2,044 research outputs found

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    Grid simulation services for the medical community

    No full text
    The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services

    A coupled discrete adjoint method for optimal design with dynamic non-linear fluid structure interactions

    Get PDF
    Incorporating high-fidelity analysis methods in multidisciplinary design optimization necessitates efficient sensitivity evaluation, which is particularly important for time-accurate problems. This thesis presents a new discrete adjoint formulation suitable for fully coupled, non-linear, dynamic FSI problems. The solution includes time-dependent adjoint variables that arise from grid motion and chosen time integration methods for both the fluid and structural domains. Implemented as a generic multizone discrete adjoint solver for time-accurate analysis in the open-source multiphysics solver SU2, this provides a flexible framework for a wide range of applications. Design optimization of aerodynamic structures need accurate characterization of the coupled fluid-structure interactions (FSI). Incorporating high-fidelity analysis methods in the multidisciplinary design optimization (MDO) necessitates efficient sensitivity evaluation, which is particularly important for time-accurate problems. Adjoint methods are well established for sensitivity analysis when large number of design variables are needed. The use of discrete adjoint method through algorithmic differentiation enables the evaluation of sensitivities using an approximation of the Jacobian of the coupled problem, thus enabling this approach to be applied for multidisciplinary analysis. This thesis presents a new discrete adjoint formulation suitable for fully coupled, non-linear, dynamic FSI problems. A partitioned approach is considered with finite volume for the fluid and finite elements for the solid domains. The solution includes the time-dependent adjoint variables that arise from the grid motion and chosen time integration methods for both the fluid and structural domains. Implemented as a generic multizone discrete adjoint solver for timeaccurate analysis in the open-source multiphysics solver SU2, this provides a flexible framework for a wide range of applications. The partitioned FSI solver approach has been leveraged to extend the dynamic FSI capabilities to low speed flows through the introduction of a densitybased unsteady incompressible flow solver. The developed methodology and implementation are demonstrated using a range of numerical test cases. Optimal design for steady, coupled FSI problems are firstly presented before moving to the building blocks of dynamic coupled problems using single domain analysis, for both structural and fluid domains in turn. The new unsteady incompressible fluid solver, for both the primal and adjoint analysis, are verified against a range of well-known benchmark test cases, including problems with grid motion. Finally, applications of coupled dynamic problems are presented to verify both the unsteady incompressible solver for FSI as well as the successful verification of the discrete adjoint sensitivities for the transient response of a transonic compliant airfoil for a variety of both aerodynamic and structural objective functions.Open Acces

    Design and Construction Criteria of Twin Tunnel: Taking an Adverse Wind Condition Effects on Air Pollution Short Circuit at Tunnel Portals as a case

    Get PDF
    This paper aims to study the influence of the tunnel portal designs, wind conditions and ventilation rate on the amount of air pollution short circuit from one tunnel tube to the other. These effects are investigated by Computational Fluid Dynamics (CFD) code used a Large Eddy Simulation (LES) method to control air quality inside the tunnel and reduced as far as possible a short circuited (flow Recirculation) flow level. A validation of CFD code to experimental data in 1:100 scale model of the road traffic tunnel tested in wind-tunnel showed that the CFD gave satisfactory prediction of the air pollution short circuit in the vicinity of tunnel portal. The predicted concentration of the gas tracer (CO2) used as the safety criterion provide the useful information about a short circuit amount resulted for each structural variant of tunnel portals, such as a central dividing wall built as extensions from the end of road tunnel and offset tunnel portal entrance exit tested under different speed ratio of wind and ventilation. A detailed look at results is beyond the scope of analysis to determine optimal air pollution short circuit percentages. Finally, the perfect tunnel portals geometry can be suggested

    Fluid-electro-mechanical model of the human heart for supercomputers

    Get PDF
    The heart is a complex system. From the transmembrane cell activity to the spatial organization in helicoidal fibers, it includes several spatial and temporal scales. The heart muscle is surrounded by two main tissues that modulate how it deforms: the pericardium and the blood. The former constrains the epicardial surface and the latter exerts a force in the endocardium. The main function of this peculiar muscle is to pump blood to the pulmonary and systemic circulations. In this way, solid dynamics of the heart is as important as the induced fluid dynamics. Despite the work done in computational research of multiphysics heart modelling, there is no reference of a tightly-coupled scheme that includes electrophysiology, solid and fluid mechanics in a whole human heart. In this work, we propose, develop and test a fluid-electro-mechanical model of the human heart. To start, the heartbeat phenomenon is disassembled in the different composing problems. The first building block is the electrical activity of the myocytes, that induces the mechanical deformation of the myocardium. The contraction of the muscle reduces the intracavitary space, that pushes out the contained blood. At the same time, the inertia, pressure and viscous stresses in this fluid exerts a force on the solid wall. In this way, we can understand the heart as a fluid-electro-mechanical problem. All the models are implemented in Alya, the Barcelona Supercomputing Center simulation software. A multi-code approach is used, splitting the problem in a solid and a fluid domain. In the former, electrophysiology coupled with solid mechanics are solved. In the later, fluid dynamics in an arbitrary Lagrangian-Eulerian domain are computed. The equations are spatially discretized using the finite element method and temporally discretized using finite differences. Facilitated by the multi-code approach, a novel high performance quasi-Newton method is developed to deal with the intrinsic issues of fluid-structure interaction problems in iomechanics. All the schemes are optimized to run in massively parallel computers. A wide range of experiments are shown to validate, test and tune the numerical model. The different hypothesis proposed — as the critical effect of the atrium or the presence of pericardium — are also tested in these experiments. Finally, a normal heartbeat is simulated and deeply analyzed. This healthy computational heart is first diseased with a left bundle branch block. After this, its function is restored simulating a cardiac resynchronization therapy. Then, a third grade atrioventricular block is simulated in the healthy heart. In this case, the pathologic model is treated with a minimally invasive leadless intracardiac pacemaker. This requires to include the device in the geometrical description of the problem, solve the structural problem with the tissue, and the fluid-structure interaction problem with the blood. As final experiment, we test the parallel performance of the coupled solver. In the cases mentioned above, the results are qualitatively compared against experimental measurements, when possible. Finally, a first glance in a coupled fluid-electro-mechanical cardiovascular system is shown. This model is build adding a one dimensional model of the arterial network created by the Laboratório Nacional de Computação Científica in Petropolis, Brasil. Despite the artificial geometries used, the outflow curves are comparable with physiological observations. The model presented in this thesis is a step towards the virtual human heart. In a near future computational models like the presented in this thesis will change how pathologies are understood and treated, and the way biomedical devices are designed.El corazón es un sistema complejo. Desde la actividad celular hasta la organización espacial en fibras helicoidales, incluye gran cantidad de escalas espaciales y temporales. El corazón está rodeado principalmente por dos tejidos que modulan su deformación: el pericardio y la sangre. El primero restringe el movimiento del epicardio, mientras el segundo ejerce fuerza sobre el endocardio. La función principal de este músculo es bombear sangre a la circulación sistémica y a la pulmonar. Así, la deformación del miocardio es tan importante como la fluidodinámica inducida. Al día de hoy, solo se han propuesto modelos parciales del corazón. Ninguno de los modelos publicados resuelve electrofisiología, mecánica del sólido, y dinámica de fluidos en una geometría completa del corazón. En esta tesis, proponemos, desarrollamos y probamos un modelo fluido -electro -mecánico del corazón. Primero, el problema del latido cardíaco es descompuesto en los distintos subproblemas. El primer bloque componente es la actividad eléctrica de los miocitos, que inducen la deformación mecánica del miocardio. La contratación de este músculo, reduce el espacio intracavitario, que empuja la sangre contenida. Al mismo tiempo, la inercia, presión y fuerzas viscosas del fluido inducen una presión sobre la pared del sólido. De esta manera, podemos entender el latido cardíaco como un problema fluido-electro-mecánico. Los modelos son implementados en Alya, el software de simulación del Barcelona Supercomputing Center. Se utiliza un diseño multi-código, separando el problema según el dominio en sólido y fluido. En el primero, se resuelve electrofisiología acoplado con mecánica del sólido. En el segundo, fluido dinámica en un dominio arbitrario Lagrangiano-Euleriano. Las ecuaciones son discretizadas espacial y temporalmente utilizando elementos finitos y diferencias finitas respectivamente. Facilitado por el diseño multi-codigo, se desarrolló un novedoso método quasi-Newton de alta performance, pensado específicamente para lidiar con los problemas intrínsecos de interacción fluido-estructura en biomecánica. Todos los esquemas fueron optimizados para correr en ordenadores masivamente paralelos.Se presenta un amplio espectro de experimentos con el fin de validar, probar y ajustar el modelo numérico. Las diferentes hipótesis propuestas tales como el efecto producido por la presencia de las aurículas o el pericardio son también demostradas en estos experimentos. Finalmente un latido normal es simulado y sus resultados son analizados con profundidad. El corazón computacional sano es, primeramente enfermado de un bloqueo de rama izquierda. Posteriormente se restaura la función normal mediante la terapia de resincronización cardíaca. Luego se afecta al corazón de un bloqueo atrioventricular de tercer grado. Esta patología es tratada mediante la implantación de un marcapasos intracardíaco. Para esto, se requiere incluir el dispositivo en la descripción geométrica, resolver el problema estructural con el tejido y la interacción fluido-estructura con la sangre. Como experimento numérico final, se prueba el desempeño paralelo del modelo acoplado.Finalmente, se muestran resultados preliminares para un modelo fluido-electro-mecánico del sistema cardiovascular. Este modelo se construye agregando un modelo unidimensional del árbol arterial. A pesar de las geometrías artificiales usadas, la curva de flujo en la raíz aórtica es comparable con observaciones experimentales. El modelo presentado aquí representa un avance hacia el humano virtual. En un futuro, modelos similares, cambiarán la forma en la que se entienden y tratan las enfermedades y la forma en la que los dispositivos biomédicos son diseñados.Postprint (published version

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Get PDF
    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

    Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Get PDF
    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor. This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS

    BIM for Healthy Buildings. An Integrated Approach of Architectural Design based on IAQ Prediction

    Get PDF
    The relationship between users and the built environment represents a fundamental aspect of health. The factors that define the properties linked to health and well-being are increasingly becoming part of building design. In these terms, building information modelling (BIM) and BIM-based performance simulation take on a priority role. Among the key features for the design of Healthy Buildings, indoor air quality (IAQ) plays a central role. There are numerous indoor pollutants with significant health effects; volatile organic compounds (VOCs) are to be mentioned among these. The paper presents the proposal of an integrated workflow in the BIM process for the check and control of VOC emissions from building materials and their concentration in confined environments. The workflow is developed through the systematisation of IAQ parameters for the open BIM standard, the integration in the BIM process of a numerical model for the prediction of the VOCs concentration in the indoor environment, and the development of model checkers for performance verification. The results show a good adhesion between the numerical model and the implementation in BIM, providing the designer with a rapid control instrument of IAQ in the various phases of the building design. The present study is the first development focused on TVOC, but implementable concerning other aspects of IAQ, as needed for the effectiveness of performance building-based design for health and wellness issues

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids
    corecore