Finland,
see Fig. 2.1. The railway network and the road network within a country are
usually t-spanners for some small value t, and the weight (transport cost)
of an edge is linearly dependent on the Euclidean distance. In Fig. 2.1a the
railway networks of Norway, Sweden and Finland (although not complete)
is shown. The weight of an edge is dependent on the Euclidean distance
between its endpoints. Hence, each country’s railway network and road
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network can most often be modeled as a Euclidean t-spanner for some small
constant t. (Places that are not reachable by train are treated as single
t- spanners containing only one point, for example Haugesund on the west
coast of Norway is only reachable by boat.). Apart from these edges there
are also edges that models, for example, air freight, sea freight, or inter-
connecting railway transports. An example of this is shown Fig. 2.1b, where
the main air and sea routes together with the inter-connecting railway tracks
are shown. The weight of these edges can be completely independent of the
Euclidean distance, as is usually the case when it comes to air fares. The
reason why inter-connecting railway transports is included in the latter set
of edges is because the railway networks of different countries are usually
sparsely connected. For example, there is one connection between Sweden
and Finland, two between Norway and Sweden and, zero between Finland
and Norway. The same holds for many other adjacent countries, for example,
there are three connections between the Netherlands and Germany, two
between the Netherlands and Belgium, and three between France and Spain.
Finally, note that in most cases M is very small compared to n.

In [79] it was shown that an approximate shortest-path distance oracle
can be applied to a large number of problems, for example, finding shortest
obstacle-avoiding path between two vertices in a planar polygonal domain
with obstacles and interesting query versions of closest pair problems. The
extension presented in this chapter also generalizes the results for the above
mentioned problems.

The main idea for obtaining our results is to develop a method to effi-
ciently combine existing methods for O(1)-spanners with methods for gen-
eral graphs. One problem, for example, may be given a starting point p
and a destination q, which should be the first airport to travel to, since (in
theory) there might be a non-constant number of airports on p’s island? In
order to achieve this, we determine a small number, O(M), of representa-
tive “junction” points, so that every point p in the graph is represented by
exactly one such junction point r(p), located on the same island as p. All
airports are also treated as such junction points. For all pairs of junction
points we precompute approximate distances, using space O(M2). For any
two points p and q, an approximately shortest path between them is found
either by only using edges of one of the O(1)-spanners, or by following a
path from p to its representative junction point r(p), then from r(p) to r(q),
and finally from r(q) to q. In order to choose such a small set of suitable
representative junction points we present, in Section 2.2.4, a partition of
space which may be useful also in other applications. In Section 5.3 we
show general correctness, and in Section 2.4 we mention some refinements
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and extensions of the main results.

2.1 Preliminaries

Our model of computation is the traditional algebraic computation model
with the added power of indirect addressing. We will use the following nota-
tion. For points p and q in R

d, |p, q| denotes the Euclidean distance between
p and q. If G is a geometric graph, then δG(p, q) denotes the Euclidean
length of a shortest path in G between p and q. If P is a path in G between
p and q having length ∆ with δG(p, q) ≤ ∆ ≤ (1 + ε) · δG(p, q), then P is a
(1 + ε)-approximate shortest path for p and q.

The main result of this chapter is stated in the following theorem:

Theorem 2.1 Consider two graphs H1 = (V,F1) and H2 = (V,F2), where
H1 is a collection of N vertex disjoint Euclidean t-spanners (t > 1 is a
constant), and H2 is a graph with M edges of non-negative weight. The
union of the two graphs is denoted G = (V, E = {F1 ∪ F2}).

One can construct a data structure in time O((|E| + M2) log n) using
O(M2 + n log n) space that can answer (1 + ε)-approximate shortest path
queries in G in constant time, where 0 < ǫ < 1 is a given constant.

The set of pairwise vertex disjoint t-spanners of H1 is called the “islands”
of G and will be denoted G1 = (V1, E1), . . . ,GN = (VN , EN ). An edge (u, v) ∈
F2 is said to be an inter-connecting edge (even though both its endpoints
may belong to the same island). A vertex v ∈ Vi incident to an edge in H2

is called an airport, for simplicity (even though these vertices may represent
any kind of junction point). The set of all airports of Vi is denoted Ci.
Note that the total number of airports is O(M) since the number of inter-
connecting edges is M .

2.2 Tools

In the construction of the distance oracle we will need several tools, among
them the well-separated pair decomposition by Callahan and Kosaraju [26],
a graph pruning tool by Gudmundsson et al. [79, 81] and well-separated
clusters by Krznaric and Levcopoulos [107]. In this section we briefly rec-
ollect these tools. In section 2.2.4 we also show a useful tool that clusters
points with respect to a subset of representative points, as described in the
introduction.
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2.2.1 Well-separated pair decomposition

Definition 2.2 [26] Let s > 0 be a real number, and let A and B be two
finite sets of points in R

d. We say that A and B are well-separated with
respect to s if there are two disjoint balls CA and CB, having the same radius,
such that CA contains A and, CB contains B, and the distance between CA
and CB is at least s times the radius of CA. We refer to s as the separation
ratio.

Lemma 2.3 [26] Let A and B be two sets of points that are well-separated
with respect to s, let x and x′ be two points of A, and let y and y′ be two
points of B. Then |x, x′| ≤ (2/s)|x′, y′|, and |x′, y′| ≤ (1 + 4/s)|x, y|.

Definition 2.4 [26] Let S be a set of points in R
d, and let s > 0 be a real

number. A well-separated pair decomposition (WSPD) for S with respect
to s is a sequence {Ai,Bi}, 1 ≤ i ≤ m, of pairs of non-empty subsets of S,
such that

1. Ai ∩ Bi = ∅ for all i = 1, . . . ,m,

2. for each unordered pair {p, q} of distinct points of S, there is exactly
one pair {Ai,Bi} in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or
(ii) q ∈ Ai and p ∈ Bi,

3. Ai and Bi are well-separated with respect to s for all i = 1, . . . ,m.

The integer m is called the size of the WSPD.
Callahan and Kosaraju show how such a WSPD can be computed. They

start by constructing in O(n log n) time, a split tree T having the points in S
as leaves. Given this tree, they show how a WSPD of sizem = O(sdn) can be
computed in time O(sdn). In this WSPD, each pair {Ai,Bi} is represented
by two nodes ui and vi of T . That is, Ai and Bi are the sets of all points
stored at the leaves of the subtrees rooted at ui and vi, respectively.

Theorem 2.5 [26] Let S be a set of points in R
d, and let s > 0 be a

real number. A WSPD for S with respect to s having size O(sdn) can be
computed in O(n log n+ sdn) time.

2.2.2 Pruning a t-spanner

In [79] it was shown that a simple way of pruning an existing t-spanner with
m edges into a (t(1 + ε))-spanner with O(n) edges was to use the WSPD
described in the previous section.
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Assume that we are given a t-spanner G = (V, E). Compute a WSPD
{Ai,Bi}, 1 ≤ i ≤ ℓ, for V, with separation constant s = 4(1+(1+ε)t)/ε and
ℓ = O(n). Let G′ = (V, E ′) be the graph that contains for each i, exactly
one (arbitrary) edge (xi, yi) of E with xi ∈ Ai and yi ∈ Bi, provided such
an edge exists. It holds that G′ is a (1 + ε) spanner of G, and hence:

Fact 2.6 (Corollary 1 in [81]) Given a real constant ǫ > 0 and a t-spanner
G = (V, E), for some real constant t > 1, with n vertices and m edges, one
can compute a (1+ǫ)-spanner G′ of G with O(n) edges in timeO(m+n log n).

2.2.3 Well-Separated Clusters

Let S be a set of points in the plane, and let b ≥ 1 be a real constant.
Let the rectangular diameter of A ∈ S, abbreviated rd(A), be the diameter
of smallest axis-aligned rectangle containing A. We may now consider the
following cluster definitions from [107]:

Definition 2.7 A subset A of S is a b-cluster if A equals S or the distance
between any point of A and any point of S −A is greater than b · rd(A).

Definition 2.8 The hierarchy of b-clusters of S is a rooted tree whose nodes
correspond to distinct b-clusters, such that the root corresponds to S and
leaves to single points of S. Let ν(A) be any internal node and let A be its
corresponding b-cluster. The children of ν(A) correspond to every b-cluster
C such C ⊂ A and there is no b-cluster B such that C ⊂ B ⊂ A.

The following observation is straightforward.

Observation 2.9 Let A and B be two distinct b-clusters, and let x and x′

be two points of A, and let y and y′ be two points of B. Then |x′, y′| ≤
(1 + 2/b)|x, y|.

Proof: Assume w.l.o.g. that |x′, y′| ≥ |x, y| and that rd(A) ≥ rd(B). This
means |x′, y′| ≤ |x, y|+ 2rd(A) ≤ |x, y|+ 2|x, y|/b = (1 + 2/b)|x, y|. 2

The cluster tree can also be computed efficiently.

Theorem 2.10 Let S be a set of n points in R
d and a real constant b ≥ 1,

the hierarchy of b-clusters of S can be computed in O(n log n) time and
space.
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Proof: The hierarchy of b-clusters can easily be computed in O(n log n)
time for any constant number of dimensions d, e.g., by using a hierarchical
cluster decomposition according to the complete-linkage criterion in the L0-
metric (see Krznaric and Levcopoulos [108]), since each such b-cluster is also
a cluster in the complete-linkage hierarchy. 2

2.2.4 Partitioning space into small cells

In this section, given a set V of n points in R
d, and a subset V ′ ⊆ V, we

show how to associate a representative point r ∈ V to each point p ∈ V, such
that the distance |p, r|+ |r, q|, for any point q ∈ V ′, is a good approximation
of the distance |p, q|. The total number of representative points is O(|V ′|).
The idea is to partition space into cells, such that all points included in a
cell may share a common representative point.

We will use the following fact by Arya et al. [17]:

Fact 2.11 (Theorem 1 in [17]) Consider a set S of n points in R
d. There is

a constant cd,ε ≤ d⌈1 + 6d/ε⌉d, such that in O(dn log n) time it is possible
to construct a data structure of size O(dn), such that for any Minkowski
metric:

(i) Given any ε > 0 and q ∈ R
d, a (1 + ε)-approximate nearest neighbor

of q in S can be reported in O(cd,ε log n).

(ii) More generally, given εN > 0, q ∈ R
d, and any k, 1 ≤ k ≤ n, a

sequence of k (1 + ε)-approximate nearest neighbors can be computed
in O((cd,ε + kd) log n) time.

Computing representative points

As a pre-processing step we compute the b-cluster tree T of V ′ with b =
10/ε2, as described in Theorem 2.10.

For a level i in T let ν(D1), . . . , ν(Dℓi
) be the nodes at that level, where

D1, . . . ,Dℓi
are the associated clusters. For each cluster Dj pick an arbitrary

vertex dj as the center point of Dj. The set of the ℓi center points is denoted
D(i). Perform the following four steps for each level i of T .

1. Compute an approximate nearest neighbor structure with D(i) as in-
put, as described in Fact 2.11.
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Figure 2.2: An example cell partition, with respect to V ′, made by the algorithm.
Doughnuts are drawn with solid lines, while inner cells are drawn with dashed lines.

2. For each center point dj in D(i) compute the (1 + ε)-approximate
nearest neighbor of dj . The point returned by the structure is denoted
vj , where vj 6= dj .

3. For each cluster Dj construct two squares; is(Dj) and os(Dj) with
centers at dj and side length 2α = 2(1 + 1/ε) · rd(Dj) and 2β =

2ε|dj ,vj |
(1+ε)(1+2/b) respectively, where α < β. The two squares are called the
inner and outer shells of Dj, and the set theoretical difference between
the inner and the outer shell is denoted the doughnut of Dj .

4. The inner shell of Dj is recursively partitioned into four equally sized
squares, until each square s either

(a) is completely included in the union of the outer shells of the
children of ν(Dj). In this case the square is deleted and, hence,
not further partitioned. Or,

(b) has diameter at most ε
1+ε ·K, whereK is the smallest distance be-
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tween a point within s and a point in Dj. A (1+ε)-approximation
of K can be computed in time O(log |Dj |). This implies that the
diameter of s is bounded by ε ·K.

The resulting cells are denoted inner cells. Note that, due to step 4a,
every inner cell is empty of points from Dj .

Finally, after all levels of T have been processed, we assign a represen-
tative point, r(p), to each point p in V. Preprocess all the produced cells
and perform a point-location query for each point. If p belongs to a dough-
nut cell then the center point of the associated cluster (see step 1) is the
representative point of p. Otherwise, if p belongs to an inner cell C and p
is the first point within C processed in this step then r(C) is set to p. If
p is not the first point then r(p) = r(C). Further, note that an inner cell
may overlap with the union of the outer shells of the children of ν(Dj). If a
point is included in both an inner cell and an outer shell, we treat it as if it
belonged to the inner cell, and assign a representative point as above.

The analysis

Below we prove the main result of this section.

Theorem 2.12 Given a set V of n points in R
d, a subset V ′ ⊆ V and a

positive real value τ1 < 1, the above algorithm associate for each point
p ∈ V a representative point r(p) ∈ V such that for any point q ∈ V ′, it
holds that

min{|p, r(p)|, |r(p), q|} ≤ τ1|p, q|.
The number of representative points is O(|V ′|) and they can be computed
in time O(n log n).

The proof of Theorem 2.12 is partitioned into three steps: first we show
that for each vertex v ∈ V the algorithm always choose a good representative
point, then it will be shown that the total number of representative points
is O(|V ′|), and finally we prove the time-complexity of the algorithm.

Lemma 2.13 For each point p ∈ V and for every point q ∈ V ′ it holds that

min{|p, r(p)|, |r(p), q|} ≤ τ1|p, q|.

Proof: Consider the above algorithm and select a positive constant ε =
(1 +

√
2)τ1/

√
8. For each point p ∈ V we distinguish between two cases

depending on the cell C in which p lies, either in an inner cell or a doughnut.
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inner cell: Let p′ ∈ V ′ be the nearest neighbor of p in V ′. The distance
between a point in C, and its nearest neighbor, can differ at most
rd(C) from the distance between any other point in C and its nearest
neighbor. Thus, from the way C was created it is straight-forward to
see that rd(C) ≤ ε · |p, p′| and thus

min{|p, r(p)|, |r(p), q|} = |p, r(p)| ≤ rd(C) ≤ ε|p, p′| ≤ ε|p, q| ≤ τ1|p, q|.

doughnut: Let cl(C) denote the cluster that was processed when C was
created. We distinguish between two cases, either q ∈ cl(C), or not.

• q ∈ cl(C) : From the algorithm it holds that |p, r(p)| ≥ α −
rd(cl(C)) and that |r(p), q| ≤ rd(cl(C)), which means that

min{|p, r(p)|, |r(p), q|} = |r(p), q| ≤ rd(cl(C)).

It holds that rd(cl(C)) can be rewritten as ε((1+1/ε)·rd(cl(C))−
rd(cl(C))), hence since α = (1 + 1/ε) · rd(cl(C)) and since
rd(cl(C)) ≤ ε|p, q| we get

min{|p, r(p)|, |r(p), q|} = |r(p), q|
≤ rd(cl(C))

≤ ε(α − rd(cl(C)))

≤ ε|p, r(p)|
≤ ε(|p, q| + rd(cl(C)))

≤ 2ε|p, q| ≤ τ1|p, q|

• q /∈ cl(C) : We know that from the assignment of representative
points that |p, r(p)| ≤ 2

√
2β. Let di be the center point of cl(C)

chosen by the algorithm, let d′i ∈ V ′ \ c(C) be the point closest
to di and let p′ ∈ V ′ \ cl(C) be the point closest to p. From the
definition of β it holds that β ≤ ε|di, d

′
i| ≤ ε|p, p′| −

√
2β ⇒ β ≤

ε|p, p′|/(1 +
√

2). As a result we get

min{|p, r(p)|, |r(p), q|} ≤ |p, r(p)|
≤ 2

√
2β

≤ 2
√

2ε|p, p′|/(1 +
√

2)

≤ 2
√

2ε|p, q|/(1 +
√

2)

= τ1|p, q|.
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This concludes the proof of the lemma. 2

Lemma 2.14 The number of representative points is O(|V ′|).

Proof: For each cluster there is (at most) one doughnut cell, thus |V ′| in
total, hence we only need to bound the number of inner cells.

Intuitively this is done as follows. Given a b-cluster D let ν(D) be the
node in T associated with D and let D1, . . . ,Dℓ be the cluster associated
with the children of ν(D). It will be shown that the number of inner cells
of D is O(ℓ), which means that we have O(|V ′|) inner cells in total. For
each cluster Di let di be the center point of Di, the set of these points is
denoted K and |K| = ℓ. In the analysis we will consider the WSPD of K with
a constant s as separation constant. For each well-separated pair {Ai,Bi}
we consider a disc of radius Θ(dist(Ai,Bi)) surrounding the pair. We let
each such disc “pay” for all cells of approximate size dist(Ai,Bi) included
in the circle, which, according to standard packing arguments, is a constant
number of cells. We then show that each cell is paid for by at least one disc.
Since the size of the WSPD according to Theorem 2.5 is O(ℓ), it holds that
the number of cells is O(ℓ).

We are now ready to give a more detailed analysis. Using Observation
2.9 and Lemma 2.3 we obtain the following observation, used throughout
this proof:

Observation 2.15 Consider a well-separated pair {Ai,Bi} and two center
points dj ∈ Ai and dk ∈ Bi, with corresponding b-clusters Dj and Dk. Given
points x ∈ Ai, y ∈ Bi, x

′ ∈ Dj and y′ ∈ Dk, then |x′, y′| ≤ (1 + 4/s)(1 +
2/b)|x, y|.

For simplicity of writing we will set τ = (1 + 4/s)(1 + 2/b). Next, for each
well-separated pair {Ai,Bi} choose two arbitrary points ai ∈ Ai and bi ∈ Bi.
Let Ci be the disc with center at ai and of radius 17τ(1 + 1/ε) · |ai, bi|. The
aim is to show that each cell is paid for, that is, given a cell c we need to
show that there exists a pair {Ai,Bi} such that

(i) c intersects the disc Ci, and

(ii) 1
γ · rd(c) ≤ |ai, bi| ≤ δ · rd(c), where δ = 68τ(1+ε)(1+2/b)

ε2 and
γ = 4τ .

That is, the cell must overlap the disc surrounding {Ai,Bi} and its di-
ameter must be comparable to the distance between the points in Ai and
the points in Bi.
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Consider an arbitrary inner cell c, let p be an arbitrary point of V within
c and let q be the nearest neighbor in V ′ of p. Assume w.l.o.g. that q ∈ D1,
and recall that d1 is the center point of D1. Finally, let r be the point
in {V ′ \ D1} closest to d1. We will first show that there must exist well-
separated pairs such that (i) holds. This will be shown by contradiction,
where we distinguish between three cases:

Case 1: |ai, bi| > δ · rd(c) for all pairs {Ai,Bi} that contain d1.

Since the bound holds for every well-separated pair containing d1 it
especially holds that |d1, r| > δ

τ · rd(c) = 68·rd(c)
ε2 . Considering the side

length β of os(D1) it holds from the algorithm, and especially from
the way that c was constructed, that

β >
εδ

τ(1 + ε)(1 + 2/b)
· rd(c) =

68

ε
· rd(c)

and

rd(c) >
ε

2

( |p, q|
1 + ε

−
√

2 · rd(c)
)

>
ε

2

(1

2
|p, q| −

√
2 · rd(c)

)

.

The second inequality can be rewritten and simplified: |p, q|+ rd(c) <
8
ε · rd(c). Now, since |p, q| + rd(c) < 8

ε · rd(c) <
β
8 it holds that c is

completely included in the outer shell of D1, which is a contradiction
since c then would have been removed by the algorithm (step 4a).

Case 2: |ai, bi| < rd(c)/γ for all pairs {Ai,Bi} that contain d1.

This means that rd(V ′) ≤ τ ·rd(c)
γ , which can be rewritten as rd(c) ≥

γ·rd(V ′)
τ . From the construction of the inner cells it holds that |p, q| ≥

rd(c)/ε. Combining these two inequalities we obtain that

|p, q| ≥ rd(c)

ε
≥ γ · rd(V ′)

ε · τ =
4 · rd(V ′)

ε
> 2α.

Thus, c must lie partly outside the inner shell, which is a contradiction
since c was created by partitioning the inner shell.

Case 3: Neither Case 1 or 2 holds.

This means we have at least one well-separated pair such that |ai, bi| <
rd(c)/γ, and at least one pair such that |ai, bi| > δ · rd(c) for all pairs
{Ai,Bi} in which d1 is included.
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First consider the union of all well-separated pairs where |ai, bi| <
rd(c)/γ. Each point in this union is included in one cluster Di. Con-
sider the union of all such clusters, denoted U . We have, for any point
u ∈ U that |d1, u| < τ · rd(c)/γ ⇒ rd(U) ≤ 2

√
2τ · rd(c)/γ.

Next consider all well-separated pairs {Ai,Bi} such that |ai, bi| > δ ·
rd(c), and assume w.l.o.g. that d1 ∈ Ai. Each point in the union of all
Bi’s is included in one cluster Di, and we let U ′ denote the union of all
these clusters. Let u and u′ be two points in U and U ′, respectively.
We have that

|u, u′| ≥ |d1, u
′| − rd(U) ≥ δ · rd(c)

τ
− rd(U) ≥ 67

ε2
· rd(U) ≥ b · rd(U),

since b = 10/ε2. Thus U must be a b-cluster, which means there
cannot exist well-separated pairs such that rd(c)/γ > |ai, bi|, which is
a contradiction.

We have shown that for every cell c there exists a well-separated pair
{Ai,Bi} such that (i) holds, and such that d1 ∈ {Ai∪Bi}. In order to show
(ii), we consider a well-separated pair {Ai,Bi} that contains d1 and such
that |ai, bi| ≥ rd(c)/γ. Recall that the radius of Ci is 17τ(1 + 1/ε) · |ai, bi|.
Let x denote the center of Ci, it holds that

|p, x| < |p, q|+ τ · |ai, bi| ≤
(2

ε
+ 1
)

· rd(c) + τ · |ai, bi| < 8τ
(

1 +
1

ε

)

· |ai, bi|.

Since the distance from the center Ci to p is less than the radius of Ci it
follows that c must overlap Ci and, hence, (ii) holds. In conclusion, we have
O(|V ′|) cells and, since every cell has at most one representative point, the
number of representative points is also O(|V ′|). 2

Lemma 2.16 The representative points can be computed in timeO(n log n).

Proof: The preprocessing, building the b-cluster tree and selecting the
center points of each cluster takes O(n log n) time in total. An approximate
nearest neighbor data structure is constructed on each level, but the total
number of elements involved, summing over all levels, is at most 2|V ′|. This
follows since the number of leaves in T is |V ′|, and hence the total number of
nodes in T is 2|V ′|. It immediately follows that step 2 takes 2|V ′| ·O(log |V ′|)
time in total and step 3 takes O(|V ′|) time.

The final step of the algorithm is done by performing n point-location
queries, each taking O(log n) time.
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Hence, it remains to bound step 4, which is equivalent to bound the
total number of squares considered during the partition. From Lemma 2.14,
we know that the number of cells in the partition is O(|V ′|). However,
the running time of the algorithm depends on the total number of squares
considered during the construction of the partitioning. We will below show
that the total number of squares also is bounded by O(|V ′|).

Consider an inner shell I and its corresponding b-cluster D. Let v(D) be
the node in T associated with D and let D1, . . . ,Dℓ be the clusters associated
with the children of ν(D). Further, consider the partition tree Y of I, where
the nodes correspond to squares in the natural way, and the leaf nodes
correspond to either:

(i) inner cells included in the final partitioning, or

(ii) squares which were removed because they were completely included
in an outer shell of D1, . . .Dℓ, and thus not partitioned further.

Let f be a node in Y and let c be its corresponding cell, such that the
corresponding cell of one of its sibling nodes was removed due to inclusion
in the outer shell os(Di) of a cluster Di.

Since the cell of the sibling node was removed, and sibling cells are of
equal size, it is clear that c must be smaller than os(Di). Next, consider a
leaf node g ∈ Y of type (i) and its corresponding cell c′ resulting from the
continued partitioning of c. We know that os(Di) is greater than is(Di),
which, in turn is larger than rd(Di) multiplied by some large constant fac-
tor based on ε. Further, since a part of g lies outside os(Di) and is not
partitioned further once it is at a sufficient distance from the points in Di,
it is straight-forward to see that the size of c′ is at least rd(Di) multiplied
by some constant factor including ε. Thus c is only a constant factor larger
than c′, which means that c′ was constructed by partitioning c a constant
number of times.

Our goal is to show that we have O(ℓ) nodes in Y, since this immedi-
ately implies that the total number of considered squares are O(|V ′|). From
Lemma 2.13 we know that we have O(ℓ) leaf nodes of type (i). Consider
such a type (i) leaf node g ∈ Y, and all ancestors A(g) up to the first node
such that none of its children is a type (ii) node. We let g pay for all children
of all nodes in A(g), which are of type (ii). From the above reasoning it
is straight-forward to see that each type (i) leaf node pays for a constant
number of type (ii) leaf nodes. Further each type (ii) leaf node h ∈ Y must
be paid for by a type (i) leaf node. This holds, since at least one of its
siblings h′ is not a type (ii) leaf node (if all siblings were of type (ii) then
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their parents would by type (ii), which is a contradiction), and thus h must
be paid for by the leaf node of type (i) resulting from the partitioning of h′.

This means that the total number of leaf nodes (type either (i) or (ii))
are O(ℓ). Further, since the number of internal nodes in Y is at most a
constant factor larger than the total number of leaf nodes it follows that the
total number of nodes in Y is O(ℓ), and thus, the total number of considered
squares is O(|V ′|). 2

2.3 Constructing the Oracle

This section is divided into three subsections: first we present the construc-
tion of the structure, then how queries are answered and, finally the analysis
is presented.

Consider two graphs H1 = (V,F1) and H2 = (V,F2) with the same
vertex set, where H1 is a collection of N vertex disjoint Euclidean t-spanners
Gi = (Vi, Ei), 1 ≤ i ≤ N , with m edges where t > 1 is a constant, and H2 is
a graph with M edges of non-negative weight. The union of the two graphs
is denoted G = (V, E = {F1 ∪ F2}).

2.3.1 Constructing the basic structures

In this section we show how to pre-process G in time O(m+(M2 +n) log n)
such that we obtain three structures that will help us answer (1 + ε)-
approximate distance queries in constant time. We will assume that the
number of edges in each subgraph is linear with respect to the number of
vertices in Vi, if not the subgraph is pruned using Fact 2.6. Hence, we can
from now on assume that |Ei| = O(Vi).

Let V ′ be the set of vertices in V incident on an inter-connecting edge.
Now we can apply Theorem 2.12 with parameters V, V ′ = Γ′ and τ1 to
obtain a representative point for each point in V.

Now we are ready to present the three structures:

Oracle A: An oracle that given points p and q returns a 3-tuple
[SI, r(p), r(q)], where SI is a boolean with value ‘true’ if p and q belongs
to the same island, otherwise it is ‘false’, and r(p) and r(q) is the
representative points for p and q respectively.

Oracle B: An (1 + ε)-approximate distance oracle for any pair of points
belonging to the same island.
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Matrix D: An O(M) × O(M) matrix. For each pair of representative
points, p and q, D contains the (1 + ε)-approximate shortest distance
between p and q.

The representative point of a point p is denoted r(p), and the set of all
representative points of Vi and V is denoted Γi and Γ, respectively. Note
that Ci ⊆ Γi. Now we turn our attention to the construction of the oracles
and the matrix.

Oracle A:

The oracle is a 4-level tree, denoted T , with the points of V corresponding to
the leaves of T . The parents of the leaves correspond to the representative
points of V and their parents correspond to the islands G1, . . . ,GN of G.
Finally, the root of T corresponds to G. Since the representative points
already are computed, the tree T can be constructed in linear time. The
root is at level 0 and the leaves are at level 3 in T .

Assume that one is given two points p and q. Follow the paths from p
and q respectively to the root of T . If p and q have the same ancestor at level
1 then they lie on the same island and hence SI is set to ‘true’, otherwise to
‘false’. Finally, the ancestor of p and the ancestor of q at level 2 corresponds
to the representative points of p and q. Obviously a query can be answered
in constant time since the number of levels in T is four.

Oracle B:

This oracle is the structure that is easiest to build since we can apply the
following result to each of the islands. Combining Theorem 1 in [80] with
Corollary 1 in [81] we get the following fact (see also [79]):

Fact 2.17 Let V be a set of n points in Rd, let τ2 be a positive real constant
and let G = (V, E) be a t-spanner for V, for some real constant t > 1, having
m edges. In O(n log n) time we can preprocess G into a data structure of
size O(n log n), such that for any two points p and q in V, we can in constant
time compute a (1 + τ2)-approximation to the shortest-path distance in G
between p and q.

Hence, oracle B will actually be a collection of oracles, one for each is-
land. Given two points p and q the appropriate oracle can easily be found
in constant time using a similar construction as for oracle A. Thus, af-
ter O(n log n) pre-processing using O(n log n) space, (1 + τ2)-approximate
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shortest path queries between points on the same island can be answered in
constant time.

Matrix D:

For each i, 1 ≤ i ≤ N , compute the WSPD of Γi with separation con-
stant s = (1+τ2+τ3

τ3−τ2
). As output we obtain a set of well-separated pairs

{Ai,Bi}1≤i≤wi , such that wi = O(|Ci|). Next, construct the non-Euclidean
graph F = (Γ, E ′) as follows. For each Γi and each well-separated pair
{Aj,Bj} of the WSPD of Γi select two (arbitrary) representative points
aj ∈ Aj and bj ∈ Bj . Add the edge (aj , bj) to E ′ with weight Bi(aj , bj),
where Bi(p, q) denotes a call to oracle Bi for Gi with parameters p and q.
Note that the graph F will have O(M) vertices and edges.

Let D be an O(M)×O(M) matrix. For each representative point p ∈ Γ
compute the single-source shortest path in F to every point q in Γ and
store the distance of each path in D[p, q]. The total time for this step is
O(M2 logM), and it can be obtained by running Dijkstra’s algorithm M
times.

Lemma 2.18 The oracles A and B, and the matrix D can be built in
time O(m + (M2 + n) log n) and the total complexity of A, B and M is
O(M2 + n log n).

Proof: The lemma is obtained by adding up the complexity for the pre-
processing together with the cost of building each structure. Recall that as
pre-processing steps we first pruned the subgraphs and then we computed
the representative point for each point in V. This was done in O(m+n log n)
time using O(n log n) space, according to Fact 2.6 and Theorem 2.12. Next,
oracle A was constructed in linear time using linear space, followed by the
construction of oracle B which, according to Fact 2.17 was done inO(n log n)
time using O(n log n) space. Finally, the matrix D was constructed by
first computing the graph F . Then a single-source shortest path query
was performed for each vertex in F . Since the complexity of F is O(M)
it follows that D was computed in time O(M2 log n) using O(M2) space.
Hence, adding these bounds gives the lemma. 2

2.3.2 Querying

Given the two oracles and the matrices presented above the query algorithm
is very simple, see pseudo-code below. Let r(p) denote the representative
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p
q

Figure 2.3: Illustrating the approximate shortest path between p and q. The boxes
illustrate the “airports” along the path.

point of p ∈ V. Now assume that we are given two points p and q. If p and
q belong to the same islands then we query Oracle B with input p, q and
return the value obtained from the oracle. If p and q does not belong to the
same island we return the sum of B(p, r(p)), D(r(p), r(q)) and B(r(q), q).
Obviously this is done in constant time.
Query(p, q)
1. [SameIsland, r(p), r(q)]← A(p, q)
2. distance← B(p, r(p)) +D(r(p), r(q)) +B(r(q), q)
3. if SameIsland then
4. distance← min(distance,B(p, q))
5. return distance

2.3.3 Correctness

Let δG(p, q) be a shortest path in a graph G between two points p and q.

Observation 2.19 Let p and q be any pair of points in Vi it holds that
B(p, q) ≤ (1 + τ2) · δGi(p, q).

Observation 2.20 Given a point p ∈ Vi it holds that δGi(p, r(p)) ≤ (1 +
τ4) · δG(p, r(p)).

Proof: Let h be the first point in Ci along the path δG(p, r(p)) from p
to r(p). If r(p) = h then we are done, otherwise we will have two cases
according to Theorem 2.12.

(a) If |p, r(p)| ≤ τ1 · |p, h| then δGi(p, r(p)) ≤ τ1t · |p, h| which is less than
|p, h|, hence this case cannot occur.

(b) Otherwise, |r(p), h| ≤ τ1 · |p, h| and hence δGi(p, r(p)) ≤ δG(p, h) +
δG(h, r(p)) ≤ (1+τ1t) ·δG(p, h). The observation follows by setting τ4 = t ·τ1.

2
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Lemma 2.21 Let p and q be any pair of representative points in Vi it holds
that D(p, q) ≤ (1 + τ3) · δGi(p, q).

Proof: Note that it suffices to prove that D(p, q) ≤ 1+τ3
1+τ2
·B(p, q), according

to Observation 2.19. The proof is done by induction on the Euclidean length
of (p, q).

Base case: Recall that F = (Γ, E ′) was constructed to build the matrix
D. Assume that (p, q) is the closest pair of Γ. In this case there exists a
well-separated pair {Aj,Bj} such that Aj = {p} and Bj = {q} otherwise
(p, q) could not be the closest pair. Hence the claim holds since there is an
edge in F of weight B(aj, bj).

Induction hypothesis: Assume that the lemma holds for all pairs in Γ
closer than |p, q| to each other.

Induction step: If (p, q) /∈ F then there exists an edge (x, y) in F and a
well-separated pair {Aj ,Bj} such that x, p ∈ Aj and y, q ∈ Bj. According to
the induction hypothesis there is path between p and x of weight 1+τ3

1+τ2
·D(p, q)

and a path between y and q of weight 1+τ3
1+τ2

·D(p, q). Also, the weight of the
edge (x, y) is B(x, y). Putting together the weights we obtain that

δF (p, q) ≤ 1 + τ3
1 + τ2

B(p, x) +B(x, y) +
1 + τ3
1 + τ2

B(y, q)

≤
(

2
1 + τ3
1 + τ2

(2/s) + (1 + 4/s)
)

· B(p, q)

=
1 + τ3
1 + τ2

B(p, q) = (1 + τ3) · δGi(p, q)

In the third step we used the fact that s = 1+τ2+τ3
τ3−τ2

. 2

Corollary 2.22 Let p and q be any representative points in V it holds that
D(p, q) ≤ (1 + τ3) · δG(p, q).

Proof: Since all inter-connecting edges in G also is in F we can apply
Lemma 2.21 to obtain the corollary. 2

Lemma 2.23 Given a pair of points p, q ∈ V it holds that

δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q) ≤ (1 + τ5) · δG(p, q).

Proof: Let h(p) and h(q) denote the points in C that is first encountered
when following the path δG(p, q) from p to q and from q to p respectively.
According to Theorem 2.12 there are four cases to consider.
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1. |p, r(p)| ≤ τ1 · |p, h(p)| and |q, r(q)| ≤ τ1 · |q, h(q)|.

δG(p, q) ≤ δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q)

≤ δG(p, r(p)) + δG(r(p), p) + δG(p, h(p))

+δG(h(p), h(q)) + δG(q, h(q))

+δG(q, r(q)) + δG(r(q), q)

≤ (1 + 2tτ1)δG(p, h(p)) + δG(h(p), h(q))

+(1 + 2tτ1)δG(h(q), q)

< (1 + 2tτ1) · δG(p, q)

2. |r(p), h(p)| ≤ τ1 · |p, h(p)| and |r(q), h(q)| ≤ τ1 · |q, h(q)|.

δG(p, q) ≤ δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q)

≤ δG(p, h(p)) + δG(h(p), r(p)) + δG(r(p), h(p))

+δG(h(p), h(q)) + δG(h(q), r(q))

+δG(r(q), h(q)) + δG(h(q), q))

≤ (1 + 2tτ1)δG(p, h(p)) + δG(h(p), h(q))

+(1 + 2tτ1)δG(h(q), q)

< (1 + 2tτ1) · δG(p, q)

3. |p, r(p)| ≤ τ1 · |p, h(p)| and |r(q), h(q)| ≤ τ1 · |q, h(q)|.

δG(p, q) ≤ δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q)

≤ δG(p, r(p)) + δG(r(p), p) + δG(p, h(p))

+δG(h(p), h(q)) + δG(h(q), r(q))

+δG(r(q), h(q)) + δG(h(q), q))

≤ (1 + 2tτ1)δG(p, h(p)) + δG(h(p), h(q))

+(1 + 2tτ1)δG(h(q), q)

< (1 + 2tτ1) · δG(p, q)

4. |p, r(p)| ≤ τ1 · |p, h(p)| and |r(q), h(q)| ≤ τ1 · |q, h(q)|. See case 3.

The lemma follows by setting τ5 = 2tτ1. 2

Lemma 2.24 Let p and q be any points in V it holds that

δG(p, q) ≤ B(p, r(p)) +D(r(p), r(q)) +B(r(q), q) ≤ (1 + ε) · δG(p, q).
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Proof:

δG(p, q) ≤ B(p, r(p)) +D(r(p), r(q)) +B(r(q), q)

≤ (1 + τ2) · δGi(p, r(p)) + (1 + τ3) · δG(r(p), r(q))

+(1 + τ2) · δGj (r(q), q)

≤ (1 + τ2)(1 + τ4) · δG(p, r(p)) + (1 + τ3) · δG(r(p), r(q))

+(1 + τ2)(1 + τ4) · δG(r(q), q)

< (1 + τ4)(1 + τ3) · (δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q))

≤ (1 + τ4)(1 + τ3)(1 + τ5) · δG(p, q)

= (1 + ε) · δG(p, q)

On line 1 we used Observation 2.19 together with Lemma 2.21. On the
following line we used Observation 2.20, applied Lemma 2.23 and finally
replaced (1 + τ2)(1 + τ3)(1 + τ5) with (1 + ε). 2

Putting together Lemma 2.18 and Lemma 2.24 gives us Theorem 2.1.

2.4 Refinements and extensions

Below is listed a number of refinements and extensions:

1. A refined analysis yields that the data structure of Theorem 2.1 only
uses O(|C|2 + n log n) space, where C is the set of all airports.

2. The data structure can be modified to handle the case when each island
Gi is a ti-spanner, i.e., every island has different (although constant)
dilation.

3. If we allow (2k − 1)-approximations, where k is a positive integer, we
can construct a data structure in O(n log n + kM |C|1/k) time using
O(n log n+ k|C|1+1/k) space, by replacing the usage of Matrix D with
the method for general graphs used by Thorup and Zwick [157].





Chapter 3

Restricted Mesh

Simplification Using Edge

Contractions

In computer graphics, objects are commonly represented using triangle meshes.
One important problem regarding these meshes is how to efficiently simplify
them, while maintaining a good approximation of the original mesh. As an
example, scanners often produce information-redundant meshes containing
millions of vertices and triangles. Further, often the simplification should
be performed in several rounds, such that a level-of-detail hierarchy is con-
structed. One application of such a hierarchy is that an appropriate level
may be chosen depending on viewing distance, as finer details tend to be un-
necessary as the distance increases. Other applications include progressive
transmission and efficient storing.

It is common to represent the level-of-detail hierarchy as a directed,

u v v

Vertex Split

Edge Contraction

Figure 3.1: An edge contraction, and its inverse operation a vertex split.
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acyclic and hierarchical graph, where each level in the graph corresponds
to a level in the level-of-detail hierarchy, and where each node in the graph
corresponds to a triangle. The first, top-most, level in the graph corresponds
to the input mesh. When a contraction is made two triangles disappear,
and one or more triangles are affected in such a way that their appearance
change. In the graph this is represented with edges between disappearing
triangles at some level i, and the affected triangles at level i + 1. The
efficiency of a simplification algorithm is directly related to the size [66, 166]
and depth of the hierarchy graph that it produces. Simplification algorithms
constructing hierarchies of size O(n) and depth O(log n) have been presented
for several problem variants [34, 44, 53, 102].

Another related problem [9, 24] is where a triangulation is not simplified
but transformed into a different triangulation, possibly on a set of different
points. The transformation is done using edge flips and point moves.

Mesh simplification is generally regarded as a mature field (see [72] for
a survey), consisting of several suggested methods and problem variants.
In this chapter we consider the method of iteratively contracting edges [34,
73, 86, 91], where contractions are made such that no edge crossings occur
during the process. Many of the results in previous papers were achieved
using such standard edge contractions.

In this chapter we impose a new restriction, namely that an edge must
be contracted onto one of its end vertices, see Figure 3.1. In order to achieve
results under this restriction we concentrate on the planar setting, which is
suitable for modeling terrains in 3D. The effect of such a contraction is that
one of its end vertices is removed. We call vertices that can be removed in
this simple way 1 -step removable.

It would be preferable to reduce the size of the triangulation by identi-
fying only 1-step removable vertices. For this purpose, we show that in the
planar setting there is always at least one 1-step removable vertex inside
every non-empty cycle of length smaller than six, see Theorem 3.11. This
ensures us that if the outer frame consists of less than six vertices, then one
can proceed reducing repeatedly the number of vertices in the interior by
such simple 1-step removals. However, this result does not suffice to ensure
a hierarchical graph of logarithmic size, nor does it guarantee that the user
can specify a substantial amount of vertices (and/or edges) he wants to keep
intact, while still being able to perform such simple edge contractions. To be
able to guarantee both these desired options, we introduce a smooth alter-
native to 1-step reductions, namely 2-step removals. They result in a small
modification of the mesh around the vertex to be removed. A 2-removal
is geomorphic, i.e., it is visually smooth, it avoids degenerate intermediate



3.1 Basic definitions 43

triangles of zero area, and it involves at most 2 straight movements. We call
vertices which can be removed in this way 2-step removable. We also in-
troduce the possibility that the user defines “important” vertices (or edges)
which have to remain intact. Given m such important points we show that
a hierarchical graph of size O(n) and depth O(log(n/m)) can be achieved
using 2-step removals in linear time, while maintaining the m important ver-
tices. Furthermore, some vertices are not even 2-step removable, and thus,
we also define and study k-step removable vertices. These are also visually
smooth operations, like 2-step removals, with the only difference that they
may involve up to k straight movements. The option of performing k-step
removals, for some constant k > 2 increases substantially the lower bound
on the portion of removable vertices. We show that when removing a vertex
v with degree q, then k is bounded from above by either q − 4, or by the
number of concave (reflex, i.e. > π) corners on the link of v (see Section 3.2
for a definition), and from below by (⌊q/3⌋ − 1).

In Section 3.1 we define the k-step remove operation, and in Section 3.2
we prove two upper bounds related to k through two different approaches,
as well as a lower bound. Further, in Section 3.3 we derive lower bounds for
the number of k-step removable vertices. In Section 3.4 we give additional
arguments for the usefulness of the 2-step removals, by showing that they
increase in number as the number of 1-step removable vertices decreases.
Their exact relationship is determined. In Section 3.5 we show that a hier-
archical graph of size O(n) and depth O(log(n/m)) can be achieved using
2-step removals in linear time, while maintaining m important vertices. Fi-
nally, we give a brief overview of future research in Section 3.7.

For simplicity, in the text we usually assume, unless mentioned otherwise,
that we have no three collinear points, and hence we do not have to consider
angles with degree 180. Our results also hold if we allow collinear points
and in this case treat angles of 180 degrees as concave.

3.1 Basic definitions

In this section we define some basic operations and notations. As input we
are given a triangulation T = (V,E) with a simple polygon P as boundary,
and a set U ⊆ V of m important vertices, where V is the set of n vertices of
the triangulation and E is the set of edges, see Fig. 3.2. We let Pe denote
the edges of P , and we let Pv denote the vertices of P , where Pv ⊆ U ,
meaning that neither Pe or Pv will be removed during simplifications. We
call the vertices in Pv exterior vertices and the rest interior vertices. Next,
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T

P

Figure 3.2: A planar triangulation T , with a simple polygon P as boundary, is
given as input, as well as m important vertices (circled) that may not be removed.

let NT (v) := {w ∈ V |(v,w) ∈ E} denote the open neighborhood of a vertex
v ∈ V . A restricted edge contraction, see Fig. 3.1, of an edge e = (u, v) ∈ E
on (or onto) v, is an operation that removes u, v and for each edge (u,w), if
w 6= v, and (v,w) 6∈ E, then it replaces (u,w) by (v,w) in T , and if w 6= v,
and (v,w) ∈ E, then (u,w) is removed from T . The inverse operation
where vertex v is split into two vertices u ∈ V and v ∈ V is called a
vertex split, see Fig. 3.1 In this chapter we only consider such restricted
edge contractions. Furthermore, for the remainder of this chapter we say
edge contraction as short for restricted edge contraction. In a graphics
related context, an edge contraction can be shown smoothly, by continuously
displaying a straight motion of u to v, while the edges adjacent to u are
maintained as straight connections to u. Moreover, the aim is to simplify T
by iteratively performing edge contractions.

A problem that often occurs during edge contractions of triangulations is
that the resulting graph might not be a planar triangulation. An edge con-
traction is said to be valid if the resulting graph is still a planar triangulation
(see Fig. 3.3a), and invalid otherwise (see Fig. 3.3b).

(a) (b)

Figure 3.3: (a) A valid edge contraction. (b) An invalid edge contraction.
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Definition 3.1 Given an interior vertex v ∈ V , the link of v, denoted
link(v), is the cycle of T passing through the neighbors of v, where the
edges of the cycle form the boundary of the union of the triangles incident
to v. Furthermore, let I(v) denote the closed region bounded by link(v). We
say that two vertices u, u′ ∈ link(v) ∪ {v} see each other if the straight-line
segment between u and u′ lies entirely within I(v)

In this chapter we consider a generalized edge contraction. For this
purpose we first define a split-and-contract operation.

Definition 3.2 Given a vertex v ∈ V and vertices s, t, u ∈ link(v), let
C(s, t, u) be the vertices (s and t included) of the chain of link(v) which
connects s and t, and includes u. A split-and-contract from v to u, using s
and t (illustrated in Fig. 3.4a-c) denotes an operation where v is split into
two vertices, v and v1, such that v1 is connected to C(s, t, u)∪ {v}, and v is
connected to {NT (v) \C(s, t, u)}∪{s, t, v1}. After this split the edge (v1, u)
is contracted on u. The split-and-contract operation is said to be valid if
the triangulation is planar at every step of the operation.

v

v1
v

u u
u
′

v
′ v

′
v
′

u

v
′

(a) (b) (c) (d)

vu
′

u
′

uu
′

t

s s

t

s

t

s

t

Figure 3.4: Illustrating a 2-step contraction of a degree 6 node v.

Note that a split-and-contract does not reduce the size of T . However,
when an edge is contracted, two vertices are replaced by one. Thus, we
define the concept of a 1-step removable vertex and generalize this concept
into a k-step removable vertex.

Definition 3.3 If there exists an edge e = (u′, v) ∈ E such that e is validly
contractible on v, then we say that u′ is 1-step removable on (or onto) v.
Such an operation is called a 1-step removal.

Definition 3.4 A vertex v ∈ V is said to be k-step removable if there exist
vertices s, t, u ∈ link(v) such that a valid split-and-contract from v to u,
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using s and t can be made, and after this split-and-contract, v is (k − 1)-
step removable. Such an operation is called a k-step removal.

It is clear that a k-step removable vertex is also (k + 1)-step removable.
Figures 3.4a-d show a vertex v that is 2-step removable since a valid split-
and-contract from v to u, using s and t is followed by a 1-step removal of v
on u′.

3.2 Characterization of k-step removals

In this section we consider k-step removals, and show bounds (Lemma 3.6,
Theorems 3.8 and 3.13) related to k and the removability of a vertex v. We
start with the lower bounds.

v

Figure 3.5: Example of a vertex v that is not 1-step removable.

Lemma 3.5 In order to remove an interior vertex v ∈ V with degree at
least six a 2-step removal may be required.

Proof: Figure 3.5 illustrates an example where no vertex on link(v) can
see all other vertices in link(v), hence the lemma follows. 2

For a more general lower bound we consider a vertex v as shown in
Fig. 3.6a. The vertex is such that link(v) consists of three concave chains
C0

1 , C
0
2 and C0

3 , each such that the number of vertices differs by at most one.

Lemma 3.6 In order to remove a vertex v of degree at least q ≥ 9, a
(⌊q/3⌋ − 1)-step removal may be required.

Proof: Assume that a series of at most (⌊q/3⌋−2) valid split-and-contracts
are performed on v. This results in a series l0, . . . , lk, k ≤ ⌊q/3⌋−2, where li
denotes link(v) after i split-and-contracts. We claim that for each li, i ≤ k,
it holds that it consists of three concave chains, Ci

1, C
i
2 and Ci

3, connected
either by an edge or a common convex corner, where each such concave
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Figure 3.6: (a) The structure used to prove the lower bound. (b) The structure
after i split-and-contracts, for i = 2.

chain consists of at least ⌊q/3⌋ − (i+ 1) concave vertices, see Fig. 3.6b. We
show this claim by a structural induction.

First consider the base case, l0. The claim holds immediately from the
construction. For the induction hypothesis we assume that the claim holds
for li−1. Finally, we consider li. In order to perform a valid split-and-
contract, three consecutive vertices on link(v) are required which all see
each other. In li−1 we have two types of consecutive vertices, where they
all see each other. Either a convex vertex c ∈ link(v) and its two neighbors
c′ ∈ link(v) and c′′ ∈ link(v) all see each other, or the two endpoints of
an edge e = (o, p) connecting two concave chains, where o, p ∈ link(v) and
their two neighbors o′ ∈ link(v) and p′ ∈ link(v), all see each other.

Using any of these vertices in a valid split-and-contract results in that
the number of concave vertices on any of the concave chains Ci−1

j , 1 ≤ j ≤ 3,
is reduced by at most one. Thus, the number of concave vertices on each
concave chain Ci

j will be at least ⌊q/3⌋ − (i + 1). Further, these concave
chains will be pairwise connected by either an edge or a common vertex.
Thus, the claim follows.

Further, as long as each concave chains Ci
j has at least two corners, no

1-step removal of v is possible. From the above claim it is clear that at
least ⌊q/3⌋ − 2 valid split-and-contracts have to be performed before any
concave chain Ci

j can have at most one concave corner. This holds since
⌊q/3⌋ − (⌊q/3⌋ − 2 + 1) = 1. The lemma follows. 2

With regards to guaranteeing a hierarchical simplification graph of small
size and depth, we mainly consider 2-step removals (Section 3.5). However,
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depending on complexity, some areas of an object may require more triangles
than others, such as, for example, the nose of a face, versus the more flat
cheek. Thus, it would be desirable to be able to choose local areas in which
to remove vertices. However, as Lemma 3.6 shows, 2-step removals may
not always be sufficient for a specific area. Consider, for example, the area
marked as A in Fig. 3.6. This area contains only one vertex v of degree
q ≥ 12 (a ⌊q/3⌋ − 1 - step removal may be required). Thus, the generalized
k-step removal is needed.

Next we focus on finding an upper bound. Assume without loss of gener-
ality that v has c concave vertices on link(v), as shown in Fig. 3.11a. Let s1
be a concave vertex farthest from v and order the concave vertices s1, . . . sc

as they appear clockwise around v (in this context, let i + 1 = 1 if i = c,
and let i − 1 = c if i = 1). Next, let βi denote the angle ∠si−1sisi+1 and
let αi denote the angle ∠sivsi+1. Moreover, let C(si) denote the subchain
of link(v) clockwise from si to si+1 and let CP (si) denote the convex poly-
gon bounded by C(si) and the edge (si, si+1). The following lemma will be
needed:

Lemma 3.7 If αi ≤ 180◦ then the two consecutive concave vertices si and
si+1 must see each other.

Proof: Since si and si+1 are consecutive concave vertices of link(v), the
chain C(si) and the vertex v must lie on opposite sides of the line sisi+1,
and the lemma follows. 2

(a) (c)(b)

v u′

v

u
p

p′ p′ u′
p u

q

v

l

v′

Figure 3.7: (a) A degree five vertex v with only one concave vertex in link(v).
(b) and (c) illustrates the two cases occurring in the proof of Theorem 3.8. Edges
between v and link(v) are not included in order to avoid cluttering of the figure.

Theorem 3.8 Every interior vertex v with degree at most k is q-step re-
movable, where q = max{1, k − 4}.
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Proof: The theorem is proven by induction on the degree of v.
Base case: Vertices of degree at most four can easily be shown to be 1-

step removable. We thus assume that v has degree five, as shown in Fig. 3.7.
Consider I(v). We say that a vertex q is concave/convex, if the angle of the
two edges incident on q is concave/convex. If there exists a vertex v′ of
link(v) which can see all other vertices of link(v) then v is 1-step removable
on v′, and the theorem holds. Below we prove that link(v) will always
contain at least one vertex that can see all the other vertices of link(v).

If link(v) is a convex polygon then every vertex can see all the other
vertices. If link(v) has one concave vertex v′ then v′ can see all other
vertices of link(v), see Fig. 3.7a. Otherwise, link(v) has two concave vertices
(it cannot have three), and we have two cases as illustrated in Fig. 3.7b
and 3.7c, respectively. In the first case the concave vertices p and u are not
adjacent, while in the second they are.

First case: Note that p and u must lie inside the triangle defined by
the three vertices of the convex vertices in link(v), and that p and u always
see each other. There exist two adjacent convex vertices p′ and u′, such that
p′ is adjacent to p and u′ is adjacent to u. It is straightforward to see that p
sees all vertices of link(v) if the edge (p, p′) does not intersect the extension
ray of the edge (u, u′), as p then can see u′. The same holds for u, the edge
(u, u′) and the line extension of (p, p′). However, both cases cannot occur
simultaneously as this implies that the edges (u, u′) and (p, p′) must cross.
Thus, either p or u can see all of link(v).

Second case: Consider the one convex vertex q not adjacent to either
p or u. Let p′, u′ be the other two vertices such that p′ and u′ are adjacent
to p and u, respectively. Since q is adjacent to both p′ and u′, q will see all
vertices of link(v) if and only if q sees both p and u. Next, consider the line
l through p and u. Since p and u are concave vertices, p′ and u′ must lie on
the same side of l. Furthermore, q must connect to p′ and u′ such that p′

and u′ are convex and p and u are concave. This means that q must lie on
the opposite side of l with respect to p′ and u′, which immediately implies
that q can see both p and u.

Thus, v is 1-step removable in both subcases and the base case holds.
Induction hypothesis: Assume that the theorem holds for all vertices of

degree at most m− 1.
Induction step: Assume that v has degree m. We show that there always

exists a valid split-and-contract, where the result of a split-and-contract is
that one edge incident to v is flipped.

If link(v) contains at most one concave vertex then v is 1-step removable
as there exists a vertex in link(v) that sees all other vertices. Thus, we may
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Figure 3.8: (a) A split-and-contract from v to u3, using u2 and u4 is valid since u3

sees u1, u2 and u4 (b) The split-and-contract results in the edge (v, u) being flipped.

assume that c ≥ 2. Since v sees all of link(v), there exists at least one si

such that v 6∈ CP (si) \ (si, si+1). Consider a vertex u1 ∈ C(si) \ {si, si+1}
and its two neighbors u2, u3 ∈ C(si), as well as the neighbor u4 ∈ link(v) of
u3 as shown in Fig. 3.8a. Since v sees all of link(v) we have that u3 ∈ C(si)
must see u1, u2 and u4. Thus, we can perform a split-and-contract from v on
u3, using u2 and u4, resulting in the edge (v, u) being flipped to (u2, u3), see
Fig. 3.8b. Thus, the degree of v is now m − 1, and applying the induction
hypothesis on v proves the theorem. 2

Next we show a theorem that follows from Theorem 3.8. First we will
need two simple observations. Recall that Pv is the set of vertices on the
boundary of T .

Observation 3.9 If |Pv| = 3, and the number of interior vertices is at least
one, then each vertex in Pv must have degree at least three, see Fig. 3.9a.

Observation 3.10 Any triangulation of P has (2n−2−|Pv |) triangles and
(3n − 3− |Pv |) edges.

This last observation follows from the proof of Theorem 9.1 in the book
by de Berg et al. [46], which immediately implies that the total degree of T
is (6n− 6− 2|Pv |).

Theorem 3.11 If the simple polygon P , on the boundary of the triangula-
tion T contains at most five vertices, the number of vertices of T is strictly
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greater than the number of vertices of P , and all vertices not in P are
non-important, then there exists at least one 1-step removable vertex in T .

Proof: We have three cases:
Case 1: |Pv| = 3. From Observation 3.9 we know that all vertices in Pv

must have degree at least three, thus at least nine in total. We know that
the total degree of all interior vertices is at most 6n−6−2|Pv |−9 = 6n−21.
Next, from Theorem 3.8 we know that a vertex of degree at most five is 1-
step contractible. Since no vertex in Pv is removed, this means that in the
worst case all vertices in Pv have degree exactly three, while a maximum
number of interior vertices have degree exactly six. However, not all interior
vertices can have degree exactly six, since the total degree of all interior
vertices would then be 6(n − 3) = 6n− 18, which is a contradiction. Thus,
there exists at least one interior vertex v of degree at most five, which means
that v is 1-step removable.

(c)(a) (b)
v3v4

v2v2v1 v1

P
P

P

v3v4

Figure 3.9: (a) If |Pv| = 3 then all vertices Pv must have degree at least three. (b)
First subcase for |Pv| = 4, where vertex v1 has degree two. (c) The second subcase
for |Pv| = 4, where all vertices in Pv have degree at least three.

Case 2: |Pv | = 4. Let v1, . . . , v4 be the vertices in Pv in clockwise order.
We have two subcases. The first is that one of the vertices in Pv has degree
two, see Fig. 3.9b. If v1 has degree two then both of its neighbor endpoints
v2, v4 ∈ CH(T ′) must be connected with an edge in order to form a triangle.
Further, this triangle must be empty, thus, all interior vertices of T must
lie in the triangle v2, v3, v4. This triangle must contain at least one 1-step
removable vertex as shown in Case 1 above. The second subcase is that no
vertex in Pv has degree two, see Fig. 3.9c. In this case the total degree of all
vertices on Pv must be at least twelve. Thus, the total degree of all interior
vertices is at most 6n− 6− 2|Pv | − 12 = 6n− 26.

Not all interior vertices can have degree exactly six, since the total degree
of all interior vertices would then be 6(n − 4) = 6n − 24 > 6n − 26, which
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is a contradiction. Thus, there must exist at least one interior vertex v of
degree at most five, which means that v is 1-step removable.
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P P
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Figure 3.10: (a) First subcase for |Pv| = 5, where vertex v1 has degree two. (b)
The second subcase for |Pv| = 5, where all vertices in Pv have degree at least three.

Case 3: |Pv| = 5. Let v1, . . . , v5 be the five vertices of Pv in clockwise
order. We have two subcases. If one of the vertices, say v1 ∈ Pv , has degree
two then both of its neighbor endpoints v2, v5 ∈ Pv must be connected with
an edge in order to form a triangle. Further, this triangle must be empty, and
thus, all interior vertices of T must lie in the quadrangle v2, v3, v4, v5 ∈ Pv .
This quadrangle must contain at least one 1-step removable vertex as shown
in Case 2 above. The second subcase is that no vertex in Pv has degree two,
see Fig. 3.10b. In this case the total degree of all vertices on Pv must be at
least fifteen. From Observation 3.10 we know that the total degree of T in
this case is 6n − 6 − 2|Pv | = 6n − 16, which means that the total degree of
all interior vertices is at most 6n− 16− 15 = 6n− 31.

Finally, not all interior vertices can have degree exactly six, since the
total degree of all interior vertices would then be 6(n−5) = 6n−30 > 6n−31,
which is a contradiction. Thus, there must exist at least one interior vertex
v of degree at most five, which means that v is 1-step removable. 2

From this theorem it immediately follows that if a region bounded by
a non-empty cycle of length smaller than six in T contains no important
vertices, then there exists at least one 1-step removable vertex in T . Further,
the above Theorem is in a sense tight since Lemma 3.5 tells us that if Pv

contains at least six vertices, it may be that no interior vertex of T is 1-
step removable. One should also note that if only a few vertices are 1-step
removable then almost all interior vertices in T must have degree 6, while
simultaneously being not 1-step removable. However, we have not been able
to construct any such examples, thus the bound stated in Lemma 3.11 might
be very conservative.
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Next, we present an upper bound on k, such that every vertex in T is
k-step removable. As only concave corners restrict visibility, intuitively it
should be easier to remove a vertex with few concave corners on its link. A
valid split-and-contract which reduces the number of concave corners by at
least one in the resulting link(v) is denoted a reducing split-and-contract.

Lemma 3.12 If βi < 180◦, v 6∈ CP (si−1) and v 6∈ CP (si), then a split-and-
contract from v to si, using si−1 and si+1, is reducing.

Proof: Since v 6∈ CP (si−1) and v 6∈ CP (si) it immediately follows that
αi−1 < 180◦ and αi < 180◦, which means (Lemma 3.7) that si−1 and si see
each other, as do si and si+1. This makes the split-and-contract valid since
all the vertices of C(si−1) and C(si) see si, to which they will be connected
after the split-and-contract. Further, since βi < 180◦, si will be convex
after the split-and-contract and no new concave corners can appear on the
resulting link(v), and the lemma follows. 2

The following theorem can now be shown (see Fig. 3.11 for an illustra-
tion). Recall that s1 is the concave vertex farthest from v and that the
concave vertices are ordered s1, . . . sc as they appear clockwise around v.

v

s1

s2

si

sc
αc α1

C(si)

βi

v
αc

s1

s2

sc

sc−1

CP (si)

l1

l′1

lc

l′c

H1

Hc

si+1

(a) (b)

si−1

u

Figure 3.11: An illustration of the two cases of Theorem 3.13. Figure (a) illustrates
Case 1, and figure (b) illustrates Case 2.

Theorem 3.13 Every interior vertex v ∈ V with at most c concave vertices
on its link is c-step removable.
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Proof: The theorem is proven by induction on c.

Base cases: If c = 1 then let s be the concave vertex on link(v). As s can
see all other vertices on link(v), v can be 1-step removable on s, thus the
theorem holds for c = 1.

Induction hypothesis: Assume that the theorem holds when link(v) contains
at most c− 1 concave vertices.

Induction step: Assume link(v) contains c concave vertices. We show that
there always exists a reducing split-and-contract, and thus, the theorem is
proved by applying the induction hypothesis. Consider the following cases:

Case 1: αc < 180◦ and α1 < 180◦. In this case c ≥ 3 otherwise either
α1 ≥ 180◦ or αc ≥ 180◦. We also immediately have that v 6∈ CP (sc) and
v 6∈ CP (s1) since both αc and α1 have degree strictly smaller than 180◦.
Furthermore, since s1 is a vertex in link(v) furthest from v, it holds that
β1 < 180◦. Thus, a split-and-contract from v to s1, using sc and s2, is
reducing according to Lemma 3.12.

Case 2: αc ≥ 180◦ or α1 ≥ 180◦. Assume without loss of generality that
αc ≥ 180◦ which immediately implies that v ∈ CP (sc), see Fig. 3.11b. Since
s1 and sc both are visible from v there can be no other vertex si, i 6= c, such
that v ∈ CP (si) (except for the case c = 2, where we have that v ∈ CP (s1)
and v ∈ CP (sc) when α1 = αc = 180◦. However, this does not change the
validity of the proof below). Let l1 and l′1 be the lines through s1 and v, and
through s1 and s2, respectively. Let lc and l′c be the lines through sc and v,
and through sc and sc−1, respectively. Line l1 defines two halfplanes, where
we consider the halfplane containing none of the vertices s2, s3, . . . sc (s1 is
on the border of this halfplane). Also, l′1 defines two halfplanes, where we
consider the one not containing CP (s1). Let H1 be the intersection of these
two halfplanes, as shown in Fig. 3.11b. Hc is defined correspondingly using
lines lc and l′c. Assume that H1 contains a vertex u ∈ C(sc), and consider a
split-and-contract from v to s1, using u and s2. All vertices between u and
s1 are visible to s1, since H1∪Hc can contain vertices from C(sc) only. The
same holds between s1 and s2 since v 6∈ CP (s1). Moreover, the definition of
l1 guarantees that v will remain in the resulting link(v) after the split-and-
contract, and line l′1 guarantees that the corner defined by edges (u, s1) and
(s1, s2) is convex. Thus, if H1 contains a vertex u ∈ C(sc), the above split-
and-contract must be reducing. Correspondingly, a split-and-contract from
v to sc, using u and sc−1 will be reducing if Hc contains a vertex u ∈ C(sc).
Finally, the area H1 ∪Hc must contain a vertex from C(sc) since αc > 180
and C(sc) connects sc and s1. 2
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v

ei

ei+1

ei−1

Figure 3.12: Illustrating Lemma 3.15

3.3 The number of k-step removable vertices

In this section we show two linear bounds on the number of k-step removable
vertices. These bounds are compared, and further examined to see if they
may be combined for even better bounds, something that is answered in the
negative. Throughout the whole section we assume that |Pv| = 4 and that
m = 0. The results for this restricted case will then be used in Section 3.5
to achieve more general results.

The first bound follows from Theorem 3.8 and the fact that the total
degree is bounded.

Lemma 3.14 If |Pv| = 4 and m = 0 then at least (k−1
k+2)(n − 4) interior

vertices are k-step removable, for every k ≥ 2.

Proof: Let L be the set of interior vertices of T that are k-step removable.
From Theorem 3.8 we know that L contains all vertices of degree at most
d = k + 4. Let N be the remaining set of interior vertices. Recall that the
sum of the degrees over all vertices is exactly 6n− 6− 2|Pv | = 6n− 14. We
also have that the total degree of Pv must be at least 12. This holds since
a vertex v ∈ Pv with degree two implies that its two neighbors v′, v′′ ∈ Pv

must have degree at least four in order to guarantee a planar triangulation.
Moreover, as the vertices in N have degree at least d+ 1 and the vertices in
L have degree at least three, we have the following equation:

12 + (d+ 1)|N |+ 3|L| ≤ 6n − 14 where |N |+ |L| = n− 4.

As a result it holds that |L| ≥
(

d−5
d−2

)

(n− 4) ≥
(

k−1
k+2

)

(n− 4). 2

3.3.1 Deriving a lower bound without using sums of degrees

Next we examine whether the above bound can be improved by using The-
orem 3.13 instead. To see whether an improvement is possible, we addition-
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ally assume that the points are in general position (this is needed in order
to use lemma 3.15 below). Despite of this, we will see that no significant
improvement is obtained by following this approach. In order to use Theo-
rem 3.13 we need to consider the total number of concave corners on link(v),
for every vertex v ∈ V . Consider any vertex v, and order its adjacent edges
e1, . . . , ek clockwise around v, see Fig. 3.12. Let θi denote the clockwise
angle ∠ei−1ei+1. Furthermore, we say that a vertex generates a concave
corner if θi is strictly greater than 180◦, for any i. Thus, this generated
corner will appear as a concave corner on link(u) for the neighbor u of v,
where both u and v are endpoints of ei.

Lemma 3.15 A vertex v generates at most three concave corners.

Proof: Consider an edge ei such that θi is concave. Since ∠ei+1ei−1 is
convex, it follows that there can be no edge ej between ei+1 and ei−1 such
that θj is concave. Thus, in addition to θi, only θi+1 and θi−1 may be
concave. 2

A vertex may generate three concave corners. As an example, consider
Fig. 3.12, but with edges ei−1, ei and ei+1 only.

Again, we assume that |Pv| = 4 and m = 0. Let L be the set of interior
vertices of T that are k-step removable, and let N be the remaining set of
interior vertices. From Lemma 3.15 we know that each vertex may generate
at most three concave corners, that is, 3n in total. Moreover, since no vertex
in N is k-step removable we know from Theorem 3.13 that each of them has
at least k + 1 concave corners on their link. Thus, we get

3n ≥ (k + 1) · |N | and |N |+ |L| = n− 4.

This means that L ≥
(

k−2
k+1

)

n− 4. Comparing this bound with Lemma 3.14,
we see that Lemma 3.14 is still somewhat stronger. However, if the number
of k-step removable (due to degree) vertices decreases, it is clear that the
possible total number of concave corners must also decrease as only vertices
of degree three may generate three concave corners. Thus, one may ask if
the concave corner approach may improve the above bound from Lemma
3.14, as the number of k-step removable (due to degree) vertices approaches
the lower bound.

Let f(k) denote a lower bound on the number of vertices that are k-step
removable. Assume that f(k) = (k−1

k+2)(n − 4). Since all k-step removable
vertices may have degree three, they all generate three concave corners in
the worst case. The four exterior vertices may have degree three, but since
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they all have two neighboring exterior vertices they may generate at most
two concave corners such that these two corners appear on link(v) of an
internal vertex v. This means that we have

3 · (k − 1

k + 2
)(n − 4) + 2 · (n− (

k − 1

k + 2
)(n− 4)) = 3n(

k + 1

k + 2
)− 8

k − 1

k + 2

concave corners in total, in the worst case. Thus, at most

(

3n(
k + 1

k + 2
)− 8

k − 1

k + 2

)

/(k + 1) = 3n(
1

k + 2
)− 8

k − 1

(k + 2)(k + 1)

vertices are not k-step removable, and at least

n− 4− 3n(
1

k + 2
) + 8

k − 1

(k + 2)(k + 1)
= (

k − 1

k + 2
)n− 4 + 8

k − 1

(k + 2)(k + 1)

are k-step removable. Which is the same lower bound shown using only the
degree approach (within a small additional factor).

We may also want to consider if the lower bound may be refined using
Theorem 3.13. Using only Theorem 3.8 it is clear that we cannot guarantee
that nodes of degree greater than k + 4 are k-step removable. However, it
is possible that k-step removal for these nodes could be guaranteed using
Theorem 3.13, if they were not able to consume at least k+1 concave corners
each. First, assume that f(k) = (k−1

k+2)(n − 4), we may have at most

3n(
k + 1

k + 2
)− 8

k − 1

k + 2

concave corners as seen above. Further, the number of nodes of degree
greater than k + 4 is less than

n− (
k − 1

k + 2
)(n− 4) = (

3

k + 2
)n+ 4k − 4.

We also see that
(

(
3n(k + 1)

k + 2
)− 8(k − 1)

k + 2

)

/

(

(
3n

k + 2
)− 8(k − 1)

(k + 2)(k + 1)

)

= k + 1

which means that at most ( 3n
k+2)− 8(k−1)

(k+2)(k+1) vertices of degree at least k+4
may consume at least k + 1 concave corners. Thus at least

(
3n

k + 2
) + 4k − 4− (

3n

k + 2
)− 8(k − 1)

(k + 2)(k + 1)
=

4k3 + 8k2 + 4k + 16

(k + 2)(k + 1)
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additional vertices will also be k-step removable. However, as the number
of 2-step removable vertices increases, the number of generated corners may
also increase. This means that above additional factor would have to be fur-
ther examined to see whether or not it could be added to the lower bound
of Lemma 3.14. We do not perform this examination, as it only involves a
small additional factor which would make forthcoming calculations increas-
ingly complex without significant gain. We can, however, show the following
lemma, where ‘at least’ has been replaced in Lemma 3.14, by ‘strictly more’.

Lemma 3.16 Assuming that the input points are in general position, that
|Pv | = 4 and m = 0, then strictly more than (k−1

k+2)(n − 4) interior vertices
are k-step removable, for every k ≥ 2.

3.4 The relationship between 1-step and 2-step re-

movable vertices

In this section we show relations between the number of 1-step removable
vertices and the number of 2-step removable vertices, assuming that no
interior vertex is important. It follows from these relations that the lower
bound on the number of 2-step removable vertices increases as the number
of 1-step removable vertices decreases. A motivation for studying these
bounds is that although it would be desirable to have a larger number of
1-step removable vertices, we show that a lack of such vertices is to a certain
degree compensated by a guarantee that there is a larger portion of 2-step
removable vertices. This serves also as a further motivation for considering
2-step removals.

Let T1 and T2 denote the set of 1-step and 2-step removable interior
vertices, respectively. We say that a vertex v consumes x concave corners if
link(v) contains x concave corners. Moreover, for simplicity we assume that
the total degree over all vertices is 6n. This is done in order to simplify the
calculations. Note, however, that increasing the total degree decreases |T2|
as the number of vertices of degree at least seven increases. Thus, the lower
bounds are still valid.

First we show the following:

Lemma 3.17 If T1 and T2 are the sets of 1-step and 2-step removable in-
terior vertices, respectively, of the input triangulation, and Pv is the set of
vertices on the boundary of the input triangulation, then

|T1| ≤ x(n− |Pv|)⇒ |T2| ≥
n

3
(1− x)− 3|Pv |, 0 ≤ x ≤ 1
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Proof: Only vertices of degree three can generate three concave corners,
and from Theorem 3.8 we know that only 1-step removable vertices can have
degree three. Also, in the worst case all vertices in Pv have degree three.
Thus we have at most

3(x(n− |Pv |) + |Pv|) + 2(n− (x(n − |Pv|) + |Pv|)) ≤ n(2 + x) + 5|Pv|

concave corners which means that at most n(2+x)+5|Pv |
3 ≤ n(2+x)

3 + 2|Pv |
vertices can consume at least three concave corners, thus not being 2-step
removable (Theorem 3.13) . In the worst case all these vertices are interior,
and as a result at least

n− |Pv| −
n(2 + x)

3
− 2|Pv | =

n

3
(1− x)− 3|Pv |

are 2-step removable. 2

The above bound can be slightly improved, as shown in the following
Theorem:

Theorem 3.18 If T1 and T2 are the sets of 1-step and 2-step removable
interior vertices, respectively, of the input triangulation, and Pv is the set
of vertices on the boundary of the input triangulation, then

|T1| ≤ x(n − |Pv |)⇒ |T2| ≥ n(1− 3x)− 3|Pv |, for 0 ≤ x ≤ 1

Proof: Since the 1-step removable vertices must have degree at least three,
and in the worst case all vertices in Pv have degree three, we have at most
3(x(n − |Pv |) + |Pv |) vertices of degree at least seven. This follows since a
vertex a degree three ‘allows’ three vertices of degree at least seven. Finally,
we have at least n − 3(x(n − |Pv|) + |Pv |) = n(1 − 3x) − 3|Pv | vertices of
degree six (which are 2-step removable). 2

Both lemmas ‘fail’ for x ≥ 1/4 as the lower bound of T2 becomes smaller
than the upper bound of T1. Further, for x ≤ 1/4 the lower bound for T2 is
better for Lemma 3.18, making this lemma stronger than Lemma 3.17.

We may also consider whether Theorem 3.18 can be refined using Theo-
rem 3.13. Such a refinement would be possible if not all vertices of degree at
least seven were able to consume at least three concave corners. However,
since

3 · 3(x(n − |Pv |) + |Pv |) ≤ n(2 + x) + 5|Pv |
for x ≤ 2n

8n−|Pv| , this does not hold (unless we are able to improve bounds,

such as, for example, the total number of generated concave corners).
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x

y
y

Figure 3.13: Initially edges x and y are contractible. After the contraction of x, y
is no longer contractible.

3.5 The hierarchical graph

Next we create the level-of-detail hierarchy, L, of T where the general pro-
cedure is as follows. We start with T , which we denote the first level. A
constant fraction of the vertices are then simultaneously removed, in a round
of k-step removals, resulting in triangulation which we denote the second
level. Correspondingly, level i of L is created through one round of k-step
removals from level i− 1 in L. Next, we represent L with a directed, acyclic
graph H, denoted a hierarchical graph. A level i in L is a triangulation,
while the corresponding level i in H is a set of nodes, where each triangle
in level i of L is represented with a node in level i of H. Furthermore, one
way to view a k-step removal of a vertex v is as removing v and all edges
adjacent to v, leaving I(v) empty, and then re-triangulating I(v). Thus, we
place a directed edge between a node u at level i − 1 in H, and a node u′

at level i of H, if both the triangle corresponding to u disappeared, and the
triangle corresponding to u′ appeared, as a result of the same k-step removal
of a vertex v. We let U denote the set of nodes, and F denote the set of
edges in H. Moreover, we say that the sum |U | + |F | is the size of H, and
that the number of levels of H is the depth of H.

In order to guarantee a hierarchical graph of small size and depth, sev-
eral vertices must be simultaneously removed in each round. Ideally, these
vertices would be 1-step removable. However, currently we are only able
to guarantee at most one 1-step removable vertex, as seen in Lemma 3.11.
Therefore we consider 2-step removable vertices. We show that using 2-step
removals, given m important vertices or edges, we can achieve a hierarchical
graph of size O(n) and depth O(log(n/m)), such that the simplified result-
ing triangulation contains the m important vertices and edges and at most
O(m) other vertices from T . Note that a previously valid contractible edge
might become invalid after other edges have been contracted, as shown in
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Fig. 3.13. In order to avoid this problem, for the purpose of finding si-
multaneously removable vertices, we consider non-adjacent vertices, that is
independent vertices.

Theorem 3.19 Given a triangulation T = (V,E) with a simple polygon P
as boundary, and m important (the vertices of P included) vertices U ⊂
V , one can perform O(log(n/m)) rounds of 2-step removals to obtain a
triangulation T ′ of a vertex set V ′ with complexity O(m) such that U ⊆
V ′ ⊂ V . All rounds can be performed in O(n) total time, and such that the
corresponding hierarchical graph has size O(n) and depth O(log(n/m)).

Proof: Assume that a rectangle R is added, see Fig. 3.14, such that T is
included in R, and that edges are added such that the interior of R becomes
triangulated. Denote this triangulation Q = (S,D), where n′ = |S| = n+ 4,
m′ = m+ 4, and the vertices of R are set as important.

T

P

R

Q

Figure 3.14: A rectangle R is added such that T is included in R. The vertices of R
are set as important, and edges are added to the interior of R so that a triangulation
Q is achieved.

Let S2 be the set of 2-step removable interior vertices of Q of degree at
most six, assuming that m′ = 0. Lemma 3.14 was shown using Theorem
3.8, thus, we have that |S2| ≥ n′−4

4 ≥ n′

20 , n′ ≥ 5. Since a vertex in S2 has at

most six neighbors we can choose at least n′

20·7 = n′

140 vertices from S2 such
that none of the chosen vertices has a neighbor from S2. Thus, there exists
a constant fraction γ ≥ 1

140 of independent 2-step removable vertices.
Let n′i denote the number of vertices before round i and consider an

arbitrary constant δ < γ. Perform rounds on Q until m′ ≥ δn′i, that is
until the resulting vertex set S′ has complexity O(m′). This is possible,
since as long as m′ ≤ δn′i, there are at least γn′i − δn′i = (γ − δ)n′i 2-
step removable vertices remaining, containing no important vertex. Thus,
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a triangulation Q′ can be obtained using at most O((log 1
1−(γ−δ)

2) · (log n′ −
logm′)) = O(log(n′/m′)) rounds of removals. Since m = O(m′) and n =
O(n′) this immediately implies that one can perform O(log(n/m)) rounds
of 2-step removals on T to obtain a triangulation T ′ of a vertex set V ′ with
complexity O(m) such that U ⊆ V ′ ⊂ V . Hence, the construction of a
hierarchical graph of depth O(log(n/m)) is possible. Now, we estimate the
size of hierarchical graph. The number of nodes in the hierarchical graph
is, since ni ≤ nγi−1, at most O(n+ nγ + nγ2 + . . .+ nγO(log(n/m))) = O(n).
Further, only 2-step removable vertices of degree at most six are used during
the rounds of removals. This means that at most six triangles are removed
and at most five triangles added as a result of the 2-step removal, which
implies that each node in the hierarchical graph has at most five incident
out-edges. Thus, in total the number of edges of the hierarchical graph is
O(n), which also means that the size is O(n).

Finally we consider the time complexity of creating the hierarchical
graph. Theorem 3.19 was shown using only 2-step removable vertices of
constant degree (at most six). Thus, in each round i the set of γni inde-
pendent 2-step removable vertices can be found in O(ni) time. Again, since
ni ≤ nγi−1 the total running time is O(n+nγ+nγ2 + . . .+nγO(log(n/m))) =
O(n). 2

The above results also hold for m important edges (or m edges and
vertices, in total), since each important edge restricts possible removals for
only a constant (two) number of vertices.

3.6 Further research

Currently a number of possible extensions of the above results are being
explored.

• To what extent do the results generalize to three dimensions?

• Is it possible to maintain bounded degree for all vertices during rounds
of removals?

• Can the user specify to a greater degree which edges will be contained
in certain levels of the hierarchical graph (maybe even including edges
not in the original graph)?

• Can we obtain better upper and lower bounds for the number of 1-step
removable vertices?
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• Would implementing the algorithm and testing it on real data confirm
an efficient performance and behavior?
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We thank Tomas Akenine-Möller for valuable discussions and comments.





Chapter 4

Reporting Leaders and

Followers Among

Trajectories of Moving Point

Objects

Movement is the spatio-temporal process par excellence. Technological ad-
vances of location-aware devices, surveillance systems and electronic trans-
action networks produce more and more opportunities to trace moving indi-
viduals. Consequently, an eclectic set of disciplines including geography [67],
data base research [87], animal behavior research [92], surveillance and se-
curity analysis [130, 133, 154], transport analysis [98, 109], and market re-
search [135] shows an increasing interest in movement patterns of various
entities moving in various spaces over various times scales.

At the same time traditional geographic analysis suffers from the legacy
of cartography’s static perception of the world and is thus generally not
suited for the analysis of individual movement trajectories [36, 138], some-
times referred to as geospatial lifelines especially in a GIScience context [122].
Many authors have therefore recently proposed to use geographical (and
thus) spatio-temporal data mining as a promising alternative to overcome
this methodological shortcoming [57, 125]. discusses variants of one specific
movement pattern and algorithms reporting them efficiently.

As can be seen from the pattern terminology, this chapter is largely in-
spired by movement patterns observed in gregarious animals, such as flocking
sheep or schooling fish. It follows a strategy to link the proposed patterns
as close as possible to observable patterns. The proposed pattern definitions

65
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are based on behavioral patterns discussed in the behavioral ecology litera-
ture and used for the modeling of realistic movement patterns of agent-based
virtual life forms [93, 110].

This chapter addresses the movement pattern of one object leading oth-
ers. We therefore define the movement pattern ‘leadership’ and subsequently
presents algorithms to detect such patterns. Leadership, as defined in this
chapter, bases on the geometrical relation of one individual moving in front
of its followers. The algorithms presented for an efficient detection of ‘lead-
ership’ make use of a set of auxiliary data structures, specifically developed
for capturing those spatio-temporal relations amongst moving objects that
constitute leadership.

Even though the leadership pattern in this chapter is motivated and
investigated with respect to animal behavior research, its definition is held
generic and is thus applicable to arbitrary types of entities moving in a
2D-space. In general the input is a set of n moving point objects e1, ..., en
whose locations are known at τ consecutive time-steps t1, ..., tτ , that is, the
trajectory of each object is a polygonal chain that can self-intersect. For
brevity, we will call moving point objects entities from now on. We assume
that the movement of an entity from its position at a time-step tj to its
position at the next time-step tj+1 is described by the straight-line segment
between the two coordinates, and that the entity moves along the segment
with constant velocity.

This chapter is organized as follows. Section 4.1 links previous research
on movement patterns similar to our leadership with the latest related re-
search. Section 4.2 defines our notion of leadership and features definitions
and preliminaries. In Section 4.3 and 4.4, we present algorithms for the
detection of leadership. Then, in Section 4.6 we present experimental re-
sults and discuss their implications in Section 4.7. We conclude with final
remarks and an outlook on future work in Section 4.8.

4.1 Related work

4.1.1 Inspiring Animals

Animals interact socially to gain from coordination of their behavior [38,
106]. Rands et al. [137] illustrated the spontaneous emergence of leaders
and followers using a simulation model reproducing the decision process of
a pair of foraging animals, balancing their energetic states. The idea and
the term of leadership have been used in several different contexts in the
field of animal behaviour research, see Dumont et al. [52] for an overview.
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In general, one can distinguish two different readings:

1. (i) ‘the event or process of one entity initiating a group movement
(e.g. [28, 52, 115, 132])’ Leading in this sense is an active behaviour,
referring to individuals that consistently initiate displacement of the
group they belong to. For example, Dumont et al. [52] found that in
a group of 15 grazing heifers the same individual was reported to lead
the group to new feeding places in 48% of all group movements. Sim-
ilar leadership behaviour has also been studied in gray wolves (Canis
lupus) [132].

2. (ii) ‘the event or process of one entity in front, leading a group move-
ment (e.g. [28, 85])’ Leading in this sense involves the notion of a
leader moving in front of followers. Gueron and Levin model the spa-
tial constellation ‘in front of’ as a function of the relative position with
respect to the averaged position of its neighbors within a given range.
Even though it has been found for grazing animals that leaders may
guide a group being in front or chasing from behind, animals in front
are considered to be more relevant to determine where the group will
graze [52].

The use of the geometrical arrangement of moving entities has further-
more a long tradition for realistically modeling group behaviour, be it in
animal behaviour science [85] or in the animation industry [140]. Most
prominent is the flocking model implemented in NetLogo [158, 163], which
mimics the flocking of birds [162]. The moving agents dynamically coor-
dinate their movement based on rules on alignment (turning in order to
adopt direction of nearby agents), separation (turning to avoid getting to
close to nearby agents) and cohesion (move towards other nearby agents).
This model explicitly excludes the idea of an individual leading the others,
but involves identical agents, each following the same set of rules. The ba-
sic model includes a maximal distance of vision r and 360 degree field of
view. However, it is also possible in NetLogo to specify a cone of vision, a
most interesting concept with respect to the investigation of further struc-
ture in flocking entities that can, for example, be seen in V-shaped flocks as
with migrating geese. Such front priority is also often used for agent-based
models of schooling fish, where only individuals in front are candidates as
interacting neighbors [93]. Inada’s and Kawachi’s model uses a wide-angled
cone of perception, directed in movement direction and thus omitting a blind
region behind the fish (Figure 1, Figure 2 in [93]). Jadbabaie et al. give a
theoretical explanation for the spontaneous coordination of agents despite
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the absence of a centralized coordination and just following a simple near-
est neighbor rule [95]. However, in an extension they also investigate the
influence of a leader in their system.

All such research integrating biology with information science and com-
puter science points out the potential of a systematic investigation of geo-
metric relations of moving animals for analyzing, modeling and simulating
movement processes. Above all, animal movement provides a set of very
convincing metaphors for more generic movement patterns, as shall be ex-
ploited with the pattern ‘leadership’ in this chapter.

4.1.2 Limiting Databases

There is ample research on moving object databases (MOD) [89, 149, 164,
165]. Whereas most database research on MOD focuses on data structures,
indexing and efficient querying techniques for moving objects [3, 63, 87,
88], only recently the potential of data mining for movement patterns has
been acknowledged [104, 105, 141]. For example, Du Mouza and Rigaux
propose mobility patterns that describe sequences of moves in a discrete
2D-space [50].

In a GIScience context, activity related movement patterns have been
researched, often with respect to improving location-based services (LBS).
Dykes and Mountain search episodes expressing distinctive characteristics of
movement, including absolute speed, direction, sinuosity and measurements
of their variations [56]. Smyth presents a data mining algorithm that assigns
predefined activities to segments of trajectories by analyzing some measur-
able motion descriptors, such as speed, heading and acceleration [151].

A common approach in database research is to take an existing spatial
query type and then study its generalizations to spatio-temporal data. An
example of this is the recent work on continuous k-nearest neighbor query-
ing over mobile data [128, 167]. The focus within data mining research is
to design techniques to discover new patterns in large repositories of spatio-
temporal data. For example, Mamoulis et al. [121] mine periodic patterns
moving between objects and Ishikawa et al. [94] mine spatio-temporal pat-
terns in the form of Markov transition probabilities. More recently Verhein
and Chawla [160] used association rule mining for patterns such as, sinks,
sources, stationary regions and thoroughfares.

Spatio-temporal proximity of entities is a reasonable first premise for
many situations that assume interactions between individuals. One obvious
analytical toolset to uncover proximity patterns in individual trajectories
is clustering. Even though the spatio-temporal nature of movement data
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adds additional complexity to clustering procedures, there have been some
successful approaches for clustering trajectories [43, 119, 148]. However,
spatio-temporal co-presence does not explicitly include the idea of interac-
tions within individuals. Relations such as ‘leading’, ‘following’ or ‘setting
a trend’ cannot be investigated by pure clustering alone.

In essence, conventional spatial and spatio-temporal querying and clus-
tering are inherently static and thus limited in their ability to cope with
dynamic movement. Hence complementing techniques have to be explored
in order to cope with the emerging new generation of movement data.
Shirabe [147] illustrates such an alternative and uses correlation analysis
in order to discover leader and follower relationships amongst moving indi-
viduals.

4.1.3 Promising Patterns

Precursory to this research Laube and colleagues proposed the REMO frame-
work (RElative MOtion) which defines similar behaviour in groups of enti-
ties [111, 112, 113]. They defined a collection of movement patterns based
on similar movement properties such as speed, acceleration or movement
direction. Laube et al. [114] extended the framework by not only including
movement properties, but also location itself. They defined several move-
ment patterns, including flock (coordinately moving close together), trend-
setter (anticipating a move of others), leadership (spatially leading a move of
others), convergence (converging towards a spot) and encounter (meeting at
a spot) and gave algorithms to compute them efficiently. Later Gudmunds-
son et al. [83] considered the same problems and extended the algorithmic
results by primarily focusing on approximation algorithms – ‘Any exact val-
ues of m and r hardly have a special significance – 20 caribou meeting in a
circle with radius 50 meters form as interesting a pattern as 19 caribou meet-
ing in a circle with radius 51 meters.’ Benkert et al. [23] and Gudmundsson
and van Kreveld [82] only recently revisited the flock pattern and gave a
more generic definition that bases purely on the geometric arrangement of
the moving entities and thus excludes the need of an analytical space as with
the initial definition of the patterns [111, 114].

The model used in the REMO framework considers each time-step sepa-
rately, that is, given m ∈ N and r > 0 a flock is defined by at least m entities
within a circular region of radius r and moving in the same direction at some
point in time. Benkert et al. [23] argued that this is not enough for many
practical applications, e.g. a group of animals may need to stay together
for days or even weeks before it is defined as a flock. They proposed the



70 Reporting Leaders and Followers Among Trajectories of Moving Point Objects

following definition of a flock:

Definition 4.1 (m,k, r)-flock - Let m,k ∈ N and r > 0 be given constants.
Given a set of n trajectories, where each trajectory consists of τ line seg-
ments, a flock in a time interval I = [ti, tj ], where j − i+ 1 ≥ k, consists of
at least m entities, such that for every point in time within I there is a disk
of radius r that contains all the m entities.

We will use a similar model when defining the leadership patterns, see
Section 4.2. Using this model, Gudmundsson and van Kreveld [82] recently
showed that computing the longest duration flock and the largest subset flock
is NP-hard to approximate within a factor of τ1−ε and n1−ε, respectively,
for any constant ε > 0. In the same model, Benkert et al. [23] described an
efficient approximation algorithm for reporting and detecting flocks, where
they let the size of the region deviate slightly from what is specified. Ap-
proximating the size of the circular region with a factor of ∆ > 1 means
that a disk with radius between r and ∆r that contains at least m objects
may or may not be reported as a flock while a region with a radius of at
most r that contains at least m entities will always be reported. Their main
approach is a (2 + ε)-approximation (for any constant ε > 0) with running
time T (n) = O(kn(2k log n + k2/ε2k−1)). Note that even though the de-
pendency on the number of entities (namely n) is small, the dependency on
the duration of the flock pattern (namely k) is exponential. Al-Naymat et
al. [7] handle the problem of considering many entities and long-duration
patterns by using a preprocessing step where the number of dimensions (i.e.
time-steps) is reduced by random projection.

A series of articles exploring simple flocking illustrated the potential of
patterns based on the geometric arrangement of moving entities. This chap-
ter shall achieve a similar definition for the more complex pattern leadership
as well as efficient algorithms for its detection.

4.2 Leadership

We consider n entities moving in the two dimensional plane during the time
interval [t1, tτ ], see Figure 4.1(a) for an example. The infinite set Tp of
time-points is defined as Tp = {t | t ∈ [t1, tτ ]}, and the set Ts of time-steps
is the set of discrete time-points given as input, i.e. Ts = {t1, ..., tτ }. We
specify open and closed time intervals by (tx, ty) and [tx, ty], respectively. A
unit-time-interval is an open interval I between two consecutive time-steps,
i.e. I = (tx−1, tx), for a time-step tx with x > 1.
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4.2.1 Defining Leadership Patterns
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Figure 4.1: (a) A set of 4 entities moving from left to right over 7 unit-time-intervals,
i.e. over 8 time-steps. (b) Illustrating the definition of the front-region as the disc-
segment within bold lines. (c) The follow-arrays of the four entities, where we use
the front-region as depicted in (b) and α = β.

For describing our leadership patterns, we need a couple of parameters
specifying these patterns. More specifically, we assume that we are given
numbers m (specifying the size of a pattern, i.e. the minimum number
of entities involved in a pattern), k (the minimum temporal length of a
pattern), a radius r (influencing the spatial size of a pattern), an angle α
(also influencing the spatial size of a pattern) and an angle β (determining
spatial characteristics of a pattern). We consider them as constants during
the rest of the chapter, i.e. we will not carry them along as parameters of
functions or other notations.

At time-point tx, an entity ej is located at a position with coordinates
xpos(ej, tx) and ypos(ej , tx). As we do not have spatial information of an
entity between two time-steps we make the following assumption for the
remainder of this chapter.

Assumption 1 We assume that all entities move between two consecutive
time-steps with constant direction and constant velocity.
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The same assumption has been used in earlier work [23]. It enables us
to interpolate the positions of entities between time-steps. Even though
we have no bound on the accuracy of this interpolation compared to the
real positions of the entities, it appears to be a reasonable approach when
tackling our leadership problems, as long as the sampling of points on the
trajectories is sufficiently dense.

Suppose we are given an entity ej at time-point t with tx−1 < t < tx for
tx ∈ Ts. We say ej is heading into direction d where d is an angle in [0, 2π)
that is specified by the line segment ej is moving along between time-steps
tx−1 and tx. (If ej does not move between tx−1 and tx then we define d to be
the direction of the line segment ej is moving along between the time-steps
tx−2 and tx−1. If no such time-steps exist, then we define d := 0.) The
difference between two directions d1 and d2 is denoted by ||d1 − d2||, and
it is an absolute value, i.e. it is an angle in [0, π]. We declare the direction
of an entity at a time-step tx to be undefined, because at time-steps an
entity might change its direction. However, the direction of an entity ei at
a time-step tx with respect to (tx−1, tx) is the direction ei is heading to at
any time-point in (tx−1, tx). Therefore, when considering time intervals with
certain properties of entities depending on direction, we implicitly exclude
time-steps from those intervals in the remainder of this chapter.

Given an entity e and a time-point t 6∈ Ts, we define the front-region of e
at time t in the following way. Consider the disk C with radius r centered at
(xpos(e, t), ypos(e, t)). Furthermore, consider three line segments s1, s2 and
s of length r, all having one end point at (xpos(e, t), ypos(e, t)). Segment
s points in the direction d that e is heading to at time t, and segments s1
and s2 are the well defined segments forming angles of α

2 and −α
2 with s,

respectively. The part of the disk C that contains s and is bounded by the
segments s1 and s2 is the front-region, see Figures 4.1(b) and 4.2. We denote
this wedge-shaped region by front(e) at time t. An entity ej is said to be
in front of an entity ei at time t 6∈ Ts if and only if ej ∈ front(ei) at time t.

Definition 4.2 Let di and dj be the directions of the entities ei and ej at
time t 6∈ Ts, respectively. Entity ei is said to follow entity ej at time t, iff
ej ∈ front(ei) at time t and ||di − dj || ≤ β.

An entity ej is said to follow entity ei at time [tx, ty] for time-points tx, ty,
if and only if ei follows ej at time t for all time-points t ∈ [tx, ty] \ Ts.

Definition 4.3 An entity ei is said to be a leader at time [tx, ty] for time-
points tx, ty, if and only if ei does not follow anyone at time [tx, ty], and ei
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is followed by sufficiently many entities at time [tx, ty]. If there is an entity
that is a leader of at least m entities for at least k time units, we have a
leadership pattern.

See Figure 4.2 for an example of some notations.

||di − dj ||ei

di

dj

α

α

ej

r

r

front(ei)

Figure 4.2: The front regions of ei and ej as wedges of edge length r and apex angle
α. Entity ej is in front of ei. The entities are heading into directions di and dj ,
respectively. If ||di − dj || ≤ β then ei follows ej .

Example 1 Consider the entities in Figure 4.1(a) where we use a front-
region as depicted in Figure 4.1(b). We see that e2 is following e1 at time
(t1, t5), e1 is not following any other entity at time (t1, t3) and (t4, t7) and
hence e1 is a leader of e2 at time (t1, t3) and (t4, t5).

In the remainder of this section, we consider two entities ei and ej and
two consecutive time-steps tx−1 and tx. The next lemma tells us that if we
want to check whether an entity is following any other entity during the
entire interval (tx−1, tx), we only have to check this at the two end points
with respect to (tx−1, tx). The lemma is rather intuitive and can be proven
with very much the same ideas as in the proof of Lemma 2 in [23].

Lemma 4.4 Let ei and ej be two entities, and let tx−1 and tx be two
consecutive time-steps. If ei follows ej at time-points ty and tz with tx−1 <
ty ≤ tz < tx then under Assumption 1, ei follows ej at any time-point
t ∈ [ty, tz].

Note that the lemma is also true for tx−1 = ty and tz = tx, however, the
directions of the entities at these time-points are with respect to (tx−1, tx).
Therefore, the time that an entity ei follows another entity ej between two
consecutive time-steps tx−1 and tx is a single subinterval of [tx−1, tx], and
such an interval can be computed in a straightforward manner.

Lemma 4.5 Given two entities ei and ej and two time-steps tx−1 and tx,
we can compute in constant time the subinterval of [tx−1, tx] for which ei ∈
front(ej) and for which ej follows ei, under Assumption 1.
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4.2.2 Problem Statement

A leadership pattern exists if there is an entity that is a leader of sufficiently
many entities over a long enough series of time-steps or time-points. Such
a pattern is characterized by two values m which is the size of the set of
followers, and k which is the length of a pattern. As mentioned in related
work [23, 83] specifying exactly which of the patterns should be reported is
often a subject for discussion. For instance, a leadership pattern of length
exactly k+1 (starting at time-step tx) implies the existence of two leadership
patterns of length exactly k (albeit ‘overlapping’, one starting at time-step
tx and the other starting at time-step tx+1). However, the pattern of length
k + 1 might be more interesting to report from a practical point of view.
Therefore, we consider the following problems where we assume that m and
k are constants.

• LP-report-all: For each entity e, report all time intervals where e is a
leader of at least m entities for at least k time units.

• LP-max-length: Compute the length of a longest leadership pattern of
size at least m, i.e. compute the largest value kmax such that there is
an entity e that is a leader of at least m entities for kmax time units.

• LP-max-size: Compute the size of a largest leadership pattern of length
at least k, i.e. compute the largest value mmax such that there is an
entity e that is a leader of mmax entities for at least k time units.

All these problems come in four different flavors which are combinations
of the modeling of the time axis (discrete vs. continuous) and the consistency
of the set of followers (varying vs. non-varying).

More specifically, we consider each of the problems in a discrete case,
where patterns (and follow behaviour) can only start and end at the dis-
crete time-steps. In this discrete model, we can ensure that patterns exist,
since we have the coordinates of the entities for all time-steps. Unlike this,
patterns can start and end at any time-points in the continuous case. As
discussed above, the data for the continuous case relies on Assumption 1.
Recall that we do not have any guarantee on the accuracy of the linear
interpolation between time-steps. This possible inaccuracy carries over to
a possible inaccuracy of the reported leadership patterns in the continuous
model. However, the continuous model is likely to become more important
in the future, when huge data sets over many time-steps are available, which
might need to be simplified in order to reduce storage space and processing
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time. Simplified trajectories are likely to be non-synchronous, yet they can
approximate the original trajectory within a fixed specified error bound (see
e.g. [27, 76]).

The other variation concerns the set of followers. If there is a subset
S of entities such that for each time-point of the duration of the pattern
all entities in S follow the leader (there may be additional followers as well
at some time-points), then we call this a non-varying (subset) leadership
pattern. In contrast to this, if we allow the subset of followers to change
from one unit-time-interval to the next during the duration of the pattern
(some entities may drop out, others may join in), then we call such a pattern
a varying (subset) leadership pattern, as long as always at least m entities
are following at each unit-time interval of the pattern. Depending on the
application a non-varying or a varying set of followers might be desirable.

4.3 Algorithms for the Discrete Case

In the discrete case, patterns can only start and end at time-steps. We
first describe arrays storing information about the follow behaviour of the
entities with respect to a fixed entity ei. Later, these arrays will be used to
solve our leadership problems.

4.3.1 Getting Ready – Computing Follow-Arrays for an En-

tity ei

For an entity ei to determine whether it is a leader at the time (tx, ty),
we need to know whether ei is not following any other entity and whether
ei is followed by sufficiently many entities at (tx, ty). We consider ei at
this time as a potential leader, and we compute a couple of follow-arrays
called ‘IntervalsNotFwg(tx)’, ‘IntervalsFwg(tx, ej)’, ‘IntervalsFwdm (tx)’ and
‘NumFws(tx)’. The first three arrays store the number of consecutive unit-
time-intervals that there is a certain follow-behaviour. In contrast to this,
the fourth array stores the number of entities with a certain follow-behaviour.

IntervalsNotFwg: (short for ‘the number of unit-time-intervals ei is
not following at tx’) The array IntervalsNotFwg(tx) is a one dimensional
array storing nonnegative integers. Such an integer for time-step tx specifies
for how many past consecutive unit-time-intervals (the last one ending at
tx) ei is not following any other entity. That is, if IntervalsNotFwg(tx) = y,
then ei is not following any other entity during the time interval (tx−y, tx).
To compute the values of the IntervalsNotFwg -array, we use two nested
loops. The outer loop runs from tx = t2, ..., tτ (we start at tx = 2 and set
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IntervalsNotFwg(t1) := 0). The inner loop ranges over ej = e1, ..., en and
ej 6= ei. After each round of the inner loop we update IntervalsNotFwg(tx)
according to whether we found an entity ej such that ei follows ej at time
(tx−1, tx). According to Lemma 4.5 each such single test can be done in
constant time.

IntervalsFwg: (short for ‘the number of unit-time-intervals ei is fol-
lowed by ej at tx’) The array IntervalsFwg(tx, ej) is a (τ × n − 1) matrix
storing nonnegative integers specifying for how many past consecutive unit-
time-intervals (the last one ending at tx) ej is following ei (with ej 6= ei).
Filling the IntervalsFwg -array with the right values can also be done with
two nested loops, one outer loop for tx = t2, ..., tτ and one inner loop for
ej = e1, ..., en and ej 6= ei. Initially set IntervalsFwg(t1, ej) := 0. We test
whether ej follows ei at the unit-time-interval (tx−1, tx), and if so, we update
IntervalsFwg(tx, ej).

IntervalsFwdm: (short for ‘the number of unit-time-intervals ei has at
least m followers at tx’) The array IntervalsFwdm (tx) is a one-dimensional
array storing integers specifying for how many consecutive past unit-time-
intervals (the last one ending at tx) there are at least m entities following
entity ei. These m entities can be varying over time. Given the array
IntervalsFwg , computing the IntervalsFwdm -array can be done by looping
over the IntervalsFwg array. We start at tx = 2 and set IntervalsFwdm (t1) :=
0. Now, we count in each column of IntervalsFwg (if we imagine the array
IntervalsFwg to be arranged to have τ columns and n− 1 rows) the number
of entities following ei at the current time-step. If this number is smaller
than m, we set IntervalsFwdm (tx) := 0, and if this number is at least m, we
set IntervalsFwdm (tx) := IntervalsFwdm (tx−1) + 1.

NumFws: (short for ‘the number of followers of ei at tx’) Another array
is NumFws(tx) which is a one-dimensional array storing integers specifying
how many entities are following entity ei at time (tx−1, tx). Again, counting
in each row of IntervalsFwg the number of entities following ei at the current
time-step yields the corresponding value of the NumFws array.

From the above discussion on the corresponding arrays, we conclude with
the following lemma.

Lemma 4.6 The IntervalsNotFwg , IntervalsFwg , IntervalsFwdm and
NumFws-arrays for an entity ei can be computed in O(nτ) time and space.

Example 2 Consider the entities in Figure 4.1(a) where we use a front-
region as depicted in Figure 4.1(b). Figure 4.1(c) shows four columns (one
for each entity) of follow-arrays. To fill the arrays IntervalsNotFwg and
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IntervalsFwg, we need the trajectories and the front-regions. Once that is
done, the arrays IntervalsFwdm and NumFws can be computed according to
their definition.

4.3.2 Solving LP Problems with a Non-varying Subset of

Followers

LP-report-all

In the discrete leadership version we assume that patterns can only start
and end at time-steps Ts = {t1, ..., tτ}. We use the arrays IntervalsNotFwg
and IntervalsFwg , and we combine their information to determine whether
ei is a leader of a non-varying-subset of followers. To this end, we look
for time-steps tx such that IntervalsNotFwg(tx) ≥ k. For each such time-
step tx, we inspect the array IntervalsFwg(tx, ej) for j = 1, ..., n and j 6= i,
and we count the number of times that IntervalsFwg(tx, ej) ≥ k. Let m(k)
denote this number. Now we can report ei as a leader for every time-step tx
for which m(k) ≥ m. As we only need to traverse our arrays at most once,
this can be done on O(nτ) time.

Example 3 Let k = 1 and m = 2. Looking at the follow-arrays of entity e1
in Figure 4.3, we see (shaded region) that e1 is not following anyone, but is
followed by 2 entities, and this happens for at least k = 1 unit-time-intervals
at the time-steps 2 and 3. Hence, we would report two leadership-patterns
with e1 as leader.

So far, we have seen that we can compute in O(nτ) time and space at
which time-steps an entity ei is a leader. To find all leadership patterns
amongst a set of entities we test any entity individually. As we only have to
store one instance of each array at a time we can conclude with the following
lemma.

Lemma 4.7 Reporting all non-varying-subset leadership patterns of size at
least m and length at least k, amongst n trajectories over τ time-steps can
be done in O(n2τ) time and O(nτ) space.

LP-max-length

To compute the length of a longest pattern, where ei is the leader, we utilise
a variable kmax. Initially we set kmax := 0; we then loop once over all
time-steps and at each time-step we may modify kmax, and at the end kmax
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Figure 4.3: Follow-arrays with highlighted entries to mark patterns with a non-
varying subset of followers.

will be equal to the length of a longest leadership pattern (for a specific
m). Now, for each tx = t1, ..., tτ we check whether IntervalsNotFwg(tx) >
kmax and if so, we do the following. We inspect the column of the array
IntervalsFwg corresponding to tx. We traverse that column (i.e. we loop for
j = 1, ..., n, j 6= i), and we count the number of entities ej for which holds
that IntervalsFwg(tx, ej) > kmax. Let this number be denoted by m(kmax).
If m(kmax) ≥ m, then we have at least m entities following ei for more than
kmax unit-time-intervals, and ei is not following anyone during that time.
Hence, we increase kmax by one and proceed with the next time-step tx+1.
Note that we only increase kmax by one as tx is the first time-step for which
m(kmax) ≥ m. As we only traverse the entire arrays once, it takes O(nτ)
time to compute the longest pattern, where ei is the leader.

The following concluding lemma might surprise, as the longest dura-
tion flock pattern is NP-hard to compute and cannot even be approximated
within a factor of τ1−ε [82].

Lemma 4.8 The longest duration leadership pattern for a non-varying-
subset of followers of size at least m can be computed in O(n2τ) time and
O(nτ) space.

Example 4 Consider again Figure 4.3. For m = 1, the above described
method would find entity e4 to be the leader (of one entity, namely e3) for
four consecutive unit-time-intervals, which is the length of a longest pattern
(for m = 1).

LP-max-size

It is also possible to compute the size of a largest non-varying-subset of
followers that follows a leader for at least k unit-time-intervals. We utilise
the arrays IntervalsNotFwg and IntervalsFwg and a variable mmax, initially
set to 0. We update this variable whenever we find a larger set of followers.
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That is, for tx := t1, ..., tτ , we test if both IntervalsNotFwg(tx) ≥ k and
m(k) > mmax, and if so, we set mmax := m(k), where m(k) is defined in the
same way as m(kmax) in the section above. Hence, we obtain the following
lemma.

Lemma 4.9 The size of a largest non-varying-subset of entities that follow
a leader for at least k time-steps can be computed in O(n2τ) time and O(nτ)
space.

Example 5 Consider again Figure 4.3, and let k = 1. The algorithm above
computes mmax = 3 as entity e4 is a leader of 3 entities for k = 1 unit-time-
interval at time-step 8.

4.3.3 Solving LP Problems with a Varying Subset of Follow-

ers

The variants of the problem of finding leadership patterns where the set of
followers can change during the leadership pattern can be solved in a similar
way as proposed in Section 4.3.2. To determine if an entity ei is a leader of
a varying-subset of followers, we use the follow-arrays IntervalsNotFwg(tx),
IntervalsFwdm (tx) and NumFws(tx) as described in Section 4.3.1.

LP-report-all

In the same flavor as described above, we can find out if ei is a leader. We
look for and report time-steps tx, such that IntervalsNotFwg(tx) ≥ k and
IntervalsFwdm (tx) ≥ k. It is easy to see that reporting when ei is a leader
can be done in O(nτ) time.

Example 6 Let m = 1 and k = 2. Consider e1’s follow-arrays in the upper
half of Figure 4.4. Above method reports one time-steps (namely time-step
3) where e1 is a leader of at least m = 1 entities for at least k = 2 unit-
time-intervals.

The complexity of finding all leadership patterns for n entities is summarized
as follows.

Lemma 4.10 Reporting all varying-subset leadership patterns amongst n
trajectories over τ time-steps can be done in O(n2τ) time and O(nτ) space.
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4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1IntervalsNotFwg(t): 0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3 0 0 0 0 0 0 0 0 e4 0 1 2 3 4 5 6 7

e1IntervalsNotFwg(t): 0 1 2 0 1 2 3 0 e2 0 0 0 0 0 1 0 0 e3 0 0 0 0 0 0 0 0 e4 0 1 2 3 4 5 6 7

IntervalsFwdm(t):
(m=1)

e1 0 1 2 3 4 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 2 3 4 5

numFws(t): e1 0 2 2 2 1 0 0 0 e2 0 0 0 0 0 0 0 0 e3 0 0 0 1 0 0 0 0 e4 0 0 0 1 1 1 2 3

Figure 4.4: Follow-arrays with highlighted entries to mark patterns with a varying
subset of followers.

LP-max-length

For computing the longest duration leadership pattern, we use the arrays
IntervalsNotFwg and IntervalsFwdm , and we search for the largest kmax (ini-
tially kmax := 0) such that there is a time-step tx for which IntervalsNotFwg(tx) ≥
kmax and IntervalsFwdm (tx) ≥ kmax. This can be done as follows. For tx =
t1, ..., tτ , we check if min{IntervalsNotFwg(tx), IntervalsFwdm (tx)} > kmax,
and if so, we perform an update

kmax := min{IntervalsNotFwg (tx), IntervalsFwdm (tx)}

and proceed with the next time-step tx+1.

Lemma 4.11 The longest duration leadership pattern for a varying-subset
of followers of size at least m can be computed in O(n2τ) time and O(nτ)
space.

Example 7 Looking at the follow-arrays in the upper half of Figure 4.4,
we see that e4 is a leader of at least m = 1 entity for kmax = 5 unit-time-
intervals (starting at time-step 3 and ending at time-step 8).

LP-max-size

If we would like to compute the size of a largest varying set of followers that
follow ei for at least k time-steps, we cannot use the array IntervalsFwdm

directly as this array contains information only for one specific m. However,
an easy way is to use binary search on m and recompute the IntervalsFwdm

array for each value ofm. This adds an additional log n factor to the running
time.

We propose a slightly different approach. By spending linear prepro-
cessing time, we can compute the minima of any substring of a sequence of
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numbers in O(1) time. For more information on this Range Minimum Query
(RMQ), see e.g. [22]. Now, we use the array NumFws and we look for at
least k consecutive unit-time-intervals such that the minimum number of fol-
lowers in the array NumFws during that time is as large as possible and ei
can be a leader. That is, we are looking for k consecutive unit-time-intervals
such that ei does not follow any other entity and for the largest minimum
(to be referred to as mmax) over all numbers of followers corresponding to
those k consecutive unit-time-intervals. All minima can be computed in
O(τ) time [22], hence, mmax can be computed in linear time.

Lemma 4.12 The size of a largest varying-subset of entities that follow a
leader for at least k time-steps can be computed in O(n2τ) time and O(nτ)
space.

Example 8 Consider the lower half of Figure 4.4 and let k = 2. The above
algorithm computes mmax = 2 at time-step 3 for entity e1 and at time-steps
8 for entity e4.

4.4 Algorithms for the Continuous Case

In contrast to the discrete version of the leadership pattern, where a pattern
can only start or end at the given discrete time-steps, in the continuous
version of the problem a pattern can start and end at any point in time. As
we do not have spatial information of the entities between two consecutive
time-steps we use Assumption 1 to tackle the continuous version in this
section. The main ideas are similar to the discrete case, but instead of using
arrays storing single numbers to represent follow-behaviour we will use sets
of time intervals. First, we describe how to compute them for a fixed entity
ei and then we define two operations on (sets of) intervals. Later, these
intervals and operations are used to solve our leadership problems.

4.4.1 Getting Ready – Follow-Intervals for an Entity ei

Computing Follow-Intervals: A first step is to compute a set SetNotFwg
of notfollowing-intervals representing when a fixed entity ei is not following
any other entity ej . An interval I = (txa , tya) ∈ SetNotFwg with txa ≤ tya

means that entity ei is not following any other entity during the whole time
interval I. Because entities move on a straight line between two consecutive
time-steps, cf. Assumption 1, ei can be involved in at most two events that
change its follow-behaviour (i.e. the events of beginning or ending to follow)
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for each entity between two consecutive time-steps. That is why the set
SetNotFwg contains O(nτ) intervals. We can compute this set with two
nested loops one over all time-steps, another over all entities. By Lemma 4.5,
this can be done in O(nτ) time in total.

We also need information about which entities follow ei. This informa-
tion is again stored in a set SetFwd of intervals. An interval I = (txa , tya) ∈
SetFwd with txa < tya means that ei is followed by an entity, say ej , during
the whole time interval I. Also this set contains at most O(nτ) intervals, as
an entity can change its follow behaviour with respect to ei at most twice be-
tween two consecutive time-steps. We can compute this set with two nested
loops one over all time-steps, another over all entities. By Lemma 4.5, this
can be done in O(nτ) time in total.

Both sets of intervals can be computed in O(nτ) time. For the subse-
quent methods, however, we need the start- and end points of the intervals
in non-decreasing order and that the intervals are maximal. Obtaining the
sets such that the start- and end points are sorted can be done in O(nτ log n)
time in the following way. For each set we use two nested loops. The outer
loop fixes an entity and the inner loop ranges over the time-steps. In that
way it is easy to compute the intervals as maximal intervals. Whenever
we compute start- or end points of an interval we can put them into τ − 1
buckets, namely one for each unit-time-interval, i.e. pair of consecutive time-
steps. As we can have at most O(n) start- or end points in each bucket,
we can sort all of them in all buckets in O(nτ log n) time. Combining the
sorted sequences of each bucket results in a sorted sequence of all start- and
end points.

Lemma 4.13 In O(nτ log n) time and O(nτ) space, the sets SetNotFwg
and SetFwd for an entity ei can be computed such that all the start- and
end points of the intervals in each set are output in non-decreasing order.

Next, we define operations that take and return a set of intervals as input
and output. We also briefly describe how to compute these operations, if
the set of intervals is given along with the start- and end points in sorted
order.

Combining Intervals: We call the first operation under consideration
interval-combination denoted as icx(S), where S is a set of intervals of R.
The operation outputs a set of non-intersecting intervals. Every point in
R that is contained in at least x intervals of the input-set S will be in an
interval of the output-set. Also, for every point that is contained in an
interval of the output-set, there are at least x intervals in the input-set that
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set S of intervals:

ic1(S):
ic2(S):
ic3(S):

Figure 4.5: The set S of intervals on the real line and the results after applying the
icx operation for x ∈ {1, 2, 3}. Note that icx(S) = ∅ for all x ≥ 4 as the intersection
of any 4 intervals in S is empty.

all contain that point, see Figure 4.5. Note that ic1(S) is the union of all
intervals in S and ic|S|(S) is the intersection of all intervals in S. Let S be
a set of intervals where the start- and end points are given in sorted order.
The operation icx(S) can be computed by a parallel scan over the sorted
start- and end points and keeping track of how many intervals are currently
‘active’.

Lemma 4.14 Suppose S is a set of intervals. If the start- and end points
of the intervals in S are given in non-decreasing order, then we can compute
icx(S) in O(|S|) time.

Clipping Intervals: We also define another operation, which modifies
single intervals. For an interval I = {txa , txb

}, we cut or clip a part of length
k at the beginning of I. If the resulting interval I ′ is non-empty, then that
interval I ′ is the result of the operation. This operation can also be applied
to all intervals of an entire set (cf. Figure 4.6), such that the order of the
start- and end points of the intervals remains stable.

Lemma 4.15 Let be given a set S of intervals, where the start- and end
points of the intervals in S are given in non-decreasing order. We can com-
pute S′ := {I ′ | I ′ = clipk(I), I ∈ S} and output the start- and end points
of all intervals in S′ in non-decreasing order in O(|S|) time.

4.4.2 Solving LP Problems with a Non-Varying Subset of

Followers

LP-report-all

We first look at the non-varying-subset version. In the previous section we
have seen that we can compute the interval-set SetFwd in O(nτ log n) time,
where an interval in this set means that an entity follows ei for the time of
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set S of intervals:

clipk(S): (         )

Figure 4.6: The set S of intervals on the real line and the results after applying the
clipk operation. For the clipk operation, the length of the interval in parentheses
determines k.

the interval. Now, we are going to modify the intervals in the set SetFwd .
For each interval I = {txa , txb

} ∈ SetFwd , we apply the operation clipk to
obtain a set SetFwdclipped := {I ′ | I ′ = clipk(I), I ∈ SetFwd}. Note that
SetFwdclipped (see Figure 4.7) only contains intervals whose originals had
length at least k. The meaning of an interval I ′ ∈ SetFwdclipped is that
there is an entity such that at each time-point t ∈ I ′ this entity has already
followed ei for at least k time units (which is not necessarily the same as k
unit-time intervals). The set SetFwdclipped can be computed in linear time
with respect to the size of SetFwd , and this can be implemented such that
the order of the (start- and end points of the) intervals remains stable.

We also clip the intervals of the set SetNotFwg to obtain a set
SetNotFwgclipped := {I ′ | I ′ = clipk(I), I ∈ SetNotFwg} (see Figure 4.7).
For each time-point in an interval in SetNotFwgclipped , we have that ei is not
following any other entity for at least k time units.

The next step is to compute yet another set S of intervals as an in-
terim result using one of the operations introduced in Section 4.4.1, S :=
icm(SetFwdclipped ). For any time-point in an interval in S there are at least
m entities following ei, where each of those entities already followed ei for
at least k time units. Finally, we combine the information represented by
S and SetNotFwgclipped . What we need is similar to a logical ‘and’ between
intervals of those two sets, and this can be done by applying the icx again
to obtain a set of result-intervals, result := ic2(S ∪ SetNotFwgclipped ). Note
that the start- and end points of the set S∪SetNotFwgclipped can be sorted in
linear time if the start- and end points of S and SetNotFwgclipped are sorted.
The set result contains all intervals for which ei is a leader of at least m
entities for at least k time units. If we would like to report the leadership
patterns of all entities, we apply the above method to each entity. Hence,
we can conclude with the following lemma.
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4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1

e2

e3

e4

e2 e3 e4

e1 e1 e1

e3 e2 e2

e4 e4 e3

setFwgclipped:

ic1(setFwgclipped):

ic2(setFwgclipped):

ic3(setFwgclipped):

setNotFwg:

results for m=1:

results for m=2:

results for m=3:

Figure 4.7: Illustration of clipping and combining the intervals, where the intervals
represent the follow-behaviour of the entities in Figure 4.1. The result-intervals
are shown for different values of m.

Lemma 4.16 Let be given n trajectories over τ time-steps. Reporting all
time intervals where there is an entity a leader of a non-varying subset of at
least m entities for at least k time units, can be done in O(n2τ log n) time
and O(nτ) space.

LP-max-size

We can use the sets SetNotFwgclipped and SetFwdclipped , where the intervals
are given in non-decreasing order, to find the maximum mmax for which ei
is a leader of a non-varying set of mmax entities for at least k time units. To
that end, we do not collapse the set SetFwdclipped into a set S as described
above, but we utilise a parallel scan over the intervals in SetNotFwgclipped

and SetFwdclipped .

By a parallel scan we mean moving an imaginary vertical line over the
horizontally arranged intervals, stopping at certain points and performing
certain actions. In our case the points where we stop are the start- and end
points of the intervals. For any position of the scan-line we say an interval
I is active, if the scan-line ℓ intersects interval I.

During the parallel scan, we keep track of the number of active intervals
in SetFwdclipped , where the intervals in SetNotFwgclipped are used as a mask
(see Figure 4.8). All this can be done in O(nτ) time.

Lemma 4.17 Let be given n trajectories over τ time-steps. Computing the
maximum size of a non-varying subset of followers which follow a leader for
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4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8 4 651 2 3 7 8

e1

e2

e3

e4

e2 e3 e4

e1 e1 e1

e3 e2 e2

e4 e4 e3

setFwgclipped:

setNotFwg:

Figure 4.8: Illustrating the parallel scan approach. The shaded region indicates how
the SetNotFwg intervals are used as a mask. The numbers indicate the number of
active SetFwd intervals.

at least k time units, can be done in O(n2τ log n) time and O(nτ) space.

LP-max-length

A method similar to the one presented above cannot be used directly, as
the sets of intervals are computed for specified values of k. We could use
binary search on k, however, this would add another log τ factor to the
running time. The method described in this section also builds upon the
sets SetNotFwg and SetFwd of intervals, introduced in Section 4.4.1. It
finds the largest kmax, such that there is a non-varying subset of at least m
entities following entity ei for kmax time-units. However, it can also be used
to report patterns where ei is a leader of at least m non-varying followers for
at least k time-steps. We do this by performing a parallel scan over the sets
of intervals, assuming they are given such that the start- and end points of
the intervals are in non-decreasing order.

During the parallel scan we keep track of the active intervals in SetNotFwg .
Note that only one interval I ∈ SetNotFwg can be active at a time. By keep-
ing a pointer p1 to I, we know for every time-point t, whether ei is following
any other entity. If ei is following any other entity, then there is no interval
in SetNotFwg active at time t (and p1 becomes a null-pointer). On the other
hand, if there is an interval I ∈ SetNotFwg active at t, then we can compute
for how long ei is not following any other entity.

We also keep track of how many entities follow ei and for how long. To
this end, let t be a time-point during the parallel scan. Let A ⊆ SetFwd
be the set of all intervals in SetFwd that are active at time t. We will
not maintain A, but only a variable m′ with m′ = |A| (initially m′ := 0).
Furthermore, we will maintain a pointer p2 to the interval in A with the
m-th largest end point. If A contains less than m intervals, then p2 points
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to some interval. (As we will not use pointer p2 if A contains less than m
intervals it is not important where p2 points to in that case.)

Before the parallel scan, we initialize kmax := 0, and after the parallel
scan kmax will be the length of the longest leadership pattern with ei as
leader of a non-varying set of at least m entities. We also introduce an
artificial interval which starts and ends before any other interval starts and
we initialize p2 to point to that interval. This interval is introduced merely
to have pointer p2 well initialized. The parallel scan does not take this
interval into consideration. As mentioned above the points where we stop
with the scan-line are the start- and end points of the intervals, and if two
such points have the same time, we process them one after the other, as if
one was infinitesimally later than the other. By maintaining all invariants it
is easy to see that for every position of the scan-line with corresponding time
t, we can check if there are at least m entities following ei, i.e. if m′ ≥ m. In
the case that there are at least m followers of ei, we also can determine for
how long in the future all these entities will follow ei, by using the pointer
p2. Furthermore, we can check if ei is following any other entity (by using
p1), and if not for how long in the future ei will not follow any other entity.
Therefore, we can determine whether there is a leadership pattern, with ei
as leader of a non-varying set of at least m entities, and if there is such a
pattern, we can also determine its length k′. If k′ > kmax then we perform
an update kmax := k′.

By doing this parallel scan approach for each entity, we can compute the
overall longest duration leadership pattern.

Lemma 4.18 Let be given n trajectories over τ time-steps. Computing
the maximum length of a leadership pattern with a non-varying subset of
followers of size at least m, can be done in O(n2τ log n) time and O(nτ)
space.

4.4.3 Solving LP Problems with a Varying Subset of Follow-

ers

LP-report-all

After considering the case for the non-varying subset in Section 4.4.2, the
case for a varying subset is rather easy. Here, we do not require that all
entities follow ei for k time-units. Hence, with the terminology as used
before we compute a set S := icm(SetFwd). For any time-point in an
interval in S there are at least m entities following ei. As ei still has to
be followed for at least k time-units, we clip all intervals in S to obtain
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S′ := {I ′ | I ′ = clipk(I), I ∈ S}. As before, our last step is to combine S′

and SetNotFwgclipped to obtain the set of result-intervals, result := ic2(S
′ ∪

SetNotFwgclipped ).

Lemma 4.19 Let be given n trajectories over τ time-steps. Reporting all
time intervals where there is an entity a leader of a varying subset of at least
m entities for at least k time units, can be done in O(n2τ log n) time and
O(nτ) space.

LP-max-size

In this case, we can use the approach mentioned in Section 4.3.3, where we
spend additional time for binary search on m to find mmax.

Lemma 4.20 Let be given n trajectories over τ time-steps. Computing the
maximum size of a varying subset of followers which follow a leader for at
least k time units, can be done O(n2τ log n) time and O(nτ) space.

LP-max-length

To find the length of a longest duration leadership pattern of a varying set
of at least m entities, we can use a similar approach as in Section 4.4.3. We
also compute a set S := icm(SetFwd), such that for each time-point in an
interval I ∈ S, we know that there are at least m followers of ei. To combine
this with the information when ei is not following any other entity, we apply
the operation icx once again to obtain result := ic2(S ∪ SetNotFwg). Now,
for any interval in result it holds that ei is not following any other entity,
and also that ei is followed by at least m entities. Searching for the length
of the longest interval in result solves the problem at hand for entity ei.

Lemma 4.21 Let be given n trajectories over τ time-steps. Computing the
maximum length of a leadership pattern with a varying subset of followers
of size at least m, can be done O(n2τ log n) time and O(nτ) space.

4.5 A Lower Bound for the Continuous Case

In this section we argue that it is likely that every algorithm for the con-
tinuous version of the leadership problem that detects leadership patterns
between two consecutive time-steps in a set of n trajectories requires Ω(n2τ)
time in the worst case. We will present a transformation from the problem
Point-on-3-lines to a special case of our leadership problem.
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Problem: Point-on-3-lines

Instance: A set S of n lines in the plane.
Question: Is there a point in the plane that lies on at least three lines of S?

The Point-on-3-lines problem was proven to be 3-sum-hard [70]. This
means that it is at least as hard as 3-sum for which no subquadratic time
algorithm has been found yet, which is an indication for an inherent hardness
of the problems. For a weak model of computation a lower bound of Ω(n2)
for those problems exists [62].

Remark Note that the intersection of two or more intervals can be a single
number. Therefore it is possible (although not very likely from a practical
point of view) that a leadership pattern in the continuous case exists only
for one time-point. Such a pattern has length k = 0.

The transformation is as follows. Consider a set S = {s1, ..., sn} of n lines
in the plane. Let ℓ0 be a horizontal line such that all intersections between
two lines of S lie below ℓ0 (see Figure 4.9(a)), and let ℓ−1 be a line parallel
to ℓ0 such that all intersections between two lines of S lie above ℓ−1. Such
two lines can be computed in O(n log n) time. Without loss of generality,
we assume that no line in S is parallel to ℓ0. Let ℓ−n, ..., ℓ−2, ℓ1, ..., ℓn−2 be
2n − 2 lines parallel to ℓ0, such that the distance between ℓi and ℓj equals
|i − j| times the distance between ℓ−1 and ℓ0, for i, j ∈ {−n, ..., n − 1}, see
Figure 4.9(b). For a line si ∈ S, let s′i be the directed line segment that
starts at the intersection of si and ℓ−i and ends at the intersection of si

and ℓn−i, as illustrated in Fig. 4.9(c). Let S′ be the set of all directed line
segments, i.e. S′ = {s′i | si ∈ S}.

The set S′ can be viewed as a set of n trajectories over two time-steps,
where every directed segment s′i ∈ S′ corresponds to the trajectory of entity
ei starting at time tx−1 at the origin of s′i and reaching the end point of s′i
at time tx. For α = 0, β = π and r = ∞, an entity ej follows an entity ei
if and only if s′j and s′i intersect and the entity ei reaches the intersection
point before ej . Note that because of the construction, no two entities can
be between ℓ−1 and ℓ0 at the same time and hence when an entity passes
through an intersection of line segments in S′, no other entity passes through
an intersection in S′.

Lemma 4.22 There are at least three lines in S passing through the same
point, if and only if there is a leadership pattern in S′ with m = 2, k = 0,
r =∞, α = 0 and β = π.
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Figure 4.9: Illustrating a set S with n = 4 lines s1, ..., s4. (a) S and the horizontal
line ℓ0 (dotted). (b) S and the lines ℓ−n, ..., ℓn−1 (dotted). (c) the set S′.

Proof: Suppose three lines si, sj and sk intersect in a single point p. Con-
sider the three corresponding entities ei, ej and ek with trajectories s′i, s

′
j

and s′k. W.l.o.g. assume that ei reaches the intersection point p first. As
p is an intersection point between lines in S it is also an intersection point
between line segments in S′, and therefore when ei passes through p no other
entity is between ℓ−1 and ℓ0. Thus, no other entity can intersect s′i when
ei passes through p, and hence, ei is not following another entity when it
passes through p. Furthermore, because r =∞ and α = 0 the entity ei is in
the front-regions of ej and ek. It follows that we have a leadership pattern
in S′ with m = 2 and k = 0.

Now, assume we have a leadership pattern in S′ for m = 2, k = 0, r =∞,
α = 0 and β = π. The leader ei of that pattern will be followed by at least
two entities, say ej and ek, at some point in time. This implies that s′j and
s′k must intersect s′i in the same point, and hence there are three lines in S
passing through the same point. 2

As the transformation described above can be done in O(n log n) time,
we can conclude with the following lemma.

Lemma 4.23 Finding continuous leadership patterns between two consec-
utive time-steps in a set of trajectories is 3-sum-hard.
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4.6 Experimental Evaluation

This section is devoted to reporting the experimental results. The algorithms
were implemented in Java1 and all experiments were performed on a Linux
operated PC with an Intel 3.6 GHz processor and 2 GB of main memory.

4.6.1 Input Data

All input files were generated artificially with NetLogo [163]. More specifi-
cally, we modified NetLogo’s Flocking Model [162] such that entities do not
wrap around the world-borders, but will be repulsed smoothly from walls,
see Figure 4.10. Furthermore, we added some code for moderate random
changes in an entity’s direction and saving the coordinates into a file. There
are many parameters to modify the behaviour of the entities and thus also
to modify how many flocks and leadership-patterns are created. However,
we have no direct control over the exact number or length or size of patterns.

We generated files with variable number of entities (128-4096), two dif-
ferent sizes of the underlying universe U (i.e. coordinate space 512 × 512
and 1024 × 1024) and two different characteristics CH (i.e. CH = u and
CH = c) of the entity distribution. CH = u means that the parameters of
the Flocking Model were chosen such that the entities are more uniformly
distributed, i.e. only small clusters emerge. Flocks (and thus leadership
patterns) still exist but their size and length are likely to be smaller than
those of the other characteristic. CH = c means that the parameters of
the Flocking Model were chosen such that the entities form few but rather
large clusters, and hence, the flocks tend to contain more entities and have
a longer duration. The number of time-steps is τ = 1000.

4.6.2 Methods

We performed experiments with two variants of our algorithms for the dis-
crete case. The first one is a straight forward implementation of the method
described in Section 4.3. This method contains (among others) two nested
loops ranging over all entities. The disadvantage from a practical point of
view is that when looking for entities that might be in a front-region, then
also entities that are too far away will be considered. Therefore, our second
method tries to overcome this drawback by dividing the underlying plane
into buckets (squares of side length r). Now when looking for entities that

1Java was chosen because this increases the platform independence and it makes it

easier to integrate the code into an existing larger framework.
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Figure 4.10: This screenshot of NetLogo’s modified Flocking model shows the tra-
jectories of 32 entities in a universe with side lengths 128× 128, run for 100 time-
steps.
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might be in a front-region, only those entities will be considered that are in
the nine neighboring buckets (including the bucket at the centre). Note that
for each of our leadership problems, all methods always compute all arrays
from scratch. Especially the arrays IntervalsNotFwg and IntervalsFwg could
be used three times after computing them once. For an easier comparison
however, we refrained from doing so.

4.6.3 Results

Tables 4.1, 4.2 and 4.3 show the results of our algorithms for m = 10,
k = 20, r = 20, α = π and β = π

2 . From our point of view the running
times and their asymptotic behaviour are much more interesting than for
example the exact number of patterns found as we deal with artificial data.
Nevertheless, in Tables 4.1 and 4.2 we can see how many entities have been
leaders (leaders), the number of leadership patterns found (report-all), the
length of a longest duration pattern (max-length) and the number of entities
in a pattern with most followers (max-size). Note that patterns with length
> k will be reported multiple times as patterns of length k.

We observed that the vast majority of the running time is spent on com-
puting the arrays IntervalsNotFwg and IntervalsFwg (which can be done in
O(n2τ) time). Once these two arrays are computed, computing more ar-
rays and/or extracting information to solve the leadership problem is very
efficient (linear time). Therefore, our methods for the three different leader-
ship problems result almost always in the same running times (they differ on
average less than three percent), as they compute all arrays from scratch.
Hence, Table 4.3 depicts the running times of our methods only for the
report-all leadership problem.

4.6.4 Observations

Non-Varying vs. Varying:

As we could expect running times for the patterns with a varying subset of
followers are often higher, as one more array is computed for the ‘varying’
problems. However, this increase is very marginal compared to other influ-
encing factors. We can also observe that the values for the ‘varying’ patterns
are at least as big (sometimes slightly larger) as for the ‘non-varying’ pat-
terns. This is because a non-varying pattern is also a varying pattern by
definition.
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n U CH non-varying
leaders report-all max-length max-size

128 5122 c 2 89 37 23
256 5122 c 10 211 56 66
512 5122 c 11 329 44 200

1024 5122 c 27 676 46 197
2048 5122 c 33 689 57 384
4096 5122 c 44 966 55 812
128 10242 c 0 0 0 4
256 10242 c 0 0 2 8
512 10242 c 19 360 46 26

1024 10242 c 36 954 53 166
2048 10242 c 80 1536 47 219
4096 10242 c 98 2521 59 257
128 5122 u 0 0 0 3
256 5122 u 0 0 9 7
512 5122 u 1 7 25 10

1024 5122 u 5 15 24 13
2048 5122 u 8 40 34 15
4096 5122 u 6 36 29 14
128 10242 u 0 0 0 3
256 10242 u 0 0 0 5
512 10242 u 0 0 0 7

1024 10242 u 1 1 20 10
2048 10242 u 6 26 25 11
4096 10242 u 16 87 42 24

Table 4.1: Resulting values of our methods, for a non-varying set of followers.
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n U CH varying
leaders report-all max-length max-size

128 5122 c 2 161 41 23
256 5122 c 12 389 71 71
512 5122 c 13 520 68 238

1024 5122 c 31 1142 66 208
2048 5122 c 36 1022 72 419
4096 5122 c 50 1541 78 959
128 10242 c 0 0 0 4
256 10242 c 0 0 2 8
512 10242 c 27 643 60 26

1024 10242 c 47 1591 73 183
2048 10242 c 97 2833 101 224
4096 10242 c 117 4299 78 324
128 5122 u 0 0 0 4
256 5122 u 0 0 13 7
512 5122 u 6 54 41 13

1024 5122 u 9 73 32 21
2048 5122 u 29 187 40 25
4096 5122 u 19 109 34 37
128 10242 u 0 0 0 3
256 10242 u 0 0 0 5
512 10242 u 0 0 0 7

1024 10242 u 1 2 20 10
2048 10242 u 20 152 40 17
4096 10242 u 49 279 42 24

Table 4.2: Resulting values of our methods, for a varying set of followers.
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n U CH without buckets with buckets
non-varying varying non-varying varying

128 5122 c 9.44 9.56 2.35 2.86
256 5122 c 40.91 41.89 12.58 14.69
512 5122 c 203.53 212.88 102.74 119.15

1024 5122 c 664.01 683.83 191.85 221.47
2048 5122 c 3393.17 3457.26 972.34 1099.19
4096 5122 c 14903.81 15046.69 5250.53 5651.59
128 10242 c 8.19 8.47 0.91 1.24
256 10242 c 32.79 33.82 2.83 3.63
512 10242 c 132.97 139.13 12.00 15.01

1024 10242 c 595.24 622.29 110.06 129.27
2048 10242 c 2809.12 2875.07 324.43 375.57
4096 10242 c 11143.28 11300.18 1477.70 1705.00
128 5122 u 8.37 8.08 1.33 1.52
256 5122 u 32.73 32.96 3.74 4.67
512 5122 u 129.16 130.56 12.88 15.91

1024 5122 u 529.79 523.12 47.54 54.52
2048 5122 u 2184.42 2178.64 221.99 234.74
4096 5122 u 11126.42 10978.71 1024.22 1037.39
128 10242 u 7.85 7.86 0.87 1.04
256 10242 u 31.45 32.79 2.28 3.01
512 10242 u 127.92 128.21 7.47 8.80

1024 10242 u 512.59 515.91 24.67 27.96
2048 10242 u 2268.77 2251.06 89.00 95.24
4096 10242 u 11201.63 11295.04 350.20 381.82

Table 4.3: Running times of our methods for the report-all problem. Reported
times are in seconds.
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Figure 4.11: Running times depending
on input size for non-varying report-all
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Figure 4.12: Running times depending
on input size for non-varying report-all
patterns for CH = u.

Without Buckets vs. With Buckets:

The approach to subdivide the space into buckets does not influence the
reported values of our methods, however, it can have an impressive impact
on the running times (see Figures 4.11 and 4.12). Depending on the input
characteristics, we can observe speed-up factors between 2 and 32. The
running time of the methods without ‘buckets’ is clearly quadratic in the
number of entities. An asymptotic behaviour of the methods with ‘buckets’
is more difficult to identify, but note that also this method has a quadratic
worst case running time.

CH = u vs. CH = c:

Almost always the input files with characteristic CH = c contain more
patterns, longer patterns and larger patterns, which was expected as those
files are much more likely to contain more and larger flocks. Hence, the input
files with CH = u result in smaller running times (see also Figure 4.11).
Interestingly these characteristics also indicate that the ‘bucket’ approach
for speeding-up the computations has its limitations, because the speed-up
factor of the ‘buckets’ method is strongly influenced by the characteristics.
For CH = u, we observe speed-up factors around between 5 and 11 for
the instances with U = 5122, and between 7 and 32 for the instances with
U = 10242. On the other hand, for CH = c, the speed-up factors are
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between 2 and 4 for the instances with U = 5122, and between 5 and 11 for
the instances with U = 10242. This can be explained by noting that the
files with characteristic CH = c contain more and bigger flocks, and hence
it is more likely that our algorithms encounter neighboring buckets that are
filled with more entities.

U = 5122 vs. U = 10242:

The difference between the universe with U = 5122 and U = 10242 is that
the former is much denser when filled with the same number of entities. As
a result, in the larger universe (U = 10242) less and smaller patterns exist.
Also the running times are affected (see Figure 4.12). The methods with
buckets run faster on instances with a larger universe, because we have more
buckets and therefore, buckets are likely to contain less entities on average.

4.7 Discussion

The analysis of the interrelations of moving individuals has in the last five
years attracted increasing attention, as a general reaction to the striking
need for more powerful methods for surveillance and geospatial intelligence.
Geographical information scientists are commissioned to develop methods
that detect the expected and discover the unexpected from massive streams
of disparate data, potentially originating from various sources [154]. Such
methods need to be scalable, flexible and reliable. This section discusses our
leadership approach with respect to these three properties and discusses the
found algorithm running times.

Balancing the matching of formalized movement patterns (such as the
presented leadership) with the inferring of unexpected space-time behaviors
from visualized space-time paths, we argue that the former copes much bet-
ter with increasing data sets. Whereas inferring form visualization might be
adequate for the analysis of individual events of interest [98], keeping track
of hundreds of individuals cruising in the space-time aquarium is literally
impossible [109]. By contrast, when detecting movement patterns such as
flock or leadership, the number of entities n is just a performance factor but
not an obfuscation factor.

Approaches detecting leader and follower relationships using pair-wise
cross-correlation of trajectories suffer from their intrinsic limitation to very
small numbers of involved entities. Thus, lead-follow events in [147], for
example, can only be detected for pairs of individuals at a time. Our lead-
ership pattern, in contrast, allows individuals to lead groups of followers.
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Since they operate on local-instantaneous events they can be detected in
trajectories of variable lengths, as long as there is certain temporal overlap.
Furthermore the approach in [147] has rather demanding constraints with
respect to the analyzed data set. It requires trajectories of equal length and
strongly synchronous sampling. Even though we assume the input data to
have the same characteristics, our algorithms for the continuous case can be
easily applied to data without a synchronized sampling. The running times
for sorting the sets of intervals for an entity would slightly increase, however,
from O(nτ log n) to O(nτ log nτ). We argue that our leadership algorithms
are thus flexible and applicable to diverse data from various sources.

Movement patterns that are defined from the geometric arrangement
of the involved entities (e.g. leadership), are more reliable than movement
patterns that base on the intermediate step of an analysis matrix, as do the
REMO patterns depend on an analysis matrix in Laube et al. [112]. The
deterministic discretisation of the movement descriptors in eight cardinal
direction classes introduces edge effects. An example shall illustrate such
edge effects. Let 22.5◦ be one threshold of the discrete movement azimuth
class ‘North’. Let furthermore the pattern under study be a flock pattern of
four entities moving in the same direction at any time t. Why should a set of
entities S1 with azimuths [21◦, 22◦, 22◦, 21◦] be a flock when another set S2

with azimuths [22◦, 23◦, 23◦, 22◦] is not? A definition requiring the entities
to have a mean azimuth and some variance (e.g. ±22.5◦) is a much more
natural and thus reliable definition of flock. The definition of leadership
in this chapter follows for exactly the same reasons the road of using a
geometrical arrangement instead of scanning a discretised matrix.

When comparing the running times in this chapter with those reported
in [23], we observe that the running times in the present work are much
higher. This is because the used methods are different. The methods in [23]
are faster but only report patterns of a specified length with a specified
start- and end-time. The methods in this chapter, however, are more flex-
ible. Once the arrays IntervalsNotFwg and IntervalsFwg are computed we
can very efficiently use them to report patterns of different lengths, and
with different start- and end-times. We also developed and implemented
an approximation algorithm and performed initial experiments. They show
a better asymptotic behaviour of the approximation algorithm. However,
the constant factors seem to be too large for practical purposes, because for
our test-files the exact algorithms always outperformed the approximation
algorithm. More details on this algorithm can be found in [12].
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4.8 Conclusions and Outlook

Movement patterns detect structure in large tracking data sets and are thus
key to a better understanding of the interactions amongst moving agents.
We provide a formal description of the pattern ‘leadership’ and subsequently
algorithms for its efficient detection. ‘Leadership’ describes the event or
process of one individual in front leading the movement of a group. Our
approach is inspired by movement patterns documented in the animal be-
haviour and behavioural ecology literature.

Our experiments give indications which input-size can be processed within
a reasonable amount of time, and they have shown that we are able to ef-
ficiently report leadership patterns. The resulting running times match the
theoretical bounds, however for improved methods (with buckets) the run-
ning times strongly depend on the characteristics of the instance.

In this chapter we assumed that all the trajectories fit into main mem-
ory. If this is not the case then we would have to develop I/O-efficient
algorithms or use spatio-temporal index structures. Both these techniques
would probably improve performance if the input does not fit into main
memory. However, this is an extension that would require much more fu-
ture research.

One drawback of the given definition of leadership is that a leader has
to be in the front region of all followers. For instance, for a very big flock of
gnus this definition might not be applicable, as some gnus at the end of the
flock are too far away from the front-line to be able to see leading animals.
Hence, one direction for future research could be the definition and analysis
of cascading leaders or followers, where a cascading follower is a follower of
a leader or a follower of another cascading follower.

For the many fields interested in movement, the overall challenge lies in
relating movement patterns with the surrounding environment, in order to
understand where, when and ultimately why the agents move the way they
do. Conceptualizing detectable movement patterns and the development of
algorithms for their detection is a first important step towards this ambi-
tious long-term goal. With its traditional spatial awareness, computational
geometry can make immense contributions to the theoretical framework un-
derlying movement analysis in geographical information science, behavioural
ecology or surveillance and security analysis.
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Chapter 5

Balanced Partition of

Minimum Spanning Trees

Scheduling problems [99] arise in a variety of settings. In general, scheduling
problems involve m jobs that must be scheduled on k ≤ m machines subject
to certain constraints while optimizing an objective function. In parallel
computation [139], often the problem is to minimize the time complexity of
the parallel algorithm.

In this chapter we consider a geometric version of these problems, namely
given a geometric task divide it into k subtasks such that the size of the
largest subtask is minimized. Such problems arise in applications from the
shipbuilding industry [145]. The task is to cut out a set of prespecified re-
gions from a sheet of metal while minimizing the completion time. Typically
the size of the sheet is 10× 30 meters and the number of regions that are to
be cut out can vary from a few regions to several hundreds. In most cases
there is only one single robot to handle this task but lately there are also
examples where the number of robots is greater. In the case when there is
just one robot the problem is closely related to the problem known in the
literature as the Traveling Salesperson problem with Neighborhoods (TSPN)
and it has been extensively studied [15, 45, 51, 77, 123, 127]. The problem
asks for the shortest tour that visits all the regions, and it was recently
shown to be APX-hard [45]. A variant of the Euclidean TSP when k robots
are available was considered by Fredrickson et al. [69]. They showed that by
computing a TSP-tour of the given point set and then partitioning the tour
into k parts a (2+ε−1/k)-approximation could be obtained in the restricted
case when the k robots must start and end at the same point. The need for
partitioning the input set such that the optimal substructures are balanced
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gives rise to many interesting theoretical problems. One such example is
the so-called Balanced Graph Partitioning problem [13], where the aim is to
partition the vertices of a graph into k subsets, while minimizing the capac-
ity of the edges between the subsets. The partition has to be balanced in
the sense that one subset can contain at most ν · n/k vertices, for a given
constant ν ≥ 1. In this chapter we consider the problem of partitioning
the input so that the sizes of the minimum spanning trees of the subsets
are balanced. More formally, the k-Balanced Partition Minimum Spanning
Tree problem (k-BPMST) is stated as follows:

Problem 1 (k-BPMST) Given a set of n points S in the plane, partition
S into k sets S1, . . . ,Sk such that the weight of the largest minimum spanning
tree,

W = max
1≤i≤k

(|M(Si)|)

is minimized. Here M(Si) is the minimum spanning tree of the subset Si

and |M(Si)| is its weight.

Guttmann-Beck and Hassin studied a similar problem [90] for arbitrary met-
rics, where the aim was to minimize the total weight of all MST’s of the
partition, given a prespecified size |Si| for each subset Si.

We also formulate the following problem below, the k-BPTSP problem.
This is relevant since, given a c-approximation for the k-BPMST problem,
we can easily achieve a 2c-approximation for the k-BPTSP problem, by
traversing the produced minimum spanning trees (MSTs).

Problem 2 (k-BPTSP) Given a set of n points S in the plane, par-
tition S into k sets S1, . . . ,Sk such that the weight of the largest traveling
salesperson tour,

W = max
1≤i≤k

(|TSP (Si)|)

is minimized. Here TSP (Si) is the minimum traveling salesperson tour of
the subset Si and |TSP (Si)| is its weight.

From the formal definitions of these problems it is clear that they can
be classified as geometric k-clustering problems. As such they are very
fundamental and have possible applications in a wide variety of settings
such as for example statistics, image understanding, learning theory and
computer graphics.

This chapter is organized as follows. We first show, in Section 5.1, that
the k-BPMST problem is NP-hard. Next, in Section 5.2 we present a k-
approximation greedy algorithm. This is followed by Section 5.3, where we
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present an approximation algorithm for the problem with approximation
factor (4/3 + ε) for the case k = 2, and with approximation factor (2 + ε)
for the case when k is a fixed constant greater than 2. The algorithm runs
in time O(n log n). Finally, in Section 5.4, conclusions and future research
are presented.

5.1 NP hardness

In this section we show that the k-BPMST problem is NP-hard. In order to
do this we need to state the recognition version of the k-BPMST problem:

Problem 3 Given a set of n points S in the plane, and a real number L,
does there exist a partition of S into k sets S1, . . . ,Sk such that the weight
of the largest minimum spanning tree is bounded by L, i.e., is it true that

W = max
1≤i≤k

(|M(Si)|) ≤ L?

The NP-hardness proof is done by a polynomial-time reduction from the
following recognition version of Partition.

Problem 4 (Partition) Given integers A = {a1, . . . , an}, such that
0 ≤ a1 ≤ . . . ≤ an, does there exist a subset P ⊆ I = {1, 2, . . . , n} such that

|P | = h = n/2 and
∑

j∈P

aj =
∑

j∈I/P

aj .

The above version of Partition is NP-hard [71].

Lemma 5.1 The k-BPMST problem is NP-hard.

Proof: The reduction is done as follows. Given an instance of Partition,
we create an instance of 2-BPMST in polynomial time, such that it is a yes-
instance if and only if the Partition-instance is a yes-instance. The input
consists of n integers where we assume that n is an even number, if not, we
just add a zero to the input. Given that the Partition-instance contains
n integers a1, . . . , an in sorted order, we create the following 2-BPMST

instance. A set of points S = A′ ∪L ∪R ∪L′ ∪R, as shown in figure 5.1(a)
is created, with interpoint distances as shown in figure 5.1(b). The sets
A′, L,R,L′ and R′ are closer described below, where λ = 11n(an + n) and
δ = 7n(an + n).

• A′ = {a′1, . . . , a′n}, where a′i = (0, iλ),
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Figure 5.1: The set of points S created for the reduction. In Figure (a) all notations
for the points are given. Similarly, in Figure (b) the notations for the distances
between points are given. Figure (c) illustrates a class 1 partition, and (d) illustrates
a class 2 partition.

• L = {l1, . . . , ln}, where li = (−δ − ai, iλ),

• R = {r1, . . . , rn}, where ri = (δ + ai, iλ),

• L′ = {l′1, . . . , l′n−1}, where l′i is the midpoint of the segment (li, li+1),
and

• R′ = {r′1, . . . , r′n−1}, where r′i is the midpoint of the segment (ri, ri+1).

For any given partition P = {P [1], P [2], . . . , P [h]} ⊆ {1, 2, . . . , n}, we define
AP = {aP [1], . . . , aP [n]}. Set λ2

i = δ2 + λ2 which implies that λi ≤ 12n(an +
n), which in turn gives that γi = λi/2 ≤ 6n(an + n). Finally let

L =
1

2

∑

i∈I

ai +
n

2
· δ +

n−1
∑

i=1

λi.

Since the number of points in S is polynomial it is clear that this instance
can be created in polynomial time. Next we consider the “if” and the “only
if” parts of the proof separately.

If: If partition P exists and we have a yes-instance of Partition,
then we will show that the corresponding 2-BPMST instance is also a yes-
instance. This follows when the partition S ′1 = AP ∪L∪L′, S ′2 = S −S1 (a
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class 1 partition, as defined below) is considered. The general appearance of
M(S ′1) and M(S ′2) is determined as follows. The set of points L∪L′ and the
set of points r ∪ R′ will be connected as illustrated in figure 5.1(c), which
follows from the fact that γi < δ < δ + a1. Next consider the remaining
points A′. Any point a′i will be connected to either li (in M(S ′1)) or ri (in
M(S ′2)), since ri and li are the points located closest to a′i (follows since
λ > δ + an). Thus,

|M(S ′1)| = |M(S ′2)| =
1

2

∑

i∈I

ai +
n

2
· δ +

n−1
∑

i=1

λi

and we have that the created instance is a yes-instance.
Only if: We have that P does not exist and we therefore want to

show that the created 2-BPMST is a no-instance. For this we examine two
classes of partitions referred to as Class 1 and Class 2 partitions.

Class 1: All partitions {V1,V2} such that L ∪ L′ ⊆ V1 and R ∪R′ ⊆ V2

Class 2: All other partitions {U1,U2} not belonging to Class 1.

We start by examining class 1 – see figure 5.1(c). A simple examination
of the edges that will be picked by Kruskal’s algorithm on the entire set
S shows that an optimal MST for S will contain the edges connecting the
lis and the l′is, and also the edges connecting the ris and the r′is. Also, for
each point a′i, i > 1, it will contain an edge connecting it to either li or to ri,
Finally, for point a1, it will contain edges connecting it to both l1 and r1. So
clearly, |M(S)| = 2·L+δ+a1. Its longest edge is of length δ+a1. Therefore,
|M(V1)|+ |M(V2)| ≥ 2 · L. Consequently, max{|M(V1)|, |M(V2)|} ≥ L.

Let P1 and P2 be the subset of points from A′ that are in V1 and V2

respectively. If |P1| = |P2| = n/2, then clearly for j = 1, 2, we have:

|M(Vj)| =
∑

i∈Pj

ai +
n

2
· δ +

n−1
∑

i=1

λi.

Since we have assumed that no solution to the instance of Partition exists,
it is clear that |M(V1)| 6= |M(V2)|, implying that max{|M(V ′1)|, |M(V ′2)|} >
L, and that the instance of 2-BPMST is a no-instance.

If, on the other hand, |P1| 6= |P2|, then w.l.o.g., we assume that |P1| >
n/2. Then we know that

|M(V1)| ≥ δ +
n

2
· δ +

n−1
∑

i=1

λi >
∑

i∈I

ai +
n

2
· δ +

n−1
∑

i=1

λi > L,
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again proving that the instance of 2-BPMST is a no-instance.
Next consider the class 2 partitions, illustrated in figure 5.1(d). There is

always an edge of weight γi (1 ≤ i ≤ n) connecting the two point sets of any
such partition. This means that there can not exist a class 2 partition U1,U2

such that max{|M(U1)|, |M(U2)|} ≤ L, because we could then build a tree
with weight at most 2 ·L+γi < |M(V1)|+ |M(V2)|+ δ+a1 = |M(S)|, which
is a contradiction. Thus, max{|M(U1)|, |M(U2)|} > L, which concludes this
lemma. 2

Note that the problems of computing square roots can be avoided by
adding vertices, one vertex at each place where there may be a non-isothetic
edge in our construction, in order to ensure that this MST edge is replaced
by two isothetic edges.

5.2 Greedy algorithm

In this section we present a straight-forward greedy algorithm with approx-
imation factor k. The basic idea of this algorithm is to remove the k − 1
heaviest edges of M(S). Let w1, . . . , wk−1 denote the weights of these k− 1
edges. The components created M(S1), . . . ,M(Sk) are MST’s for the points
that they span. Further, these MST’s define a partition of S into k subsets
S1, . . . ,Sk.

Next an upper bound on the approximation factor for the greedy algo-
rithm is shown. For this the following lemma is needed:

Lemma 5.2 The optimal solution of the k-Bpmst problem is bounded from
below by

1

k
(|M(S)| −

k−1
∑

i=1

wi).

Proof: This is shown by contradiction. Assume that there exists an optimal
solution S1, . . . ,Sk for S where

|opt| < 1

k
(|M(S)| −

k−1
∑

i=1

wi)

Let C denote the set of components M(S1), . . . ,M(Sk). The first step in
realizing the contradiction is to build a tree by connecting the components
of C using k−1 unique edges from M(S). Such a tree T can always be built.
Start with a forest F containing the components of C and then consider an
arbitrary cut of S that respects the edges of F . Since M(S) is a tree there
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must be at least one edge in M(S) that crosses this cut. Add one such edge
to F . This edge connects two of the components in the forest, thus creating
a larger component. Continue in this manner; consider cuts that do not
cross any edge in F and add a crossing edge from M(S) to F . Eventually
all components in F will be connected and the spanning tree T will have
been built.

The contradiction is then seen if we consider the total weight |T | of this
tree. The weight is equal to the sum of the components of C plus the sum
of the added edges. First consider the total weight of C. Since

|opt| = k
max
i=1
|M(Sopti)| <

1

k
(M(S)−

k−1
∑

i=1

wi)

we have that

|M(Sopti)| <
1

k
(M(S)−

k−1
∑

i=1

wi) for all i,

and that

|C| =
k
∑

i=1

|M(Sopti)| < M(S)−
k−1
∑

i=1

wi

Further, the weight of the k − 1 added edges from M(S) is less than or
equal to the weight of the k − 1 heaviest edges of M(S). This means that

|T | < |C|+
k−1
∑

i=1

wi <

(

M(S)−
k−1
∑

i=1

wi

)

+

k−1
∑

i=1

wi = M(S)

which is a contradiction. 2

Lemma 5.3 The greedy algorithm is an approximation algorithm with an
upper ratio bound of k for the k-Bpmst problem.

Proof: Since the greedy algorithm simply removes the k− 1 heaviest edges
of M(S), the total weight of all edges in the solution is M(S)−∑k−1

i=1 wi. In
the worst case the algorithm yields a partition with the total weight collected
in one MST of one of the subsets. Therefore |greedy| ≤ M(S) −∑k−1

i=1 wi.
Further, from Lemma 5.2 we have that
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|opt| ≥ 1

k
(M(S)−

k−1
∑

i=1

wi)

This means that

|greedy|
|opt| ≤

M(S)−∑k−1
i=1 wi

1
k (M(S)−∑k−1

i=1 wi)
≤ k

2

Next consider the complexity of the algorithm. First M(S) needs to be
constructed, which can be done in time O(n log n). Next the k − 1 heaviest
edges of M(S) are marked, but not removed, since their presence in M(S) is
needed when determining S1, . . . ,Sk (see below). In order to mark the edges
they are sorted. We have that |E| = n − 1 in a MST which means that
the sorting takes O(n log n) time. Finally S1, . . . ,Sk are determined with k
breadth-first searches. The searches are done with the adjacent nodes of the
k − 1 heaviest edges as source nodes. Before the searches begin, a vector V
is created, which represents these adjacent nodes. An element i set to true
means that node i will be used as a source node in a search. The algorithm,
then, is to iterate this vector and perform a search for each element i set to
true, with its corresponding node i used as a source node. The breadth-first
search is modified to consider the marked edges as non-existing so that only
one component is examined in each search. Further, when a node adjacent
to a marked edge is found during a search its corresponding element in
V is set to false. This reduces the number of possible searches of each
component from two to one. The result of each search is a subset Si and
after k searches all subsets S1, . . . ,Sk are determined. The total running
time of the k breadth-first searches is the same as one breadth first search
on M(S), O(|E|+ n) = O(n). This is due to the fact that the same number
of nodes and edges, in total, are scanned in both cases. Thus, the total
running time of the greedy algorithm is O(n log n).

The following theorem concludes the results of this section.

Theorem 5.4 The greedy algorithm produces a partition of weight at most
k times the optimal in time O(n log n).

5.3 Approximating the k-BPMST

In this section a (2+ε)-approximation algorithm is presented. The main idea
is to partition S into a constant number of small components, test all valid
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combinations of these components and, finally, output the best combination.
In order to do this efficiently, as will be seen later, one will need an efficient
partitioning algorithm.

A partition of a point set S into two subsets S1 and S2 is said to be valid
if max{|M(S1)|, |M(S2)|} ≤ 2

3 · |M(S)| and |M(S1)| + |M(S2)| ≤ |M(S)|.
The partition is denoted by the collection {S1,S2}. It is known that a valid
partition always exists and can be computed efficiently [21]. For complete-
ness we provide a detailed description of this algorithm.

5.3.1 ValidPartition

In this section we describe an algorithm, denoted ValidPartition or VP

for short; given a set of points S, VP computes a valid partition. First the
algorithm is described and then it is shown that it outputs a valid partition.
We need the following definition.

Definition 5.5 A point q is said to be a “hub” of M(S) if and only if:

1. It has at least four (at most six) incident edges e1 = (q, v1), . . . es =
(q, vr) (in clockwise-order).

2. Every subtree of M(S) that has q as a leaf has weight less than 1/3 ·
M(S), see Fig. 5.2.

Note that a spanning tree has at most one hub. We need the following
notations. Let M(T1), . . . ,M(Tr) be the r maximal subtrees of M(S), in
clockwise order, that have q as a leaf (one for each incident edge of q), and
let Ti be the set of points included in M(Ti). Finally, let T ′

i = Ti − {q}. As
mentioned earlier, a partition of a point set S into two subsets S1 and S2 is
said to be valid if max{|M(S1)|, |M(S2)|} ≤ 2/3 · |M(S)|.

Now, consider the following straight-forward algorithm, ValidParti-

tion, for partitioning a set of points S into two subsets S1 and S2. Select
an arbitrary leaf ν of M(S) as a starting point, and set S1 = {ν} and
S2 = S − {ν}. During the whole process, vertices are added to S1 and
deleted from S2, and both sets correspond to connected sets of vertices in
M(S). While {S1,S2} is not a valid partition, expand S1 with points of S by
following the tree in such a way that M(S1) ⊂M(S), M(S − S1) ⊂ M(S),
and the weight of M(S1) minimally increases in each iterative expansion.
The algorithm will terminate after O(n) steps. It is clear that the algorithm
will either find a valid partition with M(S1),M(S2) ⊂M(S), or a “hub” of
M(S) would have been reached without finding a valid partition.
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v1

v2

v3v4

v5
M(S  )2

M(S  )3

q

Figure 5.2: A possible hub q with five incident edges.

If, upon termination, S1 and S2 is not a valid partition then ValidPar-

tition combines the r + 1 trees {q,M(T ′
1 ), . . . ,M(T ′

r )} into an “optimal”
partition, S1 and S2, by adding r − 1 edges. Note that since a minimum
spanning tree for points in the plane has maximum degree 6, r + 1 ≤ 7,
which makes it possible for the above “optimal” partitioning of the r + 1
trees to be done in constant time.

The following lemma can now be shown:

Lemma 5.6 Given a set of points S, ValidPartition computes a valid
partition, S1 and S2, of S.

Proof: If a hub was not located by ValidPartition, then the lemma is
clearly true. If a hub q was located, then we know that

max{|M(T1)|, . . . , |M(Tr)|} < 1/3 · |M(S)|

and r ≥ 4 (otherwise we would have a valid partition). Hence, it follows
that there exists an r′ < r−1 such that M(T1∪ . . .∪Tr′) has weight between
1/3· |M(S)| and 2/3· |M(S)|. We will have two cases (the other cases cannot
occur):

r′ = 2 or r − r′ = 2: Assume for simplicity that r′ = 2, then a valid parti-
tion is S1 = T ′

1 ∪ T ′
2 and S2 = S − S1 = T3 ∪ . . . Tr. We know that

|M(S2)| < 2/3 · |M(S)| since |M(T1)|+ |M(T2)| ≥ 1/3 · |M(S)|. Now,
since the shortest edge connecting M(T ′

1 ) with M(T ′
2 ) is obviously

shorter than |e1|+ |e2| it also holds that |M(S1)| < 2/3 · |M(S)|. Note
that in this case |M(S1)|+ |M(S2)| ≤ |M(S)|.

r′ = 3 and r = 6: We have that |M(T4 ∪ T5 ∪ T6)| = M(S)− |M(T1 ∪ T2 ∪
T3)| ≤ 2

3 |M(S)|. Further, it can be shown (see below) that |M(T ′
4 ∪
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T ′
5 ∪T ′

6 )| ≤ |M(T4 ∪T5 ∪T6)|, which means that S1 = T1 ∪T2 ∪T3 and
S2 = T ′

4∪T ′
5∪T ′

6 is a valid partition. Also, |M(T ′
4∪T ′

5∪T ′
6)| ≤ |M(T4∪

T5∪T6)|, because if we consider the edges e4 = (q, v4), e5 = (q, v5) and
e6 = (q, v6). The angle between ei = (q, vi) and ei+1 = (q, vi+1) is
60◦ since M(S) is a Euclidean minimum spanning tree. It holds that
M(T ′

4 ), M(T ′
5 ) and M(T ′

6 ) can be connected by two segments of total
length less than |e4|+ |e5|+ |e6|.

Thus the lemma follows. 2

If a minimum spanning tree of S is given as input then it is easy to see
that the time needed for VP to compute a valid partition is O(n).

5.3.2 Repeated ValidPartition

One of the main ideas in the approximation algorithms (presented in Sec-
tion 5.3.3) is to repeatedly use VP in order to create the many small com-
ponents. The algorithm constructing these components is therefore called
RepeatedValidPartition, or RVP for short.

RVP is described as follows: Given M(S) and an integer m, first par-
titions S into two components using VP. Then repeatedly partition the
largest component created thus far, again using VP, until m components
have been created.

The following lemma describes an important property of RVP.

Lemma 5.7 Given a minimum spanning tree of a set of points S and an
integer m, RVP will partition S into m components S1, . . . ,Sm such that

max{|M(S1)|, . . . , |M(Sm)|} ≤ 2

m
|M(S)|.

Proof: Consider the following alternative algorithm A, which is similar to
RVP. Given M(S), algorithm A uses VP to divide M(S) until all resulting
components weigh at most 2

m |M(S)|. The order in which the components
are divided is arbitrary but when a component weighs at most 2

m |M(S)| it
is not divided any further. Compare algorithm A with RVP, which always
applies VP to the largest component and stops as soon as m components
are computed. A component of weight at most 2

m |M(S)| will not be divided
by RVP unless all other components created thus far also weigh at most
2
m |M(S)|.

Now, if the number of resulting components of A is at most m then
the lemma would follow. This is because RVP will first create the same
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components as A and then possibly divide these components further. Since
these additional divisions are performed using VP we have that the resulting
m components obviously will weigh at most 2

m |M(S)|.
The process of A can be represented as a tree. In this tree each node

represents a subset of S or a subtree of M(S) on which VP is applied. The
root represents M(S), and the children of a node represent the components
created when that node is divided using VP. We use the notation M(v) to
denote the subtree of M(S) associated with node v. Note that the leaves of
this tree represent the output components created by A. We divide these
leaves into two categories, where the first category consists of all leaves whose
sibling is not a leaf and the second consists of all remaining leaves (that is,
those whose siblings are also leaves). We let m1 and m2 denote the number
of leaves of the first and second category correspondingly.

We start by examining the leaves of the first category, denoted L =
{l1, . . . , lm1}. Consider any leaf l ∈ L, its sibling s, and its parent p. To each
l we attach a weight w(l) which is defined as w(l) = |M(p)| − |M(s)|. Since
s is not a leaf it holds that |M(s)| > 2

m |M(S)|, and since VP was applied
we know that |M(s)| ≤ 2

3 |M(p)|. Thus |M(p)| > 3
m |M(S)|, which implies

that w(l) ≥ 1
3 |M(p)| > 1

m |M(S)| and, hence,
∑m1

i=1w(l) > m1 · 1
m |M(S)|.

Next the second category of leaves, denoted L′ = {l′1, . . . , l′m1
}, is exam-

ined. Consider any such leaf l′ and its corresponding parent p′. Since there
are m2 leaves of this category and each leaf has a leaf sibling, these leaves
have a total of m2/2 parent nodes. Furthermore, for each of them2/2 parent
nodes, p′, we have that |M(p′)| > 2

m |M(S)|, since they are not leaves. Thus,
∑

p′∈L′ |M(p′)| > m2
2 · 2

m |M(S)| = m2 · 1
m |M(S)|.

Finally, consider the total weight of the components examined. We have
that m1 · 1

m |M(S)|+m2 · 1
m |M(S)| <∑m1

i=1w(l) +
∑

p′∈L′ |M(p′)| ≤ |M(S)|,
which implies that m1 + m2 < m. Thus, the number of leaves does not
exceed m, and the lemma follows. 2

5.3.3 The approximation algorithm

Now we are ready to present the approximation algorithm, which we will
denote CA. As input we are given a set S of n points, a fixed integer k and
a positive real constant ε. The algorithm considers two cases: k = 2 and
k ≥ 3. First the case k = 2 is examined.

Case: [k = 2]

step 1: Divide M(S) into 2
ε′ components, using RVP, where ε′ = ε

4/3+ε .
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The reason for the value of ε′ will become clear below. Let w denote
the weight of the heaviest component created.

step 2: Combine all components created in step 1, in all possible ways, into
two groups.

step 3: For each combination generated in step 2, compute the MST for
each of its two created groups.

step 4: Output the pair of MSTs with the least maximum weight.

Theorem 5.8 For k = 2, the approximation algorithm CA has a time
complexity of O(n log n), and produces a partition whose total weight is
within a factor (4

3 + ε) of the optimal partition.

Proof: Let {V1, V2} be the partition obtained from CA. Assume that S1 and
S2 is the optimal partition, and let e be the shortest edge connecting S1 with
S2. In the following discussions, we assume that the weight of the output of
CA is denoted by |CA| and the weight of an optimal solution is denoted by
|opt|. According to Lemma 3 it follows that w ≤ 2

2/ε′ |M(S)| = ε′|M(S)|. We

have two cases, |e| > w, and |e| ≤ w, which are illustrated in figure 5.3(a)
and 5.3(b), respectively.

(a) (b)

S1 S2 S1 S2

e e

Figure 5.3: The two cases for CA, k = 2. The edge e (marked) is the shortest edge
connecting S1 with S2.

In the first case every component is a subset of either S1 or S2. This
follows since a component consisting of points from both S1 and S2 must
include an edge with weight greater than w. Thus, no such component can
exist among the components created in step 1. Further, this means that the
partition S1 and S2 must have been tested in step 2 of CA and, hence, the
optimal solution must have been found.

In the second case, |e| ≤ w, there may exist components consisting of
points from both S1 and S2, see Fig. 5.3. To determine an upper bound
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of the approximation factor we start by examining an upper bound on the
weight of the solution produced by CA. The dividing process in step 1 of
CA starts with M(S) being divided into two componentsM(S ′1) and M(S′

2),
such that max{|M(S ′1)|, |M(S ′2)|} ≤ 2

3 |M(S)|. These two components are
then divided into several smaller components. This immediately reveals an
upper bound for |CA| of 2

3 |M(S)|. Next the lower bound is examined. We
have:

|opt| ≥ |M(S)| − |e|
2

≥ |M(S)|
2

− ε′M(S)

2
= (1− ε′)M(S)

2
.

Then, if the upper and lower bounds are combined we get:

|CA|/|opt| ≤
2
3 |M(S)|

(1− ε′)M(S)
2

≤ 4/3

1− ε′ ≤ 4/3 + ε.

In the third inequality we used the fact that ε′ ≤ ε
4/3+ε .

Next consider the complexity of CA. In step 1 M(S) is divided into a
constant number of components using RVP. This takes O(n) time, accord-
ing to Lemma 3. Then, in step 2, these components are combined in all
possible ways, which takes constant time since there are a constant number
of components. For each tested combination there is a constant number of
MST’s to be computed in step 3. Further, since there are a constant num-
ber of combinations and M(S) takes O(n log n) to compute, step 3 takes
O(n log n) time. 2

Next we consider the case k ≥ 3. In this case the following steps are
performed:

Case: [k ≥ 3 ]

step 1: Compute M(S) and remove the k − 1 heaviest edges e1, . . . , ek−1

of M(S), thus resulting in k separate trees M(U ′
1), . . . ,M(U ′

k).

step 2: Divide every tree M(U ′
i), 1 ≤ i ≤ k′, into 4k

ε′ components, using
RVP. Set ε′ = ε

2+ε . The reason for the value of ε′ will become clear
below. Denote the resulting components M(U1), . . . ,M(Ur), where
r = 4k

ε′ · k. Also, let w = max{|M(U1)|, . . . , |M(Ur)|}.

step 3: Combine U1, . . . , Ur in all possible ways into k groups.

step 4: For each such combination do:

• Compute the MST for each group.
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Figure 5.4: S1, . . . ,Sk is an optimal partition of S. All subsets that can be
connected by edges of length at most w are merged, thus creating the new set
S′1, . . . ,S′k′ .

• Divide each MST in all possible ways, using RVP. That is, each
MST is divided into 1, . . . , i, where i ≤ k, components, such that
the total number of components resulting from all the divided
MST’s equals k. Each such division defines a partition of S into
k subsets.

step 5: Of all the tested partitions in step 4, output the best.

Theorem 5.9 For fixed k greater than 2 the approximation algorithm CA
produces a partition which is within a factor of (2 + ε) of the optimal in
time O(n log n).

Proof: A constant number of components are created which means that the
time complexity is the same as for the case when k = 2, that is O(n log n).
To prove the approximation factor we first give an upper bound on the
weight of the solution produced by CA and then we provide a lower bound
for an optimal solution. Combining the two results will conclude the proof.

Consider an optimal partition of S into k subsets S1, . . . ,Sk. Merge all
subsets that can be connected by edges of length at most w. From this we
obtain the sets S ′1, . . . ,S ′k′ , where k′ ≤ k as illustrated in figure 5.4. Let m′

i

denote the number of elements from S1, . . . ,Sk included in S′
i. The purpose

of studying these new sets is that every component created in step 2 of CA

belongs to exactly one element in S ′1, . . . ,S ′k′ . A direct consequence of this is
that every possible partition of {S1, . . . ,Sk} into k′ groups must have been
tested in step 4.

Step 4 guarantees that M(S ′1), . . . ,M(S ′k′) will be calculated, and that
these MSTs will be divided in all possible ways. Thus, a partition will be
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made such that each M(S ′i) will be divided into exactlym′
i components. This

partitions S into k subsets V1, . . . ,Vk. Let V be a set in V1, . . . ,Vk such that
|M(V)| = max1≤i≤k{|M(Vi)|}. We wish to restrict our attention to exactly
one element of the set S ′1, . . . ,S ′k′ , hence we note that V is a subset of exactly
one element S ′ in S ′1, . . . ,S ′k′ . Assume that M(V) was created in step 4 of the
algorithm, when M(S ′) was divided into m′ components using RVP, then it
holds that M(V) ≤ 2

m′ |M(S ′)|, according to Lemma 3. Since the partition
V1, . . . ,Vk will be tested by CA we have that |CA| ≤ |M(V)| ≤ 2

m′ |M(S ′)|.
Next a lower bound of an optimal solution is examined. Let |opt′| be the

value of an optimal solution for S ′ partitioned into m′ subsets. Note that
S ′ consists of m′ elements from S1, . . . ,Sk. Assume w.l.o.g. that #S ′ =
#S1 + . . . + #Sm′ . This means that S1, . . . ,Sm′ is a possible partition of
S ′ into m′ subsets. Thus, |opt| ≥ max1≤i≤m′{|M(Si)|} = |opt′|. Assume
w.l.o.g. that e′1, . . . , e

′
m′−1 are the edges in M(S) connecting the components

in S ′. We have:

|opt| ≥ |opt′| ≥ 1

m′ (|M(S′)| −
m′−1
∑

i=1

|e′i|)

≥ 1

m′ (|M(S′)| − (m′ − 1)w) (5.1)

To obtain a useful bound we need an upper bound on w. Consider the
situation after step 1 has been performed. We have max1≤i≤k(|M(U ′

i)|) ≤
|M(S)| −∑k−1

i=1 |ei|. Since each U ′
i is divided into 4k

ε′ components we have
that the resulting components, and therefore also w, have weight at most
1/(2k

ε′ ) ·(|M(S)|−∑k−1
i=1 |ei|), according to Lemma 3. Using the above bound

gives us:

w

|opt| ≤
1/(2k

ε′ ) · (|M(S)| −∑k−1
i=1 |ei|)

1
k (|M(S)| −∑k−1

i=1 |ei|)
≤ ε′

2
=⇒ w ≤ ε′

2
|opt| (5.2)

Note that |opt| ≤ |M(V)| ≤ 2
m′ |M(S ′)|. Further, by combining (5.1) and

(5.2) gives us:

|opt| ≥ 1

m′

(

|M(S′)| − (m′ − 1)
ε′

2
|opt|

)

≥ (1− ε′) |M(S ′)|
m′ .

Combining the two bounds together with the fact that ε′ ≤ ε/(2 + ε)
concludes the proof of the theorem.

|CA|/|opt| ≤
2

m′ |M(S ′)|
(1− ε′) |M(S′)|

m′

≤ 2

1− ε′ ≤ 2 + ε.

2
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5.4 Conclusion and further research

In this chapter it was first shown that the k-BPMST problem is NP-hard.
After this was established, the next step was to design approximation al-
gorithms for the problem. First a greedy k-approximation algorithm was
shown. Next an algorithm based on partitioning the point set into a constant
number of smaller components and then trying all possible combinations of
these small components was shown. This approach revealed a (4/3 + ε)-
approximation in the case k = 2, and a (2 + ε)-approximation in the case
when we are given a fixed k ≥ 3. The time complexity of the algorithm is
O(n log n). However, the running time is exponential with respect to 1/ε
and factorial with respect to k. Hence, one of the main research questions
is to find a faster algorithm with respect to 1/ε and k.

For several generalizations of the k-BPMST problem it is straightfor-
ward to see that the results of this chapter are immediately valid once a
valid partition can be guaranteed. This is true, for example, in a higher-
dimensional geometric setting. For other settings, such as metric graphs, it
is obvious that we can’t always guarantee a valid partition, since we have
to consider non-complete graphs. In this case, however, the results of this
chapter are valid if we allow vertices to be included in more than one of the
output subsets.

An interesting question to consider is if Lemma 2 is tight, i.e., is it
possible to improve the upper bound of 2/3? If so, the approximation factor
for the case when k = 2 would be improved and maybe also the result for
larger values of k.





Chapter 6

Extending the Gap Theorem

The Gap property was introduced by Chandra et al. [30] in 1995. Let
G = (V,E) be a directed graph on a set of points in Rd. The edge set E
satisfies the so-called w-gap property if for any two distinct edges (p, q) and
(r, s) in E, we have that the sources are at least a distance w ·min(|pq|, |rs|)
apart.

Chandra et al. [30] also proved the Gap theorem that states that any di-
rected edge set fulfilling the Gap property has weight O( 1

w ·log n·wt(MST (V )),
where wt(MST (V )) denoted the weight of a minimum spanning tree of the
point set.

Note that if a graph has an edge set satisfying the w-gap property then
the outdegree of each vertex is at most one. In this chapter we propose
a relaxed version of the Gap property and show a similar weight bound.
An edge set E satisfies the relaxed w-gap property if for any two distinct
edges (p, q) and (r, s) in E, if the sources are closer than w ·min(|pq|, |rs|)
apart then their sinks are at least w ·min(|pq|, |rs|) apart (the definitions
are given in Section 2). We also prove that any edge set fulfilling the relaxed
Gap property has weight O(2d log n · wt(MST (V ))).

We believe that the extended result can be applied to a wider range
of geometric graphs. As an example we use it to develop a very simple
algorithm that constructs a sparse low weight t-spanner. Given a set V of n
points in R

d and a real number t > 1, a t-spanner for V is a graph G with
vertex set V such that any two vertices u and v are connected by a path in G
whose length is at most t · |uv|, where |uv| is the Euclidean distance between
u and v. If this graph has O(n) edges, then it is a sparse approximation of
the (dense) complete Euclidean graph on V .

Many algorithms are known that compute t-spanners with O(n) edges

123
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[10, 100, 117, 142, 159] that have additional properties such as bounded
degree [16, 25], small spanner diameter [16] (i.e., any two vertices are con-
nected by a t-spanner path consisting of only a small number of edges),
low weight [40, 41, 78] (i.e., the total length of all edges is proportional to
the weight of a minimum spanning tree of V ), planarity [14, 101] and fault-
tolerance [39, 118, 2]; see also the surveys [59, 84, 150] and the book [129]. All
these algorithms compute t-spanners for any given constant t > 1. Through-
out this chapter we will assume that t ≤ 2. If this is not the case we run
the algorithm with t = 2.

Three approaches have been proven to generate t-spanners of bounded
weight. The greedy algorithm was first presented in 1989 by Bern. Althöfer
et al. [10] gave the first theoretical bounds and since then the greedy algo-
rithm has been subject to considerable research [29, 30, 40, 41, 42, 78, 152].
It was shown to produce t-spanners of weight O( 1

(t−1) ·wt(MST (V ))) [41], for

a complete proof see [129]. However, a simple and naive implementation has
a running time of O(n3 log n). Das and Narasimhan [41] developed an ap-
proximate greedy algorithm with running time roughly O( 1

(t−1)d · n log2 n)

that produces a t-spanner of weight O( 1
(t−1)2d · wt(MST (V ))). The time

complexity was later improved to O( 1
(t−1)4d−1 · n log n) by Gudmundsson,

Levcopoulos and Narasimhan [78]. Both these algorithms are quite involved
and non-trivial to implement. The algorithm by Das and Narasimhan re-
quires a hierarchy of cluster graphs in which a linear number of shortest-
path queries are performed. The improvement by Gudmundsson et al. [78]
speeds up the clustering and the shortest path queries by running Dijkstra’s
algorithm in parallel on a cluster graph where the edge weights have been
rounded to integer weights.

Callahan and Kosaraju showed that a t-spanner can be obtained in
O( n

(t−1)d +n log n) time by using the well-separated-pair decomposition, ab-

breviated WSPD. Arya et al. [16] used a modified version of the standard
WSPD spanner algorithm, and then analyzed the weight of the graph us-
ing the so-called Dumbbell Theorem to prove that the weight is bounded
by O(log n · wt(MST (V ))). However, in [64, 65] Farshi and Gudmundsson
performed extensive experiments on the most common algorithms and one
of the surprising results was the poor performance of the WSPD-graph al-
gorithm, both in terms of running time and in terms of quality (number of
edges, total weight, maximum degree, ...) of the produced spanners. This
follows from the fact that the separation constant needed to guarantee a
t-spanner is required to be very small. Thus, the number of well-separated
pairs becomes very large (although linear with respect to n in theory).
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The third approach that guarantees the spanner to have weight O(log n ·
wt(MST (V ))) is the use of the strong w-gap property [30] (definition is given
in Section 6.1). In 1997 Arya and Smid [18] showed an algorithm, denoted
GapGreedy that produced a t-spanner of V in O( 1

(t−1)d−1 · n log2 n) time

that fulfills the w-gap property, thus has total weight O( log n
(t−1)d ·wt(MST (V ))).

The special case when w = 0, was discovered by Salowe [152] and, according
to Vaidya [159], also by Feder and Nisan.

In this chapter we will prove and make use of the relaxed w-gap property,
which makes our algorithm very simple and easy to implement. The most
complicated tool used is a data structure that supports orthogonal range
queries in O(logd−1 n+ k) time, where k is the number of reported vertices.
Note that this is a standard range tree that is very easy to implement.

6.1 Preliminaries

In this section the gap property and the gap theorem are introduced. We
then relax the property and extend the theorem in the next section.

Recall that for any directed edge (p, q), p is called the source, and q is
called the sink.

Definition 6.1 (Gap Property)
Let w ≥ 0 be a real number, and let E be a set of directed edges in R

d.
1. We say that E satisfies the w-gap property if for any two distinct

edges (p, q) and (r, s) in E, we have

|pr| > w ·min(|pq|, |rs|).

2. We say that E satisfies the strong w-gap property if for any two
distinct edges (p, q) and (r, s) in E, we have

|pr| > w ·min(|pq|, |rs|) and |qs| > w ·min(|pq|, |rs|).

The gap property was introduced by Chandra et al. [30]. They also
proved the Gap Theorem. The theorem bounds the total length of any set
of directed edges that satisfies the gap property.

Theorem 6.2 (Gap Theorem [30])
Let V be a set of n vertices in R

d, and let E ⊂ V × V be a set of directed
edges that satisfies the w-gap property.

1. If w ≥ 0, then each vertex of V is the source of at most one
edge of E.
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2. If w > 0, then wt(E) < (1+2/w)·wt(MST (V )) log n, whereMST (V )
denotes a minimum spanning tree of V .

3. If w ≥ 0, and E satisfies the strong w-gap property, then each vertex
of V is the sink of at most one edge of E.

Lenhof, Salowe, and Wrege [116] (see also Alon and Azar [8] and Chan-
dra, Karloff, and Tovey [31]), proved a lower bound saying that there exists
a set V of n vertices in the plane and a set E ⊂ V ×V of directed edges such
that E satisfies the w-gap property, and wt(E) ≥ log n

6 log log n · wt(MST (V )).
This bound was later improved to Ω(log n · wt(MST (V ))) by Narasimhan
and Smid [129].

6.2 The extended gap theorem

Using logical transposition (A→ B is equivalent to ¬B → ¬A) the gap theo-
rem states that if the total weight of E is at least ((1+2/w)·wt(MST (V )) log n)
then at least two edges of E must be such that their sources are rela-
tively close. In this section we extend the gap theorem. Unless a non-
constant number of edges of E are almost identical, that is, have very sim-
ilar length, slope and position, then the length of the graph G is within
O(log n · wt(MST (V )).

Definition 6.3 (Relaxed Gap Property)
Let w ≥ 0 be a real number, and let E be a set of directed edges in Rd.
Consider any two distinct edges e = (p, q) and e′ = (p′, q′) in E. We say
that E satisfies the relaxed w-gap property if

|pp′| ≤ w ·min(|e|, |e′|)

then
|qq′| > w ·min(|e|, |e′|).

The Relaxed Gap Property relaxes the condition that the sources of the
edges may not be too close. Instead we only require that either the sources
or the sinks may not be too close.

For simplicity we say that the angle between two directed edges is the
smallest angle between the two vectors coinciding with the two edges. Before
we prove the extended gap theorem, we will need the following:

Definition 6.4 Let E be a set of directed edges in R
d for which the relaxed

gap property holds, and let 0 < δ < w and 0 < θ be two real constants.
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θ

e′

w|e′|

δ|e′|

e
p

p′

q

q′

Figure 6.1: Two edges e, e′ ∈ E fulfilling the θ, δ-gap property.

We say that two edges e1 = (p1, q1) and e2 = (p2, q2) fulfill the (θ, δ)-gap
property if and only if (see Fig. 6.1):

(1) |p1p2| ≤ δ ·min(|e1|, |e2|) and

(2) the angle between e1 and e2 is at most θ.

p1 = p2
q1

u

≤ θ
≤ tan θ

q2

c−1

c
w

C ℓ
v1

v2x

y

Figure 6.2: Illustration of the proof of Observation 6.6.

Observation 6.5 Given two edges e1 and e2 in Rd that fulfill the (θ, δ)-gap
property with 0 < δ < w/c and 0 < θ < arcsinw/k, we have

max
( |e1|
|e2|

,
|e2|
|e1|
)

> 1 + β, where (1 + β) =
√

1 + sin2 θ.
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Proof: Assume without loss of generality that |e1| ≤ |e2|, and that e1 =
(p1, q1) and e2 = (p2, q2). Consider the plane P spanned by e1 and e2.
Rotate the two edges such that e1 is horizontal in P and p1 lies to the left
of q1. To simplify the discussion we assume that P is in the xy-plane, where
the x-axis is horizontal and the y-axis is vertical.

Since e1 and e2 fulfill the (θ, δ)-gap property we have |p1p2| ≤ δ · |e1| and
that |q1q2| > w · |e1|. To simplify the calculations we translate e2 such that
p1 = p2, which implies that |q1q2| > (w − δ) · |e1| ≥ (1− 1/c)w · |e1|.

Let u be the point on the line ℓ through p2 and q2 with the same x-
coordinate as q1, as shown in Fig. 6.2. Let C be the circle with center at q1
and radius (1− 1/c)w, and let v1 and v2 be the intersection points between
C and ℓ, where v1 lies to the left of v2. To prove the observation we need to
show that the distance along ℓ between u and v1, and u and v2 is at least β.

Using standard trigonometry we get |p2v1| < |e1| which implies that q2
must lie to the right of v1. Furthermore, we get

|p2v2| >
√

1 + (((1− 1/c)k)2 − 2) sin2 θ

which implies the observation if we set c = 4 and k = 4. 2

We will also need the following lemma:

Lemma 6.6 Let e be a directed edge, let E be a directed edge set in Rd,
and let 0 < δ < w/4 and 0 < θ < arcsinw/4 be two given constants. The
number of edges in E is bounded by O(2d(1 + β)d) if for every edge e′ in E
it holds that:

(1) the angle between e and e′ is at most θ,
(2) e and e′ fulfill the (θ/2, δ)-gap property, and
(3) (1 + β)j · |e′| < |e| ≤ (1 + β)j+1 · |e′|.

Proof: Consider an arbitrary edge e1 = (p1, q1) in E and let e2 = (p2, q2)
be the shortest edge in E. From (3) we have |e1|/|e2| < (1 + β) which
implies that e1 and e2 do not fulfill the (θ, δ)-gap property, according to
Observation 6.5. However, the angle between e1 and e2 is at most θ which
means |p1p2| must be greater than δ · |e2|, otherwise, e1 and e2 would fulfill
the (θ, δ)-gap property according to the definition. Note that this implies
that the d-dimensional ball with center at p1 and radius r1 = δ · |e2| must
be empty of points.

Consider the edge e = (p, q). From (2) we have that both |p1p| and
|p2p| are bounded by δ · |e1| and δ · |e2|, respectively. As a result we have
|p1p2| ≤ δ(|e1|+ |e2|) ≤ 2δ(1 + β)|e2|. Hence, all the sources of the edges in
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E must be contained in a d-dimensional ball with center at p1 and radius
2(1 + β)|e2|.

Recall that the volume of a d-dimensional ball of radius r is (2π)d/2·rd

2·4···d if

d is even, otherwise the volume is (2π)d/2·rd

1·3···d . By using a standard packing
argument on the two bounds we obtain:

#E = O(2d(1 + β)d).

2

We can now show the following theorem:

Theorem 6.7 (Extended Gap Theorem) Let w ≥ 0 be a real number, let
V be a set of vertices in Rd, and let E ⊂ V × V be a set of directed edges
satisfying the relaxed w-gap property. It holds that

wt(E) =
∑

e∈E

|e| = O(2d(1 + β)d · (1 + 8/w) · log n · wt(MST (V ))).

Proof: Consider a partition of E into k = O(2d−1(1+β)d−1) sets E1, . . . , Ek

where the angle between any two edges in Ei, 1 ≤ i ≤ k, is bounded by
θ = arcsinw/4.

Next, for each set Ei we consider a maximum subset E′
i ⊆ Ei such that

no pair of edges in E′
i fulfills the (θ, δ)-gap property, where δ = w/4. The

edges in E′
i are chosen such that an edge e in E′

i is longer than any edge e′

that fulfills the (θ, δ)-gap property with e.
Note that the edges in E′

i fulfill the relaxed gap property but not the
(θ, δ)-gap property. Since the edges in E′

i has approximately the same
direction it follows from the construction of E′

i that for any two edges
e1 = (p1, q1) and e2 = (p2, q2) in E′

i the distance between p1 and p2 must
be at least δ · min(|e1|, |e2|), which implies that E′

i fulfills the δ-gap prop-
erty (Definition 6.1), and case (2) of Theorem 6.2. Consequently, wt(E′

i) ≤
(1 + 2/δ) · log(#Ei) · wt(MST (V ′

i )), where V ′
i is the set of points spanned

by E′
i.

To get the bound stated in the theorem it remains to prove that wt(Ei) =
O(2d(1 + β)d · wt(E′

i)). Consider an edge e of E′
i and let Di(e) be the set

of edges in Ei that fulfill the (θ, δ)-gap property with e. Recall that e is
longer than any edge e′ in Di(e). We claim that wt(Di(e)) = O(|e|) which
would complete the theorem, and according to Observation 6.5 we have
|e|/|e′| > 1 + β for any edge e′ in Di(e). Group the edges in Di(e) into
sets Dj

i (e) with respect to their length, such that the length of the edge
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in Dj
i (e) is in the interval

( |e|
(1+β)j+1 ,

|e|
(1+β)j

]

. From Lemma 6.6 we have

#Dj
i (e) = O(2d(1 + β)d), hence:

∞
∑

j=1

wt(Dj
i (e)) = O(2d(1 + β)d) ·

∞
∑

j=1

|e|
(1 + β)j

= O(2d(1 + β)d)|e|.

We can now put together the results:

k
∑

i=1

wt(Ei) = O(2d(1 + β)d) ·
k
∑

i=1

wt(E′
i)

= O(2d(1 + β)d · (1 + 2/δ) · log n · wt(MST (V ))).

2

Even though the theorem is only stated for directed edges, it can easily
be generalized to the undirected case.

6.3 A fast and simple construction of a low weight

t-spanner

Next we consider how to construct a t-spanner of low weight fast and simple,
using the extended gap theorem. As input we are given a set of points V in
Rd and the general idea is straight-forward and consists of two main steps:
(1) compute a (directed)

√
t-spanner G = (V,E) that is then (2) pruned

by removing all edges that do not fulfill the relaxed gap-property. After
replacing each directed edge with an undirected edge the resulting graph
G′ = (V,E′) will be shown to be a

√
t-spanner of G, thus a t-spanner of

V . The idea is that the graph G′ should have the added property that the
weight of the edge set is bounded.

As discussed in the introduction there are many different t-spanner al-
gorithms that can be used for the first step of our algorithm [129]. At the
end of this section we will discuss this in more detail. For now we will just
assume that the first step of the algorithm generates a

√
t-spanner G of V

with N edges. To make it directed we just replace each edge with a directed
edge (arbitrary direction).

The second step of the algorithm is presented in detail in the next section
and the correctness of the algorithm is given in Section 6.3.2.
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6.3.1 The pruning step

In this section we are given a
√
t-spanner G = (V,E) and the aim is to prune

G such that the resulting graph G′ = (V,E′) is a
√
t-spanner of G and the

edges in E′ fulfill the relaxed gap property, and thus has bounded weight.

First we direct all the edges from left to right, to make the graph directed.
To simplify the arguments we set min{

√
t − 1, 1} = ε. Thus, we aim to

construct a (1 + ε)-spanner G′ of G.

The first step is to partition the edge set E into sets E1, . . . , Em such
that the length of the edges in a set differ by at most a factor (1 + λ),
where λ = ε/4. The set E1 contains all edges of E of length at most
(1 + λ) · |e|, where e is the shortest edge of E. In a generic step the set Ei

contains the shortest edge e in E \ {E1 ∪ E2 ∪ . . . ∪ Ei−1} and all edges in
E \ {E1 ∪ E2 ∪ . . . ∪ Ei−1} of length at most (1 + λ) · |e|.

Next partition each set Ei into a minimum number of sets Ei,1, . . . , Ei,k

where the angle between to edges in Ei,j differ by at most θ. Note that
k = O(2d−1) and that we set θ = arcsin(ε/8).

Process each set Ei,j as follows. Consider the source vertex of each
edge in Ei,j and denote this vertex set Si,j. Note that each vertex p in Si,j

corresponds to an edge e(p) in Ei,j, thus if two edges e1 and e2 share a
source p then two identical vertices, p1 and p2, are added to Si,j. Build a
range tree Ti,j on

For each set Si,j let Si,j denote the union of sets Sg,h such that there
may exist a point q in Sg,h and a point p in Si,j such e(p) and e(q) differ
in angle by at most θ and such that max{e(p)/e(q), e(q)/e(p)} ≤ (1 + λ).
Finally, let Ei,j denote the edge set corresponding to Si,j .

Fact 6.8 [46] A set of n vertices in the plane can be preprocessed in order
to construct a data structure of size O(n logd−1 n). The data structure takes
O(n logd−1 n) time to construct, and supports orthogonal range queries in
O(logd−1 n+ k) time, where k is the number of vertices reported.

Next, we incrementally build the edge set E′, where E′ is initially empty.
Process the edges of E in order of increasing length. For each processed
edge e, consider its source vertex p ∈ Si,j. Let Q(p) be the square with
center at p and side length γ · |e(p)|, where γ = ε

32
√

d
. Move the edge e(p)

from E to E′ and perform an orthogonal range query in Ti,j with Q(p). Let
Ti,j(p) be the set of reported vertices. For each vertex q in Ti,j(p) test if
e(q) and e(p) violate the relaxed w-gap property, where w = γ/2. If so,
remove e(q) from E. That is, e(q) will never be tested and e(q) will never
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be added to E′. Continue until E is empty. We claim that the resulting
graph G′ = (V,E′) is a t-spanner of V .

Lemma 6.9 The graph G′ = (V,E′) can be constructed from G = (V,E)
using O(d2d−1N logd−1N) time and space.

Proof: Consider the construction of G′. First the edges of G are partitioned
into sets E1, . . . Em. This can be done by sorting the edges by increasing
length, and then iterate through the edges in order. Each group Ei is further
subdivided into k = O(2d−1) groups Ei,1, . . . , Ei,k, where each edge can be
placed in the correct group in time O(d). Thus, the edges are partitioned
into groups, which requires O(dN +N logN) time.

Next, consider a range tree Ti,j, where we let Ni,j denote the total num-
ber of points in Si,j Since any set Si,j is included in O(2d) of the created

range trees, we have that
∑m

i=1

∑k
j=1Ni,j = O(2dN). Thus, preprocessing

takes O(2dN logd−1 2dN) time in total.

Next we consider how many times a vertex may be reported in total
during the queries. An edge e is removed from E to which it belongs once
it has been reported. Its corresponding vertex p is not removed from any
range trees. However, each vertex will only be reported O(2d) times. This
follows since only O(2d) query squares, of similar size, can cover p, such that
none of the square centers are contained within another square (other than
its own). This means that the total number of reported vertices is O(2dN)
and that all queries and deletions of corresponding reported vertices, takes
O(2dN logd−1 2dN) time in total. This completes the lemma. 2

6.3.2 Correctness proof

It remains to prove that the algorithm produces a graph that is a t-spanner
of V (Lemmas 6.10-6.11) and has low weight (Lemma 6.12).

Lemma 6.10 Given an edge e = (p, q) ∈ E \ E′ there exists an edge e′ =
(p′, q′) ∈ E′ such that

|pp′| <
√
dγ|pq| and |qq′| <

√
dγ|pq|+ λ · |pq|+ (1 + λ)|pq| sin θ.

Proof: Consider the step in the algorithm where e is discarded, and assume
that the edge e′ = (p′, q′) was processed at that time. Since e was discarded
p must be inside Q(p′). Recall that the side length of Q(p′) is γ|pq| and that
the angle between e and e′ is at most θ.
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As in Observation 6.5 we consider the plane P spanned by e and e′.
Rotate the two edges such that e′ is horizontal in P and p′ lies to the left of
q′. To simplify the discussion we assume that P is in the xy-plane, where
the x-axis is horizontal and the y-axis is vertical.

Let p.x and p.y denote the x-coordinate and y-coordinate of p. Obviously
|qq′| ≤ |q.x− q′.x|+ |q.y − q′.y|. First we bound the first term.

Since p ∈ Q(p′) we have |p.x−p′.x| ≤
√
d·γ2 ·|pq|. Also, |p.x−q.x| ≤ λ·|pq|.

This gives that |q.x− q′.x| ≤
√
dγ/2 · |pq|+ λ · |pq|.

Next, we consider the second term. Since the angle is at most θ we have
that |q.y − q′.y| ≤

√
dγ/2 + (1 + λ)|pq| sin θ, see Fig. 6.3. Putting together

the two terms proves the lemma. 2

≤ (
√

dγ/2 + λ)|pq|

≤
√

dγ/2 + (1 + λ)|pq| sin θ

≤
√

dγ|pq|
p

p′

q

q′

Figure 6.3: Illustrating the proof of Lemma 6.10.

Lemma 6.11 The graph G′ is a t-spanner of V .

Proof: Recall that G = (V,E) is a
√
t-spanner of V so it suffices to prove

that G′ is a (1 + ε)-spanner of G. The proof will show that for every edge
(p, q) in G there is a path in G′ of length at most (1 + ε) · |pq|, which
immediately implies that δG′(s, t) ≤ (1 + ε) · δG(s, t) for any pair of vertices
s, t ∈ V .

The proof is by induction on the length of the edges in E. As the base
case consider the shortest edge (p, q) ∈ E. Assume that p lies to the left of
q. Following the algorithm it is obvious that the vertex p corresponding to
(p, q) is the first vertex processed, and hence must be added to E′.

Consider an arbitrary edge e = (p, q) in E, and assume that the claim is
true for all edges of E shorter than e.

If (p, q) ∈ G′ then we are done. Otherwise, there must be an edge (r, s)
such that they belong to the same set Ei,j and (r, s) was processed before
(p, q). Furthermore, if r is the left end vertex of (r, s) then r must lie within
the query region Q(p). This implies that the distance between p and r is
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smaller than w. We have:

δG′(p, q) ≤ δG′(p, r) + |rs|+ δG′(q, s)

< (1 + ε)γ · |pq|+ |pq|+ (1 + ε) · (
√
dγ|pq|+ λ · |pq|

+(1 + λ)|pq| sin θ)
= ((1 + ε)γ + 1 + (1 + ε)(

√
dγ + λ+ (1 + λ) sin θ)) · |pq|

= ((1 + ε)
ε

32
√
d

+ 1 + (1 + ε)(
ε

32
+
ε

4
+ (1 +

ε

4
) · ε

8
))|pq|

< (1 + ε) · |pq|.

This completes the proof of the lemma. 2

Next we show that the created edge set E′ fulfills the relaxed w-gap
property.

Let E′
i,j be the set of edges in E′ ∩ Ei,j.

Lemma 6.12 The edge set E′ fulfills the relaxed w-gap property, where
w=γ/2.

Proof: Consider any two distinct edges e1 = (p, q) and e2 = (p′, q′) in E′,
where we assume without loss of generality that e1 is shorter than e2, and
e1 ∈ E′

i,j. Again we consider the plane P spanned by e1 and e2. Rotate
the two edges such that e1 is horizontal in P and p1 lies to the left of q1.
To simplify the discussion we assume that P is in the xy-plane, where the
x-axis is horizontal and the y-axis is vertical.

We must show that if |p1, p2| ≤ w ·min(|e1|, |e2|) = w|e1|, then it holds
that |q1, q2| > w ·min(|e1|, |e2|) = w|e1|.

First consider the case when e2 is included in the set Ei,j. Since the algo-
rithm explicitly tests e1 and e2 in this case, the w-gap property immediately
holds, with w = γ/2.

If the above case does not hold, i.e., e2 /∈ Ei,j, then we know from the
algorithm that either the angle between e1 and e2 is at least θ, or that
|e2| ≥ (1 + λ)|e1|. We have two cases:

• Angle between e1 and e2 is at least θ. Since the slope of e2 is at least
θ and since |e2| ≥ |e1| we have |p2.y − q2.y| ≥ sin θ = ε

8 · |p1q1|. This
observation immediately implies that |q1.y−q2.y| ≥ 3ε

32 |p1q1| > γ
2 |p1q1|

since |p1.y − p2.y| ≤
√

dγ
2 |p1q1| = ε

64 |p1q1|, see Fig. 6.4.

• |e2| ≥ (1 + λ)|e1|. Assume that e1 is horizontal. Consider Q(p1) and
Q(q1). Consider any edge e = (p, q) with p ∈ Q(p1) and q ∈ Q(q1). It
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p1 q1

e1

e2

> θ

p2

q2

Figure 6.4: Illustrating the case that e1 and e2 are not included in the same set
E′

i,j .

is easy to see that the length of e must be shorter than (1+ε/16)·|p1q1|,
see Fig. 6.5. From the definition of the edge sets it follows that |e2| ≥
(1 + λ) · |e1| = (1 + ε/4) · |e1|, which implies that either p2 /∈ Q(p1) or
q2 /∈ Q(q1).

This completes the proof of the lemma. 2

p1 q1

e1

e2

p2

q2

Figure 6.5: Illustrating the case |e2| ≥ (1 + λ)|e1|.

Next we bound the weight of the spanner by combining the results.

Lemma 6.13 The weight of the edges in G′ is bounded by

O
(

√
d · 2d

ε
· log n · wt(MST (V ))

)

.

Proof: The algorithm (Section 6.3.1) initialized θ and γ to arcsin ε/8
and ε

32
√

d
, respectively. According to Observation 6.5, we have (1 + β) =

√

1 + sin2 θ =
√

1 + ε2/64, and according to Lemma 6.12 we have w = γ/2.
The Extended Gap Theorem (Theorem 6.7) states:

wt(E) =
∑

e∈E

|e| = O(2d(1 + β)d · (1 + 8/w) · log n · wt(MST (V ))).
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Thus plugging in the values gives:

wt(E) =
∑

e∈E

|e| = O(2d(1 + ε2/64)d · (1 +
8 · 32 ·

√
d

ε
) · log n ·wt(MST (V )))

= O(

√
d2d

ε
log n · wt(MST (V ))).

2

In the previous section we assumed that a
√
t-spanner of V was given

with N edges. However, we did not specify how this spanner was con-
structed. There are many ways such a spanner can be constructed and we
may choose different approaches for different purposes, see for example the
survey by Gudmundsson and Knauer [84].

If it is desirable to also have bounded degree one may choose to use
the sink spanner [16] which can be constructed using the sink-spanner al-
gorithm by Arya et al. [16]. The resulting graph G = (V,E) has maximum
degree O( 1

(t−1)2d−2 ) and O( n
(t−1)d−1 ) edges and can be constructed using

O( n
(t−1)d−1 logd−1 n) time.

SinceG hasO( n
(t−1)d−1 ) edges the pruning takes O( d2dn

(t−1)d−1 logd−1 n
(t−1)d−1 )

time and space. The following theorem summarizes the results in the Eu-
clidean plane.

Theorem 6.14 One can construct a t-spanner of a set V of n vertices in

Rd with degree O( 1
(t−1)2d−2 ) and weight O(

√
d·2d

(
√

t−1)
· log n · wt(MST (V ))) in

O( n
(t−1)d−1 logd−1 n) time and space.

6.4 Concluding remarks

In this chapter we introduced a relaxed version of the w-Gap Property and
proved that unless a non-constant number of edges of E in Rd are almost
identical, that is, have very similar length, slope and position, then the total
weight of the graph is bounded by O(2d · (1 + 8/w) · log n · wt(MST (V ))).
Compared to the original Gap Theorem our bound is larger by roughly
a factor 2d. It is natural to ask if this can be improved to only have a
polynomial dependence on d, or even just a constant factor.

We used the Relaxed Gap Property to obtain a simple and efficient
algorithm for constructing low weight t-spanners. However, we believe that
the Extended Gap Theorem should be applicable to other types of geometric
networks.



Part III

Assorted Problems





Chapter 7

Chips on Wafers, or Packing

Rectangles into Grids

In the VLSI wafer industry it is nowadays possible that multiple projects
share a single fabrication matrix (the wafer); this permits fabrication costs
to be shared among the participants. No a priori constraints are placed on
either the size of the chips nor on the aspect ratio of their side lengths (except
the maximum size of the outer bounding box). After fabrication, in order to
free the separate chips for delivery to each participant, they must be cut from
the wafer. A diamond saw slices the wafer into single chips. However cuts
can only be made all the way across the bounding box, i.e., all chips must
be placed within a grid. A grid is a pattern of horizontal and vertical lines
(not necessarily evenly spaced) forming rectangles in the plane. There are
some practical constraints, for example, the distance between two parallel
cuts cannot be infinitely small, since machines with a finite resolution must
be programmed with each cut pattern. Although some of these constraints
may simplify the problem we will not consider them in this chapter.

We will consider the theoretical aspects of the problem and we simplify
it by assuming that the wafers are rectangular. In practice the wafers are
usually circular, although rectangular wafers are produced and used in small
scale [124, 144]. This application leads us to define grid packing as follows.

Definition 7.1 A set of rectangles S is said to be grid packed if there exists
a rectangular grid such that every rectangle lies in the grid and there is at
most one rectangle of S in each cell, as illustrated in Fig. 7.1. The grid is said
to enclose S if it contains no empty rows or columns and the height/width of
every row/column is minimized with respect to its included rectangles. The

139
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area of a grid packing is the area of a minimal bounding box that contains
all the rectangles in the grid packing.

There are several cases in the chip design industry where it is favorable
to produce a good grid packing. Some practitioners have therefore asked for
algorithms solving such problems [97]. In practice one is given a set of chips
and one wants to minimize the number of wafers used. A näıve simulated-
annealing rectangle placement [97] with n rectangles might be packed on n
separate wafers, as a worst case. This means, fabricating n wafers, wasting
all except one chip on each wafer. So the number of recovered chips per cut
pattern should be maximized.

Note that the number of input rectangles is n and that the input rect-
angles are allowed to be rotated. The problems considered in this chapter
are defined as follows.

Problem 5 [Minimum area grid packing (MAGP)] Given a set S of
n rectangles find a grid packing of S that minimizes the total area of the
grid.

We also consider several interesting variants of the problem, for example:

Problem 6 [Minimum area k-grid packing (MAkGP)] Given a set S
of n rectangles and an integer k ≤ n compute a minimum area grid packing
containing at least k rectangles of S.

Problem 7 [Minimum area grid packing with bounded aspect ratio
(MAGPAR)] Given a set S of n rectangles and a real number R, compute
a minimum area grid packing whose bounding box aspect ratio is at most R.

Problem 8 [Maximum wafer packing (MWP)] Given a set of n rect-
angles S and a rectangular region A compute a grid packing of S ′ ⊆ S on
A of maximal size.

Problem 9 [Minimum number of wafers (MNWP)] A plate is a pre-
specified rectangular region. Given a set of n rectangles S compute a grid
packing of S onto a minimal number of plates.

Weighted variants of the problem is also studied. In the weighted case
each rectangle r ∈ S also has a weight, denoted w(r), associated to it.

More problems related to wafer-packing can be found in [49]. A problem
that is similar to grid packing is the tabular formatting problem [146, 161].
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In the most basic tabular formatting problem, one is given a set of rectan-
gular entries and the aim is to construct a table containing the entries in
a given order for each row and column. Shin et al. [146] suggested three
different objective functions that evaluate the quality of a tabular layout:
minimal diameter, minimal area, and minimal white space. Therefore we
also consider the following problem:

Problem 10 [Minimum diameter grid packing (MDGP)] Given a
set S of n rectangles find a grid packing of S that minimizes the diameter
of the grid.

A similar problem, with the exception that the rectangles cannot be
rotated, was considered by Beach [20] under the name ”Random Pack”.
Beach showed that Random Pack is strongly NP-hard, and so it partly
corresponds to our NP-hardness result in Theorem 7.23.

Another problem similar in flavor to the grid packing problem is the
classical 2-dimensional bin packing problem, where one is given a set of n
rectangles and an unlimited number of identical rectangular bins and the
objective is to allocate all the items to the minimum number of bins. The
problem has a rich history and many variants have been considered, see for
example [54, 55, 96, 120, 143].

Input

Output

Figure 7.1: Input is a set of rectangles S. Output a grid packing of S

Our main result is a polynomial time approximation scheme (PTAS) for
the MAGP-problem and some of its variants (Problems 2, 3 and 6). We also
show how the algorithm can be modified to produce approximate solutions
for Problems 4 and 5. Surprisingly, if the value of ε is a large enough constant
the approximation algorithms will run in linear time.
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The approximation algorithms all build upon the same ideas. The main
idea is that for every possible grid G that encloses S, there exists a grid G′
that can be uniquely coded using onlyO(log n) bits such that the area of G′ is
at most a factor (1+ε) larger than the area of G. Now, let F be the family of
these grids that can be uniquely coded usingO(log n) bits. It trivially follows
that there is only a polynomial number of grids in F . Hence, every grid G′
in F can be generated and tested. The test is performed by computing
a maximal packing of S into G′, which in turn is done by transforming
the problem into an instance for the max-flow problem, i.e., given a directed
graph with a capacity function for each edge, find the maximum flow through
the graph. To obtain a PTAS one uses O(log1+ε n) bits for coding a grid
in F . In a similar way only log n/2 bits are used to obtain a linear time
approximation algorithm, however the approximation factor will be quite
large in this case. More details about F are given in Section 7.2 together
with two important properties. F is a member of the family of so-called
(α, β, γ)-restricted grids, which are also described in Section 7.2. Then, in
Section 7.3 we show how a grid is tested by reducing the problem to a min-
cost max-flow problem. The main theorem is also stated in this section.
In Section 7.4 we consider variants of the MAGP-problem, and finally, in
Section 7.5 we show some hardness results. Our model of computation is
the traditional algebraic computation tree model. In our algorithms we will
for simplicity of writing use the notation ⌈R⌉ to denote the ceiling of a real
number R, but the time to compute it will be assumed to be O(log2R).

7.0.1 Approximability preserving simplifications

In most practical applications we believe that the side lengths of the input
rectangles belongs to the interval [1, nc], for some constant c. Below we will
also show that for most of the problems considered in this chapter the side
lengths of the input rectangles can be scaled such that the scale lengths lie
in the interval [1, nc] without affecting the approximation results by more
than a factor (1 + ε), for any constant ε > 0. Set c′ = c/2.

Let h be the length of the longest side of any rectangle in S and, let w
be the length of the longest short side of any rectangle in S Let G denote an
optimal grid packing, and let H and W denote the height and width of G.
Note that the area of G is bounded from below by (h · w) and from above
by (h · nw). We will have two cases, depending on the ratio h/w.

In the case when h/w < nc′ we may assume that the width and height
of each rectangle r ∈ S is in the interval [1, n2c′ ]. Note that w > nc′ , since
h = n2c′ . We argue that this assumption can be made in this case without
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loss of generality with respect to our approximation results. Since the area
is approximated we may assume that the shortest side of any input rectangle
has length at least 1. If not, the side is expanded such that it has length
1. Note that the side lengths of any solution will expand by at most n
which is at most a factor (1 + n1−c′) larger than an optimal solution and
therefore negligible for the approximation algorithms we consider in this
chapter. Hence, we may assume that the sides of the input rectangles have
length within the interval [1, n2c′ ].

In the case when h/w ≥ nc′, we will show that the orientation of the
rectangles in S can be fixed, i.e., all rectangles are packed “standing”. For
simplicity we assume that H ≥ W . Let L be the set of rectangles that are
lying down in the optimal packing G, and denote by h′ the length of the
longest long side of any rectangle in L. If L is empty then the claim holds,
hence, we may assume that L contains at least one rectangle. We will have
two subcases:

1. If h′ > h/n2 then the area of G is at least h × h′ ≥ h2/n2 which is
greater than h × w, thus, we have a contradiction since area(G) ≤
h× w = h2/nc′ .

2. If h′ ≤ h/n2 then we can place all the rectangles in L standing on top
of the optimal grid. Obviously the width is the same as G and the
height increases by at most n · h′ < h/n. Thus, the area of the new
grid is bounded by (H + h/n)×W ≤ (1 + ε)H ×W .

Hence, in the case when h/w ≥ nc′ we may fix the orientation of the input
rectangles (standing). Having fixed the orientation, we may without loss of
generality create a new scale for horizontal lengths. In this new scale we can
again define the longest width of a “standing” rectangle to be equal to nc.
In this way, using the same arguments as previously, we may assume that
all sides of all rectangles have length in the interval [1, nc].

Similarly, we may assume that all rectangles have weight in the interval
[1, nc]. Let maxr∈S w(r) = nc; it holds that all rectangles with weight less
than 1 can be discarded since their combined weight sums up to at most
n, which is at most n1−c of the weight of an optimal solution and hence
negligible. Note that the above simplification cannot be applied to Problem
2 and 4.
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7.1 The approximation algorithm

The approximation algorithm is simple and straight-forward, therefore we
here give the global structure. The two non-trivial steps, lines 11 an 12, will
be described in detail in Sections 7.2 and 7.3 respectively. The last step,
PackIntoGrid, is obtained by slightly modifying the procedure Test-

Grid. As input to the algorithm we will be given a set S of n rectangles
and a real value ε′ > 0.

Algorithm GridPack(S, ε′)
1. c is calculated as defined in Section 1
2. bestV al ←∞, n← |S|, α = β =

√
1 + ε′, γ = 1√

1+ε′−1
3. for each 1 ≤ i, j ≤ logα n

c do
4. Si,j ← ∅
5. for each r ∈ S do
6. i← ⌈logα width(r)⌉
7. j ← ⌈logα height(r)⌉
8. Si,j ← Si,j ∪ {r}
9. end
10. for k ← 1 to n2c·f(α,β,γ) do
11. G ← GenerateGrid(α, β, γ, k, n, c)
12. val← TestGrid(G, {S}1≤i,j≤logα nc , α, β, γ)
13. if val < bestV al then
14. bestV al← val and bestGrid← G
15. end
16. Output PackIntoGrid(S, bestGrid)

The initialization is performed on lines 1 to 4. On lines 5–9, the rect-
angles are partitioned into groups in such a way that a rectangle r ∈ S
belongs to Si,j if and only if the width of r is between αi−1 and αi, and
the height of r is between αj−1 and αj . Lines 1-9 obviously run in linear
time. Next, a sequence of grids G are produced in a loop of lines 10-15.
They are members of the family of so-called (α, β, γ)-restricted grids which
is described in Section 7.2. (This family consists of n(2c·f(α,β,γ)) grids, where
f(α, β, γ) = (log(αβγ))/(log α log β).)

The generated grid is tested and the weight of an approximate grid
packing of S into the grid G is computed. If the grid packing is better
than the previously tested grids then G is saved as the best grid tested so
far. Finally, when all grids in F have been generated and tested a call to
PackIntoGrid performs a grid packing of S into the best grid found. This
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procedure is a simple modification of the TestGrid-step and it is briefly
described in Theorem 7.11 and Lemma 7.18.

7.2 The family F of (α, β, γ)-restricted grids

The aim of this section is to define the family F(α, β, γ, n, c), or F for short,
of (α, β, γ)-restricted grids and prove two properties about F . However,
before the properties can be stated we need the following definition. A grid
G1 is said to include a grid G2 if every possible set of rectangles that can
be grid packed into G2 also can be grid packed into G1. F has the following
two properties.

1. For every grid G that encloses S, and hence has at most n rows and n
columns, there exists a grid G ∈ F that includes G and whose width

and height is at most a factor
(

α2βγ
αγ−1

)

times larger than the width and

height of G, and

2. #F ≤ n(2c·f(α,β,γ)) where f(α, β, γ) = log(αβγ)
log α log β .

The definition of an (α, β, γ)-restricted grid is somewhat complicated,
therefore we choose to describe this step by step.

A trivial observation is that two grid-packings are equivalent if the one
can be transformed to the other by exchanging the order of rows and/or
the columns. Hence we may assume that the columns are ordered with
respect to decreasing width from left to right and that the rows are ordered
with respect to decreasing height from top to bottom. This ordering will be
assumed throughout this chapter.

7.2.1 Size of an (α, β, γ)-restricted grid

Consider an arbitrary grid G and let α be a real constant greater than 1.
An α-restricted grid is a grid where the width and height of each cell in the
grid is an integral power of α.

Observation 7.2 For any grid G there exists an α-restricted grid G that
includes G and whose width and height is at most a factor α longer than
the width and height of G.

Proof: The observation is straight-forward since the width and height of
each cell ofG can increase by at most a factor α to make the grid α-restricted.

2
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Let G be a α-restricted grid. If the number of columns/rows of each size
βi, for some integer i, then G is an (α, β)-restricted grid.

Observation 7.3 For any α-restricted gridG there exists an (α, β)-restricted
grid G that includes G and whose width and height is at most a factor β
greater than the width and height of G.

Proof: The observation is straight-forward since G can be obtained from G
by increasing the number of columns/rows by at most a factor β, hence the
observation follows. 2

Note, as βi may not be an integer, the more formal definition of (α, β)-
restricted grid would be as above, but with βi replaced by ⌊βi⌋. However,
the above observation holds for both cases and for simplicity of writing βi

will be assumed to be an integer.
The columns/rows in an α-restricted grid of width/height αi are said to

have column/row size i. A grid G is said to be γ-monotone if the number
of columns (rows) of size i is greater than or equal to 1/γ > 0 times the
number of columns (rows) of size i+ 1 for every i.

Observation 7.4 Let γ be a constant greater than or equal to 1. For any
(α, β)-restricted grid G there exists a γ-monotone (α, β)-restricted grid G
((α, β, γ)-restricted grid for short) that includes G and whose width and
height is at most a factor (γα)/(γα − 1) greater than the width and height
of G.

Proof: Since the number of columns is decreasing with at most a factor
γ and since the width of the columns decrease with a factor α for each
size we obtain that the worst-case can be bounded by a geometric series,
∑∞

i=1 1/(γα)i < (γα)/(γα − 1). The observation follows. 2

Putting together the observations immediately gives the following corol-
lary.

Corollary 7.5 For any grid G there exists an (α, β, γ)-restricted grid G
that includes G and whose width and height is at most a factor

(

α2βγ
αγ−1

)

greater than the width and height of G.

Most often we do not need the actual grid, instead we are interested
in the number of cells in the grid of a certain size. That is, the grid G is
represented by a ⌈logα n

c⌉ × ⌈logα n
c⌉ integer matrix, where G[i, j] stores

the number of cells in G of width αi and, height αj . We call this a matrix
representation of a grid.
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7.2.2 Size of the family F of (α, β, γ)-restricted grids

We are now ready to formally define the family of grids to be considered by
the algorithm.

Definition 7.6 Consider c > 0 and α, β, γ > 1 as well as a positive integer
n. By F(α, β, γ, n, c), or F for short, we denote the set of all (α, β, γ)-
restricted grids where both the size of each row and the size of each column
is upper bounded by logα n

c.

Using Corollary 7.5 it is now straight-forward to see that Property 1
holds for F . Next we show that the second property holds for F , i.e., the
number of grids that are members of F is at most n(2c·f(α,β,γ)). It will be
a constructive proof where it will be shown that every grid in F can be
coded uniquely with 2(logα n

c(1 + logβ γ) + logβ n
2) bits. Hence, producing

all words of length 2(logα n
c(1 + logβ γ) + logβ n

2) will also generate all
members of F .

Assume that we are given a member f ∈ F and that f has rj rows of
size j. Recall that rj is an integral power of β. The idea of the scheme is
as follows, see also algorithm CodingRows below. The bit string, denoted
S, is built incrementally. Consider a generic step of the algorithm. Assume
that the bit string, denoted Sj+1 has been built for all the row sizes greater
than j and that the number of rows of size (j + 1) is rj+1. Initially Slogα nc

is the empty string. Consider the row size j. We will have two cases, either
rj ≤ (rj+1/γ) or rj > (rj+1/γ). In the first case, add ‘1’ to Sj+1 to obtain
Sj. In the latter case, when rj > (rj+1/γ), add (logβ rj −max((logβ rj+1 −
⌈logβ γ⌉), 0)) zeros followed by a ‘1’ to Sj+1 to obtain Sj. Decrease the value
of j and continue the process until j = 0, and hence, S0 = S.

The algorithm above describes how to generate the rows, the coding for
the columns is done in the same way. The following observation proves that
property 2 holds for the family of (α, β, γ)-restricted grids.

Observation 7.7 The length of S is 2(logα n
c(1 + logβ γ) + logβ n

2).

Proof: Consider the code for the rows. There are logα n
c different row sizes

and, therefore, also at most ⌈logα n
c⌉many ‘1’:s. The total number of rows is

at most n2, hence the number of ‘0’:s is bounded by logα n
c · logβ γ+logβ n

2.
2

Algorithm CodingRows(α, β, γ, n, c)
1. size← 2(logα n

c(1 + logβ γ) + logβ n
2)
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2. S ← array[1..size], r⌈logα nc⌉+1 ← 0, index← 1
3. for each row size j = ⌈logα n

c⌉ downto 1 do
4. #Rows← logβ rj −max((logβ rj+1 − ⌈logβ γ⌉), 0)
5. for k = 1 to #Rows do
6. S[index]← ‘0’
7. index← index+ 1
8. end
9. S[index]← ‘1’
10. index← index+ 1
11. end
12. while index ≤ 2(logα n

c(1 + logβ γ) + logβ n
2) do

13. S[index]← ‘0’
14. index← index+ 1
15. end
16. Output S

7.2.3 GenerateGrid

On line 11 in algorithm GridPack the procedure GenerateGrid is called
with the parameters α, β, γ and k, where k is a positive integer ≤ n(2c·f(α,β,γ))

and hence its binary representation, denoted B(k), has length 2(logα n
c(1+

logβ γ) + logβ n
2). Note that for simplicity we chose to generate all bit

strings of length at most 2(logα n
c(1 + logβ γ) + logβ n

2) and then decide
in the procedure GenerateGrid if it corresponds to an (α, β, γ)-restricted
grid or not. Alternatively, one could generate only valid bit strings. We
obtain the following corollary:

Corollary 7.8 Given a bit string B of length 2(logα n
c(1+logβ γ)+logβ n

2)

one can in time O(log2 n) construct the unique matrix representation of the
corresponding (α, β, γ)-restricted grid, or decide that there is no correspond-
ing (α, β, γ)-restricted grid.

Proof: It is easily seen that deciding if B corresponds to an (α, β, γ)-
restricted grid can be done in linear time w.r.t. the length of B. If B
corresponds to a (α, β, γ)-restricted grid the matrix representation of the
grid can easily be computed in time O(log2

α n + log2
β n) since the number

of columns/rows of each size is obtained by traversing the string, hence the
corollary follows. 2
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7.3 Testing an (α, β, γ)-restricted grid

In the previous section we showed a simple method to generate all possi-
ble (α, β, γ)-restricted grids. For the approximation algorithm, shown in
Section 7.1, to be efficient we need a way to pack a maximal number of
rectangles of S into the grid. As input we are given a matrix representa-
tion of an (α, β, γ)-restricted grid G, and a set S of n rectangles partitioned
into groups Si,j depending on their width and height. Let Cp,q denote the
number of cells in G that have width αp and height αq. We will give an
exact algorithm for the problem by reformulating it as a max-flow problem.
The problem could also be solved by reformulating it as a matching problem
but in the next section we will show that the max-flow formulation can be
extended to the weighted case. The max-flow problem is as follows. Given
a directed graph G(V,E) with capacity function u(e) for each edge e in E.
Find the maximum flow f through G.

The flow network FS,G corresponding to a grid G and a set of rectangles S
contains four levels, numbered from top-to-bottom, and will be constructed
level-by-level. In figure 7.3, the weighted variant of the network is shown.
The number of nodes on level i, 1 ≤ i ≤ 4, is denoted mi.

Level 1. At the top level there is one node, the source node ν(1).

Level 2. At level 2 there are log2
α n

c nodes. A node ν
(2)
i,j at level 2 represents

the group Si,j. For each node ν
(2)
i,j , there is a directed edge from ν(1)

to ν
(2)
i,j . The capacity of this edge is equal to the number of rectangles

in S that belong to Si,j.

Level 3. At level 3 there are also log2
α n

c nodes. A node ν
(3)
p,q on level 3

represents the set of cells in Cp,q. For each node ν
(3)
p,q there is a directed

edge from node ν
(2)
i,j to node ν

(3)
p,q if and only if p ≥ i and q ≥ j (or

q ≥ i and p ≥ j), i.e., if a rectangle in Si,j can be packed into a cell in
Cp,q. All edges from level 2 to level 3 have capacity n.

Level 4. The bottom level only contains one node, the sink ν(4). For every

node ν
(3)
p,q on level 3 there is a directed edge from ν

(3)
p,q to ν(4). The

capacity of this edge is equal to the number of cells in G that belongs
to Cp,q.

The following observation is straight-forward.
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Observation 7.9 The maximal grid packing of S into G has size k if and
only if the max flow in the flow network is k.

Proof: Every unit flow corresponds to a rectangle and since the flow is k
it implies that every rectangle in S has been matched to a cell. It is easily
seen that a rectangle can only be matched to a cell it can fit into, hence if
the flow is k there exists a grid packing of size k of S into G.

The ‘only if’ statement is obvious since if there exists a grid packing
there must exist a k-matching between the rectangles and the cells, and if
this is true there must be a maximal flow of value k. 2

In 1998 Goldberg and Rao [74] presented an algorithm for the maximum
flow problem with running time O(N2/3M log(N2/M) logU). If we apply
their algorithm to the flow network we obtain the following lemma.

Lemma 7.10 Given a matrix representation of an (α, β, γ)-restricted grid
G and a set S of n rectangles partitioned into the groups Si,j w.r.t. their
width and height. (1) The size of an optimal packing of S in G can be
computed in time O(log19/3 n). (2) An optimal packing can be computed
in time O(log19/3 n+ k), where k is the number of rectangles in the optimal
grid packing of S in G.

Proof: The lemma follows by plugging in the different values for N , M
and U in the above mentioned algorithm by Goldberg and Rao. We have
that the number of nodes (N) is Θ(log2

α n
c), the number of edges (M) is

Θ(log4
α n

c), and finally, the integral arc capacities (U) are in the in interval
[1..n]. 2

As a result we obtain the first grid packing theorem.

Theorem 7.11 Algorithm GridPack is a (1+ε)-approximation algorithm

for the MAGP-problem with running timeO(nf(
√

1+ε/7) log19/3 n+n), where

f(χ) =
2c log(χ/(

√
χ−1))

log2 χ
).

Proof: Corollary 7.5 guarantees the stated approximation ratio, since it

holds that
(

α2βγ
αγ−1

)2
= (1 + ε/7)3 < (1 + ε). The time-complexity of the

approximation algorithm is dominated by testing if the set of rectangles can
be grid packed into a grid G. The total time for this step is the number of
tested grids times the time to test one grid, hence, O(nf(χ) log19/3 n+ n).

The final packing is easily computed from the max-flow and hence can be
done in time linear with respect to the number of rectangles in the packing.

2
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Even though the expression for the running time in the above theorem
looks somewhat complicated it is not hard to see that by choosing the value
of ε appropriately we obtain that, algorithm GridPack is a PTAS for the
MAGP-problem, and if ε is set to be a large constant GridPack produces
a grid packing that is within a constant factor of the optimal in linear time.

7.4 Applications and extensions

The approximation algorithm presented above can be extended and gener-
alized to variants of the basic grid packing problem. Below we show how to
extend the algorithm to these variants.

By performing some small modifications to the procedure TestGrid

we will obtain the following corollary from Theorem 7.11. Let f(χ) =
2c log(χ/(

√
χ−1))

log2 χ
) and let g(α, β, γ) =

(

α2βγ
αγ−1

)

.

Corollary 7.12 Given an instance of the MNWP-problem, one can com-
pute an O(1)-approximation in linear time provided that the optimal solu-
tion uses O(1) wafers.

Proof: Let µ be the number of wafers used in the optimal solution of
the MNWP problem. The approximation algorithm becomes as follows.
First, compute a (1 + ε)-approximation for the MAGP-problem using the
GridPack algorithm and an ε large enough for the running time to become
linear. Let G be the corresponding grid of the solution produced. Next,
create a second grid Q, where each cell has the same size and shape as A,
and place Q on top of G. The number of cells in Q is minimized as to
still cover all of G, where it is straightforward to see that Q will contain
O(µ2) cells. Further, let q be an arbitrary cell in Q and let G(q) be the
subgrid of G whose cells lie entirely within q or is intersecting the right
or bottom side of q. The subgrid G(q) is now partitioned into four smaller
grids, denoted G1(q), . . . , G4(q), as shown in Fig. 7.2. The first grid contains
all cells of G(q) that lie entirely within q. Grid G2(q) contains all cells of
G(q) intersecting the bottom right corner of q, and finally G3(q) and G4(q)
are the grids induced by the cells in G(q) \ (G1(q) ∪G2(q) intersecting the
bottom and right side, respectively, of q. For each q we pack each smaller
grid G1(q), . . . , G4(q) on a separate region A. Obviously such a packing is
possible for G1, and also for G2(q), . . . , G4(q) as they each consist of a single
row/column of width/height smaller than the width/height of A. Thus, all
of S may be packed on O(µ2) regions A and the corollary follows. 2
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Figure 7.2: Illustration of the proof of Corollary 7.12

Note that the approximation factor for MNWP can be made smaller if
we adapt the above method using an ǫ close to zero, but this would imply
that the running time, although still polynomial, is not linear any more.

Corollary 7.13 Given a set S of rectangles and a real positive value ε
one can compute a (1 + ε)-approximation of the MDGP-problem in time

O(nf(
√

1+ε/3) · log19/3 n+ n).

Proof: Consider an optimal grid G with height h and width w. There
exists an (α, β, γ)-restricted grid G that includes G and whose height and
width is at most a factor g(α, β, γ) greater than h and w respectively, hence
its diameter is at most a factor g(α, β, γ) greater than the optimal. 2

The proof of Corollary 7.13 can easily be modified to hold for Corollar-
ies 7.14-7.16.

Let ψ(S,R) denote the area of minimum area grid packing of S with
aspect ratio R.

Corollary 7.14 Given a set S of rectangles, a real number R and a real
positive value ε one can compute a grid packing for the MAGPAR-problem
of area (1 + ε) · ψ(S,R) and aspect ratio at most (1 + ε)R in time

O(nf(
√

1+ε/3) log19/3 n+ n).

Corollary 7.15 Given a set S of n rectangles, an integer k ≤ n and a real
positive value ε, where the height and width of each rectangle r ∈ S is in
the range [1, nc], one can compute a (1 + ε)-approximation of the MAkGP-

problem in time O(nf(
√

1+ε/7) log19/3 n+ n).
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Let κ(S,A) denote the cardinality of a maximum grid packing of S onto
A. Let A′ be a rectangular region such that the sides of A′ are a factor
(1 + ε) longer that the sides of A.

Corollary 7.16 Given a set S of n rectangles, a rectangular region A and
a real positive value ε, one can compute a packing for the MWP-problem of

S onto A of size at least κ(S,A′) in time O(nf(
√

1+ε/3) log19/3 n+ n).

7.4.1 Extending the test algorithm

The problems considered below are weighted variants of the grid packing
problem, hence every rectangle r ∈ S also has a weight w(r). To be able
to apply the above algorithm to the weighted case we need a way to pack
a maximal number (weight) of rectangles in S into the grid, or at least ap-
proximate the weight of a maximal packing. As input we are given a matrix
representation of a (α, β, γ)-restricted grid G, and a set S of n rectangles
partitioned into groups Si,j depending on their width and height. We will
give a τ -approximation algorithm for the problem by reformulating it as a
min-cost max-flow problem, where τ > 1 is a given parameter. Hence the
call to TestGrid in algorithm GridPack will now include a fifth parameter
τ .

A min-cost max-flow problem in a directed graph where each edge e
has a capacity c(e) and a cost d(e) is to find the maximum flow f with a
minimum cost, where the cost of a flow f is

∑

e∈E d(e) · f(e).

The network that will be constructed next contains four levels, numbered
from top-to-bottom, and will be constructed level-by-level. A rectangle r
in S belongs to weight class Wk if and only if w(r) is between τk−1 and
τk. The number of nodes on level i, 1 ≤ i ≤ 4, is denoted mi and we set
W =

∑

r∈S w(r).

Level 1. At the top level there is one node, the source node ν(1).

Level 2. At level 2 there are log2
α n · logτ n nodes. A node ν

(2)
i,j,k at level

2 represents the class of rectangles in the group Si,j and weight class

Wk. For each node ν
(2)
i,j,k, there is a directed edge from ν(1) to ν(2).

The capacity of this edge is equal to the number of rectangles in S
that belongs to Si,j and weight class Wk. The cost per unit flow is
W − τk−1, i.e., a rectangle with greater weight is “cheaper” to send
than a rectangle with low weight.
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Level 3. At level 3 there are log2
α n

c nodes, one for each set Cp,q of cells.

Hence, a node ν
(3)
p,q on level 3 represents the set of cells in Cp,q. For

each node ν
(3)
p,q there is a directed edge from node ν

(3)
k,i,j to node ν

(3)
p,q if

and only if p ≥ i and q ≥ j, i.e., the rectangles in Si,j can be packed
into the cells in Cp,q. All the edges from level 2 to level 3 have capacity
n and zero cost.

Level 4. The bottom level only contains one node, the sink ν(4). For every

node ν
(3)
p,q on level 3 there is a directed edge from ν

(3)
p,q to ν(4) with cost

0 and capacity |Cp,q|.

1 ≤ i, j ≤ ⌈c logα n⌉

cap.:#rectangles/weight class

cost: W − τ ℓ

cap.: #rectangles/size group

cost: 0

cap.: #cells/size group
cost: 0

ν(1)

ν(4)

ν
(2)
i,j,k

ν
(3)
p,q

1 ≤ k ≤ ⌈c logτ n⌉

1 ≤ p, q ≤ ⌈c logα n⌉

Figure 7.3: Illustrating the flow network given as input to the min-cost max-flow
algorithm.

We need the following observation before we can state the main lemma.

Observation 7.17 If the min-cost max-flow of FS,G is (W − w) then the
maximal grid packing of S into G has weight at most τw.

Proof: The min-cost max-flow of cost (W −w) is equivalent to a max cost
max flow of cost w. It is not hard to see that if there exists a max flow of
max cost w then there exists a maximum matching between the rectangles
in S and the cells of G of total weight w. Since the weight of each rectangle is
rounded down such that its weight is divisible by τ it holds that the weight
of a maximal packing is at most τw. 2

We summarize this section by stating the following lemma.
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Lemma 7.18 Given a matrix representation of an (α, β, γ)-restricted grid
G and a set S of n rectangles partitioned into the groups Si,j w.r.t. their
width and height. (1) The cost of a τ -approximate packing of S onto G
can be computed in time O(log9 n log log n). (2) A τ -approximate packing
can be computed in time O(log9 n · log log n+ k), where k is the number of
rectangles in the grid packing.

Proof: According to Observation 7.17 the solution to the min-cost max-
flow problem on FS,G will give an approximate solution to the maximal grid
packing problem of S into G that is at most a factor τ of the optimal.

Let N be the number of vertices in the network; M , the number of edges;
U , the maximum value of an edge capacity; and C, the maximum value of an
edge cost. The values of the parameters in the above transformed instance
can be bounded as follows: N = Θ(log2

α n · logτ n), M = Θ(log4
α n · logτ n),

U ≤ n and, finally, C = O(nc+1). Plugging in the values in the algorithm
by Ahuja et al. [4] with running time O(MN log logU logNC) gives that
the max-flow min-cost problem can be solved in time O(log9 n · log log n).

Finally, if we are not satisfied with an estimated cost but actually want
a packing then we just pair up the rectangles with the matching cells. This
is trivially done in time linear with respect to the number of rectangles in
the packing. 2

The minimum-cost circulation problem has a rich history and the inter-
ested reader is encouraged to read [5]. In 1989, Goldberg and Tarjan [75]
showed a simple algorithm that solves the minimum-cost circulation prob-
lem in time O(N2M3 logN). There are also other types of algorithms that
use capacity scaling, for example the algorithm by Edmonds and Karp [58]
with a running time of O((M logU)(M +N logN)).

7.4.2 Weighted variants

In this section we consider two weighted variants of the grid packing problem,
i.e., every rectangle r ∈ S also has a weight w(r). Both results follow from

Corollaries 7.5-7.8 and Lemma 7.18. Recall that f(χ) =
2c log(χ/(

√
χ−1))

log2 χ
.

Problem 11 [Minimum area weighted grid packing(MAwGP)] Given
a set of n rectangles and a real number w compute a minimum area grid
packing containing a set of rectangles of S of total weight at least w.

Theorem 7.19 Given a set S of n rectangles and a real value ε > 0, one
can compute a grid packing containing rectangles of total weight at least
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w whose area is at most (1 + ε) greater than the area of a minimum area

(τw)-grid packing in time O(nf(
√

1+ε/7) · log9 n · log log n+ n).

Problem 12 [Maximum weight wafer packing (MwWP)] Given a set
of rectangles S and a rectangular region A compute a grid packing of S ′ ⊆ S
onto A of maximum weight.

Let κ(S,A) denote the weight of a maximum weight grid packing of S
onto A. Let A′ be a rectangular region such that the sides of A is (1 + ε)
longer than the sides of A′.

Theorem 7.20 Given a set S of n rectangles, a rectangular region A and a
real value ε > 0, one can compute a grid packing of S onto A whose weight
is at least κ(S,A′)/τ in time O(nf(1+ε/7) · log9 n · log log n+ n).

7.5 Hardness results

In this section we show that several of the problems considered areNP-hard.
We start with an interesting observation:

Observation 7.21 There exists a set S of n rectangles such that every
optimal grid packing of S on a wafer (rectangular region) A induces a grid
with Ω(n2) cells.

Proof: Let A be a square with side length L, and S consists of one very
large square, with side length L − ε and n − 1 thin long squares with side
length L− ε and 2ε/(n− 1). The entire set S can only be packed onto A in
one single way which induces Ω(n2) cells. 2

Theorem 7.22 MNWP cannot be approximated within a factor of 3/2− ε
for any ε > 0, unless P = NP.

Proof: An instance for the BinPacking is a finite set of items U , a size
s(u) ∈ Z+ for each u ∈ U and a positive integer capacity B. A solution to
the problem is a partition of U into disjoint sets U1, . . . , Um such that the
sum of the items in each Ui is B or less.

The transformation is straight-forward. For each u ∈ U produce a rect-
angle r of height s(u) and width 1. Finally, set the width of a wafer to be 1,
and the height to be B. Solve the Minimum number of wafer-problem. The
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Figure 7.4: There are Ω(n2) shaded squares which all are empty.

solution is also a solution for the BinPacking-problem and since this can-
not be approximated within a factor of 3/2− ε for any ε > 0 in polynomial
time [?] the same inapproximability result holds for MNWP. 2

Theorem 7.23 The MWP-problem is NP-hard.

Proof: Let MWP′ be the decision version of MWP: given a set of rectangles
S, a rectangular plate A and an integer L can we grid pack at least L
rectangles of S onto A?

In order to show the reduction we need the decision version of the Par-

tition problem: Given integers a = {a1 ≤ . . . ≤ an}, does there exist a
subset P ⊆ I = {1, 2, . . . , n} such that

∑

j∈P aj =
∑

j∈I\P aj? This prob-
lem is NP-complete [131].

We show that the Partition-problem reduces in polynomial time to the
MWP′ problem. Hence, given a Partition instance (a1, . . . , an), we create
a MWP′ instance (S,A,L) such that L = n+ 1, as shown in Fig. 7.4, with
some minor differences. That is, A is created as a square with sides w + δ,
where δ =

∑n
i=1 ai/2 and w is arbitrarily chosen larger than the diagonal

of a δ × δ square (w >
√

2δ). The set S is created to contain one large
square with sides w, and n rectangles, one for each integer ai, with sides w
and ai. Since we create n + 1 rectangles in total, it is clear that we have a
polynomial time reduction.

This reduction is valid if we can show that all rectangles of S can be
grid packed on exactly one plate A, if, and only if, the original Partition
instance is a yes instance. In order to be able to pack all of S on A the
following grid is needed. First we need a column and a row with width and
height, respectively, w. These define a cell in which the large square may
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be packed. As for the remaining rectangles it is clear that no such rectangle
can be packed in the δ × δ lower right corner, which is formed when the
large square is packed. This follows since these rectangles have a side which
is longer than the diagonal of this corner (w >

√
2δ). This means that we

need either exactly one column, or exactly one row, with width, respectively
height, ai, for each rectangle corresponding to an integer ai. Note that
each such column or row defines a cell with sides w and ai, in which the
corresponding rectangle can be packed. Since δ =

∑n
i=1 ai/2 it is clear that

all these columns and rows can be created, and thus all of S packed on A,
if, and only if, the original Partition instance is a ‘yes’-instance. 2

Theorem 7.24 The MAGPAR-problem is NP-hard.

Proof: The proof is almost identical to the proof of Theorem 7.23. 2

7.6 Final comments

The approximation algorithm can be generalized to d dimensions, such that
the resulting grid packing has sides that are at most (1 + ε) times longer
than the length of the sides of an optimal grid packing. The running time
is O(dn log n) for sorting the d-dimensional rectangles into bins. The size
of the coding becomes O(d log n), which implies that the number of grids is
ndc·f(α,β,γ). The flow network will have O(logd+1 n) nodes and O(log2d+1 n)
arcs, which implies that the running time of the max-flow algorithm will be
O(log3d+3 n).
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[88] R. Güting, M. H. Boehlen, M. Erwig, C. S. Jensen, N. Lorentzos,
E. Nardelli, M. Schneider, and J. R. R. Viqueira. Spatio-temporal



Bibliography 167

Models and Languages: An Approach Based on Data Types. In
M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. Gueting,
C. S. Jensen, N. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Per-
nici, H. J. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona, editors,
Spatio-Temporal Databases: The CHOROCHRONOS Approach, vol-
ume 2520 of LNCS, pages 117–176. Springer, Berlin, 2003.
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