10,375 research outputs found

    Formulating queries for collecting training examples in visual concept classification

    Get PDF
    Video content can be automatically analysed and indexed using trained classifiers which map low-level features to semantic concepts. Such classifiers need training data consisting of sets of images which contain such concepts and recently it has been discovered that such training data can be located using text-based search to image databases on the internet. Formulating the text queries which locate these training images is the challenge we address here. In this paper we present preliminary results on TRECVid data of concept classification using automatically crawled images as training data and we compare the results with those obtained from manually annotated training sets

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Insight Centre for Data Analytics (DCU) at TRECVid 2014: instance search and semantic indexing tasks

    Get PDF
    Insight-DCU participated in the instance search (INS) and semantic indexing (SIN) tasks in 2014. Two very different approaches were submitted for instance search, one based on features extracted using pre-trained deep convolutional neural networks (CNNs), and another based on local SIFT features, large vocabulary visual bag-of-words aggregation, inverted index-based lookup, and geometric verification on the top-N retrieved results. Two interactive runs and two automatic runs were submitted, the best interactive runs achieved a mAP of 0.135 and the best automatic 0.12. Our semantic indexing runs were based also on using convolutional neural network features, and on Support Vector Machine classifiers with linear and RBF kernels. One run was submitted to the main task, two to the no annotation task, and one to the progress task. Data for the no-annotation task was gathered from Google Images and ImageNet. The main task run has achieved a mAP of 0.086, the best no-annotation runs had a close performance to the main run by achieving a mAP of 0.080, while the progress run had 0.043

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

    Full text link
    We introduce a model for bidirectional retrieval of images and sentences through a multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency tree relations) into a common space. In addition to a ranking objective seen in previous work, this allows us to add a new fragment alignment objective that learns to directly associate these fragments across modalities. Extensive experimental evaluation shows that reasoning on both the global level of images and sentences and the finer level of their respective fragments significantly improves performance on image-sentence retrieval tasks. Additionally, our model provides interpretable predictions since the inferred inter-modal fragment alignment is explicit

    An Investigation on Text-Based Cross-Language Picture Retrieval Effectiveness through the Analysis of User Queries

    Get PDF
    Purpose: This paper describes a study of the queries generated from a user experiment for cross-language information retrieval (CLIR) from a historic image archive. Italian speaking users generated 618 queries for a set of known-item search tasks. The queries generated by user’s interaction with the system have been analysed and the results used to suggest recommendations for the future development of cross-language retrieval systems for digital image libraries. Methodology: A controlled lab-based user study was carried out using a prototype Italian-English image retrieval system. Participants were asked to carry out searches for 16 images provided to them, a known-item search task. User’s interactions with the system were recorded and queries were analysed manually quantitatively and qualitatively. Findings: Results highlight the diversity in requests for similar visual content and the weaknesses of Machine Translation for query translation. Through the manual translation of queries we show the benefits of using high-quality translation resources. The results show the individual characteristics of user’s whilst performing known-item searches and the overlap obtained between query terms and structured image captions, highlighting the use of user’s search terms for objects within the foreground of an image. Limitations and Implications: This research looks in-depth into one case of interaction and one image repository. Despite this limitation, the discussed results are likely to be valid across other languages and image repository. Value: The growing quantity of digital visual material in digital libraries offers the potential to apply techniques from CLIR to provide cross-language information access services. However, to develop effective systems requires studying user’s search behaviours, particularly in digital image libraries. The value of this paper is in the provision of empirical evidence to support recommendations for effective cross-language image retrieval system design.</p

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given
    corecore