43 research outputs found

    Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties

    Get PDF
    International audienceThere exist several automatic verification tools of cryptographic protocols, but only few of them are able to check protocols in presence of algebraic properties. Most of these tools are dealing either with Exclusive-Or (XOR) and exponentiation properties, so-called Diffie-Hellman (DH). In the last few years, the number of these tools increased and some existing tools have been updated. Our aim is to compare their performances by analysing a selection of cryptographic protocols using XOR and DH. We compare execution time and memory consumption for different versions of the following tools OFMC, CL-Atse, Scyther, Tamarin, TA4SP, and extensions of ProVerif (XOR-ProVerif and DH-ProVerif). Our evaluation shows that in most of the cases the new versions of the tools are faster but consume more memory. We also show how the new tools: Tamarin, Scyther and TA4SP, can be compared to previous ones. We also discover and understand for the protocol IKEv2-DS a difference of modelling by the authors of different tools, which leads to different security results. Finally, for Exclusive-Or and Diffie-Hellman properties, we construct two families of protocols P xori and P dhi that allow us to clearly see for the first time the impact of the number of operators and variables in the tools' performances

    The Fagnano Triangle Patrolling Problem

    Full text link
    We investigate a combinatorial optimization problem that involves patrolling the edges of an acute triangle using a unit-speed agent. The goal is to minimize the maximum (1-gap) idle time of any edge, which is defined as the time gap between consecutive visits to that edge. This problem has roots in a centuries-old optimization problem posed by Fagnano in 1775, who sought to determine the inscribed triangle of an acute triangle with the minimum perimeter. It is well-known that the orthic triangle, giving rise to a periodic and cyclic trajectory obeying the laws of geometric optics, is the optimal solution to Fagnano's problem. Such trajectories are known as Fagnano orbits, or more generally as billiard trajectories. We demonstrate that the orthic triangle is also an optimal solution to the patrolling problem. Our main contributions pertain to new connections between billiard trajectories and optimal patrolling schedules in combinatorial optimization. In particular, as an artifact of our arguments, we introduce a novel 2-gap patrolling problem that seeks to minimize the visitation time of objects every three visits. We prove that there exist infinitely many well-structured billiard-type optimal trajectories for this problem, including the orthic trajectory, which has the special property of minimizing the visitation time gap between any two consecutively visited edges. Complementary to that, we also examine the cost of dynamic, sub-optimal trajectories to the 1-gap patrolling optimization problem. These trajectories result from a greedy algorithm and can be implemented by a computationally primitive mobile agent

    DECENT: A Benchmark for Decentralized Enforcement

    Get PDF
    International audienceDECENT is a benchmark for evaluating decentralized enforcement. It implements two enforcement algorithms that differ in their strategy for correcting the execution: the first one explores all alternatives to perform a globally optimal correction, while the second follows an incremental strategy based on locally optimal choices. Decent allows comparing these algorithms with a centralized enforcement algorithm in terms of computational metrics and metrics for decentralized monitoring such as the number and size of messages or the required computation on each component. Our experiments show that (i) the number of messages sent and the internal memory usage is much smaller with decentralized algorithms (ii) the locally optimal algorithm performs closely to the globally optimal one

    Foundations and practice of security: 8th international symposium, FPS 2015, Clermont-Ferrand, France, October 26-28, 2015, revised selected papers

    No full text
    International audienceThis volume contains the proceedings of the 8th International Symposium on Foundations and Practice of Security, hosted by the University of Auvergne, in ClermontFerrand, France, during October 26-28, 201

    Runtime Enforcement with Reordering, Healing, and Suppression

    Get PDF
    International audienceRuntime enforcement analyses an execution trace, detects when this execution deviates from its expected behaviour with respect to a given property, and corrects the trace to make it satisfy the property. In this paper, we present new enforcement techniques that reorder actions when necessary, inject actions to the application to ensure progress of the property, and discard actions to avoid storing too many unnecessary actions. At any step of the enforcement, we provide a verdict, called enforcement trend in this work, which takes its value in a 4-valued truth domain. Our approach has been implemented in a tool and validated on several application examples. Experimental results show that our techniques better preserve the application actions, hence ensuring better service continuity

    Robotic Platforms for Assistance to People with Disabilities

    Get PDF
    People with congenital and/or acquired disabilities constitute a great number of dependents today. Robotic platforms to help people with disabilities are being developed with the aim of providing both rehabilitation treatment and assistance to improve their quality of life. A high demand for robotic platforms that provide assistance during rehabilitation is expected because of the health status of the world due to the COVID-19 pandemic. The pandemic has resulted in countries facing major challenges to ensure the health and autonomy of their disabled population. Robotic platforms are necessary to ensure assistance and rehabilitation for disabled people in the current global situation. The capacity of robotic platforms in this area must be continuously improved to benefit the healthcare sector in terms of chronic disease prevention, assistance, and autonomy. For this reason, research about human–robot interaction in these robotic assistance environments must grow and advance because this topic demands sensitive and intelligent robotic platforms that are equipped with complex sensory systems, high handling functionalities, safe control strategies, and intelligent computer vision algorithms. This Special Issue has published eight papers covering recent advances in the field of robotic platforms to assist disabled people in daily or clinical environments. The papers address innovative solutions in this field, including affordable assistive robotics devices, new techniques in computer vision for intelligent and safe human–robot interaction, and advances in mobile manipulators for assistive tasks

    Caveat (IoT) Emptor: Towards Transparency of IoT Device Presence (Full Version)

    Full text link
    As many types of IoT devices worm their way into numerous settings and many aspects of our daily lives, awareness of their presence and functionality becomes a source of major concern. Hidden IoT devices can snoop (via sensing) on nearby unsuspecting users, and impact the environment where unaware users are present, via actuation. This prompts, respectively, privacy and security/safety issues. The dangers of hidden IoT devices have been recognized and prior research suggested some means of mitigation, mostly based on traffic analysis or using specialized hardware to uncover devices. While such approaches are partially effective, there is currently no comprehensive approach to IoT device transparency. Prompted in part by recent privacy regulations (GDPR and CCPA), this paper motivates and constructs a privacy-agile Root-of-Trust architecture for IoT devices, called PAISA: Privacy-Agile IoT Sensing and Actuation. It guarantees timely and secure announcements about IoT devices' presence and their capabilities. PAISA has two components: one on the IoT device that guarantees periodic announcements of its presence even if all device software is compromised, and the other that runs on the user device, which captures and processes announcements. Notably, PAISA requires no hardware modifications; it uses a popular off-the-shelf Trusted Execution Environment (TEE) -- ARM TrustZone. This work also comprises a fully functional (open-sourced) prototype implementation of PAISA, which includes: an IoT device that makes announcements via IEEE 802.11 WiFi beacons and an Android smartphone-based app that captures and processes announcements. Both security and performance of PAISA design and prototype are discussed.Comment: 17 pages, 11 figures. To appear at ACM CCS 202

    Blind Polynomial Evaluation and Data Trading

    Get PDF
    Data trading is an emerging business, in which data sellers provide buyers with, for example, their private datasets and get paid from buyers. In many scenarios, sellers prefer to sell pieces of data, such as statistical results derived from the dataset, rather than the entire dataset. Meanwhile, buyers wish to hide the results they retrieve. Since it is not preferable to rely on a trusted third party (TTP), we are wondering, in the absence of TTP, whether there exists a \emph{practical} mechanism satisfying the following requirements: the seller Sarah receives the payment if and only if she \emph{obliviously} returns the buyer Bob the \emph{correct} evaluation result of a function delegated by Bob on her dataset, and Bob can only derive the result for which he pays. Despite a lot of attention data trading has received, a \emph{desirable} mechanism for this scenario is still missing. This is due to the fact that general solutions are inefficient when the size of datasets is considerable or the evaluated function is complicated, and that existing efficient cryptographic techniques cannot fully capture the features of our scenario or can only address very limited computing tasks. In this paper, we propose the \emph{first desirable} mechanism that is practical and supports a wide variety of computing tasks --- evaluation of arbitrary functions that can be represented as polynomials. We introduce a new cryptographic notion called \emph{blind polynomial evaluation} and instantiate it with an explicit protocol. We further combine this notion with the blockchain paradigm to provide a \emph{practical} framework that can satisfy the requirements mentioned above

    From parametric trace slicing to rule systems

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: accepted 2021-01-12, registration 2021-01-13, online 2021-02-27, pub-electronic 2021-02-27, pub-print 2021-04Publication status: PublishedAbstract: Parametric runtime verification is the process of verifying properties of execution traces of (data carrying) events produced by a running system. This paper continues our work exploring the relationship between specification techniques for parametric runtime verification. Here we consider the correspondence between trace-slicing automata-based approaches and rule systems. The main contribution is a translation from quantified automata to rule systems, which has been implemented in Scala. This then allows us to highlight the key differences in how the two formalisms handle data, an important step in our wider effort to understand the correspondence between different specification languages for parametric runtime verification. This paper extends a previous conference version of this paper with further examples, a proof of correctness, and an optimisation based on a notion of redundancy observed during the development of the translation
    corecore