10,808 research outputs found

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    An integrated urban systems model with GIS

    Get PDF
    The purpose of the research is to develop an integrated urban systems model, which will assist in formulating a better land use-transportation policy by simulating the relationships between land use patterns and travel behavior, integrated with geographic information systems (GISs). In order to make an integrated land use-transportation model possible with the assistance of GISs technologies, the following four sub-systems have been developed: (1) an effective traffic analysis zone generation system; (2) an iterative land use and transportation modeling system; (3) efficient interfaces between GIS and land use, and GIS and transportation models; and (4) a user-friendly graphic user interface (GUI) system. By integrating these sub-systems, a variety of alternative land use-transportation policies can be evaluated through the modification of input parameters in each simulation. Eventually, the developed model using a GIS will assist in formulating an effective land use policy by obtaining robust simulation results for both land use-transportation planners and decision makers. The model has been applied to the Urbana-Champaign area as well as to the Seoul region in Korea for a demonstration of the workings of the model.

    The impact of measuring internal travel distances on self-potentials and accessibility

    Get PDF
    Internal travel distances are fundamental in accessibility measurement, as they affect the weight of the intra-regional interactions, especially when using a gravity formulation. The contribution of the internal accessibility of each zone to its overall accessibility is known as self-potential. Several studies demonstrate its importance in accessibility analyses, especially in the most urbanized regions. It is precisely in urban regions where internal travel distances (measured as travel length, time or cost) are more difficult to estimate due to congestion, which in turn may be influenced by factors such as urban density, urban morphology, network infrastructure, etc. Accessibility analyses usually use coarse estimates of internal distances, generally based on the regions' area and in some cases considering its level of urbanization. In this study we explore different forms of estimating internal travel distances in accessibility analysis and reflect on their advantages and drawbacks. One of the main difficulties that arise when measuring internal travel distances is the lack of data. However, the growing potential of ICTs (Information and communication technologies) in providing new sources of data can be used to improve representativeness of data. In this study we used speed profiles data from TeleAtlas/TomTom to calculate internal travel distances for European NUTS-3 regions and we compare this measure with three other metrics traditionally used in the literature. Following this exercise, we discuss the conditions under which it is advantageous to use more complex measures of internal travel distance. Finally we test the sensitivity of potential accessibility indicators to the combined effect of different internal distance metrics and distance decay factors.JRC.J.1-Economics of Climate Change, Energy and Transpor

    Methodological and empirical challenges in modelling residential location choices

    No full text
    The modelling of residential locations is a key element in land use and transport planning. There are significant empirical and methodological challenges inherent in such modelling, however, despite recent advances both in the availability of spatial datasets and in computational and choice modelling techniques. One of the most important of these challenges concerns spatial aggregation. The housing market is characterised by the fact that it offers spatially and functionally heterogeneous products; as a result, if residential alternatives are represented as aggregated spatial units (as in conventional residential location models), the variability of dwelling attributes is lost, which may limit the predictive ability and policy sensitivity of the model. This thesis presents a modelling framework for residential location choice that addresses three key challenges: (i) the development of models at the dwelling-unit level, (ii) the treatment of spatial structure effects in such dwelling-unit level models, and (iii) problems associated with estimation in such modelling frameworks in the absence of disaggregated dwelling unit supply data. The proposed framework is applied to the residential location choice context in London. Another important challenge in the modelling of residential locations is the choice set formation problem. Most models of residential location choices have been developed based on the assumption that households consider all available alternatives when they are making location choices. Due the high search costs associated with the housing market, however, and the limited capacity of households to process information, the validity of this assumption has been an on-going debate among researchers. There have been some attempts in the literature to incorporate the cognitive capacities of households within discrete choice models of residential location: for instance, by modelling households’ choice sets exogenously based on simplifying assumptions regarding their spatial search behaviour (e.g., an anchor-based search strategy) and their characteristics. By undertaking an empirical comparison of alternative models within the context of residential location choice in the Greater London area this thesis investigates the feasibility and practicality of applying deterministic choice set formation approaches to capture the underlying search process of households. The thesis also investigates the uncertainty of choice sets in residential location choice modelling and proposes a simplified probabilistic choice set formation approach to model choice sets and choices simultaneously. The dwelling-level modelling framework proposed in this research is practice-ready and can be used to estimate residential location choice models at the level of dwelling units without requiring independent and disaggregated dwelling supply data. The empirical comparison of alternative exogenous choice set formation approaches provides a guideline for modellers and land use planners to avoid inappropriate choice set formation approaches in practice. Finally, the proposed simplified choice set formation model can be applied to model the behaviour of households in online real estate environments.Open Acces

    The impact of measuring internal travel distances on selfpotentials and accessibility

    Get PDF
    Internal travel distances are fundamental in accessibility measurement, as they affect the weight of the intra-regional interactions, especially when using a gravity formulation. The contribution of the internal accessibility of each zone to its overall accessibility is known as self-potential. Several studies demonstrate its importance in accessibility analyses, especially in the most urbanized regions. It is precisely in urban regions where internal travel distances are more difficult to estimate due to congestion, which in turn may be influenced by factors such as urban density, urban morphology, network infrastructure, etc. Accessibility analyses usually use coarse estimates of internal distances, generally based on the regions' area and in some cases considering its level of urbanization. In this study we explore different forms of estimating internal travel distances in accessibility analysis and reflect on their advantages and drawbacks. One of the main difficulties that arise when measuring internal travel distances is the lack of data. However, the growing potential of ICTs in providing new sources of data can be used to improve representativeness of data. In this study we used speed profiles data from TeleAtlas/TomTom to calculate internal travel distances for European NUTS-3 regions and we compare this measure with three other metrics traditionally used in the literature. Following this exercise, we discuss the conditions under which it is advantageous to use more complex measures of internal travel distance. Finally, we test the sensitivity of potential accessibility indicators to the combined effect of different internal distance metrics and distance decay factors

    A complex network approach to urban growth

    Get PDF
    The economic geography can be viewed as a large and growing network of interacting activities. This fundamental network structure and the large size of such systems makes complex networks an attractive model for its analysis. In this paper we propose the use of complex networks for geographical modeling and demonstrate how such an application can be combined with a cellular model to produce output that is consistent with large scale regularities such as power laws and fractality. Complex networks can provide a stringent framework for growth dynamic modeling where concepts from e.g. spatial interaction models and multiplicative growth models can be combined with the flexible representation of land and behavior found in cellular automata and agent-based models. In addition, there exists a large body of theory for the analysis of complex networks that have direct applications for urban geographic problems. The intended use of such models is twofold: i) to address the problem of how the empirically observed hierarchical structure of settlements can be explained as a stationary property of a stochastic evolutionary process rather than as equilibrium points in a dynamics, and, ii) to improve the prediction quality of applied urban modeling.evolutionary economics, complex networks, urban growth
    corecore