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Abstract

Ground moving target indication (GMTI) using multiple resolutions of synthetic

aperture radar (SAR) images to estimate the clutter scattering statistics is shown

to outperform conventional sample matrix inversion space-time adaptive processing

GMTI techniques when jamming is not present. A SAR image provides an estimate

of scattering from nonmoving targets in the form of a clutter scattering covariance

matrix for the GMTI optimum processor. Since the homogeneity of the scattering

statistics are unknown, using SAR images at multiple spatial resolutions to estimate

the clutter scattering statistics results in more confidence in the final detection deci-

sion.

Two approaches to calculating the multiple SAR resolutions are investigated. Mul-

tiple resolution filter bank smoothing of the full-resolution SAR image is shown to

outperform an innovative approach to multilook SAR imaging. The multilook SAR

images are calculated from a single measurement vector partitioned base on synthetic

sensor locations determined via eigenanalysis of the radar measurement parameters.

xi



Chapter 1

Introduction

It has been over 120 years since Hertz first observed reflected electromagnetic

waves. In 1922 the Naval Aircraft Radio Laboratory at Anacostia, D.C. experi-

mentally confirmed Marconi’s idea to capitalize on Hertz’s observation by detecting

reflected waves to “immediately reveal the presence and bearing of the other ship

in fog or thick weather” [1]. Since then radar has become indispensable in defense,

intelligence, transportation safety, scientific, and many other military and civilian

applications.

The word radar originated as an acronym for RAdio Detection And Ranging and

was initially employed to detect scattering objects and determine their azimuth and

range with respect to the radar’s location. The advent of coherent radar systems

allowed radars to capitalize on the Doppler shift of electromagnetic (EM) waves re-

flected by objects with a relative velocity with respect to the radar. Christian Johann

Doppler (1803-1853) first described how the frequency of light and sound is changed by

the relative velocity between the source and observer. Likewise, the relative velocity

between the radar and a scattering object results in a shift in frequency between the

transmitted and reflected EM waves, and the shift in frequency is called the Doppler

shift. Detecting the Doppler shift allows radar to determine the relative velocity of

scattering objects.

Detecting moving objects using radar is appropriately termed moving target indi-
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cation (MTI). When the MTI radar is hosted on an airborne or spaceborne platform

and used to detect moving objects on the ground it is called a ground moving target

indication (GMTI) system. In addition to the desired signal due to the transmitted

EM waves scattering off a moving object on the ground, referred to as the target, the

measured signal contains interference, which reduces the detectability of the target.

The three general interference sources are jamming, clutter, and noise. Jamming is

due to incoherent transmitters external to the radar system transmitting within the

radar receiver’s bandwidth. Noise is internal and external to the radar electronics,

and is typically considered to have known statistical properties.

Clutter is self-induced interference. In addition to the transmitted EM waves scat-

tering off a moving object on the ground, the EM waves scatter off terrain, buildings,

and other nonmoving objects. These nonmoving objects are clutter sources in GMTI,

and the clutter return can be larger in magnitude than the moving target return.

Radar clutter is usually the most complicated form of interference in GMTI, since

it is distributed in angle and range as well as spread in Doppler due to the radar

platform’s motion. The statistics of the clutter energy are unknown a priori, so it is

difficult to distinguish the desired signal (radar return from the moving object) from

the clutter. The basic goal of GMTI is to determine whether or not the measurements

contain energy from a moving target. Because clutter can obscure the scattering from

a moving target, detecting the presence of a moving target is challenging.

1.1 GMTI

Klemm [2] discusses the optimum processor for the discrete, linear radar model.

Because the interference statistics are unknown, approximations to the optimum pro-

cessor must be made. He calls processors that include interference statistics in the

2



covariance matrix as adaptive processors. Additionally, the covariance matrix of

spectral estimation techniques contain the desired signal and interference.

There are three basic categories of GMTI processors. A matched filter approach

attempts to maximize the radar’s response to the target with respect to the internal

and external noise. This approach is not commonly used in GMTI, because it ignores

the clutter, which is typically the larger source of interference.

The second category of GMTI approaches is orthogonal projection. Orthogonal

projection techniques deterministically project the measurements into a subspace or-

thogonal to the subspace occupied by the clutter. Displaced phase center antenna

(DPCA) [3–5], eigencancellers [6–8], maximum likelihood [9] are distinctly different

techniques, which are included in this category. The drawback to orthogonal projec-

tion approaches is that the target and clutter subspaces often overlap, to some extent.

This is especially true for slow-moving targets. The target energy contained in the

clutter subspace is lost during the projection resulting in less target energy for the

detector.

The most commonly used GMTI techniques fall into the adaptive suppression

category of processors. These approaches attempt to suppress the clutter and si-

multaneously maximize the radar’s response to the target. Rather than project the

measurements into a subspace orthogonal to the entire clutter subspace, an esti-

mate of the interference is used to suppress its effect on the measurements without

suppressing the target energy. The key to successful interference suppression is an

accurate estimate of the expected interference statistics in the form of an estimated

interference covariance matrix.

A revolution in the GMTI world began in 1973, when Brennan and Reed [10] in-

troduced what came to be known as optimal space-time adaptive processing (STAP).

3



STAP is based on estimating the interference covariance matrix from the measure-

ments of a multiple antenna element array. However, the problem with using mea-

surements to suppress the interference is that any moving target energy in the mea-

surement would corrupt the interference estimate and therefore be suppressed. Opti-

mal, or fully-adaptive STAP is computationally intractable. To increase the practical

usefulness of STAP, Reed et al. [11] introduced sample matrix inversion (SMI) as a

method to increase the convergence rate of the detector. SMI is a direct method of

adaptive weight computation by estimating the interference covariance matrix of the

region-of-interest with measurements of an area nearby. This nearby area is assumed

to not contain any target energy and to have the same interference characteristics as

the region of interest. Additionally, SMI requires a large amount of measurements

from these nearby areas to converge on an interference covariance estimate.

While STAP based on SMI is adaptive, assuming the clutter in two different areas

have the same statistical properties is often invalid. Melvin [12] shows that significant

losses can occur from using this assumption. Figure 1.1 is a cartoon illustrating how

a region of interest, in this case, the region around the moving car, as indicated by

the red lines, could be drastically different than the surrounding regions, which are

the washed-out regions in the figure.

The inability of STAP to directly estimate the interference in the region of in-

terest and the large amount of sample support required are well-known limitations,

and many approaches to overcome these deficiencies have been proposed. Structured

covariance methods [9,13,14] take advantage of the inherent structure of the measure-

ment covariance matrix to improve detection performance. An extension of structured

covariance methods is knowledge-aided (KA) GMTI methods which attempt to im-

prove detection performance by using a priori knowledge sources to improve STAP

4



Figure 1.1. Cartoon illustrating difference in clutter scene between po-
tential target region and other regions used to estimate clutter statistics
in STAP

performance. Through a variety of techniques, KA methods exploit knowledge of the

platform location, velocity, and radar parameters [15–17] and/or scattering character-

istics of the scene [18–21]. The sources of knowledge and how the knowledge is incor-

porated into the processor are the primary distinguishing characteristics of different

KA-STAP approaches. The two purposes of KA-STAP are to increase the processor’s

detection performance and/or to reduce the amount of secondary data required to es-

timate the interference covariance matrix. KA-STAP approaches have demonstrated

great improvements over STAP; however, they have drawbacks. In addition to the

possibility of errors in the knowledge source, to employ these knowledge-aided tools,

ownship location, and motion must be known precisely [22]. Mischaracterizing the

actual statistics with incorrect or poorly applied knowledge has the potential to do

more harm than good.

Many other GMTI approaches have been proposed, including nonhomogeneity

detectors [23–25], direct data domain (D3) [26], and joint domain localized processors
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[22, 27]. These and the previously mentioned methods are not exclusive. Techniques

to blend or autonomously choose a certain algorithm to fit a give scenario have been

called knowledge-based [28, 29] processors.

1.2 SAR

Another application of airborne and spaceborne radar is synthetic aperture radar

(SAR) imaging of the Earth. A SAR image is a two-dimensional map of the scattering

intensity of an area on the Earth, also called the image scene.

SAR processing exploits the Doppler shift between pulses of the received radar

signal of a pulsed-Doppler radar system to determine the relative velocity between

stationary objects on the ground and the moving radar platform. Sampling the

received signal within a single pulse enables the range between the radar platform and

the scattering objects to be determined. The SAR processor registers the scattered

energy in azimuth and range resulting in a two-dimensional intensity image of the

illuminated scene generally called a SAR image. Fine range resolution is achieved

by transmitting a wide bandwidth signal, and fine azimuth resolution is a result

of processing many sequential pulses. The SAR image is a fine spatial resolution

estimate of the scattering intensity using the hypothesis that all scatterers have zero

velocity with respect to ground. Figure 1.2 is an example of a SAR image with many

distinctly different scattering characteristics.

A SAR image, therefore, is a high spatial resolution estimate of the GMTI clutter

scene. Using a high spatial resolution estimate of the clutter is not necessarily a good

estimate of the expected scattering scene. A phenomenon called fading results in

speckle in the SAR image. Speckle is the intensity variance in what would otherwise

be a homogeneous region within a scene. Fading is due to small path length differences
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Figure 1.2. X-Band SAR image of bridge over Rio Grande near Los
Lunas, NM, (used with permission from Sandia National Laboratory)

between similar scatterers within a resolution cell, which is larger than the wavelength

of the radar’s transmitted signal. Speckle is clearly evident in what appears to be a

field in lower, center of Figure 1.2.

Statistically, speckle is a result of a SAR image being a single statistical real-

ization of the expected scattering characteristics of an imaged scene. The optimum

GMTI processor requires the expected scattering characteristics, or expected clutter

spectrum. Multilook SAR processing reduces the effect of speckle by incoherently

averaging independent SAR images of the same scene. Multilook SAR may be ac-

complished by processing SAR images from subsets of the measurement vector. A

SAR image may be calculated from each measurement subset, and these SAR images
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can then be incoherently averaged for the multilook image. The number of mea-

surements and how they are selected from the measurement vector determine how

well the resulting multilook image approximates the expected clutter spectrum of the

observed scene.

The potential of using real-time SAR or SAR-like data to adaptively estimate the

clutter covariance matrix has been recognized by authors including Minardi, et al. [30],

Minardi and Zelnio [31], Gierull [32], and Chapin and Chen [33]. The advantage to

a real-time estimate of the clutter is coregistered with the GMTI measurements,

which is noted a weakness in knowledge-aided GMTI approaches that use a priori

information.

1.3 Proposed Approach

This dissertation discusses using multiple resolutions of a SAR image from long

coherent processing interval (CPI), wide bandwidth, multiple aperture radar measure-

ments, to estimate the interference covariance matrix used in ground moving target

indication (GMTI). These space-time measurements allow real-time clutter estima-

tion in the form of SAR images that are coregistered with the GMTI data. Calculating

detection coefficients from progressively higher resolution estimates of the clutter, in

the form of multilook SAR images, promises to increase the probability of detection

and reduce the probability of false alarm.

Additionally, a novel approach to multilook SAR imaging is proposed. This ap-

proach is based on partitioning the measurements according to the space-time loca-

tions of the measurements, rather than the traditional approach of segmenting the

measurements according to azimuth subbands.
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1.4 Scope of Application

Regarding structured covariance matrix estimation techniques, such as will be used

in this research, Burton and Smith [13] give the following cautions: 1) make sure that

the assumption of block Toeplitz structure is valid (e.g., array errors and multipath

reflections ruin spatial and temporal stationarity, respectively); and 2) structured

covariance matrix estimation performs better than SMI but is more computationally

intense. Additionally, The proposed approach to GMTI assumes clutter is the most

significant interference source. Specifically, other techniques must be incorporated to

suppress jammers, when present.

1.5 Document Overview

The following chapters of this dissertation present the proposed approach to mul-

tiresolution GMTI in the following order:

Chapter 2 introduces the linear, discrete radar model used throughout this doc-

ument. This chapter also presents the background necessary to understand the

strengths and weaknesses of GMTI presented in literature. The key component in

the optimum processor is termed the interference covariance matrix in GMTI and

the data covariance matrix in SAR. The interference covariance matrix estimation

approaches of many GMTI approaches will be covered in detail. Specifically, Chapter

2 will show the shortfalls of popular approaches to GMTI, including sampled matrix

inversion STAP, which assumes homogeneous clutter statistics.

In Chapter 3 the development of the SAR image equation will be presented, then

the results are compared to the GMTI clutter spectrum. SAR imagery is shown to

be a high spatial resolution estimate of one realization of the desired GMTI clutter

spectrum. The source of speckle in the SAR image and its effect on the clutter
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spectrum estimate are discussed.

Chapter 4 covers an iterative MMSE-based approach to calculating multilook

SAR images at multiple resolutions. These multilook SAR images can then be used

to provide the GMTI processor with multiple estimates of the clutter spectrum. The

multiple resolutions of the SAR image are calculated in the data domain via multilook

SAR, rather than smoothing a full-resolution image. Additionally, a novel approach to

partitioning the measurements for multilook SAR is presented. This novel approach

is termed eigensensor subaperturing and results in multilook SAR images with bet-

ter estimation accuracy in homogeneous scattering regions at the expense of spatial

resolution. Additionally, computational efficiency is addressed in Chapter 4. SAR

processors are computationally complex. While this research does not attempt to

optimize processing time, a technique loosely based on wavelet theory is presented to

reduce computational complexity for low spatial resolution multilook SAR processing.

Chapter 5 presents a GMTI technique that uses multiple spatial resolutions of the

clutter covariance matrix to calculate a final detection coefficient. A simple voting

scheme is used to calculate the final detection coefficient from a vector of detection

decisions. Each element of the detection vector represents a detection decision based

on a single orthogonal projection estimate of the proposed moving target’s scatter-

ing coefficient using one multilook SAR image to estimate the scattering covariance

matrix.

Chapter 6 demonstrates the efficacy of the approach presented in Chapter 5.

Simulations for several different scenarios are presented. The results of the proposed

multiple resolution approach to GMTI using multilook SAR images to estimate the

clutter spectrum is compared and contrasted to traditional SMI STAP.

Finally, the author’s conclusions about the proposed approach to multilook SAR
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and multiple resolution GMTI are detailed in Chapter 7. These conclusions include

ideas for future research in this area.

1.6 Notation and Terminology

∙ The letter j is defined as
√
−1

∙ Scalars are denoted by uppercase or lowercase letters (e.g., t in (2.1))

∙ Vectors are denoted by bold, lowercase letters (e.g., rs in (2.1))

∙ Matrices are denoted by bold, uppercase letters (e.g., P in (2.14))

∙ Complex conjugation is denoted by (⋅)∗

∙ (⋅)† denotes the vector or matrix transpose operation

∙ (⋅)H denotes the complex conjugate, or Hermitian vector or matrix transpose

∙ The symbol ∗ denotes convolution

∙ Vertical bars ∣ ⋅ ∣ denote the modulus of a complex number or magnitude of real

number. When around a vector, the vertical bars denote the Euclidean norm

Some terms will be used throughout this document, and should be introduced.

The terms, target, scatterer, resolution cell, and scene all represent objects that scatter

electromagnetic energy in the direction of the radar. The scene is an area on Earth

that is illuminated by the transmitted electromagnetic energy from the radar. Based

on the resolution of the radar, the scene is segmented into smaller sections called

resolution cells. These sections are larger are much larger than the wavelength of the

radar’s carrier frequency. In general, a target is a moving or nonmoving scatterer.

Specifically, when discussing GMTI, a target is a moving scatterer.
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Other terms that warrant mentioning are range, along track, cross track, velocity,

and relative velocity. Range is the distance from the radar to the target or resolution

cell of interest. Along track is the direction of travel of the radar platform, and

conversely, cross track is perpendicular to along track. A resolution cell is defined

by its along-track and cross-track position and area. Velocity refers to the speed and

direction of the radar platform, while relative velocity is the difference speed between

the radar platform and a target, along the range vector.
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Chapter 2

Ground Moving Target Indication

By definition, the goal of a moving target indication (MTI) system is to detect

scattering objects that are moving, otherwise known as moving targets, and determine

their relative radial velocities with respect to the radar. For airborne MTI systems,

specifically those detecting moving targets on the ground, or GMTI systems, strong

ground clutter returns complicate detecting energy scattered from moving targets.

Significantly reducing the clutter energy in the received airborne and spaceborne

GMTI measurements has been a challenge for radar engineers for more than thirty

years. Many solutions have been proposed, including the displaced phase center an-

tenna (DPCA), generalized DPCA, many variations of space-time adaptive processing

(STAP), direct data domain (D3), and a variety of other methods. Of these tech-

niques, STAP-based approaches have been the most popular in terms of the number

of books, papers, and presentations generated. However, STAP has two inherent

weaknesses: 1) STAP lacks the ability to characterize the clutter in the local area of

the moving target, and 2) STAP requires a large amount of supporting data.

This chapter begins with a description of the linear, discrete radar model used

throughout this research. An overview of GMTI is presented to provide the back-

ground necessary to understand the problem faced by radar engineers and the many

approaches to GMTI that have been proposed. A survey of these approaches and

their limitations is presented.

13



2.1 Radar Model

Before discussing any signal processing techniques, a common understanding of

the structure of the received signal model used in this research must be developed.

This section presents a concise description of the discrete, linear, multiple aperture,

range Doppler radar observation equation that will be used in this research. For a

comprehensive background of this equation and the assumptions required to arrive at

this equation, the reader is referred to any of a number of radar textbooks, including

Curlander [34], Franceschetti [35], and Skolnik [36]. Specifically, the notation used

and the radar model developed closely follows that of Goodman’s dissertation [37],

Jenshak’s dissertation [38], and a paper by Stiles, et al. [39].

Some of the common assumptions used in developing this model are:

∙ Fixed transmit pattern over coherent pulse interval (CPI),

∙ Radar transmits coherent burst of M pulses at constant pulse repetition interval

(PRI),

∙ Receiver for each element has down converter and analog-to-digital (A/D) con-

verter, and

∙ Radar platform and any moving scatterers have constant velocity over a CPI.

2.1.1 Radar Geometry

The radar geometry is shown in Figure 2.1, where the radar host platform is an

aircraft. In general, the host platform could be airborne or spaceborne. The platform

is traveling in the positive x -direction, also referred to as the along-track direction,

with velocity v. The array phase reference is located at the origin of the coordinate
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system. Assuming a flat-Earth, the z -coordinate of the illuminated area on the Earth,

referred to as the scene, is -h, where h is the altitude of the array phase reference. At

t = 0 the transmitter is located at the array phase reference.

Figure 2.1. Radar geometry for a side-looking airborne platform with
flat-Earth approximation

Using Figure 2.1, the location vectors of the transmitter, receivers, and locations

within the scene may be defined. The vector defining the location of a spot within the

scene is rs = [x y − ℎ]†, where (⋅)† denotes the matrix or vector transpose operation.

Since the transmitter is located at the array phase reference, which passes through

the origin at t = 0, the transmitter location at an arbitrary time may be defined as

rt = vt, where v is the radar platform velocity vector, v = [v 0 0]†. Similarly, at

t = 0, the location of a receiver is defined as rr = [rx ry rz]
†.

Using these location vectors, the range from the transmitter to an arbitrary loca-
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tion in the scene at time t is

Rtx (rs, t) = ∣vt− rs∣. (2.1)

Likewise, the range from the arbitrary location in the scene to a receiver is

Rrx (rs, rr, t) = ∣rr + vt− rs∣. (2.2)

The round-trip delay from the time the signal is transmitted to the time it is received

is then

� (rs, rr, t) =
1

c
[Rtx (rs, t) +Rrx (rs, rr, t)] , (2.3)

where c is the speed of light in freespace.

2.1.2 Transmit Signal

The general radar model used in this research has one transmitter and an arbitrary

number of receivers N. The transmit signal is a superposition of weighted temporal

basis functions  l (t), where the weights are sl, such that

s (t) =
∑

m

∑

l

sl l (t−mT0) (2.4)

where T0 is the PRI.

For simplicity, throughout this research the transmit signal s (t) is assumed to be a

coherent pulse train. Therefore, sl = 1, ∀l, and  l (t) is assumed to be a time-limited

pulse defined as

 l (t) = rect

(

t− l�

�

)

(2.5)
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where

rect

(

t

�

)

=

{

1, − �

2
< t <

�

2

0, elsewhere
(2.6)

where � is the time width of the transmit pulse, or chip. Note, the pulse width �

in (2.5) and (2.6) is not the same as delay � (rs, rr, t) in (2.3) and later in (2.8) and

(2.9).

The ideal coherent pulse train is illustrated in Figure 2.2. The entire timewidth

of the transmit signal is T =MT0 + � . Since T0 ≫ � ,

T ≈ MT0. (2.7)

Figure 2.2. Coherent pulse train

2.1.3 Space-Time Measurement Vector

The transmitted signal propagates from the transmitter and illuminates an area

on the Earth referred to as the scene. Let the gains of the transmitter and receiver

in the direction of the scatterer be G (rs), and the carrier frequency be !0. For one

unit-response, point scatterer at location rs, the received signal measured at position

rr and time t is

� (rs, rr, t) =
G (rs)

Rtx (rs, t)Rrx (rs, rr, t)

∫

T

e−j!0t′� [t− t′ − � (rs, rr, t)] s (t
′) dt′, (2.8)
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where T is the transit signal length defined in (2.7), and � (⋅) is the delta function.

The difference between Rtx (rs, t) and Rrx (rs, rr, t) has an insignificant impact

on the amplitude of � (rs, rr, t) over the time and space of the processing inter-

val. Therefore, the denominator may be approximated as Rtx (rs, t)Rrx (rs, rs, t) ≈

Rtx (rs, 0)Rrx (rs, 0, 0) = R (rs)
2. Using this approximation and the sifting property

of integrating the delta function results in

� (rs, rr, t) =
G (rs)

R (rs)
2 e

−j!0�(rs,rr,t)s (t− � (rs, rr, t)) . (2.9)

Equation (2.9) is the radar response function for a point target at rs at time t. It

is analogous to an impulse response. When the point scatterer is not unit-response,

the radar response function is scaled by a scattering coefficient  proportional to the

radar cross section (RCS) of the scatterer. Without any interference, the resulting

measurement at time t from a scatterer with scattering coefficient  located at rs

would be

d (rr, t) = � (rs, rr, t) . (2.10)

In general, the scene is more complex than a single point scatterer. How the

transmitted energy is reradiated, or scattered from nonmoving scatterers in a scene

can be described by a scattering function  (rs). Incorporating the entire scene of

nonmoving scatterers into (2.10) and including the radar system noise n (rr, t) results

in

d (rr, t) =

∫

A

 (rs) � (rs, rr, t) drs + n (rr, t) , (2.11)

where A is the area of the scene.

The function  (xs) is the scattering response for all illuminated scatterers, dis-

tributed and point scatterers. The scattering response may be described by a super-
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position of basis functions,

 (xs) =

Nt
∑

n=1

n n (xs) . (2.12)

The scene is assumed to consist of distributed scatterers and is pixelated into

ground patches or along-track and cross-track resolution cells. The bandwidth, co-

herent processing interval (CPI), pulse repetition frequency (PRF), and antenna array

characteristics determine the number and size of the resolution cells. In the case of

resolution cells, the basis functions  n (xs) each represent the spatial area of the nth

resolution cell. The scalar n in (2.12) is the complex scattering coefficient represent-

ing the composite scattering from all scatterers within the nth resolution cell. Each

scattering coefficient may be placed lexiconographically by cross track and then along

track in a vector .

Similarly, the radar response functions � (rs, rr, t) correspond to the resolution

cells. Additionally, the functions are sampled with a total of BT samples, where B

is the bandwidth of the transmitted signal, and T is the timewidth, the response

functions become response vectors � (rs, rr, tk), for k = 1, 2, . . . , BT . The continuous

receive function becomes measurement vector d, which can be represented as a sum

of response vectors weighted by their corresponding scattering coefficients, as shown

below:

d =
Nt
∑

i=1

�ii + ni + "i. (2.13)

By organizing the response vectors �i into a matrix called the array manifold P,

and the scattering coefficients i lexiconographically by cross track and then along
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track in a vector , (2.13) becomes the linear, discrete radar model

d = P + n+ ". (2.14)

Equation (2.14) implicitly assumes the scattering from all the resolution cells are

independent, in other words, there is no coupling nor mutlipath between resolution

cells. However, without changing the form of (2.14), a response vector �i and scat-

tering coefficient i a moving or non-moving scatterer may be added to the sum in

(2.13) and equivalently, to P and  in (2.14). To accommodate moving scatterers,

commonly called targets in GMTI, a new notation for the scatterer parameters is

introduced. The vector xs is composed of the location parameters rs and relative

velocity with respect to ground vs of a moving target. The vector xs is defined as

xs =
[

r†s vs
]†
. (2.15)

From this point forward, the subscripts s, r, and t will not be used on the location

vectors. The vector x will refer to the location and relative velocity with respect to

ground of a scatterer, as in (2.15). The vector r will signify the spatial location of

the receiver.

Given a receive array of N antenna elements, there are L fast-time samples for each

returned pulse within a coherent processing interval (CPI), and sets of L fast-time

samples are separated by the PRI, which equates to the slow-time sampling period.

Assuming there are M pulses in a CPI, the sampled data vector would contain K

elements, where K is the product of number of fast-time samples, the number of
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slow-time samples, and the number of receive elements in the array, i.e., K=LMN.

d = [d (r1, t1) ⋅ ⋅ ⋅ d (rN , t1) ⋅ ⋅ ⋅ d (rN , tK)]†, (2.16)

P = [�1 �2 ⋅ ⋅ ⋅ �Nt
], (2.17)

 = [1 2 ⋅ ⋅ ⋅ Nt
]† , (2.18)

n = [n (r1, t1) ⋅ ⋅ ⋅ n (rN , tK)]†, (2.19)

�i = [� (xi, r1, t1) ⋅ ⋅ ⋅ � (xi, rN , tK)]
†, (2.20)

and

i =  (xi) . (2.21)

Figure 2.3 is a graphical representation of the sampled measurement parameters.

Figure 2.3. Space-time radar data cube

2.1.3.1 Interference

In addition to the energy received from scatterers, the received data includes

Gaussian and nonGaussian noise and interference. In systems operating at microwave
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frequencies, the noise is dominated by internal receiver noise, as noted in Chapter 1

of Skolnik [36]. Therefore, the elements of the complex noise vector n are assumed

to be independent and identically distributed (iid) zero-mean, white Gaussian noise

(WGN) with known variance �2
n.

The final component of the measurement vector " contains all of the nonGaussian

interference and any errors associated with the array manifold. Jammers; intrinsic

clutter motion, such as windblown trees; aircraft crab angle; range walk; and calibra-

tion errors are included in ".

2.2 Ground Moving Target Indication Processing

Moving target detection depends on determining whether or not the measure-

ments contain any energy due to at least one moving scatterer. Specifically, detecting

moving scatterers on the ground requires a processor to determine whether or not the

measurements contain energy from a moving object on the ground in the presence of a

large reflection of radar energy from the ground itself. There are many approaches to

detecting the energy from a moving scatterer and estimating its characteristics. This

section will present a survey of GMTI techniques, beginning with the general GMTI

detector architecture. The goal of the survey is to show the common heritage of pro-

gressively complex approaches and to lay the foundation for the multiple resolution

approach to GMTI presented in Chapter 5.

In GMTI, moving scatterers are called targets, and scatterers that are not moving

with respect to ground are considered to be clutter sources. In detection theory, the
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GMTI detection problem becomes one of determining the correct hypothesis,

H0 : dH0
= PCC + n+ "

H1 : dH1
= t�t + dH0

(2.22)

where the null hypothesis H0 is the interference only case, and the alternative hypoth-

esis H1 is the signal plus interference case. The signal in GMTI is due to a moving

target with unknown scattering coefficient t and space-time radar response vector

�t.

Since the presence of a moving target is unknown, it follows that the scattering

characteristics of the potential moving target are also unknown; therefore, a space-

time radar response vector �t is hypothesized and a detection coefficient must be

calculated. By hypothesizing �t, the problem becomes detecting a known signal in

interference, which is accomplished by comparing the magnitude of an estimated

scattering coefficient to a predetermined threshold. The general MTI detector archi-

tecture in Figure 2.4 below will be developed as the different approaches to GMTI

are presented.

As described in Chapter 1 of Klemm [2], the well-known linear weighting, or

Figure 2.4. MTI detector architecture
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beamformer for a discrete, linear model such as in the alternate hypothesis H1 in

(2.22), is

wopt = �R−1
I �t. (2.23)

The symbol � is a criterion-based scalar, andRI is the interference correlation matrix,

which is defined as

RI = E
{

(PCC + n+ ") (PCC + n+ ")H
}

. (2.24)

The operator E {⋅} is the expectation operator, and (⋅)H is the Hermitian (or

complex conjugate) transpose operator. Assuming the interference is zero mean, RI

is then the covariance matrix of the interference. The estimate of the moving target’s

scattering coefficient is then

̂t = wH
optd. (2.25)

An important observation of (2.25) is that the interference covariance matrix RI

whitens the measurements prior to the measurements being matched to the space-

time radar response vector �t. These terms will be used throughout this document,

particularly when discussing simplifications to the optimum processor.

Klemm [2] observes that the linear processor in (2.23) is optimal under several

criteria:

1. Maximum likelihood performance measure, where wML maximizes the likeli-

hood function of dH1
= t�t+PCC+n+" with respect to t. The constant in

(2.23) becomes � =
(

�H
t R

−1
d �t

)−1
, and the signal plus interference covariance
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matrix is:

Rd = E
{

(t�t +PCC + n+ ") (t�t +PCC + n+ ")H
}

. (2.26)

2. Maximum signal-to-noise ratio (SNR), where the constant � has no influence

on the SNR and may be chosen arbitrarily.

3. Linearly constrained minimum noise variance, where the output power is mini-

mized subject to the constraint wH�t = g. The constraint prevents the trivial

solution w = 0. The constant � then becomes � = g/
(

�H
t R

−1
I �t

)

.

4. Minimum mean square error (MMSE)1 criterion, where the measured data vec-

tor d is weighted so that the squared difference between the output and t is

minimized. The result is

wMMSE = �R−1
d �t, (2.27)

where Rd is given in (2.26) and the constant � is then the variance of t, which

is �2
t .

It is important to note difference between the linear processors resulting from

Klemm’s third and fourth observations. The linearly constrained minimum noise

variance processor, hereafter denoted the minimum variance method (MVM), whitens

the data with the interference covariance matrix R−1
I , while the MMSE processor

whitens the data with the data covariance matrix R−1
d . The difference being whether

or not the outer product of the steering vector weighted by the target variance is

included in the covariance matrix. As a foreshadow, the MVM processor will be used

in the proposed approach to GMTI, while the MMSE processor will be used in SAR

1Klemm calls this criterion the least mean square error
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image computations.

Since the interference in GMTI is unknown, the interference covariance matrix

must be estimated. This estimation is complicated by the fact that none of the

constituent parameters of the interference is completely known, and assumptions

must be made about their statistical distributions. These assumptions and how they

are implemented separate the many approaches to GMTI.

2.2.1 Form of Interference Covariance Matrix

By definition, a covariance matrix is a matrix of expected values. Assuming the

constituent statistical parameters have zero mean, the covariance matrix equals the

correlation matrix. Correlation is a statistical measurement of relationship. There-

fore, if one vector is correlated with another, then knowledge of one vector reveals

information about the correlated vector. In this sense, the interference covariance

matrix is a matrix with elements measuring the interrelationships of the constituent

parameters of the interference.

Returning to the definition of the received data vector in (2.14), the interference

consists of the energy from scatterers other than the desired target, as well as noise,

and other errors. In GMTI, nonmoving scatterers are referred to as clutter, and the

clutter array manifold PC consists of space-time radar response vectors corresponding

to the clutter in the along-track, cross-track resolution cells. The vector of complex

scattering coefficients associated with the scattering from clutter in the resolution

cells are C . Together, the multiplication PCC represents the received energy due
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to the clutter scattering. Expanding (2.24), the interference covariance matrix is then

RI = E
{

(PCC + n+ ") (PCC + n+ ")H
}

(2.28)

= E
{

(PCC) (PCC)
H + (PCC)n

H + (PCC) "
H
}

+ E
{

n (PCC)
H + nnH + n"H

}

+ E
{

" (PCC)
H + "nH + ""H

}

.

The noise is expected to be zero-mean, complex, white Gaussian, which means the

noise elements are uncorrelated with each other. As white complex Gaussian noise,

n is also uncorrelated with the clutter and errors. Because the error vector contains

errors associated with the array manifold and calibration errors, in general, " may

be correlated with itself and with the clutter energy. Using these assumptions, the

interference covariance matrix reduces to

RI = E
{

(PCC) (PCC)
H
}

+ E
{

nnH
}

+ E
{

""H
}

(2.29)

+ E
{

" (PCC)
H
}

+ E
{

(PCC) "
H
}

= E
{

(PCC) (PCC)
H
}

+ E
{

nnH
}

+ E
{

""H
}

+PCE
{

C"
H
}

+ E
{

"H
C

}

PH
C .

NonGaussian interference including jammers, intrinsic clutter motion such as

windblown trees, aircraft crab angle, range walk, and calibration errors are included

in ". The error sources are a valid concern and will need to be considered for any op-

erational system; however, the nonGaussian interference is assumed to be negligible

for the purposes of this research. Many researchers have considered techniques to ac-

count for error sources in GMTI. Guerci [40] introduced the covariance matrix taper

as a method to account for the effects of nonstationary interference, and other error
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sources, such as aircraft velocity vector errors. One effect of the covariance matrix

taper is to reduce the minimum detectable velocity of moving targets. Additionally,

many approaches to mitigating the effects of jammers have been proposed. However,

SAR implicitly assumes the array manifold is known and no jammers exist; therefore,

this research will consider the interference to consist of noise and stationary clutter

only, which leads to

RI = E
{

(PCC) (PCC)
H
}

+ E
{

nnH
}

= RC +Rn. (2.30)

where RC is the clutter covariance matrix and Rn is the noise covariance matrix.

Since the noise is assumed to be zero-mean, white Gaussian, the noise covariance

matrix can be represented by the average noise power per measurement �2
n multiplied

by an identity matrix

Rn = �2
nI. (2.31)

The array manifold of the clutter is assumed to be known; otherwise, SAR images

could not be created. PC is then deterministic, and the clutter covariance matrix

may be written

RC = PCE
{

C
H
C

}

PH
C = PCRP

H
C , (2.32)

where R is the clutter scattering coefficient covariance matrix, or simply the scat-

tering covariance matrix, for NC range-azimuth resolution cells has the form

R = E
{

C
H
C

}

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E ∣1∣2 E {1∗2} ⋅ ⋅ ⋅ E
{

1
∗
NC

}

E {2∗1} E ∣2∣2
...

...
. . .

E {NC
∗1} ⋅ ⋅ ⋅ E ∣NC

∣2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.33)
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Assuming the scattering coefficients from individual resolution cells are uncorre-

lated with each other, E
{

i
∗
j

}

= 0, ∀ i ∕= j. This assumption is valid, in general,

since each resolution cell is much larger than a wavelength in both dimensions, the

scattering from any individual range cell is an aggregate of the scattering from many

small scatterers in that area. Assuming that the scatterers within a resolution cell are

independent and identically distributed (iid), the central limit theorem [41] may be

invoked resulting in a Gaussian distribution with zero-mean. Therefore, even though

the magnitudes of the scattering coefficients for two adjacent resolution cells may

be similar the scattering coefficients themselves can be assumed to be independent

and thus, uncorrelated. Therefore, the scattering intensity covariance matrix may be

approximated as

R ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E∣1∣2 0 ⋅ ⋅ ⋅ 0

0 E∣2∣2
...

...
. . . 0

0 ⋅ ⋅ ⋅ 0 E∣NC
∣2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= diag(Γ), (2.34)

where

Γ =
[

E ∣1∣2 E ∣2∣2 ⋅ ⋅ ⋅ E ∣NC
∣2
]T
. (2.35)

Fuhrmann et al. [42] have shown that  is the expected spectrum of the clutter

scattering function. Since the values of E ∣i∣2 are unknown, they must be estimated

to estimate  and thus RI . An important observation is that the clutter spectral

values are expected values, and

E ∣i∣2 ∕= ∣i∣2 , (2.36)
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where i is a sample of one statistical realization of the random variable .

2.2.2 Displaced Phase Center Antenna

Displaced phase center antenna (DPCA) processing is a fixed space-time approach

to GMTI. In the 1950’s the DPCA technique was applied to airborne early warning

radars (AEW) for the defense of North America against intercontinental ballistic mis-

siles. A history of the development of the DPCA technique and operational deploy-

ment, including AEW and the Joint Surveillance and Target Attack Radar System

(Joint STARS) was published by Muehe and Labitt [5]. The heart of the DPCA pro-

cessor is a coherent difference of measurements taken at the same spatial location at a

slightly different time. The coherent difference requires a strict relationship between

the PRF, array spacing, and platform velocity, which is often difficult to achieve in

practice. DPCA is actually a family of techniques, and this discussion will focus on

the type of DPCA described by Staudaher [43] and in Appendix C of Ward [44].

Figure 2.5 below is adapted from Ward [44] and illustrates the DPCA concept for

four receive elements and three transmitted pulses. The measurements at antenna

elements one through three at the second time increment (Pulse #1) are subtracted

from measurements at the first time increment (Pulse #0) at elements two through

four. By subtracting the measurements in this way, the phase center of the array at

Pulse #1 is effectively shifted back (or displaced) in space to match the phase center

at Pulse #0. Therefore, the phase centers of the array are collocated in space, but

not time, for the two pulses.

Coherent subtraction of measurements from collocated phase centers allows the

energy from nonmoving scatterers to be subtracted out of the measurements, and

theoretically, all the remaining energy is from scatterers that have moved in the time
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Figure 2.5. DPCA phase center progression

between the two measurements. For a given array element spacing dx, the platform

velocity v and PRF T0 are chosen such that each subsequent pulse at the receive array

has the same physical phase center as the previous pulse, resulting in the following

relationship:

dx = 2vT0. (2.37)

Given this heuristic approach of the DPCA technique, it is not immediately obvi-

ous that the process conforms to the general MTI detector architecture in Figure 2.4

or the GMTI estimator in (2.23). This realization is easily identified in the discrete

measurement model below. Drawing from the mathematical description of the obser-

vation in (2.14), the measured data is projected into the subspace orthogonal to the

clutter via the projection matrix wDPCA. Using a single two-pulse subCPI measure-

ment, Ward [44] has shown the weight vector to be a simple canceler, which fits the

form seen in (2.23)

̂t = wH
DPCAd, (2.38)
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where

wDPCA =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

1

−1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�t. (2.39)

DPCA is a simple GMTI processor that may be implemented in hardware. How-

ever, it has poor minimum detectable velocity (MDV) performance, and the restric-

tions on velocity and PRI are difficult to maintain in practice.

2.2.3 Generalized DPCA

DPCA is analogous to specifying a radar system to meet the processor’s require-

ments. On the other hand, generalized DPCA is a processor conforming to the design

of a given radar system. Generalized DPCA is aptly named in that the technique

is generalized to work without requiring the strict relationship between the antenna

spacing, PRI, and platform velocity. Rather than a direct subtraction of measured

data elements, generalized DPCA is a projection based on eigenspectral analysis.

Richardson [4] has shown that for conditions in sideways looking airborne radar ap-

plications STAP can result in weight solutions equivalent to those required to perform

DPCA. The following discussion shows the relationship between DPCA and gener-

alized DPCA and highlights the deficiencies of generalized DPCA performance that

more rigorous techniques attempt to improve upon.

In generalized DPCA, the eigenspectrum of the interference covariance matrix in

(2.24) is calculated while approximating the clutter spectrum as uniform, resulting

in the scattering covariance matrix R equal to an identity matrix. This means the

estimate of the interference covariance matrix is not adaptive, because it depends
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solely on the array manifold. Therefore, the estimated interference covariance matrix

is

R̂I = PCRP
H
C + �2

nI (2.40)

= PCIP
H
C + �2

nI

= PCP
H
C + �2

nI

= ECΛEH
C + �2

nI,

where R = I. EC is the unitary eigenmatrix of PCP
H
C and Λ is a matrix with the

eigenvalues of PCP
H
C along the diagonal, and the eigenvalues are ordered, such that

�1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �K . Assuming the noise energy is insignificant, the interference

covariance matrix may be approximated by the estimated interference covariance

matrix,

R̂I ≈ ECΛEH
C . (2.41)

The eigenvectors corresponding to the significant eigenvalues are determined by

the desired fraction of the clutter energy to reject FE . While one would desire all

of the clutter energy to be rejected, in reality, the subspace of the clutter energy

and target energy overlap as illustrated in Figure 2.6. For simplicity, the clutter is

assumed to have the same distribution as noise, which is a zero-mean, white Gaussian

distribution. Rejecting all of the clutter energy would also reject some amount of the

target energy. The significant eigenvectors of the clutter covariance matrix are then

determined by choosing the N ’ largest eigenvalues such that

∑N ′

i=1 �i
∑Nt

i=1 �i
≥ FE , (2.42)
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which leads to approximating the eigenvector matrix EC with

Ẽc ≈ [e1 e2 ⋅ ⋅ ⋅ eN ′ ] . (2.43)
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Figure 2.6. MTI radar noise and signal plus noise PDFs

The estimate of the interference covariance matrix for generalized DPCA is then

composed of the eigenvectors corresponding to the larger eigenvalues of the interfer-

ence covariance matrix. For simplicity, the significant eigenvalues are assumed to be

unity, and the insignificant eigenvalues equal zero, by default. The resulting estimate

of the interference matrix is then

R̃I = ẼCẼ
H
C . (2.44)

This generalized DPCA approach is an improvement over DPCA, in that it does

not require strict relationships between the PRI and aircraft velocity. However, in

reality the eigenvalues of the interference covariance matrix are not ones and zeros,

as shown in Figure 2.7. Whitening the data with equally weighted eigenvectors of the
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interference covariance matrix results in less computational complexity than using

the true eigenvectors at the expense of estimation accuracy. Because the eigenvec-

tors representing the clutter are all weighted equally, some of the clutter areas are

undernulled, while other areas of the clutter are overnulled. This is evident in the

difference between the true eigenspectrum and the unity spectrum assumed by gen-

eralized DPCA in Figure 2.7. The clutter for the indices less than around 200 will be

undernulled by generalized DPCA, the clutter for indices above 200 will be overnulled,

and the clutter spectrum above 510 will not be suppressed at all.
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Figure 2.7. Eigenspectra of clutter and generalized DPCA approxima-
tion

Generalized DPCA is an intermediate step between DPCA and STAP that does

not require the strict DPCA relationship in (2.37). As shown by Richardson [4],

in sideways-looking airborne radar STAP, and thus generalized DPCA, can lead to

a DPCA type solution when the array satisfies the DPCA relationship in (2.37).
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Generalized DPCA is based on projecting the data into the target subspace, yet

the uniform weighting of the clutter covariance eigenvectors results in suboptimum

projection.

2.2.4 Space-Time Adaptive Processing

Brennan and Reed [10] introduced STAP based on estimating the interference

covariance matrix from the collected data. The data are called space-time data,

where space refers to the spatial sampling of the incoming electromagnetic radiation

by spatial apertures, or receive elements, and time refers to the temporal sampling

of the data. The process is adaptive because real-time measurements are used to

estimate the interference covariance matrix in turn used to estimate the hypothesized

target’s scattering coefficient.

The general STAP detector architecture is shown in Figure 2.8. While very similar

to the general MTI architecture in Figure 2.4, the primary difference is that STAP

uses the measurements to calculate the weight vector. However, Figure 2.9 illustrates

why fully-adaptive STAP is not practical. The processor must calculate a scalar

weight for every measurement sample. This requirement led radar engineers to pursue

reduced-rank approaches to approximate fully-adaptive STAP.

Figure 2.8. Space-time adaptive processor architecture
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Figure 2.9. Fully-adaptive space-time processor

To increase the practical usefulness of STAP, Reed et al. [11] introduced sample

matrix inversion (SMI) as a method to increase the convergence rate of the detector.

SMI is a direct method of adaptive weight computation by estimating the interference

covariance matrix with the received data. Measurements from only one range at a

time are tested for the presence of a moving target, and measurements from that

range are called the primary data. The primary data and one range cell on either

side, called guard ranges, are assumed to contain the energy of the hypothesized

target and are not included in the estimate of the interference covariance matrix.

The measurements collected from other ranges are called secondary data, and are

assumed to contain no energy from the moving target. The secondary data are then

used in the SMI estimation of the interference covariance matrix. Recalling there are

L range cells, the estimate of the interference covariance matrix (2.24) is then

R̂I =
1

L− 3

(

L
∑

l=1

dld
H
l −

lt+1
∑

l=lt−1

dld
H
l

)

, (2.45)

where lt is the index for the primary range.

The SMI approach implicitly assumes the clutter statistical mean and covariance
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from all the secondary ranges are identical to the clutter statistical mean and covari-

ance of the primary range. In statistical terms, the clutter statistics are considered

to be wide-sense stationary in range. The effect of heterogeneous clutter on the per-

formance of STAP is covered in some detail by Melvin [12]. He states that simulation

results reveal loss in signal-to-interference plus noise ratio (SINR) ranging between a

few tenths of a decibel to greater than 16 dB for specific cases.

The amount of data required to estimate the interference covariance matrix us-

ing SMI depends on the rank of the interference covariance matrix. Brennan’s rule

originally introduced by Brennan and Staudaher [45] is an approximate rule for the

rank of the clutter covariance matrix. Ward [44] proves Brennan’s rule for the special

case when the interpulse motion per half-element spacing, � = 2vT0/dx, is an integer

less than or equal to N. Note, that � = 1 for DPCA. The rank of the interference

covariance matrix is directly dependent on the number of spatial elements N, the

number of pulses in a CPI M, the velocity of the radar platform v, the interelement

spacing in along track dx, and the PRI T0, with the following relation:

rC = N + (M − 1) �. (2.46)

In Section 4.2 of his dissertation [37], Goodman discusses Brennan’s rule and

references work by Slepian, Landau, and Pollak [46–48], and other works in optics to

conclude the time-bandwidth product is a more general estimate of the clutter rank,

specifically

rC = BT + 1, (2.47)

where B is the bandwidth of the transmit signal, and T is the length of the CPI.

Both (2.46) and (2.47) support the claim that much secondary data is necessary
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to estimate the clutter covariance matrix. The assumption of wide-sense stationary

clutter with respect to range and large sample support are well-known drawbacks to

STAP. Many approaches to overcoming these deficiencies by modifying STAP, or with

alternative techniques, have been proposed with some success.

The effect of heterogeneous clutter may be demonstrated using a clutter scene

with more than twice the number of range cells as azimuth cells, satisfying Brennan’s

Rule and the more stringent clutter rank in (2.47). Figure 2.10 shows a heterogeneous

scene, and Figure 2.11 compares the eigenspectra of the estimates of the interference

covariance matrix for two different ranges of heterogeneous scene. The eigenspectra

of the SMI estimates are nearly identical for both ranges, as expected. However, the

eigenspectra for the clairvoyantly estimates are very different, because the scattering

from the upper and lower sections of the scene in Figure 2.10 have very different

variance. In contrast, the eigenspectra of the clairvoyant and SMI estimates of the

interference covariance matrix are similar, as shown in Figure 2.12. The resulting

rece receiver operating characteristics (ROC) curves in Figure 2.13 illustrate how

SMI performance can be degraded by clutter that is heterogeneous in range.

2.2.5 Structured Covariance Estimation Techniques

Many techniques have been proposed that take advantage of the structure of the

interference covariance matrix. Knowledge-aided STAP (KA-STAP) represents the

largest category of these techniques. A U.S. Defense Advanced Research Projects

Agency (DARPA) program called Knowledge Aided Sensor Signal Processing and

Expert Reasoning (KASSPER) from 2002-2005 contributed a large body of research

in this area. Some of the results of the KASSPER program are included in the

following sections.
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Figure 2.10. Expected and realized scattering spectrum for a simulated
64x16 heterogeneous scattering scene

2.2.5.1 Knowledge-Aided STAP (KA-STAP)

Returning to the description of STAP in Section 2.2.4, KA-STAP attempts to

improve the interference covariance estimate by using a priori information about the

interference statistics. The sources of knowledge and how the knowledge is incor-

porated into the processor are the primary distinguishing characteristics of different

KA-STAP approaches. The two purposes of KA-STAP are to increase the processor’s

detection performance and to reduce the amount of secondary data required to esti-

mate the interference covariance matrix. Figure 2.14 illustrates the general KA-STAP

detector architecture, for comparison to Figures 2.4 and 2.8.

Papers by Bergin et al. [19, 49] are good examples of KA-STAP. They present a

framework for incorporating knowledge sources directly into the space-time beam-

former. They report that blending the information contained in the observed radar
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Figure 2.11. Comparison of eigenspectra for clairvoyant and SMI es-
timated interference covariance matrices, (a) low variance range of road
scene, (b) high variance range of road scene
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Figure 2.12. Comparison of eigenspectra for clairvoyant and SMI es-
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Figure 2.14. Knowledge-aided space-time adaptive processor architec-
ture

data with the a priori knowledge sources reduces the sample support (number of sec-

ondary range bins) required by the STAP processor. The blending occurs by loading

the standard SMI estimate of the interference covariance matrix with a scaled colored

loading term consisting of the estimated clutter covariance matrix based on the a

priori knowledge source.

Another example which suggests using previously collected SAR images as knowl-

edge sources is presented by Gurram and Goodman [18]. They use the a priori

knowledge to classify homogeneous regions of clutter, then minimum-variance spec-

tral estimation is used to arrive at a spectral-domain clutter estimate.

These examples are just a few of the many different KA-STAP techniques to

estimate the clutter covariance matrix that have been published. As in all MMSE-

based estimators, incorrect knowledge of the constituent parameters of the estimator

can lead to significant detection errors. Melvin and Showman [21] demonstrate a

technique to reduce covariance estimation errors by using knowledge sources to better

characterize the space-time response vectors of the cell under test.

KA-STAP has demonstrated great improvements over STAP; however, these ap-
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proaches have drawbacks. In addition to the possibility of the knowledge source

being out of date, to employ these knowledge-aided tools, ownship location, and mo-

tion must be known precisely [22] to properly register the a priori knowledge with the

real time measurements. As previously stated, mischaracterizing the actual statistics

with incorrect or poorly applied knowledge can do more harm than good.

2.2.5.2 Covariance Estimation Using Expectation-Maximization

Fuhrmann et al. [14] use the expectation-maximization algorithm to estimate the

expected values of the clutter spectrum. The expectation-maximization algorithm

is iterative, beginning with an initial estimate of the the clutter spectrum  and

updating that estimate with each iteration. The expected values of the sufficient

statistics for the complete-data, log-likelihood, conditioned on the observed GMTI

data d and assumed parameter values PC , are computed. In this case, the sufficient

statistics are the squared magnitudes ∣̂i∣2. These sufficient statistics are then used

to find the closed-form maximum likelihood (ML) estimate for , and the process is

repeated using another set of measurements collected from the same scene.

Fuhrmann et al. [14] conclude that their approach to estimating the clutter co-

variance allows one to carry out adaptive GMTI in situations where 1) the clutter

is heterogeneous and therefore there is no “secondary data” from other range bins

to estimate RI , and 2) the clutter covariance can be estimated from data at other

platform positions and orientations. However, the authors also point out that their

expectation-maximization approach has very high computational requirements.
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2.2.6 Nonhomogeneity Detector Preprocessors

A nonhomogeneity detector (NHD) attempts to identify data outliers in order

for the outliers to be excised from the data prior to GMTI processing. NHD may

be applied to nearly any GMTI technique, including the approach presented in this

research. As applied to STAP, NHD is used to eliminate nonhomogeneous range bins

from the training data [28]. In addition to applying NHD prior to predetermined

statistical algorithms, Adve et al. [22,27] use an NHD prior to choosing a STAP algo-

rithm. The STAP stage can either draw from traditional algorithms in homogeneous

environments or on the presented hybrid algorithm in nonhomogeneous environments.

Their approach required at least two passes over the environment. The first pass is

for NHD followed by the second pass with appropriate STAP processing.

Khanpour-Ardestani et al. [15] build on the approach of Adve et al. [22,27]. Since

the location of the clutter ridge is known based on the radar platforms motion with

respect to the ground, use a bandstop filter to reject clutter prior to the initial NHD

step of the technique in [22, 27]. Khanpour-Ardestani’s preprocessor is relatively

simple and demonstrates reasonable clutter reduction on data from the Multi-Channel

Airborne Measurements (MCARM) program [50].

One of the most popular NHD techniques is based on the generalized inner-product

(GIP). GIP and modified sample matrix inverse (MSMI) are presented in significant

mathematical detail by Chen [51]. A multistage NHD approach by Ogle et al. [24]

interleaves the GIP with a multistage Wiener filter. According to Ogle, this approach

provides a signal-dependent GIP intended to detect only those inhomogeneities that

degrade the estimation of the colored noise and interference that passes through the

steering vector. This approach is shown to more accurately identify moving targets

than the signal-independent application of the GIP.
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Guerci and Steinhardt [52] present an extension to NHD. The authors state that

acute sources of clutter interference are resolved via quasi-SAR processing and then

combined with STAP GMTI to reduce minimum detectable velocities, reduce the

required degrees-of-freedom, increase available training set size, and lower SINR loss

and false alarms. Specifically, their method uses the high resolution clutter estimate

to isolate the larger discrete scatterers in order to prewhiten (as an NHD) the data

prior to calculating one detection coefficient using STAP.

2.2.7 Direct Data Domain

Unlike stochastic GMTI methods Direct Data Domain (D3) techniques process the

measurements from only the range cell of interest. D3 method are particularly useful

when large amounts of support data are unavailable or the interference environment

is not statistically stationary. Adve, et. al. [27] present D3 concise manner and

note that the presented D3 algorithm differes from other non-statistical algorithms

by maximizing the mainbeam gain in the look direction, as opposed to maintaining

the gain at some chosen level.

Choi, et. al. [53] and Burintramart and Sarkar [54] compare fully-adaptive and

reduced-rank statistical-based STAP methods and D3-least squares (D3LS) method

as the amount of support data is varied. The D3LS processor performance is stable

without respect to the rank of the covariance matrix. When the amount of support

data is less than the rank of the covariance matrix ( 1/2 in their simulation), the

performance is severely degraded for all of the statistical-based STAP methods.

Sarkar, et. al. [55] introduce three D3LS techniques that may be independently

applied to the signal of interest to increase the confidence level of the processed results.
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2.2.8 Other Techniques

Blunt et al. [16] presents another approach to improve STAP performance which

blends knowledge-aided covariance estimation, the enhanced FRACTA algorithm

[56], and a Doppler-sensitive adaptive coherence estimate detector. The enhanced

FRACTA algorithm excises outliers that closely resemble targets. The knowledge-

aided covariance estimation technique is based on the simplified general clutter model

developed by Gerlach and Picciolo [17] which builds on the diagonal loading technique

published by Carlson [57].

2.2.9 Knowledge-Based Processing

Fully optimal STAP and some of the most popular lower computational load sta-

tistical algorithms are discussed by Wicks et al. [58]. They provide an overview of

GMTI processing techniques, including the joint domain localized (JDL) processing

algorithm, the parametric adaptive matched filter (PAMF), the multistage Weiner

filter (MWF), and factored STAP methods. The use of nonhomogeneity detectors

(NHD) and direct data domain (D3) methods are discussed as well as a hybrid ap-

proach using D3 and JDL.

Wicks et al. [58] conclude there is no one best processor and each of the algorithms

above have advantages and disadvantages depending on the target/clutter scenario.

They develop the argument for a knowledge-based system to best match the adaptive

processing algorithm to the interference scenario. In this sense, knowledge-based

processing differs from KA-STAP in that a knowledge-based system uses a priori

and/or real-time knowledge to choose an algorithm to fit the problem, while a KA

system uses a priori knowledge to improve performance of an algorithm, in this case

STAP.
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The approach presented in later chapters of this dissertation could be one of the

algorithms available to a knowledge-based GMTI processor.

2.2.10 SAR-Based GMTI

There are also many approaches to GMTI using single-aperture and multipass

SAR data. These approaches are based on change detection, velocity mapping, and/or

interferometrics. Change detection compares SAR images separated in time, and

subsequently space. All changes in the images are assumed to be from scatterers

that have moved from one pixel to another in the time separating the two images.

Perry et al. [59, 60] discuss SAR imaging of moving targets using a technique they

call keystoning. Keystoning compensates for the range migration which occurs as

the moving target crosses resolution cell boundaries during a CPI. Sanyal, Zasada

and Perry [61] extend the keystoning concept to detect moving targets using SAR

imaging.

Minardi et al. [30,31] have shown that velocity mapping can be used in conjunction

with change detection to determine the presence of moving targets and their velocities.

Their SAR-MTI technique requires forming a stack of SAR images assuming different

sensor ground speeds. Each image captures a different set of target velocities. They

report that SAR-GMTI does not have a clutter notch, which eliminates about 15%

of the moving targets for standard GMTI.

SAR along-track interferometry (ATI) as been used extensively in remote sensing.

Several, including Gierull [32] and Chapin and Chen [33] have investigated, and even

demonstrated using the multipass method for detecting slow-moving and low reflec-

tivity ground targets. The Doppler bandwidth of this technique limits the maximum

target velocity detectable.
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Chapter 3

Synthetic Aperture Radar

The similarity between the form of the clutter spectrum in (2.35) and the values

composing a SAR image is striking. The same discrete, linear radar model (2.14)

used in the GMTI analysis can be used in SAR, though the array manifolds can be

significantly different. In this section the development of the SAR image equation

will be presented, then the results are compared to the GMTI clutter spectrum.

3.1 SAR Processing

To the remote sensing engineer, nonmoving scatterers are the targets, while the

same nonmoving targets are considered clutter in GMTI. A SAR image is an estimate

of the spectrum of the nonmoving scatterers of the illuminated area on the ground.

For reference, the discrete, linear radar model (2.14) without the nonGaussian error

term is stated here,

d =
Nt
∑

i=1

�ii + ni = P + n. (3.1)

GMTI requires an estimate of one scattering coefficient for each potential moving

target. SAR, on the other hand, requires an estimate of the entire scattering scene,

which is divided into resolution cells. As in GMTI, each resolution cell is associated

with a location on the earth and has an associated space-time radar response vector

�i in the array manifold P and scattering coefficient i in the vector . Recognizing
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equation (3.1) as a Bayesian general linear model, Theorem 10.3 of Kay [62] may be

restated using the notation from this proposal. Given the observed data model in

equation (3.1) where d is a K×1 data vector, P is a known K×Nt matrix,  is a Nt

random vector with a Gaussian prior probability density function (PDF) N (�,R),

and n is a K × 1 noise vector with PDF N (0,Rn) and independent of , then the

posterior PDF p (∣d) is Gaussian with mean

E (∣d) = � +RP
H
(

PRP
H +Rn

)−1
(d−P�) (3.2)

and covariance

R∣d = R −RP
H
(

PRP
H +Rn

)−1
PR. (3.3)

Equation (3.3) is the tap weight matrix for the minimum mean squared error

(MMSE), or Wiener estimate of the vector . Given our assumption of zero-mean,

the MMSE estimator is then

WMMSE =
(

PRP
H +Rn

)−1
PR . (3.4)

Consequently, this estimator is the vector version of the MMSE filter in equation

(2.27) used to estimate the scattering coefficient of the moving target in GMTI. The

definitions of the scattering covariance matrix and noise covariance matrix are the

same as equations (2.32) and (2.31).

A intensity-squared SAR image is an estimate of the squared magnitude of the

scattering coefficients of the resolution cells plotted on a two-dimensional grid with

respect to the location on the earth of the associated resolution cells. The squared

magnitudes of the scattering coefficients are analogous to the squared intensity of the
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scattered energy from their respective resolution cells. Thus, the values of a SAR

image in column vector form are

̂SAR =
[

∣̂1∣2 ∣̂2∣2 ⋅ ⋅ ⋅
∣

∣̂NC

∣

∣

2
]†

. (3.5)

Using this notation it is obvious that SAR has the same form as the estimate

of the expected GMTI clutter spectrum in (2.35). The difference is that (2.35) is a

vector of expected values, while (3.5) is an estimate of one statistical realization of

the expected values.

3.2 Iterative SAR Processing

The problem with the estimator in equation (3.4) is the matrix inversion. The

volume of data necessary to create a SAR image precludes the calculation in one

operation. Iterative approaches enable the estimates of the scattering coefficients to

be refined as new sections of the data are included in the calculation. Kalman is

a popular approach to iterative processing and has a vast background in literature.

This section contains a brief tutorial three special cases of Kalman filtering, namely

iterative MMSE estimation, recursive least-squares (RLS) estimation, and back pro-

jection. For a more complete discourse on Kalman filtering and RLS estimation, the

reader is referred to any number of books on adaptive filtering, including Grewal and

Andrews [63], Haykin [64], and Van Trees [65]. The information presented below

on the approach to Kalman filtering and iterative MMSE estimation is largely from

Section 13.3 of Moon [66] and an unpublished tutorial by Stiles [67]. The discussion

on RLS draws from Chapter 5 of Haykin [64], and the back projection information

parallels Chapter 5 of Soumekh [68].
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In this research the energy scattered from the observed scene is assumed to be

invariant within the observation time. While this is not strictly valid, it does greatly

simplify the SAR image calculations. Time variance of the state vector ( in the

case of (3.1)) is assumed within the Kalman filter structure but is considered outside

the scope of this research. Specifically, iterative MMSE estimation assumes the state

system in the Kalman filter to be statistically stationary, which implies the state noise

is zero.

Figure 3.1 is adapted from Fig 4.1 of Grewal [63] and shows the block diagram

of the iterative MMSE estimator used to estimate the scattering coefficient vector

 given a subset dk of the discrete measurement vector d. Other than notation,

the significant difference between Figure 3.1 and Fig 4.1 of Grewal is that Grewal’s

dynamical state system t+1 = At + w in Fig 4.1 [63] has been replaced with a

stationary system . Please note that in Grewal’s notation the subscript t refers to

the time index and is not the same as the scattering coefficient for a moving target,

as used in (2.14) and elsewhere in this document.

Figure 3.1. Iterative MMSE estimation architecture
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Given the discrete, linear radar model in (3.1) we can partition the model into

K’ subapertures (note that K ′

Nt
should be a factor of two for computational efficiency)

such that

dk = Pk + nk k = 0, 1, ...K ′ − 1, (3.6)

where

d =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d0

d1

...

dK ′−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P0

P1

...

PK ′−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n0

n1

...

nK ′−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.7)

Each iteration of the iterative MMSE estimator then operates on one subaperture

dk of the data to update the estimate of the scattering coefficients and the scattering

covariance matrix, as follows:

̂k+1 = ̂k +Gk+1�k+1 (3.8)

where Gk+1 is called the gain, and �k+1 is the innovation. The gain is then

Gk+1 = R̂kP
H
k+1

(

Pk+1R̂kP
H
k+1 +Rn

)−1
, (3.9)

and the innovation is

�k+1 = dk+1 −Pk+1̂k. (3.10)

The update to the scattering covariance matrix is

R̂k+1
=
(

I−R̂kP
H
k+1

(

Pk+1R̂kP
H
k+1 +Rn

)−1
)

R̂k . (3.11)

By design, the updates to the scattering coefficient vector are orthogonal to the
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previous estimate.

The Kalman filter and the iterative MMSE estimator require initialization. Gen-

erally, the initial estimate for the scattering coefficient vector is a vector of zeros. The

diagonal values of the initial scattering covariance matrix R̂0 are set to larger than

any anticipated values of the estimate matrix. The diagonal values of the scattering

covariance matrix are essentially limits, and if they are too small, the filters will not

search outside those limits, therefore the filter error will never go to zero.

Recursive least squares (RLS) estimation with unity exponential weighting factor

(stationary state vector) is a special case of the iterative MMSE estimator, which

is essentially an iterative maximum likelihood (ML) estimator. Recall the MMSE

estimator (3.4). If the signal-to-noise ratio (SNR) is assumed to be large, the noise

variance �2
n in (3.4) is assumed to be zero, so the noise covariance matrix in (3.11)

becomes insignificant, i.e. Rn = 0. Additionally, the scattering spectrum is assumed

to be uniform, which leads to the scattering covariance matrix being an identity

matrix, i.e., R = I. The stochastic MMSE estimator reduces to the maximum

likelihood estimator

WML =
(

PPH
)−1

P, (3.12)

which is a completely deterministic estimator.

Extending this logic to simplifying the iterative MMSE estimator results in the

following RLS gain vector

Gk+1 = PH
k+1

(

Pk+1P
H
k+1

)−1
, (3.13)

and the innovation (3.10) is unchanged, resulting in the following update to the state
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estimate

̂k+1 = ̂k +Gk+1�k+1 (3.14)

In Section 5 of the Background and Preview in [64], Haykin lists three distinct

categories of RLS filtering algorithms:

1. The standard RLS algorithm has been discussed above and has the same virtues

and vices of the Kalman filter. Namely, the largest drawback to the standard

RLS algorithm is the computational complexity, which has prompted the de-

velopment of the other two categories of RLS filtering algorithms.

2. Square-root RLS algorithms are based on QR-decomposition of the incom-

ing data matrix. Householder and Givens rotation are two well-known data-

adaptive QR-decomposition techniques. Square-root RLS algorithms are known

to be stable and robust.

3. Fast RLS algorithms exploit the inherent redundancy in the Toeplitz structure

of the input data matrix through the use of linear least-squares prediction in

both the forward and backward directions. Fast RLS algorithms achieve com-

putational complexities of O(M), as compared to the standard and square-root

RLS algorithms which are O(M2), where O(⋅) abbreviates order of.

Using the same relationships illustrated in Figure 3.2 and the Soumekh’s [68]

description of the back projection filter, further simplification of the Kalman filter

may be made by assuming the radar response vectors from the resolution cells are

orthogonal, and thus uncorrelated. The whitening matrix in (3.4) is further simplified

from (3.12) to an identity matrix, reducing the processor to the deterministic matched

filter estimator

WMF = P. (3.15)
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Again, extending this logic to simplifying the RLS estimator results in the follow-

ing back projection gain vector

Gk+1 = PH
k+1, (3.16)

and the innovation (3.10) remains unchanged, resulting in the following update to

the state estimate

̂k+1 = ̂k +Gk+1�k+1 (3.17)

The relationship between Kalman filtering, iterative MMSE, and RLS estimation

with unity exponential weighting factor is illustrated in Figure 3.2.

Figure 3.2. Simplifications relating Kalman filtering, iterative MMSE,
RLS, and back projection

Matched filtering is much simpler computationally than either MMSE or maxi-

mum likelihood, because only one Hermitian transpose is required as opposed to a

multiple matrix operations, including a matrix inverse. As an example, the calculat-

ing 370 full-resolution 64x64 SAR images (as described in Chapter 6) would take 14

days. Using back projection took only 14 minutes using a 3.0 GHz Quad Core Xeon

processor. While MMSE does, by definition, result in lower estimation errors for

properly determined systems, underdetermined systems do not have the same MMSE

guarantee. For that reason, and the radical difference in computation costs, multi-

look SAR images estimated using the matched filter, regularized iterative MMSE,

and RLS are compared in this research in Chapter 6.
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3.3 Multiresolution Filtering of SAR Images Using Filter Banks

Wavelets and filter banks are extensively used in image compression, such as in

JPEG 2000. In Section 1.6 of their book on wavelets and filter banks, Strang and

Nguyen [69] note that the discrete wavelet transform (DWT) (referred to by Strang

as the fast wavelet transform (FWT)) is a logarithmic tree of filters called the Mallat

algorithm after its discoverer Stéphane Mallat. Figure 3.3 is adapted from Figure

1.12 [69] and illustrates a synthesis filter tree. Each filter bank (or stage) of the DWT

is composed of a lowpass filter, which performs a moving average, and a highpass filter,

which performs a difference. The matrix LT is the lowpass filter and the highpass

filter is the matrix HT at each level. Using this explanation, the multiple resolution

structure of the DWT can be easily recognized. Each lowpass/highpass pair moving

from left to right in Figure 3.3 represents a progressively higher spatial resolution

estimate of the scattering coefficient vector .

Many choices for the lowpass and highpass filters exist. The contribution of

wavelets and filter banks is to provide new bases to transform the data into. The

object of wavelets is to efficiently localize a signal in time and frequency, as much as

Figure 3.3. DWT synthesis filter bank tree
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possible. By definition, the filters are finite-impulse response (FIR) filters, as opposed

to infinite impulse response (IIR) filters, e.g., Fourier-based filters.

Strang [70] provides a conceptual description of Haar wavelets, the DWT, and the

more elegant Daubechies wavelets. In [71], Strang emphasizes the general construction

of wavelets through dilation and translation. Haar wavelets are the most fundamental

wavelets and will be used here to demonstrate how the DWT filter bank tree are used

for multiresolution processing of real signals. The notation of Strang and Nguyen [69]

will be followed, in that the concept of filter banks applies to discrete time and scaling

functions and wavelets are continuous time concepts.

Haar filter banks are box filters and are best illustrated in continuous time, as

wavelets. Figure 3.4 is adapted from Figure 2 in Chapter 8 of Hubbard’s book on

wavelets [72] and illustrates the unity scaling function and the Haar wavelet function.

The same wavelet function is used at every resolution (filter bank) of the DWT.

In terms of the lowpass and highpass filters in Figure 3.3, the scaling function and

wavelet in Figure 3.4 represent the lowpass highpass filters, respectively. The only

difference is the function is dilated (or compressed) and translated (shifted) in time.

Figure 3.5 shows the compression and translation of the next higher resolution.

The Haar wavelets in Figures 3.4 and 3.5 can be naturally related to the DWT

Figure 3.4. Haar scaling function and wavelet
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Figure 3.5. Haar wavelet, compressed wavelet, and compressed and
translated wavelet

synthesis filter bank tree in Figure 3.3 by letting ̂(1) be a vector of K wavelet co-

efficients representing the real, full-resolution signal. The first stage of the DWT

synthesis filter bank tree can be expressed as a lowpass filter

LT
1 =

K
∑

i=1

̂(1) ⇒ Γ̂
(1)

(3.18)

and a highpass filter

HT
1 =

1

2

K/2
∑

i=1

̂(1) − 1

2

K
∑

i=1

̂(1). (3.19)

The next stage of the DWT synthesis filter bank tree operates on the output of

the first stage by another lowpass filter

LT
2 =

1

2
LT

1 +
1

2
HT

2 ⇒ ̂(2) (3.20)

and takes into account the finer scale wavelet coefficients in the vector ̂(1) via another

highpass filter

HT

2
=

1

4

K

4
∑

i=1

̂(1) − 1

4

K

2
∑

i=K

4
+1

̂(1) +
1

4

3K

4
∑

i=K

2
+1

̂(1) − 1

4

K
∑

i=3K

4
+1

̂(1). (3.21)
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Figure 3.6. One-dimensional DWT demo using sine wave

The finest spectral, or spatial, resolution is achieved when each element in ̂(1) is

multiplied by a filter and summed. This concept can be demonstrated visually in one

dimension using a sine wave as the desired signal.

The multiresolution characteristics of the DWT may be clearly seen in Figure 3.7.

While the reconstructed sine wave in Figure 3.6 is visually identical to a perfect

sine wave, the output from coarser scale stages of the DWT filter bank are clearly

discretized. Including more stages dyadically includes more finer scale filters, and

thus finer resolution.

The multiresolution approach using the two-dimensional DWT is a clear extension

of the one-dimensional DWT. In the simplest form, two one-dimensional filter banks

are applied to the image, one to the horizontal dimension and one to the vertical. Fig-

ure 3.8 shows a 64x64 resolution cell SAR image of a simulated road scene estimated
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Figure 3.7. One-dimensional DWT reconstruction of sine wave at mul-
tiple resolutions

using iterative MMSE. It also shows the output of the low-scale filter at the 64th

stage of a 256-stage Haar DWT filter bank. Similarly, Figure 3.9 shows the outputs

of the 4th and 2nd stages of the same 256-stage Haar DWT filter bank. Many more

sophisticated wavelets and filter banks exist, but the Haar DWT is the simplest and

is sufficient to illustrate the multiresolution aspects of filter banks.

3.4 The SAR Image and GMTI Clutter

As previously stated, a SAR image is an estimate of the spectrum of the scattered

energy from an illuminated area on the earth with high spatial resolution. The

SAR image in Figure 3.10 illustrates how the scattering statistics can vary within

an illuminated area or scene. The dark areas, which could represent bodies of water,

roads, or other large flat areas, return very little scattered energy toward the receiver;

therefore, they appear dark. The returns from areas with slightly more texture, such

as fields, return more scattered energy and are lighter gray. Other regions that appear

quite light vary significantly in returned energy intensity corresponding to a large
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Simulated 64x64 SAR Image of Road Scene
 Estimate Using Iterative MMSE
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Figure 3.8. 64x64 SAR image of road scene Two resolutions of 64x64
SAR image of road scene (a) iterative MMSE-estimated (b) mid- to fine-
scale image using 64 separable two-dimensional DWT based on Haar
wavelets
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Simulated 64x64 SAR Image of Road Scene
Output of 2, 4−stage DWT Filter Banks
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Output of 2, 2−stage DWT Filter Banks
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Figure 3.9. Two resolutions of 64x64 SAR image of road scene using
separable two-dimensional DWT based on Haar wavelets, (a) mid-scale
image using four separable two-dimensional DWT based on Haar wavelets
(b) low-scale image using two separable two-dimensional DWT based on
Haar wavelets
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variance in the scattered energy from areas such as rocky terrain or forests. Building

complexes and urban areas have many small regions with distinctly different scattering

statistics. Each of these phenomena are intended to be represented in Figure 3.10,

including a simulated building complex in the left-center of the image.

Figure 3.10. Side-by-side comparison of expected SAR image and SAR
image realization

The scattering statistics within the regions mentioned above are similar, except

for the complex of buildings and other small areas with a single tree, small road,

etc. Large sections of the river bottom, for instance, can be classified as areas of

independent, identically distributed (iid) targets. However, the building complex

would need the clutter scattering statistics defined at a much finer spatial resolution.

The right image in Figure 3.10 shows expected scattering intensity areas of the SAR

image that have been hand classified to show areas with similar scattering statistics.

The scattering statistics within these classified areas can be considered homogeneous;

however, it is obvious that the entire scene is not entirely homogeneous in range or

azimuth.
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3.4.1 Fading Statistics

The differences between the classified image and the original image in Figure 3.10

are primarily due to fading statistics resulting in speckle in the SAR image. Fading

statistics and speckle are important concepts when considering whether a SAR image,

as represented by (3.5) provides a good estimate of the GMTI clutter spectrum, as

represented by (2.35). In the second of two volumes on microwave remote sensing,

Ulaby et al. [73] present the concepts and statistics of fading in Section 7-2 and the

resulting speckle within an image in Section 8-7. The following discussion on fading

draws heavily from Section 7-2.

Fading comes about because the path lengths, or equivalently the radial speeds,

between the radar and various point scatterers in the illuminated area are different.

In the case of a SAR image, one pixel or resolution cell, is large with respect to the

wavelength of the radar’s carrier frequency. This means the target represented by

a resolution cell is actually a large collection of scatterers often represented by iid

point scatterers. The radial speed differences between the radar and the individual

scatterers in this large collection result in different frequencies with random initial

phases, which results in a noise-like signal. Thus, the statistics for the fading signal

are the same as those of noise.

If the scattering coefficient of the kth scatterer in a resolution cell is expressed as

ke
j(!t+�k) ≜ ke

j'k , (3.22)

where kis its magnitude, and 'k = (!t+ �k) is the instantaneous frequency. A

collection of Nr scatterers within a resolution cell would then result in a sum of Nr
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scattering coefficients

 =

Nr
∑

k=1

ke
j'k . (3.23)

 may also be expressed in terms of an envelope magnitude ∣∣ and a phase angle '

by adding up the randomly phased phasors as a random walk:

 = ∣∣ ej'. (3.24)

It is evident that the real and imaginary parts of  may be expressed, respectively,

as

r = ∣∣ cos ' =
Nr
∑

k=1

k cos 'k, (3.25)

and

i = ∣∣ sin ' =
Nr
∑

k=1

k sin 'k. (3.26)

If the number of scatterers is large, the central limit theorem may be invoked.

Then r and i may be assumed to be Gaussian distributed with means

E {r} =
Nr
∑

k=1

E {k cos 'k} , (3.27)

and

E {i} =

Nr
∑

k=1

E {k sin 'k} . (3.28)

The randomly phased scatterers k and 'k are assumed to be independent random

variables with 'k uniformly distributed over [0, 2�). These assumptions result in

E {r} =

Nr
∑

k=1

[

E {k} ⋅
∫ 2�

0

cos 'k d'k

]

= 0. (3.29)
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Similarly,

E {i} = 0. (3.30)

Ulaby [73] states it can also be shown that E {ri} = 0, implying the real and

imaginary parts of the sum are uncorrelated, which implies independence for Gaussian

random variables. He also shows that the envelope magnitude ∣∣ is then Rayleigh

distributed with a mean value of

E ∣∣ =
√

�

2
� (3.31)

where � is the standard deviation of the individual real and imaginary components of

the phasor sum. Recognizing that ∣∣2 = 2r + 2i , given that the real and imaginary

parts of the scattering coefficient are Gaussian, the distribution of ∣∣2 is exponential

and the second moment of the envelope is

E ∣∣2 = 2�2, (3.32)

which leads to

Seq =
E ∣∣

E ∣∣2 + E ∣∣
= 3.66, or 5.6 dB. (3.33)

where Ulaby [73] calls Seq the inherent SNR of a Rayleigh-fading signal. In other

words, even without additive noise, the best SNR possible in the presence of Rayleigh

fading is 5.6 dB. The only way to increase the SNR is to add multiple independent

fading samples together.

The fading statistics of the observed signal returned from an extended target rep-

resented by a resolution cell (one pixel) result in the random fluctuations in the sim-

ulated SAR image of Figure 3.10. The SAR image is composed of magnitudes of the
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estimate of the scattering coefficient ∣̂∣ for each pixel. These values are exponentially

distributed resulting in speckle in the SAR image. The field regions in Figure 1.2 are

prime examples of speckle–the bright and dim variations from pixel-to-pixel–which is

the equivalent to uncertainty in the spectrum of the scattering function.

Speckle, as a result of fading statistics in the scattering coefficients are precisely

why single-look SAR images are not good estimates of the clutter spectrum, i.e.

∣̂i∣2 ∕= E ∣i∣2. However, the estimate of the expected values improve as multiple

independent estimates are incoherently averaged, which is referred to as multilook

SAR. The accuracy of the estimation is referred to as radiometric resolution; therefore,

the radiometric resolution of the SAR image increases as more independent estimates

of the clutter spectrum (using GMTI nomenclature) are incoherently averaged.

3.4.2 Scattering Function Heterogeneity

As shown in Figure 3.10, clutter statistics can be very heterogeneous in range

and azimuth. Knowing whether or not the clutter is homogeneous is advantageous,

because approaches to mitigating heterogeneous clutter exist—some even use SAR-

based estimates of the clutter spectrum, such as in Gurram and Goodman [18]. How-

ever, without a priori knowledge of the expected clutter spectrum, the variation of

the spectrum from pixel-to-pixel is completely unknown. Speckle further complicates

the issue, because it adds randomness to pixel-to-pixel clutter statistics potentially

resulting in homogeneous clutter appearing to be heterogeneous. The end result is a

clutter spectrum that is difficult to classify into homogeneous regions.

Since the relative sizes of the homogeneous regions are unknown, it follows that

the optimum spatial resolution of the estimate of the clutter spectrum for GMTI is

unknown. Using too coarse or too fine of a resolution can result in a high false alarm
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and/or a reduced probability of detection.

3.4.3 Measurement Degrees of Freedom

As discussed in the Introduction, SAR processors associate the received energy

with azimuth location by the Doppler shift between slow-time measurements. How-

ever, GMTI processors associate Doppler with a moving target’s relative velocity.

Given that dichotomy, what happens to a moving target in a SAR image?

Figure 3.11 is a classic image which clearly illustrates how energy from scattered

from a moving object is displaced in azimuth in a SAR image. In this case, the

moving scatterer is a boat on a body of water. The wake is caused by the boat, but

the boat is not at the apex of the wake. The velocity of the boat with respect to

the Earth had a component in the direction the the radar contributing to the relative

velocity of the boat with respect to the radar. This relative velocity added to the

relative velocity of the boat due to its position on Earth. This added relative velocity

translated into an additional Doppler offset that the SAR processor associated with

an incorrect azimuth position.

Another measurement degree of freedom is necessary to determine the azimuth

direction of a scatter, regardless of the associated Doppler shift. GMTI radars use

multiple receive antennas in the along-track direction to unambiguously determine the

change of phase with respect to spatial location. Figure 3.12 illustrates how the clutter

subspace is linear with respect to Doppler and azimuth, but the azimuth location of a

moving target can be isolated if both azimuth and Doppler are measurement degrees

of freedom, as it is in GMTI.

SAR requires fine spatial resolution in range and azimuth; therefore, wide band-

width and a long coherent processing interval (CPI) are needed. SAR inherently as-
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Figure 3.11. Boat off wake illustrating relative motion results in az-
imuth offset in SAR image (used with permission from Sandia National
Laboratory)

Figure 3.12. GMTI measurement degrees of freedom
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sumes all the energy received is from nonmoving targets and maps the energy received

into the image based on the phase change between received samples with respect to

frequency (Doppler/azimuth) and phase change with respect to time (delay/range).

For that reason, target motion with respect to ground results in the target being

displaced and blurred in a SAR image, as illustrated by the boat appearing blurred

and to the side of its wake in Figure 3.11 from a paper by Sanyal et al. [61].

GMTI exploits multiple apertures and the relative motion between moving targets

and nonmoving targets (clutter) for detection. The multiple apertures add a spatial

dimension to the received data, which equates to an extra degree of freedom to resolve

the relative motion between moving targets and clutter.

The wide bandwidth and long CPI required for SAR is not necessary for GMTI;

however, Jao et al. [74] observe that it may be beneficial in several aspects:

1. target detection at lower minimum detectable velocities,

2. robust adaptive processing to cancel strong ground clutter,

3. high sensitivity to detect weak targets,

4. flexible array requirement including sparser arrays, and

5. compatibility with SAR imaging applications.

Similarly, using multiple apertures for SAR imaging has advantages. Collecting

SAR-quality data from multiple apertures results in oversampling the scene. Inte-

grating the measurements from the multiple apertures may result in an image with

the same spatial resolution as a single aperture SAR image with less speckle. This

means an image with higher radiometric resolution may be gained without sacrificing

spatial resolution.

71



The pulse repetition frequency (PRF) of the dual-mode radar system can be an

area of contention. A pulse Doppler radar has range and Doppler ambiguities de-

pendent on the PRF of the transmitted signal. The low PRF mode is unambiguous

in range and ambiguous in Doppler, while the high PRF mode is unambiguous in

Doppler but has range ambiguities. As Klemm [2] points out, the medium PRF

mode is a compromise between the low PRF and high PRF modes and is often used

in GMTI. There are methods to mitigate ambiguities that result from using medium

PRF signals for SAR imaging that will not be specifically addressed by this research,

such as staggered PRF and pulse coding.
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Chapter 4

Multiple Look SAR Using Subapertured

Eigensensors

Chapter 2 established that accurately estimating the clutter covariance matrix

is a primary concern in GMTI. Chapter 3 drew a parallel between the clutter co-

variance matrix and an intensity-squared SAR image, with the difference being that

an intensity-squared SAR image is one realization of the expected clutter covariance

matrix. For simplicity, in this and following chapters, the term SAR image refers to

an intensity-squared SAR image. This chapter shows that multilook SAR can better

estimate the expected clutter covariance matrix, and presents a novel approach to

calculate multilook SAR images from a single measurement vector.

This approach is presented by introducing multilook SAR as analogous to a power

spectral estimation process that increases the radiometric resolution (estimation accu-

racy) of the spectral estimate in homogeneous scattering regions of the scene. A novel

approach to partitioning, or subaperturing, the space-time radar data to produce the

multilook SAR is presented. This approach includes transforming the measurement

model into a domain of synthetic array sensor locations, called the eigensensor do-

main. After transforming, the measurements are subapertured in this new eigensensor

domain. The result is a lower spatial resolution multilook SAR image with suppressed

ambiguities as opposed to conventional subaperturing techniques.
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4.1 Multilook SAR as Power Spectral Estimation

Multilook SAR images increase the radiometric resolution estimate of the ex-

pected clutter spectrum, as compared to the single-look SAR image. As discussed

in Section 3.4.1, incoherently averaging multiple, independent estimates of the scat-

tering coefficients of the scene reduces the speckle in a SAR image. Multilook SAR

is an incoherent average of the scattering coefficients of the scene. The individual

estimates of the scattering coefficients to be averaged are calculated from subaper-

tures or partitions of the measurement vector. The term subaperture comes from

antenna array theory, where the antenna array aperture is partitioned into groups of

elements, and each group of the full array is treated as a separate, smaller array or

subaperture. These subapertures have a smaller spatial extent, and therefore, a wider

beamwidth. The wider beamwidth reduces the angular resolution as compared to the

full aperture. Ideally, each subaperture provides an independent observation, or look,

at the same region of space. These multiple looks allow finer radiometric resolution

measurements, or estimation accuracy, at the expense of angular resolution.

Subaperturing long CPI, wideband, space-time data is complicated compared to

subaperturing a one-dimensional or even a two-dimensional antenna array. Before

discussing subaperturing space-time data, one-dimensional power spectral estimation

(PSE) will be used to demonstrate the concept and effect of subaperturing for mul-

tilook estimation.

4.1.1 Power Spectral Estimation Math

Building on Fuhrmann’s [14, 42] observation that estimating the spectrum of the

clutter scattering function is foundational to mitigating the clutter in GMTI, PSE

techniques will be used to illustrate how multilook SAR increases radiometric reso-

74



lution at the expense of spatial, or frequency, resolution. Here the Welch averaged

PSE technique as presented in Chapter 12 of Proakis and Manolakis [75] will be

used to estimate a one-dimensional expected power spectrum. Using progressively

larger subapertures will demonstrate the effect of averaging power spectral estimates

on radiometric and frequency resolutions of uniform (homogeneous) and nonuniform

(heterogeneous) power spectra. As an aside, other PSE techniques exist, including

more accurate parametric techniques. However, the Welch technique can easily in-

corporate the subapertured measurement approach used in this research.

Let an underlying process consist of independent, identically distributed (iid),

zero-mean, complex Gaussian vectors with a diagonal covariance matrix

 ∼ CN (0,R) , (4.1)

where the diagonal elements of the covariance matrix are considered to be the expected

spectrum

R = diag
(

E ∣0∣2 , E ∣1∣2 , . . . , E ∣Nt−1∣2
)

, (4.2)

where diag(v) denotes a diagonal matrix with the values v along the main diagonal.

Let

Γ =
[

E ∣0∣2 E ∣1∣2 ⋅ ⋅ ⋅ E ∣Nt−1∣2
]†

(4.3)

be a vector of samples of the expected power spectrum  (f). Via the inverse discrete

Fourier transform (DFT) of the spectral samples, a Nyquist-sampled temporal received

vector is a noisy linear transformation of the underlying process:

d = P + n,
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where the noise is assumed to be complex, zero-mean, white-Gaussian, with known

variance �2
n, i.e., n ∼ CN (0, �2

nI), where I is an identity matrix, and CN (�, �2I)

describes a vector-valued, complex Gaussian (normal) random variable with mean �

and covariance matrix �2I. Then the measurement vector is distributed as

d ∼ CN
(

0,PRP
H + �2

nI
)

. (4.4)

The Welch method estimates the power spectrum by incoherently averaging the

periodograms calculated from subapertures (partitions) of the temporal data. The

periodogram is a normalized estimate of the power spectrum  (f). As a reminder,

the periodogram for a continuous frequency f is defined as

Pdd(f) =
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

d(n)e−j2�fn

∣

∣

∣

∣

∣

2

=
1

N
∣X(f)∣2 , (4.5)

where X (f ) is the discrete-time Fourier transform (DTFT) of the data vector d.

To subaperture the data, the N -point data sequence is partitioned into Ls sub-

apertures of length Ms. The elements of each subaperture are then

di (m) = d (m+ iD) i = 0, 1, . . . , Ls − 1 m = 0, 1, . . . ,Ms − 1, (4.6)

where D determines the number of duplicated elements in each subaperture, or equiv-

alently the amount of slide in a sliding window. The element x(iD) is the first element

of the i th subaperture. If D =Ms the data in each subaperture do not overlap and all

the elements in each data subaperture are unique. The periodograms for each data
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subaperture are calculated as

P̃didi
(f) =

1

MsU

∣

∣

∣

∣

∣

Ms−1
∑

m=0

di(m)w(m)e−j2�fm

∣

∣

∣

∣

∣

2

i = 0, 1, ..., L− 1. (4.7)

The scalar U is a normalization factor for the power in the window function w(n),

and is defined as

U =
1

Ms

Ms−1
∑

n=0

w2(n). (4.8)

This averaged, continuous periodogram is related to the discrete estimate of the

expected power spectrum by

Γ̂di(f) =Ms P̃didi(f). (4.9)

The periodogram for each subaperture of the data is then incoherently averaged

for the Welch averaged, or multilook periodogram:

P
(M)
dd (f) =

1

Ls

Ls−1
∑

i=0

P̃
(M)
didi

(f). (4.10)

As noted in Proakis [75], the Welch PSE is a biased estimator. This could be an

issue when the subapertures are not independent, as will be the case for oversampled

measurements.

4.1.2 Incremental Multiresolution Spectral Estimates

Returning to the one-dimensional, linear system and PSE in Section 4.1.1, given a

measurement vector d uniformly sampled in time, the discrete-time Fourier spectrum

is

(f) =
Ns−1
∑

n=0

dne
−j2�fn. (4.11)
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The estimated spectrum for Ms = 1 (single-element subapertures) is then

(1)n (f) = dne
−j2�fn n = 0, 1, ..., Ns − 1, (4.12)

where the superscript (⋅)M denotes the number of temporal elements used to esti-

mate the complex spectrum. Similarly, assuming nonoverlapping subapertures, the

estimated spectrum for Ms = 2 is

(2)n (f) =
1√
2

(

dne
−j2�fn + dn+1e

−j2�f(n+1)
)

. (4.13)

Recognizing the relationship between 
(1)
n , 

(1)
n+1, and 

(2)
n , leads to

(2)n (f) =
1√
2

(

(1)n (f) + 
(1)
n+1(f)

)

. (4.14)

This relationship is continued as subaperture size increases by a factor of two:

(m)
n (f)=

1√
m

n+m
∑

i=n

die
−j2�fi =

1√
m

n+m
∑

i=n


(1)
i (f) (4.15)

Assuming Ns is a factor of two, the full-aperture spectral estimate is identical to the

spectral estimate computed using the building-block technique just described.

The hope is that this building-block approach to finer spatial resolution using

lower resolution estimates is that the lowest resolution estimates of the scattering co-

efficients in the radar model may be calculated, then used to estimate finer resolution

estimates of the same scattering coefficients. Thus, the matrix inversions required to

estimate the scattering coefficients may not have to be accomplished for each new

resolution of the multilook SAR image.

78



4.1.3 Power Spectral Estimation and Heterogeneous Spectra

The number of subapertures Ls and the resulting incoherently averaged peri-

odogram, or equivalently the estimated power spectrum Γ̂, directly affect the vari-

ance of the estimate. The expected power spectrum for a zero-mean, white-Gaussian

noise process is uniform for all frequencies. Because the measurements for this pro-

cess are iid, the best spectral estimate for this process would result from incoherently

averaging the spectral estimates from each individual measurement. In one dimen-

sion, this incoherent average is a multilook periodogram generated with one-element

subapertures.

Figure 4.1 illustrates the differences in the power spectral estimates for the num-

ber of subapertures, for a given measurement vector. The one-element subaperture

best estimates the expected power spectrum of the white-Gaussian noise process, in

fact, the one-element estimate overlaps the expected power spectrum in the second

plot in Figure 4.1. As the number of subapertures increases, the estimated power

spectrum has more variance, and thus more error in homogeneous spectral regions.

The full-aperture estimate best estimates the power spectrum of the statistical re-

alization of the expected power spectrum. The realization is not the same as the

expected spectrum because of the limited number of measurements; in this case 2048

measurements were used. Notice the difference in the ordinates’ scales in Figure 4.1.

When the expected power spectrum is not uniform, as represented by the expected

power spectra in Figure 4.2, more measurements are needed in each subaperture. The

effect of the subaperture size on the power spectral estimate can be clearly seen in

Figure 4.3, which is a zoomed-in version of data shown in Figure 4.2. Three multi-

look estimates and the full-aperture estimates are compared to the expected power

spectrum from about 4.4 to 4.95 radians. The eight-element subaperture smooths the
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Figure 4.1. One-dimensional PSE of unit-variance, white-Gaussian
noise, (a) expected power spectrum and full-aperture PSE (b) multilook
PSE
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transition region near 4.7 radians excessively, while the full-aperture estimate better

tracks the transition but has a high variance in the flat region. Thus, the 128-element

subaperture results in higher spectral resolution at the expense of lower estimation

accuracy, which is equivalent to higher variation in areas where the expected spectrum

is uniform.

This analysis confirms the observation of (2.36), which can be restated as the

expected power spectrum is not equal to the power spectrum of a time (and/or band)

limited realization of that expected power spectrum. One can also conclude that

there is no one-size-fits-all approach to subaperturing for multilook power spectral

estimation.

4.1.4 Subaperturing Space-Time Data

To create multilook SAR from one measurement vector, the vector must be parti-

tioned into subapertures. The subapertures for one-dimensional, uniformly sampled

data are simply sequential partitions of time over which the measurements were col-

lected. The steering vectors for uniformly, Nyquist-sampled temporal measurements

have Vandermonde form, as found in the discrete Fourier transform matrix, and are

orthogonal. Take, for example, 16 data samples uniformly collected in time. Parti-

tioning the measurement vector into four subapertures would best be accomplished

by taking four sequential measurements for each subaperture. This simple case is
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Figure 4.2. One-dimensional PSE for nonuniform power spectrum, (a)
expected power spectrum and full-aperture PSE, (b) multilook PSE
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Figure 4.3. Subaperture size effect on spectral transition region (close-
up of one-dimensional PSE for nonuniform power spectrum)

shown below:

d = [d1 d2 d3 ⋅ ⋅ ⋅ d16]†

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1

d2

d3

d4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

d1 = [d1 d2 d3 d4 ]
† d3 = [d9 d10 d11 d12]

†

d2 = [d5 d6 d7 d8]
† d4 = [d13 d14 d15 d16]

† .
(4.16)
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Similarly, the array manifold must be subapertured in the time dimension:

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1,1 �1,2 ⋅ ⋅ ⋅ �1,16

�2,1 �2,2 �2,16

...
. . .

...

�16,1 ⋅ ⋅ ⋅ �16,16

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P1

P2

P3

P4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.17)

where

P1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�0,0 �0,1 ⋅ ⋅ ⋅ �0,15

�1,0 �1,1 ⋅ ⋅ ⋅ �1,15

�2,0 �2,1 ⋅ ⋅ ⋅ �2,15

�3,0 �3,1 ⋅ ⋅ ⋅ �3,15

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋅ ⋅ ⋅ P4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�12,0 �12,1 ⋅ ⋅ ⋅ �12,15

�13,0 �13,1 ⋅ ⋅ ⋅ �13,15

�14,0 �14,1 ⋅ ⋅ ⋅ �14,15

�15,0 �15,1 ⋅ ⋅ ⋅ �15,15

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.18)

An image for each subaperture can then be computed, in this case, resulting in four

lower resolution images. These images may be incoherently averaged to produce one

multilook SAR image with finer radiometric resolution over homogeneous scattering

regions (less speckle) at the expense of lower spatial resolution (image detail).

4.1.5 Extension to Multilook Imaging

The one-dimensional PSE example may be extended to two dimensions to concep-

tually demonstrate multilook SAR imaging. The image in Figure 4.4 is the expected

SAR image analogous to the one-dimensional expected power spectra in Figure 4.1.

The following multilook SAR demonstration parallels the one-dimensional Welch PSE

demonstration.

Figure 4.5 contains a full-aperture intensity SAR image estimated using all the

elements in the measurement vector in the lower left, and three multilook SAR im-
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Figure 4.4. Expected intensity SAR image for a synthetic scene

ages generated using subapertures of three different sizes. The difference in speckle

between the images is obvious. Fewer subapertures clearly reduce speckle, but the

image is blurred potentially beyond recognition in the top two images of Figure 4.5.

The collage in Figure 4.6 visually demonstrates multiple resolutions of the same

image using different subaperture sizes. The images in the right column of Figure 4.6

are the incoherent averages of the single-look images on the left, and the 1x1, 4x4,

16x16 subapertured multilook images and the full-aperture image are the same as

the images in Figure 4.5. Each image from the individual subapertures in Figure 4.6

is a spectral estimate using only one subaperture of the data. Each row of images

corresponds to one subaperture size, such as the second row, which consists of images

from individual 2x2 subapertures. In this example, the data is simulated using only a
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Figure 4.5. Multiple spatial resolutions of one realization of 256x256
intensity image

single receive antenna, so the subapertures are based on slow-time and fast-time divi-

sions of the simulated SAR data. Similar to the one-dimensional PSE images, these

multilook SAR images demonstrate the effect incoherent averaging of independent

looks has on reducing the speckle at the expense of spatial (or spectral) resolution.

The full-aperture (64x64) SAR image has the finest spatial resolution, and it can

be computed using the full data vector or by coherently combining lower resolution

spectral estimates. This coherent combining process is also illustrated conceptually

in Figure 4.6. For the 64x64 resolution cell scene in this example, there are 642 data
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Figure 4.6. Dyadically increasing spatial resolutions

elements in the vector d, which translates into 4096 images created from 1x1 (single

element) subapertures of the data. The 2x2 subaperture images could be computed

from the complex spectra estimated using single element subapertures. This concept

was demonstrated in Section 3.1.2 with Fourier analysis in one dimension.

4.2 Subaperturing Using Eigensensors

In general, space-time data may not be uniformly sampled in space and/or time.

Rather than the temporal example given in Section 4.1.1, the phase of the space-time

radar response at a receiver for a given scatterer varies with time, frequency, and

location of the receiver. Thus, the data will be sampled over five dimensions; range,

along-track, elevation, fast-time, and slow-time time. For convenience of presenting

the multilook SAR approach, the Fourier transform of the radar model is computed

with respect to fast time, resulting in the five dimensions of range, along-track, eleva-
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tion, fast-frequency, and slow-time. Partitioning measurements collected over these

five dimensions into subapertures is not simple. As in array theory, the ambiguity

function and resolution of each subaperture depend on the interrelationships of the

elements within the subaperture.

In antenna array theory, the beamwidth of a subarray depends on the spatial sep-

aration between the two antenna elements that are the farthest apart. The character-

istics of each subarray’s sidelobes depend on the distance between adjacent elements.

Subaperturing space-time data has the same relationship; therefore, care must be

exercised in when subaperturing the data for multilook SAR.

Curlander and McDonough [34] discuss subaperturing data in the Doppler (slow-

time) domain for multilook SAR. However, they only consider SAR measurements

collected from a single aperture. On the other hand, in Section 2.2 of Goodman’s

dissertation [37] and a subsequent paper with Stiles [76], synthetic sensors they call

eigensensors are developed as a way to represent five-dimensional data in two dimen-

sions. They rigorously develop the eigensensors as a method to determine a radar

system’s resolution and ambiguity function. Their general radar model allows for

sparsely populated, nonuniform, three-dimensional antenna array and a wide range

of look geometries.

4.2.1 Eigensensor Math

Using Goodman and Stiles’ eigensensor concept, subapertures of the data neces-

sary for multilook SAR may be based on two-dimensional synthetic sensor parameters.

The goal is to have a well-balanced ambiguity function and resolution in each sub-

aperture resulting in better multilook SAR images for each spatial resolution than

would occur via traditional subaperturing techniques. As a reminder, subaperturing
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is just a way to partition the measurements for multilook SAR. Subaperturing itself

performs no operations on the data.

The following discussion follows Goodman and Stiles’ [37,76] development of syn-

thetic sensors they call eigensensors. The actual five-dimensional sensor parameters

are three-dimensional space, fast frequency, and slow time. Here it is important to

note that the notation fast frequency refers to the Fourier transform of the phase

history data with respect to the fast-time sampling period. The vector s is then the

five-by-one vector of sensor parameters s = [r† ! t]†, and r is the location in three-

dimensional space of a receiver at t = 0 and is defined as r = [rx ry rz]
†. Goodman and

Stiles rationalize that since only two independent variables are necessary to define the

location of a stationary scatterer on a two-dimensional plane, (location in along track

and range for MTI and SAR), it is reasonable to assume two spatial sensor dimensions

are sufficient to represent radar measurements. A two-by-five transformation matrix

Λs is then developed based on first-order Taylor series expansions around the sensor

parameters, s. In terms of partial derivatives, Λs for the sidelooking case is given by

Λs =

⎡

⎢

⎢

⎣

∂2

∂x∂rx

∂2

∂x∂ry

∂2

∂x∂rz

∂2

∂x∂!

∂2

∂x∂t
∂2

∂y∂rx

∂2

∂y∂ry

∂2

∂y∂rz

∂2

∂y∂!

∂2

∂y∂t

⎤

⎥

⎥

⎦

Ψ

∣

∣

∣

∣

∣

∣

∣

∣

x0,s0

, (4.19)

where Ψ is the phase of the space-time radar response vector for a given resolution cell

and sensor parameters s, x0. The vector x0 is the plane perpendicular to the boresight

of the antenna, and s0 is the set of sensor parameters around which the expansion is

performed, such that x0 = [x0 y0 − ℎ]†, and s0 = [0 0 0 !0 0]†. Evaluating Λs at x0
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and s0, the sensor transformation matrix becomes

Λs =
!0

c

⎡

⎢

⎢

⎣

− (ℎ2 + y20)

R3
0

x0y0
R3

0

−x0ℎ
R3

0

2x0
!0R0

−2v (ℎ2 + y20)

R3
0

x0y0
R3

0

− (ℎ2 + x20)

R3
0

−y0ℎ
R3

0

2y0
!0R0

2vx0y0
R3

0

⎤

⎥

⎥

⎦

(4.20)

where R0 =
√

ℎ2 + x20 + y20 is the distance from the center of the radar aperture to

the center of the imaged scene x0. The along-track velocity of the radar platform is v,

the height above the earth is h, the along-track dimension is x, the range dimension

is y, the fast-frequency sampling interval of the transmitted and received signals is !0

, and c is the velocity of the transmitted signal in freespace.

For the sidelooking case assumed in this research, x0 = 0, and R0 =
√

ℎ2 + y20.

Λs becomes

Λs =
!0

c

⎡

⎢

⎢

⎣

−1

R0

0 0 0
−2v

R0

0
−ℎ2
R3

0

−y0ℎ
R3

0

2y0
!0R0

0

⎤

⎥

⎥

⎦

. (4.21)

The singular value decomposition (SVD) of the sidelooking sensor transformation

matrix can be taken to yield:

Λs = USV†, (4.22)

where the SVD matrices are:

U = [u1 u2] , S =

⎡

⎢

⎣

�1 0 0 0 0

0 �2 0 0 0

⎤

⎥

⎦
, and V =

[

v1 v2 v3 v4 v5

]

.

(4.23)

Goodman [37] shows that only the first two column vectors of V, v1, and v2,

project the five sensor parameters into the two independent eigensensor dimensions.
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Calculating the SVD of Λs, the vectors v1 and v2 are

v1 =

[ −1√
1 + 4v2

0 0 0
−2v√
1 + 4v2

]†

(4.24)

and

v2 =
1

√

ℎ4 + ℎ2y20
R4

0

+
4y20
!2
0

[

0
−ℎ2
R2

0

−ℎy0
R2

0

2y0
!0

0

]†

. (4.25)

The location of the first eigensensor dimension is obtained by taking the inner

product of v1 with the sensor parameter Δs, and similarly, the second eigensensor

dimension is a result of the inner product of v2 with the sensor parameter Δs. Con-

sequently, the coordinates of the eigensensors are given by � = v†
1Δs and � = v†

2Δs.

Completing the inner products,

� =
−1√

1 + 4v2
(rx + vt) (4.26)

and

� =
1

√

ℎ4 + ℎ2y20
R4

0

+
4y20
!2
0

(

−ℎ
2ry
R2

0

− ℎy0rz
R2

0

+
2y0Δ!

!0

)

. (4.27)

The parameter � depends on the along-track position of the receiver, the along-

track velocity, and slow time, and is therefore called the effective along-track position

of the synthetic sensor. The effective cross-track position of the sensor is given by the

value of � because of its dependence on fast time and the receiver’s position in height

and cross track. Using these parameters, each measurement can be mapped into the

two-dimensional coordinate system of effective along track and effective cross track

for the synthetic array.
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Figure 4.7 is a plot of the synthetic array sensor locations for a measurement

vector of a radar model with 12 receive elements, each receiving 21 pulses and 17

fast-frequency samples per pulse. The 12 receive elements are in a planar array with

four elements in along-track by three elements in cross-track. Figure 4.7 (b) also

shows a close-up view of the center of the synthetic sensor array clearly showing the

sensor locations for the all 12 receiver elements at t = 0 and Δ! = 0.

In the eigensensor scenario presented in Figure 4.7, there is a distinct difference

in the contributions of the spatial locations of the receivers in cross track and along

track to the synthetic array locations. Because rx ≈ vt in (4.26), there are clearly

more unique along-track positions of the synthetic sensors than just the 21 locations

due to the slow-time pulses. Observing the four marker styles in effective along track

in Figure 4.7, it is hard to distinguish the 21 slow-time pulses for each along-track

receiver location. In contrast, −ℎ
2ry
R2

0

+
ℎy0rz
R2

0

≪ 2y0Δ!

!0
in (4.27), so the relative

separation of the cross-track receiver locations in the synthetic array location is much

smaller than the fast-frequency separation. Therefore, each apparent synthetic array

location in Figure 4.7 effectively overlap for all three cross-track receiver elements

for a given Δ!, and effective along-track synthetic sensor location that cannot be

distinguished at the resolution of the figure. This confirmed by the difference of

six orders-of-magnitude between the scales of the ordinates of plots (a) and (b) of

Figure 4.7.

4.2.2 Ambiguity and Resolution

Using the two eigensensor coordinates in place of the five-dimensional measure-

ment parameters, the radar model may be reorganized into the two eigensensor di-

mensions. This reorganization enables easier subaperturing of SAR data for multilook
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Figure 4.7. Synthetic array sensor locations for a receive array of 12
elements in a 4x3 planar array. The 4 distinct along-track receiver loca-
tions are denoted by the different symbols (a) full synthetic sensor array
(b) close-up view showing effect of receiver location in 12-element planar
receiver array
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processing with the goal improving the ambiguity function as compared to other sub-

aperturing techniques. Two conventional subaperturing approaches are mentioned

in Section 6.5 of Cumming and Wong [77], and these approaches are presented and

compared to the eigensensor subaperture approach.

Azimuth Subapertures SAR systems typically have better resolution in azimuth

than range, so looks are most often taken from the azimuth spectrum using fixed

bandwidth bandpass filters. The bandwidth of the bandpass filters depends on the

desired azimuth resolution of the resulting multilook image. Cumming and Wong [77]

detail azimuth look extraction, detection, and summation. The azimuth subapertur-

ing technique used in this research is accomplished differently than in Cumming and

Wong [77] with the same desired effect. The desired effect is better estimation accu-

racy, in the form of reduced speckle, at the expense of reduced azimuth resolution.

Azimuth subaperturing is accomplished by selecting all the measurements from

sequential slow-time increments for each subaperture. Partitioning the measurements

in slow-time increments shortens the timewidth of each subaperture, when compared

to the full measurement vector. The decreased timewidth effectively increases the

Doppler beamwidth reducing the Doppler resolution.

Each azimuth subaperture is then SAR processed, and all the resulting SAR im-

ages are incoherently averaged, as described in Section 4.1.5. For a single receive

element, Figure 4.9 (a) shows where the synthetic array sensor locations are for four

azimuth subapertures. Figure 4.9 (b) shows the ambiguity plot for 64 azimuth sub-

apertures for a resolution cell near the center of a 32x32 scene. As expected, the

near-center resolution cell is clearly ambiguous with the other resolution cells at the

same azimuth, or along-track location.
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Figure 4.8. Synthetic sensor array locations for 4 azimuth subapertures
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Figure 4.9. Azimuth subapertures (a) synthetic sensor array locations
for 4 azimuth subapertures (b) ambiguity plot for 64 azimuth subaper-
tures
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Range Subapertures Similarly, the radar model may be subapertured in range by

selecting the measurements for each subaperture based on fast-frequency sampling.

Partitioning the measurements according to fast frequency reduces the fast-frequency

bandwidth of each subaperture, as compared to the full measurement vector. The

reduced fast-frequency bandwidth results in an increased range beamwidth and cor-

responding reduction in range resolution.

Figure 4.10 (a) shows where the synthetic array sensor locations are for four range

subapertures. Figure 4.10 (b) shows the resulting ambiguity plot for the near-center

resolution cell of the same 32x32 scene. As expected, the center resolution cell is

highly ambiguous with the other resolution cells at the same cross-track location.

Eigensensor Subapertures The synthetic array sensor locations for four subaper-

tures based on eigensensors are shown in Figure 4.11 (a) and ambiguity functions for

the near-center target for 64 eigensensor-based subapertures is plotted in Figure 4.11

(b). These plots reveal that subapertures based on eigensensors are a hybrid of the

azimuth and range subapertures. The eigensensor subapertures suppress ambiguities

in azimuth that are evident in the azimuth subapertures ambiguity plot, and the

ambiguities in range are suppressed, which are evident in the range subapertures am-

biguity plot. Reducing the magnitudes of the ambiguities come at the expense of a

wider mainlobe in the eigensensor subaperture ambiguity function, which results in

decreased spatial resolution in the SAR intensity plot.

Subapertures based on the eigensensor locations effectively balance the reduction

in slow-time timewidth and fast-frequency bandwidth for each subaperture, compared

with azimuth and range subapertures. The resulting subaperture beamwidth is in-

creased in Doppler and range, respectively, thereby reducing the spatial resolution,

with respect to using the entire measurement vector.
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Figure 4.10. Azimuth subapertures (a) synthetic sensor array locations
for 4 range subapertures (b) ambiguity plot for 64 range subapertures
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Figure 4.11. Eigensensor subapertures (a) synthetic sensor array loca-
tions for 4 eigensensor subapertures (b) ambiguity plot for 64 eigensensor
subapertures
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To further smooth the ambiguity function, the nonoverlapping rectangular sub-

apertures in Figure 4.11 (a) may be redefined based on a normalized radius from the

subaperture center. Figures 4.12 and 4.12 illustrate this circular eigensensor subaper-

ture technique that will be used throughout the rest of this document.

An important observation is that a closely-spaced uniform receiver array results

in redundant eigensensors. This becomes important in SAR imaging, because only

one receiver is necessary to achieve the full, unambiguous resolution possible. The

redundant measurements may be used to integrate out the effect of noise.

4.2.3 Under-Determined Estimation

Partitioning a measurement vector and corresponding array manifold into sub-

apertures comes with a computional cost. If there are more unknowns (scattering

coefficients to be estimated) than equations (measurements in a subaperture), then

the system becomes underdetermined.

Recalling the space-time subaperture example in (4.16)–(4.18), we define the gen-

eral subaperture equations to be

d =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1

d2

...

dLs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P1

P2

...

PLs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n1

n2

...

nLs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.28)

where Ls is the number of subapertures. For a given subaperture l, the corresponding
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Figure 4.12. Synthetic sensor array locations (a) 2 of 4 circular eigen-
sensor subapertures, (b) other 2 of 4 circular eigensensor subapertures
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measurement vector, array manifold, and noise vector become

dl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1

d2
...

dMs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Pl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1,1 �1,2 ⋅ ⋅ ⋅ �1,Nt

�2,1 �2,2 �1,Nt

...
. . .

...

�Ms,1 ⋅ ⋅ ⋅ �Ms,Nt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, nl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n1

n2

...

nMs

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.29)

where Ms is the number of measurements in a subaperture.

If Ms < Nt, then the system is under determined. Referring to the uniqueness

theorem, Haykin [64], in Section 8.7 states that underdetermined systems have an

infinite number of solutions. Specifically, this problem may be illustrated with the

maximum likelihood estimator. Recall the maximum likelihood estimator (3.12),

where the data covariance matrix is approximated as

Rd = PPH. (4.30)

According to the uniqueness theorem, a matrix AAH is invertible if and only if

the matrix A has independent columns. A necessary, but not sufficient condition for

A to have independent columns is A must have at least as many rows as columns.

An under-determined, or ill-posed, matrix does not meet the uniqueness criteria, thus

for small subaperture sizes when Ms < Nt, the multilook SAR problem is underde-

termined.

There are many approaches to solving under-determined systems, including regu-

larization and using different bases, such as wavelets and compressive sensing. Since

Ms < Nt for small subaperture sizes, representing the scattering scene with fewer

than Ms values is desired. In theory, this problem is tailor-made for either wavelets

or compressive sensing, as both attempt to represent a large data set with fewer
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bases spanning the same subspace as the original data. However, the following dis-

cussions detail why these two classes of approaches are not the panacea hoped for,

when applied to multiresolution, multilook SAR using a single complex measurement

vector.

4.2.3.1 Wavelets and Filter Banks

As discussed in Section 3.3, wavelets and filter banks are extensively used in image

compression. The multiple resolution structure of the DWT can be easily recognized.

However, challenges arise when wavelets are applied to complex data. Specifically,

when a lowpass filter is applied to zero-mean, complex Gaussian data, such as the

scattering coefficient vector , the result approaches zero.

A tutorial by Selesnick, Baraniuk, and Kingsbury [78] describes the dual-tree com-

plex wavelet transform (DT-CWT) and its usefulness for applications including com-

plex data. The multidimensional DT-CWT is nearly shift-invariant, and directionally

selective in two and higher dimensions. However, the DT-ℂWT is four-times redun-

dant, as compared to the DWT, for two-dimensional, complex data. Although the

DT-ℂWT is nonseparable, the redundancy may be thought of as two DWTs for each

dimension of data, one DWT for the real part of the transform and one DWT for the

imaginary part. Additionally, while the DT-ℂWT approach results in perfect recon-

struction, multiresolution is not practicable for zero-mean, complex Gaussian data.

The random phase variation in the scattering coefficient matrix  results in most of

the information being represented by the fine scale filter coefficients. Therefore, only

the finest spatial resolution filter bank results in a useful image reconstruction, which

eliminates the desired reduction in computational complexity desired.

102



4.2.3.2 Compressive Sensing

Compressive sensing is an active research area, which attempts to capture and

represent compressible signals at rates well below the Nyquist rate. The state vector is

assumed (or known) to be sparse; and therefore, the signal is considered compressible.

Baraniuk’s lecture notes [79] and the references therein provide an overview of the

compressive sensing concept. Baraniuk and Steeghs [80] apply compressive sensing

to radar imaging with the purpose of eliminating the need for pulse compression at

the receiver, and reducing the required analog-to-digital converter bandwidth.

Drawing from Baraniuk and Steeghs [80] and using the radar model description

in (3.1), the signal d is sparsely respresentable if there exists a sparsity basis {�i}

that provides a K -sparse representation of d; that is

d =
Nt
∑

i=1

i�i =
K
∑

k=1

(ik)�k (4.31)

where d is a linear combination of K basis vectors chosen from {�i}, and {ik} are

the indices of those vectors. The scattering (weighting) coefficients {(ik)} then

become the new state vector to be estimated, and all other i are assumed to be

zero. Compressive sensing then measures and encodes M < Nt linear projections

y(m) = ⟨d,�T
m⟩, where M = O(K log(Nt/K)). O(⋅) means on the order of, and ⟨⋅, ⋅⟩

represents the inner product of two vectors. In matrix notation, the new measurement

vector is

y = Φd. (4.32)

Baraniuk and Steeghs [80] state that even though M < Nt and recovering the

original measurement vector d from y is ill-posed, in general, if the matrix ΦP has

the restricted isometry property, according to compressive sensing theory it is pos-
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sible to recover the K largest i’s from y. Candes and Tao [81] show that if a real

signal is compressible, then it is possible to very accurately reconstruct that signal

using a small number of random measurements by solving a simple linear program.

Chen, Donoho, and Saunders [82] describe basis pursuit as a concept which solves

min ∥�∥1 such that Φ� = s. Linear programs, such as simplex or interior methods

are necessary to solve basis pursuit problems. Greedy algorithms, such as orthogo-

nal matching pursuit (OMP) and variations of OMP, for example, [83–85], are also

popular approaches to reconstructing compressible signals.

Most recently, Herman and Strohmer [86] show in some detail for a one-dimensional,

single-pulse, farfield radar system, that under certain conditions compressed sensing

radar can achieve better target resolution than classical radar. However, in addition

to the computational burden presented by compressive sensing, the premise of com-

pressive sensing does not match the needs of the multilook SAR problem presented

in this chapter.

Compressive sensing assumes the state vector of a discrete, linear model is sparse.

However, the premise of using multiple resolutions to estimate the expected clutter

spectrum for GMTI is that the scattering statistics of the clutter scene are unknown.

Using a low spatial resolution estimate presupposes that the scattering statistics have

a high degree of uniformity throughout the scene. Rather than assuming only a

few scatterers dominate the scene, as compressive sensing assumes, the scattering

intensity (not the scattering coefficients themselves) may be represented by only a

few values. Therefore, the set of bases representing the scattering function of the

scene may not be reduced via compressive sensing.
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4.2.3.3 Regularizing the Iterative Estimator

Regularizing a matrix, also called diagonal loading, eliminates singularities ren-

dering the matrix invertible. As applied to the RLS estimator with unity exponential

weighting factor (and the iterative MMSE) presented in 3.2, the term diagonal load-

ing results from the regularization parameter 0 < � ≤ 1 being multiplied by an

identity matrix and added to the data covariance matrix before the matrix inversion.

Regularization is typically required in the RLS algorithm, because each iteration is

inherently an under-determined system. However, the underlying assumption is that

the underlying system is over determined. In other words, RLS assumes that the total

amount of data observed by all the recursions are more than the number of unknowns.

Including the regularization is equivalent to relaxing the high SNR assumption made

by RLS or assuming a lower SNR (larger �2
n in the case of iterative MMSE).

Given that small subapertures will contain less data than unknowns, an iterative

process may be regularized more heavily to account for the underlying estimation

problem being under determined. In the case of the iterative MMSE estimator, the

regularized gain (3.9), would then be

Gk+1 = R̂kP
H
k+1

(

Pk+1R̂kP
H
k+1 +Rn + �I

)−1
, (4.33)

where the regularization factor is large (� ≈ 1) due because of the under-determined

underlying estimation problem.

4.2.4 Matched Filtering

The goal is multiple radiometric resolutions of the clutter covariance matrix esti-

mate for the GMTI processor. Multilook SAR imagery has been determined to pro-
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vide those estimates, at the expense of spatial resolution. Although a much smaller

basis set via the DWT or compressive sensing would have been convenient, neither

of those approaches are valid to achieve multilook SAR images at different resolu-

tions, given one measurement vector. Therefore, two options remain, (i) estimate

the entire scattering coefficient vector for each resolution, or (ii) estimate a subset of

the scattering coefficient vector, where the size of the subset depends on the size of

subapertures used to calculate the multilook SAR image.

Estimating the entire scattering coefficient vector  for each subaperture is straight-

forward, although ill-posed for small subaperture sizes. As discussed in Section 3.2,

the back projection method is a technique that is a further simplification of the iter-

ative MMSE estimator (3.4), in that it assumes the nonGaussian interference, which

is clutter in the case of the radar model, is uncorrelated. The matched filter is nonit-

erative back projection. The data covariance matrix to be inverted in (3.4) is then an

identity matrix and (3.4) reduces to (3.15), WMF = P, which leads to the matched

filter estimate:

̂MF = PHd. (4.34)

Matched filtering is much simpler computationally than either MMSE or max-

imum likelihood, because only one Hermitian transpose is required as opposed to

a multiple matrix operations, including a matrix inverse. While MMSE does, by

definition, result in lower estimation errors for properly determined systems, under-

determined systems do not have the same MMSE guarantee. For that reason, and

the radical difference in computation costs, multilook SAR images estimated using

the back projection method, iterative MMSE, and RLS are compared in this research

in Chapter 6.
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Chapter 5

Multiple Resolution GMTI

The intent of this chapter is to provide rationale for and an approach to calculat-

ing and exploiting multiple GMTI detection coefficients from a single measurement

vector. Each detection coefficient corresponds to a detection decision based on a min-

imum variance method (MVM) estimator using a different whitening filter. These

whitening filters vary based on the spatial resolution of the estimated clutter spec-

trum in the form of a multilook, intensity-squared SAR image, as discussed in Chapter

4. The hypothesis is that using more than one resolution of the clutter spectrum to

estimate the interference covariance matrix will improve GMTI performance, as com-

pared to STAP using sample matrix inversion (SMI). SMI STAP is a popular GMTI

approach that requires a large amount of secondary data and assumes the clutter

statistics are homogeneous in range, which is often not a valid assumption.

There are many structured covariance matrix GMTI techniques, as addressed in

Section 2.2.5, and many ways to calculate multiple resolutions of the SAR image.

Chapter 4 presented an approach that balances the computational burden of calcu-

lating the multiple SAR image resolutions with estimation accuracy. For proof-of-

concept purposes, the GMTI approach in this chapter is the MVM estimator presented

in Section 2.2. Modifications to this technique, such as diagonal loading are possible

and would likely be required for an operational system to mitigate errors in the radar

response vectors, as noted by Guerci [40]. Those modifications are outside the scope
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of this research.

The detection scheme is not the focus of this research, so a Bayesian threshold

detector, as described in Chapter 6 of Kay [87] will be used to compare the proposed

approach to STAP. A detection coefficient for each resolution of the multilook SAR

image used to estimate the scattering covariance matrix will be placed in a vector.

Since the optimum spatial resolution of the estimated clutter spectrum necessary to

effectively mitigate its effect on the data is unknown, a simple fusion algorithm will

be used to make the final detection decision.

5.1 Estimating the Interference Covariance Matrix

Recalling the optimum processor (2.23), Section 2.2 claimed that how the interfer-

ence covariance matrix (2.24) is estimated separates the many approaches to GMTI.

While that is a true statement, estimating the whitening filter, in the form of the

inverse of the interference covariance matrix, is more important than estimating the

interference covariance matrix itself. In other words, estimating the inverse is not the

same as inverting the estimate.

This section compares how well sample matrix inversion (SMI) and the different

approaches to estimating the interference covariance matrix presented in Chapter 4

estimate the inverse of the interference covariance matrix. The comparison is accom-

plished by analyzing the eigenspectra of the inverse of the clairvoyant interference

covariance matrix and inverses of the estimated interference covariance matrices.

The eigenvectors of the inverse clairvoyant interference matrix are used for com-

parison purposes. In general, for any given matrix A, the matrix of eigenvectors V

and the matrix D, which is a diagonal matrix with the eigenvalues along the diagonal,

108



of A are given by

AV = VD. (5.1)

The eigenspectrum of another matrix B may be compared to the eigenspectrum of

A for the subspace of B that is spanned by the eigenvectors of A. This is accomplished

by

D̂ = VH BV, (5.2)

where D̂ is a diagonal matrix with the eigenvalues of the subspace of B spanned by

the eigenvectors of A.

This approach to eigenanalysis can be used to compare clairvoyant and estimated

interference covariance matrices and inverse interference covariance matrices. In these

cases, A would be the clairvoyant matrix and B would be the estimated matrix.

5.1.1 Heterogeneous Clutter and the Interference Covariance Matrix

Two scenes with very different scattering eigenspectra are compared in Figure 5.1.

For this comparison, A in (5.1) is the interference covariance matrix with the expected

scattering spectrum composing the diagonal of the scattering covariance matrix R in

(2.32). The homogeneous, white-Gaussian scene and the road scene are quite different,

by design. The resulting eigenspectra for both scenes are shown in Figure 5.1. As

expected, the homogeneous scene has a flat spectrum due to the white-Gaussian noise

(WGN) characteristics of the clutter scattering. The eigenspectrum of the road scene

has more structure due to different scattering characteristics within the range-of-

interest. As a note, the signal-to-clutter ratio (SCR) of the measurements for both

scenes was 20 dB, thus the floor of both eigenspectra was not zero, which would

correspond to an infinite SCR.
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Figure 5.1. Eigenspectra of the expected clutter covariance matrices
for range 13 of simulated homogeneous, white-Gaussian scene and simu-
lated road scene

5.1.2 Moving Target and the Interference Covariance Estimate

A moving target whose velocity is low enough to be Doppler ambiguous with a

clutter resolution cell is termed an endoclutter moving target, as opposed to an ex-

oclutter moving target, which is not Doppler ambiguous with a resolution cell. In

general, endoclutter targets are more difficult to detect than exoclutter targets, be-

cause their energy exists within the clutter subspace of a receiver. The existence

of moving energy within the clutter subspace of the eigenspectrum is shown in Fig-

ure 5.2, which illustrates this concept using an endoclutter moving target in a homo-

geneous, unit-variance, white-Gaussian scene. The plots focus on the clutter subspace

of the eigenspectra of clairvoyantly estimated RI with and without a moving target of
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three different magnitudes. Figure 5.2 illustrates the eigenspectrum of an endoclutter

mover, as opposed to an exoclutter moving target, whose response would result in

an eigenspectrum with nonzero eigenvalues (larger than the noise eigenvalues) in the

noise subspace.

Figure 5.3 illustrates the same concept using an endoclutter moving target in the

same homogeneous, unit-variance white-Gaussian scene, but the interference covari-

ance matrix is estimated for three range bins. Consequently, the radar consists of

three receivers, thus the three distinct peaks corresponding to the contribution of the

moving target to the eigenspectrum via the three receivers. Ideally, by inverting the

estimate of interference covariance matrix, the clutter subspace of the eigenspectrum

will be suppressed leaving the energy of the moving target to be detected. This process

is commonly called whitening the data. Figure 5.4 shows the whitened eigenspectrum

of the measurements containing energy from the moving target.

5.2 Updating the Inverted Interference Covariance Matrix

Requiring the entire interference covariance matrix to be inverted for each new

resolution estimate of the clutter spectrum could render the proposed multiresolution

GMTI approach intractable for large problems with many resolutions to be used.

However, because the scattering covariance matrix is assumed to be diagonal, the

updating process can be simplified. Using a combination of singular value decompo-

sition (SVD) and eigenanalysis, the inverted interference covariance may be updated

directly using a few matrix multiplications and inverting the resulting diagonal ma-

trix.
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Figure 5.2. Comparison of eigenspectra for clairvoyantly estimated RI

with and without moving target in homogeneous, unit-variance scene, (a)
eigenspectra of clutter subspace, (b) close-up of eigenspectra of clutter
subspace
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Figure 5.3. Comparison of eigenspectra for homogeneous, unit-
variance scene with and without a 10 dB SCR moving target. (a) entire
eigenspectra, (b) close-up of clutter subspace of eigenspectra
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trix with 10 dB SCR mover after whitening with clairvoyantly estimated
interference only covariance matrix

Recalling (2.24) as the interference matrix,

RI = PRP
H +Rn. (5.3)

Taking the SVD of P,

P = USVH (5.4)

By definition, the SVD matrices U and V are unitary, and S is diagonal, though not

square. Substituting (5.4) into (5.3), and grouping terms,

RI = USVHR

(

USVH
)H

+Rn (5.5)

= U
(

SVHR

(

SVH
)H
)

UH +Rn
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Because S is diagonal, SVHR

(

SVH
)H

is also diagonal. Taking advantage of the

noise covariance matrix being diagonal, it may be commuted inside what is now

equivalent to the matrix of eigen values of the clutter covariance matrix, such that

RI = U
(

SVHR

(

SVH
)H

+ �2
nI
)

UH (5.6)

For convenience, let ΛI = SVHR

(

SVH
)H

+ �2
nI. Since U is unitary, inverting the

interference covariance matrix simply requires taking the inverse of ΛI , a diagonal

matrix, such that

R−1
I = UΛ−1

I UH . (5.7)

Using this approach to update the estimate of the clutter spectrum in GMTI,

the only inverse required to update the inverted interference covariance matrix R−1
I

is inverting the updated ΛI , a diagonal matrix. However, the cost computing the

singular value decomposition ofR−1
I is significant. Often the SVD approach only saves

time when many different spatial resolutions of R being used in the multiresolution

GMTI processor.

5.3 Receiver Operating Characteristic Curves

Receiver operating characteristics (ROC) curves are commonly used to assess the

quality of a communication or radar system. The curve is a function of the probability

of false alarm (PFA) and the probability of detection (PD). Recalling the GMTI

decision hypotheses (2.22), PD is the probability that, given a target exists (H1), that

a target is declared;

PD = P (H1∣H1) . (5.8)
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Similarly, PFA is the probability that, given there is no target (H0), a target is de-

clared;

PFA = P (H1∣H0) . (5.9)

In an ideal system PFA = 0, and PD = 1. However, noise and clutter prevent

ideal ROC, except for high signal-to-interference plus noise ratio (SINR) scenarios.

Figure 5.5 shows an example ROC for a 64x64 homogeneous, unit-variance scene, 0

dB SCR scenario. The PD and PFA were calculated via 373 Monte Carlo simulations,

as will be the ROC curves generated for Chapter 6.
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Figure 5.5. Example ROC curve for 373 Monte Carlo simulations of
clairvoyantly estimated RI for 64x64 WGN scene with 0 dB SCR

5.4 Accounting for Range-Spread Energy

This section discusses the advantage of using multiple range cells in the GMTI

processor for both the optimum processor and SMI STAP. The return from a target
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at a discrete range from the receiver is not limited to a discrete delay. Additionally,

range walk occurs when moving targets cross range cell boundaries with the CPI.

Accounting for range-spread energy and range walk in GMTI is possible at the cost

of increased computational complexity by including multiple range cells in the GMTI

processor. The target steering vector and beamformer must be calculated for the

ranges-of-interest. Just as traditional SMI excises the target range-of-interest and

guard ranges to account for range-spread energy, a robust detector should include

the range-of-interest and the guard ranges where the moving target energy may be

contained. Figure 5.6 shows an example of how moving target energy is spread over

range cells for a scene with 64 range cells. Ideally, the curve would be an impulse

function, yet even in this simple case of a moving point target, the concentration of

energy is clearly spread over two range cells.

5.4.1 Optimal Processor for Multiple Range Cells

The optimum GMTI processor (2.23) is general enough, in form, to accommodate

radar measurements, response vectors, and steering vectors of arbitrary length. In

general, the entire measurement vector may be used; although, processing capabilities

quickly become the limiting factor.

The size of the scattering covariance matrix (estimated by the SAR image) does

not have a large impact on the performance of the GMTI processor, as long as is

covers more ranges than the GMTI processor uses for matching. Figure 5.7 compares

using three ranges in the matching filter to using a single range. The ROC curve

resulting from using three ranges significantly outperforms the single range cases for

both scenes. It is important to note that the ROC curves resulting from using three

ranges are ideal for the three-decibel SCR scenario for both scenes.
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Figure 5.6. Squared absolute value of phase history measurements
from moving target plotted against range cells for a 64 range cell scene
(a) full 64 range cells (b) close-up of 5 range cells
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Figure 5.7. Comparison of ROC curves for the optimum GMTI pro-
cessor using measurements from one and three range cells with 3 dB and 0
dB SCRs (a) homogeneous, unit-variance scene (b) simulated road scene.
Note that the ROC curves for 3 dB SCR using 3 ranges are ideal.
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5.4.2 SMI for Multiple Range Cells

While including multiple range cells in the whitening and matching portions of

the optimum filter is straight-forward, SMI would require much more data to estimate

the interference covariance matrix for three ranges. Recalling the description of SMI

STAP in Section 2.2.4, the interference covariance matrix is estimated for one range.

Implicitly, the scene is assumed to be homogeneous. The homogeneity assumption

may be taken advantage of to estimate the interference covariance matrix for multiple

ranges. The estimate of the interference covariance matrix R̂I from (2.45) may be

inflated to further estimate the interference covariance matrix for multiple range cells.

Specifically, this may be accomplished using a Kronecker product,

R̂
(�)
I = R̂I ⊗ 1�, (5.10)

where ⊗ is the Kronecker product operator, � is the number of range cells for which

to estimate the interference covariance matrix, and 1� is a �× � matrix of ones.

Figure 5.8 exposes the limitation to using the inflated whitening filter to represent

multiple ranges. SMI estimates the interference covariance matrix well for the homo-

geneous scene, as shown in Figure 5.8 (a). However, two-thirds of the clutter subspace

corresponds to the scattering from the guard ranges. The inflated SMI estimate is

limited in rank to a single-range estimate, thus the inflated estimate does not properly

account for the unique eigenspectra from the guard ranges. This is illustrated by the

null in the SMI eigenspectrum in Figure 5.8 (b). As a result, one would not expect

SMI using three ranges to perform as well as the MVM GMTI processor using three

ranges for even a homogeneous scene.

Using this inflated interference covariance estimate approach, the interference co-
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Figure 5.8. Comparison of eigenspectra for clairvoyant and SMI es-
timated covariance matrices of 64x64 homogeneous, unit-variance scene
(a) RI estimated for one range bin using SMI (b) RI estimated for three
range bins using SMI
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variance matrix for three range cells was estimated using for two different scenes.

Each scene was used as the background for a Monte Carlo simulation for two dif-

ferent moving target SCR scenarios. Figure 5.9 contains the ROC curves for these

scenarios. Despite the rank limitation of the SMI whitening filter, the matching fil-

ter for three ranges does outperform that of the the single range. It is interesting

to observe that the SMI performance using three ranges is similar to the optimum

processor using one range in Figure 5.7.

5.5 Final Detection From Detection Vector

As stated at the beginning of the chapter, the detection algorithm is not the

focus of this research, so a Bayesian threshold detector, as described in Chapter 6 of

Kay [87] will be use. A detection coefficient resulting from using each resolution of

the multilook SAR image to estimate the scattering covariance matrix will be placed

in a vector, and a simple fusion algorithm will be used to make the final detection

decision.

Given � resolutions of the clutter spectral estimate, the resulting detection coef-

ficients �i may be organized into a vector,

� = [�1 �2 . . . ��]
† , (5.11)

where each detection coefficient is binary. Following the notation in (2.22),

�H0
= 0

�H1
= 1. (5.12)

The simplest fusion algorithm arrives at a final detection decision using a voting
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Figure 5.9. Comparison of ROC curves for the SMI STAP using mea-
surements from one and three range cells with 3 dB and 0 dB SCRs (a)
homogeneous, unit-variance scene (b) simulated road scene
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scheme, which is a simple majority decision. An odd number of elements in the

detection vector is required, and the final decision is based on the majority of the the

results. Using a voting scheme for the final decision,

Δ = round

(

1

�

�
∑

i=1

�i

)

, (5.13)

where, similar to (5.12), ΔH0
= 0, and ΔH1

= 1.

Another, slightly more complex fusion would be a consecutive scheme, which is

a slight variation on the voting scheme. In addition to the requiring a majority, the

a predetermined number of detection coefficients need to occur consecutively in the

detection vector. However, due to its simplicity and the limited number of multilook

SAR resolutions that will be used in this research, a voting scheme will be used in

this research.
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Chapter 6

Results

This chapter presents the results of the proof-of-concept approach to multireso-

lution GMTI presented in Chapter 5. The whitening filters for multiple resolutions

of the clutter scattering spectrum are calculated two ways. First, the interference

covariance matrix is estimated using multilook SAR images calculated from subaper-

tures of the measurements, as covered in Chapter 4. Second, using the approach

in Section 3.3, the same interference covariance matrix is estimated using multiple

resolutions of the discrete wavelet transform (DWT) filter bank to smooth the full

spatial resolution, single-look SAR image.

The multilook SAR and DWT approaches to estimating the interference covari-

ance matrix are compared to the conventional sample matrix inverse (SMI) technique.

SAR is an estimate of the scattering covariance matrix R in (2.34), while SMI di-

rectly estimates the interference covariance matrix RI via (2.45). Therefore, prior to

presenting the receiver operating characteristic (ROC) curves for each approach, the

SMI estimate of RI is compared to the estimate of RI using the SAR estimate of R

via (2.30). The comparison is performed through eigenanalysis of the estimates of RI

and R−1
I .

Finally, ROC curves for a simple fusion algorithm to determine the final detection

decision from a vector of detection coefficients resulting from using each resolution of

the multilook SAR image are presented.
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6.1 Experimental Design

This research presents a proof-of-concept approach to demonstrating multiresolu-

tion GMTI. For that reason, the lack of suitable measured data, and the complications

that arise from measured data, simulated long-PRI, wideband, long-CPI data were

generated and processed. This section briefly describes the computational approach

to simulating the radar model and the parameters for the Monte Carlo simulations

used to calculate the receiver operating characteristics in later sections.

6.1.1 MATLAB Radar Model

The space-time data were generated using a MATLAB radar model presented in

2.1 and more comprehensively presented in a series of unpublished papers by Stiles

[88–91]. The mathematics describe an arbitrary space-time transmit signal, target

set, and space-time receive measurements. The received measurements are related to

the target and transmit signal description via farfield radar response vectors. The

result allows for a set of complex receiver samples that accurately reflect the phase

history in the slow-time domain, and the Fourier transform of the phase history in

the fast-time domain of an arbitrary space-time radar when illuminating an arbitrary

and diverse target set.

Figure 6.1 shows the graphical user interface (GUI) to the MATLAB radar model.

Following Stiles’ mathematical description, the software model was designed to be

general. The sizes of the transmit and the receive arrays, as well as the locations of

the elements may be input directly within the GUI or loaded from a file. Likewise,

the complex clutter scattering coefficients may be randomly generated with Gaussian

or uniform PDFs or loaded from a file. The bandwidth, PRI, number of pulses,

and target spacing (physical size of the resolution cells) may be chosen by the user,
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Figure 6.1. Graphical user interface for MATLAB radar model

or the model can calculate those values based on predetermined relationships. The

output includes the data vector, array manifold, and noise vector, as well as all the

constituent parameters that may be necessary in GMTI and SAR processing, such as

positions of the array elements, stationary and moving target parameters, and clutter

and noise statistics.

6.1.2 Monte Carlo Simulations

Radar Parameters Recalling the linear, discrete radar model (2.14) with " = 0,

and explicitly calling out the clutter contribution and the contribution of a single

moving target to the measurements leads to

d = PCC + �tt + n. (6.1)
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For each Monte Carlo iteration, the clutter array manifold PC and noise vector

n were the same. The radar array consisted of one transmitter and a uniform linear

array of three receivers separated by one-half wavelength of the transmitted center

frequency. Table 6.1 contains the radar parameters for the Monte Carlo simulations.

To be computationally feasible, the parameters are not operationally realistic (e.g.,

spatial resolution of 207 meters), but are included for completeness. The parame-

ters were chosen such that the along-track and cross-track resolutions, dx and dy,

respectively were equal.

Height 10 km Scene Size 64x64
Look Angle 45deg dx, dy 207 m
Velocity 180 m/s SNR 20 dB
Frequency 10 GHz PRI 73.1 �sec
Bandwidth 1.02 MHz # Pulses 78
Samples/Pulse 75

Table 6.1. Radar parameters for Monte Carlo simulations

These radar parameters resulted in 5850 measurements per receiver per CPI, the

measurement vector d for one CPI was then 17 550 samples. The number of resolution

cells, and thus scattering coefficients in , was 4096 resulting in a 17 550×4096 array

manifold P.

Clutter Scenes Two scenes with very different eigenspectra, as defined by (2.30)

and compared in Section 5.1 were used generate the complex scattering coefficient

vector C . The first scene was a homogeneous, white-Gaussian scene with unit vari-

ance, which resulted in the complex scattering coefficient vector having a complex

Gaussian distribution with zero-mean and unit variance, i.e., C ∼ CN(0, 1). The

second scene was a structured clutter scene illustrated in Figure 3.10. In that scene,

the variances changed between regions, but the scattering coefficients still had a com-
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plex Gaussian distribution with zero mean, i.e., Ci
∼ CN(0, �2

i ), where {i} is the

set of indices for the different regions in the scene. Figure 6.2 shows the statistical

realizations for the clutter spectra used in the Monte Carlo simulations. The clutter

spectra are in the form of intensity-squared, SAR images.

Moving Target Parameters The radar response vector for each iteration of the

Monte Carlo simulation was generated with a random location within the illuminated

scene and a random radial velocity to ensure the energy was endoclutter. Endoclutter

is the more challenging case, since the moving target’s radar response vector for one

receiver is within the span of the clutter subspace for that same receiver. Figure 5.3

illustrates the eigenspectrum of an endoclutter mover, as opposed to an exoclutter

moving target, whose response would result in an eigenspectrum with nonzero eigen-

values to the right of index 200.

A new moving target location for each iteration of the Monte Carlo simulation

varied uniformly between the minimum and maximum ranges and cross ranges. The

minimum and maximum ranges and cross ranges were set to be two range bins and

cross-range bins, respectively, inside the edges of the scene. The radial velocity of the

moving target was also randomly generated. To ensure each moving target’s radial

velocity resulted in endoclutter energy, the radial velocity was set to have a uniform

distribution with a mean corresponding to just less than half the Doppler bandwidth,

and the standard deviation equal to of half the mean, i.e., vt ∼ U(�v, �v), where

�v ⪅ BD�
4

, where BD is the Doppler bandwidth of the system, and � is the wavelength

of the center frequency of the transmitted waveform. Additionally, �v ≈ �v/2. The

radial velocity of the target exceeded the Doppler resolution and was within the

Doppler bandwidth of the system.

For the radar parameters in Table 6.1, the Doppler bandwidth BD = 12 kHz,
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Figure 6.2. Intensity-squared realizations of 64x64 demonstration
scenes (a) homogeneous, unit-variance, white-Gaussian scene (b) road
scene
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which leads to an unambiguous radial velocity for the radar of vunambig =
BD�
2

= ±90

m/s. Then �v was set to be 40 m/s for moving targets behind broadside and -40 m/s

for targets ahead of broadside. The standard deviation of the radial velocities for the

moving target �v = ∣�v∣
4

= 10 m/s. These values ensured all moving target energy

was endoclutter.

The same moving target parameters were used for each iteration of the Monte

Carlo simulation. Figure 6.3 contains a two-dimensional histogram of the physical lo-

cations and a one-dimensional histogram of the radial velocities of the moving targets.

6.2 GMTI Using Multilook SAR Images as Estimate of R

As presented in Chapters 4 and 5, multilook SAR may provide a computationally

tractable approach to estimating the clutter spectra for GMTI. This section presents

the results of investigating this hypothesis. First, the performance of the multilook

SAR is presented, then the eigenspectra of the estimated interference covariance ma-

trices using multilook SAR images is compared to those calculated clairvoyantly.

6.2.1 Multilook SAR Images

The following results are multilook SAR images generated using measurements

from only one receiver. In general, the eigensensor approach to multilook SAR pre-

sented in Chapter 4 applies to arbitrarily-spaced receiver arrays. In fact, power of

the eigensensor approach is seen when the receiver array is not uniformly spaced, as

observed in Section 4.2.2. Assuming the scatterers are in the farfield, when using a

closely-spaced, uniform linear array, the measurements from receiver-to-receiver only

differ by a linear phase shift, dependent only on the interelement spacing. The lin-
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Figure 6.3. Histograms of the locations and radial velocities of the
moving targets for each of 373 iterations of the Monte Carlo simulations
(a) Locations within the 64x64 resolution cell scene (b) Radial velocities
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ear phase shift results in the rows of the array manifold corresponding to different

receivers being linearly dependent. Thus the row rank of the array manifold P is de-

pendent on only one receiver. As discussed in Section 4.2.3, multilook SAR processing

is an inherently under-determined process when using many looks.

For the radar parameters in Table 6.1 the measurement vector for one receiver

was 5850 samples. The multilook SAR subapertures for were chosen to be square

factors of two, such that 4, 256, and 1024 subapertures were used to calculate the

multilook SAR images. These numbers of subapertures led to subaperture sizes of

about 1500, 25, and 5 samples per subaperture, respectively. Since the number of

scattering coefficients to be estimated was 4096, each of the subaperture sizes resulted

an under-determined system. Including measurements from all receivers would result

in an increase in the number of measurements per subaperture, without increasing

the rank of the system or accuracy of the estimate.

The multilook SAR images in Figures 6.4 and 6.5 show multilook, intensity-

squared SAR images with decreasing spatial resolution. The complex scattering coef-

ficients were estimated using the matched filter in plot (a) and maximum likelihood in

plot (b) of each figure. The measurements were from the homogeneous, unit-variance,

white-Gaussian scene in Figure 6.2 (a) and contained no moving target. Similarly,

Figures 6.6 and 6.7 show multilook, intensity-squared SAR images with decreasing

spatial resolution. The measurements used to estimate these images were from the

road scene in Figure 6.2 (b) with no moving target.

No effort to zero pad the subapertured data was made, resulting in the picture

frame effect on the images estimated with maximum likelihood. This effect and

the effect of bias in both the matched-filter estimates and the maximum-likelihood

estimates due to the Welch power spectrum estimate (PSE) technique are noticeable
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Figure 6.4. 16-look, 64x64 SAR image of homogeneous, unit-variance
Gaussian scene (a) estimated using maximum likelihood (b) estimated
using matched filter
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Figure 6.5. 1024-look, 64x64 SAR image of homogeneous, unit-
variance Gaussian scene (a) estimated using maximum likelihood (b) es-
timated using matched filter
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Figure 6.6. 16-look, 64x64 SAR image of simulated road scene (a)
estimated using maximum likelihood, (b) estimated using matched filter

136



1024−Look PSE of 64x64 Road Scene
Estimated Using ML, No Mover

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

1024−Look PSE of 64x64 Road Scene
Estimated Using MF, No Mover

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 6.7. 1024-look, 64x64 SAR image of simulated road scene (a)
estimated using maximum likelihood (b) estimated using matched filter
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in the multilook SAR images in Figures 6.4 and 6.7.

6.2.2 Interference Covariance Matrix Estimates

The shortcomings of the Welch PSE technique discussed above are easily recog-

nized in the one-dimensional eigenspectra of the estimates of the interference covari-

ance matrices in Figure 6.8. The picture frame in the maximum-likelihood estimates

result in spikes in the eigenspectra of the estimates of the interference covariance ma-

trices and nulls in the whitening filters, as seen in Figure 6.9. The bias may be seen in

the eigenanalyses of the interference covariance estimate using maximum likelihood

in Figure 6.8 and its inverse in Figure 6.9. The bias appears even more pronounced

in the matched filter estimates, as shown in Figure 6.9.

The bias in the interference covariance matrix estimates calculated from the mul-

tilook SAR images results in under-suppressed clutter in the whitening filter out-

put. This is particularly true for the estimated whitening filters for the homogeneous

scenes, as evidenced by Figures 6.9 (a) and 6.10 (a), although the maximum likeli-

hood estimate bias is less than that of the matched filter. From these results, one

would expect better GMTI performance from the multilook SAR images estimated

using maximum likelihood than those estimated using the matched filter.

6.3 GMTI Using DWT-Smoothed SAR Images as Estimate of R

Smoothing SAR images by taking the low-scale filter outputs from a multistage

Haar discrete wavelet transform (DWT) filter bank was discussed in Section 3.3. In

Section 4.2.3.1, filter banks were determined unsuitable to provide a reduced basis

set for the complex radar model because of the uniform random phase distribution of

the radar response vectors and the scattering coefficients. However, filter banks are
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Figure 6.8. Close-up of the clutter subspace of the eigenspectra of the
clairvoyant and ML estimated RI (a) homogeneous, unit-variance scene
(b) simulated road scene
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Figure 6.9. Close-up of the clutter subspace of the eigenspectra of the
clairvoyant and ML estimated R−1

I (a) homogeneous, unit-variance scene
(b) simulated road scene
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Figure 6.10. Close-up of the clutter subspace of the eigenspectra of
the clairvoyant and MF estimated R−1

I (a) homogeneous, unit-variance
scene, (b) simulated road scene
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widely used in image compression and smoothing.

Beginning with a full-resolution, single-look image, SAR images at multiple reso-

lutions may be calculated, as shown in Figures 3.8 and 3.9. As shown in Figure 6.11,

using these images in estimating the clutter spectrum in (2.30) result in good esti-

mates of the inverse interference covariance matrix. These estimates of the inverse

interference covariance matrix have less error than the estimates using multilook SAR,

particularly for the homogeneous, unit-variance, white-Gaussian scene, as shown in

Figure 6.11 (a).

Initially, one would think that a significant drawback to the DWT approach is the

full-resolution image must first be calculated and then filtered. However, the Monte

Carlo simulations to generate the multiple resolutions of the scattering spectra esti-

mates in this research calculated the DWT-smoothed images much faster than the

multilook SAR images. For the Monte Carlo simulations of 373 iterations, calculat-

ing the full-resolution, single-look SAR image and smoothing it with three different

resolutions of DWT took around 14 minutes on a Quad Core, 3.0 GHz Xeon with

32 GB of RAM. The same scenario took almost 6.5 hours to estimate three differ-

ent resolutions of multilook SAR images using the matched filter and 17 hours using

maximum likelihood.

6.4 SMI Estimates of Interference Covariance Matrix

SMI STAP is computationally efficient compared to the proposed multiresolution

GMTI approach. However, as discussed in Section 2.2.4, STAP using SMI assumes

the scattering from the range-of-interest and the secondary ranges are homogeneous.

This section demonstrates the effects of the homogeneous scattering assumption on

estimating the interference covariance matrix for the same scenarios and radar pa-
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Figure 6.11. Comparison of eigenspectra for inverse covariance ma-
trices estimated using back projection and intensity-squared image
smoothed using multiple resolutions of Haar DWT

143



rameters presented in Section 6.1.

Section 5.4.2 discussed the impact of inflating the interference covariance matrix

estimate for one range to represent three ranges in the whitening filter (2.23). Fig-

ure 5.8 compared eigenspectra for SMI estimated covariance matrices for one and

three ranges, verifying that the rank of the whitening filter is not increased by in-

flating the estimate of RI for one range to three ranges. Figures 6.12 and 6.13 show

eigenanalyses of the inverse of the estimated interference covariance matrices for one

and three range bins for a homogeneous scene and a heterogeneous scene (the road

scene), respectively. These figures illustrate that the rank of the whitening filter for

more than one range is limited to the rank of the whitening filter estimated for a single

range. The subspace of the clutter not estimated by the single-range SMI estimate

of RI amounts to the clutter subspace of the two guard ranges, as defined in Section

2.2.4. The clutter energy from these guard ranges is not suppressed by the whitening

filter and will likely degrade the GMTI performance. The plots in Figures 6.12 and

6.13 focus on the clutter subspace. Notice the difference in the eigenvalue indices

between the single- and three-range estimates.

Figure 6.13 reinforces the observation in Section 2.2.4, that the eigenspectra of

the SMI-estimated interference covariance matrices for structured clutter is spectrally

white. Additionally, the eigenspectra may be biased by the measurements from the

secondary ranges, this is especially evident in differences between the plots in Fig-

ure 2.11 and discussed in Section 2.2.4.

6.5 Effect of SAR Resolution on GMTI Performance

This chapter has demonstrated that using SAR images as estimates of the clutter

spectrum in the in the optimum whitening filter can result in better estimates of the
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Figure 6.12. Eigenanalysis of road clutter subspace for homogeneous,
unit-variance R−1

I (a) estimated for one range bin (b) estimated for three
range bins
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Figure 6.13. Eigenanalysis of road clutter subspace for SMI estimated
R−1

I (a) estimated for one range bin (b) estimated for three range bins
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interference covariance matrix than the conventional SMI technique. This section

discusses the ROC curves for moving targets with different scattering magnitudes,

which is proportional to the radar cross section (RCS) of the moving target. As

described in Section 6.1, the only differences between the scenarios in the following

figures are the two scattering coefficient vectors , one for the homogeneous, unit

variance scene, and one for the simulated road scene; and the magnitude of the

scattering coefficient of the moving target for each Monte Carlo run. The magnitude

of the moving target’s scattering coefficient is defined by the SCR of the scenario.

The ROC curves for GMTI using multilook SAR to estimate the scattering covari-

ance matrix are included in Appendix A. It is significant to notice that the scenarios

presented all have low SCR. The ROC curves were ideal in higher SCR scenarios for

the MVM GMTI approach using SAR images, as they are ideal for the 3 dB SCR

scenarios presented in Figures A.4 and A.5.

Figures 6.14-6.16 focus on the knee of the ROC curves for the zero decibel SCR

scenario for both clutter scenes. Figure 6.14 compares the the ROC curves resulting

from using maximum likelihood to estimate the multilook SAR images for the homo-

geneous scene in plot (a) and the road scene in plot (b). The GMTI performance in

heterogeneous clutter in noticeably better than in the homogeneous clutter scenario.

It also appears that the coarser spatial resolution multilook SAR estimate (1024-look

SAR) resulted in slightly better performance in homogeneous scene than the finer

spatial resolution multilook SAR estimates. The opposite is true for the road scene,

which supports the original hypothesis that the desired spatial resolution estimate of

the clutter spectrum depends on the expected spectrum–there is not a single spatial

resolution that performs best for all scenarios.

In general, the matched filter estimate of the clutter spectrum resulted in lower
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ROC curves than the maximum likelihood ROC curves, as seen by comparing Fig-

ures 6.14 and 6.15. Interestingly, the finer spatial resolution multilook SAR estimate

(16-look SAR) resulted in better performance for both clutter scenes. Recalling Fig-

ure 6.10, the bias in the clutter spectrum of the inverse estimate of the interference

covariance matrix was less for the finer spatial resolutions.

As expected from the analysis Figure 6.11, the DWT-smoothed, single-look SAR

image resulted in ROC curves much closer to the ROC curve due to the clairvoyantly

estimated interference covariance matrix. In fact, the results for the homogeneous

scene appear to slightly outperform the clairvoyant estimator in Figure 6.11 (a). The

effect of the clutter spectrum estimate is evident in the heterogeneous scene where

the finer spatial resolution spectral estimate narrowly outperforms the coarser spatial

resolution spectral estimate in Figure 6.11 (b). The middle spatial resolution estimate

performed the worst of the three estimators, but it still outperformed all the multilook

SAR estimators.

6.6 Multiresolution GMTI Performance

The hypothesis presented in the Introduction was that low-resolution SAR images

would better estimate the clutter spectrum of homogeneous regions. Figures 6.17-

6.20 are a series of plots comparing the ROCs of the different multiresolution GMTI

approaches to each other and to SMI. In each figure, plot (a) shows the entire ROC

for the clairvoyant GMTI processor, multiresolution GMTI processor using multi-

look SAR estimated via maximum likelihood, multiresolution GMTI processor using

multilook SAR estimated via matched filter, multiresolution processor using multiple

resolutions of DWT-smoothed SAR image, and SMI. Plot (b) in each figure is a close

up of the same ROC curves in plot (a) of the same figure.
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Figure 6.14. ROCs for MVM GMTI detector using ML to estimate
multiple, multilook SAR images, SCR = 0 dB (a) homogeneous, unit-
variance scene (b) road scene
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Figure 6.15. ROCs for MVM GMTI detector using MF to estimate
multiple, multilook SAR images, SCR = 0 dB (a) homogeneous, unit-
variance scene (b) road scene
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Figure 6.16. ROCs for MVM GMTI detector using DWT-smoothed
SAR images, SCR = 0 dB (a) homogeneous, unit-variance scene (b) road
scene
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Figure 6.17. ROCs for MVM GMTI detector using voting fusion al-
gorithm for WGN scene, SCR = 0 dB (a) fusion and SMI (b) close-up of
fusion
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Figure 6.18. ROCs for MVM GMTI detector using voting fusion al-
gorithm for WGN scene, SCR = -3 dB (a) fusion and SMI (b) close-up
of fusion
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Figure 6.19. ROCs for MVM GMTI detector using voting fusion al-
gorithm for road scene, SCR = 0 dB (a) fusion and SMI, (b) close-up of
fusion
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Figure 6.20. ROCs for MVM GMTI detector using voting fusion al-
gorithm for road scene, SCR = -3 dB (a) fusion and SMI, (b) close-up of
fusion
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Chapter 7

Conclusions

The proposed approach to multiresolution ground moving target indication (GMTI)

performs much better than conventional sample matrix inversion (SMI) space-time

adaptive processing (STAP) at the expense of computational complexity. The mul-

tiresolution aspect of the multiresolution GMTI comes from multiple resolutions of

an intensity-squared SAR image used to estimate the clutter scattering spectrum in

the optimal GMTI processor (2.23).

Two approaches to calculating the different resolutions of the SAR image were

investigated. The first approach used multilook SAR to increase the estimation ac-

curacy of the clutter scattering spectrum at the expense of spatial resolution. The

multilook SAR images were calculated from individual segments of the measurement

vector partitioned using synthetic sensor locations. The size and number of the seg-

ments determined the spatial resolution and estimation accuracy of the images.

The second approach to calculating the different resolutions of the SAR image

was smoothing a single-look SAR image using multiple stages of a Haar wavelet dis-

crete wavelet transform (DWT). The DWT smoothed single-look SAR images better

estimated the scattering covariance matrix than the multilook SAR images, and thus

resulted in better GMTI performance. Additionally, the DWT smoothed image ap-

proach was more than an order-of-magnitude faster than the fastest multilook SAR

approach investigated.
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The multiresolution SAR approaches to estimating the clutter spectrum for the

optimum GMTI processor is more computationally expensive than SMI. However, the

approach produces much better receiver operating characteristics, as demonstrated

in Chapter 6. One consolation to calculating multiple SAR images is that each image

may be used in the GMTI whitening filter for potential targets at all ranges. SMI

STAP estimates a new interference covariance matrix for every new range under test.

Finally, the multiresolution approach to GMTI is robust, in that it performs better

than any single resolution GMTI processor for the homogeneous and heterogeneous

scenarios investigated. However, the computational burden of calculating individual

detection decisions for each clutter scattering spectral resolution must be considered

prior to implementation.
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Appendix A

ROC Curves From Multilook SAR GMTI
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Figure A.1. ROCs for MVM GMTI detector using ML to estimate
multiple multilook SAR images of homogeneous, unit-variance scene (a)
SCR = 3 dB, (b) SCR = 0 dB. Note: All 3 dB SCR ML ROCs are ideal
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Figure A.2. ROCs for MVM GMTI detector using ML to estimate
multiple multilook SAR images of road scene (a) SCR = 3 dB, (b) SCR
= 0 dB. Note: All 3 dB SCR ML ROCs are ideal
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Figure A.3. ROCs for MVM GMTI detector using ML to estimate
multiple multilook SAR images, SCR = -3 dB (a) WGN scene, (b) road
scene
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Figure A.4. ROCs for MVM GMTI detector using MF to estimate
multiple multilook SAR images of homogeneous, unit-variance scene (a)
SCR = 3 dB, (b) SCR = 0 dB. Note: All 3 dB SCR MF ROCs are ideal
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Figure A.5. ROCs for MVM GMTI detector using MF to estimate
multiple multilook SAR images of road scene (a) SCR = 3 dB, (b) SCR
= 0 dB. Note: All 3 dB SCR MF ROCs are ideal
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Figure A.6. ROCs for MVM GMTI detector using MF to estimate
multiple multilook SAR images, SCR = -3 dB (a) WGN scene, (b) road
scene
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Figure A.7. ROCs for MVM GMTI detector using DWT-smoothed
SAR images, SCR = 3 dB (a) WGN scene, (b) road scene. Note: All
ROCs are ideal
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Figure A.8. ROCs for MVM GMTI detector using DWT-smoothed
SAR images, SCR = 0 dB (a) WGN scene, (b) road scene
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Figure A.9. ROCs for MVM GMTI detector using DWT-smoothed
SAR images, SCR = -3 dB (a) WGN scene, (b) road scene
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Appendix B

ROC Curves From Voting Algorithms
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(b)

Figure B.1. ROCs for MVM GMTI detector using voting fusion algo-
rithm and ML estimated multilook SAR images of homogeneous, unit-
variance scene (a) SCR = 0 dB, (b) SCR = -3 dB
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(b)

Figure B.2. ROCs for MVM GMTI detector using voting fusion algo-
rithm and MF estimated multilook SAR images of homogeneous, unit-
variance scene scene (a) SCR = 0 dB, (b) SCR = -3 dB
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(b)

Figure B.3. ROCs for MVM GMTI detector using voting fusion algo-
rithm and DWT-smoothed SAR images of homogeneous, unit-variance
scene (a) SCR = 0 dB, (b) SCR = -3 dB
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Figure B.4. ROCs for MVM GMTI detector using voting fusion algo-
rithm and ML estimated multilook SAR images of road scene (a) SCR =
0 dB, (b) SCR = -3 dB
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(b)

Figure B.5. ROCs for MVM GMTI detector using voting fusion algo-
rithm and MF estimated multilook SAR images of road scene (a) SCR =
0 dB, (b) SCR = -3 dB
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(b)

Figure B.6. ROCs for MVM GMTI detector using voting fusion algo-
rithm and DWT-smoothed SAR images of road scene (a) SCR = 0 dB,
(b) SCR = -3 dB
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