
Design and Analysis of Algorithms: Course NotesPrepared bySamir KhullerDept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742samir@cs.umd.edu(301) 405 6765October 31, 1994

PrefaceThese are my lecture notes from CMSC 651: Design and Analysis of Algorithms, aone semester course that I taught at University of Maryland in the Spring of 1993. Thecourse covers core material in algorithm design, and also helps students prepare for researchin the �eld of algorithms. The reader will �nd an unusual emphasis on graph theoreticalgorithms, and for that I am to blame. The choice of topics was mine, and is biased by mypersonal taste. The material for the �rst few weeks was taken primarily from the (now notso new) textbook on Algorithms by Cormen, Leiserson and Rivest. A few papers were alsocovered, that I personally feel give some very important and useful techniques that shouldbe in the toolbox of every algorithms researcher.The notes are in a preliminary form, and were typed in by graduate students taking thecourse, as well as by yours truly (when I could not twist any student's arm into typing thenotes!). The course was a 15 week course, with 2 lectures per week. These notes consist of27 lectures. There was one midterm in-class examination and one 72 hour take-home �nalexamination. There was no lecture on the day of the midterm. No scribes were done for thelast 2 lectures. The topics for the last two lectures was \Computational Geometry" (convexhulls, closest-pair and point location were covered). These are covered very well in the bookby Preparata and Shamos.Some papers that I thought were very relevant to the topics studied in the class, werecovered in a separate Algorithms Reading Group that met for pizza, mexican food andalgorithms during the semester. The papers covered in this reading group included: Seidel'sall pairs shortest paths algorithm, Seidel's �xed dimension linear programming algorithm,Alon-Seymour-Thomas's proof of the separator theorem for graph-minors, Yellin's work ondata structures for set operations, Galil's constant time parallel string matching algorithm,Eppstein-Galil-Italiano-Nissenzweig's work on dynamic graph algorithms, Mehlhorn-Raman-Uhrig's work on lower bounds for set operations, Fellows and Langston's work on graphminors, Luks's work on graph isomorphism, Berkman-Vishkin's work on lowest commonancestors, Callahan-Kosaraju's work on well-separated pair decomposition. I am grateful toPaul Callahan, Bill Gasarch, Simon Hawkin, Dave Mount, Rajeev Raman, Bill Regli andSuleyman Sahinalp for presenting papers in this seminar.I have editted these notes myself, and many of them have also been proof-read by BillGasarch to whom I am very grateful. Bill sat through most of the lectures, and also was thesource of excitement during the rather dull lectures. His questions were usually penetratingand kept the lecturer on his toes. I would also like to thank both the Bill's (Gasarch andPugh) who gave lectures on graph minors and skip-lists respectively. I welcome commentsof all kinds, together with correction of errors in these notes. I am most grateful to thestudents who typed these notes.

Contents1 Overview of Course 41.1 Amortized Analysis : 42 Splay Trees 62.1 Use of Splay Operations : 62.2 Time for a Splay Operation : 72.3 Amortized Time for Splay : 92.4 Additional notes : 133 Heaps 143.1 Binomial heaps : 143.2 Fibonacci Heaps(F-Heaps) : 174 F-heap 204.1 Properties : 204.2 Decrease-Key operation : 215 Maintaining Disjoint Set's 265.1 Disjoint set operations: 265.2 Data structure: 285.3 Union by rank : 285.4 Union by rank and path compression : 295.5 Better Upper Bounds on the Disjoint-Set Union Operations : : : : : : : : : : 305.5.1 Concept of Blocks : 316 The Skip List Data Structure 336.1 Analysis : 346.2 Probabilistic Analysis : 347 Minimum Spanning Trees and Shortest Paths 357.1 Dijkstra's algorithm : 357.2 Prim's algorithm : 367.3 Yao's algorithm : 368 Fredman-Tarjan MST Algorithm 399 Matchings 429.1 Hall's Theorem : 429.2 Berge's Theorem : 4310 Hopcroft-Karp Matching Algorithm 461

11 Assignment Problem 4912 Stable Marriages Problem. 5213 Network Flow - Maximum Flow Problem 5314 The Max Flow Problem 5714.1 Max Flow - Min Cut Theorem : 5814.2 Polynomial Time Algorithms (Edmonds-Karp) : : : : : : : : : : : : : : : : : 6115 An O(n3) Max-Flow Algorithm 6316 Pre-
ow Push Method 6517 Planar Graphs 6617.1 Euler's Formula : 6617.2 Smallest Non-Planar Graphs : 6817.3 Bridges : 6817.4 Kuratowski's Theorem : 6918 Graph Minor Theorem and other CS Collectibles 7318.1 Towards an algorithm for testing planarity in genus k : : : : : : : : : : : : : 7418.2 Applications: 7519 Graph Coloring 7620 Flow in Planar Networks 7820.1 Two algorithms : 7821 On Line vs. O� Line: A Measure for Quality Evaluation 8221.1 K-Server Problem : 8221.2 K-servers on a straight line : 8322 NP-Completeness 8523 More on NP-Completeness 8824 Approximation Algorithms 9025 Approximation Algorithms 9126 Weighted Vertex Cover 922

27 Steiner Tree Problem 9827.1 Approximation Algorithm : 9827.2 Steiner Tree is NP-complete : 10128 Bin Packing 10428.1 First-Fit : 10428.2 First-Fit Decreasing : 10528.3 Approximate Schemes for bin-packing problems : : : : : : : : : : : : : : : : 10528.3.1 Restricted Bin Packing : 106

3

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 1Tu. Jan. 19, 1993Notes by Hsiwei Yu.1 Overview of CourseThe course will cover many di�erent topics. We will start out by studying various datastructures together with techniques for analyzing their performance. We will then study theapplications of these data structures to various graph algorithms, such as minimum spanningtrees, max-
ow, matching etc. We will then go on to the study of NP-completeness andNP-hard problems, along with polynomial time approximation algorithms for these hardproblems. Towards the end of the semester (if time is available) we will study some specialtopics, such as randomization and parallel algorithms.1.1 Amortized AnalysisTypically, most data structures provide absolute guarantees on the worst case time for per-forming a single operation. We will study data structures that are unable to guarantee agood bound on the worst case time per operation, but will guarantee a good bound on theaverage time it takes to perform an operation. (For example, a sequence of m operations willbe guaranteed to take m� T time, giving an average, or amortized time of T per operation.A single operation could take time more than T .)Example 1: Consider a STACK with the following two operations: Push(x) pushes itemx onto the stack, and M-POP(k) pop's the top-most k items from the stack (if they exist).Clearly, a single M-POP operation can take more than O(1) time to execute, in fact the timeis min(k; s) where s is the stack-size at that instant.It should be evident, that a sequence of n operations however runs only in O(n) time,yielding an \average" time of O(1) per operation. (Each item that is pushed into the stackcan be popped at most once.)There are fairly simple formal schemes that formalize this very argument. The �rst oneis called the accounting method. We shall now assume that our computer is like a vendingmachine. We can put in $ 1 into the machine, and make it run for a constant number of steps(we can pick the constant). Each time we push an item onto the stack we use $ 2 in doingthis operation. We spend $ 1 in performing the push operation, and the other $ 1 is storedwith the item on the stack. (This is only for analyzing the algorithm, the actual algorithmdoes not have to keep track of this money.) When we execute a multiple pop operation, thework done for each pop is paid for by the money stored with the item itself.The second scheme is the potential method. We de�ne the potential � for a datastructure D. The potential maps the current \state" of the data structure to a real number,based on its current con�guration. 4

In a sequence of operations, the data structure transforms itself from state Di�1 to Di(starting at D0). The real cost of this transition is ci (for changing the data structure). Thepotential function satis�es the following properties:� �(Di) � 0.� �(D0) = 0We de�ne the amortized cost to be c0i = ci + �(Di) � �(Di�1), where ci is the true costfor the ith operation.Clearly, nXi=1 c0i = nXi=1 ci + �(Dn)� �(D0):Thus, if the potential function is always positive and �(D0) = 0, then the amortizedcost is an upper bound on the real cost. Notice that even though the cost of each individualoperation may not be constant, we may be able to show that the cost over any sequenceof length n is O(n). (In most applications, where data structures are used as a part of analgorithm; we need to use the data structure for over a sequence of operations and henceanalyzing the data structure's performance over a sequence of operations is a very reasonablething to do.)In the stack example, we can de�ne the potential to be the number of items on the stack.(Exercise: work out the amortized costs for each operation to see that Push has an amortizedcost of 2, and M-Pop has an amortized cost of 1.)Example 2: The second example we consider is a k-bit counter. We simply do INCRE-MENT operations on the k-bit counter, and wish to count the total number of bit operationsthat were performed over a sequence of n operations. Let the counter be = < bkbk�1 : : : b1 >.Observe that the least signi�cant bit b1, changes in every step. Bit b2 however, changes inevery alternate step. Bit b3 changes every 4th step, and so on. Thus the total number of bitoperations done are: n+ n2 + n4 + n8 : : : � 2n:A potential function that lets us prove an amortized cost of 2 per operation, is simply thenumber of 1's in the counter. Each time we have a cascading carry, notice that the numberof 1's decrease. So the potential of the data structure falls and thus pays for the operation.(Exercise: Show that the amortized cost of an INCREMENT operation is 2.)
5

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 2Th. Jan. 21, 1993Notes by Mark Carson.2 Splay TreesSplay trees are a powerful data structure, that function as search trees without any explicitbalancing conditions. They serve as an excellent tool to demonstrate the power of amortizedanalysis.Our basic operation is: splay(k), given a key k. This involves two steps:1. Search through out the tree to �nd node with key k.2. Do a series of rotations (a splay) to bring it to the top.The �rst of these needs a slight addition:1a. If k is not found, grab the largest node with key less than k instead.(Then splay this to the top.)2.1 Use of Splay OperationsAll tree operations can be simpli�ed through the use of splay:1. Access(x) - Simply splay to bring it to the top, so it becomes the root.2. Insert(x) - Run splay(x) on the tree to bring y, the largest element less than x, to thetop. The insert is then trivial: A By �! Ay Bx
6

3. Delete(x) - Run splay(x) on the tree to bring x to the top. Then run splay(x) againin x's left subtree A to bring y, the largest element less than x, to the top of A. y willhave an empty right subtree in A since it is the largest element there. Then it is trivialto join the pieces together again without x:A Bx �! A B.A �! A'y�! A' By4. Split(x) - Run splay(x) to bring x to the top and split.A Bx �! x;A;BThus with at most 2 splay operations and constant additional work we can accomplishany desired operation.2.2 Time for a Splay OperationHow much work does a splay operation require? We must:1. Find the item (time dependent on depth of item).2. Splay it to the top (time again dependent on depth)Hence, the total time is O(2� depth of item).How much time do k splay operations require? The answer will turn out to be O(k log n),where n is the size of the tree. Hence, the amortized time for one splay operation is O(log n).The basic step in a splay operation is a rotation:A Bx Cy �!rotate(y)A B Cyx7

Clearly a rotation can be done in O(1) time. [Note there are both left and right rotations,which are in fact inverses of each other. The sketch above depicts a right rotation goingforward and a left rotation going backward. Hence to bring up a node, we do a rightrotation if it is a left child, and a left rotation if it is a right child.]A splay is then done with a (carefully-selected) series of rotations. Let p(x) be the parentof a node x. Here is the splay algorithm:Splay Algorithm:while x 6= root doif p(x) = root then rotate(p(x))A Bx Croot �!rotate(p(x))A B Crootxelse if both x and p(x) are left (resp. right) children, do right (resp.left) rotations: beginrotate(p2(x))rotate(p(x))end A Bx Cy = p(x) Dz = p2(x) �!rotate(p2(x))A Bx C Dzy�!rotate(p(x))A B C Dzyxelse /* x and p(x) are left/right or right/left children */ beginrotate(p(x))rotate(p(x)) /* note this is a new p(x) */end 8

A B Cxy Dz �!rotate(p(x))A By Cx Dz�!rotate(p(x))A By C Dzx�odWhen will accesses take a long time? When the tree is long and skinny.What produces long skinny trees?� a series of inserts in ascending order 1, 3, 5, 7, : : :� each insert will take O(1) steps { the splay will be a no-op.� then an operation like access(1) will take O(n) steps.� HOWEVER this will then result in the tree being balanced.� Also note that the �rst few operations were very fast.Therefore, we have this general idea { splay operations tend to balance the tree. Thus anylong access times are \balanced" (so to speak) by the fact the tree ends up better balanced,speeding subsequent accesses.In potential terms, the idea is that as a tree is built high, its \potential energy" increases.Accessing a deep item releases the potential as the tree sinks down, paying for the extra workrequired.2.3 Amortized Time for SplayTheorem 2.1 The amortized time of a splay operation is O(log n).To prove this, we need to de�ne an appropriate potential function.De�nition 2.2 Let d(x) = the number of descendants of x (including x). De�ne the rankof x; r(x) = log d(x) and the potential functionLet s be the splay tree. �(s) =Xx�s r(x):9

Thus we have:� d(leaf node) = 1, d(root) = n� r(leaf node) = 0, r(root) = log nClearly, the better balanced the tree is, the lower the potential � is.We will need the following lemmas to bound changes in �.Lemma 2.3 Let c be a node in a tree, with a and b its children. Then r(c) > 1 +min(r(a); r(b)).Proof:Looking at the tree, we see d(c) = d(a)+d(b)+1. Thus we have r(c) > 1+min(r(a); r(b)).. .a . .bc 2We apply this toLemma 2.4 (Main Lemma) Let r(x) be the rank of x before a rotation (a single splaystep) bringing x up, and r0(x) be its rank afterward. Similarly, let s denote the tree beforethe rotation and s0 afterward. Then we have:1. r0(x) � r(x)2. If p(x) is the root then �(s0)� �(s) < r0(x)� r(x)3. if p(x) 6= root then �(s0)� �(s) < 3(r0(x)� r(x))� 1Proof:1. Obvious as x gains descendants.2. Note in this case we have A Bx Cy �!rotate(p(x))A B Cyx10

so that clearly r0(x) = r(y). But then since only x and y change rank in s0,�(s0)� �(s) = (r0(x)� r(x)) + (r0(y)� r(y))= r0(y)� r(x) < r0(x)� r(x)since clearly r0(y) < r0(x).3. Consider just the following case (the others are similar):A Bx Cy = p(x) Dz = p2(x) �!rotate(p2(x))A Bx C Dzy
�!rotate(p(x))A B C DzyxLet r represent the ranks in the initial tree s, r00 ranks in the middle tree s00 and r0ranks in the �nal tree s0. Note that, looking at the initial and �nal trees, we haver(x) < r(y)and r0(y) < r0(x)so r0(y)� r(y) < r0(x)� r(x)Hence, since only x; y and z change rank,�(s0)� �(s) = (r0(x)� r(x)) + (r0(y)� r(y)) + (r0(z)� r(z))< 2(r0(x)� r(x)) + (r0(z)� r(z))(�)Next from Lemma 1, we have r00(y) > 1+min(r00(x); r00(z)). But looking at the middletree, we have 11

r00(x) = r(x)r00(y) = r0(x)(= r(z))r00(z) = r0(z)so that r(z) = r0(x) > 1 +min(r(x); r0(z))Hence, either we have r0(x) > 1 + r(x); so r0(x)� r(x) > 1or r(z)) > 1 + r0(z); so r0(z)� r(z) < �1In the �rst case, sincer0(z) < r(z) => r0(z)� r(z) < 0 < r0(x)� r(x)� 1clearly �(s0)��(s) < 3(r0(x)� r(x))� 1In the second case, since we always have r0(x)� r(x) > 0, we again get�(s0)��(s) < 2(r0(x)� r(x))� 1< 3(r0(x)� r(x))� 1 2We will apply this lemma now to determine the amortized cost of a splay operation. Thesplay operation consists of a series of splay steps (rotations). For each splay step, if s is thetree before the splay, and s0 the tree afterwards, we haveat = rt + �(s0)� �(s)where at is the amortized time, rt the real time. In this case, rt = 1, since a splay stepcan be done in constant time.[Note: Here we have scaled the time factor to say a splay step takes one time unit.If instead we say a splay takes c time units for some constant c, we change the potentialfunction � to be �(s) = cXx�s r(x):12

Consider now the two cases in Lemma 2. For the �rst case (x a child of the root), wehave at = 1 + �(s0)� �(s) < 1 + (r0(x)� r(x))< 3�r + 1For the second case, we haveat = 1 + �(s0)� �(s) < 1 + 3(r0(x)� r(x))� 1= 3(r0(x)� r(x))= 3�rThen for the whole splay operation, let s = s0; s1; s2; : : : ; sk be the series of trees producedby the sequence of splay steps, and r = r0; r1; r2; : : : ; rk the corresponding rank functions.Then the total amortized cost is at = kXi=0 ati < 1 + kXi=0 3�riBut the latter series telescopes, so [tossing out the extra 1],at < 3(final rank of x� initial rank of x)Since the �nal rank of x is log n, we then haveat < 3 log nas desired.2.4 Additional notes1. (Exercise) The accounting view is that each node x stores r(x) dollars [or some constantmultiple thereof]. When rotates occur, money is taken from those nodes which loserank to pay for the operation.2. The total time for k operations is actually O(k logm), where m is the largest size thetree ever attains (assuming it grows and shrinks through a series of inserts and deletes).3. As mentioned above, if we say the real time for a rotation is c, the potential function� is �(s) =Xx�s cr(x)13

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 3Tu. Jan. 26, 1993Notes by King-Ip Lin3 HeapsWe will use heaps to implement MST and Shortest Path algorithms since they provide aquick way of computing the minimum element in a set.De�nition 3.1 (d-Heaps) A d-heap is a tree which the following properties hold:1. Each node have a key attached to it2. Every internal node (except parents of leaves) have exactly d children3. [Heap-order property] For any node x, key(parent(x)) � key(x)Basic operations on heapsInsert Attach the new item to the rightmost un�lled parent of leaves and restore the heap-order-property by pushing the new key upwards.Delete Swap element to be deleted to the rightmost child. Remove the rightmost child andrestore the heap-order property of the swapped node.Search Except for the minimum (at the top of the tree), not well supportedTime for insert and delete = height of tree = log n. Please see Tarjan's book for moredetails on heaps.3.1 Binomial heapsThese are heaps that also provide the power to merge two heaps into one.De�nition 3.2 (Binomial tree) A binomial tree of height k (denoted as Bk) is de�nedrecursively as follows:1. B0 is a single node2. Bi+1 is formed by joining two Bi heaps, making one's root the child of the otherBasic properties of Bk 14

B0 B1 B2
B3

Figure 1: Examples of binomial heaps
15

� Number of nodes : 2k� Height : k� Number of child of root (degree of root) : kIn order to store n nodes in binomial tress when n 6= 2k, �rst write n in binary notation,then for every 1 bit in the notation, create a corresponding Bk tree, treating the rightmostbit as 0.Example : n = 13 = 11012 �! use B3; B2; B0De�nition 3.3 (Binomial heap) A binomial heap is a (set of) binomial tree(s) whereeach node has a key and the heap-order property is preserved. We also have the requirementthat for any given i there is at most one Bi.Algorithms for the binomial heap :Find minimum Given n, there will be log n binomial trees and each tree's minimum willbe its root. Thus only need to �nd the minimum among the roots.T ime = log nInsertion Invariant to be maintained : only 1 Bi tree for each iStep 1: create a new B0 tree for the new elementStep 2: i 0Step 3: while there is still 2 Bi tree dojoin the two Bi tree to form a Bi+1 treei i+ 1Clearly this takes at most O(log n) time.DeletionDelete min Key observation: Removing the root from a Bi tree will formed i binomialtrees, from B0 to Bi�1Step 1: Find the minimum root (Assume its in Bk)Step 2: Break Bk, forming k smaller treesStep 3: while there is still at least 2 Bi tree dojoin the two Bi tree to form a Bi+1 treei i+ 1Note that at each stage there will be at most 3 Bi trees, thus for each i only 1 join isrequired. 16

DeleteStep 1: Find the elementStep 2: Change the element key to �1Step 3: Push the key up the tree to maintain the heap-order propertyStep 4: Call Delete min2 and 3 is to be grouped and called DECREASE KEY(x)Time for insertion and deletion : O(log n)3.2 Fibonacci Heaps(F-Heaps)Amortized running time :� Insert, Findmin, Union, Decrease-key : O(1)� Delete-min, Delete : O(log n)Added features (compared to the binomial heaps)� Individual trees are not necessary binomial (denote trees by B 0i)� Always maintain a pointer to the smallest root� permit many copies of B0iAlgorithms for the F-heap :InsertStep 1: Create a new B00Step 2: Compare with the current minimum and update pointer if necessaryStep 3: Store $1 at the new root(Notice that the $ is only for accounting purposes, and the implementation of the datastructure does not need to keep track of the $'s.)Delete-minStep 1: Remove the minimum, breaking that tree into smaller tree againStep 2: �nd the new minimum, merge trees in the process, resulting in 1 B0i tree for each i17

Decrease-keyStep 1: Decrease the keyStep 2: if heap-order is violatedbreak the link between the node and its parent (note: results may not be a truebinomial tree)Step 3: Compare the new root with the current minimum and update pointer if necessaryStep 4: Put $1 to the new rootStep 5: Pay $1 for the cutProblem with the above algorithm: Can result in trees where the root have disportionlylarge number of child (i.e. not enough internal nodes).Solution:� whenever a node is being cut{ mark the parent of the cut node in the original tree{ put $2 on that node� when a second child of that node is lost (by that time that node will have $4), recur-sively cut that node from its parent, use the $4 to pay for it:{ $1 for the cut{ $1 for new root{ $2 to its original parent� repeat the recursion upward if necessaryThus each cut requires only $4.Thus decrease-key takes amortized time O(1)De�ne rank of the tree = Number of children of the root of the tree.Consider the minimum number of nodes of a tree with a given rank:
18

B1 1 2 2. .
.

Rank Worst case size Size of binomial treeB0 0 1 1B2 2 3 4B3 3 5 8B4 4 8 16Marked node from previous deletionFigure 2: Minimum size B0i trees
19

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 4Thu. Jan. 28, 1993Notes by Patchanee Ittarat.4 F-heap4.1 PropertiesF-heaps have the following properties:� maintain the minimum key in the heap all the time,� relax the condition that we have at most one Bk for any k, i.e., we can have any numberof Bk at one time,� trees are not true binomial trees.For example,2 1 54 3 1013 20 26
min pointer
Figure 3: Example of F-heapProperty: size of a tree, rooted at x, is in exponential in the degree of x.In Binomial trees we have the property that size(x) � 2k, here we will not have as stronga property, but we will have the following:size(x) � �kwhere k is degree of x and � = 1+p52 .20

Note that since � > 1 this is su�cient to guarantee a O(log n) bound on the depth andthe number of children of a node.4.2 Decrease-Key operationMark strategy:� when a node is cut o� from its parent, tick one mark to its parent,� when a node gets 2 marks, cut the edge to its parent and tick its parent as well,� when a node becomes a root, erase all marks attached to that node,� every time a node is cut, give $1 to that node as a new root and $2 to its parent.Example: How does mark strategy work? cut o� x
cut o� z yx z$1 $1$1 *$2

yx z yx z$1 *$2
yx z$1 $1**$4

... ...
...... Figure 4: Marking Strategy21

The cost of Decrease-Key operation = cost of cutting link + $3. We can see that noextra dollars needed when the parent is cut o� recursively since when the cut o� is needed,that parent must have $4 in hand ($2 from each cut child and there must be 2 children havebeen cut), then we use those $4 dollars to pay for cutting link cost ($1), giving to its parent($2), and for itself as a new root ($1).Example: How does Decrease-Key work (see CLR also)?

22

$120 1min pointer$13$1*$2 724 17 2326 30 5$1 $1
$120

5$1 $11min pointer
5$1 $11min pointer$1717 2330 26$1 24$1

$1 $1 $17 3 2024 17 2326 46 3035*$2 min pointer *$2Dec-Key(46,45)
Dec-Key(35,30)**$4

$11$1 $1*$2 7 324 17 2326 3035 $1724 17 2330 26**$4 $1
min pointer

Figure 5: Example23

The property we need when two trees are merged, is the degree of the roots of both treesshould be the same. y2 x yi . . . yky1 . . .Figure 6: ExampleWe want to prove that yi has some subtrees.Let y1 be the oldest child and yk be the youngest child. Consider yi at the point yi wasmade a child of the root x, x had degree at least i� 1 and so yi.And since yi has lost at most 1 child, so now yi has at least degree i� 2.Let's de�ne Fk = 8><>: 0 if k = 01 if k = 1Fk�1 + Fk�2 if k � 2These numbers are called Fibonacci numbers.Property 4.1 Fk+2 = 1 +Pki=1 FiProof:[By induction]k = 1 : F3 = 1 + F1= 1 + 1= F1 + F2 (where F2 = F1 + F0 = 1 + 0)Assume Fk+2 = 1 +Pki=1 Fi for all k � nk = n+ 1 : Fn+3 = 1 + n+1Xi=1 Fi= 1 + nXi=1 Fi + Fn+1= Fn+2 + Fn+124

2Property 4.2 Fk+2 � �kProof:[By induction] k = 0 : F2 = 1� �0k = 1 : F3 = 2� � = 1 +p52 = 1:618::Assume Fk+2 � �k for all k < nk = n : Fn+2 = Fn+1 + Fn� �n�1 + �n�2� 1 + ��2 � �n� �n 2Theorem 4.1 x is a root of any subtree. size(x) � Fk+2 � �k where k is a degree of xProof:[By induction]k = 0:xsize(x) = 1 � 1 � 1k = 1: x 25

size(x) = 2 � 2 � 1+p52Assume size(x) � Fk+2 � �k for any k � n
k = n+ 1: y2 x yi . . . yky1 . . .size(x) = 1 + size(y1) + :::+ size(yi) + :::+ size(yk)� 1 + 1 + 1 + F3 + :::+ Fk (from assumption)� 1 + F1 + F2 + :::+ Fk� Fk+2 (from property1)� �k (from property2)log� size(x) � kSo the number of children of node x is bounded by log� size(x). 25 Maintaining Disjoint Set'sAnother data structure that is useful in Kruskal's algorithm is to maintain disjoint sets. (Itwill be useful in solving other problems as well, such as in homeworks and exams!)5.1 Disjoint set operations:� Makeset : A Makeset(x) � A = fxg.� Find(y) : given y, �nd to which set y belongs.� Union(A;B) : C Union(A;B) � C = A [B.The name of a set is given by its smallest item.26

name
Figure 7: Data Structure
A Brank(a) rank(b)

C = Union(A,B)A BFigure 8: Union27

5.2 Data structure:� tree. See �gure 5.Find - worst case cost is O(n).Union - worst case cost is O(1).For m Find operations, total time is O(m � n).To improve total time:1. Balance a tree in some sense.2. Make a tree shallower.3. Hook the smaller tree to the bigger one.Why will these improve a tree?� Since the amount of work depends on the height of a tree.Let rank be an upper bound on the height of a tree.rank(x) = 0 for fxg xFigure 9: Rank 0 nodeUnion(A,B) - see �gure 6.If rank(a) < rank(b), rank(c) = rank(b).If rank(a) = rank(b), rank(c) = rank(b) + 1.5.3 Union by rankUnion by rank guarantees \at most O(log n) of depth".Property 5.1 A node with rank k has at least 2k descendants.28

Proof:[By induction]rank(x) = 0) x has no descendants.The rank and the number of descendants of any node are changed only by the Unionoperation, now let's consider a Union operation in �gure 6.Case 1 rank(a) < rank(b): rank(c) = rank(b)node(c) � node(b)� 2rank(b)Case 2 rank(a) = rank(b): rank(c) = rank(b) + 1node(a) � 2rank(a) andnode(b) � 2rank(b)node(c) = node(a) + node(b)� 2rank(a) + 2rank(b)� 2rank(b)+1 2In Find operation, we can make a tree shallower by path compression method.5.4 Union by rank and path compression� n Union's and m Find's cost total time in O(m log� n).where log� n = fmin(i)j log(i) n � 1g, for example,log� 16 = 3; andlog� 216 = 4Theorem 5.1 m Find's cost O(m + n log n). If m > n log n, then this is optimal.To prove this, we need some observations:1. Rank of a node starts at 0 and goes up as long as the node is a root.2. Rank(p(x)) is non-decreasing.3. Rank(p(x)) > rank(x). 29

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 5Tu. Feb 2, 1993Notes by Matos Gilberto.5.5 Better Upper Bounds on the Disjoint-Set Union OperationsThree statements hold for this data structure at all times (p(x) is the parent of x):� Rank of x goes up as long as x is a root.� Rank of p(x) is bigger than rank of x.� Rank of p(x) is always nondecreasingAlso rank of any root is lesser than or equal log2 n, where n is the number of its descen-dants.We want to prove that for a sequence of n UNION and m FIND operations the upperbound on the total execution time will be O(m + n log2 n)The UNION operation is done by rank of the root, and the FIND operation performs thepath compression while the set is being identi�ed.Before the �nd operation is performed on some node, that node points to his parent inthe tree, and following the pointers through subsequent parents leads to the root of the tree.Algorithm will pass the path twice, �rst to �nd the root, and second time to change thepointers of all nodes on the path to the root so that they point directly to the root. So afterthe �nd operation all the nodes point directly to the root of the tree.While the operation of �nding a path to the node is being performed each of the nodeson the path except the root and its child will be issued a bill for the work that has been doneon its path compression. The operation pays only for the work on the root and its child.Note that every node that has been issued a bill in this operation, becomes the child ofthe root, and won't be issued any more bills until its parent becomes a child of some otherroot in a union operation. Note also that one node can be issued a bill at most log2 n times,because every time a node gets a bill its parent's rank goes up, and rank is bounded bylog2 n.The cost of a single �nd is charged to 2 accounts1. The �nd pays for the cost of the root and its child2. A bill is given to every node whose parent changesTotal work for the n unions and m �nd operations will be O(m) for the charge for the�nd operations, and the sum of bills issued to all nodes will be upper bounded by n log2 nLemma 5.2 There are at most n2r nodes of rank r.30

Proof:When the node gets rank r it has 2r descendants, and it is the root of a tree. After someunion operation this node will no longer be root, and may start to loose some descendants,but its rank will not decrease. Assume that every descendant of a root node gets a stampwhen the root increases its rank. Subsequent stamps that the nodes get can be only withhigher values of the rank of the root, because rank of root can increase after some union, orthe root will become child of a node with a higher rank. So for every node of rank r thereare at least 2r nodes with its stamp for rank r. 2We will try to prove there is an even tighter upper bound for the cost ofm �nd operations.That function is O(m log� n) where log� n is the number of log's that are required to reducen to 1. (This is a proof done by Hopcroft and Ullman.)For this we introduce the fast growing function F which is de�ned as1. F (0) = 12. F (i) = 2F (i�1)Another necessary function is G(n) where G(n) = minfk such thatF (k) � ng. Thisfunction is equal to the log� n function.5.5.1 Concept of BlocksIf a node has rank r, it belongs to block B(G(r)), which is B(log� r).� B(0) contains nodes of rank 0 and 1.� B(1) contains nodes of rank 2.� B(2) contains nodes of rank 3 and 4.� B(3) contains nodes of rank 5 through 16.� B(4) contains nodes of rank 17 through 65536.Since the rank of a node is at most log2 n where n is the number of elements in the set,the number of blocks necessary to put all the elements of the sets is bounded by log�(log n)which is log� n� 1. So blocks from B(0) to B(log� n � 1) will be used.The �nd operation goes the same way as before, but the billing policy is di�erent. Nowthe �nd operation pays for the work done for the root and its immediate child, and it alsopays for all the nodes which are not in the same block as their parents. All of these nodesare children of some other nodes, so their ranks will not change and they are bound to stayin the same block until the end of computation. If a node is in the same block as its parentit will be billed for the work done in the �nd operation. As before �nd operation pays forthe work done on the root and its child. Number of di�erent blocks is limited to log� n� 1,so the cost of the �nd operation is upper bounded by log� n� 1 + 2.31

After the �rst time a node is in the di�erent block from its parent, it is always going tobe the case because the rank of the parent only goes up. This means that the �nd operationis going to pay for the work on that node every time. So any node will �rst be billed for the�nd operations a certain number of times, and after that all subsequent �nds will pay fortheir work on the element. We need to �nd an upper bound for the number of times a nodeis going to be billed for the �nd operation.Consider the block with index i; it contains nodes with the rank in the interval fromF (i� 1) + 1 to F (i). The number of nodes in this block is upper bounded by the possiblenumber of nodes in each of the ranks. There are at most n=(2r) nodes of rank r, so this is asum of a geometric series, whose value isF (i)Xr=F (i�1)+1 n2r = n2F (i�1) = nF (i)Notice that this is the only place where we make use of the exact de�nition of functionF. After every �nd operation a node changes to a parent with a higher rank, and since thereare only F (i)� F (i � 1) di�erent ranks in the block, this bounds the number of billings anode can expect to get. Since the block B(i) contains at most n=F (i) nodes, all the nodesin B(i) can be billed at most n times. Since there are at most log� n blocks the total costfor these �nd operations is bounded by n log� n.This is still not the tight bound on the number of operations, because Tarjan has provedthat there is an even tighter bound which is proportional to the O(m�(m;n)) for n unionsand m �nds, where alpha is the inverse ackerman function whose value is lower than 4 forall practical applications. This is quite di�cult to prove (see Tarjan's book). There is alsoa corresponding tight lower bound on any implementation of disjoint set data structures onthe pointer machine model.
32

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 6Thurs. Feb 4, 1993Notes by Robert Bennet.6 The Skip List Data StructureSkip lists, like array and linked list structures, support the following dictionary operations:� Search()� Insert()� Delete()But unlike arrays (sorted) which support these operations in O(log2 n), O(n) and O(n)time and linked lists which support these operations in O(n), O(1) (non-sorted) and O(n)time respectively, skip lists supports them in O(log2 n) randomized time. (The expectedtime for a single operation is O(log n).)The structure of a skip list is that of a sorted linked list with \express lanes" that skip2-ahead, 4-ahead until there is a lane that skips n2 ahead.The height of an element in the skip list is de�ned as the number of stops at that elementthere are. This height can be determined probabilistically as the number of consecutive\coin-
ips" until a head is encountered.Given this information, an algorithm to search for an element can be given:Let startlevel = log2 n:1. Search(x;L).2. p = L! header.3. for i=startlevel downto 1 do4. while (p! next[i]:key < x)5. do p = p! next[i] /* p is largest element < x */For insertion, we keep a pointer to source level i pointer that goes over or to the elementbeing searched for; call this over[i]. It should be noted that these algorithms use multi-pointerdata structures. The algorithm to insert into a skip list is as follows:1. Insert (x;L)2. p = L! header 33

3. for i=startlevel downto 1 do4. while(p! next[i]:key < x)5. do p = p! next[i]6. over[i] = p7. ` = random level()8. e=new-node(`)9. for i=1 to ` do10. insert e after over[i] at level iFor deleting from a skip list change lines 5 : : : 9 to:1. (5) e = p� > next[`]2. (6) Verify e� > key == x3. (7) ` = e� > levelThen change \insert" in line 10 to \delete" and add a free(e) call.With skip lists, we want to handle the average probabilistic performance on worst caseinput.6.1 AnalysisThe analysis must be done oblivious to the element position. We will also start our searchpath backwards; meaning that the element will only be entered from above. Let, C(`) =cost to climb up ` levels in an in�nite list + the number of elements at the top level.Thus, C(`) = 1 + 12C(`) + 12C(` � 1), or C(`) = 2`, where 2` is the expected cost ofmoving.Since the algorithm depends on random variables, the lists cannot be re- distributed,which makes lists \non-random".6.2 Probabilistic AnalysisLet, C(`) = number of coin
ips needed to see heads. Assume this is true for C(1::`) andwe will prove for C(`+1), which turns out to be a binomial distribution. These bounds areexact for a search at the end of the list. 34

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 7Tu. Feb. 9, 1993Notes by Wlod Glazek.7 Minimum Spanning Trees and Shortest PathsGiven a graph G = (V;E) and a weight function w(u; v) we wish to �nd a spanning treeT � E such that its total weight P(u;v)2T w(u; v) is minimized. We call the problem ofdetermining the tree T the minimum-spanning tree problem and the tree itself an MST.We will present now two approaches to �nding MST. The �rst is Prim's method and thesecond is Yao's method. Before we present Prim's algorithm, we brie
y review Dijkstra'salgorithm.7.1 Dijkstra's algorithmRecall that Dijkstra's algorithm solves the single-source shortest-paths problem on a weightedgraph G = (V;E) for the case in which all edge weights are nonnegative. The algorithmmaintains a Fibonacci heap H of all the nodes that are not currently in the Shortest PathsTree (SPT) and a table d[v] of estimated distances from the source s for each v. It repeatedlyselects v 2 H with the minimum shortest path estimate, inserts it into SPT and updatesshortest path estimates for all nodes adjacent to selected node v. Once a node v is in SPT,the estimate d[v] contains its real shortest distance from the source s.Dijkstra's algorithmStep 1: for all v 2 V except source vertex s initialize d[v] :=1, d[s] := 0.Step 2: put all v 2 V in the Fibonacci heap H.Step 3: while heap H is not empty doStep 4: u:=EXTRACT-MIN(H). DELETE-MIN(H).Step 5: for all w 2 Adj[u] doStep 6: if d[w] > d[u] + w(u;w) then DECREASE-KEY(w; d[w]� d[u]� w(u;w))The running time of this algorithm is O(m+ n log2 n).This is because we do n� 1 DELETE-MIN operations, that cost log n time each. We doonly O(m) DECREASE-KEY operations (for each vertex the work done is proportional toits degree).Note: O(m+n log n) is optimal for any implementation of Dijkstra's algorithm (by reducingsorting to it). This is something worth thinking about. It is possible that one can do shortest35

paths faster than O(n log n) for graphs that have O(n) edges. For example, Frederickson hasshown that for planar graphs we can compute shortest paths in O(nplog n) time. (This ishighly non-trivial.) Can we extend this to any graph with O(n) edges ? (This is still open.)7.2 Prim's algorithmPrim's algorithm operates much like Dijkstra's algorithm. The tree starts from an arbitraryvertex v and grows until the tree spans all vertices in V . At each step our currently connectedset is S. Initially S = fvg. A lightest edge connecting a vertex in S with a vertex in V �S isadded to the tree. Correctness of this algorithm follows from the observation that a partitionof vertices into S and V � S de�nes a cut, and the algorithm always chooses the lightestedge crossing the cut. This satis�es the property of the MST. Tarjan describes generic red-blue rules that let us put edges in and out of the MST. All MST algorithms are essentiallyan application of the red-blue rules in a particular order. The key to implementing Prim'salgorithm e�ciently is to make it easy to select a new edge to be added to the tree formed byedges in MST. Using a Fibonacci heap we can perform EXTRACT-MIN and DELETE-MINoperation in O(log n) amortized time and DECREASE-KEY in O(1) amortized time. Thus,the running time is O(m+ n log n).It turns out that for sparse graphs we can do even better ! We will �rst study Yao'salgorithm, and then the more recent algorithm by Fredman and Tarjan that uses F-heaps.However, this is not the best algorithm. Using an idea known as \packeting" this The FTalgorithm was improved by Gabow-Galil-Spencer-Tarjan, and that is the best known (alsouses F-heaps).7.3 Yao's algorithmYao's algorithm starts with a collection of singleton vertex sets placed in a priority queue andrepeatedly merges pairs of sets in a round-robin fashion until only one set is left. Speci�cally,each vertex is initially in its own set. We put all the singleton sets in a queue. We pickthe �rst vertex v, from the head of the queue and this vertex selects a lowest weight edgeincident to it (say to vertex u), and merges itself with u. We remove both v and u from thequeue and put the connected pair at the end of the queue. We continue doing this until allthe vertices, initially in the queue, are processed. Notice that we now have a collection ofconnected components (a forest of trees) that are in the queue. Each has size at least two(perhaps more). (If v merges with u, and then w merges with v { we get a component ofsize three.) The entire processing of a queue is called a phase. So at the end of phase i, weknow that each component has at least 2i vertices. This lets us bound the number of phasesby log n. (Can be proved by induction.)We can use the UNION-FIND structure for keeping track of connected components. Thiswill give us a running time of O(m log� n) per phase and with the bound on the number ofphases this takes O(m log� n log n) time.Homework: How do we implement a single phase in linear time ? Notice that we donot really need UNION-FIND to implement a phase !36

The main thing that slows down the algorithm is the fact that in a subsequent phase wehave to recompute (from scratch) the lowest weight edge incident to a vertex. This forcesus to spend time proportional to Pv2Ti d(v) for each tree Ti. Yao's idea was to \somehoworder" the adjacency list of a vertex to save this computational overhead. This is achievedby breaking the adjacency list of each vertex Adj(v) into k groups E1v ; E2v ; : : : ; Ekv with theproperty that if e 2 Eiv and e0 2 Ejv and i < j, then w(e) < w(e0). For a vertex withdegree d(v), this takes O(d(v) log k) time. (We run the median �nding algorithm, and usethe median to partition the set into two. Then we recurse on each portion to break the sets,and we get four sets by a second application of the median algorithm, each of size d(v)4 . Wecontinue this process until we obtain k sets.) To perform this for all the adjacency lists,clearly takes O(m log k) time.Let T be a set of edges in the �nal MST, V S be a collection of vertex sets that form con-nected components and ES be collection of edge sets incident to each connected component.Yao's algorithmStep 1: T := ; ,V S := ; ,ES := ; ,Step 2: for each v 2 V doStep 3: add v to V SStep 4: add E(v) to ESStep 5: divide E(v) into k groups E1v , E2v ,..., EkvStep 6: while jV Sj > 1 doStep 7: take a vertex set W from V SStep 8: for each vertex v 2 W doStep 9: FIND cheapest outgoing edge from vStep 10: Among the edges pick cheapest edge (w;w0) in E(W)Step 11: Let w0 2 W 0Step 12: Replace W and W 0 by UNION(W ,W 0)Step 13: Replace E(W) and E(W 0) by UNION(E(W),E(W 0))Step 14: add (w;w0) to TStep 15: output T 37

Now, the search for the cheapest outgoing edge is simpler. For every v we only scanthrough the pieces not scanned so far. We take the �rst encountered edge as the cheapestone. In the next phase we start scanning at the point that we stopped last time. The overallcost of scanning in one phase is O(mk log� n). But we have log n phases in all, so the totalrunning time amounts to O(mk log� n log n) + O(m log k). If we take k = log n then we getO(m log� n) +O(m log log n), which is better than the cost of Prim's algorithm.

38

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 8Th. 11 Feb., 1993Notes by Annette Evangelisti.8 Fredman-Tarjan MST AlgorithmWe maintain a forest de�ned by the edges that have so far been selected to be in the MST.Initially, the forest contains each of the n vertices of G, as a one-vertex tree. We then repeatthe following step n� 1 times (until there is only one tree).High Levelstart with n trees each of one vertexrepeat procedure GROWTREESprocedure CLEANUPuntil only one tree is leftInformally, the algorithm is given at the start of each round a forest of trees. Theprocedure GROWTREES grows each tree in a round-robin fashion and terminates with aforest having fewer trees. The procedure CLEANUP essentially \shrinks" the trees to singlevertices. This is done by simply discarding all edges that have both the endpoints in the sametree (component). From the set of edges between two di�erent trees we simply maintain thelowest weight edge and discard all other edges. A linear time implementation of CLEANUPwill be described later.The idea is to grow a single tree only until its heap of neighboring vertices exceeds acertain critical size. We then start from a new vertex and grow another tree, again stoppingonly when the heap gets too large, or we encounter a previously stopped tree. We continuethis way until every tree has grown, and stopped because it had too many neighbours, or itcollided with a stopped tree. We now condense every tree into a single supervertex (basicallyby doing CLEANUP; this condensation is thus done implicitly) and begin a new pass of thesame kind in the condensed graph. After a su�cient number of passes, only one vertex willremain.We �x a parameter k, at the start of every phase { each tree is grown until it has morethan k \neighbours" in the heap. In a phase, we start with a collection of old trees. The passconnects these trees to form new larger trees that become the old trees for the next phase.We unmark all the trees, create an empty heap. We pick an unmarked tree and grow it byPrim's algorithm, until either its heap contains more than k vertices or it gets connected toa marked old tree.To �nish the growth step, we empty the heap and mark the tree. The F-heap has the setof all trees that are adjacent to the current tree (tree to grow).39

(See GROWTREES in Handout.)Procedure GROWTREESQ = F-heap of trees (heap of neighbors of the current tree)e = array[trees] of edge (e[T] = cheapest edge joining T to current tree)mark = array[trees] of (true, false), (true for trees already grown in this step)tree = array[vertex] of trees (tree[V] = tree containing vertex V)edge-list = array[trees] of list of edges (edges incident on T)Running Time of GROWTREESCost of one phase: Pick a node, and mark it for growth until the F-heap has k neighborsor it merges with another tree. Assume there exist T trees at the start and m is the numberof edges initially. Then k = 22m=Twhere k increases as the number of trees decreases. Notice that k is essentially 2d, where dis the average degree of a vertex in the super-graph. But one phase is upperbounded byO(T log k +m) = O(T log(22m=T) +m)= O(T2m=T +m)= O(m)This is so because we perform at most T DELETE-MIN operations (each one reduces thenumber of trees), and log k is the upperbound on a single heap operation. The time forinitialization and CLEANUP etc is O(m).Consider the e�ect of a pass that begins with T trees and m0 � m edges (some edgesmay have been discarded). Each tree remaining after the pass has more than k > 2 2mT edgeswith at least one endpoint in T . If a tree stopped after colliding with the initially growntree, then the merged tree has the property that it has at least k neighbors. If a tree T hasstopped growing because it has too many neighbors, it may happen that due to a merge thatoccurs later in time, some of its neighbors are in the same tree ! However, if we consider themultigraph formed by considering each tree as a single vertex we can argue that each tree(vertex) must have degree more than k. Thus we obtain T 0k � PTi d(Ti) = 2m0. Clearly,T 0 � 2mk . Hence k0 = 2 2mT 0 � 2k. In the �rst round, k = 22m=n. When k � n, the algorithmruns to completion. How many rounds does this take ?Let �(m;n) = minfij log(i) n � mn g. It is clear that the number of rounds is at most�(m;n). This gives us an algorithm with total running time O(m�(m;n)).Procedure CLEANUP1. Resets marks on all trees to false.2. Recomputes tree[V] for all vertices V .3. Removes all edges that go between vertices that are in the same tree. (i.e. remove(u; v) if tree[u] = tree[v]).4. Of all edges between Ti and Tj, retain only the cheapest edge.40

After each phase of growtrees cleanup keeps only the cheapest edge between two treesand deletes all edges that go between vertices in the same tree.We number all trees consecutively from one. We sort all the edges lexicographically onthe numbers of the trees containing their endpoints, using a two-pass radix sort. We thenscan the sorted list saving only the appropriate edges. After CLEANUP, we construct a listfor each old tree T of the edges with one endpoint in T . (Each edge is on two lists.) Thiscan be done in O(m) time.

41

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 9Tu., Feb. 16, 1993Notes by Michael Tan9 MatchingsIn this lecture we will examine the problem of �nding a maximummatching. We will do thisby examining the particular case of �nding a maximum matching in a bipartite graph.Given a graph G = (V;E), amatchingM is a subset of the edges such that no two edgesin M share an endpoint. The problem is similar to �nding an independent set of edges. Inthe maximum matching problem we wish to maximize jM j.A bipartite graph G = (U; V;E) has E � U � V .Aside: We can test if a given graph is bipartite in O(Ej) time. Here is how: Do BFSon the graph. Let every vertex discovered on an even level be in set U , and every vertexdiscovered on an odd level be in set V . As BFS runs, make sure that no \even" vertex hasan edge to another \even" vertex, and that no \odd" vertex has an edge to another \odd"vertex.With respect to a given matching, amatched edge is an edge included in the matching.A free edge is an edge which does not appear in the matching. Likewise, a matchedvertex is a vertex which is an endpoint of a matched edge. A free vertex is a vertex thatis not the endpoint of any matched edge.We can think of the matching problem in the following terms. Given a list of boys andgirls, and a list of all marriage compatible pairs (a pair is a boy and a girl), a matching issome subset of the compatibility list in which each boy or girl gets at most one partner. Inthese terms, E = f all marriage compatible pairs g, U = f the boysg, V = f the girlsg, andM = f some potential pairing preventing polygamyg.A perfect matching is one in which all vertices are matched. In bipartite graphs, wemust have jV j = jU j in order for a perfect matching to possibly exist. When a bipartitegraph has a perfect matching in it, the following theorem holds:9.1 Hall's TheoremTheorem 9.1 (Hall's Theorem) Given a bipartite graph G = (U; V;E) where jU j = jV j,8S � U; jN(S)j � jSj (where N(S) is the set of vertices which are neighbors of S) i� G hasa perfect matching.Proof:() In a perfect matching, all elements of S will have at least a total of jSj neighborssince every element will have a partner. (!) We give this proof after the presentation of the42

algorithm, for the sake of clarity. 2Before proceeding with the algorithm, we meed to de�ne more terms.An alternating path is a path (edges) which begins at a free vertex and whose edgesalternate between matched and unmatched edges.An augmenting path is an alternating path which starts and ends with unmatchededges (and thus starts and ends with free vertices).The matching algorithm will attempt to increase the size of a matching by �nding anaugmenting path. By inverting the edges of the path (matched becomes unmatched and viceversa), we increase the size of a matching by exactly one.If we have a matching M and an augmenting path P (with respect to M), then M � P= ((M [P)� (M \ P)) is a matching of size jM j + 1.9.2 Berge's TheoremTheorem 9.2 (Berge's Theorem) M is a maximum matching i� there are no augmentingpaths with respect to M .Proof:(!) Trivial. () Let us prove the contrapositive. Assume M is not a maximummatch-ing. Then there exists some maximummatchingM 0 and jM 0j > jM j. ConsiderM �M 0. Allof the following will be true of the graph M �M 0:1. The highest degree of any node is two.2. The graph is a collection of cycles and paths.3. The cycles must be of even length, half of which are from M and half of which arefrom M 0.4. Given these �rst three facts (and since jM 0j > jM j), there must be some path withmore M 0 edges than M edges.This fourth fact describes an augmenting path (with respect to M). This path beginsand ends with M 0 edges, which implies that the path begins and ends with free nodes (i.e.,free in M). 2Armed with this theorem, we can outline a primitive algorithm to solve the maximummatching problem.Simple Matching Algorithm [Edmonds]:Step 1: Start with M = ;.Step 2: Search for an augmenting path.Step 3: Increase M by 1 (using the augmenting path).43

v1v2v3 u1u2u3 matched edgefree edgev4v5v6 u4u5u6v2 v3v5 v4v6v1
u2u6 u3u5u4 u1

Initial graph (some vertices already matched)
BFS tree used to �nd an augmenting path from v2 to u1Figure 10: Sample execution of Simple Matching Algorithm

44

Step 4: Go to 2.Here is an example:The upper bound on the number of iterations is O(jV j) (the size of a matching). The timeto �nd an augmenting path is O(jEj) (use BFS). This gives us a total time of O(jV jjEj). Inthe following lecture, we will learn the Hopcroft-Karp O(qjV jjEj) algorithm for maximummatching on a bipartite graph. In 1981, Micali-Vazirani extended this algorithm to generalgraphs (keeping the same running time)!

45

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 10Th. Feb. 18, 1993Notes by Samir Khuller.10 Hopcroft-Karp Matching AlgorithmWe present the Hopcroft-Karp matching algorithm along with a proof of Hall's theorem inthis lecture. (This theorem can be proven by induction as well, unfortunately that does notyield an e�cient algorithm.)Theorem 10.1 (Hall's Theorem) A bipartite graph G = (U; V;E) has a perfect matchingif and only if 8S � V; jSj � jN(S)j.Proof:To prove this theorem in one direction is trivial. If G has a perfect matching M , thenfor any subset S, N(S) will always contain all the mates (in M) of vertices in S. ThusjN(S)j � jSj. The proof in the other direction can be done as follows. Assume that Mis a maximum matching and is not perfect. Let u be a free vertex. Let Z be the set ofvertices connected to u by alternating paths w.r.t M . Clearly u is the only free vertex inZ (else we would have an augmenting path). Let S = Z \ U and T = Z \ V . Clearly thevertices in S � fug are matched with the vertices in T . Hence jT j = jSj � 1. In fact, wehave N(S) = T since every vertex in N(S) is connected to u by an alternating path. Thisimplies that jN(S)j < jSj. 2For non-bipartite graphs, this theorem does not work. Tutte proved the following (youcan read the Graph Theory book by Bondy and Murty for a proof) theorem for establishingthe conditions for the existence of a perfect matching in a non-bipartite graph.Theorem 10.2 (Tutte's Theorem) A graph G has a perfect matching if and only if 8S �V; o(G � S) � jSj. (o(G � S) is the number of connected components in the graph G � Sthat have an odd number of vertices.)The main idea behind the Hopcroft-Karp algorithm is to augment along a disjoint set ofshortest augmenting paths simultaneously. (For example, if the shortest augmenting pathhas length k then in a single phase they obtain a maximal set S of augmenting paths all oflength k.) By the maximality property, we have that any augmenting path of length k willintersect a path in S. This can be done in linear time. In the next phase, we will have theproperty that the augmenting paths found will be strictly longer (we will prove this formallylater).We now prove the following lemmas. 46

Lemma 10.3 A maximal set S of disjoint, minimum length augmenting paths can be foundin O(m) time.Proof:Let G = (U; V;E) be a bipartite graph and let M be a matching in G. We will growa \Hungarian Tree" in G. (The tree really is not a tree but we will call it a tree all thesame.) The procedure is similar to BFS (and like Edmonds algorithm that simply searchesfor an augmenting path). We start by putting the free vertices in U in level 0. Starting fromeven level 2k, the vertices at level 2k + 1 are obtained by following free edges from verticesat level 2k that have not been put in some level as yet. Since the graph is bipartite theodd(even) levels contain only vertices from V (U). From each odd level 2k + 1, we simpleadd the matched neighbours of the vertices to level 2k + 2. We repeat this process untilwe encounter a free vertex in an odd level (say t). We continue the search only to discoverall free vertices in level t, and stop when we have found all such vertices. In this procedureclearly each edge is traversed at most once, and the time is O(m).We now have a second phase in which the maximal set of disjoint augmenting paths oflength k is found. We use a technique known as topological erase, called so because it isa little like topological sort. With each vertex x (except the ones at level 0), we associatean integer counter initially containing the number of edges entering x from the previouslevel. Starting at a free vertex v at the last level t, we trace a path back until arriving ata free vertex in level 0. The path is an augmenting path, and we include it in S. We thenplace all vertices along this path on a deletion queue. As long as the deletion queue is non-empty, we remove a vertex from the queue, delete it together with its adjacent vertices in theHungarian tree. Whenever an edge is deleted, the counter associated with its right endpointis decremented. If the counter becomes 0, the vertex is placed on the deletion queue (therecan be no augmenting path in the Hungarian tree through this vertex, since all its incomingedges have been deleted).After the queue becomes empty, if there is still a free vertex v at level t, then there mustbe a path from v backwards through the Hungarian tree to a free vertex on the �rst level;so we can repeat this process. We continue as long as there exist free vertices at level t. Theentire process takes linear time, since the amount of work is proportional to the number ofedges deleted. 2From the following lemma it is clear that the augmenting paths in phase i will be strictlylonger in phase (i + 1). After phase i, any augmenting path that has the same length asthe paths in phase i cannot intersect the paths in phase i { this gives a contradiction to themaximality of the paths found in phase i.Lemma 10.4 Let M be a matching and P a shortest augmenting path w.r.t M . Let P 0 bea shortest augmenting path w.r.t M � P (symmetric di�erence of M and P). We havejP 0j � jP j+ jP \ P 0j:47

Proof:Let N = (M � P)� P 0. Thus N �M = P � P 0. Consider N �M . This is a collectionof cycles and paths. The cycles are all of even length. The paths may be of odd or evenlength. The odd length paths are augmenting paths w.r.tM . Since the two matchings di�erin cardinality by 2, there must be two odd length augmenting paths P1 and P2 w.r.t M .Both of these must be longer than P .jM �N j = jP j+ jP 0j � jP \ P 0j � jP1j+ jP2j � 2jP j:This yields the required inequality. 2Theorem 10.5 The total running time of the above described algorithm is O(pnm).Proof:Each phase runs in O(m) time. We now show that there are O(pn) phases. Considerrunning the algorithm for exactly pn phases. Let the obtained matching be M . Eachaugmenting path from now on is of length at least pn + 1. (The paths are always odd inlength and always increase after each phase.) Let M� be the max matching. Consider thesymmetric di�erence of M and M�. This is a collection of cycles and paths, that containthe augmenting paths w.r.t M . Let k = jM�j � jM j. Thus there are k augmenting pathsw.r.t M that yield the matching M�. Each path has length at least 2pn+ 1, and they aredisjoint. The total length of the paths is at most n (due to the disjointness).If li is the lengthof each path we have: k(pn+ 1) � kXi=1 li � n:Thus k is upper bounded by pn. In each phase we increase the size of the matching by atleast one, so there are at most k more phases. This proves the required bound. 2
48

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 11Tu. Feb. 23, 1993Notes by Joseph Naft.11 Assignment ProblemConsider a complete bipartite graph, G(X;Y;X � Y), with weights w(ei) assigned to everyedge. (One could think of this problem as modeling a situation where the set X representsworkers, and the set Y represents jobs. The weight of an edge represents the \compatability"factor for a (worker,job) pair. We need to assign workers to jobs such that each worker isassigned to exactly one job.) The Assignment Problem is to �nd a matching with thegreatest total weight, i.e., the maximum-weighted perfect matching (which is not necessarilyunique). Since G is a complete bipartite graph we know that it has a perfect matching.An algorithm which solves the Assignment Problem is due to Kuhn and Munkres, andis called the Hungarian Method in honor of Egervary. We assume that all the edge weightsare non-negative, w(xi; yj) � 0:where xi 2 X; yj 2 Y:We de�ne a feasible vertex labeling l as a mapping from the set of vertices in G to the realnumbers, where l(xi) + l(yj) � w(xi; yj):(The real number l(v) is called the label of the vertex v.) For example, there exists a feasiblevertex labeling such that (8yj 2 Y) [l(yj) = 0]:and l(xi) = maxj w(xi; yj):We de�ne the Equality Subgraph, Gl(X;Y; (xi; yj)), to be the spanning subgraph of Gwhich includes all vertices of G but only those edges (xi; yj) which have weights such thatw(xi; yj) = l(xi) + l(yj):The connection between equality subgraphs and maximum-weighted matchings is pro-vided by the following theorem:Theorem 11.1 If the Equality Subgraph, Gl, has a perfect matching, M�, then M� is amaximum-weighted matching in G. 49

Proof:Let M� be a perfect matching in Gl. We have, by de�nition,w(M�) = Xe2M�w(e):= Xv2X[Y l(v):Let M be any perfect matching in G. Thenw(M) = Xe2M w(e) � Xv2X[Y l(v) = w(M�):Hence, w(M) � w(M�): 2The above theorem is the basis of an algorithm, due to Kuhn and Munkres, for �nding amaximum-weightedmatching in a complete bipartite graph. Starting with a feasible labeling,we compute the equality subgraph and then �nd a maximum matching in this subgraph(now we can ignore weights on edges). If the matching found is perfect, we are done. Ifthe matching is not perfect, we add more edges to the equality subgraph by revising thevertex lables. We also ensure that edges from our current matching do not leave the equalitysubgraph. After adding edges to the equality subgraphs, either the size of the matching goesup (we �nd an augmenting path), or we continue to grow the hungarian tree. In the formercase, the phase terminates and we start a new phase (since the matching size has gone up).In the latter case, we grow the hungarian tree by adding new nodes to it, and clearly thiscannot happen more than n times.The Kuhn-Munkres Algorithm:Step 1: Build an Equality Subgraph, Gl.Step 2: Find a maximum matching in Gl (not necessarily a perfect matching). If it is aperfect matching, according to the theorem above, we are done.Step 3: Let S = the set of free nodes in XT = all nodes in Y encountered in the search for an augmenting path.Step 4: Grow Hungarian trees from S, revise the labeling, l, adding edges to Gl to �nd aperfect matching, and adding vertices to S and T as they are encountered in thesearch, as described below. Return to Step 2.50

We note the following about this algorithm:S = X � S:T = Y � T:jSj > jT j:There are no edges from S to T , since this would increase the size of the matching whichis already a maximum matching. As we grow the Hungarian Trees in Gl, we place alternatenodes in the search into S and T . To revise the labels we take the labels in S and startdecreasing them uniformly (say by �), and at the same time we increase the labels in T by�. This ensures that the edges from S to T do not leave the equality subgraph. As the labelsin S are decreased, edges from S to T will potentially enter the Equality Subgraph, Gl. Aswe increase � at some point of time, an edge enters the equality subgraph. This is when westop and update the hungarian tree. If the node from T added to Gl is matched to a nodein S, we move these nodes to S and T , which yields a larger Hungarian Tree. If the nodefrom T node is free, we have found an augmenting path and the phase is complete. Onephase consists of those steps taken between increases in the size of the matching. There areat most n phases, where n is the number of vertices in G (since in each phase the size of thematching increases by 1).We de�ne the slack of an edge as follows:slack(x; y) = l(x) + l(y)� w(x; y):Then � = minx2S;y2T slack(x; y)Naively, the calculation of � requires O(n2) time. For every vertex in T , we keep trackof the edge with the smallest slack, i.e.,slack[yj] = minxi2S slack(xi; yj)The computation of slack[yj] requires O(n2) time at the start of a phase. As the phaseprogresses, it is easy to update all the slack values in O(n) time since all of them changeby the same amount (the labels of the vertices in S are going down uniformly). Whenevera node u is moved from S to S we must recompute the slacks of the nodes in T , requiringO(n) time. But a node can be moved from S to S at most n times.Thus each phase can be implemented in O(n2) time. Since there are n phases, this givesus a running time of O(n3). 51

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 12Th. Feb. 25, 1993Notes by Sibel Adali.12 Stable Marriages Problem.We're given a complete bipartite graph consisting of n boys and n girls. Each girl (boy) makesa preference list of the boys (girls), such that the �rst element in the list shows the boy (girl)she (he) likes the most and the last element is the last boy (girl) in the world she (he) wouldlike to be with. The preference lists of the girls and the boys are required to contain all theindividuals from the opposite sex. A perfect matching on this graph is called a marriage andthe matched pairs are called couples. We can formalize this problem as follows: given a com-plete bipartite graph G = (G[B;E) and preference lists bi = [�(bi; 1); �(bi; 2); : : : ; �(bi); n)],gj = [�(gj; 1); �(gj; 2); : : : ; �(gj; n)] for all bi 2 B; gj 2 G, �nd a perfect matching that is notunstable.A marriage M is called unstable i� the following is true: Let Jane and Paul, Mary andJohn be two couples in M . If Jane prefers John to Paul and John prefers Jane to Maryaccording to their preference lists. Then, this marriage is unstable.Paul $ JaneJohn $ Mary John = [: : : Jane : : : Mary : : :]Jane = [: : : John : : : Paul : : :]In other words a marriageM is called unstable, i� there exists a pair that is not matched inM who prefer each other to their current partners.The algorithm to �nd a stable marriage is given by Gale & Shapley and it works as follows:Algorithm for �nding a stable marriageStep 1: Every girl proposes to the �rst boy in her preference list.Step 2: Every boy who receives proposals checks his preference list and gets engaged to thegirl having the highest preference among the ones who proposed to him.Step 3: In the next round, all the girls who are not engaged propose to the next boy in theirpreference lists.Step 4: If the boy is already engaged with another girl, he checks if he got a proposal froma girl with higher preference, if so (as most boys do (!)) he breaks his engagementwith his former �anc�ee and he gets engaged to the girl who just proposed to him.In the next round, the girls who lost their �anc�es in the competition, will proposeto the boy that comes just after their lost �anc�es in their preference lists.52

Step 5: Last two steps are repeated until everybody is matched.The above algorithm will always terminate: because, when a girl proposes to the last boyin her list all the other boys are engaged (to the other n � 1 girls), so the boy who is notengaged has to accept her proposal.Proposition 12.1 The marriage found by the above algorithm is stable.Proof:Assume by way of contradiction that the marriage is unstable, that is there is a pair Johnand Jane as explained above. Since John comes before Paul in Jane's preference list, Janemust have proposed to John before Paul. Since John rejected Jane, he must be engaged witha girl that comes before Jane in his preference list. John will break his engagement only if agirl that comes before his current partner proposes to him, therefore Mary must come beforeJane in his list. Hence, the marriage is stable. 2It is easy to see that the above algorithm runs in O(n2) steps.13 Network Flow - Maximum Flow Problem	 3sz:z: q::j-> c(e) tsFigure 11: Network
ow problemThe problem is de�ned as follows: Given a directed graph Gd = (V;E; s; t; c) where s andt are special vertices called the source and the sink, and c is a capacity function c : E ! <+,�nd the maximum
ow from s to t.Flow is a function f : E ! <+ that has the following properties:1. (Skew Symmetry) f(u; v) = �f(v; u)53

-:qR * q-R >Carry
ow intothe vertex Carry
ow outof the vertexFlow Conservation2. (Flow Conservation) �v2V f(u; v) = 0 for all u 2 V � fs; tg.(Incoming
ow) �v2V f(v; u) = (Outgoing
ow) �v2V f(u; v)3. (Capacity Constraint) f(u; v) � c(u; v)Maximum
ow is the maximum value jf j given byjf j = �v2V f(s; v) = �v2V f(v; t):De�nition 13.1 (Cut) An (s; t) cut is a partitioning of V into two sets A and B such thatA \B = ;, A [B = V and s 2 A; t 2 B. z......................�9� �-j: -�? UBA ts Figure 12: An (s; t) CutDe�nition 13.2 (Capacity Of A Cut) The capacity C(A;B) is given byC(A;B) = �a2A;b2B c(a; b):By the capacity constraint we have that jf j = �v2V f(s; v) � C(A;B) for any (s; t) cut(A;B). Then, the capacity of the minimum capacity cut is an upper bound on the value ofthe maximum
ow. 54

De�nition 13.3 (Residual Graph) GDf is de�ned with respect to some
ow function f ,Gf = (V;Ef ; s; t; c0) where c0(u; v) = c(u; v)� f(u; v). Delete edges for which c0(u; v) = 0.As an example, if there is an edge in G from u to v with capacity 15 and
ow 6, then in Gfthere is an edge from u to v with capacity 9 (which means, I can still push 9 more units ofliquid) and an edge from v to u with capacity 6 (which means, I can cancel all or part of the6 units of liquid I'm currently pushing) 1. Ef contains all the edges e such that c0(e) > 0.Lemma 13.4 1. f 0 is a
ow in Gf i� f + f 0 is a
ow in G.2. f 0 is a maximum
ow in Gf i� f + f 0 is a maximum
ow in G.3. jf + f 0 j = jf j+ jf 0 j.4. If f is a
ow in G, and f� is the maximum
ow in G, then f��f is the maximum
owin Gf . 7 �q	 6KR� s U U�)>99�9yA As tf 0(e1)f 0(e2)f 0(ei)Figure 13: The Residual Graph GfTheorem 13.5 (Max
ow - Min cut Theorem) The following three statements are equiv-alent:1. f is a maximum
ow.2. There exists an (s; t) cut (A;B) with C(A;B) = jf j.3. There are no augmenting paths in Gf .1Since there was no edge from v to u in G, then its capacity was 0 and the
ow on it was -6. Then, thecapacity of this edge in Gf is 0� (�6) = 6. 55

An augmenting path is a directed path from s to t.Proof:We will prove that (2)) (1)) (3)) (2).((2)) (1)) Since no
ow can exceed the capacity of an (s; t) cut (i.e. f(A;B) � C(A;B)),the
ow that satis�es the equality condition of (2) must be the maximum
ow.((1)) (3)) If there was an augmenting path, then I could augment the
ow and �nd alarger
ow, hence f wouldn't be maximum.((3)) (2)) Consider the residual graph Gf given in �gure 13. There is no directed pathfrom s to t in Gf , since if there was this would be an augmenting path. Let A = fvjv isreachable from s in Gfg. A and A form an (s; t) cut, where all the edges go from A to A.The
ow f 0 must be equal to the capacity of the edge, since for all u 2 A and v 2 A, thecapacity of (u; v) is 0 in Gf and 0 = c(u; v)� f 0(u; v), therefore c(u; v) = f 0(u; v). Then, thecapacity of the cut in the original graph is the total capacity of the edges from A to A, andthe
ow is exactly equal to this amount. 2
Y=	Y ?j �s? q>

�j? q>>q?s�
(Max
ow = 4)A The min-cutThe residual graph311 231s t tss st t14 2 13The capacity of edges 1 13 30The
ow function12 3(C(A,B)=4)Figure 14: An example56

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 13March 2, 1993Notes by Andrew Vakhutinsky.14 The Max Flow ProblemDe�nition 14.1 (Flow Function) Given a directed
ow graph G = (V;E; s; t; c) withsource s, sink t and capacity function c : E ! R+. Function f : E ! R+ is called a
ow if it has the following three properties:1. skew symmetry f(u; v) = �f(v; u)2.
ow conservation Pv2V f(u; v) = 0 8u 6= s; t3. capacity constraint f(u; v) � c(u; v)Value of
ow f is de�ned as jf j def= Pv2V f(s; v) = Pv2V f(v; t)Max Flow Problem: maximize jf jDe�nition 14.2 (Flow Cut) In a given
ow graph G = (V;E; s; t; c), a cut (A;B) is apartition of the vertex set V such that A \B = ;, A [B = V , s 2 A, t 2 B.Capacity of a cut is de�ned as c (A;B) def= Pu2A;v2B c(u; v)De�nition 14.3 (Residual Graph) A
ow graph Gf = (V;E; s; t; c0) is called a residualgraph with respect to
ow graph G and
ow function f if for all e 2 E c0(e) = c(e) � f(e).In this case we write simply c0 = c� f .Zero capacity edges are usually considered eliminated from Gf .Lemma 14.41. f 0 is a
ow in Gf i� f + f 0 is a
ow in G.2. f 0 is a max
ow in Gf i� f + f 0 is a max
ow in G.3. jf + f 0j = jf j+ jf 0j4. If f is a
ow in G and f� is the max
ow in G then f� � f is the max
ow in Gf .De�nition 14.5 (Augmenting Path) A path P from s to t in
ow graph G is calledaugmenting if all its edges are not saturated, that is 8e 2 P f(e) < c(e). Residual capacityof an augmenting path P will be called a value maxe2P (c(e)� f(e))The idea behind this de�nition is that we can send a positive amount of
ow along theaugmenting path from s to t and "augment" the
ow in G.57

14.1 Max Flow - Min Cut TheoremTheorem 14.6 (Max Flow - Min Cut Theorem) The Following three statements areequivalent.(a) f is a max
ow in G(b) 9 cut(A,B) such that c(A;B) = jf j(c) there are no augmenting paths in GfProof:(a))(c) is trivial.(b))(a) is also trivial if one notices jf j = f(A;B) � c(A;B) where f(A;B) def=Pu2A;v2B f(u; v)(c))(b). Let W = fvjv is reacheable from s in Gfg and consider a cut (W;W) in Gwhere W = V �W . Then8(v; u) 2 E and v 2 W;u 2 W f(u; v) = c(u; v)8(u; v) 2 E and u 2 W;v 2 W f(u; v) = 0It implies c(W;W) = f(W;W) = jf j. 2A "Naive" Max Flow Algorithm:while (there is an augmenting path P in G) dopick up an augmenting path P ;c(P) mine2P c(e);send
ow amount c(P) along P ;update
ow value jf j jf j+ c(P);Analysis: On each iteration, sending some
ow along an augmenting path, we increasethe
ow value. If all edge capacities are integral, the algorithm will terminate but its runningtime is O(m jf�j) in the worst case (where jf�j is the value of the max-
ow).A worst case example. Consider a
ow graph as shown on the Fig. 15. Using aug-menting paths (s; a; b; t) and (s; b; a; t) alternatively at odd and even iterations respectively(�g.1(b-c)), it requires total jf�j iterations to construct the max
ow.If all capacities are not integral (rational),
ow algorithm might never terminate.Example. Consider a graph on Fig. 16 where all edges except (a; d), (b; e) and (c; f) areunbounded (have comparatively large capacities) and c(a; d) = 1, c(b; e) = R and c(c; f) =R2. Value R is chosen such that R = p5�12 and, clearly, Rn+2 = Rn � Rn+1. If augmentingpaths are selected as shown on Fig. 16 by dotted lines, residual capacities of the edges (a; d),(b; e) and (c; f) will remain 0, R3k+1 and R3k+2 after every (3k+1)st iteration (k = 0; 1; 2; : : :).Thus, the algorithm will never terminate. 58

1002 1002 1002
1002 10021002 1002

1002 ta 1s b
tas b

Initial
ow graph
tas b
ta 1s b1 1

1 11 10 0Flow in the graph afterthe 1st iteration
Flow in the graphafter the 2nd iteration Flow in the graphafter the �nal iteration

with capacities 0 0
(a) (b)
(c) (d)Figure 15: Worst Case Example

59

RR12(a)s tabc dfe RR0 2(b)s tabc dfeRR032(c)s tabc dfe RR0 3s tabc dfe(d)RR0 45(e)s tabc dfe
4

Figure 16: Non-terminating Example60

14.2 Polynomial Time Algorithms (Edmonds-Karp)Assumption: Capacities are integers.1st Edmonds-Karp Algorithm:while (there is an augmenting path s� t in G) dopick up an augmenting path with the highest residual capacity;use this path to augment the
ow;Analysis: First, prove that if the max
ow in a graph G is f�, the highest capacity of anaugmenting path is � jf�jm .Consider a decomposition of the
ow onto saturated
ow paths passing each edge inthe same direction. Such a decomposition does exist. Indeed, if there are two paths P1 =(P 01; (u; v); P 001) and P2 = (P 02; (v; u); P 002) passing the edge (u; v) in opposite directions withcorresponding
ow amounts f1(u; v) > f2(v; u), then they can be replaced by three paths(P 01; P 002) , (P 01; (u; v); P 001) and (P 02; P 001) with
ow amounts f2, f1� f2 and f2 respectively andthe edge (u; v) will not be passed in opposite directions. The maximum number of thesepaths is m since each augmenting
ow contains at least one saturated edge. Hence, there isone augmenting path with a capacity at least jf�jm . 2Thus
ow amount remained after the �rst iteration isRem(1) � jf�j(1� 1=m);amount of
ow pushed on the second iteration isPush (2) � (jf�jm� 1m) 1m :Finally, amount of
ow remained after the k-th iteration isRem(k) � jf�j(m� 1m)k :Solving equation jf�j(m� 1m)k = 1 ;obtain the number of iterations k � m log jf�j.Taking into a consideration that a path with the highest residual capacity can be pickedup in time O(m + n log n) (HW 4), the overall time complexity of the algorithm isO((m2 +mn log n) log jf�j).2nd Edmonds-Karp Algorithm:while (there is an augmenting path s� t in G) dopick up the shortest augmenting path (counting only the number of edges);use this path to augment the
ow; 61

Analysis: Consider a layered graph LG obtained after BFS in Gf from s. There are atmost m augmenting paths in the graph LG, each of them can be found in time O(m). Whenall the augmenting paths are exhausted in LG, consider a new one which will have a greaternumber of layers. Since the maximum number of layers is n, the overall time complexity ofthe algorithm is O(nm2).HistoryFord-Fulkerson (1956)Edmonds-Karp (1969) O(nm2)Dinic (1970) O(n2m)Karzanov (1974) O(n3)MKM (1977)O(n3)

62

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 14Th. Mar. 4, 1993Notes by Marios Leventopoulos15 An O(n3) Max-Flow AlgorithmThe max-
ow algorithm operates in phases. At each phase we construct the residual networkGf , and from it we �nd the layered network LGf .In order to construct LGf we have to keep in mind that the shortest augmenting paths inG with respect to f correspond to the shortest paths from s to t in Gf . With a breadth-�rstsearch we can partition the vertices of Gf into disjoint layers according to their distance (thenumber of arcs in the shortest path) from s. Further more, since we are interested only inshortest s � t paths in Gf we can discard any vertices in layers greater than that of t, andall other than t in the same layer as t, because they cannot be in any shortest s � t path.Additionally a shortest path can only contain arcs that go from layer j to layer j + 1, forany j. So we can also discard arcs that go from a layer to a lower layer, or any arc that joinstwo nodes of the same layer.An augmenting path in a layered network with respect to some
ow g is called forward ifit uses no backward arcs. A
ow g is called maximal (not maximum) if there are no ForwardAugmenting Paths (FAP).We then �nd a maximal
ow g in LGf , add g to f and repeat. Each time at least one arcbecomes saturated, and leaves the net. (the backward arc created is discarded). Eventuallys and t become disconnected, and that signals the end of the current phase. The followingalgorithm summarizes the above:Step 1: f = 0Step 2: Construct GfStep 3: Find maximal
ow g in LGfStep 4: f f + gStep 5: goto step 2 (next phase)In LGf there are no forward augmenting paths with respect to g, because g is maximal.Thus all augmenting paths have length greater than s � t distance. We can conclude thatthe s� t distance in the layered network is increasing from one phase to the other. Since itcan not be greater than n, the number of phases is O(n).63

Throughput(v) of a vertex v is de�ned as the sum of the outgoing capacities, or theincoming capacities, whichever is smaller, i.e it is the maximum amount of
ow that can bepushed through vertex v.The question is, given a layered net Gf (with a source and sink node), how can wee�ciently �nd a maximal
ow g?Step 1: Pick a vertex v with minimum throughput,Step 2: Pull that much
ow from s to v and push it from v to tStep 3: Repeat until t is disconnected from sBy picking the vertex with the smallest throughput, no node will ever have to handle anamount of
ow larger than its throughput, and hence no backtracking is required. In orderto push
ow from v to t we process nodes layer by layer in breadth-�rst way. Each vertexsends
ow away by completely saturating each of its outgoing edges, one by one, so there isat most one outgoing edge that had
ow sent on it but did not get saturated.Each edge that gets saturated is not further considered in the current phase. We chargeeach such edge when it leaves the net, and we charge the node for the partially saturatededge.The operation required to bring
ow from s to v is completely symmetrical to pushing
ow from v to t. It can be carried out by traversing the arcs backwards, processing layers inthe same breadth-�rst way and processing the incoming arcs in the same organized manner.To summarize we have used the following techniques:1. Consider nodes in non-decreasing order of throughput2. Process nodes in layers (i.e. in a breadth-�rst manner)3. While processing a vertex we have at most one unsaturated edge (consider only edgeswe have sent
ow on)After a node is processed it is removed from the net, for the current phase.Work done: We have O(n) phases. At each phase we have to consider how many timesdi�erent arcs are processed. Processing an arc can be either saturating or partial. Once anarc is saturated we can ignore it for the current phase. Thus saturated pushes take O(m)time. However one arc may have more than one unsaturated push per phase, but note thatthe total number of pulls and pushes at each stage is at most n because every such operationresults to the deletion of the node with the lowest throughput; the node where the thisoperation was started. Furthermore, for each push or pull operation, we have at most npartial steps, for each node processed. Therefore the work done for partial saturation ateach phase is O(n2).So we have O(n3) total work done for all phases.64

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 15Tu. Mar. 9, 1993Notes by Samir Khuller.16 Pre-
ow Push MethodPlease read Chapter 27.4 (pp. 605 { 614) from [CLR]. The book explains the pre-
ow pushmethod very well.There will be no lecture on Mar 11. We will have an Examination instead.

65

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 16Tu. March 23, 1993Notes by Marsha Chechik.17 Planar GraphsA graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane sothat its edges intersect only at their ends.17.1 Euler's FormulaThere is a simple formula relating the numbers of vertices (V), edges (E) and faces (F) ina connected planar graph - Euler's formula:V � E + F = 2:Proof:Simply by induction. 2To remember this formula, think of a cycle (n vertices, n edges, 2 faces) or of a tree (nvertices, n� 1 edges, 1 face).From this formula, we can prove that a planar graph has a linear number of edges (E �3V � 6).Planar graphs are useful since they appear a lot in the context of VLSI design.Theorem 17.1 (Separator Property (Lipton - Tarjan)) Given a planar graph G=(V,E),there exists disjoint vertex partition V = A [B [C, such that1. jCj = O(pn). Actually, jCj � 2p2pn.2. There are no edges between vertices in A and vertices in B. Therefore, removal of Cmakes the graph disconnected. C is called a separator.3. jAj, jBj � 23n.Note (Alon, Seymour, Thomas): Computing the separator set of a family with excludedminor H, takes O(jHj1:5pnn).Examples:1. See Fig. 17. This is the grid from the midterm. Removal of the middle row (pnelements) makes the graph disconnected.2. Of course, A does not have to be connected. Rather, it could contain many smallgraphs. See Fig. 18.This theorem is used for divide-and-conquer algorithms.66

Cnn ABFigure 17: Application of the separator property.
C

A BFigure 18: Multiple graphs in A.67

17.2 Smallest Non-Planar GraphsTheorem 17.2 The smallest non-planar graphs are K5 and K3;3.1 int Cv 24int C2 3 ext Cv3v vint C1Figure 19: Embedding of K5Proof:We will show that K5 is non-planar. The proof is by contradiction. Let G be a planargraph corresponding to K5. Let the vertices be called by v1, v2, v3, v4, and v5. Since Gis complete, any two of the vertices are joined by an edge. Assume, without the loss ofgenerality, that after inserting vertex v4, the graph looks like Fig. 19. Now v5 must lie in oneof the four regions extC, intC1, intC2, and intC3. If v5 2 extC then the edge (v4v5) mustcross C at some point. This contradicts the assumption that G is a planar graph. Caseswhere v5 2 intCi, i = 1, 2, 3, can be treated similarly. Nonplanarity of K3;3 can be proventhe same way. (A simple proof of non-planarity of K5 follows by Euler's formula as wasobserved by Marsha Chechik.) 2Note: Both K5 and K3;3 are embeddable on a surface with genus 1 (a doughnut).De�nition: Subdivision of a graph G is obtained by adding nodes of degree two on edgesof G.G contains H as a homeomorph if we can obtain a subdivision of H by deleting vertices andedges from G.17.3 BridgesDe�nition: Consider a cycle C in G. Edges e and e0 are said to be in the same bridge ifthere is a path joining them that does not use any vertex in C.By this de�nition, edges form equivalence classes that are called bridges. A trivial bridgeis a singleton edge. 68

B BB B1 4 32Figure 20: Bridges relative to the cycle C.De�nition: A common vertex between the cycle C and one of the bridges with respect toC, is called a vertex of attachment.De�nition: Two bridges avoid each other with respect to the cycle if all vertices of attach-ment are on the same segment. In Fig. 20, B2 avoids B1 and B3 does not avoid B1. Bridgesthat avoid each other can be embedded on the same side of the cycle. Obviously, bridgeswith two attachment points are embeddable within each other, so they avoid each other.Bridges with three attachment points which coincide (3-equivalent), do not avoid each other(like bridges B2 and B4 in Fig. 20). Therefore, two bridges either1. Avoid each other2. Overlap (don't avoid each other).� Skew: A vertex of attachment of one bridge lies on a segment between vertices ofattachment of the other bridge (see Fig. 21).� 3-equivalent (like B2 and B4 in Fig. 20)It can be shown that other cases reduce to the above cases. For example, a 4-equivalentgraph (see Fig.22) can be classi�ed as a skew, with vertices u and v belonging to one bridge,and vertices u0 and v0 belonging to the other.17.4 Kuratowski's TheoremConsider non-planar graphs that do not contain K5 or K3;3 as a homeomorph. Of all suchgraphs, pick the one with the least number of edges. We now prove that such a graph mustalways contain a Kuratowksi homeomorph (i.e., a K5 or K3;3). Note that such a graph isminimally non-planar.The following theorem is claimed without proof.Theorem 17.3 Such a graph G is 3-connected.69

vv'u'u
Figure 21: Two bridges that are skew.

u' vu v'Figure 22: Two bridges with 4 attachment points.70

Theorem 17.4 (Kuratowski's Theorem) G is planar i� G does not contain a subdivi-sion of either K5 or K3;3.Proof:If G has a subdivision of K5 or K3;3, then G is not planar. If G is not planar, we willshow that it must contain K5 or K3;3. Pick a minimal non-planar graph G. Let (u; v) be theedge, such that G0 = G � (u; v) is planar. Take a planar embedding of G0, and take a cycleC passing through u and v such that G0 has the largest number of edges in the interior ofC. (Such a cycle must exist due to the 3-connectivity of G.)Claims:1. Every external bridge with respect to C has exactly two attachment points. Otherwise,a path in this bridge going between two attachment points, could be added to C toobtain more edges inside C.2. Every external bridge contains exactly one edge. This result is from the 3-connectivityproperty. Otherwise, removal of attachment vertices will make the graph disconnected.3. At least one external bridge must exist, because otherwise u and v could be connectedwhile keeping the graph planar.4. There is at least one internal bridge, to prevent an internal edge between u and v.5. There is at least one internal and one external bridge that prevent the addition of (u,v), and these two bridges do not avoid each other (otherwise, the inner bridge couldbe moved outside). xy uu y xABAuA Bv zBwv
b) This graph contains $K f3,3g$ homeomorpha) This graph contains $K 5$ homeomorphFigure 23: Possible vertex-edge layouts.Now, let's add (u; v) to G0. The following cases is happen:71

1. See Fig. 23(a). This graph contains a homeomorph of K5. Notice that every verticesare connected with an edge.2. See Fig. 23(b). This graph contains a homeomorph of K3;3. To see that, let A =fu; x;wg and B = fv; y; zg. Then, there is an edge between every v1 2 A and v2 2 B.The other cases are similar and will not be considered here. 2De�nition: Graph G contains H as a minor if the exists a set of edges which can be thrownaway or contracted, to obtain H.Note: The Kuratowski's theorem can be extended to showing that every non-planargraph contains K5 and K3;3 minors.

72

CMSC 651 Advanced AlgorithmsLecturer: Bill Gasarch Lecture 17Th, Mar. 25, 1993Notes by Michael Tan and Samir Khuller.18 Graph Minor Theorem and other CS CollectiblesIn this lecture, we discuss graph minors and their connections to polynomial time com-putability.De�nition 18.1 (minor) We say that H is a minor of G (H � G) if H can be obtainedfrom G by edge removal, vertex removal and edge contraction.De�nition 18.2 (closed under minor) Given a class of graphs C, and graphs G and H,C is closed under taking minors if G 2 C and H � G implies H 2 C.An example of a class of graphs that is closed under taking minors is the class of planargraphs. (If G is planar, and H is a minor of G then H is also a planar graph.)Theorem 18.3 (Graph Minor Theorem Corollary) [Robertson�Seymour] If C is anyclass of graphs closed under taking minors, then there exists a �nite obstruction set H1; : : : ;Hlsuch that G 2 C $ (8i)[Hi 6� G].The proof of this theorem is highly non-trivial and is omitted.Example: For genus 1 (planar graphs), the �nite obstruction set is K5 and K3;3. G isplanar if and only if K5 and K3;3 are not minors of G. Intuitively, the \forbidden" minors(in this case, K5 and K3;3) are the minimal graphs that are not in the family C.Theorem 18.4 Testing H � G, for a �xed H, can be done in time O(n3), if n is the numberof vertices in G.Notice that the running time does not indicate the dependence on the size of H. In fact,the dependence on H is huge! There is an embarassingly large constant that is hidden inthe big-O notation. This algorithm is far from practical for even very small sizes of H.Some results of the above statements:1. If C =fall planar graphsg, we can test G 2 C in O(n3) time. (To do this, test if K5 andK3;3 are minors of G. Each test takes O(n3) time.)2. If C = fall graphs in genus kg (�xed k), we can test if (G 2 C) in O(n3) time. (To dothis, test if Hi � G(i = 1::L) for all graphs of C's obstruction set. The time to do this isO(L � n3) = O(n3), since L is a constant for each �xed k.)3. We can solve Vertex Cover for �xed k in POLYNOMIAL time. (The set of all graphs with(vertex cover size) � k, is closed under taking minors. Therefore, it has a �nite obstructionset. We can test a given graph G as we did in 2.)73

18.1 Towards an algorithm for testing planarity in genus kWe can use a trustworthy oracle for SAT to �nd a satisfying assignment for a SAT instance(set a variable, quiz the oracle, set another variable, quiz the oracle,). The solution willbe guaranteed. With an untrustworthy oracle, we may use the previous method to �nd asatisfying assignment, but the assignment is not guaranteed to be correct. However, this issomething that we can test for in the end. We use this principle in the algorithm below.The following theorem is left to the reader to verify (see homework).Theorem 18.5 Given a graph G and an oracle that determines planarity on a surface withgenus k, we can determine if G is planar in genus k and �nd such a planar embedding inpolynomial time.We will now use this theorem, together with the graph minor theorem to obtain analgorithm for testing if a graph can be embedded in a surface of genus k (�xed k).ALGORITHM for testing planarity in genus k and giving the embedding:(uses an untrustworthy \Planarity in k" Oracle)The oracle uses a \current" list H of forbidden minors to determine if a given graph isplanar or non-planar. The main point is that if the oracle is working with an incomplete listof forbidden minors, and lies about the planarity of a graph then in the process of obtaininga planar embedding we will determine that the oracle lied. However, some point of time wewill have obtained the correct list of forbidden minors (even though we will not know that),the oracle does not lie thereafter. Since there is only a �nite forbidden list, this will happenafter constant time.1. Input(G)2. For i := 1 to 12.1 - generate all graphs F1; F2; :::Fi.2.2 - for every graph f in F1::Fi- Check if f is planar (in k) (using brute force to try all possible embeddings of f)- if f is not planar, put f in set H [We are constructing the �nite obstruction set]2.3 - test if (H1 � G); (H2 � G); :::(Hl � G)2.4 - if any H � G, then RETURN(G IS NOT PLANAR)2.5 - else2.5.1 - try to make some embedding of G (We do this using H, which gives us an untrustwor-thy oracle to determine if a graph is planar in k. There exists an algorithm (see homework)which can determine a planar embedding using this PLANARITY oracle.)2.5.2 - if we can, RETURN (the planar embedding, G IS PLANAR);- else keep looping (H must not be complete yet)Running time:The number of iterations is bounded by a constant number (independent of G) since atthe point when the �nite obstruction set is completely built, statement 2.4 or 2.5.2 MUSTsuceed. 74

18.2 Applications:Since we know VC for �xed k is in P , a good polynomial algorithm may exist. Below areseveral algorithms :Algorithm 1 [Fellows]:build a tree as follows:- find edge (u,v) which is uncovered- on left branch, insert u into VC, on right branch insert v into VC- descend, recurse. VC={}, (u,v) is uncovered/ \VC = {u} / \ VC = {v}. ./ \ / \VC={u,v4}/ \ / \ VC = {v, v2}etc..Build tree up to height k. There will be O(2k) leaves. If there exists a vertex cover ofsize � k, then it will be in one of these leaves. Total time is O(n � 2k) = O(n).A second simpler algorithm is as follows: any vertex that has degree > k must be in theVERTEX COVER (since if it is not, all its neighbours have to be in any cover). We canthus include all such nodes in the cover (add them one at a time). We are now left witha graph in which each vertex has degree � k. In this graph we know that there can be atmost a constant number of edges (since a vertex cover of constant size can cover a constantnumber of edges in this graph). The problem is now easy to solve.
75

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 18Tu. March 30, 1993Notes by Vadim Kagan.19 Graph ColoringProblem : Given a graph G = (V;E), assign colors to vertices so that no adjacent verticeshave the same color.Note that all the vertices of the same color form an independent set (hence applicationsin parallel processing).Theorem 19.1 (6-colorability) If G = (V;E) is planar,then G is 6-colorable.Proof:Main property: there is a vertex in G with degree � 5. Suppose all the vertices in Ghave degree � 6. Then since jEj = PV deg(V)2we get jEj � 3n which contradicts the fact that for planar graphs jEj � 3n � 6 for n � 3.So there is (at least one) vertex in G with degree � 5.Proof of 6-colorability of G is done by induction on the number of vertices. Base caseis trivial, since any graph with � 6 vertices is clearly 6-colorable. For inductive case, weassume that any planar graph with n vertices is 6-colorable and try to prove that the sameholds for a graph G with n+ 1 vertices.Let us pick a minimum-degree vertex v and delete it from G. The resulting graph has nvertices and is 6-colorable by the induction hypothesis. Let C be some such coloring. Nowlet's put v back in the graph. Since v was the minimal-degree vertex, the degree of v wasat most 5 (from the lemma above). Even if all the neighbours of v are assigned di�erentcolors by C, there is still one unused color left for v, such that in the resulting graph no twoadjacent vertices have the same color. This gives an O(n) algorithm for 6 coloring of planargraphs. 2We will now prove a stronger property about planar graph coloring.Theorem 19.2 (5-colorability of planar graphs) Every planar graph is 5-colorable.Proof:We will use the same approach as for the 6-colorability. Proof will again be on inductionon the number of vertices in the graph. The base case is trivial. For inductive case, we again�nd the minimum degree vertex. When we delete it from the graph, the resulting graph is76

5-colorable by induction hypothesis. This time, though, putting the deleted vertex back inthe graph is more complicated than in 6-colorability case. Let us denote the vertex that weare trying to put back in the graph by v. If v has � 4 neighbours, putting it back is easysince one color is left unused and we just assign v this color. Suppose v has 5 neighbours(since v was the minimum-degree vertex in a planar graph, its degree is � 5) and all of themhave di�erent colors (if any two of v's neighbours have the same color, there is one free colorand we can assign v this color). To put v back in G we have to change colors somehow (seeFig. 24). How do we change colors? Let us concentrate on the subgraph of nodes of colors 2and 4. Suppose colors 2 and 4 belong to di�erent connected components. Then
ip colors 2and 4 in the component that vertex 4 belongs to, i.e., change color of all 4-colored nodes tocolor 2 and nodes with color 2 to color 4. Since colors 2 and 4 are in the di�erent connectedcomponents, we can do this without violating the coloring (in the resulting graph, all theadjacent nodes will still have di�erent colors). But now we have a free color - namely, color4 - that we can use for v.What if colors 2 and 4 are in the same component? In this case, there is a path P ofalternating colors (as shown on Fig. 24).1 2 345V P4 242Figure 24: Graph with alternating colors pathNote that node 3 is now \trapped" - any path from node 3 to node 5 crosses P . If wenow consider a subgraph consisting of 3-colored and 5-colored nodes, nodes 3 and 5 cannotbe in the same connected component - it would violate planarity of G. So we can
ip colors3 and 5 (as we did for 2 and 4) and get one free color that could be used for v; this concludesthe proof of 5-colorability of planar graphs. 277

20 Flow in Planar NetworksSuppose we are given a (planar) undirected
ow network, such that s and t are on the sameface (we can assume, without loss of generality, that s and t are both on the in�nite face).How do we �nd max-
ow in such a network?In the algorithms described in this section, the notion of planar dual will be used: Givena graph G = (V;E) we construct a corresponding planar dual GD = (V D; ED) as follows(see Fig. 25).
Figure 25: Graph with corresponding dualFor every face in G put a vertex in GD; if two faces f1; f2 share an edge in G, put anedge between vertices corresponding to f1; f2 in GD (if two faces share two edges, add twoedges to GD). Note that GDD = G; jV Dj = F; jEDj = E, where F is the number of faces inG.20.1 Two algorithmsUppermost Path Algorithm1. Take the uppermost path (see Fig. 26).2. Push as much
ow as possible along this path (until the minimum residualcapacity edge on the path is saturated).3. Delete saturated edges.4. If there exists some path from s to t in the resulting graph, pick new uppermostpath and go to step 2; otherwise stop.For a graph with n vertices and m edges, we repeat the loop m times, so for planar graphsthis is a O(nm) = O(n2) algorithm. We can improve this bound to O(n log n) by using heaps78

S TUppermost path
Figure 26: Uppermost pathfor min-capacity edge �nding. To re
ect the decreasing residual capacities, keep a counterthat shows by how much we decrease keys of edges in the heap. For example, if counter fora particular heap is -1, it means that the key of every edge in the heap is to be decreased by1, i.e. an edge with key 5 should be interpreted as having key 4. When adding an edge withkey 5 to this heap, the key should be increased to 6.Hassin's algorithmGiven a graph G, construct a dual graph GD and add to it two new nodes s? and t?,both on the in�nite face (see Fig. 27).

t? ts
s?

Figure 27: GD?Node s? is added at the top of GD and every node in GD corresponding to an edge onthe top of G is connected to s?. Node t? is similarly placed and connected at the bottom of79

GD. The resulting graph is denoted GD?.If some edges form an s� t cut in G, the corresponding edges in GD? form a path froms? to t?. In GD?, weight of each edge is equal to the capacity of the corresponding edge in G,so the min-cut in G corresponds to the shortest path between s? and t? in GD?. There existsa number of algorithms for shortest path �nding. Frederickson's algorithm, for example, hasrunning time O(nplog n).Now that we have found the value of max
ow, the problem is to �nd the
ow througheach individual edge.To do that, let us label each node vi in GD? with di, vi's distance from s? (as usual,measured along the shortest path from s? to vi). For every edge e in G, we choose thedirection of
ow through it in such a way that the largest-labeled of the two "adjacent" toe nodes in GD? is on the right (see Fig. 28).
s t? t

s? 5 1067 3 8d=0d=4d=1 d=8 d=10f=2f=7f=3 f=6f=1 f=4 f=101
Figure 28: Labeled graphIf di and dj are labels for a pair of adjacent to e faces, the value of the
ow through eis de�ned to be equal to the di�erence between the larger and the smaller of di and dj. Letus prove that thus de�ned function satis�es the
ow properties, namely that for every edgein G the
ow through it does not exeed its capacity and for every node in G the amount of
ow entering it is equal to the amount of
ow leaving it (except for source and target).Suppose there is an edge in G having capacity C (as on Fig. 29), such that the amount of
ow f through it is greater than C: di � dj > C (assuming, without loss of generality, thatdi > dj). 80

di dje C
Figure 29:Then, we can decrease di (which is the cost of the shortest path to this node from s?)by following the shortest path to vj and then going from dj to di across e. In this case, thelabel for vi = dj +C < di. This contradicts the fact that the original di was already the costof the shortest path, and therefore no such edge e exists.To show that for every node in G the amount of
ow entering it is equal to the amount of
ow leaving it (except for source and target), let us do the following. We will go around insome (say, counterclockwise) direction and add together
ows through all the edges adjacentto the vertex (see Figure 30). Note that, for edge ei, di � di+1 gives us negative value if ei: : :dk � d1 d1 � d2d2d2 � d3d3ek�1dkdk�1 e2e3ekd1 e1Figure 30:is incoming (i.e. di < di+1) and positive value if ei is outgoing. By adding together all suchpairs di� di+1, we get d1� d2+ d2� d3+ : : :+ dk�1� dk + dk � d1 = 0, from which it followsthat
ow entering the node is equal to the amount of
ow leaving it.81

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 19Th. April 1, 1993Notes by Maria Chechik & Suleyman Sahinalp21 On Line vs. O� Line: A Measure for Quality Eval-uationSuppose you have a dynamic problem. An algorithm for solving a dynamic problem whichuses information about future is called an o�-line algorithm. But computer scientists, arehuman beings without the capability of predicting the future. Hence their algorithms areusually on-line (i.e. they make their decisions without any information about the future).21.1 K-Server ProblemIn a fraternity party there are several robots which are responding to requests of the frat-members. Whenever someone requests a drink, one of the robots is sent to him. The problemhere is to decide which robot is \best suited" for the request; moreover to �nd a measure forbeing \best suited".If you knew the sequence of the location of requests, then you'd try to minimize the totaldistance your robots would travel until the end of the party. (It is an interesting exercise tosolve this problem.) As you don't have this information you try to achieve some kind of ameasure for assuring you (as the robot controller) didn't perform \that badly".Conjecture 21.1 If you have k robots, then there exists an on-line decision algorithm suchthat total cost of on-line alg � k � total cost of o�-line alg + Cwhere C is some constant.Example:In this example the requests come from the vertices of an equilateral triangle and thereare only two servers. Suppose the worst thing happens and the requests always come fromthe vertex where there is no server. If the cost of moving one server from one vertex to aneighboring vertex is 1 then at each request the cost of the service will be 1. So in the worstcase the on-line algorithm will have a cost of 1 per service whatever you do to minimize thecost.To analyse the performance of an on-line algorithm, we will run the on-line algorithm on asequence provided by an adversary, and then compare the cost of the on-line algorithm tothe cost of the adversary (who may know the sequence before answering the queries).82

For example, assume you have two robots, and there are three possible places where a serviceis requested: verticesA,B, and C. Let your robots be in the verticesA and B. The adversarywill request service for vertex C. If you move the robot at vertex B (hence your servers willbe at vertices A and C), the next request will come from B. If you now move your robot atvertex C (hence you have robots at A and B), the next request will come from C and so on.In this scheme you would do k moves for a sequence of k requests but after �nishing yourjob the adversary will say: \you fool, if you had moved the robot at A in the beginning,then you would have servers at vertices B and C and you wouldn't have to do anything elsefor the rest of the sequence".We can actually show that for any on-line algorithm, there is an adversary that can forcethe on-line algorithm to spend at least twice as much as the o�ine algorithm. Consider anyon-line algorithm A. The adversary generates a sequence of requests r1; r2; : : : ; rn such thateach request is made to a vertex where there is no robot (thus the on-line algorithm pays acost of n). It is easy to see that the o�ine algorithm can do a \lookahead" and move theserver that is not requested in the immediate future. Thus for every two requests, it canmake sure it does not need to pay for more than one move. This can actually be extendedto a lower bound of k for the k-Server problem. In other words, any on-line algorithm can beforced to pay a cost that is k times the cost of the o�-line algorithm (that knows the future).21.2 K-servers on a straight lineSuppose you again have k servers on a line. The naive approach is to move the closestserver to the request. But what does our adversary do? It will make a request near theinitial position of one server (which moves), and then requests the original position of theserver. So our server would be running back and forth to the same two points although theadversary will move another server in the �rst request, and for all future requests it wouldnot have to make a move.On-line strategy: We move the closest server to the request but we also move the serveron the other side of the request, towards the location of the request by the same amount.If the request is to the left (right) of the leftmost (rightmost) server, then only one servermoves.We will analyse the algorithm as a game. There are two copies of the server's. One copy (thesi servers) are the servers of the online algorithm, the other copy is the adversary's servers(ai). In each move, the adversary generates a request, moves a server to service the requestand then asks the on-line algorithm to service the request.We prove that this algorithm does well by using a potential function, where� �(t� 1) is potential before the tth request,� �0(t) is potential after adversary's tth service but before your tth service,� �(t) is the potential after your tth service.83

The potential function satis�es the following properties:1. �0(t)� �(t� 1) < k� (cost for adversary to satisfy the tth request)2. �0(t)� �(t) > (cost for you to satisfy the tth request)3. �(t) > 0Now we de�ne the potential function as follows:�(t) := k �Weight of MinimumMatchinginG0 +Pi<j dist(si; sj).The minimum matching is de�ned in the bipartite graph G0 where� A � set of the placements of your servers� S � set of the placements of adversarys servers� edge weights(ai, sj) � distance between those two serversThe second term is obtained by simply keeping the online algorithm's servers in sorted orderfrom left to right.Why does the potential function work: It is easy to see that those three properties aresatis�ed by our potential function:1. the weight of the minimum matching will change at most the cost of the move by theadversary and distance between your servers do not change. Hence the �rst propertyfollows.2. if the server you're moving is the rightmost server and if the move is directed outwardsthen the second term of the potential function will be increased by (k�1)d however the�rst term will be decreasing by kd, hence the inequality is valid. (Notice that the �rstterm decreases because there is already one of the adversary's server's at the requestpoint.) If the server you're moving is the leftmost server and the motion is directedoutwards then the second term will increase by at most (k� 1)d, though the �rst termwill decrease by kd, hence the inequality is again valid. Otherwise, you will be movingtwo servers towards each other and by this move the total decrease in the second termwill be 2d (the cost for service): two servers are 2d closer and the increase in distanceby the �rst server is exactly same with the decrease in distance by the second server. Inthe worst case the size of the matching won't change but again because of the secondterm our inequality is satis�ed.3. Obvious.Since the potential is always positive, we know thatInitial Potential + Total Increase � Total Decrease:Notice that the total decrease in potential is an upper-bound on our algorithm's cost. TheTotal Increae in potential is upper-bounded by k� the adversary's cost. Therefore,(cost of your moves) < k � (total cost of adversary's moves) + Initial Potential:84

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 20Tu. Apr. 5, 1993Notes by Samir Khuller.22 NP-CompletenessWe will assume that everyone knows that SAT is NP-complete. The proof of Cook's theoremwas given in CMSC 650, which most of you have taken before. The other students may readit from [CLR] or the book by Garey and Johnson.The reductions we will study today are:1. SAT to CLIQUE.2. CLIQUE to MULTIPROCESSOR SCHEDULING.3. SAT to DISJOINT CONNECTING PATHS.The �rst reduction is taken from Chapter 36.5 [CLR] pp. 946{949.The second reduction goes as follows.MULTIPROCESSOR SCHEDULING: Given a DAG representing precedence constraints,and a set of jobs J all of unit length. Is there a schedule that will schedule all the jobs onM parallel machines (all of the same speed) in T time units ?Essentially, we can execute upto M jobs in each time unit, and we have to maintain all theprecedence constraints and �nish all the jobs by time T .Reduction: Given a graph G = (V;E) and an integer k we wish to produce a set of jobsJ , a DAG as well as parameters M;T such that there will be a way to schedule the jobs ifand only if G contains a clique on k vertices.Let n;m be the number of vertices and edges in G respectively.We are going to have a set of jobs fv1; : : : ; vn; e1; : : : ; emg corresponding to each vertex/edge.We put an edge from vi to ej (in the DAG) if ej is incident on vi in G. Hence all the verticeshave to be scheduled before the edges they are incident to. We are going to set T = 3.Intuitively, we want the k vertices that form the clique to be put in time slot 1. This makesC(k; 2) edges available for time slot 2 along with the remaining n�k vertices. The remainingedges m � C(k; 2) go in slot 3. To ensure that no more than k vertices are picked in the�rst slot, we add more jobs. There will be jobs in 3 sets that are added, namely B;C;D.We make each job in B a prerequisite for each job in C, and each job in C a prerequisite foreach job in D. Thus all the B jobs have to go in time 1, the C jobs in time 2, and the Djobs in time 3.The sizes of the sets B;C;D are chosen as follows:jBj+ k = jCj+ (n� k) + C(k; 2) = jDj + (m� C(k; 2)):85

This ensures that there is no
exibility in choosing the schedule. We choose these in such away, that min(jBj; jCj; jDj) = 1.It is trivial to show that the existence of a clique of size k implies the existence of a scheduleof length 3. The proof in the other direction is left to the reader.DISJOINT CONNECTING PATHS:Given a graph G and k pairs of vertices (si; ti), are there k vertex disjoint paths P1; P2; : : : ; Pksuch that Pi connects si with ti ?This problem is NP-complete as can be seen by a reduction from 3SAT.Corresponding to each variable xi, we have a pair of vertices si; ti with two internally vertexdisjoint paths of length m connecting them (where m is the number of clauses). One path iscalled the true path and the other is the false path. We can go from si to ti on either path,and that corresponds to setting xi to true or false respectively.For clause Cj = (xi ^ x` ^ xk) we have a pair of vertices sn+j ; tn+j. This pair of vertices isconnected as follows: we add an edge from sn+j to a node on the false path of xi, and anedge from this node to tn+j . Since if xi is true, the si; ti path will use the true path, leavingthe false path free that will let sn+j reach tn+j . We add an edge from sn+j to a node on thetrue path of x`, and an edge from this node to tn+j. Since if x` is false, the s`; t` path willuse the false path, leaving the true path free that will let sn+j reach tn+j. If xi is true, andx` is false then we can connect sn+j to tn+j through either node. If clause Cj and clause Cj0both use xi then care is taken to connect the sn+j vertex to a distinct node from the vertexsn+j0 is connected to, on the false path of xi. So if xi is indeed true then the true path fromsi to ti is used, and that enables both the clauses Cj and Cj0 to be true, also enabling bothsn+j and sn+j0 to be connected to their respective partners.Proofs of this construction are left to the reader.

86

t1s1s2 t2s3 t3
s n+1 t n+1S n+2 t n+2

x1 = T pathx1 = F path (si,ti) pairs corresp to each variableAll upper paths corresp to setting thevariable to True
pairs corresp to clausesC1 = (x1 or x2 or x3)Figure 31: Graph corresponding to formula87

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 21Th. Apr. 7, 1993Notes by Samir Khuller.23 More on NP-CompletenessThe reductions we will study today are:1. 3 SAT to 3 COLORING.2. 3D-MATCHING (also called 3 EXACT COVER) to PARTITION.3. PARTITION to SCHEDULING.I will outline the proof for 3SAT to 3COLORING. The other proofs may be found in Gareyand Johnson.We are given a 3SAT formula with clauses C1; : : : ; Cm and n variables x1; : : : ; xn. We aregoing to construct a graph that is 3 colorable if and only if the formula is satis�able.We have a clique on three vertices. Each node has to get a di�erent color. W.l.o.g, we canassume that the three vertices get the colors T;F; �. (T denotes \true" F denotes \false".)For each variable xi we have a pair of vertices Xi and Xi that are connected to each otherby an edge and also connected to the vertex �. This forces these two vertices to be assignedcolors di�erent from each other, and in fact there are only two possible colorings for thesetwo vertices. If Xi gets the color T , then Xi gets the color F and we say that variable xiis true. Notice that each variable can choose a color with no interference from the othervariables. These vertices are now connected to the gadgets that denote clauses, and ensurethat each clause is true.We now need to construct an \or" gate for each clause. We want this gadget to be 3 colorableif and only if one of the inputs to the gate is T (true). We construct a \gadget" for eachclause in the formula. For simplicity, let us assume that each clause has exactly three literals.If all three inputs to this gadget are F , then there is no way to color the vertices. Thevertices below the input must all get color �. The vertices on the bottom line now cannotbe colored. On the other hand if any input is T , then the vertex below the T input can begiven color F and the vertex below it (on the bottom line) gets color �, and the graph canbe three colored.If the formula is satis�able, it is really easy to use this assignmenmt to the variables toproduce a three coloring. We color each vertexXi with T if xi is True, and with F otherwise.(The vertex Xi is colored appropriately.) We now know that each clause has a true input.This lets us color each OR gate (since when an input it true, we can color the gadget). Onthe other hand, if the graph has a three coloring we can use the coloring to obtain a satisfyingassignment (verify that this is indeed the case).88

T FInputs T F*X1X2X3X1X2X3For each clause
same vertexsame vertex

Figure 32: Gadget for OR gate
89

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 22Tu. Apr. 13, 1993Notes by Samir Khuller.24 Approximation AlgorithmsPlease read Chapter 37 (pp. 964{974) from [CLR] for Vertex Cover (unweighted) and Trav-eling Salesman Problem.

90

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 23Th. Apr. 15, 1993Notes by Samir Khuller.25 Approximation AlgorithmsPlease read Chapter 37 (pp. 974{978) from [CLR] for Set Cover algorithm. Weighted VertexCover will be covered in the next lecture.

91

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 24Tu. Apr. 20, 1993Notes by Yachai Limpiyakorn.26 Weighted Vertex CoverGOAL : Given a graph G = (V;E), �nd a minimum weight vertex coverw(C) = Xv2Cw(v);where Vertex Cover C � V , and w : V ! R+We will apply the greedy algorithm for the WVC problem.IDEA : At each stage, select the vertex that minimizes the ratio between the current weightW (v) and the current degree D(v) of the vertex v.Algorithm MGA:Input: Graph G(V;E) and weight function w on VOutput: Vertex Cover C1. 8v 2 V do W (v) w(v);2. 8v 2 V do D(v) d(v);3. 8e 2 E do EC(v) 0;4. C ;5. while E 6= ; do begin6. Pick a vertex v 2 V for which W (v)D(v) is minimized;7. C C + v;8. 8e = (u; v) 2 E do begin9. E E � e; update D(u)10. W (u) W (u)� W (v)D(v) ;11. EC(e) W (v)D(v) ;12. end; 92

13. W (v) 0;14. end;15. return CIn this algorithm, each time a vertex is placed in the cover, each of its neighbors has itsweight reduced by an amount equal to the ratio of the selected vertex's current weight anddegree. The edge cost EC(e) re
ects the cost of covering the edge e.The algorithm assigns costs to the edges in a manner which guarantees that each vertex inthe cover partitions its weight amongst the incident edges, and each edge gets assigned thesame weight from both its end-points. Thus, the weight of the cover being produced is atmost twice the net cost of the edges. Under any such choice of the edge cost function, it canbe easily seen that an optimal cover must have weight at least as large as the total of theedge costs.Observing that, at all times during the execution of the algorithm, the following invariantshold : 8e 2 E :: EC(e) � 0since the only modi�cation to the edge costs is the addition of a positive value.8v 2 V ::W (v) � 0The current weight of a vertex is reduced only when its neighbor is selected. Since theselected vertex has a smaller weight to degree ratio, then the result of subtraction must benon-negative (make sure that you understand why this is the case).8v 2 V :: w(v) =W (v) + Xu2N(v)EC(u; v)where N(v) denotes the set of neighbors of v in the original graphThe algorithm terminates with the facts that,8v 2 C;w(v) = Xu2N(v)EC(u; v) (1)8v 62 C;w(v) � Xu2N(v)EC(u; v) (2)Eq.(1) holds since 8v 2 C;W (v) = 0:Eq.(2) holds due to INV2 and INV3.From the above facts, we can derive the following lemmata to relate the weight of MGA'soutput to the book-keeping variables of edge costs.93

Lemma 26.1 w(C) � 2Xe2EEC(e)Proof:Observe that by eq.(1) w(C) = Xv2C w(v) = Xv2C Xu2N(v)EC(u; v)Since each edge in E is counted at most twice in the last expression, we havew(C) � 2Xe2EEC(e) 2The next step is to relate the edge costs to the value of the optimal solution.Lemma 26.2 Xe2EEC(e) � c� = w(C�)where w(C�) = Xv2C� w(v)Proof:Observe that Xe2EEC(e) � Xv2C� Xu2N(v)EC(u; v) � Xv2C�w(v)As C� is a VC, the second expression must count each edge at least once. From eq.(1), wenow have the desired result. 2Putting together these two lemmata, we then havew(C) � 2Xe2EEC(e) � 2w(C�);that is, the weight of C is at most twice optimal.Algorithm MGA runs in time O(m log n) and has RMGA = 2 which is the best possiblebound.Packing Functions A packing function p is de�ned as follows:p : E ! R+such that Xu2N(v)p(u; v) � w(v)Note that zero packing is a valid packing by setting packing value of every edge to be zero.94

Example (see Fig. 33) 30 27 20105 52 20
Figure 33:Xe2E p(e) = P = 32Observing that P � c�By considering w(C�) = Xv2C�w(v) � Xv2C� Xu2N(v)p(u; v) � PThis is true because some edges may be counted twice in the third expression.We claim that : cost(algo) � 2P � 2c�Since EC(u; v) is a valid packing, following the previous proof and substituting EC(u; v) byp(u; v), then we will get the desired result.Maximal packing : packing which cannot increase p(e) for any e.Example (see Fig. 34)If we pick full capacity nodes in maximal packing; that is, a node v is in the VC ifPu2N(v) p(u; v) = w(v), and results in P � c� � 2P:This set of vertices forms a cover since for each edge at least one endpoint has its constraintmet with equality.Why "Packing" ?Packing is the dual problem to Vertex Cover problem in Linear Programming.95

30 20 200 10 1030 0Figure 34:Vertex Cover Problem in LPDe�ne function X(v) = 0; 1 if v 62 V C and v 2 V C respectively.We want to minimizePv2V x(v)w(v) such that x(u) + x(v) � 1 for all edges (u; v).Clearly, this is an Integer Linear Program (solving these is NP-hard). We can relax theinteger constraints and make a regular Linear Program from it. For minimization problems,the relaxed Linear Program solution is no more than the solution to the Integer LinearProgram; that is c�ILP � c�LP , and c�LP in turn will be lower bounded by any solution of itsDUAL LP, in which here we want to maximizePe2E p(e) such that 8v 2 V Pu2N(v) p(u; v) �w(v). ILPLPDLPFigure 35:If we can prove that cost(algo) � kcDLP then we getcost(algo) � kc�DLP � kc�LP � kc�ILP :96

So the entire di�culty is in proving the �rst inequality. The rest follow automatically. Inthe Vertex Cover Problem, we prove this by showing that the cost of our solution is no morethan twice a packing (which is a feasible dual solution).

97

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 25Thu April 22, 1993Notes by Marga Alisjahbana.27 Steiner Tree ProblemWe are given an undirected graph G = (V;E), with edge weights w : E ! R+ and a specialsubset S � V . A Steiner tree is a tree that spans all vertices in S, and is allowed to use thevertices in V �S (called steiner vertices) at will. The problem of �nding a minimum weightSteiner tree has been shown to be NP -complete. We will present a fast algorithm for �ndinga Steiner tree in an undirected graph that has an approximation factor of 2(1 � 1jSj), wherejSj is the cardinality of of S.27.1 Approximation AlgorithmAlgorithm :1. Construct a new graph H = (S;ES), which is a complete graph. The edges of H haveweight w(i; j) = minimal weight path from i to j in the original graph G.2. Find a minimum spanning tree MSTH in H.3. Construct a subgraph GS of G by replacing each edge in MSTH by its correspondingshortest path in G.4. Find a minimal spanning tree MSTS of GS .5. Construct a Steiner tree TH from MSTS by deleting edges in MSTS if necessary sothat all leaves are in S (these are redundant edges, and can be created in the previousstep).Running time :1. step 1 : O(jSjjV j2)2. step 2 : O(jSj2)3. step 3 : O(jV j)4. step 4 : O(jV j2)5. step 5 : O(jV j) 98

Nodes in S
1 234 5 6 7 89

Figure 36: Optimal Steiner TreeSo worst case time complexity is O(jSjjV j2).Will will show that this algorithm produces a solution that is at most twice the optimal.More formally: weight(our solution) � weight(MSTH) � 2� weight(optimal solution)To prove this, consider the optimal solution, i.e., the minimal Steiner tree Topt.Do a DFS on Topt and number the points in S in order of the DFS. (Give each vertex anumber the �rst time it is encountered.) Traverse the tree in same order of the DFS thenreturn to starting vertex. Each edge will be traversed exactly twice, so weight of all edgestraversed is 2�weight(Topt). Let d(i; i+ 1) be the length of the edges traversed during theDFS in going from vertex i to i+1. (Thus there is a path P (i; i+1) from i to i+1 of lengthd(i; i+1).) Also notice that the sum of the lengths of all such pathsPjSji=1 d(i; i+1) = 2�MSTS.(Assume that vertex jSj+ 1 is vertex 1.)We will show that H contains a spanning tree of weight � 2 � w(Topt). This shows thatthe weight of a mininal spanning tree in H is no more than 2 � w(Topt). Our steiner treesolution is upperbounded in cost by the weight of this tree. If we follow the points in S, ingraph H, in the same order of their above DFS numbering, we see that the weight of an edgebetween points i and i + 1, in H, cannot be more than the length of the path between thepoints inMSTS during the DFS traversal (i.e., d(i; i+1)). So using this path we can obtaina spanning tree in H (which is actually a Hamilton Path in H) with weight � 2 �w(Topt).Figure 37 shows that the worst case performance of 2 is achievable by this algorithm.99

1 1 1 1111
Vertices in S

...2 2 22221 1 11111 Optimal Steiner tree. . Graph HEach edge has weight 2
... MST in H

2 2 2222Figure 37: Worst Case ratio is achieved here100

27.2 Steiner Tree is NP-completeWe now prove that the Steiner Tree problem is NP-complete, by a reduction from 3-SAT toSteiner Tree problemConstruct a graph from an instance of 3-SAT as follows:Build a gadget for each variable consisting of 4 vertices and 4 edges, each edge has weight1, and every clause is represented by a node.T F
X1 V X2 V X3 = C1

= X1
Figure 38: Gadget for a variableIf a literal in a clause is negated then attach clause gadget to F of corresponding variablein graph, else attach to T . Do this for all literals in all clauses and give weight M (whereM � 3n) to each edge. Finally add a root vertex on top that is connected to every variablegadget's upper vertex. The points in S are de�ned as: the root vertex, the top and bottomvertices of each variable, and all clause vertices.We will show that the graph above contains a Steiner tree of weight mM + 3n if and only ifthe 3-SAT problem is satis�ed.If 3-SAT is satis�able then there exists a Steiner tree of weight mM + 3n We obtain theSteiner tree as follows:� Take all edges connecting to the topmost root vertex, n edges of weight 1.� Choose the T or F node of a variable that makes that variable "1" (e.g. if x = 1 then101

M M MMMM1 1 1 1 1 1 1 11 1 1 1
C1 C2
1 1 1T F T F T FX1 X2 X3 X1 X2 X3

. . . .
Figure 39: Reduction from 3-SAT.take T , else take F). Now take the path via that node to connect top and bottomnodes of a variable, this gives 2n edges of weight 1.� If 3-SAT is satis�ed then each clause has (at least) 1 literal that is "1", and thusconnects to the T or F node chosen in (2) of the corresponding variable. Take thisconnecting edge in each clause; we thus have m edges of weight M , giving a totalweight of mM . So, altogether weight of the Steiner tree is mM + 3n.If there exists a Steiner tree of weight mM + 3n then 3-SAT is satis�able. To prove this wenote that the Steiner tree must have the following properties:� It must contain the n edges connecting to the root vertex. There are no other edgesconnected nodes corresponding to di�erent variables.� It must contain one edge from each clause node, giving a weight of mM . Since M isbig, we cannot a�ord to pick two edges of weight M from a single clause node. If itcontains more than one edge from a clause (e.g. 2 edges from one clause) the weightwould be mM+M > mM+3n. Thus we must have exactly one edge from each clausein the Steiner tree.� For each variable must have 2 more edges via the T or the F node.Now say we set the variables to true according to whether their T or F node is in the Steinertree (if T then x = 1, if F then x = 1.) We see that in order to have a Steiner tree of size102

mM + 3n, all clause nodes must have an edge connected to one of the variables (i.e. to theT or F node of that variable that is in the Steiner tree), and thus a literal that is assigneda "1", making 3-SAT satis�ed.

103

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 26Tu. April 27, 1993Notes by Chung-Yeung Lee28 Bin PackingProblem Statement: Given n items s1; s2; :::; sn, where each si is a rational number, 0 <si � 1, our goal is to minimize the number of bins of size 1 such that all the items canbe packed into them.Remarks:1. It is known that the problem is NP-Hard.2. A Simple Greedy Approach (First-Fit) can yield an approximate algorithm which givesFirst� Fit(I) � 2OPT (I).28.1 First-FitThe strategy for First-Fit is that when packing an item, we shall put it into the lowest numberbin that it will �t in. We start a new bin only when the item cannot �t into any exitingnon-empty bins. We shall give a simple analysis that shows that First�Fit(I)� 2OPT (I).In Fact, we haveTheorem 28.1 First�Fit(I)� 1:7OPT (I)+C and the ratio is best possible (by First-Fit).The proof is complicated and therefore omitted here. Instead we shall prove that First�Fit(I) � 2OPT (I).Proof:The main observation is that at most 1 bin is less than half of its capacity. Therefore, if cidenotes the contents in bin i and k is the no of bins used, we havekXi=1 ci � k=2:Hence, OPT (I) � kXi=1 ci � k=2:Therefore 2OPT (I) � k = First� Fit(I). 2104

28.2 First-Fit DecreasingA variant of First-�t is the First-Fit Decreasing heristics. Here, we �rst sort all the items indecreasing order of size and then apply the First-Fit algorithm.Theorem 28.2 (1973) FFD(I) � 11/9 OPT(I).Remarks:1. The known proof is very long and therefore is omitted.2. The following instance shows that �rst �t decreasing is better than �rst �t. Considerthe case where we have� 6m pieces of A, each of size 1=7 + �:� 6m pieces of B, each of size 1=3 + �:� 6m pieces of C, each of size 1=2 + �:First Fit will require 10m bins while First �t Decreasing requires 6m bins only. Notethat the ratio is 5=3. This also shows that First-Fit does as badly as a factor of 5=3.(There are other examples to show that actually it does as badly as 1.7.)28.3 Approximate Schemes for bin-packing problemsIn the 1980's, two approximate schemes were proposed. They are1. (Vega and Lueker, 1981) 8� > 0, there exists an Algorithm Ae such thatAe(I) � (1 + �)OPT (I) + 1, where Ae runs in time polynomial in n but exponential in 1=�. (n=total no. of items)2. (Karmarkar and Karp) 8� > 0, there exists an Algorithm Ae such thatAe(I) � OPT (I) +O(lg2(OPT (I)), where Ae runs in time polynomial in n and 1=�.(n=total no. of items.) They alsoguarantee that Ae(I) � (1 + �)OPT (I) + 1:3. It is conjectured that the term O(lg2(OPT (I)) can be improved to a constant.We shall now discuss the proof of the �rst result. Roughly speaking, it relies on two ideas:� Small items does not create a problem.� Grouping together items of similar sizes can simplify the problem.105

28.3.1 Restricted Bin PackingWe consider the following restricted version of bin packing problem (RBP). We require that1. Each item has size � �.2. The size of the items takes only one of the m distinct values v1; v2; :::; vm. That is wehave ni items of size vi (1 � i � m), with Pmi=1 ni = n.For constant � andm, the above can be solved in polynomial time (actually inO(n+f(m; �))).Our overall stretegy is therefore to reduce BP to RBP (by throwing away items of size < �and grouping items carefully), solve it optimally and use RBP (�;m) to compute a solutonto the original BP.Theorem 28.3 Let J be the instance of RBP obtained from throwing away the items of sizeless than � from instance I. if J requires � bins then I needs only max(�; (1+2�)OPT (I)+1)bins.Proof:We observe that from the solution of J , we can add the items of size less than � to the binsuntil the empty space is less than �. Let S be the total size of the items, then we may assumethe no. of items with size < � is large enough (otherwise I needs only � bins) so that we use�0 bins. S � (1� �)(�0� 1)�0 � 1 + S1� �� 0 � 1 + OPT (I)1� �� 0 � 1 + (1 + 2�)OPT (I)as (1� �)�1 � 1 + 2� for small �. 2Next, we shall introduce the grouping scheme for RBP. Consider the items are sorted indescending order. Let n0 be the total number of items. De�ne G1=the group of the largestk items, G2=the group that contains the next k items, and so on. We choosek = b�2n02 c:Then, we have m+1 groups G1; ::; Gm+1, wherem = bn0k c:Further, we consider groups Hi = group obtained from Gi by setting all items sizes in Giequal to the largest one in Gi. Note that 106

.6. . . . -
.

..
.Grouping Scheme for RBPk kH1 H2 Hm+1
G1 G2 Gm HmGm+1Figure 40: Grouping scheme� size of any item in Hi � size of any items in Gi8i.� size of any item in Gi � size of any items in Hi+18i.The following diagram illustrates the ideas:We then de�ne Jlow be the instance consisting of items in H2; ::;Hm+1 and Jhigh be theinstance consists of items in G1;H2; :::;Hm+1. Our goal is to showOPT(Jlow) � OPT(J) � OPT(Jlow) + k;The �rst inequality is trivial, since from OPT(J) we can always get a solution for Jlow. Weshall continue to prove the other inequality next time.

107

CMSC 651 Advanced AlgorithmsLecturer: Samir Khuller Lecture 27Thu. Apr. 29, 1993Notes by Gisli R. Hjaltason.At the end of last lecture, we present the inequalityOPT(Jlow) � OPT(J) � OPT(Jlow) + k;for the instances J and Jlow of RBP, with grouping factor k. It remains to prove the lat-ter inequality. Remember that using the OPT(Jlow) solution we can pack all the items inG2; : : : ; Gm+1 (since we over allocated space forr these by converting them to Hi. In partic-ular, group G1, the group left out in Jlow, contains k items, so that no more than k extrabins are needed to accommodate those items.Since (Jlow) is an instance of a Restricted Bin Packing Problem we can solve it optimally,and then add the items in G1 in at most k extra bins. Directly from this inequality, andusing the de�nition of k, we haveOPT(Jlow) + k � OPT(J) + k � OPT(J) + �2n02 :Choosing � = �=2, we get that OPT(J) � nXi=1 si � n0 �2 ;so we have OPT(J) + �2n02 � OPT(J) + �OPT(J) = (1 + �)OPT(J):By applying theorem 28.3, using � = (1+ �)OPT(J) and the fact that 2� = �, we know thatthe number of bins needed for the items of I is at mostmaxf(1 + �)OPT(J); (1 + �)OPT(I) + 1g � (1 + �)OPT(I) + 1:To summarize, we have:Theorem 28.4 Let I be an instance of BP(n), and let Jlow be the instance of RBP(m; �),where � = �=2 and m = bnk c, obtained from I by grouping items in decreasing order of theirvalues into groups of k = b �2n2 c items, discarding the �rst group. The following inequalityrelates the optimal solutions of the two instances:OPT(Jlow) � (1 + �)OPT(I) + 1:108

Now we will turn to the problem of �nding an optimal solution to RBP. Recall that aninstance of RBP(�;m) has items of sizes v1; v2; : : : ; vm, with 1 � v1 � v2 � � � � � vm � �,where ni items have size vi, 1 � i � m. Summing up the ni's gives the total number ofitems, n. A bin is completely described by a vector (T1; T2; : : : ; Tm), where Ti is the numberof items of size vi in the bin. How many di�erent di�erent bin types are there? From thebin size restriction of 1 and the fact that vi � � we get1 �Xi Tivi �Xi Ti� = �Xi Ti)Xi Ti � 1� :As 1� is a constant, we see that the number of bin types is constant, say p.Let T (1); T (2); : : : ; T (n) be an enumeration of the p di�erent bin types. A solution to theRBP can now be stated as having xi bins of type T (i). The problem of �nding the optimalsolution can be posed as an integer linear programming problem:minXi=1 pxi;such that 8j = 1; : : : ;m; pXi=1 xiT (i)j = nj;8i = 1; : : : ; p; xi � 0; xiinteger:This is a constant size problem, since both p and m are constants, independent of n, so itcan be solved in time independent of n. This result is captured in the following theorem,where f(�;m) is a constant that depends only on � and m.Theorem 28.5 An instance of RBP(�;m) can be solved in time O(n; f(�;m)).An approximation scheme for BP may be based on this method. An algorithm A� for solvingan instance I of BP would procede as follows:Step 1: Get an instance J of RBP(�; n0) by getting rid of all elements in I smaller than� = �=2.Step 2: Obtain Jlow from J , using the parameters k and m established in theorem 28.4.Step 3: Find an optimal packing for Jlow by solving the corresponding integer linear pro-gramming problem.Step 4: Pack the k items in G1 using at most k bins.Step 5: Pack the remaining items of J as the corresponding (larger) items of Jlow were packedin step 3.Step 6: Pack the small items in I n J using First-Fit.109

This algorithm �nds a packing for I using at most (1 + �)OPT(I) + 1 buckets, which is thebound established in theorem 28.4. All steps are at most linear in n, except step 2, whichis O(n log n), as it basically amounts to sorting J . The fact that step 3 is linear in n wasestablished in the previous algorithm, but note that while f(�;m) is independent of n, it isexponential in 1� and m and thus 1� . Therefore, this approximation scheme polynomial butnot fully polynomial.Karmarkar and Karp came up with a an algorithm for RBP(�;m) that is polynomial in 1� andm as well as n. Instead of using integer linear programming, they relaxed the condition ofthe xi's being integers, which results in a regular linear programming problem. The optimalsolution to the linear programming problem may assign fractional values to the xi's, butit was shown that by appropriate rounding of the values, a solution close to optimal forthe RBP is obtained. Since polynomial algorithms (for example, the ellipsoid algorithm)exist for linear programming, the approximation scheme for BP based on this result is fullypolynomial.

110

