265 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Performance Modelling and Resource Allocation of the Emerging Network Architectures for Future Internet

    Get PDF
    With the rapid development of information and communications technologies, the traditional network architecture has approached to its performance limit, and thus is unable to meet the requirements of various resource-hungry applications. Significant infrastructure improvements to the network domain are urgently needed to guarantee the continuous network evolution and innovation. To address this important challenge, tremendous research efforts have been made to foster the evolution to Future Internet. Long-term Evolution Advanced (LTE-A), Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have been proposed as the key promising network architectures for Future Internet and attract significant attentions in the network and telecom community. This research mainly focuses on the performance modelling and resource allocations of these three architectures. The major contributions are three-fold: 1) LTE-A has been proposed by the 3rd Generation Partnership Project (3GPP) as a promising candidate for the evolution of LTE wireless communication. One of the major features of LTE-A is the concept of Carrier Aggregation (CA). CA enables the network operators to exploit the fragmented spectrum and increase the peak transmission data rate, however, this technical innovation introduces serious unbalanced loads among in the radio resource allocation of LTE-A. To alleviate this problem, a novel QoS-aware resource allocation scheme, termed as Cross-CC User Migration (CUM) scheme, is proposed in this research to support real-time services, taking into consideration the system throughput, user fairness and QoS constraints. 2) SDN is an emerging technology towards next-generation Internet. In order to improve the performance of the SDN network, a preemption-based packet-scheduling scheme is firstly proposed in this research to improve the global fairness and reduce the packet loss rate in SDN data plane. Furthermore, in order to achieve a comprehensive and deeper understanding of the performance behaviour of SDN network, this work develops two analytical models to investigate the performance of SDN in the presence of Poisson Process and Markov Modulated Poisson Process (MMPP) respectively. 3) NFV is regarded as a disruptive technology for telecommunication service providers to reduce the Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through decoupling individual network functions from the underlying hardware devices. While NFV faces a significant challenging problem of Service-Level-Agreement (SLA) guarantee during service provisioning. In order to bridge this gap, a novel comprehensive analytical model based on stochastic network calculus is proposed in this research to investigate end-to-end performance of NFV network. The resource allocation strategies proposed in this study significantly improve the network performance in terms of packet loss probability, global allocation fairness and throughput per user in LTE-A and SDN networks; the analytical models designed in this study can accurately predict the network performances of SDN and NFV networks. Both theoretical analysis and simulation experiments are conducted to demonstrate the effectiveness of the proposed algorithms and the accuracy of the designed models. In addition, the models are used as practical and cost-effective tools to pinpoint the performance bottlenecks of SDN and NFV networks under various network conditions

    Deploying SDN architecture in Open Optical Transport Networks

    Get PDF
    Pro udrženı́ tempa s rostoucı́mi požadavky na přenosovou rychlost, latenci a bezpečnost je nutné zvážit současnou koncepci řı́zenı́ sı́tı́. Software-Defined Networking (SDN) je jedno z možných řešenı́, ke kterému telekomunikačnı́ průmysl směruje. Tato práce představuje současný stav Software-Defined Networking a zaměřuje se na vybraná open-source řešenı́ v oblasti SDN kontrolerů, jako je ONOS či OpenDaylight. Hlavnı́m cı́lem této části práce je vysvětlit, jak může SDN pomoci vyřešit rostoucı́ požadavky na rozšı́řenı́ automatizace v otevřených optických sı́tı́ch. Praktická část této práce je rozdělená do dvou oblastı́. V rámci prvnı́ oblasti jsem se zabýval rozšı́řenı́m funkčnosti SDN kontroleru pro umožněnı́ konfigurace a řı́zenı́ optických komunikačnı́ch zařı́zenı́. Hlavnı́m přı́nosem je implementace nových funkcionalit SDN driveru pro Nokia 1830 PSS (ROADM) a rozšı́řenı́ funkcionality driveru pro Nokia 1830 PSI-2T (optický transpondér). Ve druhé části práce jsem se zabýval problematikou korelace alarmů v otevřených optických sı́tı́ch. Výsledkem je funkce pro korelaci alarmů ve formě SDN aplikace, kterou jsem dále otestoval na emulovaných optických zařı́zenı́ch pro prokázánı́ funkčnosti celého konceptu.With the rising demands on the network throughput, latency and security, legacy control networking concepts should be reconsidered. Software-Defined Networking (SDN) is one of the possible solutions, to which telecommunication industry is moving. This work presents current state-of-the-art in Software-Defined Networking and focuses on some open-source solutions of SDN controllers, like ONOS and OpenDaylight. Main focus is to understand how SDN can help to solve increasing demand for broader automation in Optical Transport Networks. The practical section is divided in two parts. Within the first part I focused on extending functionality of SDN controller to facilitate more efficient configuration and control of optical network devices. Main contribution was to implement additional features to SDN drivers for Nokia 1830 PSS (ROADM) and extend functionality of Nokia 1830 PSI-2T (Optical Transponder) driver. Second part is dedicated to the Alarm Correlation problematic in open optical networks. We designed, developed an Alarm Correlation function as a SDN application then we tested it on emulated optical devices to prove the concept
    corecore