
International Journal on Software Tools for Technology Transfer (2021) 23:209–228
https://doi.org/10.1007/s10009-021-00608-0

GENERAL

Special Issue: RV 2018

From parametric trace slicing to rule systems

Giles Reger1 · David Rydeheard1

Accepted: 12 January 2021 / Published online: 27 February 2021
© The Author(s) 2021

Abstract
Parametric runtime verification is the process of verifying properties of execution traces of (data carrying) events produced by
a running system. This paper continues our work exploring the relationship between specification techniques for parametric
runtime verification. Herewe consider the correspondence between trace-slicing automata-based approaches and rule systems.
The main contribution is a translation from quantified automata to rule systems, which has been implemented in Scala. This
then allows us to highlight the key differences in how the two formalisms handle data, an important step in our wider effort
to understand the correspondence between different specification languages for parametric runtime verification. This paper
extends a previous conference version of this paper with further examples, a proof of correctness, and an optimisation based
on a notion of redundancy observed during the development of the translation.

Keywords Runtime verification · Runtime monitoring · Parametric trace slicing · Rule systems

1 Introduction

Runtime verification [9,17,18,27] is the process of checking
properties of execution traces produced by running a com-
putational system. An execution trace is a finite sequence
of events generated by the computation. In many applica-
tions, events carry data values—the so-called parametric, or
first-order, case of runtime verification. To apply runtime ver-
ification, we need to provide (a) a specification language for
describing properties of execution traces and (b) a mecha-
nism for checking these formally defined properties during
execution, i.e. a procedure for generatingmonitors fromspec-
ifications.Many different specification languages for runtime
verification have been proposed, and almost every newdevel-
opment introduces its own specification language. Recent
work has attempted to place some structure on this work in
the form of a taxonomy [18], which has clarified different
approaches, but leaves open the question of how they are
related.

This work furthers our broader goal of organising and
understanding the space of specification languages for run-
time verification. As explained later, we see little reuse of

B Giles Reger
giles.reger@manchester.ac.uk

1 University of Manchester, Manchester, UK

specification languages in runtime verification and little is
understood about the relationship between different lan-
guages that have been introduced. We believe that the field
can be considerably improved by a better understanding of
this space. Indeed, a contribution of this paper is an opti-
misation of an existing monitoring technique inspired by
observations made during our work to understand the rela-
tionship between existing techniques.

This paper extends a previous version [35] that appeared in
the 18th International Conference onRuntimeVerification. It
specifically explores the relationship between two particular
approaches to specification for parametric runtime verifica-
tion: parametric trace slicing and rule systems. As discussed
later, we have chosen these two languages as they repre-
sent significant points in the space of runtime verification
languages—parametric trace slicing is the key technology
behind the JavaMOP [29] and QEA languages [4,30] and
RuleR [3], TraceContract [6], and LogFire [20] all take
a rule-based approach.

Here we describe the main contributions of the paper
and identify extensions to the previous paper. We begin by
describing the general setting we are working in (Sect. 2)
before introducing these two languages (Sects. 3–6). The
main contribution of the paper is a translation from speci-
fications using parametric trace slicing to those using rules
(Sect. 7). These sections (Sects. 2–7) have been expanded

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/443939435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00608-0&domain=pdf

210 G. Reger, D. Rydeheard

with additional explanation and extended examples. We then
introduce a new detailed proof of correctness (Sect. 8) and
a new optimisation of the translation (Sect. 9). This opti-
misation is based on a new notion of redundancy that is
inspired by observations made during the earlier translation
work. Importantly, this newly identified general notion of
redundancy subsumes existing notions in the literature. The
translation has been implemented and validated in Scala,
available online at https://github.com/selig/qea_to_rules. A
further contribution is then a discussion of the things we have
learnt about the relationship between these two languages via
the development of the translation (Sect. 10).

2 Setting

In this paper, we focus on the runtime verification problem
at a level of abstraction where we assume that a run of a
system has been abstracted in terms of a finite sequence of
events (traces) via some instrumentation method. This is a
common starting point, and techniques for extracting traces
are described elsewhere [9].

Defining the runtime verification problem

We begin by defining events, traces, and properties. We
assume disjoint sets of event names Σ , variables Var, and
values Val. We do not directly consider sorts (e.g. variable
x being an integer) as this is not essential to this work, but
assume things are well sorted where it matters.

Definition 1 (Events, Traces, and Properties) An event is a
pair of an event name e and a list of parameters (variables or
values) v1, . . . , vn , usually written e(v1, . . . , vn). An event
is ground if it does not contain variables, and it is proposi-
tional if it does not contain any parameters. A trace is a finite
sequence of ground events. A property is a (possibly infinite)
set of traces.

We use x, y, z for variables and a, b, c or numbers for
values (unless context requires otherwise), τ for traces
and P for properties. For example, login(x, 42) is an
event where x is a variable and 42 a value; the finite
sequence login(a, 42).logout(a) is a trace; and the set
{login(a, 42).logout(a),login(b, 42).logout(b)} is
a property. We sometimes write a,b for events where their
structure is unimportant.

We say that a property is propositional if all events in
all traces are propositional; otherwise, it is parametric (or
first order). A specification language provides a language for
writing specifications ϕ and provides a semantics that defines
the propertyP(ϕ) that ϕ denotes. A specification language is
propositional if it can only describe specifications denoting
propositional properties, and parametric otherwise.

Definition 2 (The Runtime Verification Problem) Given a
trace τ and a specification ϕ, decide whether τ ∈ P(ϕ).

Again, we can talk of the propositional and parametric
versions of this problem. The propositional version should
be highly familiar—typical specification languages include
automata, regular expressions, and linear temporal logic, for
which procedures for efficiently deciding the above problem
are well known.

There are four main runtime verification approaches that
handle the parametric case (see [24] for an overview and [18]
for how these fit into the general taxonomy of approaches).
Parametric trace slicing [4,14,29] separates the issue of quan-
tification from trace checking using a notion of projection.
First-order extensions to temporal logic [10,11,16,28,36] rely
on the standard logical treatment of quantification, introduc-
ing (somewhat complex) monitor construction techniques to
handle this. Rule systems [3,6,21] and stream processing
[12,15,19] do not have inherent notions of quantification. In
rule systems, values are stored as rule instances (facts) and
rules dictate which instances should be added or removed.
Stream processing defines sets of stream operators that oper-
ate over streams to produce new streams.

We note that there are variations in the above problem, e.g.
deciding whether τ.τ ′ ∈ P(ϕ) for all possible extensions τ ′
(which acknowledges that finite traces may be prefixes of
some infinite trace), or considering a property as a function
from traces to some non-boolean verdict domain. These are
important variations, whichwewill consider further in future
work, but they have their basis in the above stated problem
and we are confident that much of our work can translate to
these variations.

Our research question

Given this large space of specification languages, our funda-
mental research question (which we have been considering
since 2010) is as follows:
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expres-
siveness and efficiency of the runtime verification process.
Below we discuss (i) why we care about this question, and
(ii) what our general approach to answering it is.
Why Do We Care? We outline the main motivations behind
this research question:

– Reusable research. The four main approaches to para-
metric runtime verification described above have been
explored in relative isolation. Developments in one area
cannot be easily transferred to another. For example,
notions of monitorability and complexity results remain
tied to their particular language.

123

https://github.com/selig/qea_to_rules

From parametric trace slicing to rule systems 211

– Reusable tools, benchmarks, and case studies. Similarly,
tools for one language cannot be directly used for another
and related experimental data is tied to that tool. This
leads to separate ecosystems where runtime verification
solutions are developed in isolation.

– BalancingExpressiveness andEfficiency.Someapproaches
focus on the expressiveness of the language before
the efficiency of the monitoring algorithm, and other
approaches have the inverse focus. A key motivation of
this work is to see where we can combine the best parts
of different approaches, for example, by identifying frag-
ments of an expressive language that can be translated
into a language with a more efficient monitoring algo-
rithm.

– Evaluation. In general, it is hard to compare approaches
without a good understanding of how they are related.
The Runtime Verification competition [8,33] has relied
on a manual translation of specifications between lan-
guages, which has been problematic in various ways.
Ideally, a common language would be used. However,
the close links between language and the efficiency of
the monitoring algorithm mean that translations would
be required from this common language.

Our ApproachWe are exploring this broad research ques-
tion in two complementary directions. Firstly, we are taking
an example-led approach where we explore concrete exam-
ples of specifications in different languages and attempt
to infer commonalities, differences, and general relation-
ships. This is ongoing and has begun to highlight conceptual
differences between approaches [22–24]. Secondly, we are
working towards a general framework for formally exploring
the relationship between specification languages. We have
chosen to build this via a series of translations between
approaches. Our previous work [34] introduced a transla-
tion from a first-order temporal logic to a language using
parametric trace slicing; this current work introduces a trans-
lation from parametric trace slicing to rule systems; and we
are currently exploring a translation from rule systems to a
first-order temporal logic. We believe that these translations
can provide a pragmatic way to move between specification
languages and highlight the main differences between lan-
guages.

3 Preliminaries

We introduce some additional technical definitions. If τ is
a trace let τi be the i th event and τ |n be the prefix of τ of
length n. Let an event alphabet A(Z) be a set of events using
variables in Z , e.g. for Z = {x}, A({x}) might be {e(x)} or
{e(x),f(x, x)} but not {e(x),f(x, y)}. A map is a partial
function with finite domain. We write ⊥ for the empty map

and dom(θ) for the domain of map θ . Given two maps θ1
and θ2, we define the following operations:

consistent(θ1, θ2) iff (∀x) x ∈ (dom(θ1) ∩ dom(θ2)) → θ1(x) = θ2(x)
θ1 � θ2 iff dom(θ1) ⊆ dom(θ2) and consistent(θ1, θ2)
(θ1 † θ2)(x)=v iff θ2(x)=v if x ∈ dom(θ2) and otherwise θ1(x)=v

A valuation is a map from variables to values. We use θ

and σ for valuations. Valuations can be applied to structures
containing variables to replace those variables in a standard
way, e.g. e(x, y)[x
→ z] = e(z, y) and (x �= y)[x
→ z] =
(z �= y).

The sets Guard(Z) and Assign(Z) contain (implicitly
well-sorted) guards (boolean expressions) and assignments
over the set of variables Z . Such guards denote predicates on
valuations with domains in Z , for example, Guard({x, y})
contains expressions such as x = y and x ≤ 2. Assign-
ments are finite sequences of the form x := t where x ∈ Z
is a variable and t is an expression over values and vari-
ables in Z that can be evaluated with respect to a valuation,
for example, Assign({x, y, z}), contain assignments such as
x := y + 1; y := 0 and x = max(y, z); y := y + 1. We
assume a true guard true and an identity assignment id.

Finally, we introduce matching. Given finite parame-
ter sequences v and w, let the predicate matches(v,w)

hold if there is a valuation θ such that θ(v) = θ(w). Let
match(v,w) be the minimal such valuation with respect to
the sub-map relation � (if such a valuation exists, undefined
otherwise). Let match(v,w, Z) be the largest valuation θ

such that θ � match(v,w) and dom(θ) ⊆ Z , i.e. the match-
ing valuation is restricted to Z .We lift all definitions to events
by checking equality of event names.

4 Running examples

In this paper we will use three running examples to demon-
strate the two languages in the next two sections and then
motivate and discuss the translation later. These properties
have been previously used as examples in previous work
exploring specification languages for runtime verification
[22–24]. The properties are as follows:

UnsafeIterator This is the property that an iterator i cre-
ated from a collection c cannot be used after c is updated. An
example trace of interest is

create(C, I1).use(I1).create(C, I2).use(I1).

update(C).use(I2)

where a collection C is used to create two iterators I1 and
I2. This trace violates the property as iterator I2 is used after
C is updated. This property is interesting as it is about the

123

212 G. Reger, D. Rydeheard

relationship between two objects, requiring two quantified
variables.

AuctionBidding This is the property that after an item i is
listed on an auction site with a reserve price min it cannot be
re-listed, all bids must be strictly increasing, and it can only
be sold once this min price has been reached. An example
trace of interest involving two items hat and ball is

list(hat, 10).bid(hat, 5).list(ball, 4).bid(ball, 4).

bid(ball, 4).sell(hat)

This trace violates the property for two reasons—bids on ball
are not strictly increasing and hat is sold before it reaches its
reserve price. This property is interesting as it makes use of
local variables and guards and assignments on them.

Broadcast This is the property taken from the context of
entities, e.g. autonomous vehicles, participating in a basic
synchronisation mechanism where broadcast messages need
to be acknowledged by all parties before continuing. More
formally, for every sender s and receiver r , after s sends
a message it should wait for an acknowledgement from r
before sending again. Receivers are identified exactly as
objects that acknowledge messages. A trace of interest is

send(A).send(B).ack(B, A).ack(C, A).ack(C, B).

send(A).send(B)

which violates the property as B sends before their previous
message is acknowledged by A. This property is interesting
as it has looping behaviour (as well as quantifying over two
objects) which requires extra effort to handle in the transla-
tion.

5 Parametric trace slicing with quantified
event automata

In this section and the next, we will introduce two lan-
guages for describing parametric properties. Thefirst is based
on a notion of parametric trace slicing [14], introduced as
a technique that transforms a monitoring problem involv-
ing quantification over finite (but unknown) domains into a
propositional one. The idea is to take each valuation of the
quantified variables and consider the specification grounded
with that valuation for the trace projected with respect to the
valuation. The benefit of this approach is that projection can
lead to efficient indexing techniques.

To illustrate this idea, consider a simply property every
thread should start and later end. The propositional for-
mulation is straightforward, e.g. all traces should match
the regular expression start .∗ end. To lift this to the
parametric case with parametric trace slicing, we add a

thread variable, e.g. start(x) .∗ end(x), and for each val-
uation, e.g. [x
→ 1], we ground the specification, e.g.
start(1) .∗ end(1), and then take the parametric trace, e.g.
start(1).start(2).end(2).end(1), and project it with respect
to [x
→ 1], e.g. start(1).end(1) and check the projected
trace against the grounded (now propositional) specification,

e.g. start(1).end(1)
?∈ P(start(1) .∗ end(1)). A key part of

the parametric trace slicing approach is that the finite domain
being quantified over is taken as the relevant values in the
given trace as these can be taken as the finite subset of values
of interest.

Structure Quantified event automata (QEA) [4] is a
slicing-based formalism that generalises previous work on
parametric trace slicing. We consider a restricted form1 of
QEA that does not allow existential quantification (as dis-
cussed in Sect. 10).

Definition 3 (Quantified Event Automata) A quantified event
automaton is a tuple 〈X , Q,A(X ∪ Y), δ,F, q0, σ0〉 where
X is a finite set of universally quantified variables (hence Y
are the remaining unquantified, local variables), Q is a finite
set of states,A(X∪Y) is an event alphabet, δ ⊆ (Q×A(X∪
Y) × Guard(Y) × Assign(Y) × Q) is a transition relation,
F ⊆ Q is a set of final states, q0 ∈ Q is an initial state, and
σ0 is an initial valuation with dom(σ0) = Y .

The variables Y are implicitly unquantified and are to be used
in guards and assignments, e.g. they are free variables that
are updated during the processing of a trace. An advantage
of the parametric trace slicing approach is that the quantified
and unquantified parts of the specification can be treated sep-
arately. The quantified part is dealt with by trace slicing and
the unquantified part is dealt with by the automaton. Note
that the initial valuation does not appear in the original work
of Barringer et al. [4] but has been added later as its utility
became clear.

Examples Figure 1 presents the three running example
properties asQEAs in graphical form2. Theirmeaning should
become clear as the semantics is introduced in the next sec-
tion, but note that, in this presentation, if a transition cannot
be taken the automata stays in the current state (as opposed to
transitioning to an implicit failure state). For example, state
2 of the UnsafeIterator QEA allows both create and use
events. Note that true guards and identity assignments are
omitted. Final states are indicated as grey states, whereas
non-final states are white.

1 This restriction is reasonable as usage of existential quantification
(that cannot be replaced by free variables) is rare.
2 Elsewhere [22] similar properties are given in a textual ASCII format.
It has been commented that presenting QEAs graphically is ‘cheating’
from a specification language perspective as this is not how they are
written by a user. However, for ease of comprehension here we choose
the graphical presentation.

123

From parametric trace slicing to rule systems 213

Fig. 1 QEA for (i) the
UnsafeIterator property (top
left), (ii) the AuctionBidding
property (right), and (iii) the
Broadcast property (bottom left)

Semantics We now introduce a small-step semantics for
QEA. We would normally introduce a big-step semantics in
terms of the trace slicing operator and use this to motivate the
(more operational) small-step presentation. But this would
be distracting here and the later material only relies on the
small-step presentation. We refer the reader to other texts
for this [4,30]. In the following we assume a fixed QEA of
interest and refer to its components, e.g. the set of quantified
variables X .

Let a monitoring state be a map from valuations θ with
dom(θ) ⊆ X to sets of configurations, which are pairs con-
sisting of states ∈ Q and valuations σ with dom(σ) = Y .
The small-step semantics defines a construction that extends
a monitoring state given a ground event. This construction is
then lifted to traces.

Next Configurations Given a set of configurations P , an
event a, and a valuation θ (with dom(θ) = X), the set
next(P, a, θ) of next configurations is defined as the set con-
taining (q ′, α(σ †match(a,b,Y)) if and only if

{∃(q,b, γ, α, q ′) ∈ δ : 〈q, σ 〉 ∈ P ∧ matches(a,b)∧
γ (σ †match(a,b,Y)) ∧ match(a,b, X) � θ

}

or P if this set is empty, i.e. if no transitions can be taken,
then P is not updated. This says that we take a transition if
we match the event, satisfy the guard, and don’t capture any
new variables in X not already present in θ .

Relevance We will update the configurations related to a
valuation in the monitoring state if the given event is relevant
to that valuation. An event a is relevant to some valuation θ

if there is an event in the alphabet that matches it consistently
with θ , i.e.

relevant(θ, a)

⇔ ∃b ∈ A(X ∪ Y) : matches(a,b) ∧ match(a,b, X) � θ

ExtensionsWewill create a new valuation if matching the
given eventwith an event in the alphabet binds newquantified
variables. The set of valuations extensions(θ, a) that extend
an existing valuation θ given a new ground event a can be

defined by:

from(a) = {θ | ∃b ∈ A(X ∪ Y) : matches(a,b)

∧ θ � match(a,b, X)}
extensions(θ, a) = {θ † θ ′ | θ ′ ∈ from(a)

∧ consistent(θ, θ ′) ∧ θ ′ �= ⊥}

This constructs all valuations that can be built directly and
then uses the consistent (non-empty) ones.

Construction We put these together into the monitoring
construction.

Definition 4 (Monitoring Construction) Given ground event
a and monitoring state M , let θ1, . . . , θm be a linearisation
of the domain of M from largest to smallest wrt �, i.e. if
θ j � θk , then j > k and every element in the domain of M
is present once in the sequence, hence m = |M |. We define
the monitoring state (a ∗ M) = Nm where Nm is iteratively
defined as follows for i ∈ [1,m].

N0 = ⊥

Ni = Ni−1 † Addi †

{ [θi
→ next(M(θi), a, θi)] if relevant(θi , a)
[θi
→ M(θi)] otherwise

where the additions are defined in terms of extensions not
already present:

Addi = [(θ ′
→ next(M(θi), a, θ ′)) | θ ′ ∈ extensions(θi , a)

∧θ ′ /∈ dom(Ni−1)]

and next is a function computing the next configurations
given a valuation.

This construction iterates over valuations (of quantified
variables) from largest to smallest (wrt �). For each valua-
tion it will add any extensions that do not already exist and
then update the configuration(s) mapped to by the existing
valuation. Let us now consider the aspects that have not yet
been defined.

Maximality The order of traversal in Definition 4 is impor-
tant as it preserves the principle of maximality. This is the
requirement that when we add a new valuation we want to
extend themost informative ormaximal valuation as this will

123

214 G. Reger, D. Rydeheard

be associated with all configurations relevant to the new val-
uation. Given a set of valuations Θ and a valuation θ let
maximal(Θ, θ) = θM be the maximal valuation defined as:

θM ∈ Θ ∧ θM � θ ∧ ∀θ ′ ∈ Θ : θ ′ � θ ⇒ θM �� θ ′

This relies on the fact that dom(M) is closed under least-
upper bounds. In Definition 4, when a valuation θ is
introduced its initial set of configurations is taken as those
belonging to maximal(dom(M), θ) as otherwise it will
already have been added. This principle is important as (i)
it is the property that relates the small-step semantics to the
big-step semantics (described elsewhere), and (ii) it makes
the later translation complicated.

Quantification Domain It may not be obvious, but the
above ensures that the domain of the monitoring state cap-
tures the full cross-product of the quantification domains of
X . The domain of variable x ∈ X is given as

{match(a,b)(x) | a ∈ τ ∧ b ∈ A(X ∪ Y)

∧matches(a,b) ∧ b = e(. . . , x, . . .)},

i.e. the set of values in events in the trace that match with
events in the alphabet.

The Property Defined by a QEALet Mτ = τ ∗ [⊥
→
{(q0, σ0(Y))}] be the above construction transitively applied
to the initial monitoring state. The property defined by the
QEA is the set of traces τ such that ∀θ ∈ dom(Mτ) :
dom(θ) = X ⇒ ∀(q, σ) ∈ Mτ (θ) : q ∈ F , i.e. all total
valuations are only mapped to final states. The only means
that, in the case of non-determinism (which is rarely used),
all paths that a trace can take through a QEA must end in a
final state.

Illustrating Semantics We illustrate the above semantics
using theUnsafeIterator property as this illustrates the notion
of maximality. We will check whether the example trace τ

from Sect. 4 is accepted by the QEA given in Fig. 1(i). As
the QEA is deterministic and Y = ∅ we will simplify the
presentation by representing the set of configurations by a
single state instead. Hence, we start with the empty monitor-
ing construct [⊥
→ 1].

On the event create(C, I1) we extend ⊥
→ 1 with
three new valuations. It might seem odd that we need [i
→
I1] and [c
→ C]. However, these are necessary for the
completeness of the approach. Later (Sect. 9) we will see
that in this case they are redundant). Only the valuation
[c
→ C, i
→ I1] has an updated next state. The result
is:

Mτ |1 =

⎡
⎢⎢⎣

⊥
→ 1
[c
→ C]
→ 1
[i
→ I1]
→ 1
[c
→ C, i
→ I1]
→ 2

⎤
⎥⎥⎦

On use(I1) the monitoring state remains unchanged as it
already contains [i
→ I1] and the set of next configurations
for [i
→ I1] and [c
→ C, i
→ I1] are empty for this event.
On the eventcreate(C, I2)we extend themonitoring state
in a similarway to before. Theupdate(C) event then causes
the next states for both of the total valuations to change,
giving us the following monitoring state:

Mτ |5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

⊥
→ 1
[c
→ C]
→ 1
[i
→ I1]
→ 1
[i
→ I2]
→ 1
[c
→ C, i
→ I1]
→ 3
[c
→ C, i
→ I2]
→ 3

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, the event use(I2) is relevant to [i
→ I2] and [c
→
C, i
→ I2] but only produces a new state for the latter; in
this case the non-final state 4 is reached. Now, at the end of
the trace, there is one total valuation mapped to a non-final
state and, therefore, the trace is not in the property of the
UnsafeIterator QEA.

Comparison with JavaMOP Given the close connection,
it is worth quickly outlining the main differences between
the approach taken in QEA and the parametric trace slicing
utilised in JavaMOP. Firstly, JavaMOP supports a range
of propositional languages that can be used in conjunction
with slicing whilst QEA has an explicit automata-language.
Secondly, there is no formal notion of ‘local’ variables in
JavaMOP with such computation typically being achieved
within code triggered by events. Finally, and importantly,
there is no formal notion of quantification or property in the
previous work on parametric trace slicing. Instead the focus
is on triggering actions on when certain verdicts (or states
in a state machine) are reached. These actions can be fur-
ther triggered by restrictions on the valuations (of implicitly
quantified variables) that they are associated with. In QEA
there is a requirement for all such valuations to be total (e.g.
bind all variables in X), but in JavaMOP partial valuations
are allowed and they all support restricting attention to so-
called connected valuationswhere each pair values co-occurs
in an event in the trace. As discussed later, JavaMOP has
also introduced a range of optimisations related to paramet-
ric trace slicing that allow it to monitor efficiently.

6 A rule-based approach

We now introduce an approach first introduced in RuleR [3]
that uses a system of rules to compute a verdict. Our notion
of a rule system here could be considered the core of the
system introduced in [3], i.e. the extensions in [3] are either
trivial or can be defined in terms of this core. Hence, this
formulation is representative of RuleR whilst being simple

123

From parametric trace slicing to rule systems 215

enough to present concisely. The presentation is similar to
the RuleR-lite variation described in [17].

The general idea behind the rule-based approach is that we
have facts that are rewritten by a set of rules using an incom-
ing event, with acceptance based on the facts that are (or are
not) present in the final set of facts. In the nomenclature of
theRuleR system, a fact consists of a set of rule instances—
each ‘rule’ is associated with a set of variables and each fact
is an instance of one of the rules. Each ‘rule’ has its own set
of terms of the form lhs → rhs with which its instances may
be rewritten.When rules have empty variable sets and the lhs
of rule terms consist of single events, this presentation coin-
cides with that of state machines. However, rule systems can
capture much more expressive languages by recording data
in rule instances and having complex guards on rule terms,
e.g. presence of absence of other rule instances.

StructureLetR be a set of rule names.A term is a variable,
value, or a function over terms (e.g. x+1). A rule expression
is a rule name r applied to a list of terms and is pure if
these terms are function-free. A premise is an event, pure rule
expression or guard, or a negation of any of these (we use !
for negation). A rule term is of the form lhs → rhs where
lhs is a list of premises and rhs is a list of rule expressions.
A rule definition is of the form r(x){body} where r is a rule
name, x is a list of variables and body is a set of rule terms.
We call r(x){body} a rule definition for r(x). Finally, A fact
is a finite set of rule instances. A rule instance is a pair 〈r , θ〉
where r is a rule name and θ is a valuation. We now define a
rule system.

Definition 5 (Rule System) A rule system is a tuple 〈D,B, I〉
where D is a finite set of rule definitions, B is a finite set of
bad rule expressions and I is an initial fact.

A rule term lhs → rhs is well formed if when the first
occurrence of a variable in lhs is under a negation then this
is its only occurrence in the rule term. A rule definition
r(x){body} is well formed if every rhs in body only con-
tains variables in x or the corresponding lhs. A rule system is
well formed if (i) all rule terms are well formed, (ii) there is
at most one rule definition for each r(x), and (iii) every rule
expression used in rule terms has a corresponding definition.
A rule instance 〈r , θ〉 is well formed for a rule system if there
is a rule definition for r(x) such that dom(θ) = x .

Examples Figure 2 presents the three running example
properties as rule systems. The approach taken to specify the
Start rule is a common idiom in rule systems to keep a rule
‘alive’ by reintroducing the rule when it fires. Indeed,RuleR
introduced specialmodifiers for such rules,whichweomit for
conciseness. As we will see later, this looping start rule can
be used to emulate the quantifiers ofQEA. One case that may
require some explanation is the rule system for theBroadcast
property. This needs to build up knowledge about the set of
sender and receiver objects explicitly (whilst in trace slicing

this is done implicitly), relying on the knowledge that the set
of receivers must be fixed once a sender sends for the second
time. Finally, note the use of an undefined Fail rule which is
often used to capture the ‘other’ cases. The RuleR system
had a notion of asserted rules that could capture implicit
failure, but we omit this is as it can be encoded by the use of
this Fail rule.

Semantics Here we assume a well-formed rule system of
interest and will refer to its components directly, e.g. its rule
definitions. The semantics of rule systems can be given in
terms of a rewrite relationship on facts . Given a fact and an
event we

1. Find the set of rule instances in the fact that fire, and then
2. Update the fact with respect to these rule instances.

For ease of presentation, we first introduce the notion of an
extended fact as a finite set of rule instances and (ground)
events. This allows us to add the incoming event to the current
fact, to produce an extended fact, and define the operations
directly on extended facts.

Firing Rule Instances To identify the firing rule instances
we need to find those rule instances whose associated rule
definition has a rule term with a premise list that can be sat-
isfied in the current extended fact. This will likely involve
extending the valuation associated with the rule instance.
This extended valuation is required when producing new rule
instances. Therefore, we define a firing function that com-
putes this extended valuation first for a single premise and
then lifted to premise lists.

For extended factΓ , valuation θ and a single premise (e.g.
event, rule expression, guard, or negated premise) we define
fire as follows:

fire(Γ , θ, b) = θ †match(a, θ(b)) if a ∈ Γ ∧ matches(a, θ(b))

fire(Γ , θ, r(x)) = θ †match(v, θ(x)) if r(v) ∈ Γ ∧ matches(v, θ(x))

fire(Γ , θ, γ) = θ if γ (θ)

fire(Γ , θ, !t) = θ if fire(Γ , θ, t) = ⊥
fire(Γ , θ, t) = ⊥ otherwise

This computes the extension of θ that satisfies the premise
using the given extended fact. The first two lines match
against events and rule expressions, the third line checks
guards, the fourth line deals with negation, and the last line
handles the case where the constraints of previous lines do
not hold. This is lifted to lists of premises:

fire(Γ , θ, ε) = θ

fire(Γ , θ, prems) = fire(Γ , fire(Γ , θ,head(prems)), tail(prems))

Given a rule instance 〈r , θ〉 let find(r , θ) be the rule defini-
tion r(x){body} for x = dom(θ). We say that a rule instance
〈r , θ〉 fires in an extended factΓ if fire(Γ , θ, lhs) �= ⊥where

123

216 G. Reger, D. Rydeheard

Fig. 2 Rule systems for (i) the
UnsafeIterator property (top),
(ii) the AuctionBidding property
(middle), and (iii) the Broadcast
property (bottom). Assuming
general rule definition Fail{} and
init ≡ 〈Start,⊥〉

lhs → rhs ∈ find(r , θ). Next we define the set of ground
rule expressions that result from a rule instance 〈r , θ〉 firing
in extended fact Γ as follows:

fired(〈r , θ〉, Γ) =
{
θ ′(rhs) | lhs → rhs ∈ find(r , θ) ∧

θ ′ = fire(Γ , θ, lhs) ∧ θ ′ �= ⊥
}

As θ ′(rhs) is now ground we evaluate all functions to ensure
that it is also pure, e.g. [x
→ 1](s(x+1)) = s(1+1) = s(2).

Rewriting a Fact We define a rewrite relation Δ
a→ Δ′

for facts Δ and Δ′ and ground event a by defining the rule
instances in Δ that are kept because they do not fire, are
added by firing rules, and removed once fired. Let Δ′ =
(ΔNF\ΔR) ∪ ΔF where ΔNF is the set of rule instances in
Δ that do Not Fire in extended fact Δ ∪ {a} and ΔF and ΔR

are the smallest facts such that:

〈r ′, [x
→ v]〉 ∈ ΔF if 〈r , θ〉 fires in Δ ∪ {a} and r ′(v) ∈ fired(〈r , θ〉, Δ ∪ {a})
〈r ′, [x
→ v]〉 ∈ ΔR if 〈r , θ〉 fires in Δ ∪ {a} and !r ′(v) ∈ fired(〈r , θ〉, Δ ∪ {a})

where r(x) is defined in D. This defines ΔF as the new rule
instances after rules are Fired and ΔR as the rule instances
that need to be Removed after rules are fired. Note that it is
important to add new rule instances after removing fired rule
instances as a rule instance may be re-added (indeed, this is
a common case).

The Property Defined by a Rule System This rewrite rela-
tion is transitively extended to traces to produce a final fact

Δτ = I τ→ Δ, where I is the initial fact. This final fact is
accepting if it does not contain a rule instance 〈r , θ〉 such that
r(dom(θ)) ∈ B, the set of bad rule expressions. Therefore,
the property defined by the rule system is the set of traces τ

such that ∀〈r , θ〉 ∈ Δτ : r(dom(θ)) /∈ B.
Illustrating Semantics Again, we consider whether the

example trace τ from Sect. 4 is accepted by the UnsafeIt-
erator rule system given in Fig. 2(i).

We begin with the initial fact {〈Start,⊥〉} and rewrite
this using the first event create(C, I1). The rule instance
〈Start,⊥〉 fires in the extended fact Γ1 = {〈Start,⊥〉,
create(C, I1)} asfire(Γ1,⊥,create(c, i), !Unsafe(c, i)) =
[c
→ C, i
→ I1] by first matching the ground and non-
ground events and then checking that Unsafe(C, I1) /∈ Γ1.
Therefore,ΔF = {〈Created, [c
→ C, i
→ I1])〉, 〈Start,⊥〉},
which is also the resulting fact.When rewritingwithuse(I1)
no rules fire and there is no work to do. Rewriting with
create(C, I2) follows similar steps as above to give the
resulting fact

{〈Created, [c
→ C, i
→ I1])〉,
〈Created, [c
→ C, i
→ I2])〉, 〈Start,⊥〉}

Rewritingwithupdate(C) causes thefirst two rule instances
to fire, leading to the fact

{〈Unsafe, [c
→ C, i
→ I1])〉,
〈Unsafe, [c
→ C, i
→ I2])〉, 〈Start,⊥〉}

123

From parametric trace slicing to rule systems 217

Finally, rewriting with use(I2) fires the rule instance
〈Unsafe, [c
→ C, i
→ I2])〉, adding Fail to the fact. As
the final fact contains a rule instance using a bad rule expres-
sions, this trace is not in the property of the UnsafeIterator
rule system.

Comparison with other rule-based approachesWe briefly
highlight how our presentation here differs from the pre-
sentation of RuleR and compare it to other rule-based
specification languages for runtime verification. Firstly, it is
worth noting that the original papers on RuleR [3,7] did not
give an explicit definition of the structure and semantics of
parametric rule systems (those using data). Instead it intro-
duced a propositional language and described extensions
to handle parameters. A restricted version of the language
was described in more detail as RuleR- LITE [17] which
shares some similarity to our presentation here but uses
rule modifiers (which we leave as syntactic sugar) and, cru-
cially, doesn’t provide semantics. The syntactic sugar of rule
modifiers is the main difference between the rule system pre-
sented here and that used in the RuleR tool. It is a similar
case with the TraceContract [6], and LogFire [20] tools
that followed RuleR—their logics can be viewed as exten-
sions of the system presented here. Therefore, the translation
described next could be straightforwardly modified to target
these alternative rule-based systems.

7 Translating quantified event automata to
rule systems

We now show how to produce a rule system from a QEA.
This will consist of three translations on the QEA until it is
in a form where we can apply a local translation of each state
to a rule definition. The translation has been implemented
in Scala (see https://github.com/selig/qea_to_rules). The
Scala implementation is very close to the pseudocode pre-
sented in this section.

7.1 An equivalent representation with labelled
states

We introduce an annotation of QEA that replaces states with
so-called labelled states. The idea is that a state will be
labelled with the set of variables that are seen on all paths
to that state, thus making explicit the variables necessarily
bound at a state. Let 〈q, S〉 be a labelled state where q is a
state and S a (possibly empty) set of variables. Given a set
of states Q and a set of variables X let LS = Q × 2X be the
(finite) set of labelled states.

A QEA over labelled states is well labelled if when
〈q2, S2〉 is reachable from 〈q1, S1〉we have S1 ⊆ S2. The pre-
vious Broadcast QEA is not well labelled as the initial state
would have an empty set of labels, but there is an incoming

transition using r and s. The equivalent well-labelled version
of this (corresponding to the result of the construction intro-
duced next) is given in Fig. 3 (top). This requires introducing
three new states, whereas theUnsafeIter QEA is alreadywell
labelled (see Fig. 4).

We show how to construct a well-labelled QEA defined
over labelled states from a standard QEA. Given QEA
〈X , Q,A(X∪Y), δ,F, q0, σ0〉we construct 〈X , LS,A(X∪
Y), δ′,F′, 〈q0, {}〉, σ0〉 where δ′ and F′ are defined as the
smallest sets satisfying the following:

(〈q, S〉, e(x), γ, α, 〈q ′, S ∪ (x\Y)〉) ∈ δ′ if (q, e(x), γ, α, q ′) ∈ δ

(〈q, S〉, e(x), ¬(γ1 ∨ . . . ∨ γn),

id, 〈q, S ∪ x\Y 〉) ∈ δ′ for e(x) ∈ A(X ∪ Y)

and all (q, e(x), γi , α, q ′) ∈ δ

〈q, S〉 ∈ F′ if q ∈ F and S = X

where S ⊆ X . The second item requires explanation; this
captures the case where no transition can be taken, and thus,
an implicit self-loop is performed as these transitions may
be between states with different captured variables. Note
that if no transitions for e(x) exist then ¬(γ1 ∨ . . . γn) will
be true. This may lead to unreachable states which can be
safely removed. A special case of this would be where a
guard becomes false by negating a true guard. The transla-
tion is captured in Algorithm 1 which relies on an implicit
simplify function that simplifies guards to detect a false
guard. The general structure of the algorithm is a standard
breadth-first exploration of the generated state space. Note
that final states must have the full set of quantified variables
X as their label. This fits with the observation that slicing
only considers total valuations.

This resultant automaton over labelled states is equivalent
to the original one as no new paths to final states are intro-
duced and none are removed. From now on we will refer to
QEA over labelled states asQEA if the labelling is clear from
the context or unimportant. Additionally, we will assume all
QEA are well labelled.

7.2 A domain-explicit form

We make the following observation about the Broadcast
property. Consider the trace send(1).ack(2, 3). After the
first event the only (partial) valuation we can be aware of
is [s
→ 1]. The second event extends the domain of r and
requires us to consider [s
→ 1, r
→ 2]. However,ack(2, 3)
is not relevant to [s
→ 1]. This will be problematic for our
translation as in the rule system the decision about whether
to extend a valuation must be made locally, i.e. by making
a transition. Here this can be resolved by adding a transition
(〈2, {s}〉,ack(r , x), x �= s, 〈2, {r , s}〉), which is one of two
transitions added by the following construction as illustrated
in Fig. 3 (bottom). However, in general, we may need to
add many similar transitions to capture all possible valuation

123

https://github.com/selig/qea_to_rules

218 G. Reger, D. Rydeheard

Fig. 3 Well-labelled and
domain-explicit versions of the
Broadcast QEA

Fig. 4 A well-labelled version
of the UnsafeIterator QEA

Algorithm 1: Algorithm for the translation to well-
labelled form.
Function well-labelled is

input : QEA 〈X , Q,A(X ∪ Y), δ,F, q0, σ0〉
output: Well-labelled equivalent QEA
start = 〈q0,∅〉;
states = ∅; final = ∅; transitions = ∅;
todo = Empty Queue; todo.enqueue(start);
while todo not empty do

〈state,vars 〉 := todo.dequeue();
for (q, e(x), α, γ, q ′) ∈ δ where q =state do

newstate = 〈q ′, vars + x/Y 〉; addstate(newstate);
transitions.add((〈state,vars〉, e(x), α, γ,newstate));

end
for e(x) ∈ A(X ∪ Y) do

joint_guard := true;
for (q, e′(x ′), γ, α, q ′) ∈ δ where q =state and
e(x) = e′(x ′) do

joint_guard := simplify(joint_guard ∧¬γ);
if joint_guard = false then Skip to next e(x);

end
newstate = 〈state, vars + x/Y 〉; addstate(newstate);
transitions.add((〈state,vars〉, e(x),g,identity,newstate));

end
end
return 〈X ,states,A(X ∪ Y),transitions, final, start, σ0〉

end
Function addsate(newstate) is

if newstate /∈ states then
states.add(newstate); todo.enqueue(newstate);
if state ∈ F and (vars ∪(x/Y)) = X then
final.insert(newstate); ;

end
end

extensions. We will now introduce an intermediate form that
achieves this.

We introduce a conversion to domain-explicit QEA that
will (i) ensure that ground events that extend an evaluation
will always correspond to a transition in the automaton, but
(ii) will also preserve the language of the QEA. To convert

to domain-explicit form, for each labelled state 〈q, S〉 and
event e(x) ∈ A(X ∪Y) where x ∩ (X/S) �= ∅ (e.g. the event
contains at least one quantified variable not in S) we add a
set of transitions

(〈q, S〉,e(x[xi
→ fresh(xi) | xi ∈ R]),∧
x∈R

x �= fresh(x), id, 〈q, S ∪ (x/R)〉)

where R is a non-empty subset of S∩ (x/Y) (i.e. some quan-
tified variables already bound in the state and also used in
the event) and fresh(x) produces a consistent fresh-variable
(e.g. it always maps x to the same fresh-variable). These
new events are exactly those that will bind new quantified
variables without needing to match the values of existing
quantified variables. If x and S are disjoint then e(x[xi
→
fresh(xi) | xi ∈ R]) = e(x) as S ∩ (x/Y) = ∅. Otherwise,
a new event is created replacing one or more known quan-
tified variables (in S) by fresh unquantified variables along
with a guard saying that these cannot take the same value
as their quantified version. This translation step is captured
in Algorithm 2. Note that only new transitions are added. In
particular, the set of final states must remain the same as any
new states, by construction, cannot be labelled with X .

The QEA resulting from this translation is well labelled
and equivalent (in terms of language accepted) to the original
QEA. Equivalence is due to the fact that transitions are only
created between copies of the same state; therefore, no paths
to final states are added or removed. Additionally, due to the
skipping completion of QEA, adding events to the alphabet
has no other side-effects.

The domain-explicit version of theUnsafeIterator QEA is
given in Fig. 7 (on page 24). This is significantly more com-
plicated due to the need to introduce many new transitions
(and states) to capture the domain.

123

From parametric trace slicing to rule systems 219

Algorithm 2: Algorithm for the translation to domain-
explicit form.

Function domain-explicit is
input : Well-labelled QEA 〈X , Q,A(X ∪ Y), δ,F, q0, σ0〉
output: Domain-explicit well-labelled equivalent QEA
transitions = δ;
for 〈q, S〉 ∈ Q, e(x) ∈ A(X ∪ Y) where (x ∩ (X/S)) �= ∅ do

foreach subset R of S ∩ (x/Y) where R �= ∅ do
y := []; guard := true;
for v ∈ x do

if v is a variable then w := fresh(v); y
.append(w); guard := guard ∧v �= w;
else y .append(v);

end
transitions.add((〈q, S〉, e(y),guard,identity,〈q, S ∪
(x/R)〉));

end
end
return 〈X , Q,A(X ∪ Y),transitions, F, q0, σ0〉

end

7.3 A fresh-variable form

Our final translation on the QEA is to ensure that we can
transform transitions in aQEA directly into a rule definition.
Consider the transition 〈〈2, {i}〉,bid(i, a), if a > c, c :=
a, 〈2, {i}〉〉 from the labelled QEA for the AuctionBidding
property (see Fig. 5). We might try and write the following
rule definition for this transition where we must include the
set of unquantified variables Y in the parameters of the rule
definition:

r2(i,min, c, a){bid(i, a), a > c → r2(i,min, a, a)}

This is problematic as bid(i, a) will try and match this a
with the a in the parameter list. To avoid this, wemust replace
instances of unquantified variables in transitions with fresh
local versions. For example, this transition would become
〈〈2, {i}〉, bid(i, b), if b > c, a := b; c := a, 〈2, {i}〉〉, i.e.
we replace a by b and then set a := b in the assignment.

To perform this translation, we replace each transition
〈〈q, S〉, e(x), γ, α, 〈q ′, S′〉〉 ∈ δ with the new transition for
yi ∈ x ∩ Y and fresh zi :

〈〈q, S〉, [yi
→ zi](e(x)),
[yi
→ zi](γ), (yi := zi);α, 〈q ′, S′〉〉

The resultant QEA is clearly equivalent as all paths remain
the same. The implementation of this translation is trivial and
we assume a function fresh-variable that runs on a domain-
explicit, well-labelled QEA.

7.4 The translation

Given a fresh-variable domain-explicit labelledQEA 〈X , LS,

A(X ∪ Y), δ, F, 〈q0, {}〉, σ0〉 we construct a set of rule def-
initions RD = {rq(S,Y) | 〈q, S〉 ∈ LS}. The body for
each rule definition is constructed by translating each transi-
tion starting at that state. The important step is knowing how
to translate each transition based on whether the transition
extends the label of quantified variables or not.

(i) Transitionswith the same labelWefirst consider simple
transitions that do not bind any new quantified variables.
Let (〈q, S〉, e(x), γ, α, 〈q ′, S〉) ∈ δ be such a transition. We
introduce the following rule term for this transition

e(x), γ → rq ′(S, α(Y))

where we write α(Y) for the expansion of assignment α to
Y , e.g. (x = y+1){x, y} = y+1, y. We shall call rule terms
of this form kind (i).

(ii) Transitions extending the label Recall that the small-
step semantics for QEA depended on the principle of
maximality.We need to reproduce this in the constructed rule
system. The notion of maximality applies when a valuation
is extended with information about new quantified variables
and the extension is required only if there is no larger consis-
tent valuation. For transition (〈q, S〉, e(x), γ, α, 〈q ′, S′〉) ∈ δ

where S ⊂ S′, we introduce the following rule term

e(x), γ, !r1(S1,Y1), . . . , !rn(Sn,Yn)
→ rq ′(S′, α(Y)), rq(S,Y)

for ri (Si ,Y) ∈ RD, S ⊂ Si , and fresh copies Yi of Y . We
treat assignment α as the valuation given by applying it to
the identity valuation. We shall call rule terms of this form
kind (ii). Two features of this rule term should be explained.
Firstly, !r1(S1), . . . , !rn(Sn) captures maximality as it states
that there is no rule instance with a valuation larger than
and consistent with the current one. Secondly, the two rule
expressions on the right serve two separate purposes: rq ′(S′)
is the new valuation in its new state and rq(S) is re-added as
the initial valuation should stay in the current state.

As an example, Fig. 6 gives the set of rule definitions gen-
erated by our tool for (i) the domain-explicit labelledQEA for
the Broadcast property, and (ii) the domain-explicit labelled
QEA in fresh-variable form for the AuctionBidding.

We have now described how to produce a rule body for
each rule definition by translating the transitions as described
above. A rule system is the set D of rule definitions for each
state in LS, the bad rule expressionsB = {r(S) | 〈q, S〉 /∈ F}
and the initial state = {〈rq0 , σ0〉}.

Algorithm 3 captures this translation. As expected, there
is some complexity in how we handle Y (either renaming
these to fresh-variables or applying α or σ0). As before,

123

220 G. Reger, D. Rydeheard

Fig. 5 A well-labelled domain
explicit version of the
AuctionBidding QEA

Fig. 6 Resulting rule systems
for (i) Broadcast property (top),
and (ii) AuctionBidding property
(bottom)

we implicitly move between sets and lists, assuming an
implicit ordering on elements to ensure turning a set into a
list produces a unique list. The overall translation process can
be achieved by chaining the four algorithms well-labelled,
domain-explicit, fresh-variable, and translation.

The translation is decidable; any QEA of the form given
in Sect. 5 can be translated to a rule system (which is neither
unique nor minimal; no good notion of minimality exists).
The size of the resulting rule system is potentially O(|Q| ×
2|X |) due to the well-labelled translation introducing new
states.

8 Correctness of the translation

Here we show that the translation of Sect. 7 is correct, i.e. the
QEA and rule systemaccept the same traces.Wefirst consider
the casewhereY = ∅, i.e. there are no unquantified variables,
and therefore, the valuations in rule instances correspond

directly to valuations in the domain of the monitoring state
from the QEA semantics.

Lemma 1 Let Δ be a fact of a rule system produced by the
translation of a QEA with Y = ∅ and let a be a ground
event. The rule instance 〈ri , θi 〉 ∈ Δ will fire for a with a
rule term of kind (ii) to produce 〈rk, θk〉 if and only if θk ∈
extensions(θi , a) for the domain-explicit labelled form of the
QEA.

Proof We note that this is the exact property that the domain-
explicit form is introduced to achieve. Firstly, for the domain-
explicit form from(a) in the QEA semantics can be replaced
by the equivalent

{match(a,b) | ∃b ∈ A(X ∪ Y) : matches(a,b)}

as one no longer needs to consider submaps of the matching
valuation as the domain-explicit form extends the alphabet

123

From parametric trace slicing to rule systems 221

Algorithm 3: Algorithm for the translation to rule sys-
tem.
Function translate is

input : Fresh-variable, domain-explicit, well-labelled QEA
〈X , Q,A(X ∪ Y), δ,F, q0, σ0〉

output: Rule System RS
definitions = ∅;
for 〈state, vars〉 ∈ Q do

parameters := vars ++ Y; body := [];
for (〈q, S〉, e(x), α, γ, 〈q ′, S′〉) ∈ δ where q =state and
S =vars do

// All rule terms start with event
and guard

left := [e(x), γ];
// Case (i) transitions with the

same label
if S = S′ then right := [rq ′ (S, α(Y))] ;
// Case (ii) transitions extending

the label
else

negated_rules = [];
for 〈q1, S1〉 ∈ Q where vars ⊂ S1 do

Y’ = []; foreach y ∈ Y do Y’.append(y(q1,S1));
negated_rules.append(!rq1 (S1++Y ′));

end
left := left ++ negated_rules;
Y’ = []; foreach y ∈ Y do Y’.append(α(y)) ;
right := [rq ′ (S′, Y ′), rq (S, Y)]

end
body.append(left ⇒ right);

end
definitions.add((rq , parameters, body));

end
Y’ := []; foreach y ∈ Y do

Y’.append(σ0(y))
end
initial := {rq0 (Y ′)};
bad := ∅;
for 〈q, S〉 ∈ Q where 〈q, S〉 /∈ F and S = X do
bad.add(rq (S++Y)); ;
return (definitions,bad,initial)

end

to ensure there will be an event which, when matched with,
will produce this submap.

As defined on page 8, the set extensions(θi , a) is given by
extending θi by consistent non-empty valuations in from(a).
The domain-explicit form ensures that whenever there is a
state that is not labelled with all quantified variables then
there will be a transition for every event b that could extend
the label. Therefore, due to how the rule system is con-
structed, there will be a rule term of kind (ii) for every such
event in the body of the associated rule definition. In more
detail, if we take the if direction, for θk ∈ extensions(θi , a)
we need an event in the (original) alphabet matching the
ground event and the some part of the resulting valuation
extending an existing valuation in a consistent way. As men-
tioned above, the sub-maps are captured explicitly by an extra
event in the alphabet. Hence, it is guaranteed that such an

event exists and a transition exists for the event. For the only
if direction note that the translation only adds rule terms for
transitions in the automaton. Note that the two systems check
the predicate γ at different points. This is why the domain-
explicit form needed to ensure that all possible valuations
were covered by some transition, so that the above statement
about a transition always existing is true. ��
Lemma 2 Let Δ be a fact of a rule system produced by the
translation. If 〈ri , θi 〉 ∈ Δ fires with a rule term of kind (ii)
to produce 〈rk, θk〉 then maximal(Δ, θk) = θi .

Proof We assume that 〈ri , θi 〉 ∈ Δ fires with a rule term of
kind (ii) to produce 〈rk, θk〉 and show thatmaximal(Δ, θk) =
θi . Recall that maximal(Δ, θk) = θi iff

θi ∈ Δ ∧ θi � θk ∧ ∀θ ′ ∈ Δ : θ ′ � θk ⇒ θi �� θ ′

The first conjunct holds by definition and the second conjunct
follows from the rule term being of kind (ii) (i.e. S ⊂ S′). The
last part can be shown by contradiction. Assume 〈r ′, θ ′〉 ∈ Δ

such that θ ′ � θk and θi � θ ′. This means that dom(θi) ⊂
dom(θ ′), and therefore, one of the terms !r1(S1), . . . , !rn(Sn)
in the corresponding kind (ii) rule term is false and would not
fire for 〈ri , θi 〉, a contradiction. ��

We use these two lemmas to establish equivalence of the
domain-explicit form and its translation. We have already
argued for the language preservation of the transformations
to domain-explicit form.

Theorem 1 Given a domain-explicit labelledQEA with Y =
∅, let RS be the rule system given by the above translation.
For monitoring state Mτ and fact Δτ if

Mτ = τ ∗ [[]
→ {q0}] and {〈rq0 , []〉} τ→ Δτ

then for any valuation θ

Mτ (θ) = {q | 〈rq , θ〉 ∈ Δτ }

Proof By induction on τ . The base case is trivial as initially
they both only contain the initial state. For τ = τ ′.a, we have

Mτ ′(θ) = {q | 〈rq , θ〉 ∈ Δτ ′ }

as our induction principle. As there must be the same valua-
tions inMτ ′ andΔτ ′ , wewill show that for any such valuation
θ the effects onMτ andΔτ are the same. That is, (i) the infor-
mation related to θ in each structure is updated in the same
way and (ii) the additional valuations added from θ due to a
are the same.

Let us take (i) first. According to Definition 4 if a is not
relevant then no rules are fired, which matches with no tran-
sitions being taken in the single step construction. If a is

123

222 G. Reger, D. Rydeheard

relevant then Mτ (θ) = next(Mτ ′(θ), a, θ). We can consider
each q ∈ Mτ ′(θ) separately. For q we know 〈rq , θ〉 ∈ Δ.
We argue that the firing rule terms of rq(dom(θ)) match
the result of next(Mτ ′(θ), a, θ). A condition of next is that
no new quantified variables are bound, this corresponds to
kind (i) rule terms. As there is a one-to-one correspondence
between transitions and rule terms then if a transition is taken
the corresponding rulewill fire and vice versa. As per the def-
inition of next, if no transitions can be taken, then the state
remains the same; similarly, if no kind (i) rule terms are fired
then either a kind (ii) rule term is fired and the rule instance
persists or no rule terms fire and the rule instance persists.

Now let us consider (ii). There are two parts: (a) exactly
the same valuations are added and (b) the new valuations are
in the same states. The first part (a) follows from Lemma 1
as the set of valuations added in both cases is the same. The
second part (b) follows from Lemma 2 as in both cases it is
the maximal valuation that is used to define which states are
associated with the new valuation. ��

Finally, we need to consider the case of a QEA with non-
empty Y . Firstly, Lemmas 1 and 2 can be lifted to this case by
explicitly identifying and excluding variables in Y in valua-
tions and rule definitions. Note that these lemmas are solely
about relating the domain of themonitoring state to the quan-
tified parts of rule instances and are not affected by this part
of the valuation. Therefore, we will use these lemmas for
QEA with non-empty Y in our following proof.

Theorem 2 Given a domain-explicit Q, let RS be the rule
system given by the above translation. For monitoring state
Mτ and rule state Δτ if

Mτ = τ ∗ [[]
→ {〈q0, σ0(Y)〉}] and {〈rq0 , σ0〉} τ→ Δτ

then for any valuation θ

Mτ (θ) = {〈q, σ 〉 | 〈rq , θ ∪ σ ∪ σ ′〉 ∈ Δτ ∧ dom(σ ′)
∩Y = ∅}

Proof (Sketch) We need to make certain adjustments to the
proof of Theorem 1 to convince ourselves that this part of the
valuation is correctly treated. The structure of the argument is
the same. In part (i), we must consider each 〈q, σ 〉 ∈ Mτ ′(θ)

and corresponding 〈rq , θ † σ 〉 ∈ Δ. The only new behaviour
to consider in the firing of the rule terms of rq(dom(θ))

is the recording of unquantified variables and the applica-
tion of guards and assignments. Here the same guards and
assignments are used, which will lead to the same configura-
tions/rule instances being blocked and updated. Part (ii) can
be updated to use versions of Lemmas 1 and 2 that refer to
configurations rather than states—the presence of unquanti-
fied variables has no impact on these. ��

9 A general notion of redundancy inspired
by the translation

Consider the rule system given in Fig. 7 resulting from the
translation of the UnsafeIterator QEA. On inspection, we
can see that the rule definitions r1(i), r1(c), and r1(c, i) are
redundant as every trace that leads to a rule instance 〈r2, θ〉
via these rules will also be produced if they are absent. This
should not be surprising as if we remove these rule defini-
tions the rule system becomes very similar to the one given
in Sect. 4, only with the addition of maximality guards. By
making some operations carried out by the slicing structure
explicit, we can identify an inherent redundancy in this com-
putation. We now formalise this notion of redundancy and
then show how it can be used to optimise the translation.

9.1 Demonstrating redundancy

Before we give the formal definition of redundancy, let us
explore the notion of redundancy using an extension of the
UnsafeIterator property3. The QEA in Fig. 8 captures the
property that iterators for collections created from a map
(e.g. the keySet) should not be used after the original map is
updated. Consider the trace

create(A, X).iterator(X , 1).use(1).create(B, Y).

iterator(Y , 2).use(2)

The only valuations of interest are [m
→ A, c
→ X], [m
→
A, c
→ X , i
→ 1], [m
→ B, c
→ Y], and [m
→ B, c
→
Y , i
→ 2]. Let us consider why two other valuations are
redundant. Firstly, consider [i
→ 1]. This has a non-empty
projection for the trace (use(1)) but that projection remains
in the initial state—so does not provide any new informa-
tion. Secondly, consider [m
→ A, c
→ X , i
→ 2] as an
extension of [m
→ A, c
→ X]. Again this has a non-empty
trace projection which is the same as that for the valuation it
extends and no new information is recorded.

The observation we make is that if a valuation extends
a smaller valuation without adding any new information
(changing the set of configurations mapped to by the valua-
tion) it is redundant and can be omitted. There is a caveat to
this—if the the smaller valuation contains information that
would affect the verdict this should be preserved and the
larger valuation created.

3 We introduce this new property as it makes a special case of redun-
dancy more obvious. In UnsafeIterator we only make redundant
extensions of the initial configuration, but in this new property we also
make redundant extensions of intermediate configurations.

123

From parametric trace slicing to rule systems 223

Fig. 7 Fully transformed QEA
and corresponding rule system
for the UnsafeIterator property

Fig. 8 A QEA for the
UnsafeMapIterator property for
Java

9.2 Defining redundancy

The above discussion hinges on the notion that valuations
mapping to empty or trivial projections can be ignored. The
empty projection would only affect the verdict if the initial
state were non-final (this is because all quantification is uni-
versal, if existential quantification were allowed this would
change). We call a QEA normal if its initial state is final.
All QEAs that the authors have written or encountered have
been normal. The empty projection is a special case of amore
general case for trivial projections. In the above example all
trivial projections (and hence redundant valuations) were in a
final state, e.g. they would not violate the property (assuming
a normalQEA). This is a necessary condition (for a valuation
to be redundant) but not sufficient. As an example, consider
the following QEA

1 2 3

∀x,∀y,∀z
f(x, y) g(z)

and the trace g(1).f(2, 3). This clearly violates the property
as the trace reaches non-final state 2 for the valuation [x
→
2, y
→ 3, z
→ 1]. However, after the first event we have
the valuation [z
→ 1] in the final initial state. If we were
to remove this valuation, then we would fail to produce the

total valuation [x
→ 2, y
→ 3, z
→ 1]. The reason for this
is that we can get to a non-final state without rebinding z.

We will say that a valuation (in the domain of the mon-
itoring state) contains necessary information and should be
preserved if it is active. A valuation is active if it may not be
reconstructed before reaching a non-final active state (which
subsumes the case where it is already in a non-final state).
This may happen exactly when there exists a path from the
current state to a non-final state that does not bind the current
valuation’s quantified variables.

Definition 6 (Active Valuation) Given a normalQEA 〈X , Q,

A(X∪Y), δ,F, q0, σ0〉 and amonitoring stateM , a valuation
θ ∈ dom(M) is active if there is a configuration 〈q, σ 〉 ∈
M(θ) such that dom(θ) � bpath(q,∅) where bpath(q, S)

is defined recursively as

bpath(q, S) = S ∩ X if q /∈ F
bpath(q, S) = X if {(q,b, γ, α, q ′) ∈ δ} = ∅
bpath(q, S) = ⋂

(q,e(z),γ,α,q′)∈δ bpath(q ′, S ∪ z) otherwise

The bpath function builds the set of variables used on
every path to a non-final state, hence taking the intersection
of the variables on each path. To ignore paths ending in final
states,we associate suchpathswith themaximumset of quan-
tified variables X . Note that if q /∈ F then bpath(q,∅) = ∅

123

224 G. Reger, D. Rydeheard

and dom(θ) � ∅ unless θ = ⊥, in which case θ cannot be
redundant.

Note that this is a very strong requirement and that being
inactive does not mean that a valuation is not needed but that
it is needed even if a smaller valuation exists in the same state.
A valuation is then redundant if it will always be recreated
before it is needed, e.g. it is not active and it extends another
valuation in the same configurations.

Definition 7 (Redundant Valuation) Given the monitoring
state M , let θL , θ ∈ dom(M) be two valuations such that
θL is the largest (wrt �) valuation in dom(M) such that
θL � θ . The valuation θ is redundant with respect to θL iff
it is not active and M(θ) = M(θL), in which case we write
redundant(θ, θL , M).

The monitoring construction of Definition 4 can be
updated to use this form of redundancy such that at any step
the monitoring state does not contain any redundant valua-
tions.

Definition 8 (Monitoring Construction up to Redundancy)
We extend the construction of monitoring state (a∗M) given
in Definition 4 as follows. Let (a ∗ M) = Kn where K0 = ⊥
and

Ki =
[
(θ j
→ C j) ∈ Ni | θ j ∈ dom(Ki−1) ∨ (θ j �= θi ∧ ¬redundant(θ j , θi , Ni)) ∨

(θ j = θi ∧ �θ ′ ∈ dom(Ki−1).redundant(θi , θ ′, Ni))

]

In other words, an entry in Ni is kept if it was already kept at
the last iteration or if it is not redundant.We capture two cases
for redundancy. Either the valuation was freshly introduced,
in which case we need to check redundancy with respect to θi
or itwas an existing valuation, inwhich caseweneed to check
whether it should be removed. We separate the two cases
to (i) show that there is a reasonable way to compute such
redundant valuations, and (ii) highlight the fact that we may
onlywish to focus on one kind of redundancy, e.g. preventing
adding redundant valuations vs explicitly removing them.

Theorem 3 Removing redundant bindings fromamonitoring
state preserves the set of accepted traces.

Proof (Sketch) Let us assume that it does not. Thismeans that
there is either (i) a total valuationmissing from the final mon-
itoring state that should be in a non-final state, or (ii) a total
valuation in the final monitoring state is wrongly associated
with a non-final state, which can only be due to the valuation
being created from the wrong set of configurations initially.
For either case to occur, the valuation needed to create the
total valuation would need to be absent from the monitoring
state or in the wrong configuration. However, if it has been
removed and is not present when needed then it would have

been active or map to distinct configurations, and thus not
removed. ��

9.3 Optimising the translation

We can use this notion of redundancy to optimise the trans-
lation from QEA to rule systems as some transitions in a
well-labelled domain-explicit QEA will only ever be taken
by projections associated with redundant valuations.

This can be achieved by a final transformation. Simply,
a labelled state 〈q, S〉 is redundant if it is final and there
exists another labelled state 〈q, S′〉 such that S′ ⊂ S and all
outgoing transitions of 〈q, S〉 are included in the outgoing
transitions of 〈q, S′〉. In such a case it is guaranteed that
staying in 〈q, S′〉 instead of transferring to 〈q, S〉 will lead to
the same total valuations in the same configurations.

The reason this transformation is relatively simple is that
the reachable quantified variables have already been made
explicit, e.g. we do not need the complicated bpath compu-
tation in the definition of active valuation above.

The well-labelled domain-explicit QEA for the UnsafeIt-
erator property in Fig. 7 can be transformed byfirst removing
state 〈1, {c, i}〉 and then the states 〈1, {i}〉 and 〈1, {c}〉. The

result of this transformation and the final rule system are
given in Fig. 9. The final rule system is very similar to that
given in Fig. 2. The only difference is the additional check
!r2(c, i). However, we can independently identify this check
as redundant as the rule introduces r2(c, i).

Evaluating the Optimisation As a small demonstration of
the value of this optimisation on the translation itself we per-
form a small experiment with the UnsafeIterator property.
We produce four representative traces of different lengths
by varying the number of collections, iterators, uses, and
updates. We then compare the performance of monitoring
those traces using three different rule systems—the original
hand-crafted rule system, the rule system resulting from the
translation, and the rule system resulting from the optimised
translation. The monitoring algorithm used is an implemen-
tation of the definitions presented in this paper rather than
the original RuleR system. This algorithm and the code
required to reproduce the experiment are available in the
GitHub repository.

Table 1 gives the results. The numbers are an average of
three runs (after an initial warm-up of ten runs to account
for JIT-effects). Here we can see that the performance for the
original and optimised rule systems is very similar, whilst

123

From parametric trace slicing to rule systems 225

Fig. 9 Optimised
transformation and updated rule
system for UnsafeIterator
property

Table 1 Running times (in seconds) monitoring various traces for the
UnsafeIterator property using the original, translated, and optimised
rule systems

Events Original Translated Optimised

2246 0.025 0.08 0.02

12,353 0.59 1.86 0.54

23,583 2.16 7.41 2.21

113,333 55.6 175.4 53.06

the original translated rule system performs much worse
(roughly 3x worse). In fact, the optimised rule system some-
times performed marginally better than the original one.
Times for the translated and optimised version do not include
the time for translation but this is negligible.

9.4 A general notion of redundancy

Here we briefly show that the above notion of redundancy is
general as it can be used to explain existing techniques for
blocking or removing valuations.

9.4.1 Blocking redundant valuations

Firstly, we consider cases where we block the introduction
of a redundant valuation.

Creation events in JavaMOP are used to explicitly iden-
tify events, such that a valuation is only created (as an
extension of the empty valuation) for a creation event. Cre-
ation events not belonging to the following set can violate
the monitoring semantics:

creation = {a ∈ A | fvars(a) �= ∅
∨¬∃(q0,b, _, _, _) ∈ δ : qvars(a) ⊂ qvars(b)}

where fvars selects the free variables (in Y) in an event and
qvars selects the quantified variables (in X) in an event. This
ensures that we only create valuations that are not associated
with a trivial configuration. The check for events labelling
transitions out of q0 with strictly more quantified variables
ensures that the the produced valuation would not be active.

Enable sets were introduced in JavaMOP [29] to reduce
work. In JavaMOP there is a notion of a goal verdict and

the idea is to exclude trace projections that cannot reach this
verdict. This is done by identifying events that must occur
before other events in a valid trace—if they have not occurred
then the projection will not be valid. To improve efficiency,
the set of parameters that must be bound (called the enable
set) is used instead of events. This is a special instance of our
redundancy as a trace not able to reach a goal verdict would
be in an inactive state; however, this only applies to cases
where it is also the case that no active states are reachable.

9.4.2 Removing redundant valuations

Next we consider cases where we can remove valuations
that become redundant. Valuations can become redundant
if we know that certain events cannot occur in the future
as the objects they refer to no longer exist in the monitored
system, i.e. becomegarbage.Let us revisit theUnsafeMapIter
example (Fig. 8). Consider the valuation [m
→ A, c
→
X , i
→ 1]. If iterator 1 becomes garbage at any point, there
is no way to reach state 5, and therefore, this valuation can
no longer influence the verdict and can be safely removed.
However, we cannot remove the valuation [m
→ A, c
→ X]
when collection X becomes garbage if it has reached state
3, as it is still possible to reach state 5 without any events
involving c. However, if we were in state 2 we could remove
the valuation. A valuation can be safely removed if an active
state is not reachable using only those events that involve
quantified variables whose values have not become garbage.
In the case of partial valuations,wemust considerwhether the
valuation could be extended to reach an active state. Similar
techniques have been used previously.An approach similar to
our own is taken in [2] where variables are categorised based
on whether a final state is reachable. In [26], “coenable sets”
are developed as a dual to enable sets. These identify the
parameters that must be bound to reach a goal verdict from
any state.

9.4.3 Discussion

Two obvious questions at this point are (i) is this notion of
redundancy helpful and (ii) does this general notion of redun-
dancy add anything to existing work. We address these two
questions here.

Firstly, we should note that the existing redundancy elim-
ination techniques outlined in this section are necessary for

123

226 G. Reger, D. Rydeheard

the performance of the JavaMOP and MarQ tools. In gen-
eral, the complexity of the monitoring algorithms of both
tools is dependent on the number of valuations of quanti-
fied variables constructed and kept. Therefore, any method
that reduces this number has a direct impact on performance,
especially as this number will generally be the cross-product
of the domains of quantified variables. There are various
papers on JavaMOP that document precisely the perfor-
mance benefits of these ideas. For example, they show [13]
that the enable set optimisation can reduce monitoring over-
head by about 20% in common cases and can make the
monitoring problem tractable in others. Further, Dongyun Jin
showed in his thesis [25] that the combination of these opti-
misations would often half the monitoring overhead. There
are no similar published results for MarQ, but the general
result is the same.

Secondly, the main contribution here is a general formal-
isation of redundancy criteria where existing optimisations
can be seen as specific instances. So far, this has not led
to new optimisations being identified but has simplified their
implementation inMarQ and paves the way to explore more
refined redundancy elimination techniques—some compati-
ble ideas have already been discussed in theory [31].

10 Discussion and related work

We explore what we have learned about the relationship
between the two languages introduced in Sects. 5 and 6 by
the development of the previous translation. We consider the
expressiveness of the languages, the efficiency of monitor-
ing, how data are treated differently in each language, and
the generality of our results.

ExpressivenessOur translation shows that rule systems are
at least as expressive as the form ofQEA presented here (i.e.
without existential quantification, see below). The remaining
questions are whether they are strictly more expressive and
what effect the choice of presentation for QEA has had on
this translation. The first question can be answered positively.
Our previous work [22] has given an example of a property
that cannot be captured via trace slicing. This was a lock-
ordering inspired property, but the general form relied on
second-order quantification to define a notion of reachability.
For the second question, we consider the differences in the
presentation of QEA with [4].

– Existential Quantification. Existential quantification can
be useful in certain cases, but we do not yet know how to
extend the translation to include it generally. For example,
it is very difficult to write a rule system for theQEA given
in Fig. 10. It seems that it will be necessary to extend
rule systems with additional support either via explicit
quantification or a specialised notion of non-determinism

that splits the state into multiple states where only one
needs to be accepting. This property is formalised as a
rule system in [22], but this relies on explicitly recording
all facts and performing a computation on a special end
of trace event.

– Non-Determinism. In [4], QEA were given some-path
non-determinism, but in [22] we observed that the most
common use of non-determinismwas to capture negative
properties (the bad behaviour), and in this case all-path
non-determinism is preferable. Hence, MarQ [32] sup-
ports both. To also support some-path non-determinism
here (which is not commonly used), we would need to
add branching and a notion of good facts to our rule sys-
tems (as is done inRuleR). To be clear—we could extend
our notion of a rule system and our translation to support
non-determinism and the extension would be relatively
straightforward but add an extra layer of complexity.

Both existential quantification and non-determinism are
rarely used features of QEA.

Efficiency In this translation, we are able to go fromQEA,
which have a highly efficient monitoring algorithm [8], to
rule systems, which do not [21]. This appears to be the
wrong direction to make gains in efficiency. However, we
have already used the translation to identify a general notion
of redundancy (introduced in Sect. 9) which can be used
to significantly improve the performance of the monitor-
ing algorithm for QEA. In the other direction, one hope for
this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitor-
ing algorithms used for QEA. Recall that after removing the
redundancy, the first rule definition in the translation of the
UnsafeIterator QEA becomes

r1
{
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r2(c, i), r1

}

which, when compared to the rule system in Fig. 2, includes
additional negated rule expressions in the premises (which
add to monitoring complexity). So taken ‘as is’ the result-
ing rule system is likely to be less efficient. However, these
negated rule expressions give an explicit order in which to
check rule definitions when matching incoming events (in a
similar way to how indexing works for QEA) and it is plau-
sible that this can be used to improve RuleR’s monitoring
algorithm by either detecting rule systems of this form or
automatically checking if the given rule system is equivalent
to a rule system of this form (as it is in this case). Therefore,
the translation suggests a future direction for developing effi-
cient indexing for rule-based runtime verification tools.

Treatment of Data There are two main differences in the
treatment of data that this work has highlighted. Firstly,QEA
makes quantification domains implicit, whereas rule systems

123

From parametric trace slicing to rule systems 227

Fig. 10 A QEA for the
CandidateSelection property
taken from [4]

make them explicit, e.g. in QEA new bindings are produced
by the monitoring algorithm, whereas a rule needs to fire for
a new binding in a rule system. This can have implications
for readability—in rule systems it is somewhat easier to see
what the domains are but in some circumstances having to
encode these domains canmake the actual behaviour difficult
to understand. For example, the resulting rule system for the
Broadcast property ismuch bigger than the originalQEA. An
advantage of making the domain explicit in rule systems is
that domain knowledge can be used to ignore some part of the
domain (as seen in the UnsafeIterator example above). This
translation provides a mechanism for understanding exactly
what the domain of quantification defined by a QEA is. Sec-
ondly, the use of maximality in trace-slicing hides a lot of
operational details in the semantics—making this explicit
in rule systems demonstrates the implicit work required to
ensure that maximality is preserved. In some cases maximal-
ity is not necessary and this work can be removed in a rule
system.

Generality We now consider how general this transla-
tion is, i.e. does it apply to all trace-slicing and rule-based
approaches. The first system to use the trace-slicing idea was
tracematches [1]. The use of suffix-based matching meant
that the authors avoided the main technical difficulty in
slicing, i.e. dealing with partial valuations, which required
maximality. Our translation does not workwith suffixmatch-
ing, but this could be encoded as another transformation on
the QEA. The JavaMOP system [29] has made the slicing
approach popularwith its efficient implementation. TheQEA
formalism [4,30] was inspired by JavaMOP. The notion of
slicing presented here is compatible with that used in Java-
MOP as this also relies on maximality. Rule systems for
runtime monitoring were introduced by theRuleR tool [3,5]
and are used in TraceContract [6] and Logfire [21] where a
similar approach is taken, i.e. a global set of instances or facts
are rewritten by an associated set of rules. The rule systems
described here can be considered a core subset ofRuleR and
could be embedded into these other systems.

11 Conclusion

We have described the formal construction of a translation
from the parametric trace slicing based QEA formalism to a
rule system in the style of RuleR. The translation has been
shown to be equivalent to the small-step semantics forQEA.
This translation gives insights into how parametric trace slic-
ing and rule systems handle data differently. We observed
that, to ensure the same property is described, it is necessary

to (i) enforce complex maximality constraints on rule def-
initions, making them heavily interdependent, and (ii) add
additional events and intermediate states to record the pos-
sible valuations as they are created. We have implemented
the translation as a Scala program. This will allow us to
explore further optimisations of the translation, for example,
by identifying redundant intermediate states and perform-
ing a backwards analysis to introduce unquantified variables
when they are first needed (the AuctionBidding translation
would benefit from this). We are also looking at formalising
this work in a proof assistant to give more rigorous guar-
antees of its correctness. In our general work on exploring
the relationships between specification languages for runtime
verification, our next stepwill be to translate rule systems into
a first-order temporal logic.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins,
S., Lhoták, O., deMoor, O., Sereni, D., Sittampalam, G., Tibble, J.:
Adding trace matching with free variables to AspectJ. SIGPLAN
Not. 40, 345–364 (2005)

2. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors
feasible. SIGPLAN Not. 42(10), 589–608 (2007)

3. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-
time monitoring: from EAGLE to RuleR. J. Logic Comput. 20(3),
675–706 (2010)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.E.: Quantified event automata: towards expressive and efficient
runtime monitors. In: FM, pp. 68–84 (2012)

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based
runtime verification. In: VMCAI, pp. 44–57 (2004)

6. Barringer, H., Havelund, K.: Tracecontract: a Scala DSL for trace
analysis. In: Proceedings of the 17th International Conference on
Formal Methods, pp. 57–72. Berlin, Heidelberg (2011)

7. Barringer, H., Havelund, K., Rydeheard, D., Groce, A.: Rule sys-
tems for runtime verification: a short tutorial. In: Bensalem, S.,
Peled, D.A. (eds.) Runtime Verification, pp. 1–24. Springer, Berlin
(2009)

8. Bartocci, E., Bonakdarpour, B., Falcone, Y., Colombo, C., Decker,
N., Klaedtke, F., Havelund, K., Joshi, Y., Milewicz, R., Reger, G.,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

228 G. Reger, D. Rydeheard

Rosu, G., Signoles, J., Thoma, D., Zalinescu, E., Zhang, Y.: First
international competition on runtime verification. In: International
Journal on Software Tools for Technology Transfer (STTT) (2017)

9. Bartocci, E., Falcone, Y., Francalanza, A., Leucker, M., Reger, G.:
An introduction to runtime verification. In: Lectures on Runtime
Verification—Introductory and Advanced Topics, volume 10457
of LNCS. Springer, pp. 1–23 (2018)

10. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monpoly: mon-
itoring usage-control policies. In: Khurshid, S., Sen, K. (eds.)
Runtime Verification. Lecture Notes in Computer Science, vol.
7186, pp. 360–364. Springer, Berlin (2012)

11. Bauer, A., Küster, J.-C., Vegliach, G.: The ins and outs of first-order
runtime verification. Formal Methods in System Design, pp. 1–31
(2015)

12. Bozzelli, L., Sánchez, C.: Foundations of boolean stream runtime
verification. Theor. Comput. Sci. 631, 118–138 (2016)

13. Chen, F., Meredith, P.O., Jin, D., Rosu, G.: Efficient formalism-
independent monitoring of parametric properties. In: 2009
IEEE/ACM International Conference on Automated Software
Engineering IEEE, pp. 383–394 (2009)

14. Chen, F., Roşu, G.: Parametric trace slicing and monitoring.
In: Proceedings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’09), volume 5505 of LNCS, pp. 246–261 (2009)

15. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W.,
Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: run-
time monitoring of synchronous systems. In: Proceedings of the
12th International Symposium on Temporal Representation and
Reasoning, pp. 166–174 (2005)

16. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories.
In: Tools and Algorithms for the Construction and Analysis of
Systems—20th International Conference, TACAS 2014, pp. 341–
356 (2014)

17. Falcone,Y., Havelund,K., Reger, G.: A tutorial on runtime verifica-
tion. In: Broy, M., Peled, D. (eds.) Summer School Marktoberdorf
2012—Engineering Dependable Software Systems. IOS Press,
Amsterdam (2013)

18. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for
classifying runtime verification tools. In: Proceedings of the 18th
International Conference on Runtime Verification, pp. 241–262
(2018)

19. Hallé, S., Khoury, R.: Runtime monitoring of stream logic formu-
lae. In: Foundations and Practice of Security—8th International
Symposium, FPS 2015, Clermont-Ferrand, France, October 26–
28, 2015, Revised Selected Papers, pp. 251–258 (2015)

20. Havelund, K.: Rule-based runtime verification revisited. Int. J.
Softw. Tools Technol. Transf. 17(2), 143–170 (2015)

21. Havelund, K.: Rule-based runtime verification revisited. Int. J.
Softw. Tools Technol. Transf. 17(2), 143–170 (2015)

22. Havelund, K., Reger, G.: Specification of parametric monitors. In:
Formal Modeling and Verification of Cyber-Physical Systems, 1st
International Summer School onMethods and Tools for the Design
of Digital Systems, Bremen, Germany, September 2015, pp. 151–
189 (2015)

23. Havelund, K., Reger, G.: Runtime verification logics—a language
design perspective. In: KIMfest 2017. Springer (2017)

24. Havelund, K., Reger, G., Zalinescu, E., Thoma, D.: Monitoring
events that carry data. In: Lectures on Runtime Verification—
Introductory and Advanced Topics, volume 10457 of LNCS.
Springer, pp. 60–97 (2018)

25. Jin,D.:MakingRuntimeMonitoring of Parametric Properties Prac-
tical. Ph.D. thesis, University of Illinois at Urbana-Champaign,
August (2012)

26. Jin, D.,Meredith, P.O.N., Griffith, D., Rosu, G.: Garbage collection
for monitoring parametric properties. SIGPLAN Not. 46(6), 415–
424 (2011)

27. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Logic Algebraic Program. 78(5), 293–303 (2008)

28. Medhat, R., Joshi, Y., Bonakdarpour, B., Fischmeister, S.: Par-
allelized runtime verification of first-order LTL specifications.
Technical report, University of Waterloo (2014)

29. Meredith, P., Jin,D.,Griffith,D.,Chen, F.,Roşu,G.:Anoverviewof
the MOP runtime verification framework. J. Softw. Tools Technol.
Transf. 1–41 (2011)

30. Reger, G.: Automata Based Monitoring and Mining of Execution
Traces. Ph.D. thesis, University of Manchester (2014)

31. Reger, G.: A story of parametric trace slicing, garbage and static
analysis. Electron. Proc. Theor. Comput. Sci. 254, 1–14 (2017)

32. Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at
runtime with QEA. In: Proceedings of the 21st International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’15) (2015)

33. Reger, G., Hallé, S., Falcone, Y.: Third international competition
on runtime verification CRV 2016. In: RV 2016 (2016)

34. Reger, G., Rydeheard, D.: From first-order temporal logic to para-
metric trace slicing. In: Bartocci, E., Majumdar, R. (eds.) Runtime
Verification: 6th International Conference, RV 2015, Vienna, Aus-
tria, September 22–25, 2015. Proceedings, pp. 216–232. Springer
International Publishing, Cham (2015)

35. Reger, G., Rydeheard, D.: From parametric trace slicing to rule
systems. In: International Conference on Runtime Verification.
Springer, pp. 334–352 (2018)

36. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Pro-
ceedings of the 5th InternationalWorkshoponRuntimeVerification
(RV’05), volume 144(4) of ENTCS. Elsevier, pp. 109–124 (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	From parametric trace slicing to rule systems
	Abstract
	1 Introduction
	2 Setting
	Defining the runtime verification problem
	Our research question

	3 Preliminaries
	4 Running examples
	5 Parametric trace slicing with quantified event automata
	6 A rule-based approach
	7 Translating quantified event automata to rule systems
	7.1 An equivalent representation with labelled states
	7.2 A domain-explicit form
	7.3 A fresh-variable form
	7.4 The translation

	8 Correctness of the translation
	9 A general notion of redundancy inspired by the translation
	9.1 Demonstrating redundancy
	9.2 Defining redundancy
	9.3 Optimising the translation
	9.4 A general notion of redundancy
	9.4.1 Blocking redundant valuations
	9.4.2 Removing redundant valuations
	9.4.3 Discussion

	10 Discussion and related work
	11 Conclusion
	References

