Design and Analysis of Algorithms: Course Notes

Prepared by

Samir Khuller
Dept. of Computer Science
University of Maryland
College Park, MD 20742
samir@cs.umd.edu
(301) 405 6765

October 31, 1994

Preface

These are my lecture notes from CMSC 651: Design and Analysis of Algorithms, a
one semester course that I taught at University of Maryland in the Spring of 1993. The
course covers core material in algorithm design, and also helps students prepare for research
in the field of algorithms. The reader will find an unusual emphasis on graph theoretic
algorithms, and for that I am to blame. The choice of topics was mine, and is biased by my
personal taste. The material for the first few weeks was taken primarily from the (now not
so new) textbook on Algorithms by Cormen, Leiserson and Rivest. A few papers were also
covered, that I personally feel give some very important and useful techniques that should
be in the toolbox of every algorithms researcher.

The notes are in a preliminary form, and were typed in by graduate students taking the
course, as well as by yours truly (when I could not twist any student’s arm into typing the
notes!). The course was a 15 week course, with 2 lectures per week. These notes consist of
27 lectures. There was one midterm in-class examination and one 72 hour take-home final
examination. There was no lecture on the day of the midterm. No scribes were done for the
last 2 lectures. The topics for the last two lectures was “Computational Geometry” (convex
hulls, closest-pair and point location were covered). These are covered very well in the book
by Preparata and Shamos.

Some papers that I thought were very relevant to the topics studied in the class, were
covered in a separate Algorithms Reading Group that met for pizza, mexican food and
algorithms during the semester. The papers covered in this reading group included: Seidel’s
all pairs shortest paths algorithm, Seidel’s fixed dimension linear programming algorithm,
Alon-Seymour-Thomas’s proof of the separator theorem for graph-minors, Yellin’s work on
data structures for set operations, Galil’s constant time parallel string matching algorithm,
Eppstein-Galil-Ttaliano-Nissenzweig’s work on dynamic graph algorithms, Mehlhorn-Raman-
Uhrig’s work on lower bounds for set operations, Fellows and Langston’s work on graph
minors, Luks’s work on graph isomorphism, Berkman-Vishkin’s work on lowest common
ancestors, Callahan-Kosaraju’s work on well-separated pair decomposition. I am grateful to
Paul Callahan, Bill Gasarch, Simon Hawkin, Dave Mount, Rajeev Raman, Bill Regli and
Suleyman Sahinalp for presenting papers in this seminar.

I have editted these notes myself, and many of them have also been proof-read by Bill
Gasarch to whom I am very grateful. Bill sat through most of the lectures, and also was the
source of excitement during the rather dull lectures. His questions were usually penetrating
and kept the lecturer on his toes. I would also like to thank both the Bill’s (Gasarch and
Pugh) who gave lectures on graph minors and skip-lists respectively. I welcome comments
of all kinds, together with correction of errors in these notes. I am most grateful to the
students who typed these notes.

Contents

1 Overview of Course

1.1 Amortized Analysis e
2 Splay Trees

2.1 Use of Splay Operations

2.2 Time for a Splay Operation

2.3 Amortized Time for Splayo

2.4 Additional notes Lo
3 Heaps

3.1 Binomial heaps

3.2 Fibonacci Heaps(F-Heaps)
4 F-heap

4.1 Properties e

4.2 Decrease-Key operation o

5 Maintaining Disjoint Set’s

5.1 Disjoint set operations: L L L
5.2 Data structure: oL Lo
5.3 Union by rank oo
5.4 Union by rank and path compression
5.5 Better Upper Bounds on the Disjoint-Set Union Operations
5.5.1 Concept of Blocks
6 The Skip List Data Structure
6.1 Analysis L
6.2 Probabilistic Analysis o
7 Minimum Spanning Trees and Shortest Paths
7.1 Dijkstra’s algorithm oo o
7.2 Prim’s algorithmo
7.3 Yao’salgorithm oo

8 Fredman-Tarjan MST Algorithm

9 Matchings
9.1 Hall’'s Theorem e
9.2 Berge’s Theorem L

10 Hopcroft-Karp Matching Algorithm

e

20
20
21

26
26
28
28
29
30
31

33
34
34

35
35
36
36

39

42
42
43

46

11 Assignment Problem
12 Stable Marriages Problem.
13 Network Flow - Maximum Flow Problem

14 The Max Flow Problem

14.1 Max Flow - Min Cut Theorem
14.2 Polynomial Time Algorithms (Edmonds-Karp)

15 An O(n*) Max-Flow Algorithm
16 Pre-flow Push Method

17 Planar Graphs

17.1 Euler’s Formula
17.2 Smallest Non-Planar Graphs
17.3 Bridges o L
17.4 Kuratowski’s Theorem

18 Graph Minor Theorem and other CS Collectibles

18.1 Towards an algorithm for testing planarity in genus k&
18.2 Applications:

19 Graph Coloring

20 Flow in Planar Networks

20.1 Two algorithms o

21 On Line vs. Off Line: A Measure for Quality Evaluation

21.1 K-Server Problem o
21.2 K-servers on a straight line

22 NP-Completeness

23 More on NP-Completeness
24 Approximation Algorithms
25 Approximation Algorithms

26 Weighted Vertex Cover

49

52

53

57
38
61

63

65

66
66
63
63
69

73
74
75

76

78
78

82
82
83

85

88

90

91

92

27 Steiner Tree Problem 98

27.1 Approximation Algorithm oo 98
27.2 Steiner Tree is NP-complete oL 101
28 Bin Packing 104
28.1 First-Fit . . . o oL 104
28.2 First-Fit Decreasing o 105
28.3 Approximate Schemes for bin-packing problems 105
28.3.1 Restricted Bin Packing 00000 106

CMSC 651 Advanced Algorithms Lecture 1
Lecturer: Samir Khuller Tu. Jan. 19, 1993

Notes by Hsiwei Yu.

1 Overview of Course

The course will cover many different topics. We will start out by studying various data
structures together with techniques for analyzing their performance. We will then study the
applications of these data structures to various graph algorithms, such as minimum spanning
trees, max-flow, matching etc. We will then go on to the study of NP-completeness and
NP-hard problems, along with polynomial time approximation algorithms for these hard
problems. Towards the end of the semester (if time is available) we will study some special
topics, such as randomization and parallel algorithms.

1.1 Amortized Analysis

Typically, most data structures provide absolute guarantees on the worst case time for per-
forming a single operation. We will study data structures that are unable to guarantee a
good bound on the worst case time per operation, but will guarantee a good bound on the
average time it takes to perform an operation. (For example, a sequence of m operations will
be guaranteed to take m x T time, giving an average, or amortized time of T per operation.
A single operation could take time more than T'.)

Example 1: Consider a STACK with the following two operations: Push(x) pushes item
x onto the stack, and M-POP (k) pop’s the top-most k items from the stack (if they exist).
Clearly, a single M-POP operation can take more than O(1) time to execute, in fact the time
is min(k, s) where s is the stack-size at that instant.

It should be evident, that a sequence of n operations however runs only in O(n) time,
yielding an “average” time of O(1) per operation. (Each item that is pushed into the stack
can be popped at most once.)

There are fairly simple formal schemes that formalize this very argument. The first one
is called the accounting method. We shall now assume that our computer is like a vending
machine. We can put in $ 1 into the machine, and make it run for a constant number of steps
(we can pick the constant). Each time we push an item onto the stack we use $ 2 in doing
this operation. We spend $ 1 in performing the push operation, and the other $ 1 is stored
with the item on the stack. (This is only for analyzing the algorithm, the actual algorithm
does not have to keep track of this money.) When we execute a multiple pop operation, the
work done for each pop is paid for by the money stored with the item itself.

The second scheme is the potential method. We define the potential ® for a data
structure . The potential maps the current “state” of the data structure to a real number,
based on its current configuration.

In a sequence of operations, the data structure transforms itself from state D,_; to D;
(starting at Dy). The real cost of this transition is ¢; (for changing the data structure). The
potential function satisfies the following properties:

e &(D;) > 0.
e O(Dy) =0

We define the amortized cost to be ¢, = ¢; + ®(D;) — ®(D;_1), where ¢; is the true cost
for the *" operation.
Clearly,

n n

;c; = ;ci + O(D,) — ¢(Dy).

Thus, if the potential function is always positive and ®(Dy) = 0, then the amortized
cost 1s an upper bound on the real cost. Notice that even though the cost of each individual
operation may not be constant, we may be able to show that the cost over any sequence
of length n is O(n). (In most applications, where data structures are used as a part of an
algorithm; we need to use the data structure for over a sequence of operations and hence
analyzing the data structure’s performance over a sequence of operations is a very reasonable
thing to do.)

In the stack example, we can define the potential to be the number of items on the stack.

(Exercise: work out the amortized costs for each operation to see that Push has an amortized
cost of 2, and M-Pop has an amortized cost of 1.)
Example 2: The second example we consider is a k-bit counter. We simply do INCRE-
MENT operations on the k-bit counter, and wish to count the total number of bit operations
that were performed over a sequence of n operations. Let the counter be = < bpby_1...b0; >.
Observe that the least significant bit by, changes in every step. Bit by however, changes in
every alternate step. Bit by changes every 4" step, and so on. Thus the total number of bit
operations done are:

o<
nt g+ g S n.

A potential function that lets us prove an amortized cost of 2 per operation, is simply the
number of 1’s in the counter. Each time we have a cascading carry, notice that the number
of 1’s decrease. So the potential of the data structure falls and thus pays for the operation.
(Exercise: Show that the amortized cost of an INCREMENT operation is 2.)

CMSC 651 Advanced Algorithms Lecture 2
Lecturer: Samir Khuller Th. Jan. 21, 1993

Notes by Mark Carson.

2 Splay Trees

Splay trees are a powerful data structure, that function as search trees without any explicit
balancing conditions. They serve as an excellent tool to demonstrate the power of amortized
analysis.

Our basic operation is: splay(k), given a key k. This involves two steps:

1. Search through out the tree to find node with key k.

2. Do a series of rotations (a splay) to bring it to the top.

The first of these needs a slight addition:
la. If & is not found, grab the largest node with key less than k instead.
(Then splay this to the top.)

2.1 Use of Splay Operations
All tree operations can be simplified through the use of splay:
1. Access(x) - Simply splay to bring it to the top, so it becomes the root.

2. Insert(x) - Run splay(x) on the tree to bring y, the largest element less than x, to the
top. The insert is then trivial:

y X
N — /N
A B B

T
A

3. Delete(x) - Run splay(x) on the tree to bring x to the top. Then run splay(x) again
in 2’s left subtree A to bring y, the largest element less than x, to the top of A. y will
have an empty right subtree in A since it is the largest element there. Then it is trivial
to join the pieces together again without z:

8= Ay

A —

y\
A7

y
_>%
A7

4. Split(x) - Run splay(x) to bring = to the top and split.

X
A — x, A, B
A B

Thus with at most 2 splay operations and constant additional work we can accomplish
any desired operation.

2.2 Time for a Splay Operation

How much work does a splay operation require? We must:
1. Find the item (time dependent on depth of item).
2. Splay it to the top (time again dependent on depth)

Hence, the total time is O(2x depth of item).
How much time do k splay operations require? The answer will turn out to be O(klogn),
where n is the size of the tree. Hence, the amortized time for one splay operation is O(log n).
The basic step in a splay operation is a rotation:

N rotate(y) A
x C Ay
A\ /\

AB B C

Clearly a rotation can be done in O(1) time. [Note there are both left and right rotations,
which are in fact inverses of each other. The sketch above depicts a right rotation going
forward and a left rotation going backward. Hence to bring up a node, we do a right
rotation if it is a left child, and a left rotation if it is a right child.]

A splay is then done with a (carefully-selected) series of rotations. Let p(x) be the parent
of a node x. Here is the splay algorithm:

Splay Algorithm:

while = # root do
if p(x) = root then rotate(p(z))

root

rotate(p(x))
ﬁ C A root
AB B C

else if both @ and p(x) are left (resp. right) children, do right (resp.
left) rotations: begin

rotate(p*(x))

rotate(p(x))
end

I e
y = p(z)
(p

& &y

B

2
rotate(p(
—

else /* x and p(x) are left/right or right/left children */ begin

rotate(p(:li))
rotate(p(xz)) /™ note this is a new p(x) */

end

od

When will accesses take a long time? When the tree is long and skinny.
What produces long skinny trees?

e a series of inserts in ascending order 1, 3,5, 7, ...

e cach insert will take O(1) steps — the splay will be a no-op.
e then an operation like access(1) will take O(n) steps.

o HOWEVER this will then result in the tree being balanced.

e Also note that the first few operations were very fast.

Therefore, we have this general idea — splay operations tend to balance the tree. Thus any
long access times are “balanced” (so to speak) by the fact the tree ends up better balanced,
speeding subsequent accesses.

In potential terms, the idea is that as a tree is built high, its “potential energy” increases.
Accessing a deep item releases the potential as the tree sinks down, paying for the extra work
required.

2.3 Amortized Time for Splay
Theorem 2.1 The amortized time of a splay operation is O(logn).

To prove this, we need to define an appropriate potential function.

Definition 2.2 Let d(x) = the number of descendants of x (including). Define the rank
of x,r(x) =logd(x) and the potential function
Let s be the splay tree.

Thus we have:
e d(leaf node) =1, d(root) =n
e r(leaf node) =0, r(root) = logn

Clearly, the better balanced the tree is, the lower the potential ® is.
We will need the following lemmas to bound changes in ®.

Lemma 2.3 Let ¢ be a node in a tree, with a and b its children. Then r(c) > 1+
min(r(a),r(b)).

Proof:
Looking at the tree, we see d(¢) = d(a)+d(b)+1. Thus we have r(¢) > 1+min(r(a),r(b)).

C

/N

-

We apply this to

Lemma 2.4 (Main Lemma) Let r(x) be the rank of v before a rotation (a single splay

step) bringing x up, and r'(x) be its rank afterward. Similarly, let s denote the tree before
the rotation and s afterward. Then we have:

1. v(z) > r(z)

2. If p(z) is the root then ®(s') — ®(s) < r'(z) — r(z)

3. if plx) # root then ®(s') — ®(s) < 3(r'(z) — r(z)) — 1
Proof:

1. Obvious as = gains descendants.

2. Note in this case we have

so that clearly r'(x) = r(y). But then since only x and y change rank in ',

since clearly r'(y) < r'(z).

3. Consider just the following case (the others are similar):

Let r represent the ranks in the initial tree s, r” ranks in the middle tree s” and r’
ranks in the final tree s’. Note that, looking at the initial and final trees, we have

r(z) <r(y)

and
r'(y) <r'(z)

SO

r(y) —r(y) <r'(x) —r(z)

Hence, since only z,y and z change rank,

Next from Lemma 1, we have r”"(y) > 1 +min(r”(z),r"(2)). But looking at the middle
tree, we have

11

so that

Hence, either we have

r(z)) > 14+7'(z), so r'(z)—r(z) < —1

In the first case, since

r(z) <r(z)=>r"(z) —r(z) <0< r'(z) —r(x) — 1
clearly
O(s") — B(s) < 3(r'(z) —r(z)) -1

In the second case, since we always have r'(z) — r(z) > 0, we again get

a

We will apply this lemma now to determine the amortized cost of a splay operation. The
splay operation consists of a series of splay steps (rotations). For each splay step, if s is the
tree before the splay, and s’ the tree afterwards, we have

at =rt + ®(s") — (s)

where at 1s the amortized time, rt the real time. In this case, rt = 1, since a splay step
can be done in constant time.

[Note: Here we have scaled the time factor to say a splay step takes one time unit.
It instead we say a splay takes ¢ time units for some constant ¢, we change the potential

P(s) = CZ r(x).

ZTes

function @ to be

12

Consider now the two cases in Lemma 2. For the first case (« a child of the root), we

have

at =14+ ®(s') — ®(s) <1+ (r'(z) — r(z))

For the second case, we have

= 3Ar
Then for the whole splay operation, let s = sg, $1, S2,..., s be the series of trees produced
by the sequence of splay steps, and r = rg, 7,79, ..., 7 the corresponding rank functions.

Then the total amortized cost is

k k
at:Zati <1—|—Z3Ari

But the latter series telescopes, so [tossing out the extra 1],
at < 3(final rank of v — initeal rank of x)
Since the final rank of x is logn, we then have
at < 3logn

as desired.

2.4 Additional notes

1. (Exercise) The accounting view is that each node x stores () dollars [or some constant
multiple thereof]. When rotates occur, money is taken from those nodes which lose

rank to pay for the operation.

2. The total time for k operations is actually O(klogm), where m is the largest size the
tree ever attains (assuming it grows and shrinks through a series of inserts and deletes).

3. As mentioned above, if we say the real time for a rotation is ¢, the potential function

D is

13

CMSC 651 Advanced Algorithms Lecture 3
Lecturer: Samir Khuller Tu. Jan. 26, 1993

Notes by King-Ip Lin

3 Heaps

We will use heaps to implement MST and Shortest Path algorithms since they provide a
quick way of computing the minimum element in a set.

Definition 3.1 (d-Heaps) A d-heap is a tree which the following properties hold:
1. Fach node have a key attached to it
2. Fvery internal node (except parents of leaves) have exactly d children
3. [Heap-order property] For any node x, key(parent(x)) < key(x)
Basic operations on heaps

Insert Attach the new item to the rightmost unfilled parent of leaves and restore the heap-
order-property by pushing the new key upwards.

Delete Swap element to be deleted to the rightmost child. Remove the rightmost child and
restore the heap-order property of the swapped node.

Search Except for the minimum (at the top of the tree), not well supported

Time for insert and delete = height of tree = logn. Please see Tarjan’s book for more
details on heaps.

3.1 Binomial heaps

These are heaps that also provide the power to merge two heaps into one.

Definition 3.2 (Binomial tree) A binomial tree of height k (denoted as By) is defined
recursively as follows:

1. By is a single node

2. Biyq is formed by joining two B; heaps, making one’s root the child of the other

Basic properties of Bj,

14

<<O <\

Figure 1: Examples of binomial heaps

15

e Number of nodes : 2%
o Height : £
e Number of child of root (degree of root) : k

In order to store n nodes in binomial tress when n # 2%, first write n in binary notation,
then for every 1 bit in the notation, create a corresponding By tree, treating the rightmost
bit as 0.

Example : n =13 = 1101, — use Bs, By, By

Definition 3.3 (Binomial heap) A binomial heap is a (set of) binomial tree(s) where
each node has a key and the heap-order property is preserved. We also have the requirement
that for any given 1 there is at most one B;.

Algorithms for the binomial heap :
Find minimum Given n, there will be log n binomial trees and each tree’s minimum will
be its root. Thus only need to find the minimum among the roots.
Time =logn
Insertion Invariant to be maintained : only 1 B; tree for each ¢
Step 1: create a new By tree for the new element
Step 2: ¢+ 0
Step 3: while there is still 2 B; tree do
join the two B; tree to form a By, tree
g —14+1
Clearly this takes at most O(logn) time.

Deletion

Delete min Key observation: Removing the root from a B; tree will formed ¢ binomial
trees, from By to B;_;

Step 1: Find the minimum root (Assume its in By)
Step 2: Break By, forming £ smaller trees

Step 3: while there is still at least 2 B; tree do
join the two B; tree to form a By, tree
g —14+1
Note that at each stage there will be at most 3 B; trees, thus for each 2 only 1 join is
required.

16

Delete
Step 1: Find the element
Step 2: Change the element key to —oo
Step 3: Push the key up the tree to maintain the heap-order property
Step 4: Call Delete min
2 and 3 is to be grouped and called DECREASE_KEY (z)

Time for insertion and deletion : O(logn)

3.2 Fibonacci Heaps(F-Heaps)

Amortized running time :
e Insert, Findmin, Union, Decrease-key : O(1)
e Delete-min, Delete : O(logn)
Added features (compared to the binomial heaps)
e Individual trees are not necessary binomial (denote trees by B!)
e Always maintain a pointer to the smallest root
e permit many copies of B!

Algorithms for the F-heap :

Insert

Step 1: Create a new B

Step 2: Compare with the current minimum and update pointer if necessary
Step 3: Store $1 at the new root

(Notice that the $ is only for accounting purposes, and the implementation of the data
structure does not need to keep track of the $’s.)

Delete-min
Step 1: Remove the minimum, breaking that tree into smaller tree again

Step 2: find the new minimum, merge trees in the process, resulting in 1 B! tree for each ¢

17

Decrease-key
Step 1: Decrease the key

Step 2: if heap-order is violated
break the link between the node and its parent (note: results may not be a true
binomial tree)

Step 3: Compare the new root with the current minimum and update pointer if necessary
Step 4: Put $1 to the new root

Step 5: Pay $1 for the cut

Problem with the above algorithm: Can result in trees where the root have disportionly
large number of child (i.e. not enough internal nodes).
Solution:

e whenever a node is being cut

— mark the parent of the cut node in the original tree

— put $2 on that node

e when a second child of that node is lost (by that time that node will have $4), recur-
sively cut that node from its parent, use the $4 to pay for it:

— $1 for the cut
— $1 for new root

— $2 to its original parent

e repeat the recursion upward if necessary

Thus each cut requires only $4.

Thus decrease-key takes amortized time O(1)

Define rank of the tree = Number of children of the root of the tree.
Consider the minimum number of nodes of a tree with a given rank:

18

Rank Worst case size Size of binomial tree

O B0 0 1 1

B1 1 2 2

B2 2 3 4

B3 3 3 8

Q
<

@ Marked node from previous deletion

Figure 2: Minimum size B! trees

19

CMSC 651 Advanced Algorithms Lecture 4
Lecturer: Samir Khuller Thu. Jan. 28, 1993

Notes by Patchanee Ittarat.

4 F-heap

4.1 Properties
F-heaps have the following properties:

e maintain the minimum key in the heap all the time,

e relax the condition that we have at most one By, for any £, i.e., we can have any number
of By at one time,

e trees are not true binomial trees.

For example,

min pointer

(2 ! 5

Figure 3: Example of F-heap

Property: size of a tree, rooted at x, is in exponential in the degree of z.
In Binomial trees we have the property that size(x) > 2%, here we will not have as strong
a property, but we will have the following:

size(z) > ¢F

where k is degree of x and ¢ =

1+/5

2

20

Note that since ¢ > 1 this is sufficient to guarantee a O(logn) bound on the depth and
the number of children of a node.

4.2 Decrease-Key operation

Mark strategy:
e when a node is cut off from its parent, tick one mark to its parent,
e when a node gets 2 marks, cut the edge to its parent and tick its parent as well,
e when a node becomes a root, erase all marks attached to that node,
e every time a node is cut, give $1 to that node as a new root and $2 to its parent.

Example: How does mark strategy work?

Figure 4: Marking Strategy

21

The cost of Decrease-Key operation = cost of cutting link + $3. We can see that no
extra dollars needed when the parent is cut off recursively since when the cut off is needed,
that parent must have $4 in hand ($2 from each cut child and there must be 2 children have
been cut), then we use those $4 dollars to pay for cutting link cost ($1), giving to its parent
($2), and for itself as a new root ($1).

Example: How does Decrease-Key work (see CLR also)?

22

min pointer

$1 $1)/
3

min pointer

$1)/

©

(20 ; I: 20
Dec Key(46,45) /

*$2

min pointer min pomter

$1 $1/

$1

~1) <~
—
w) e~
—

$
20 q

3 G
$/ @ @

min pointer

s1/ $1 $1 $1
5 26 24

Figure 5: Example

23

The property we need when two trees are merged, is the degree of the roots of both trees
should be the same.

Figure 6: Example

We want to prove that y; has some subtrees.

Let y; be the oldest child and y; be the youngest child. Consider y; at the point y; was
made a child of the root =, had degree at least : — 1 and so ;.

And since y; has lost at most 1 child, so now y; has at least degree ¢ — 2.

Let’s define
0 k=0
Fry+ Py ifth>2
These numbers are called Fibonacci numbers.
Property 4.1 [}, =1+ Zle F;

Proof:
[By induction]
kE=1: 5 = 14+ F1
= 141
= F1—|—F2 (WhereF2:F1+F0:1—|—0)

Assume Fiio =1+ Zle F: for all £ <n

n+1
k=n+41: F.s = 1—|—ZF¢
=1

=1

= Fn—I—Q—I'Fn—I—l

24

Property 4.2 Fj. ., > ¢*

Proof:
[By induction]
k= 0: F2 =1
> ¢°
E=1: F3 = 2
> oo 1V s
2
Assume Fj o > ¢F for all £ < n
E=n: Fn—|—2 = Fn—l—l—I'Fn
Z ¢n—1 +¢n—2
1
> ;qﬁ L
> ¢

Theorem 4.1 z is a root of any subtree. size(x) > Flio > ¢* where k is a degree of x

Proof:
[By induction]
k=0:

25

B

1+

size(x) =2 2> 2 >

Y

Assume size(x) > Fjyq > oF for any k <n

k=n+1:

L+ size(yr) + ... + size(y:) + ... + size(yx)
L+ 1414+ Fs+...4+ Fy (from assumption)
1+ 4+ 4.+ F

Frio (from propertyl)

" (from property?2)

k

size(x)

VIV IV IV IV

logy size(w)

So the number of children of node x is bounded by log, size(x). O

5 Maintaining Disjoint Set’s

Another data structure that is useful in Kruskal’s algorithm is to maintain disjoint sets. (It
will be useful in solving other problems as well, such as in homeworks and exams!)

5.1 Disjoint set operations:

o Makeset : A «— Makeset(x) = A = {«}.
e Find(y) : given y, find to which set y belongs.
e Union(A,B): C «— Union(A,B)=C = AUB.

The name of a set is given by its smallest item.

26

O

Figure 7: Data Structure

rank(a) rank(b)

JANEVA

A B

/N
C = Union(A,B)

Figure 8: Union

27

5.2 Data structure:

o tree. See figure 5.

Find - worst case cost is O(n).
Union - worst case cost is O(1).
For m Find operations, total time is O(m - n).

To improve total time:
1. Balance a tree in some sense.
2. Make a tree shallower.

3. Hook the smaller tree to the bigger one.

Why will these improve a tree?
e Since the amount of work depends on the height of a tree.

Let rank be an upper bound on the height of a tree.

rank(z) = 0 for {x}

m—-cy

Figure 9: Rank 0 node
Union(A,B) - see figure 6.

If rank(a) < rank(b), rank(c) = rank(b).
If rank(a) = rank(b), rank(c) = rank(b) + 1.

5.3 Union by rank
Union by rank guarantees “at most O(logn) of depth”.

Property 5.1 A node with rank k has at least 2F descendants.

28

Proof:
[By induction]

rank(x) = 0 = x has no descendants.

The rank and the number of descendants of any node are changed only by the Union
operation, now let’s consider a Union operation in figure 6.

Case 1 rank(a) < rank(b):

rank(c) = rank(b)

node(c) > node(b)
Z 2Tank(b)
Case 2 rank(a) = rank(b):
rank(c) = rank(b) +1
node(a) > orank(a) qnd
node(b) > orank(b)
node(c) =

2Tank a + 2Tank()

node(a) + node(b)
(a)
(b)+1

AVARAY

2Tank b)+

In Find operation, we can make a tree shallower by path compression method.

5.4 Union by rank and path compression

e n Union’s and m Find’s cost total time in O(mlog™n).
where log*n = {min(i)|log n < 1}, for example,

log16 = 3, and
log*2'® = 4

Theorem 5.1 m Find’s cost O(m + nlogn). If m > nlogn, then this is optimal.
To prove this, we need some observations:
1. Rank of a node starts at 0 and goes up as long as the node is a root.
2. Rank(p(x)) is non-decreasing.
3. Rank(p(x)) > rank(x).

29

CMSC 651 Advanced Algorithms Lecture 5
Lecturer: Samir Khuller Tu. Feb 2, 1993

Notes by Matos Gilberto.

5.5 Better Upper Bounds on the Disjoint-Set Union Operations
Three statements hold for this data structure at all times (p(x) is the parent of x):

e Rank of z goes up as long as x is a root.
e Rank of p(x) is bigger than rank of .
e Rank of p(x) is always nondecreasing

Also rank of any root is lesser than or equal log, n, where n is the number of its descen-
dants.

We want to prove that for a sequence of n UNION and m FIND operations the upper
bound on the total execution time will be O(m + nlog, n)

The UNION operation is done by rank of the root, and the FIND operation performs the
path compression while the set is being identified.

Before the find operation is performed on some node, that node points to his parent in
the tree, and following the pointers through subsequent parents leads to the root of the tree.
Algorithm will pass the path twice, first to find the root, and second time to change the
pointers of all nodes on the path to the root so that they point directly to the root. So after
the find operation all the nodes point directly to the root of the tree.

While the operation of finding a path to the node is being performed each of the nodes
on the path except the root and its child will be issued a bill for the work that has been done
on its path compression. The operation pays only for the work on the root and its child.

Note that every node that has been issued a bill in this operation, becomes the child of
the root, and won’t be issued any more bills until its parent becomes a child of some other
root in a union operation. Note also that one node can be issued a bill at most log, n times,
because every time a node gets a bill its parent’s rank goes up, and rank is bounded by
log, n.

The cost of a single find is charged to 2 accounts

1. The find pays for the cost of the root and its child
2. A bill is given to every node whose parent changes

Total work for the n unions and m find operations will be O(m) for the charge for the
find operations, and the sum of bills issued to all nodes will be upper bounded by nlog, n

Lemma 5.2 There are at most 5 nodes of rank r.

30

Proof:

When the node gets rank r it has 2" descendants, and it is the root of a tree. After some
union operation this node will no longer be root, and may start to loose some descendants,
but its rank will not decrease. Assume that every descendant of a root node gets a stamp
when the root increases its rank. Subsequent stamps that the nodes get can be only with
higher values of the rank of the root, because rank of root can increase after some union, or
the root will become child of a node with a higher rank. So for every node of rank r there
are at least 2" nodes with its stamp for rank r. a

We will try to prove there is an even tighter upper bound for the cost of m find operations.
That function is O(mlog™ n) where log™ n is the number of log’s that are required to reduce
n to 1. (This is a proof done by Hopcroft and Ullman.)

For this we introduce the fast growing function F' which is defined as

1. F(0) =1

2. F(i) =2F@=1

Another necessary function is G/(n) where G(n) = min{k such thatF'(k) > n}. This
function is equal to the log™n function.
5.5.1 Concept of Blocks
If a node has rank r, it belongs to block B(G(r)), which is B(log™ r).

0

contains nodes of rank 0 and 1.
o B(1

contains nodes of rank 2.

B(0)

(1)

(2) contains nodes of rank 3 and 4.

(3) contains nodes of rank 5 through 16.
(4)

B
B
o BB

4) contains nodes of rank 17 through 65536.

Since the rank of a node is at most log, n where n is the number of elements in the set,
the number of blocks necessary to put all the elements of the sets is bounded by log™(logn)
which is log®n — 1. So blocks from B(0) to B(log™n — 1) will be used.

The find operation goes the same way as before, but the billing policy is different. Now
the find operation pays for the work done for the root and its immediate child, and it also
pays for all the nodes which are not in the same block as their parents. All of these nodes
are children of some other nodes, so their ranks will not change and they are bound to stay
in the same block until the end of computation. If a node is in the same block as its parent
it will be billed for the work done in the find operation. As before find operation pays for
the work done on the root and its child. Number of different blocks is limited to log™n — 1,
so the cost of the find operation is upper bounded by log*n — 1 + 2.

31

After the first time a node is in the different block from its parent, it is always going to
be the case because the rank of the parent only goes up. This means that the find operation
is going to pay for the work on that node every time. So any node will first be billed for the
find operations a certain number of times, and after that all subsequent finds will pay for
their work on the element. We need to find an upper bound for the number of times a node
is going to be billed for the find operation.

Consider the block with index ¢; it contains nodes with the rank in the interval from
F(i—1)4+ 1 to F(z). The number of nodes in this block is upper bounded by the possible
number of nodes in each of the ranks. There are at most n/(2") nodes of rank r, so this is a
sum of a geometric series, whose value is

rerlimny+1 2 2P0 R ()

Notice that this is the only place where we make use of the exact definition of function
F.

After every find operation a node changes to a parent with a higher rank, and since there
are only F(i) — F(i — 1) different ranks in the block, this bounds the number of billings a
node can expect to get. Since the block B(¢) contains at most n/F(¢) nodes, all the nodes
in B(7) can be billed at most n times. Since there are at most log™n blocks the total cost
for these find operations is bounded by nlog™ n.

This is still not the tight bound on the number of operations, because Tarjan has proved
that there is an even tighter bound which is proportional to the O(ma(m,n)) for n unions
and m finds, where alpha is the inverse ackerman function whose value is lower than 4 for
all practical applications. This is quite difficult to prove (see Tarjan’s book). There is also
a corresponding tight lower bound on any implementation of disjoint set data structures on
the pointer machine model.

32

CMSC 651 Advanced Algorithms Lecture 6
Lecturer: Samir Khuller Thurs. Feb 4, 1993

Notes by Robert Bennet.

6 The Skip List Data Structure

Skip lists, like array and linked list structures, support the following dictionary operations:

e Search()
o Insert()

e Delete()

But unlike arrays (sorted) which support these operations in O(log, n), O(n) and O(n)
time and linked lists which support these operations in O(n), O(1) (non-sorted) and O(n)
time respectively, skip lists supports them in O(log,n) randomized time. (The expected
time for a single operation is O(logn).)

The structure of a skip list is that of a sorted linked list with “express lanes” that skip
2-ahead, 4-ahead until there is a lane that skips & ahead.

The height of an element in the skip list is defined as the number of stops at that element
there are. This height can be determined probabilistically as the number of consecutive
“coin-flips” until a head is encountered.

Given this information, an algorithm to search for an element can be given:

Let startlevel = log, n:

1. Search(z, L).

2. p= L — header.

3. for t=startlevel downto 1 do
4. while (p — next[i].key < x)

5. do p = p — next[t] /* p is largest element < z */
For insertion, we keep a pointer to source level 2 pointer that goes over or to the element
being searched for; call this over[:]. It should be noted that these algorithms use multi-pointer

data structures. The algorithm to insert into a skip list is as follows:

1. Insert (x, L)

2. p=L — header

33

3. for :=startlevel downto 1 do

4. while(p — neatli].key < x)

5. do p=p — next[i]

6. over[i] =p

7. { = random level()

8. e=new-node(()

9. for i=1 to £ do
10. insert e after over|[i] at level i

For deleting from a skip list change lines 5...9 to:
L. (5) e = p— > next[(]

2. (6) Verify e— > key ==z

3. (7) { = e— > level

Then change “insert” in line 10 to “delete” and add a free(e) call.

With skip lists, we want to handle the average probabilistic performance on worst case
input.

6.1 Analysis

The analysis must be done oblivious to the element position. We will also start our search
path backwards; meaning that the element will only be entered from above. Let, C'({) =
cost to climb up £ levels in an infinite list 4+ the number of elements at the top level.

Thus, C({) = 1+ 3C({) + 3C({ — 1), or C({) = 2(, where 2(is the expected cost of
moving.

Since the algorithm depends on random variables, the lists cannot be re- distributed,
which makes lists “non-random”.

6.2 Probabilistic Analysis

Let, C'({) = number of coin flips needed to see heads. Assume this is true for C'(1..0) and
we will prove for C'(¢ 4 1), which turns out to be a binomial distribution. These bounds are
exact for a search at the end of the list.

34

CMSC 651 Advanced Algorithms Lecture 7
Lecturer: Samir Khuller Tu. Feb. 9, 1993

Notes by Wlod Glazek.

7 Minimum Spanning Trees and Shortest Paths

Given a graph GG = (V, E) and a weight function w(u,v) we wish to find a spanning tree
T C I such that its total weight 3, ,)er w(u,v) is minimized. We call the problem of
determining the tree T' the minimum-spanning tree problem and the tree itself an MST.

We will present now two approaches to finding MST. The first is Prim’s method and the
second is Yao’s method. Before we present Prim’s algorithm, we briefly review Dijkstra’s
algorithm.

7.1 Dijkstra’s algorithm

Recall that Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted
graph GG = (V, F) for the case in which all edge weights are nonnegative. The algorithm
maintains a Fibonacci heap H of all the nodes that are not currently in the Shortest Paths
Tree (SPT) and a table d[v] of estimated distances from the source s for each v. It repeatedly
selects v € H with the minimum shortest path estimate, inserts it into SPT and updates
shortest path estimates for all nodes adjacent to selected node v. Once a node v is in SPT,
the estimate d[v] contains its real shortest distance from the source s.

Dijkstra’s algorithm

Step 1: for all v € V except source vertex s initialize d[v] := oo, d[s] := 0.

Step 2: put all v € V in the Fibonacci heap H.

Step 3: while heap H is not empty do

Step 4: w:=EXTRACT-MIN(H). DELETE-MIN(H).

Step 5: for all w € Adjlu] do

Step 6: if d[w] > d[u] + w(u,w) then DECREASE-KEY (w, d[w] — d[u] — w(u, w))

The running time of this algorithm is O(m + nlog, n).

This is because we do n — 1 DELETE-MIN operations, that cost log n time each. We do
only O(m) DECREASE-KEY operations (for each vertex the work done is proportional to
its degree).

Note: O(m+nlogn) is optimal for any implementation of Dijkstra’s algorithm (by reducing
sorting to it). This is something worth thinking about. It is possible that one can do shortest

35

paths faster than O(nlogn) for graphs that have O(n) edges. For example, Frederickson has
shown that for planar graphs we can compute shortest paths in O(n+/logn) time. (This is
highly non-trivial.) Can we extend this to any graph with O(n) edges 7 (This is still open.)

7.2 Prim’s algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm. The tree starts from an arbitrary
vertex v and grows until the tree spans all verticesin V. At each step our currently connected
set is S. Initially S = {v}. A lightest edge connecting a vertex in S with a vertexin V — 5 is
added to the tree. Correctness of this algorithm follows from the observation that a partition
of vertices into S and V — S defines a cut, and the algorithm always chooses the lightest
edge crossing the cut. This satisfies the property of the MST. Tarjan describes generic red-
blue rules that let us put edges in and out of the MST. All MST algorithms are essentially
an application of the red-blue rules in a particular order. The key to implementing Prim’s
algorithm efficiently is to make it easy to select a new edge to be added to the tree formed by
edges in MST. Using a Fibonacci heap we can perform EXTRACT-MIN and DELETE-MIN
operation in O(log n) amortized time and DECREASE-KEY in O(1) amortized time. Thus,
the running time is O(m + nlogn).

It turns out that for sparse graphs we can do even better | We will first study Yao’s
algorithm, and then the more recent algorithm by Fredman and Tarjan that uses F-heaps.
However, this is not the best algorithm. Using an idea known as “packeting” this The FT
algorithm was improved by Gabow-Galil-Spencer-Tarjan, and that is the best known (also
uses F-heaps).

7.3 Yao’s algorithm

Yao’s algorithm starts with a collection of singleton vertex sets placed in a priority queue and
repeatedly merges pairs of sets in a round-robin fashion until only one set is left. Specifically,
each vertex is initially in its own set. We put all the singleton sets in a queue. We pick
the first vertex v, from the head of the queue and this vertex selects a lowest weight edge
incident to it (say to vertex u), and merges itself with u. We remove both v and u from the
queue and put the connected pair at the end of the queue. We continue doing this until all
the vertices, initially in the queue, are processed. Notice that we now have a collection of
connected components (a forest of trees) that are in the queue. Each has size at least two
(perhaps more). (If v merges with u, and then w merges with v — we get a component of
size three.) The entire processing of a queue is called a phase. So at the end of phase ¢, we
know that each component has at least 2° vertices. This lets us bound the number of phases
by logn. (Can be proved by induction.)

We can use the UNTON-FIND structure for keeping track of connected components. This
will give us a running time of O(mlog™n) per phase and with the bound on the number of
phases this takes O(mlog™nlogn) time.

Homework: How do we implement a single phase in linear time 7 Notice that we do
not really need UNION-FIND to implement a phase !

36

The main thing that slows down the algorithm is the fact that in a subsequent phase we
have to recompute (from scratch) the lowest weight edge incident to a vertex. This forces
us to spend time proportional to Y ,c7. d(v) for each tree T;. Yao’s idea was to “somehow
order” the adjacency list of a vertex to save this computational overhead. This is achieved
by breaking the adjacency list of each vertex Adj(v) into k groups El, E2. ..., E* with the
property that if ¢ € B! and ¢ € E? and i < j, then w(e) < w(e'). For a vertex with
degree d(v), this takes O(d(v)log k) time. (We run the median finding algorithm, and use
the median to partition the set into two. Then we recurse on each portion to break the sets,
and we get four sets by a second application of the median algorithm, each of size %ﬂ. We
continue this process until we obtain & sets.) To perform this for all the adjacency lists,
clearly takes O(mlog k) time.

Let T be a set of edges in the final MST, V.S be a collection of vertex sets that form con-
nected components and ES be collection of edge sets incident to each connected component.

Yao’s algorithm

Step1: T:=0.,VS:=0 ES:=0,

Step 2: for each v € V do

Step 3: add v to V.S

Step 4 add E(v) to ES

Step 5: divide E(v) into k groups E!, EZ...., E*

Step 6: while |V.S| > 1 do

Step 7: take a vertex set W from V.5

Step 8: for each vertex v € W do

Step 9: FIND cheapest outgoing edge from v

Step 10: Among the edges pick cheapest edge (w,w') in E(W)
Step 11: Let w’ € W’

Step 12: Replace W and W’ by UNION(W , W’)

Step 13: Replace E(W) and E(W’') by UNION(E(W),E(W"))
Step 14: add (w,w') to T

Step 15: output T'

37

Now, the search for the cheapest outgoing edge is simpler. For every v we only scan
through the pieces not scanned so far. We take the first encountered edge as the cheapest
one. In the next phase we start scanning at the point that we stopped last time. The overall
cost of scanning in one phase is O(%:log"n). But we have logn phases in all, so the total
running time amounts to O(7 log"nlogn) + O(mlog k). If we take k = logn then we get
O(mlog™n) 4+ O(mloglogn), which is better than the cost of Prim’s algorithm.

38

CMSC 651 Advanced Algorithms Lecture 8
Lecturer: Samir Khuller Th. 11 Feb., 1993

Notes by Annette Evangelisti.

8 Fredman-Tarjan MST Algorithm

We maintain a forest defined by the edges that have so far been selected to be in the MST.
Initially, the forest contains each of the n vertices of (&, as a one-vertex tree. We then repeat
the following step n — 1 times (until there is only one tree).

High Level

start with n trees each of one vertex
repeat
procedure GROWTREES
procedure CLEANUP

until only one tree is left

Informally, the algorithm is given at the start of each round a forest of trees. The
procedure GROWTREES grows each tree in a round-robin fashion and terminates with a
forest having fewer trees. The procedure CLEANUP essentially “shrinks” the trees to single
vertices. This is done by simply discarding all edges that have both the endpoints in the same
tree (component). From the set of edges between two different trees we simply maintain the
lowest weight edge and discard all other edges. A linear time implementation of CLEANUP
will be described later.

The idea is to grow a single tree only until its heap of neighboring vertices exceeds a
certain critical size. We then start from a new vertex and grow another tree, again stopping
only when the heap gets too large, or we encounter a previously stopped tree. We continue
this way until every tree has grown, and stopped because it had too many neighbours, or it
collided with a stopped tree. We now condense every tree into a single supervertex (basically
by doing CLEANUP; this condensation is thus done implicitly) and begin a new pass of the
same kind in the condensed graph. After a sufficient number of passes, only one vertex will
remain.

We fix a parameter k, at the start of every phase — each tree is grown until it has more
than k& “neighbours” in the heap. In a phase, we start with a collection of old trees. The pass
connects these trees to form new larger trees that become the old trees for the next phase.
We unmark all the trees, create an empty heap. We pick an unmarked tree and grow it by
Prim’s algorithm, until either its heap contains more than k& vertices or it gets connected to
a marked old tree.

To finish the growth step, we empty the heap and mark the tree. The F-heap has the set
of all trees that are adjacent to the current tree (tree to grow).

39

(See GROWTREES in Handout.)
Procedure GROWTREES

Q = F-heap of trees (heap of neighbors of the current tree)

e = array[trees] of edge (e[T] = cheapest edge joining T' to current tree)
mark = array[trees] of (true, false), (true for trees already grown in this step)
tree = array[vertex] of trees (tree[V] = tree containing vertex V)

edge-list = array[trees] of list of edges (edges incident on T")

Running Time of GROWTREES
Cost of one phase: Pick a node, and mark it for growth until the F-heap has & neighbors
or it merges with another tree. Assume there exist T trees at the start and m is the number

of edges initially. Then
L= 22m/T

where k increases as the number of trees decreases. Notice that k is essentially 27, where d
is the average degree of a vertex in the super-graph. But one phase is upperbounded by

O(Tlogk +m) = O(Tlog(2*™/T) + m)
= O(M2m/T +m)
= O(m)

This is so because we perform at most 7" DELETE-MIN operations (each one reduces the
number of trees), and logk is the upperbound on a single heap operation. The time for
initialization and CLEANUP etc is O(m).

Consider the effect of a pass that begins with T' trees and m’ < m edges (some edges
may have been discarded). Each tree remaining after the pass has more than & > 27 edges
with at least one endpoint in T'. If a tree stopped after colliding with the initially grown
tree, then the merged tree has the property that it has at least k£ neighbors. If a tree T" has
stopped growing because it has too many neighbors, it may happen that due to a merge that
occurs later in time, some of its neighbors are in the same tree ! However, if we consider the
multigraph formed by considering each tree as a single vertex we can argue that each tree
(vertex) must have degree more than k. Thus we obtain T’k < Y 7. d(T;) = 2m’. Clearly,
T < 277” Hence k' = 277 > 2% In the first round, k& = 22"/*. When k > n, the algorithm
runs to completion. How many rounds does this take 7

Let B(m,n) = min{i|log n < 1. It is clear that the number of rounds is at most
B(m,n). This gives us an algorithm with total running time O(mpg(m,n)).

Procedure CLEANUP

1. Resets marks on all trees to false.
2. Recomputes tree[V] for all vertices V.

3. Removes all edges that go between vertices that are in the same tree. (i.e. remove
(u,v) if tree[u] = tree[v]).

4. Of all edges between T} and T, retain only the cheapest edge.

40

After each phase of growtrees cleanup keeps only the cheapest edge between two trees
and deletes all edges that go between vertices in the same tree.

We number all trees consecutively from one. We sort all the edges lexicographically on
the numbers of the trees containing their endpoints, using a two-pass radix sort. We then
scan the sorted list saving only the appropriate edges. After CLEANUP, we construct a list
for each old tree T of the edges with one endpoint in 7. (Each edge is on two lists.) This
can be done in O(m) time.

41

CMSC 651 Advanced Algorithms Lecture 9
Lecturer: Samir Khuller Tu., Feb. 16, 1993

Notes by Michael Tan

9 Matchings

In this lecture we will examine the problem of finding a maximum matching. We will do this
by examining the particular case of finding a maximum matching in a bipartite graph.

Given a graph G = (V,), a matching M is a subset of the edges such that no two edges
in M share an endpoint. The problem is similar to finding an independent set of edges. In
the maximum matching problem we wish to maximize |M|.

A bipartite graph G = (U, V, FE) has £ C U x V.

Aside: We can test if a given graph is bipartite in O(F|) time. Here is how: Do BFS
on the graph. Let every vertex discovered on an even level be in set U, and every vertex
discovered on an odd level be in set V. As BFS runs, make sure that no “even” vertex has
an edge to another “even” vertex, and that no “odd” vertex has an edge to another “odd”
vertex.

With respect to a given matching, a matched edge is an edge included in the matching.
A free edge is an edge which does not appear in the matching. Likewise, a matched
vertex is a vertex which is an endpoint of a matched edge. A free vertex is a vertex that
is not the endpoint of any matched edge.

We can think of the matching problem in the following terms. Given a list of boys and
girls, and a list of all marriage compatible pairs (a pair is a boy and a girl), a matching is
some subset of the compatibility list in which each boy or girl gets at most one partner. In
these terms, £/ = { all marriage compatible pairs }, U = { the boys}, V = { the girls}, and
M = { some potential pairing preventing polygamy}.

A perfect matching is one in which all vertices are matched. In bipartite graphs, we
must have |V| = |U| in order for a perfect matching to possibly exist. When a bipartite
graph has a perfect matching in it, the following theorem holds:

9.1 Hall’s Theorem

Theorem 9.1 (Hall’s Theorem) Given a bipartite graph G = (U, V, E) where |U| = |V,
VS CUIN(S)| = |S| (where N(S) is the set of vertices which are neighbors of S) iff G has
a perfect matching.

Proof:
(«) In a perfect matching, all elements of S will have at least a total of |S| neighbors
since every element will have a partner. (—) We give this proof after the presentation of the

42

algorithm, for the sake of clarity. a

Before proceeding with the algorithm, we meed to define more terms.

An alternating path is a path (edges) which begins at a free vertex and whose edges
alternate between matched and unmatched edges.

An augmenting path is an alternating path which starts and ends with unmatched
edges (and thus starts and ends with free vertices).

The matching algorithm will attempt to increase the size of a matching by finding an
augmenting path. By inverting the edges of the path (matched becomes unmatched and vice
versa), we increase the size of a matching by exactly one.

If we have a matching M and an augmenting path P (with respect to M), then M & P
=((MUP)—(MnP))is a matching of size |M| 4 1.

9.2 Berge’s Theorem

Theorem 9.2 (Berge’s Theorem) M is a maximum matching iff there are no augmenting
paths with respect to M.

Proof:

(—) Trivial. («) Let us prove the contrapositive. Assume M is not a maximum match-
ing. Then there exists some maximum matching M’ and |M’| > |M|. Consider M & M'. All
of the following will be true of the graph M & M":

1. The highest degree of any node is two.
2. The graph is a collection of cycles and paths.

3. The cycles must be of even length, half of which are from M and halt of which are
from M.

4. Given these first three facts (and since |M’| > |M]), there must be some path with
more M’ edges than M edges.

This fourth fact describes an augmenting path (with respect to M). This path begins
and ends with M’ edges, which implies that the path begins and ends with free nodes (i.e.,
free in M). O

Armed with this theorem, we can outline a primitive algorithm to solve the maximum
matching problem.
Simple Matching Algorithm [Edmonds]:

Step 1: Start with M = 0.
Step 2: Search for an augmenting path.

Step 3: Increase M by 1 (using the augmenting path).

43

"""" matched edge

— free edge

Initial graph (some vertices already matched)

BFS tree used to find an augmenting path from v2 to ul

Figure 10: Sample execution of Simple Matching Algorithm

44

Step 4: Go to 2.

Here is an example:

The upper bound on the number of iterations is O(|V]) (the size of a matching). The time
to find an augmenting path is O(|E|) (use BFS). This gives us a total time of O(|V||E|). In
the following lecture, we will learn the Hopcroft-Karp O(\/M|E|) algorithm for maximum
matching on a bipartite graph. In 1981, Micali-Vazirani extended this algorithm to general
graphs (keeping the same running time)!

45

CMSC 651 Advanced Algorithms Lecture 10
Lecturer: Samir Khuller Th. Feb. 18, 1993

Notes by Samir Khuller.

10 Hopcroft-Karp Matching Algorithm

We present the Hopcroft-Karp matching algorithm along with a proof of Hall’s theorem in
this lecture. (This theorem can be proven by induction as well, unfortunately that does not
yield an efficient algorithm.)

Theorem 10.1 (Hall’s Theorem) A bipartite graph G = (U, V, E) has a perfect matching
if and only if VS CV,|S| < |N(S)].

Proof:

To prove this theorem in one direction is trivial. If G has a pertect matching M, then
for any subset S, N(S) will always contain all the mates (in M) of vertices in S. Thus
IN(S)| > |S|. The proof in the other direction can be done as follows. Assume that M
is a maximum matching and is not perfect. Let u be a free vertex. Let Z be the set of
vertices connected to u by alternating paths w.r.t M. Clearly u is the only free vertex in
7 (else we would have an augmenting path). Let S = ZNU and T'= Z NV. Clearly the
vertices in S — {u} are matched with the vertices in T. Hence |T| = |S| — 1. In fact, we

have N(S) = T since every vertex in N(S) is connected to u by an alternating path. This
implies that |N(9)| < |S]. 0

For non-bipartite graphs, this theorem does not work. Tutte proved the following (you
can read the Graph Theory book by Bondy and Murty for a proof) theorem for establishing
the conditions for the existence of a perfect matching in a non-bipartite graph.

Theorem 10.2 (Tutte’s Theorem) A graph G has a perfect matching if and only if V.S C
Vio(G — S5) < |S|. (o(G — S) is the number of connected components in the graph G — S
that have an odd number of vertices.)

The main idea behind the Hopcroft-Karp algorithm is to augment along a disjoint set of
shortest augmenting paths simultaneously. (For example, if the shortest augmenting path
has length k then in a single phase they obtain a mazimal set S of augmenting paths all of
length k.) By the maximality property, we have that any augmenting path of length k will
intersect a path in S. This can be done in linear time. In the next phase, we will have the
property that the augmenting paths found will be strictly longer (we will prove this formally
later).

We now prove the following lemmas.

46

Lemma 10.3 A mazimal set S of disjoint, minimum length augmenting paths can be found
in O(m) time.

Proof:

Let G = (U,V, E) be a bipartite graph and let M be a matching in GG. We will grow
a “Hungarian Tree” in (. (The tree really is not a tree but we will call it a tree all the
same.) The procedure is similar to BFS (and like Edmonds algorithm that simply searches
for an augmenting path). We start by putting the free vertices in U in level 0. Starting from
even level 2k, the vertices at level 2k 4+ 1 are obtained by following free edges from vertices
at level 2k that have not been put in some level as yet. Since the graph is bipartite the
odd(even) levels contain only vertices from V(U). From each odd level 2k 4 1, we simple
add the matched neighbours of the vertices to level 2k 4+ 2. We repeat this process until
we encounter a free vertex in an odd level (say t). We continue the search only to discover
all free vertices in level ¢, and stop when we have found all such vertices. In this procedure
clearly each edge is traversed at most once, and the time is O(m).

We now have a second phase in which the maximal set of disjoint augmenting paths of
length £ is found. We use a technique known as topological erase, called so because it is
a little like topological sort. With each vertex x (except the ones at level 0), we associate
an integer counter initially containing the number of edges entering x from the previous
level. Starting at a free vertex v at the last level £, we trace a path back until arriving at
a free vertex in level 0. The path is an augmenting path, and we include it in S. We then
place all vertices along this path on a deletion queue. As long as the deletion queue is non-
empty, we remove a vertex from the queue, delete it together with its adjacent vertices in the
Hungarian tree. Whenever an edge is deleted, the counter associated with its right endpoint
is decremented. If the counter becomes 0, the vertex is placed on the deletion queue (there
can be no augmenting path in the Hungarian tree through this vertex, since all its incoming
edges have been deleted).

After the queue becomes empty, if there is still a free vertex v at level ¢, then there must
be a path from v backwards through the Hungarian tree to a free vertex on the first level;
so we can repeat this process. We continue as long as there exist free vertices at level ¢t. The
entire process takes linear time, since the amount of work is proportional to the number of
edges deleted. O

From the following lemma it is clear that the augmenting paths in phase ¢ will be strictly
longer in phase (¢ + 1). After phase ¢, any augmenting path that has the same length as
the paths in phase ¢ cannot intersect the paths in phase ¢ — this gives a contradiction to the
maximality of the paths found in phase .

Lemma 10.4 Let M be a matching and P a shortest augmenting path w.r.t M. Let P’ be
a shortest augmenting path w.r.t M @& P (symmetric difference of M and P). We have

|P'| > |P|+|P NP

47

Proof:

Let N=(M&P)ad P'. Thus N6 M =P @ P'. Consider N @& M. This is a collection
of cycles and paths. The cycles are all of even length. The paths may be of odd or even
length. The odd length paths are augmenting paths w.r.t M. Since the two matchings differ
in cardinality by 2, there must be two odd length augmenting paths P; and P, w.r.t M.
Both of these must be longer than P.

|M & N| = |P|+[P'| = |[PNFP'| 2 |P]+ [P = 2|P).

This yields the required inequality. a

Theorem 10.5 The total running time of the above described algorithm is O(y/nm).

Proof:

Fach phase runs in O(m) time. We now show that there are O(y/n) phases. Consider
running the algorithm for exactly \/n phases. Let the obtained matching be M. FEach
augmenting path from now on is of length at least /n + 1. (The paths are always odd in
length and always increase after each phase.) Let M* be the max matching. Consider the
symmetric difference of M and M*. This is a collection of cycles and paths, that contain
the augmenting paths w.r.t M. Let & = |M*| — |M|. Thus there are k augmenting paths
w.r.t M that yield the matching M*. Each path has length at least 2\/n + 1, and they are
disjoint. The total length of the paths is at most n (due to the disjointness).If [; is the length
of each path we have:

k
k(vn+1) <> L <n.
=1

Thus % is upper bounded by y/n. In each phase we increase the size of the matching by at
least one, so there are at most k& more phases. This proves the required bound. a

48

CMSC 651 Advanced Algorithms Lecture 11
Lecturer: Samir Khuller Tu. Feb. 23, 1993

Notes by Joseph Naft.

11 Assignment Problem

Consider a complete bipartite graph, G(X,Y, X x Y), with weights w(e;) assigned to every
edge. (One could think of this problem as modeling a situation where the set X represents
workers, and the set Y represents jobs. The weight of an edge represents the “compatability”
factor for a (worker,job) pair. We need to assign workers to jobs such that each worker is
assigned to exactly one job.) The Assignment Problem is to find a matching with the
greatest total weight, i.e., the maximum-weighted perfect matching (which is not necessarily
unique). Since (7 is a complete bipartite graph we know that it has a perfect matching.

An algorithm which solves the Assignment Problem is due to Kuhn and Munkres, and
is called the Hungarian Method in honor of Egervary. We assume that all the edge weights

are non-negative,
w(xiv yj) > 0.
where

r, € X,y; €Y.

We define a feasible vertex labeling [as a mapping from the set of vertices in GG to the real
numbers, where

(i) +U(y;) = wlws, y;).
(The real number [(v) is called the label of the vertex v.) For example, there exists a feasible
vertex labeling such that

(Vy; € Y) [l(y;) = 0].

and
(x;) = maxw(z;, y;).
J

We define the Equality Subgraph, G;(X,Y, (z;,y;)), to be the spanning subgraph of ¢
which includes all vertices of G but only those edges («;,y;) which have weights such that

w(zi,y;) = l(x:) + y;).

The connection between equality subgraphs and maximum-weighted matchings is pro-
vided by the following theorem:

Theorem 11.1 If the Equality Subgraph, G, has a perfect matching, M*, then M* is a
mazimum-weighted matching in G.

49

Proof:
Let M* be a perfect matching in G;. We have, by definition,

w(M™) = Z w(e).

e€M*

= Z I(v).

veXUY

Let M be any perfect matching in G. Then

w(M) = Z w(e) < ;Yl(v) = w(M").

eeM

Hence,
w(M) < w(M~).
O

The above theorem is the basis of an algorithm, due to Kuhn and Munkres, for finding a
maximum-weighted matching in a complete bipartite graph. Starting with a feasible labeling,
we compute the equality subgraph and then find a maximum matching in this subgraph
(now we can ignore weights on edges). If the matching found is perfect, we are done. If
the matching is not perfect, we add more edges to the equality subgraph by revising the
vertex lables. We also ensure that edges from our current matching do not leave the equality
subgraph. After adding edges to the equality subgraphs, either the size of the matching goes
up (we find an augmenting path), or we continue to grow the hungarian tree. In the former
case, the phase terminates and we start a new phase (since the matching size has gone up).
In the latter case, we grow the hungarian tree by adding new nodes to it, and clearly this
cannot happen more than n times.

The Kuhn-Munkres Algorithm:
Step 1: Build an Equality Subgraph, Gj.

Step 2: Find a maximum matching in G; (not necessarily a perfect matching). If it is a
perfect matching, according to the theorem above, we are done.

Step 3: Let S = the set of free nodes in X
T = all nodes in Y encountered in the search for an augmenting path.

Step 4: Grow Hungarian trees from S, revise the labeling, [, adding edges to Gy to find a
perfect matching, and adding vertices to S and T as they are encountered in the
search, as described below. Return to Step 2.

30

We note the following about this algorithm:

S=X-5.
T=Y-T.
|ST> 1T

There are no edges from S to T, since this would increase the size of the matching which
is already a maximum matching. As we grow the Hungarian Trees in (7, we place alternate
nodes in the search into S and T'. To revise the labels we take the labels in S and start
decreasing them uniformly (say by A), and at the same time we increase the labels in T' by
A. This ensures that the edges from S to T do not leave the equality subgraph. As the labels
in S are decreased, edges from S to T will potentially enter the Equality Subgraph, G). As
we increase A at some point of time, an edge enters the equality subgraph. This is when we
stop and update the hungarian tree. If the node from 7' added to (; is matched to a node
in S, we move these nodes to S and 7', which yields a larger Hungarian Tree. If the node
from T node is free, we have found an augmenting path and the phase is complete. One
phase consists of those steps taken between increases in the size of the matching. There are
at most n phases, where n is the number of vertices in (¢ (since in each phase the size of the
matching increases by 1).

We define the slack of an edge as follows:

slack(x,y) = l(x) + l(y) — w(z,y).
Then

A= min_slack(z,y)
ze€SyeT

Naively, the calculation of A requires O(n?) time. For every vertex in T, we keep track
of the edge with the smallest slack, i.e.,

slack[y;] = gleiglslack(xi, Y;)
The computation of slack[y;] requires O(n?) time at the start of a phase. As the phase
progresses, it is easy to update all the slack values in O(n) time since all of them change
by the same amount (the labels of the vertices in S are going down uniformly). Whenever
a node u is moved from S to S we must recompute the slacks of the nodes in T, requiring
O(n) time. But a node can be moved from S to S at most n times.
Thus each phase can be implemented in O(n?) time. Since there are n phases, this gives

us a running time of O(n?).

51

CMSC 651 Advanced Algorithms Lecture 12
Lecturer: Samir Khuller Th. Feb. 25, 1993

Notes by Sibel Adali.

12 Stable Marriages Problem.

We're given a complete bipartite graph consisting of n boys and n girls. Each girl (boy) makes
a preference list of the boys (girls), such that the first element in the list shows the boy (girl)
she (he) likes the most and the last element is the last boy (girl) in the world she (he) would
like to be with. The preference lists of the girls and the boys are required to contain all the
individuals from the opposite sex. A perfect matching on this graph is called a marriage and
the matched pairs are called couples. We can formalize this problem as follows: given a com-
plete bipartite graph GG = (GU B, F) and preference lists b; = [o(b', 1), (b, 2), ..., 0(b"),n)],
g; = [o(g’,1),0(g’,2),...,0(¢7,n)] for all b; € B, g; € G, find a perfect matching that is not
unstable.

A marriage M is called unstable iff the following is true: Let Jane and Paul, Mary and
John be two couples in M. If Jane prefers John to Paul and John prefers Jane to Mary
according to their preference lists. Then, this marriage is unstable.

Paul « Jane John = [... Jane ... Mary ... |
John « Mary Jane = [... John ... Paul ...]

In other words a marriage M is called unstable, iff there exists a pair that is not matched in
M who prefer each other to their current partners.
The algorithm to find a stable marriage is given by Gale & Shapley and it works as follows:

Algorithm for finding a stable marriage
Step 1: Every girl proposes to the first boy in her preference list.

Step 2: Every boy who receives proposals checks his preference list and gets engaged to the
girl having the highest preference among the ones who proposed to him.

Step 3: In the next round, all the girls who are not engaged propose to the next boy in their
preference lists.

Step 4: If the boy is already engaged with another girl, he checks if he got a proposal from
a girl with higher preference, if so (as most boys do (!)) he breaks his engagement
with his former fiancée and he gets engaged to the girl who just proposed to him.
In the next round, the girls who lost their fiancés in the competition, will propose
to the boy that comes just after their lost fiancés in their preference lists.

52

Step 5: Last two steps are repeated until everybody is matched.

The above algorithm will always terminate: because, when a girl proposes to the last boy
in her list all the other boys are engaged (to the other n — 1 girls), so the boy who is not
engaged has to accept her proposal.

Proposition 12.1 The marriage found by the above algorithm is stable.
Proof:

Assume by way of contradiction that the marriage is unstable, that is there is a pair John
and Jane as explained above. Since John comes before Paul in Jane’s preference list, Jane
must have proposed to John before Paul. Since John rejected Jane, he must be engaged with
a girl that comes before Jane in his preference list. John will break his engagement only if a
girl that comes before his current partner proposes to him, therefore Mary must come before
Jane in his list. Hence, the marriage is stable. O

It is easy to see that the above algorithm runs in O(n?) steps.

13 Network Flow - Maximum Flow Problem

a e N
e
\\
/

N /

Figure 11: Network flow problem

The problem is defined as follows: Given a directed graph G¢ = (V, F, 5,1, ¢) where s and
t are special vertices called the source and the sink, and cis a capacity function ¢ : £ — R¥,
find the maximum flow from s to t.

Flow is a function f : £ — RT that has the following properties:

1. (Skew Symmetry) f(u,v) = —f(v,u)

33

~\
/:O

/

Carry flow into
the vertex

/// \\

Carry flow out
of the vertex

Flow Conservation

2. (Flow Conservation) Y,cy f(u,v) =0 for all w € V — {s,1}.
(Incoming flow) ¥,ev f(v,u) = (Outgoing flow) ¥,ev f(u,v)

3. (Capacity Constraint) f(u,v) < ¢(u,v)
Maximum flow is the maximum value |f] given by
|f| = ZUEVf(va) = ZUEVf(vvt)'

Definition 13.1 (Cut) An (s,?) cut is a partitioning of V into two sets A and B such that
ANB=0,AUB=V and s € A,t € B.

O
/ j><// \
o .

<
<

A s

Figure 12: An (s,t) Cut

Definition 13.2 (Capacity Of A Cut) The capacity C'(A, B) is given by
C(A, B) == ZaeA,beB c(a, b)

By the capacity constraint we have that |f| = Y,ev f(s,v) < C(A, B) for any (s,t) cut
(A, B). Then, the capacity of the minimum capacity cut is an upper bound on the value of
the maximum flow.

o4

Definition 13.3 (Residual Graph) G? is defined with respect to some flow function f,
Gy = (V, Fy,s,t,c) where ¢(u,v) = ¢(u,v) — f(u,v). Delete edges for which ¢/(u,v) = 0.

As an example, if there is an edge in GG from v to v with capacity 15 and flow 6, then in G
there is an edge from u to v with capacity 9 (which means, I can still push 9 more units of
liquid) and an edge from v to u with capacity 6 (which means, I can cancel all or part of the
6 units of liquid I'm currently pushing) '. E; contains all the edges e such that ¢/(e) > 0.

Lemma 13.4 1. f isa flow in Gyeift f+ f"is a flow in G.
2. f is a maximum flow in Gyeift f+ f'is a maximum flow in G.
B Af+ =11+ 111

4. It fis aflow in GG, and f* is the maximum flow in &, then f*— f is the maximum flow

in Gf.

Figure 13: The Residual Graph G

Theorem 13.5 (Max flow - Min cut Theorem) The following three statements are equiv-
alent:

1. fis a maximum flow.
2. There exists an (s,1) cut (A, B) with C(A, B) = |f|.

3. There are no augmenting paths in G.

1Since there was no edge from v to u in G, then its capacity was 0 and the flow on it was -6. Then, the
capacity of this edge in Gy is 0 — (—6) = 6.

)

An augmenting path is a directed path from s to ¢.
Proof:
We will prove that (2) = (1) = (3) = (2).

((2) = (1)) Since no flow can exceed the capacity of an (s,t) cut (i.e. f(A, B) < C(A,B)),
the flow that satisfies the equality condition of (2) must be the maximum flow.

((1) = (3)) If there was an augmenting path, then I could augment the flow and find a
larger flow, hence f wouldn’t be maximum.

((3) = (2)) Consider the residual graph G'¢ given in figure 13. There is no directed path
from s to t in Gy, since if there was this would be an augmenting path. Let A = {v|v is
reachable from s in G;}. A and A form an (s,t) cut, where all the edges go from A to A.
The flow f must be equal to the capacity of the edge, since for all u € A and v € A, the
capacity of (u,v)is 0in Gy and 0 = ¢(u,v) — f (u,v), therefore ¢(u,v) = f (u,v). Then, the
capacity of the cut in the original graph is the total capacity of the edges from A to A, and
the flow is exactly equal to this amount. a

T T
ey

@)

The capacity of edges The flow function

/) ‘1\ O\l‘
'/1 | ot / |2 ot
2

S O 9 J / s O J /

3 3

A \Ox \ o

The residual graph The min-cut
(Max flow = 4) (C(A,B)=1)

Figure 14: An example

56

CMSC 651 Advanced Algorithms Lecture 13
Lecturer: Samir Khuller March 2, 1993

Notes by Andrew Vakhutinsky.

14 The Max Flow Problem

Definition 14.1 (Flow Function) Given a directed flow graph G = (V,E, s,t,¢) with
source s, sink t and capacity function ¢ : E — RY. Function [: B — RY is called a
flow if it has the following three properties:

1. skew symmetry f(u,v) = —f(v,u)
2. flow conservation Y ey f(u,v) =0 Yu # s,t
3. capacity constraint f(u,v) < ¢(u,v)
Value of flow f is defined as |f| = Loev f(5,0) = Loev f(v,1)
Max Flow Problem: maximize |f|

Definition 14.2 (Flow Cut) In a given flow graph G = (V,E,s,t,¢), a cut(A,B) is a
partition of the vertex set V such that ANB =0, AUB=V,sec A, 1€ B.
Capacity of a cut is defined as ¢(A, B) =l Y ueAven c(u,v)

Definition 14.3 (Residual Graph) A flow graph G; = (V, E,s,t,¢) is called a residual
graph with respect to flow graph G and flow function f if for all e € E (e) = ¢(e) — f(e).
In this case we write simply ¢ = ¢ — f.

Zero capacity edges are usually considered eliminated from G.
Lemma 14.4
1. fisaflowin Gy iff f+ [is a flowin G.
2. fis a max flow in Gy iff f+ f' is a mazx flow in G.
A+ =11+ 1]
4. If [s a flowin G and [~ is the max flow in G then f* — f is the maz flow in Gy.

Definition 14.5 (Augmenting Path) A path P from s to t in flow graph G is called
augmenting if all its edges are not saturated, that is Ve € P f(e) < ¢(e). Residual capacity
of an augmenting path P will be called a value max.cp(c(e) — f(e))

The idea behind this definition is that we can send a positive amount of flow along the
augmenting path from s to ¢ and "augment” the flow in G.

57

14.1 Max Flow - Min Cut Theorem

Theorem 14.6 (Max Flow - Min Cut Theorem) The Following three statements are
equivalent.

(a) [is a maz flow in G
(b) 3 cut(A,B) such that ¢(A, B) = | f|
(c) there are no augmenting paths in Gy

Proof:

(a)=(c) is trivial.

(b)=(a) is also trivial if one notices |f| = f(A,B) < ¢(A, B) where f(A,B) f
ZueA,ueB f(u, v) _

(c)=(b). Let W = {v|v is reacheable from s in G} and consider a cut (W, W) in ¢
where W =V — W. Then

V(v,u) € Eandv € W,u € W f(u,v) = c(u,v)
V(u,v) € Eandu € W, € W f(u,v) = 0

It implies ¢(W, W) = f(W, W) = |f]. O
A ”Naive” Max Flow Algorithm:

while (there is an augmenting path P in () do
pick up an augmenting path P;
¢(P) «— mingep c(e);
send flow amount ¢(P) along P;

update flow value |f| «— |f| + ¢(P);

Analysis: On each iteration, sending some flow along an augmenting path, we increase
the flow value. If all edge capacities are integral, the algorithm will terminate but its running
time is O(m |f*]) in the worst case (where |f*| is the value of the max-flow).

A worst case example. Consider a flow graph as shown on the Fig. 15. Using aug-
menting paths (s,a,b,t) and (s,b,a,t) alternatively at odd and even iterations respectively
(fig.1(b-c)), it requires total |f*| iterations to construct the max flow.

If all capacities are not integral (rational), flow algorithm might never terminate.

Example. Consider a graph on Fig. 16 where all edges except (a, d), (b,¢e) and (¢, f) are
unbounded (have comparatively large capacities) and c(a,d) = 1, ¢(b,e) = R and c(¢, f) =
R?. Value R is chosen such that R = @ and, clearly, R"*? = R™ — R"*!, If augmenting
paths are selected as shown on Fig. 16 by dotted lines, residual capacities of the edges (a, d),
(b, ¢) and (c, f) will remain 0, R**! and R***2 after every (3k+1)st iteration (k = 0,1,2,...).
Thus, the algorithm will never terminate.

38

a
100 1
5 100
s ! Ot S
0
100) 100 &
2 2 b
b

Initial flow graph Flow in the graph after
(a) plep (b)

with capacities the 1st iteration

1 100 100
2 2
S 0
S Ot
1
b
Flow in the graph Flow in the graph
(c) after the 2nd iteration (d) after the final iteration

Figure 15: Worst Case Example

39

Figure 16: Non-terminating Example

60

14.2 Polynomial Time Algorithms (Edmonds-Karp)

Assumption: Capacities are integers.

1st Edmonds-Karp Algorithm:

while (there is an augmenting path s — ¢ in () do
pick up an augmenting path with the highest residual capacity;
use this path to augment the flow;

Analysis: First, prove that if the max flow in a graph G is f*, the highest capacity of an
augmenting path is > |J:n—*|

Consider a decomposition of the flow onto saturated flow paths passing each edge in
the same direction. Such a decomposition does exist. Indeed, if there are two paths P, =
(P, (u,v), P/') and Py = (Py,(v,u), P)) passing the edge (u,v) in opposite directions with
corresponding flow amounts fi(u,v) > fa(v,u), then they can be replaced by three paths
(P, P)), (P, (u,v), P") and (P, P/') with flow amounts fs, fi — f2 and f; respectively and
the edge (u,v) will not be passed in opposite directions. The maximum number of these
paths is m since each augmenting flow contains at least one saturated edge. Hence, there is
one augmenting path with a capacity at least |J;n—*| a

Thus flow amount remained after the first iteration is

Rem (1) < |/*](1 — 1/m);

amount of flow pushed on the second iteration is

Push (2) > (/™)

m

Finally, amount of flow remained after the k-th iteration is

Rem (1) < (" 1)"

Solving equation
m—1

(=) =1,
m
obtain the number of iterations k& ~ mlog |f*|.
Taking into a consideration that a path with the highest residual capacity can be picked
up in time O(m + n logn) (HW 4), the overall time complexity of the algorithm is
O((m? + mnlogn)log|f*]).

2nd Edmonds-Karp Algorithm:

while (there is an augmenting path s — ¢ in () do
pick up the shortest augmenting path (counting only the number of edges);
use this path to augment the flow;

61

Analysis: Consider a layered graph L obtained after BFS in Gy from s. There are at
most m augmenting paths in the graph L, each of them can be found in time O(m). When
all the augmenting paths are exhausted in Lg, consider a new one which will have a greater

number of layers. Since the maximum number of layers is n, the overall time complexity of
the algorithm is O(nm?).

History
Ford-Fulkerson (1956)
Edmonds-Karp (1969) O(nm?)
Dinic (1970) O(n*m)
Karzanov (1974) O(n?)
MEKM (1977)0(n?)

62

CMSC 651 Advanced Algorithms Lecture 14
Lecturer: Samir Khuller Th. Mar. 4, 1993

Notes by Marios Leventopoulos

15 An O(n’) Max-Flow Algorithm

The max-flow algorithm operates in phases. At each phase we construct the residual network
Gy, and from it we find the layered network Lg,.

In order to construct Lg, we have to keep in mind that the shortest augmenting paths in
G with respect to f correspond to the shortest paths from s to ¢ in Gy. With a breadth-first
search we can partition the vertices of GGy into disjoint layers according to their distance (the
number of arcs in the shortest path) from s. Further more, since we are interested only in
shortest s —1 paths in Gy we can discard any vertices in layers greater than that of ¢, and
all other than ¢ in the same layer as ¢, because they cannot be in any shortest s — ¢ path.
Additionally a shortest path can only contain arcs that go from layer j to layer j + 1, for
any j. So we can also discard arcs that go from a layer to a lower layer, or any arc that joins
two nodes of the same layer.

An augmenting path in a layered network with respect to some flow ¢ is called forward if
it uses no backward arcs. A flow ¢ is called mazimal (not maxzimum) if there are no Forward
Augmenting Paths (FAP).

We then find a maximal flow g in Lg,, add g to f and repeat. Each time at least one arc
becomes saturated, and leaves the net. (the backward arc created is discarded). Eventually
s and t become disconnected, and that signals the end of the current phase. The following
algorithm summarizes the above:

Step 1: f=0

Step 2: Construct G

Step 3: Find mazimal flow g in Lg,
Step 4: f— f+g

Step 5: goto step 2 (next phase)

In Lg, there are no forward augmenting paths with respect to g, because g is maximal.
Thus all augmenting paths have length greater than s — ¢ distance. We can conclude that
the s — ¢ distance in the layered network is increasing from one phase to the other. Since it
can not be greater than n, the number of phases is O(n).

63

Throughput(v) of a vertex v is defined as the sum of the outgoing capacities, or the
incoming capacities, whichever is smaller, i.e it is the maximum amount of flow that can be
pushed through vertex v.

The question is, given a layered net GGy (with a source and sink node), how can we
efficiently find a maximal flow ¢7

Step 1: Pick a vertex v with minimum throughput,
Step 2: Pull that much flow from s to v and push it from v to ¢
Step 3: Repeat until ¢ is disconnected from s

By picking the vertex with the smallest throughput, no node will ever have to handle an
amount of flow larger than its throughput, and hence no backtracking is required. In order
to push flow from v to t we process nodes layer by layer in breadth-first way. Each vertex
sends flow away by completely saturating each of its outgoing edges, one by one, so there is
at most one outgoing edge that had flow sent on it but did not get saturated.

Each edge that gets saturated is not further considered in the current phase. We charge
each such edge when it leaves the net, and we charge the node for the partially saturated
edge.

The operation required to bring flow from s to v is completely symmetrical to pushing
flow from v to t. It can be carried out by traversing the arcs backwards, processing layers in
the same breadth-first way and processing the incoming arcs in the same organized manner.

To summarize we have used the following techniques:

1. Consider nodes in non-decreasing order of throughput
2. Process nodes in layers (i.e. in a breadth-first manner)

3. While processing a vertex we have at most one unsaturated edge (consider only edges
we have sent flow on)

After a node is processed it is removed from the net, for the current phase.

Work done: We have O(n) phases. At each phase we have to consider how many times
different arcs are processed. Processing an arc can be either saturating or partial. Once an
arc is saturated we can ignore it for the current phase. Thus saturated pushes take O(m)
time. However one arc may have more than one unsaturated push per phase, but note that
the total number of pulls and pushes at each stage is at most n because every such operation
results to the deletion of the node with the lowest throughput; the node where the this
operation was started. Furthermore, for each push or pull operation, we have at most n
partial steps, for each node processed. Therefore the work done for partial saturation at
each phase is O(n?).

So we have O(n?) total work done for all phases.

64

CMSC 651 Advanced Algorithms Lecture 15
Lecturer: Samir Khuller Tu. Mar. 9, 1993

Notes by Samir Khuller.

16 Pre-flow Push Method

Please read Chapter 27.4 (pp. 605 — 614) from [CLR]. The book explains the pre-flow push
method very well.
There will be no lecture on Mar 11. We will have an Examination instead.

65

CMSC 651 Advanced Algorithms Lecture 16
Lecturer: Samir Khuller Tu. March 23, 1993

Notes by Marsha Chechik.

17 Planar Graphs

A graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane so
that its edges intersect only at their ends.

17.1 Euler’s Formula

There is a simple formula relating the numbers of vertices (V), edges (E) and faces (F') in
a connected planar graph - Euler’s formula:

V-E+F=2
Proof:
Simply by induction. O

To remember this formula, think of a cycle (n vertices, n edges, 2 faces) or of a tree (n
vertices, n — 1 edges, 1 face).

From this formula, we can prove that a planar graph has a linear number of edges (£ <
3V —6).
Planar graphs are useful since they appear a lot in the context of VLSI design.

Theorem 17.1 (Separator Property (Lipton - Tarjan)) Given a planar graph G=(V,E),
there exists disjoint vertex partition V.= A U B U C, such that

1. |C| = O(y/n). Actually, |C| < 2v/2/n.

2. There are no edges between vertices in A and vertices in B. Therefore, removal of C
makes the graph disconnected. C is called a separator.

3. Al |B| < Zn.

Note (Alon, Seymour, Thomas): Computing the separator set of a family with excluded
minor H, takes O(|H|'%\/nn).

Examples:

1. See Fig. 17. This is the grid from the midterm. Removal of the middle row (y/n

elements) makes the graph disconnected.

2. Of course, A does not have to be connected. Rather, it could contain many small

graphs. See Fig. 18.

This theorem is used for divide-and-conquer algorithms.

66

-

C

In

Figure 17: Application of the separator property.

=

A

Figure 18: Multiple graphs in A.

67

17.2 Smallest Non-Planar Graphs

Theorem 17.2 The smallest non-planar graphs are K5 and K 3.

Figure 19: Embedding of K

Proof:

We will show that KA’5 is non-planar. The proof is by contradiction. Let GG be a planar
graph corresponding to K5. Let the vertices be called by vy, vy, v3, vy4, and vs. Since G
is complete, any two of the vertices are joined by an edge. Assume, without the loss of
generality, that after inserting vertex vy, the graph looks like Fig. 19. Now v5 must lie in one
of the four regions extC, intCy, intCy, and intCs. If vs € extC then the edge (v4v5) must
cross (' at some point. This contradicts the assumption that G is a planar graph. Cases
where vs € intC;, 1 =1, 2, 3, can be treated similarly. Nonplanarity of K53 can be proven
the same way. (A simple proof of non-planarity of Kj follows by Euler’s formula as was

observed by Marsha Chechik.) O

Note: Both K5 and K33 are embeddable on a surface with genus 1 (a doughnut).
Definition: Subdivision of a graph (G is obtained by adding nodes of degree two on edges
of G.

(G contains H as a homeomorph if we can obtain a subdivision of H by deleting vertices and
edges from G.

17.3 Bridges

Definition: Consider a cycle C'in (G. Edges e and €’ are said to be in the same bridge if
there is a path joining them that does not use any vertex in C.

By this definition, edges form equivalence classes that are called bridges. A trivial bridge
is a singleton edge.

63

Figure 20: Bridges relative to the cycle C.

Definition: A common vertex between the cycle C' and one of the bridges with respect to
C', is called a vertex of attachment.

Definition: Two bridges avoid each other with respect to the cycle if all vertices of attach-
ment are on the same segment. In Fig. 20, By avoids By and Bs does not avoid B;. Bridges
that avoid each other can be embedded on the same side of the cycle. Obviously, bridges
with two attachment points are embeddable within each other, so they avoid each other.
Bridges with three attachment points which coincide (3-equivalent), do not avoid each other

(like bridges By and By in Fig. 20). Therefore, two bridges either
1. Avoid each other
2. Overlap (don’t avoid each other).

o Skew: A vertex of attachment of one bridge lies on a segment between vertices of
attachment of the other bridge (see Fig. 21).

e 3-equivalent (like By and By in Fig. 20)
It can be shown that other cases reduce to the above cases. For example, a 4-equivalent

graph (see Fig.22) can be classified as a skew, with vertices u and v belonging to one bridge,
and vertices v’ and v’ belonging to the other.

17.4 Kuratowski’s Theorem

Consider non-planar graphs that do not contain K5 or K33 as a homeomorph. Of all such
graphs, pick the one with the least number of edges. We now prove that such a graph must
always contain a Kuratowksi homeomorph (i.e., a K5 or K33). Note that such a graph is
minimally non-planar.

The following theorem is claimed without proof.

Theorem 17.3 Such a graph G is 3-connected.

69

Figure 21: Two bridges that are skew.

Figure 22: Two bridges with 4 attachment points.

70

Theorem 17.4 (Kuratowski’s Theorem) G is planar iff G' does not contain a subdivi-
sion of either K5 or K.

Proof:

If G has a subdivision of K5 or K33, then G is not planar. If G is not planar, we will
show that it must contain K5 or Ks3. Pick a minimal non-planar graph G. Let (u,v) be the
edge, such that ' = (¢ — (u,v) is planar. Take a planar embedding of i/, and take a cycle
C' passing through v and v such that G’ has the largest number of edges in the interior of
C. (Such a cycle must exist due to the 3-connectivity of G.)

Claims:

1. Every external bridge with respect to C' has exactly two attachment points. Otherwise,
a path in this bridge going between two attachment points, could be added to C to
obtain more edges inside C.

2. Every external bridge contains exactly one edge. This result is from the 3-connectivity
property. Otherwise, removal of attachment vertices will make the graph disconnected.

3. At least one external bridge must exist, because otherwise u and v could be connected
while keeping the graph planar.

4. There is at least one internal bridge, to prevent an internal edge between u and v.

5. There is at least one internal and one external bridge that prevent the addition of (u,
v), and these two bridges do not avoid each other (otherwise, the inner bridge could
be moved outside).

a) This graph contains K_5 homeomorplb) This graph contains $K_{3,3}$ homeomorph

Figure 23: Possible vertex-edge layouts.

Now, let’s add (u,v) to G’. The following cases is happen:

71

1. See Fig. 23(a). This graph contains a homeomorph of K. Notice that every vertices
are connected with an edge.

2. See Fig. 23(b). This graph contains a homeomorph of Ks3. To see that, let A =
{u,z,w} and B = {v,y, z}. Then, there is an edge between every v; € A and v, € B.

The other cases are similar and will not be considered here. O

Definition: Graph G contains H as a minor if the exists a set of edges which can be thrown
away or contracted, to obtain H.

Note: The Kuratowski’s theorem can be extended to showing that every non-planar
graph contains K5 and K33 minors.

72

CMSC 651 Advanced Algorithms Lecture 17
Lecturer: Bill Gasarch Th, Mar. 25, 1993

Notes by Michael Tan and Samir Khuller.

18 Graph Minor Theorem and other CS Collectibles

In this lecture, we discuss graph minors and their connections to polynomial time com-
putability.

Definition 18.1 (minor) We say that H is « minor of G (H < G) if H can be obtained
from G by edge removal, vertex removal and edge contraction.

Definition 18.2 (closed under minor) Given a class of graphs C, and graphs G and H,
C is closed under taking minors if G € C and H < G implies H € C.

An example of a class of graphs that is closed under taking minors is the class of planar
graphs. (If G is planar, and H is a minor of G then H is also a planar graph.)

Theorem 18.3 (Graph Minor Theorem Corollary) [Robertson—Seymour] IfC is any
class of graphs closed under taking minors, then there exists a finite obstruction set Hy, ..., H,

such that G € C « (Vi)[H; £ G].

The proof of this theorem is highly non-trivial and is omitted.
Example: For genus 1 (planar graphs), the finite obstruction set is K5 and Ks,5. G is
planar if and only if K5 and K3,3 are not minors of (. Intuitively, the “forbidden” minors
(in this case, K5 and K33) are the minimal graphs that are not in the family C.

Theorem 18.4 Testing H < G, for a fized H, can be done in time O(n®), if n is the number
of vertices in (.

Notice that the running time does not indicate the dependence on the size of H. In fact,
the dependence on H is huge! There is an embarassingly large constant that is hidden in
the big-O notation. This algorithm is far from practical for even very small sizes of H.
Some results of the above statements:

1. If ¢ ={all planar graphs}, we can test G € C in O(n?) time. (To do this, test if K5 and
K33 are minors of G. Fach test takes O(n?) time.)

2. If C = {all graphs in genus k} (fixed k), we can test if (G € C) in O(r?) time. (To do
this, test if H; < G(¢ = 1..L) for all graphs of C’s obstruction set. The time to do this is
O(L *n?) = O(n?), since L is a constant for each fixed k.)

3. We can solve Vertex Cover for fixed k£ in POLYNOMIAL time. (The set of all graphs with

(vertex cover size) < k, is closed under taking minors. Therefore, it has a finite obstruction
set. We can test a given graph G as we did in 2.)

73

18.1 Towards an algorithm for testing planarity in genus k

We can use a trustworthy oracle for SAT to find a satisfying assignment for a SAT instance

(set a variable, quiz the oracle, set another variable, quiz the oracle,). The solution will

be guaranteed. With an untrustworthy oracle, we may use the previous method to find a

satisfying assignment, but the assignment is not guaranteed to be correct. However, this is

something that we can test for in the end. We use this principle in the algorithm below.
The following theorem is left to the reader to verify (see homework).

Theorem 18.5 Given a graph G and an oracle that determines planarity on a surface with
genus k, we can determine if GG is planar in genus k and find such a planar embedding in
polynomial time.

We will now use this theorem, together with the graph minor theorem to obtain an
algorithm for testing if a graph can be embedded in a surface of genus k (fixed k).

ALGORITHM for testing planarity in genus k£ and giving the embedding:
(uses an untrustworthy “Planarity in k” Oracle)

The oracle uses a “current” list H of forbidden minors to determine if a given graph is
planar or non-planar. The main point is that if the oracle is working with an incomplete list
of forbidden minors, and lies about the planarity of a graph then in the process of obtaining
a planar embedding we will determine that the oracle lied. However, some point of time we
will have obtained the correct list of forbidden minors (even though we will not know that),
the oracle does not lie thereafter. Since there is only a finite forbidden list, this will happen
after constant time.

L. Input(G)
2. Fore:=1to oo
2.1 - generate all graphs [y, Fy, ... F}.
2.2 - for every graph f in Fi..F;
- Check if f is planar (in k) (using brute force to try all possible embeddings of f)
- if f is not planar, put f in set H [We are constructing the finite obstruction set]
2.3 - test if (Hy < G),(Hy <G),...(H < G)
2.4 -if any H < G, then RETURN(G IS NOT PLANAR)
2.5 - else
2.5.1 - try to make some embedding of G (We do this using H, which gives us an untrustwor-
thy oracle to determine if a graph is planar in k. There exists an algorithm (see homework)
which can determine a planar embedding using this PLANARITY oracle.)
2.5.2 - if we can, RETURN (the planar embedding, G IS PLANAR);
- else keep looping (H must not be complete yet)

Running time:
The number of iterations is bounded by a constant number (independent of G) since at
the point when the finite obstruction set is completely built, statement 2.4 or 2.5.2 MUST
suceed.

74

18.2 Applications:

Since we know VC for fixed £k is in P, a good polynomial algorithm may exist. Below are

several algorithms :

Algorithm 1 [Fellows]:

build a tree as follows:
- find edge (u,v) which is uncovered
- on left branch, insert u into VC, on right branch insert v into VC

- descend, recurse

. VC={}, (u,v) is uncovered

/ \
Ve ={ur/ \ VvC = {v}
/' N/ \
vC={u,v4}/ \N/ \ VC = {v, v2}
etc.

Build tree up to height k. There will be O(2%) leaves. If there exists a vertex cover of
size < k, then it will be in one of these leaves. Total time is O(n * 2¥) = O(n).

A second simpler algorithm is as follows: any vertex that has degree > & must be in the
VERTEX COVER (since if it is not, all its neighbours have to be in any cover). We can
thus include all such nodes in the cover (add them one at a time). We are now left with
a graph in which each vertex has degree < k. In this graph we know that there can be at
most a constant number of edges (since a vertex cover of constant size can cover a constant
number of edges in this graph). The problem is now easy to solve.

75

CMSC 651 Advanced Algorithms Lecture 18
Lecturer: Samir Khuller Tu. March 30, 1993

Notes by Vadim Kagan.

19 Graph Coloring

Problem : Given a graph G = (V, F), assign colors to vertices so that no adjacent vertices
have the same color.

Note that all the vertices of the same color form an independent set (hence applications
in parallel processing).

Theorem 19.1 (6-colorability) If G = (V, E) is planar,then G is 6-colorable.

Proof:

Main property: there is a vertex in G with degree < 5. Suppose all the vertices in GG
have degree > 6. Then since
v deg(V)
B 2
we get |E| > 3n which contradicts the fact that for planar graphs |E| < 3n — 6 for n > 3.
So there is (at least one) vertex in G with degree < 5.

Proof of 6-colorability of G is done by induction on the number of vertices. Base case

|£]

is trivial, since any graph with < 6 vertices is clearly 6-colorable. For inductive case, we
assume that any planar graph with n vertices is 6-colorable and try to prove that the same
holds for a graph GG with n + 1 vertices.

Let us pick a minimum-degree vertex v and delete it from (. The resulting graph has n
vertices and is 6-colorable by the induction hypothesis. Let ' be some such coloring. Now
let’s put v back in the graph. Since v was the minimal-degree vertex, the degree of v was
at most 5 (from the lemma above). Even if all the neighbours of v are assigned different
colors by (', there is still one unused color left for v, such that in the resulting graph no two
adjacent vertices have the same color. This gives an O(n) algorithm for 6 coloring of planar
graphs. O

We will now prove a stronger property about planar graph coloring.

Theorem 19.2 (5-colorability of planar graphs) FEvery planar graph is 5-colorable.

Proof:

We will use the same approach as for the 6-colorability. Proof will again be on induction
on the number of vertices in the graph. The base case is trivial. For inductive case, we again
find the minimum degree vertex. When we delete it from the graph, the resulting graph is

76

5-colorable by induction hypothesis. This time, though, putting the deleted vertex back in
the graph is more complicated than in 6-colorability case. Let us denote the vertex that we
are trying to put back in the graph by v. If v has < 4 neighbours, putting it back is easy
since one color is left unused and we just assign v this color. Suppose v has 5 neighbours
(since v was the minimum-degree vertex in a planar graph, its degree is < 5) and all of them
have different colors (if any two of v’s neighbours have the same color, there is one free color
and we can assign v this color). To put v back in G we have to change colors somehow (see
Fig. 24). How do we change colors? Let us concentrate on the subgraph of nodes of colors 2
and 4. Suppose colors 2 and 4 belong to different connected components. Then flip colors 2
and 4 in the component that vertex 4 belongs to, i.e., change color of all 4-colored nodes to
color 2 and nodes with color 2 to color 4. Since colors 2 and 4 are in the different connected
components, we can do this without violating the coloring (in the resulting graph, all the
adjacent nodes will still have different colors). But now we have a free color - namely, color
4 - that we can use for v.

What if colors 2 and 4 are in the same component? In this case, there is a path P of
alternating colors (as shown on Fig. 24).

Figure 24: Graph with alternating colors path

Note that node 3 is now “trapped” - any path from node 3 to node 5 crosses P. If we
now consider a subgraph consisting of 3-colored and 5-colored nodes, nodes 3 and 5 cannot
be in the same connected component - it would violate planarity of (G. So we can flip colors
3 and 5 (as we did for 2 and 4) and get one free color that could be used for v; this concludes
the proot of 5-colorability of planar graphs. a

77

20 Flow in Planar Networks

Suppose we are given a (planar) undirected flow network, such that s and ¢ are on the same
face (we can assume, without loss of generality, that s and ¢ are both on the infinite face).
How do we find max-flow in such a network?

In the algorithms described in this section, the notion of planar dual will be used: Given
a graph G = (V, E) we construct a corresponding planar dual GP = (VP EP) as follows
(see Fig. 25).

Figure 25: Graph with corresponding dual

For every face in G put a vertex in GP; if two faces fi, f, share an edge in G, put an
edge between vertices corresponding to fi, f; in GP (if two faces share two edges, add two
edges to GP). Note that GPP = G, |VP| = F,|EP| = E, where F is the number of faces in
G.

20.1 Two algorithms
Uppermost Path Algorithm

1. Take the uppermost path (see Fig. 26).

2. Push as much flow as possible along this path (until the minimum residual
capacity edge on the path is saturated).

3. Delete saturated edges.

4. If there exists some path from s to ¢ in the resulting graph, pick new uppermost
path and go to step 2; otherwise stop.

For a graph with n vertices and m edges, we repeat the loop m times, so for planar graphs
this is a O(nm) = O(n?) algorithm. We can improve this bound to O(n logn) by using heaps

78

Uppermost path

Figure 26: Uppermost path

for min-capacity edge finding. To reflect the decreasing residual capacities, keep a counter
that shows by how much we decrease keys of edges in the heap. For example, if counter for
a particular heap is -1, it means that the key of every edge in the heap is to be decreased by
1, 1.e. an edge with key 5 should be interpreted as having key 4. When adding an edge with
key 5 to this heap, the key should be increased to 6.

Hassin’s algorithm

Given a graph G, construct a dual graph G and add to it two new nodes s* and t*,
both on the infinite face (see Fig. 27).

Figure 27: GP*

Node s* is added at the top of G” and every node in G corresponding to an edge on
the top of (¢ is connected to s*. Node t* is similarly placed and connected at the bottom of

79

GP. The resulting graph is denoted GP*,

If some edges form an s — ¢ cut in , the corresponding edges in GP* form a path from
s* to t*. In GP*, weight of each edge is equal to the capacity of the corresponding edge in G,
so the min-cut in G corresponds to the shortest path between s* and #* in GP*. There exists
a number of algorithms for shortest path finding. Frederickson’s algorithm, for example, has
running time O(n+/logn).

Now that we have found the value of maxflow, the problem is to find the flow through
each individual edge.

To do that, let us label each node v; in GP* with d;, v;’s distance from s* (as usual,
measured along the shortest path from s* to v;). For every edge e in G, we choose the
direction of flow through it in such a way that the largest-labeled of the two ”adjacent” to
¢ nodes in GP* is on the right (see Fig. 28).

Figure 28: Labeled graph

If d; and d; are labels for a pair of adjacent to e faces, the value of the flow through e
is defined to be equal to the difference between the larger and the smaller of d; and d;. Let
us prove that thus defined function satisfies the flow properties, namely that for every edge
in (G the flow through it does not exeed its capacity and for every node in GG the amount of
flow entering it is equal to the amount of flow leaving it (except for source and target).
Suppose there is an edge in G having capacity C' (as on Fig. 29), such that the amount of
flow f through it is greater than C: d; — d; > C (assuming, without loss of generality, that
d; > d])

80

Figure 29:

Then, we can decrease d; (which is the cost of the shortest path to this node from s*)
by following the shortest path to v; and then going from d; to d; across e. In this case, the
label for v; = d; + C' < d;. This contradicts the fact that the original d; was already the cost
of the shortest path, and therefore no such edge e exists.

To show that for every node in (¢ the amount of flow entering it is equal to the amount of
flow leaving it (except for source and target), let us do the following. We will go around in
some (say, counterclockwise) direction and add together flows through all the edges adjacent
to the vertex (see Figure 30). Note that, for edge e;, d; — d;41 gives us negative value if ¢;

€3

Figure 30:
is incoming (i.e. d; < d;31) and positive value if e; is outgoing. By adding together all such

pairs d; — d;yq1, we get dy —dy +dy —ds+ ...+ dp_1 — dp + di, — dy = 0, from which it follows

that flow entering the node is equal to the amount of flow leaving it.

81

CMSC 651 Advanced Algorithms Lecture 19
Lecturer: Samir Khuller Th. April 1, 1993

Notes by Maria Chechik & Suleyman Sahinalp

21 On Line vs. Off Line: A Measure for Quality Eval-
uation

Suppose you have a dynamic problem. An algorithm for solving a dynamic problem which
uses information about future is called an off-line algorithm. But computer scientists, are
human beings without the capability of predicting the future. Hence their algorithms are
usually on-line (i.e. they make their decisions without any information about the future).

21.1 K-Server Problem

In a fraternity party there are several robots which are responding to requests of the frat-
members. Whenever someone requests a drink, one of the robots is sent to him. The problem
here is to decide which robot is “best suited” for the request; moreover to find a measure for
being “best suited”.

If you knew the sequence of the location of requests, then you’d try to minimize the total
distance your robots would travel until the end of the party. (It is an interesting exercise to
solve this problem.) As you don’t have this information you try to achieve some kind of a
measure for assuring you (as the robot controller) didn’t perform “that badly”.

Conjecture 21.1 If you have k robots, then there exists an on-line decision algorithm such
that
total cost of on-line alg < k - total cost of off-line alg+ C

where C' is some constant.

Example:

In this example the requests come from the vertices of an equilateral triangle and there
are only two servers. Suppose the worst thing happens and the requests always come from
the vertex where there is no server. If the cost of moving one server from one vertex to a
neighboring vertex is 1 then at each request the cost of the service will be 1. So in the worst
case the on-line algorithm will have a cost of 1 per service whatever you do to minimize the
cost.

To analyse the performance of an on-line algorithm, we will run the on-line algorithm on a
sequence provided by an adversary, and then compare the cost of the on-line algorithm to
the cost of the adversary (who may know the sequence before answering the queries).

82

For example, assume you have two robots, and there are three possible places where a service
is requested: vertices A, B, and C'. Let your robots be in the vertices A and B. The adversary
will request service for vertex C'. If you move the robot at vertex B (hence your servers will
be at vertices A and '), the next request will come from B. If you now move your robot at
vertex C' (hence you have robots at A and B), the next request will come from C and so on.
In this scheme you would do k& moves for a sequence of k requests but after finishing your
job the adversary will say: “you fool, if you had moved the robot at A in the beginning,
then you would have servers at vertices B and ' and you wouldn’t have to do anything else
for the rest of the sequence”.

We can actually show that for any on-line algorithm, there is an adversary that can force
the on-line algorithm to spend at least twice as much as the offline algorithm. Consider any
on-line algorithm A. The adversary generates a sequence of requests r1,79,...,r, such that
each request is made to a vertex where there is no robot (thus the on-line algorithm pays a
cost of n). It is easy to see that the offline algorithm can do a “lookahead” and move the
server that is not requested in the immediate future. Thus for every two requests, it can
make sure it does not need to pay for more than one move. This can actually be extended
to a lower bound of k for the k-Server problem. In other words, any on-line algorithm can be
forced to pay a cost that is k times the cost of the off-line algorithm (that knows the future).

21.2 K-servers on a straight line

Suppose you again have k servers on a line. The naive approach is to move the closest
server to the request. But what does our adversary do? It will make a request near the
initial position of one server (which moves), and then requests the original position of the
server. 5o our server would be running back and forth to the same two points although the
adversary will move another server in the first request, and for all future requests it would
not have to make a move.

On-line strategy: We move the closest server to the request but we also move the server
on the other side of the request, towards the location of the request by the same amount.
If the request is to the left (right) of the leftmost (rightmost) server, then only one server
moves.

We will analyse the algorithm as a game. There are two copies of the server’s. One copy (the
s; servers) are the servers of the online algorithm, the other copy is the adversary’s servers
(a;). In each move, the adversary generates a request, moves a server to service the request
and then asks the on-line algorithm to service the request.

We prove that this algorithm does well by using a potential function, where

e O(t — 1) is potential before the ¢ request,
o ®'(t) is potential after adversary’s t'" service but before your ¢ service,

e ®(t) is the potential after your ' service.

83

The potential function satisfies the following properties:

1. ®'(t) — ®(t — 1) < kx (cost for adversary to satisfy the #' request)
2. ®'(t) — ®(t) > (cost for you to satisfy the ¢ request)
3. ®(t) >0

Now we define the potential function as follows:
(1) := k x Weight of Minimum MatchinginG’ 4+ Y7, dist(s;, s;).
The minimum matching is defined in the bipartite graph G’ where

o A = set of the placements of your servers
e S = set of the placements of adversarys servers

e edge weights(a;, s;) = distance between those two servers

The second term is obtained by simply keeping the online algorithm’s servers in sorted order
from left to right.

Why does the potential function work: It is easy to see that those three properties are
satisfied by our potential function:

1. the weight of the minimum matching will change at most the cost of the move by the
adversary and distance between your servers do not change. Hence the first property
follows.

2. if the server you're moving is the rightmost server and if the move is directed outwards
then the second term of the potential function will be increased by (k—1)d however the
first term will be decreasing by kd, hence the inequality is valid. (Notice that the first
term decreases because there is already one of the adversary’s server’s at the request
point.) If the server you're moving is the leftmost server and the motion is directed
outwards then the second term will increase by at most (k — 1)d, though the first term
will decrease by kd, hence the inequality is again valid. Otherwise, you will be moving
two servers towards each other and by this move the total decrease in the second term
will be 2d (the cost for service): two servers are 2d closer and the increase in distance
by the first server is exactly same with the decrease in distance by the second server. In
the worst case the size of the matching won’t change but again because of the second
term our inequality is satisfied.

3. Obvious.
Since the potential is always positive, we know that
Initial Potential 4 Total Increase > Total Decrease.

Notice that the total decrease in potential is an upper-bound on our algorithm’s cost. The
Total Increae in potential is upper-bounded by kx the adversary’s cost. Therefore,

(cost of your moves) < k x (total cost of adversary’s moves) + Initial Potential.

84

CMSC 651 Advanced Algorithms Lecture 20
Lecturer: Samir Khuller Tu. Apr. 5, 1993

Notes by Samir Khuller.

22 NP-Completeness

We will assume that everyone knows that SAT is NP-complete. The proof of Cook’s theorem
was given in CMSC 650, which most of you have taken before. The other students may read
it from [CLR] or the book by Garey and Johnson.

The reductions we will study today are:

1. SAT to CLIQUE.
2. CLIQUE to MULTIPROCESSOR SCHEDULING.
3. SAT to DISJOINT CONNECTING PATHS.

The first reduction is taken from Chapter 36.5 [CLR] pp. 946-949.

The second reduction goes as follows.

MULTIPROCESSOR SCHEDULING: Given a DAG representing precedence constraints,
and a set of jobs J all of unit length. Is there a schedule that will schedule all the jobs on
M parallel machines (all of the same speed) in T' time units ?

Essentially, we can execute upto M jobs in each time unit, and we have to maintain all the
precedence constraints and finish all the jobs by time T

Reduction: Given a graph G = (V, F) and an integer k we wish to produce a set of jobs
J, a DAG as well as parameters M, T such that there will be a way to schedule the jobs if
and only if (G contains a clique on k vertices.

Let n,m be the number of vertices and edges in (G respectively.

We are going to have a set of jobs {v1,...,v,,¢€1,...,¢,} corresponding to each vertex/edge.
We put an edge from v; to e; (in the DAG) if ¢; is incident on v; in G. Hence all the vertices
have to be scheduled before the edges they are incident to. We are going to set T' = 3.
Intuitively, we want the k vertices that form the clique to be put in time slot 1. This makes
C(k,2) edges available for time slot 2 along with the remaining n —k vertices. The remaining
edges m — C'(k,2) go in slot 3. To ensure that no more than k vertices are picked in the
first slot, we add more jobs. There will be jobs in 3 sets that are added, namely B,C, D.
We make each job in B a prerequisite for each job in €', and each job in C' a prerequisite for
each job in D. Thus all the B jobs have to go in time 1, the C' jobs in time 2, and the D
jobs in time 3.

The sizes of the sets B, C, D are chosen as follows:

Bl + k= |Cl+ (n = k) + C(k,2) = [D[+ (m = C(k, 2)).

89

This ensures that there is no flexibility in choosing the schedule. We choose these in such a
way, that min(|B|, |C|, |D]) = 1.

It is trivial to show that the existence of a clique of size k& implies the existence of a schedule
of length 3. The proof in the other direction is left to the reader.

DISJOINT CONNECTING PATHS:

Given a graph (G and k pairs of vertices (s;,1;), are there k vertex disjoint paths Py, Py, ..., Py
such that P, connects s; with #; ?

This problem is NP-complete as can be seen by a reduction from 3SAT.

Corresponding to each variable z;, we have a pair of vertices s;,¢; with two internally vertex
disjoint paths of length m connecting them (where m is the number of clauses). One path is
called the true path and the other is the false path. We can go from s; to ¢; on either path,
and that corresponds to setting x; to true or false respectively.

For clause C; = (x; A Ty A xx) we have a pair of vertices $,4;,t,4+;. This pair of vertices is
connected as follows: we add an edge from s,4; to a node on the false path of x;, and an
edge from this node to t,4;. Since if ; is true, the s;,¢; path will use the true path, leaving
the false path free that will let s,4; reach ¢,4;. We add an edge from s,,1; to a node on the
true path of z,, and an edge from this node to ¢,4;. Since if z, is false, the s,, 1, path will
use the false path, leaving the true path free that will let s, 4; reach ¢,4;. If z; is true, and
xy is false then we can connect s,4; to ,4; through either node. If clause C; and clause C}
both use z; then care is taken to connect the s,4; vertex to a distinct node from the vertex
Sp44 1s connected to, on the false path of x;. So if z; is indeed true then the true path from
s; to 1; 1s used, and that enables both the clauses C; and s to be true, also enabling both
Sp4; and s,4 to be connected to their respective partners.

Proofs of this construction are left to the reader.

86

x1 = T path

sl . : t1

()
@
©

N (si,ti) pairs corresp to each variable

O t2
All upper paths corresp to setting the

variable to True

O 3

pairs corresp to clauses

© O Cl = (xlor x2 or x3)
s n+l t n+1
S n+3” Ot n42

Figure 31: Graph corresponding to formula

87

CMSC 651 Advanced Algorithms Lecture 21
Lecturer: Samir Khuller Th. Apr. 7, 1993

Notes by Samir Khuller.

23 More on NP-Completeness
The reductions we will study today are:

1. 3 SAT to 3 COLORING.
2. 3D-MATCHING (also called 3 EXACT COVER) to PARTITION.
3. PARTITION to SCHEDULING.

I will outline the proof for 3SAT to 3COLORING. The other proofs may be found in Garey
and Johnson.

We are given a 3SAT formula with clauses C1,...,C,, and n variables z,...,2,. We are
going to construct a graph that is 3 colorable if and only if the formula is satisfiable.

We have a clique on three vertices. Each node has to get a different color. W.l.o.g, we can
assume that the three vertices get the colors T', F, . (T denotes “true” F' denotes “false”.)
For each variable x; we have a pair of vertices X; and X, that are connected to each other
by an edge and also connected to the vertex . This forces these two vertices to be assigned
colors different from each other, and in fact there are only two possible colorings for these
two vertices. If X; gets the color 7', then X; gets the color F' and we say that variable z;
is true. Notice that each variable can choose a color with no interference from the other
variables. These vertices are now connected to the gadgets that denote clauses, and ensure
that each clause is true.

We now need to construct an “or” gate for each clause. We want this gadget to be 3 colorable
if and only if one of the inputs to the gate is T' (true). We construct a “gadget” for each
clause in the formula. For simplicity, let us assume that each clause has exactly three literals.
It all three inputs to this gadget are F', then there is no way to color the vertices. The
vertices below the input must all get color *. The vertices on the bottom line now cannot
be colored. On the other hand if any input is 7', then the vertex below the T input can be
given color F' and the vertex below it (on the bottom line) gets color *, and the graph can
be three colored.

It the formula is satisfiable, it is really easy to use this assignmenmt to the variables to
produce a three coloring. We color each vertex X; with T if z; is True, and with F' otherwise.
(The vertex X; is colored appropriately.) We now know that each clause has a true input.
This lets us color each OR gate (since when an input it true, we can color the gadget). On
the other hand, if the graph has a three coloring we can use the coloring to obtain a satistying
assignment (verify that this is indeed the case).

88

same vertex

For each clause

X2

X3

Figure 32: Gadget for OR gate

89

CMSC 651 Advanced Algorithms Lecture 22
Lecturer: Samir Khuller Tu. Apr. 13, 1993

Notes by Samir Khuller.

24 Approximation Algorithms

Please read Chapter 37 (pp. 964-974) from [CLR] for Vertex Cover (unweighted) and Trav-

eling Salesman Problem.

90

CMSC 651 Advanced Algorithms Lecture 23
Lecturer: Samir Khuller Th. Apr. 15, 1993

Notes by Samir Khuller.

25 Approximation Algorithms

Please read Chapter 37 (pp. 974-978) from [CLR] for Set Cover algorithm. Weighted Vertex

Cover will be covered in the next lecture.

91

CMSC 651 Advanced Algorithms Lecture 24
Lecturer: Samir Khuller Tu. Apr. 20, 1993

Notes by Yachai Limpiyakorn.

26 Weighted Vertex Cover

GOAL : Given a graph G = (V, F), find a minimum weight vertex cover

veC

where Vertex Cover C' CV, and w:V — RT
We will apply the greedy algorithm for the WVC problem.

IDEA : At each stage, select the vertex that minimizes the ratio between the current weight
W (v) and the current degree D(v) of the vertex v.

Algorithm MGA:
Input: Graph G(V, F) and weight function w on V
Output: Vertex Cover C

1. Yo e V do W(v) — w(v);

2. Yo €V do D(v) «— d(v);

3. Ve € E do EC(v) « 0;

4. C 10

5. while E # () do begin

6. Pick a vertex v € V for which % is minimized;
7. C—C+v;

8. Ve=(u,v) € E do begin

9. FE — FE —e; update D(u)

10. Wiu) — W(u) — Vg((;])),

11. EC(e) « W),

12. end:

92

13. W(v) « 0;
14. end;

15. return

In this algorithm, each time a vertex is placed in the cover, each of its neighbors has its
weight reduced by an amount equal to the ratio of the selected vertex’s current weight and
degree. The edge cost EC'(e) reflects the cost of covering the edge e.

The algorithm assigns costs to the edges in a manner which guarantees that each vertex in
the cover partitions its weight amongst the incident edges, and each edge gets assigned the
same weight from both its end-points. Thus, the weight of the cover being produced is at
most twice the net cost of the edges. Under any such choice of the edge cost function, it can
be easily seen that an optimal cover must have weight at least as large as the total of the
edge costs.

Observing that, at all times during the execution of the algorithm, the following invariants

hold :
Vee B EC(e) >0

since the only modification to the edge costs is the addition of a positive value.
VoeViW(v)>0

The current weight of a vertex is reduced only when its neighbor is selected. Since the
selected vertex has a smaller weight to degree ratio, then the result of subtraction must be
non-negative (make sure that you understand why this is the case).

Yo e Viw(w)=W(v)+ Z EC(u,v)

ueN(v)

where N(v) denotes the set of neighbors of v in the original graph

The algorithm terminates with the facts that,

Yo e Ciw(v) = Z:()EC(u,v) (1)
Yo d Cow(v) > > EC(u,v) (2)
WEN (v)

Eq.(1) holds since Vv € C, W (v) = 0.
Eq.(2) holds due to INV2 and INV3.

From the above facts, we can derive the following lemmata to relate the weight of MGA’s
output to the book-keeping variables of edge costs.

93

Lemma 26.1

w(C) <2 Z EC(e)

eel
Proof:
Observe that by eq.(1)
w(C)=> wv)=> > EC(u,v)

vel ve€C ueN (v)

Since each edge in E is counted at most twice in the last expression, we have

w(C) < ZZEC(e)

eely

The next step is to relate the edge costs to the value of the optimal solution.

Lemma 26.2
Z EC(e) < =w(C)
ecl)
where
w(C*) =Y w(v)
veC*
Proof:

Observe that

D EC(e)< 3 X EC(uwv)<) w(v)

ecel veC* ueN (v) vEC*

As C~ is a VC, the second expression must count each edge at least once. From eq.(1), we
now have the desired result. O

Putting together these two lemmata, we then have

w(C) <2 Z EC(e) < 2w(C7),

eely

that is, the weight of C is at most twice optimal.

Algorithm MGA runs in time O(mlogn) and has Ryca = 2 which is the best possible
bound.

Packing Functions A packing function p is defined as follows:
p:F— RY
such that

> pluv) Sw(v)

ueN(v)

Note that zero packing is a valid packing by setting packing value of every edge to be zero.

94

Example (see Fig. 33)

30 20
27
2 ~ 20 O
5 5
10
Figure 33:

> ple) =P =32

eely

Observing that
P <

By considering

w(C) = > wv)> > > plu,v)>P

veEC™* veC* weN (v)

This is true because some edges may be counted twice in the third expression.

We claim that :
cost(algo) < 2P < 2¢”

Since FC(u,v) is a valid packing, following the previous proof and substituting £C(u,v) by
p(u,v), then we will get the desired result.

Maximal packing : packing which cannot increase p(e) for any e.

Example (see Fig. 34)
If we pick full capacity nodes in maximal packing; that is, a node v is in the VC if
SueN() P(u,v) = w(v), and results in

P < <2P.

This set of vertices forms a cover since for each edge at least one endpoint has its constraint
met with equality.

Why ”Packing” ?

Packing is the dual problem to Vertex Cover problem in Linear Programming.

95

30 20
20

0 0 Qm

Figure 34:

Vertex Cover Problem in LP
Define function X(v) =0,1 if v € VC and v € VC respectively.

We want to minimize 3¢y @(v)w(v) such that x(u) 4+ x(v) > 1 for all edges (u,v).

Clearly, this is an Integer Linear Program (solving these is NP-hard). We can relax the
integer constraints and make a regular Linear Program from it. For minimization problems,
the relaxed Linear Program solution is no more than the solution to the Integer Linear
Program; that is ¢j;p > ¢;p, and ¢} p in turn will be lower bounded by any solution of its
DUAL LP, in which here we want to maximize 3_.cp p(¢) such that Vo € V' 3 ey pu, v) <

w(v).

ILP

DLP

Figure 35:

If we can prove that cost(algo) < keprp then we get

cost(algo) < ke p < kepp < kejpp.

96

So the entire difficulty is in proving the first inequality. The rest follow automatically. In
the Vertex Cover Problem, we prove this by showing that the cost of our solution is no more
than twice a packing (which is a feasible dual solution).

97

CMSC 651 Advanced Algorithms

Lecturer: Samir Khuller

Lecture 25
Thu April 22, 1993

Notes by Marga Alisjahbana.

27

Steiner Tree Problem

We are given an undirected graph G = (V,), with edge weights w : E — R+ and a special
subset S C V. A Steiner tree is a tree that spans all vertices in S, and is allowed to use the
vertices in V' — S (called steiner vertices) at will. The problem of finding a minimum weight
Steiner tree has been shown to be N P-complete. We will present a fast algorithm for finding
a Steiner tree in an undirected graph that has an approximation factor of 2(1 — ﬁ), where

|S| is the cardinality of of S.

27.1 Approximation Algorithm
Algorithm :
1. Construct a new graph H = (5, Es), which is a complete graph. The edges of H have

weight w(z, j) = minimal weight path from ¢ to j in the original graph G.
Find a minimum spanning tree M STy in H.

Construct a subgraph Gs of GG by replacing each edge in M STy by its corresponding
shortest path in G.

Find a minimal spanning tree M STs of Gs.

Construct a Steiner tree Ty from M STs by deleting edges in M ST if necessary so
that all leaves are in S (these are redundant edges, and can be created in the previous

step).

Running time :

1.

2.

(
(
. step 3¢ O(|V])
(
(

step 1 : O(]S||V]?)
step 2 : O(|S|?)
step 4 : O(|V]?)

step 5 : O(|V])

98

© Nodesin S

Figure 36: Optimal Steiner Tree

So worst case time complexity is O(|S]|V]?).

Will will show that this algorithm produces a solution that is at most twice the optimal.
More formally: weight(our solution) < weight(MSTy) < 2 x weight(optimal solution)

To prove this, consider the optimal solution, i.e., the minimal Steiner tree T,pt.

Do a DFS on T,pt and number the points in S in order of the DFS. (Give each vertex a
number the first time it is encountered.) Traverse the tree in same order of the DFS then
return to starting vertex. Fach edge will be traversed exactly twice, so weight of all edges
traversed is 2 x weight(T,pt). Let d(i,7+ 1) be the length of the edges traversed during the
DFS in going from vertex ¢ to ¢+ 1. (Thus there is a path P(¢,74 1) from ¢ to 4+ 1 of length
d(i,i+1).) Also notice that the sum of the lengths of all such paths Zl»i'l d(i,i+1) =2-MSTs.
(Assume that vertex |S| + 1 is vertex 1.)

We will show that H contains a spanning tree of weight < 2 x w(7,pt). This shows that
the weight of a mininal spanning tree in H is no more than 2 x w(7T,pt). Our steiner tree
solution is upperbounded in cost by the weight of this tree. If we follow the points in S, in
graph H, in the same order of their above DF'S numbering, we see that the weight of an edge
between points ¢ and 7 + 1, in H, cannot be more than the length of the path between the
points in M STs during the DFS traversal (i.e., d(7,7+1)). So using this path we can obtain
a spanning tree in H (which is actually a Hamilton Path in H) with weight <2 -w(T,pt).
Figure 37 shows that the worst case performance of 2 is achievable by this algorithm.

99

Optimal Steiner tree

Graph H
Each edge has weight 2 MST in H

Figure 37: Worst Case ratio is achieved here

100

27.2 Steiner Tree is NP-complete

We now prove that the Steiner Tree problem is NP-complete, by a reduction from 3-SAT to
Steiner Tree problem

Construct a graph from an instance of 3-SAT as follows:

Build a gadget for each variable consisting of 4 vertices and 4 edges, each edge has weight
1, and every clause is represented by a node.

X1V X2V X3 =Qq

Figure 38: Gadget for a variable

If a literal in a clause is negated then attach clause gadget to F' of corresponding variable
in graph, else attach to T. Do this for all literals in all clauses and give weight M (where
M > 3n) to each edge. Finally add a root vertex on top that is connected to every variable
gadget’s upper vertex. The points in S are defined as: the root vertex, the top and bottom
vertices of each variable, and all clause vertices.

We will show that the graph above contains a Steiner tree of weight mM + 3n if and only if
the 3-SAT problem is satisfied.

It 3-SAT is satisfiable then there exists a Steiner tree of weight mM + 3n We obtain the
Steiner tree as follows:

o Take all edges connecting to the topmost root vertex, n edges of weight 1.

e Choose the T or F' node of a variable that makes that variable 717 (e.g. if # = 1 then

101

X1 X2 X3 X1 X2 X3

C1 C2

Figure 39: Reduction from 3-SAT.

take T, else take F'). Now take the path via that node to connect top and bottom
nodes of a variable, this gives 2n edges of weight 1.

If 3-SAT is satisfied then each clause has (at least) 1 literal that is ”1”7, and thus
connects to the 7" or F' node chosen in (2) of the corresponding variable. Take this
connecting edge in each clause; we thus have m edges of weight M, giving a total
weight of mM. So, altogether weight of the Steiner tree is mM + 3n.

If there exists a Steiner tree of weight mM + 3n then 3-SAT is satisfiable. To prove this we
note that the Steiner tree must have the following properties:

e [t must contain the n edges connecting to the root vertex. There are no other edges
connected nodes corresponding to different variables.

e [t must contain one edge from each clause node, giving a weight of mM. Since M is
big, we cannot afford to pick two edges of weight M from a single clause node. If it
contains more than one edge from a clause (e.g. 2 edges from one clause) the weight
would be mM + M > mM + 3n. Thus we must have exactly one edge from each clause
in the Steiner tree.

e For each variable must have 2 more edges via the T" or the F' node.

Now say we set the variables to true according to whether their 7" or F' node is in the Steiner
tree (if T then @ = 1, if F' then @ = 1.) We see that in order to have a Steiner tree of size

102

mM + 3n, all clause nodes must have an edge connected to one of the variables (i.e. to the
T or F node of that variable that is in the Steiner tree), and thus a literal that is assigned
a 717, making 3-SAT satisfied.

103

CMSC 651 Advanced Algorithms Lecture 26
Lecturer: Samir Khuller Tu. April 27, 1993

Notes by Chung-Yeung Lee

28 Bin Packing

Problem Statement: Given n items sq, sg, ..., s,, where each s; is a rational number, 0 <
s; < 1, our goal is to minimize the number of bins of size 1 such that all the items can
be packed into them.

Remarks:
1. It is known that the problem is NP-Hard.
2. A Simple Greedy Approach (First-Fit) can yield an approximate algorithm which gives
First — Fut(I) <20PT(1).
28.1 First-Fit

The strategy for First-Fit is that when packing an item, we shall put it into the lowest number
bin that it will fit in. We start a new bin only when the item cannot fit into any exiting
non-empty bins. We shall give a simple analysis that shows that First — Fit(1) < 20PT(I).
In Fact, we have

Theorem 28.1 First—Fit(I) < 1.TOPT(1)+C and the ratio is best possible (by First-Fit).
The proof is complicated and therefore omitted here. Instead we shall prove that First —
Fit(1) <20PT(I).

Proof:

The main observation is that at most 1 bin is less than half of its capacity. Therefore, if ¢;
denotes the contents in bin ¢ and k is the no of bins used, we have

k
=1

Hence,

k
OPT(I)>> ci > k/2.
=1

Therefore 20PT(I) > k = First — Fut(I). O

104

28.2 First-Fit Decreasing

A variant of First-fit is the First-Fit Decreasing heristics. Here, we first sort all the items in
decreasing order of size and then apply the First-Fit algorithm.

Theorem 28.2 (1973) FFD(I) < 11/9 OPT(I).
Remarks:
1. The known proof is very long and therefore is omitted.

2. The following instance shows that first fit decreasing is better than first fit. Consider
the case where we have

e Gm pieces of A, each of size 1/7 + ¢.
e Gm pieces of B, each of size 1/3 + ¢.
e Gm pieces of C, each of size 1/2 + ¢.

First Fit will require 10m bins while First fit Decreasing requires 6m bins only. Note
that the ratio is 5/3. This also shows that First-Fit does as badly as a factor of 5/3.
(There are other examples to show that actually it does as badly as 1.7.)

28.3 Approximate Schemes for bin-packing problems

In the 1980’s, two approximate schemes were proposed. They are
1. (Vega and Lueker, 1981) Ve > 0, there exists an Algorithm A, such that
A(L) < (14 €¢OPT(I)+1
, where A, runs in time polynomial in n but exponential in 1/e. (n=total no. of items)
2. (Karmarkar and Karp) Ve > 0, there exists an Algorithm A, such that
A(I) < OPT(I)+ O(lg*(OPT(I))

, where A, runs in time polynomial in n and 1/e.(n=total no. of items.) They also

guarantee that A (1) < (14 ¢)OPT(I) + 1.

3. Tt is conjectured that the term O(lg?(OPT(I)) can be improved to a constant.

We shall now discuss the proof of the first result. Roughly speaking, it relies on two ideas:
e Small items does not create a problem.

o Grouping together items of similar sizes can simplify the problem.

105

28.3.1 Restricted Bin Packing

We consider the following restricted version of bin packing problem (RBP). We require that
1. Each item has size > 9.

2. The size of the items takes only one of the m distinct values vy, vs, ..., v,,. That is we
have n; items of size v; (1 < ¢ < m), with X", n, = n.

For constant ¢ and m, the above can be solved in polynomial time (actually in O(n+ f(m, ¢))).
Our overall stretegy is therefore to reduce BP to RBP (by throwing away items of size < ¢
and grouping items carefully), solve it optimally and use RBP(é,m) to compute a soluton
to the original BP.

Theorem 28.3 Let J be the instance of RBP obtained from throwing away the items of size
less than 6 from instance 1. if J requires 3 bins then I needs only max (3, (14+280)OPT(1)+1)

bins.

Proof:
We ojl;serve that from the solution of J, we can add the items of size less than é to the bins
until the empty space is less than 6. Let S be the total size of the items, then we may assume
the no. of items with size < 6 is large enough (otherwise I needs only 3 bins) so that we use
B3’ bins.
Sz (1=6)(p—1)
S
!
Fett—
OPT(I)
1—-4¢
B <14 (142580PT(I)

as (1 — &)™ <1+ 26 for small 6. O

p<1+

Next, we shall introduce the grouping scheme for RBP. Consider the items are sorted in
descending order. Let n’ be the total number of items. Define (G;=the group of the largest
k items, G's=the group that contains the next k items, and so on. We choose

Further, we consider groups H; = group obtained from G; by setting all items sizes in G,
equal to the largest one in ;. Note that

106

- H1
LGl

- H2
G2

| Hm
T .Gfm Gm+1

Hm+1

A

Grouping Scheme for RBP

Figure 40: Grouping scheme

e size of any item in H; > size of any items in G;V:.
o size of any item in (; > size of any items in H; V2.

The following diagram illustrates the ideas:
We then define Ji be the instance consisting of items in Hs,.., H,41 and Jyign be the
instance consists of items in Gy, Hs, ..., H,,11. Our goal is to show

OPT (Jigw) < OPT(J) < OPT(Jion) + ,

The first inequality is trivial, since from OPT(.J) we can always get a solution for Jig,. We
shall continue to prove the other inequality next time.

107

CMSC 651 Advanced Algorithms Lecture 27
Lecturer: Samir Khuller Thu. Apr. 29, 1993

Notes by Gisli R. Hjaltason.

At the end of last lecture, we present the inequality
OPT(Jiow) < OPT(J) < OPT(Jiow) + K,

for the instances J and Ji,w of RBP, with grouping factor k. It remains to prove the lat-
ter inequality. Remember that using the OPT(Jiow) solution we can pack all the items in
Gy ..o, Gy (since we over allocated space forr these by converting them to H,. In partic-
ular, group G, the group left out in Jy,y, contains k items, so that no more than k extra
bins are needed to accommodate those items.

Since (Jiow) is an instance of a Restricted Bin Packing Problem we can solve it optimally,
and then add the items in 7 in at most & extra bins. Directly from this inequality, and
using the definition of k, we have

e2n’

OPT(Jiow) + k < OPT(J) + k < OPT(J) +

Choosing 6 = ¢/2, we get that
OPT(J) > Z‘Si > n'%,
=1

so we have

e2n’

OPT(J) + — < OPT(J) 4+ cOPT(J) = (1 + ¢)OPT(J).

By applying theorem 28.3, using 3 = (1 +¢)OPT(.J) and the fact that 26 = ¢, we know that
the number of bins needed for the items of [is at most

max{(1 + ¢)OPT(J),(1 4+ ¢)OPT(I)+ 1} < (14 ¢)OPT(I) + 1.
To summarize, we have:

Theorem 28.4 Let [be an instance of BP(n), and let Jioy be the instance of RBP(m,¢),
where 6 = ¢/2 and m = | 7], oblained from I by grouping items in decreasing order of their

values into groups of k = [S*] ilems, discarding the first group. The following inequality

relates the optimal solutions of the two instances:

OPT (o) < (1 + €)OPT(I) + 1.

108

Now we will turn to the problem of finding an optimal solution to RBP. Recall that an
instance of RBP (6, m) has items of sizes vy,vq,..., 05, with 1 > vy > vy > -+ > v, > 6,
where n; items have size v;, 1 < ¢ < m. Summing up the n;’s gives the total number of
items, n. A bin is completely described by a vector (11,75, ..., T,,), where T; is the number
of items of size v; in the bin. How many different different bin types are there? From the
bin size restriction of 1 and the fact that v; > ¢ we get

| =

As L is a constant, we see that the number of bin types is constant, say p.

Let 7MW 7@ . T be an enumeration of the p different bin types. A solution to the
RBP can now be stated as having x; bins of type 7). The problem of finding the optimal
solution can be posed as an integer linear programming problem:

min g PT;,
=1

such that)
Vi=1,... ,m,inTj(l) =ny;

=1
Ve=1,...,p,z; > 0, x;integer.

This is a constant size problem, since both p and m are constants, independent of n, so it
can be solved in time independent of n. This result is captured in the following theorem,
where f(6,m) is a constant that depends only on ¢ and m.

Theorem 28.5 An instance of RBP(6,m) can be solved in time O(n, f(6,m)).

An approximation scheme for BP may be based on this method. An algorithm A, for solving
an instance I of BP would procede as follows:

Step 1: Get an instance J of RBP(4,n’) by getting rid of all elements in [smaller than
6 =¢/2.

Step 2: Obtain Jj,,, from J, using the parameters & and m established in theorem 28.4.

Step 3: Find an optimal packing for Ji,w by solving the corresponding integer linear pro-
gramming problem.

Step 4: Pack the k items in Gy using at most £k bins.

Step 5: Pack the remaining items of .J as the corresponding (larger) items of Jioy, were packed
in step 3.

Step 6: Pack the small items in I\ J using First-Fit.

109

This algorithm finds a packing for I using at most (1 4+ ¢)OPT(/) + 1 buckets, which is the
bound established in theorem 28.4. All steps are at most linear in n, except step 2, which
is O(nlogn), as it basically amounts to sorting .J. The fact that step 3 is linear in n was
established in the previous algorithm, but note that while f(6,m) is independent of n, it is
exponential in % and m and thus % Therefore, this approximation scheme polynomial but
not fully polynomial.

Karmarkar and Karp came up with a an algorithm for RBP (6, m) that is polynomial in % and
m as well as n. Instead of using integer linear programming, they relaxed the condition of
the ;’s being integers, which results in a regular linear programming problem. The optimal
solution to the linear programming problem may assign fractional values to the z;’s, but
it was shown that by appropriate rounding of the values, a solution close to optimal for
the RBP is obtained. Since polynomial algorithms (for example, the ellipsoid algorithm)
exist for linear programming, the approximation scheme for BP based on this result is fully
polynomial.

110

