11 research outputs found

    Fusion-based impairment modelling for an intelligent radar sensor architecture

    Get PDF
    An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Fusion-based impairment modelling for an intelligent radar sensor architecture

    Get PDF
    An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data

    An Approach to Ground Moving Target Indication Using Multiple Resolutions of Multilook Synthetic Aperture Radar Images

    Get PDF
    Ground moving target indication (GMTI) using multiple resolutions of synthetic aperture radar (SAR) images to estimate the clutter scattering statistics is shown to outperform conventional sample matrix inversion space-time adaptive processing GMTI techniques when jamming is not present. A SAR image provides an estimate of scattering from nonmoving targets in the form of a clutter scattering covariance matrix for the GMTI optimum processor. Since the homogeneity of the scattering statistics are unknown, using SAR images at multiple spatial resolutions to estimate the clutter scattering statistics results in more confidence in the final detection decision. Two approaches to calculating the multiple SAR resolutions are investigated. Multiple resolution filter bank smoothing of the full-resolution SAR image is shown to outperform an innovative approach to multilook SAR imaging. The multilook SAR images are calculated from a single measurement vector partitioned base on synthetic sensor locations determined via eigenanalysis of the radar measurement parameters

    Statistical assessment on Non-cooperative Target Recognition using the Neyman-Pearson statistical test

    Get PDF
    Electromagnetic simulations of a X-target were performed in order to obtain its Radar Cross Section (RCS) for several positions and frequencies. The software used is the CST MWS©. A 1 : 5 scale model of the proposed aircraft was created in CATIA© V5 R19 and imported directly into the CST MWS© environment. Simulations on the X-band were made with a variable mesh size due to a considerable wavelength variation. It is intended to evaluate the Neyman-Pearson (NP) simple hypothesis test performance by analyzing its Receiver Operating Characteristics (ROCs) for two different radar detection scenarios - a Radar Absorbent Material (RAM) coated model, and a Perfect Electric Conductor (PEC) model for recognition purposes. In parallel the radar range equation is used to estimate the maximum range detection for the simulated RAM coated cases to compare their shielding effectiveness (SE) and its consequent impact on recognition. The AN/APG-68(V)9’s airborne radar specifications were used to compute these ranges and to simulate an airborne hostile interception for a Non-Cooperative Target Recognition (NCTR) environment. Statistical results showed weak recognition performances using the Neyman-Pearson (NP) statistical test. Nevertheless, good RCS reductions for most of the simulated positions were obtained reflecting in a 50:9% maximum range detection gain for the PAniCo RAM coating, abiding with experimental results taken from the reviewed literature. The best SE was verified for the PAniCo and CFC-Fe RAMs.Simulações electromagnéticas do alvo foram realizadas de modo a obter a assinatura radar (RCS) para várias posições e frequências. O software utilizado é o CST MWS©. O modelo proposto à escala 1:5 foi modelado em CATIA© V5 R19 e importado diretamente para o ambiente de trabalho CST MWS©. Foram efectuadas simulações na banda X com uma malha de tamanho variável devido à considerável variação do comprimento de onda. Pretende-se avaliar estatisticamente o teste de decisão simples de Neyman-Pearson (NP), analisando as Características de Operação do Receptor (ROCs) para dois cenários de detecção distintos - um modelo revestido com material absorvente (RAM), e outro sendo um condutor perfeito (PEC) para fins de detecção. Em paralelo, a equação de alcance para radares foi usada para estimar o alcance máximo de detecção para ambos os casos de modo a comparar a eficiência de blindagem electromagnética (SE) entre os diferentes revestimentos. As especificações do radar AN/APG-68(V)9 do F-16 foram usadas para calcular os alcances para cada material, simulando uma intercepção hostil num ambiente de reconhecimento de alvos não-cooperativos (NCTR). Os resultados mostram performances de detecção fracas usando o teste de decisão simples de Neyman-Pearson como detector e uma boa redução de RCS para todas as posições na gama de frequências selecionada. Um ganho de alcance de detecção máximo 50:9 % foi obtido para o RAM PAniCo, estando de acordo com os resultados experimentais da bibliografia estudada. Já a melhor SE foi verificada para o RAM CFC-Fe e PAniCo

    Aeronautical engineering: A continuing bibliography with indexes (supplement 292)

    Get PDF
    This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Informationsfusion in der Mess- und Sensortechnik

    Get PDF
    Die Entwicklung und Beherrschung der immer komplexer werdenden technischen Systeme führt in zunehmenden Maße zu Anforderungen an die Mess- und Sensortechnik, die mit dem Einsatz eines Einzelsensors oft nicht mehr erfüllt werden können. Dies hat in den letzten Jahren zu einem starken Entwicklungsschub für Multisensorsysteme und die Grundlagenforschung zur Fusion von Messdaten und Information aus unterschiedlichen Quellen geführt. Dieses Buch greift diese Entwicklung sowohl hinsichtlich ihrer theoretischen Grundlagen als auch wichtiger Anwendungsfelder auf

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered
    corecore