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ABSTRACT

EXPLOITING CONCEPTS IN VIDEOS
FOR VIDEO EVENT DETECTION

SEPTEMBER 2015

ETHEM F. CAN

B.Sc., BILKENT UNIVERSITY, ANKARA, TURKEY

M.Sc., BILKENT UNIVERSITY, ANKARA, TURKEY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan and Professor R. Manmatha

Video event detection is the task of searching videos for events of interest to a

user where an event is a complex activity which is localized in time and space. The

video event detection problem has gained more importance as the amount of online

video is increasing by more than 300 hours every minute on Youtube alone.

In this thesis, we tackle three major video event detection problems: video event

detection with exemplars (VED-ex), where a large number of example videos are

associated with queries; video event detection with few exemplars (VED-exfew), in

which only a small number of example videos are associated with queries; and zero-

shot video event detection (VED-zero), where no exemplar videos are associated with

queries.

We first define a new way of describing videos concisely, one that is built around

using query-independent concepts (e.g., a fixed set of concepts for all queries) with

vi



a space-efficient representation. Using query-independent concepts enables us to

learn a retrieval model for any query without requiring a new set of concepts. Our

space-efficient representation helps reduce the amount of time required to train/test a

retrieval model and the amount of space to store video representations on disk.

When the number of example videos associated with a query decreases, the retrieval

accuracy decreases as well. We present a method that incorporates multiple one-

exemplar models into video event detection aiming at improving retrieval accuracies

when there are few exemplars available. By incorporating multiple one-exemplar

models into video event detection with few exemplars, we are able to obtain significant

improvements in terms of mean average precision compared to the case of a monolithic

model.

Having no exemplar videos associated with queries makes the video event detection

problem more challenging as we cannot train a retrieval model using example videos. It

is also more realistic since compiling a number of example videos might be costly. We

tackle this problem by providing a new and effective zero-shot video event detection

model that exploits dependencies of concepts in videos. Our dependency work uses a

Markov Random Field (MRF) based retrieval model and assumes three dependency

settings: 1) full independence, where each concept is considered independently; 2)

spatial dependence, where the co-occurrence of two concepts in the same video frame is

treated as important; and 3) temporal dependence, where having concepts co-occur in

consecutive frames is treated as important. Our MRF based retrieval model improves

retrieval accuracies significantly compared to the common bag-of-concepts approach

with an independence assumption.
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CHAPTER 1

INTRODUCTION

The number of videos available on the Internet has been increasing rapidly. Video

sharing (e.g., through Youtube or social media) has played an important role in this

increase (the total number of video views per day on Youtube and Facebook has

reached into the billions). In an age where watching videos online is widespread,

searching and retrieving videos has become increasingly important.

Video search may be defined as retrieving videos relevant to an information need

(i.e., expressed by a query) from a large source of videos such as video sharing web

sites. For example, in Youtube, users provide a query about videos they are searching

for and then Youtube returns a list of videos that are expected to be relevant to

the query. Relevance is often estimated in terms of the similarity between the query

and the text associated with videos (e.g., metadata such as title and description).

In Figure 1.1, we illustrate the retrieved results when we search for “grooming an

animal”.

In the figure, the circled texts are the words matching this query. The top three

retrievals in the figure are videos of “grooming an animal” (i.e., some “grooming an

animal” event is in the video); however, the fourth, fifth, and the sixth retrievals are

advertisements about veterinary schools where no “grooming an animal” event exists.

When the retrieval is based on the metadata of videos, the chances of finding a

video are aligned with providing the correct terms for a query. Note that the phrase

“correct terms” refers to the ones that match with the textual information associated

with videos. For this example illustrated on Youtube, video search is only based on

1



grooming an animal

Wahl Professional Dog Grooming Clipper Tips

SEARCH

1.

Becoming a Professional Pet Groomer2.

Andis Dog Grooming Deshedding / Andis Animal Clip-
pers

3.

Animal Behvior Colege.com teaches training, care,
grooming, and more!

4.

Florida Institute of Animal ARts, Winter Park Pet
grooming and veterinary assistant school

5.

Happy Tails Mobile Dog and Cat Grooming Video
Animal Groomers in Phoenix

6.

Dog Training, Dog Grooming & Veterinary Assistant
Certifications

7.

Figure 1.1. Top retrievals when searching for “grooming an animal”.

the metadata associated with the videos and some of the retrievals are not relevant

to the “grooming an animal” query. This is due to the fact that the text associated

with those videos is misleading or insufficient. Understanding the content of videos
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will help improve the retrieval and eliminate videos not relevant to the “grooming an

animal” query.

For the example, we have assumed that the videos have metadata associated

with them. This strong assumption is essential for text-based video search. Where

no metadata is available for videos, a text-based approach will not help. Consider

the same example (from Figure 1.1) when there is no metadata associated with the

videos (see Figure 1.2). In this case, a text-based approach is useless. However, visual

cues can still be used for video search purposes. We, as do others (Chen et al. 2014,

Dalton et al. 2013, Habibian et al. 2014, Younessian et al. 2012), use visual cues

that describe the content of videos for video search. The TREC Video Retrieval

Evaluation (TRECVID) multimedia event detection track is devoted to research in

video search exploiting the content of videos. The task of searching videos for events

is of interest to a user where an event is a complex activity which is localized in time

and space. The events are also expected to be observable, involving people interacting

with other people or objects (Jiang et al. 2013, NIST 2012, Over et al. 2010). This is

our definition of an event and that is aligned with the official definition of an event

by NIST(NIST 2012, Over et al. 2010). As Jiang et al. (2013) note that in their

survey paper, there is no consensus on defining an event in the literature. The official

definition states that an event is a complex activity occurring at a specific time and

space (NIST 2012, Over et al. 2010). Observing evidences of this official definition in

the queries is difficult. Further, extracting specific “space” and “time” information

from a definition of a query is rather complicated (see Section 2.3.1).

In this thesis, we tackle the video event detection (VED) problem by taking the

visual content of videos into account. Understanding the visual content of videos is

essential whenever there is no metadata associated with videos. Further, they can also

be incorporated into text-based approaches (e.g., the ones exploiting the metadata of

videos) for a better retrieval, which might help improve the quality of the retrievals.
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2.

3.

4.

5.

6.

7.

Figure 1.2. Top retrievals when searching for “grooming an animal” provided without
their metadata.

In this thesis, we consider only the visual features (e.g., concepts) to evaluate their

effectiveness within the context of VED. We represent videos using their visual content.

We make use of concepts (e.g., objects and actions) that provide a high level of

abstraction to represent videos. For example, the sample image provided in Figure 1.3

can be described using airplane, clouds, and sky, which are examples of concepts. In

order to automatically extract concepts from the sample image (Figure 1.3), detectors

specific to these descriptors need to be created. A concept detector should detect or

measure the likelihood of that particular concept in an image or video. For instance,
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a plane detector would give the likelihood of seeing a plane in an image, which should

be high for the image in Figure 1.3.

Figure 1.3. A sample image of an airplane above the clouds.

In the video event detection problem, an event query might consist of a text

description and a number of relevant example videos associated with the query. We

refer to this as video event detection with exemplars (VED-ex). Alternatively, it might

consist of just a textual description, and this is called zero-shot video event detection

(VED-zero) indicating that there are zero visual examples.

When an event query consists of a textual description as well as a number of

exemplars, a retrieval model can be trained on these examples. First, concepts are

extracted from videos by running concept detectors against videos so videos are

represented using these concepts. We can learn the discriminative concepts for the

given query using the exemplars (e.g., concepts common in the exemplars but not

in general). Finally, we look for these discriminative concepts in the test videos to

identify videos likely to be relevant to the given query.
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1.1 Concept Selection

The main issue in tackling the video event detection with exemplars problem is to

determine the concepts to be used for an event query. A common approach in VED-ex

is to select concepts specific to the event query. In other words, a different set of

concepts is determined for each query (Chen et al. 2014). However, crafting a different

set of concepts for each query introduces some cost. In the first part of this thesis

(Chapter 3), we focus on an alternative approach to query-based concepts within the

context of VED-ex.

We hypothesize that we can use a fixed set of concepts for any event query without

sacrificing effectiveness. In our work, we compile a fixed set of concepts that are

selected without prior knowledge of event queries. This fixed set of 1,000 concepts is

collected from a large source of images (Image-Net 2014).

Using a fixed set of concepts enables us to skip the concept selection step. This is

important to save a modest amount of time when retrieval models are created and

used for event search. Further, it becomes more important when new concepts are

needed to be created (e.g., in case the selected concepts are not in the vocabulary) as

creating new concepts can be very time consuming and we need more space to store

our concept vocabulary.

Our approach stems from the idea of representing a video with a set of predefined

concepts. Videos relevant to an event query are expected to be somewhat visually

similar to each other. Therefore, we believe that concepts in visually similar videos

may be similar as well. Similar approaches have been used and shown to be successful

for object recognition. Torresani et al. (2010) focus on the idea of expressing a “novel”

object category using a set of predefined categories (the authors call it “classemes”).

Cusano et al. (2012) focus on a similar idea. In contrast to Torresani et al. (2010), they

do not use the labels of the predefined categories. They call this method “unsupervised
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classemes”. Our approach of using a fixed set of concepts—selected independently

from the queries—is motivationally similar to the latter work.

In order to show that our fixed set of concepts perform as well in accuracy as the

ones obtained using query-based concepts, we create event detection models using both

methods. Further, we also compare our query-independent concepts with the work

of Chen et al. (2014), that is based on query-dependent concepts. The experimental

results show that query-based concepts provide comparable retrieval accuracies to

our fixed set of concepts—selected independently from queries—within the context of

VED-ex (Section 3.4.1). We thus increase the efficiency of retrieval without sacrificing

accuracy.

In addition to query dependent concepts, the common video event detection

approaches often use a non-sparse representation of videos. The concept detectors are

run against videos at the frame or clip level (i.e., a video consists of multiple clips).

It is common to pool responses over frames (or clips) for a final representation of

videos using concepts in VED-ex. For example, Cheng et al. (2012), Liu et al. (2013a),

and, Jiang et al. (2013) use maximum and average pooling of responses over frames.

The main issue with these pooling techniques is that the final representation of a video

is not sparse. If there are n concepts considered, the final representation of a video

becomes a dense histogram of size n where the number of non-zero elements is also

n. Keeping dense histograms on the disk is also expensive compared to their sparse

counterparts. Sparsity is especially important when machine learning algorithms

are involved (e.g., learning a model using exemplars) since most of them work more

efficiently with sparse histograms (i.e., the number of non-zero elements is smaller

than the actual size of the histogram).

We address these space and time problems by considering only a small number

of highly responsive concepts per-frame. Habibian et al. (2013) investigate concept

vocabularies for video event detection and conclude that a subset of concepts should
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be considered for a better video event detection. Bhattacharya et al. (2014) focus on

finding the minimally needed evidence for recognizing events and report that humans

can recognize events in videos by watching only a portion of the videos. We follow a

similar principle in our work but apply it to machines. Our findings show that our

representation of videos is not only efficient but also effective compared to common

pooling techniques (e.g., maximum and average) and using all or a large number of

concepts (Section 3.4.2).

1.2 One-Exemplar Models

So far, we have focused on how to select concepts and how to represent videos using

those concepts. After the representation of videos, we train retrieval models using

example videos associated with event queries. Collecting a large number of example

videos for an event query is the ideal case in video event detection with exemplars.

However, collecting a few exemplars is more realistic than providing a large number

of example videos since the annotation task is costly. The major drawback of having

a few exemplars to train retrieval models is that they usually provide lower retrieval

accuracies compared to models trained on a large number of example videos. In the

second part of this thesis (Chapter 4), we focus on video event detection with very

few exemplars (VED-exfew). We present a method that incorporates multiple one-

exemplar models into video event detection aiming at improving retrieval accuracies

when there are few exemplars available.

A retrieval model trained on visually different models might carry some amount

of noise. For instance, example videos for the “repairing an appliance” query might

include contents such as repairing an oven, repairing a refrigerator, and repairing

a washing machine. Even though they are example videos for the same query (i.e.,

repairing an appliance), they are visually different from each other. This situation

would presumably have been different if we had a larger set of example videos since
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example videos would have covered different variations of the query. In the common

video event detection approach, all of the example videos are used to create a single

global model (e.g., repairing an oven, repairing a refrigerator, and repairing a washing

machine videos are used to create one “repairing an appliance” model). Instead, our

one-exemplar models are created for each exemplar and are specific to their exemplar

(e.g., a repairing an appliance model created using the repairing an oven video, a

model using the repairing a refrigerator video, and another model using the repairing

a washing machine video). We incorporate the multiple one-exemplar models into

the global model to handle both visually different and similar exemplars. The global

model works well when the example videos are visually similar. Our one-exemplar

models work better when the example videos are visually different. It is very difficult

to estimate the variance of the example videos in advance. Therefore, incorporating

one-exemplar models into this global model enables us to deal with this difficulty

within the context of video event detection with few exemplars.

Our experimental results show that we are able to improve retrieval accuracies

using our approach over using a single global model when there are few exemplars

available (Section 4.2.1). In addition to our concept-based technique, we investigate the

robustness of our method by experimenting on different descriptors. These experiments

show that our method is robust to multiple descriptors (Section 4.2.2).

1.3 Zero-Shot Video Event Detection

So far, we have focused on the video event detection with exemplars case. The more

challenging part of video event detection is when event queries consist only of a

textual description and no exemplars: zero-shot video event detection (VED-zero).

In VED-zero the main process is the same as in VED-ex except that of learning a

retrieval model. VED-zero is challenging since we cannot train a retrieval model
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using exemplars. Therefore, unlike the VED-ex case, ranking of videos relies on the

likelihood of observing relevant concepts to a query in videos.

Most existing zero-shot video event detection work focuses on a bag-of-concepts

approach that assumes the independence of concepts in videos (e.g., query-likelihood

model). This approach assumes the individual occurrences of concepts in videos and

ignores their interactions such as their order. For example, consider two cases: 1)

three concepts are detected at the beginning of a video, and 2) three concepts are

detected at different locations (e.g., one at the beginning, one in the middle, and one

at the end). A bag-of-concepts approach treats these two cases the same and ignores

the information of their co-occurrence or their order of occurrence.

We hypothesize that the bag-of-concepts approach relies on a weak independence

assumption and exploiting concepts and their relationships could enable us to have

better retrieval. In the last part of this thesis (Chapter 5), we detail our dependency-

based retrieval algorithm within the context of VED-zero and show evidence supporting

our hypothesis.

Motivated by the fact that events are complex activities, we believe that considering

concepts individually might not be enough to retrieve videos relevant to an event. In

other words, considering concepts and their relationships might enable us to have

better evidence to recognize videos relevant to an event. For example, in Figure 1.4,

we provide two consecutive frames. There are three concepts detected in these frames:

“person looking direction,” “blowing candles,” and “person clapping.” The “person

looking direction” and “blowing candles” concepts occur in the same space (frame)

and these concepts have a temporal relationship with the “person clapping” concepts.

Considering these concepts and their spatial and temporal relationships give us more

evidence of this video about it being relevant to a “birthday party” event. However,

these concepts individually do not provide the same level of confidence. In Figure 1.5,

we provide another illustration of concepts in a video. In the first frame, there is
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a spatial relationship between the “audience clapping” and “jumping over fence”

concepts and these concepts have a temporal relationship with the “judges giving

points” concept. When we consider these relationships in addition to the concepts

itself, we can identify this video as relevant to the “horse riding competition”. On the

other hand, considering these concepts independently is not necessarily sufficient for

the same detection.

Our dependency work uses a Markov random field (MRF) based approach (Metzler

and Croft 2005), a widely accepted algorithm in the information retrieval community.

They make use of the occurrences of single terms, ordered phrases, and unordered

phrases in their retrieval model. They obtain significant improvements on their

dependency-based retrieval model on large web-based collections. Feng and Manmatha

(2008) apply a similar approach to image retrieval. They propose the use of unigrams for

what they call a full independence model and spatial bigrams for a spatial dependence

model. In our work, we focus on three dependency assumptions: (1) full independence,

(2) spatial dependence, and (3) temporal dependence (Section 5.1.2).

The output of our MRF-based retrieval model is used to rank videos according to

their relevance to an event query. In other words, the probability estimation of a video

given a query is used for ranking purposes. The output scores of concept detectors

are used in the estimations. These scores can be interpreted differently. They can

be used as binary values: presence/absence of concepts in videos. Alternatively the

detector output scores can be used directly (Section 5.1.3). For example, we have three

concepts: “car,” “ox,” and “barn”. We detect the “car” concept with a confidence of

0.4 (the higher the confidence the stronger the detection and confidence values are

between zero and one); the “ox” concept with 0.9; and the “barn” concept with 0.5 in

a video. When we focus on presence/absence information of concepts, we assume that

only concepts with a high detection confidence are present in this videos, and consider
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Figure 1.4. Illustration of concepts in a video. Concepts: {(“person looking direc-
tion”), (“blowing candles”), (“person clapping”); Spatial Relationships: {(“person
looking direction”,“blowing candles”)}; and Temporal Relationships: { (“person
looking direction”,“person clapping”) ,(“blowing candles”,”person clapping”)}

these concepts in the estimations. In the alternative version, we consider all of the

concepts without ignoring any of them.

Using presence/absence information makes the estimation of probabilities in our

formulations easy. Concepts having a low confidence are also eliminated when binary

values are used (e.g., the “car” and “barn” concepts can be ignored in the example

above). However, when we use binary values, there is a possibility that we might lose

some useful information (e.g., the “barn” concept would be useful) As an alternative,

we can directly use the scores in our models. In this way, we are not removing any

potentially useful information (e.g., we use all three concepts in the estimations in the

example above). However, the issue with using outputs directly is that these scores

carry some noise. (e.g., the “car” concept might not be relevant). There is a chance
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Figure 1.5. Another illustration of concepts in a video. Concepts: {(“person
clapping”),(“jumping over fence”),(“judges giving points”)}; Spatial Relationships: {
(“person clapping”,“jumping over fence”)}; and Temporal Relationships: {(“person
clapping”,“judges giving points”), (“jumping over fence”,“judges giving points”)}

that this noise can be carried over into our model. In our MRF-based retrieval model,

we focus on both methods, using binary values and using output scores directly. In

addition, we also focus on blending these two methods to leverage the advantages of

both methods. Evaluation on a large collection shows that our MRF-based retrieval

model improves the retrieval accuracies statistically significantly over a retrieval model

where dependencies of concepts are not considered (Section 5.3.1). Blending two

different choices for concept detector output enables us to further improve the retrieval

accuracies (Section 5.3.2).

So far, we have summarized the problems that we tackle in this thesis as well as

our solutions to address them. Before formalizing the contributions, we would like to

point out the status of current video event detection approaches.
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Video event detection is a relatively recent problem. Even though it is new,

researchers have shown promising results. However, in most of the cases including this

thesis, the biggest goal is to find out the best way to use the content of videos that

should be used when videos do not have any metadata. As we are still in early stages

of solving the problem, we cannot always retrieve videos relevant to a query very

effectively. Indeed, our retrieval accuracy scores are extremely low because we focus on

only the visual features and ignore the text modality. Our solutions mainly explore the

relative advantages of different ways of using content of videos and that is a promising

approach when videos do not contain metadata. We believe that recent progress on

the field especially on using deep learning features to create concept detectors will

yield increases in accuracy scores.

1.4 Contributions

The research results presented in this dissertation may be summarized by the following

three major contributions in video event detection:

1. We define a new way of describing videos concisely, one that is built

around using query-independent concepts with a space-efficient repre-

sentation. The recent approaches in video event detection with exemplars focus

on selecting a number of concepts based on the query to describe videos (Chen

et al. 2014, Cheng et al. 2012, Jiang et al. 2013, Liu et al. 2013a), which becomes

costly when done for each of multiple queries.

(a) Unlike the recent approaches, we compile a set of query-independent con-

cepts and use this set of concepts for any query. The results show that

retrieval accuracies obtained using these query-independent concepts are

as strong as the ones obtained using the concepts selected specifically each

query. In this way, the concept selection process may be skipped and a
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retrieval model can be learned directly for any given query without requiring

a new set of concepts.

(b) In addition to query-dependent concepts, inefficient techniques for repre-

sentation of videos using concepts are also employed Cheng et al. (2012),

Jiang et al. (2013), Liu et al. (2013a). These techniques use a non-sparse

representations of videos, which is space and time costly. In contrast to the

space and time costly techniques that use all of the concepts, we consider

only a small number of highly responsive concepts to represent videos. In

this way, the amount of required space to store video representations is

reduced to one fifth compared to using all concepts. Our space-efficient

representation technique also enables us to train retrieval models and run

queries against these models in 1/5 the time compared to using all concepts.

2. We present a method that incorporates multiple one-exemplar models

into video event detection aiming at improving retrieval accuracies

when there are few exemplars available. The common idea of “the more

exemplars we have, the better models can be learned” is followed in video event

detection studies while tackling the problem. However, collecting a large number

of example videos is usually unrealistic.

(a) We present a method that considers several one-exemplar models each of

which is learned using one exemplar and incorporates these models into

video event detection with few exemplars. In the common video event

detection approach, all of the example videos are used to create a single

global model. However, multiple one-exemplar models are created for each

exemplar and they are specific to their exemplar. We incorporate several

one-exemplar models into the global model.
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(b) By incorporating one-exemplar models into video event detection with

few exemplars, we are able to obtain 15-35% relative improvements, in

average precision compared to the case of not having one-exemplar models

in retrieval (i.e., only the global model). One-exemplar models not only

enable us to improve retrieval accuracies but also handle the issue of high

variance of example videos.

(c) In order to analyze the robustness of our method, we also evaluate it on

multiple descriptors. Experimental results show that our method is robust

to multiple descriptors.

3. We provide a new and effective zero-shot video event detection model

that exploits dependencies of concepts in videos. In a real world scenario,

a query may consist of only a textual description and no exemplars: the zero-shot

video event detection task. Most of the video event detection oriented studies

focus on the case where we have exemplars and those that focus on zero exemplar

assumes that concepts in videos are independent of each other.

(a) Against this widely accepted assumption, we exploit dependencies of con-

cepts in videos in addition to the independence assumption. Our dependency

work uses a Markov random field (MRF) based approach (Feng and Man-

matha 2008, Metzler and Croft 2005), a state of the art ranking algorithm

from the information retrieval community.

(b) We evaluate three dependency assumptions: (1) full independence, where

each concept is considered independently; (2) spatial dependence, where the

presence of two concepts in the same video frame is treated as important;

and (3) temporal dependence, where having concepts occur in consecutive

frames is treated as important.
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(c) In our MRF-based retrieval model, we utilize concept outputs in two

different ways: 1) converting them into presence/absence information (i.e.,

Boolean concepts), and 2) using them directly (i.e., scored concepts). In

the first approach, we threshold the concept outputs and focus on only the

ones that have high confidence. In this way, we are able to remove most

of the noise carried over by concept detectors. The major drawback of

this approach is that it might also remove some useful information while

trimming the concepts that have less confidence. In the latter approach, we

make use of the concept outputs directly in our models. In this case, we use

all of the available information including some amount of noise. In addition

to these two approaches, we also consider a hybrid method that takes

advantages of these two approaches together. Using the hybrid approach

enables us to improve the retrieval accuracies of Boolean concepts and

scored concepts by approximately 30% and 15% (relative improvements)

respectively.

(d) Our MRF-based retrieval model improves retrieval accuracies by anywhere

from 10% to 150% (relative) in average precision compared to the common

independence assumption in a collection of 30 queries and approximately

27,000 videos. In addition to comparing our model with the common bag-of-

concepts approach (independence assumption), we also compare our results

with the previously reported retrieval accuracies on the same dataset. Our

hybrid retrieval model outperforms the previous work by 300% (i.e., 2.2%

vs. 9.1%) (Chen et al. 2014), 160% (i.e., 3.5% vs. 9.1%) (Rastegari et al.

2013), 115% (i.e., 4.2% vs. 9.1%) Mazloom et al. (2013a), or 40% (i.e.,

6.4% vs. 9.1%) Habibian et al. (2014) in terms of mean average precision

(relative improvements).
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CHAPTER 2

LITERATURE OVERVIEW

The obvious solution to video event detection is to use textual similarity between

query and metadata associated with videos. Most of the commercial video search

engines focus on this approach for ranking videos. For example, Youtube is based on

this textual similarity.

The major drawback of using textual similarity is that it relies on assuming videos

have metadata associated with them and that it accurately and completely describes

the video’s contents. Therefore, the content of videos also needs to be exploited to

address when there is no metadata available. A number of different attributes may

be extracted from the content of videos such as concepts (e.g., objects and actions),

audio (e.g., speech), and also optical character recognition, OCR, (text in images)

associated with frames (e.g., closed captions). Audio and text might not exist in some

videos; however, we can extract some concepts from any video. In our approaches, we

make use of concepts to tackle the video event detection problem.

In this section, we summarize the previous studies that are related to our work.

The majority of the previous papers are on the video event detection with exemplars

case. The papers related to zero-shot video event detection are few and recent.

2.1 Video Event Detection with Exemplars

Recent approaches (e.g., Jiang et al. (2010), Natsev et al. (2010), Cao et al. (2011),

Liu et al. (2013a), and Oh et al. (2013)) to tackling the video event detection with

exemplars problem is to use a number of concepts to represent a video. An event
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detection model is often trained for each event query using an off-the-shelf classifier.

Test videos are then run against these retrieval models.

2.1.1 Video Representation

In the video event detection with exemplars problem, it is common to utilize example

videos associated with queries to learn the distinctive characteristics of queries so

that we can leverage this knowledge later to rank videos according to their relevance

to queries. For example, we aim to learn the specific characteristics of a “repairing

an appliance” query by analyzing the common patterns in example videos of this

query (mostly with the help of a machine learning algorithm). Then we focus on the

characteristics of “repairing an appliance” while ranking test videos according to their

relevance to the “repairing an appliance” query.

Here the issue is to extract some information from videos which helps us learn the

characteristics of a query. In other words, we need a way to represent where similar

videos have similar patterns. For example, we might represent videos with a bag

of concepts (e.g., objects). For the “repairing an appliance” query, we might learn

characteristics including “videos relevant to this query contains multiple appliance

occurrences”. We then use this knowledge to conclude that videos having occurrences

of appliances have a higher chance of being relevant to the “repairing an appliance”

query.

In order to represent a video using a concept, a detector specific to this concept

needs to be trained. For example, a dog detector is needed for the “dog” concept.

Similarly, a “walking” detector is needed to measure the likelihood of observing a

“walking” action in a video. A common approach to creating a concept detector

in video event detection is to train a statistical model using a number of relevant

images/videos specific to this concept. The input for these statistical models is often

a set of descriptors extracted from examples. Cheng et al. (2012), Liu et al. (2013a)
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use motion boundary histograms (MBH), histogram of oriented gradients (HOG), and

spatio-temporal interest points (STIP) descriptors to create concepts. Modolo and

Snoek (2013) focus on scale invariant feature transform (SIFT) descriptors and its two

variants, colorSIFT, and denseSIFT, to create their concepts. Yang and Shah (2012)

use MBH, STIP, and SIFT in their study. SIFT and its variants (e.g., denseSIFT)

are usually used to create object-based concept detectors (e.g., dog). MBH and

HOG exploit motion information in video; therefore, they are employed to create

action-based concepts (e.g., walking). For example, Cheng et al. (2012), Liu et al.

(2013a), Ma et al. (2013), Mazloom et al. (2013b) create their action-based concepts

using these features. In this study we leverage the action based concepts created by

SRI International (Cheng et al. 2012, Liu et al. 2013a). Dalton et al. (2013) also make

use of their concepts in their work. Off-the-shelf object detectors can also be used as

an alternative to creating concept detectors from scratch. ObjectBank (Li et al. 2010)

is employed by Althoff et al. (2012), Oh et al. (2014) and Oh et al. (2013) as a source

of pre-trained generic object detectors.

In addition to concepts, the descriptors used to create them are also employed in

video event detection studies. For example, SIFT—Scale-Invariant Feature Transform—

is a feature descriptor that exploits gradient distributions at corner points (Lowe 1999)

and is one of the most commonly used descriptors. SIFT is usually computed at corner

points using gray scale intensity values. Variations of the original SIFT implementation

such as denseSIFT (in which SIFT descriptors are computed at densely sampled points

(e.g., every 5 pixel), colorSIFT where Red-Green-Blue intensity values are used rather

than gray-scale intensity values (van de Sande et al. 2010), and motionSIFT which

detects interest points and encodes local appearance and models local motion (Chen

and Hauptmann 2009) have also been used in event detection. In addition to SIFT

and its variations, GIST, a descriptor that represents the dominant spatial structure

of a scene (Oliva and Torralba 2001), is also used. SIFT, denseSIFT, colorSIFT, and
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GIST are image based features; therefore, they do not exploit the motion information

in a video. In order to extract the motion information in a video, MBH—motion

boundary histograms (Dalal et al. 2006)— are employed in multiple studies. HOG3D

is a volumetric histogram of oriented gradients (HOG) where the third dimension is

time (Klaser and Marszalek 2008) and is employed in numerous studies for the same

purpose. STIP—Spatio-temporal interest points Laptev (2005)— has also been used

commonly. Ballan et al. (2011) briefly summarize descriptors and concepts used in

video event detection.

In the literature, the descriptors used to create concepts as used for the video

event detection task directly, sometimes the concepts themselves are used for the task,

and occasionally they are used in combination. In our work, we use only concepts.

However, in a preliminary work of ours, we showed that using our concepts provides

higher retrieval accuracies than using the features to form them (Can and Manmatha

2014). In that work, we showed that the retrieval accuracies obtained by SIFT-based

(e.g., dense SIFT, and color SIFT) descriptors can be improved by concepts created

with these descriptors.

Even though concepts and descriptors provide promising results, fusion of multiple

descriptors and concepts provide the highest retrieval accuracies within the context of

VED-ex (Cheng et al. 2012, Liu et al. 2013a). For the VED-zero case, descriptors that

are used to create concepts cannot be utilized because they do not carry semantic

information.

In addition to existing descriptors and concepts in the literature, recent attempts

show promising results using deep-learning based features. A recent success, Over-

feat (Sermanet et al. 2013), in object detection and localization using deep-learning

features catalyzes the use of these features in many fields including video event detec-

tion. Gan et al. (2015) propose a flexible deep convolutional neural network (CNN)

infrastructure for video event detection and they show promising results. Further,
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using Overfeat features also show promising results within the context of VED-ex.

Note that we also report some results using Overfeat features in Chapter 4. We believe

that further progress and improvements crafted for the video event detection task

using deep-learning features will be provided in near future.

So far, we have discussed zero-shot video event detection considering only visual

concepts. Other modalities can also be considered to improve the retrievals. Especially

the texts recognized in the speech of videos’ audio track (automatic speech recognition:

ASR) and text extracted from videos (video optical character recognition: VOCR)

have shown to be successful in video event detection (Dalton et al. 2013, Habibian et al.

2014, Oh et al. 2013). They usually lead to retrieval results with a high precision and

a low recall since not all of the videos have speech or text to be recognized. Further,

it is difficult to automatically select the correct terms in ASR/VOCR search as it is

uncommon to have exact matches between the query description and the ASR/VOCR

text. “Renovating a home” is an example where it is hard to automatically extract

the terms from the textual description of a query. Videos relevant to this query might

involve conversations about very specific topics such as updating the drainage system

in a bathroom and changing the material used in the corner of a living room. For this

example, finding a query which yields high recall is a very challenging task.

2.1.2 Concept Selection

Up to now, we have summarized the concepts and the descriptors used to create these

concepts in video event detection. In this thesis, we take advantage of exemplar videos

to improve the efficiency of video event detection by using query-independent concepts

as an alternative to query-based concepts. For query-based concepts, a number of

concepts are selected based on a query and video event detection is performed using

these concepts. For example, Chen et al. (2014) focus on descriptions of queries to

identify candidate concepts to represent videos. As an alternative to this approach,
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we make use of concepts that are selected independently from the queries. We show

that concepts that are independent of a query (i.e., query-independent concepts)

provide as high a retrieval accuracy as the one obtained using concepts that are

selected depending upon a query (i.e., query-dependent concepts). To the best of our

knowledge, this statement has not been shown yet within the context of video event

detection with exemplars.

Similar approaches have been used and shown to be successful in object category

recognition. Torresani et al. (2010) focus on the idea of expressing a “novel” object

category using a set of predefined categories (the authors call it “classemes”). They

use the outputs of predefined categories to create “classemes vectors” which will be

used later as an input to their object category classifiers. Cusano et al. (2012) focus

on a similar idea. In contrast to Torresani et al. (2010), they do not use the labels

of the predefined categories; however, they cluster descriptors extracted from images

into k groups each of which is then assumed to be a class/category. They call this

method “unsupervised classemes”. Next, they train a classifier for each “unsupervised

classeme” and the outputs of these classifiers are used to form unsupervised classemes

vectors. An unsupervised classemes vector consists of the presence/absence of these

unsupervised classemes where the the presence/absence is determined depending upon

the outputs of the classifiers.

2.1.3 Representation Efficiency

After selecting concepts, we now can use the selected concepts to represent videos. In

video event detection, it is a common practice to detect concepts at different locations

in a video as videos consist of a sequence of frames. For example, if a video consists

of 10 frames, it is common to detect concepts at each of these ten frames. In this

way, we can keep track of multiple occurrences of concepts as well as occurrences of

concepts at different locations. Even though we detect concepts at multiple locations,
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we prefer to have one representation of a video. The raw detection output scores

from different locations in a video are pooled over to produce a representation of a

video. Traditionally maximum (i.e., considering the maximum output score over video

frames) and average (i.e., considering the average output scores over video frames)

pooling functions are used for this purpose (Chen et al. 2014, Cheng et al. 2012, Liu

et al. 2013a, Natarajan et al. 2011; 2012, Yu et al. 2012).

Using maximum and average pooling leads to a non-sparse representation. Having

a sparse representation is a key element to improving the efficiency in video event

detection. As an alternative to these commonly used pooling functions, we provide

a space-efficient representation that considers only a limited amount of concepts as

present at each detection level. Our space-efficient representation assumes presence of

the concepts whose signals are the strongest. For example, there are 1, 000 concepts

in our dictionary and we only consider the 10 strongest concepts as present at each

detection level. This filtering step quantizes the concepts in a sparser way which

enables us to have efficient training and testing. Further, storing video representations

on a disk becomes less costly as our method reduces the amount of space required to

store video representations as well.

Up to this point, we have summarized the previous work for the video event detec-

tion with exemplars case in terms of video representation. We have also highlighted

the issues that needs to be addressed. Further, we have explained how our methods

differ from the previous work as well. In Chapter 3, we detail our method and provide

an extensive analysis compared to the previous work that are recent and closest to

our work.

2.1.4 Event Modeling

After representing a video using concepts, a classifier is used to create a model for each

event. As we mentioned above, the main purpose of learning a retrieval model specific
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to a query is to learn distinctive characteristics of that particular query. Leveraging

this knowledge, we can retrieve relevant videos to this query. A representation of

a video is conventionally a vector of values and they are calculated using concept

detection output scores (e.g., quantized as in our case or used directly when pooling

functions employed). When we train a retrieval model, we learn a set of weights.

These weights help us determine which concepts are important for a query. Recalling

the “repairing an appliance” example, the presence of an “appliance” might be strong

evidence for videos being relevant to this query. For this example, we expect the

weight for the “appliance” concept to be high.

Even though there are several different machine learning algorithms that can be

used to train a retrieval model, the variety of the methods that have been employed

so far is rather limited. Support vector machines (SVM) are often used and shown to

be promising in quite a few studies (Ayari et al. 2011, Cao et al. 2011, Cheng et al.

2012, Natarajan et al. 2012, Natsev et al. 2010, Oh et al. 2013). SVM often utilizes

kernels to define similarity between examples. The intersection and χ2 kernels are

the most common kernels used in these studies (Ayari et al. 2011, Cao et al. 2011,

Cheng et al. 2012, Natarajan et al. 2012, Natsev et al. 2010, Oh et al. 2013) and

the intersection kernel often provides slightly higher retrieval accuracies compared

to the χ2 kernel. These kernels are non-linear kernels and they tend to be slower

than their linear counterpart by definition. When efficiency is more important than

effectiveness, linear kernels might be employed as well. In Section 3.4.3, we provide a

detailed comparison of linear kernel and the intersection kernel in terms of efficiency

and effectiveness.

Slight modifications on the SVM classifier have been proposed for a better video

event detection. Tang et al. (2012) use a latent structural SVM with a hinge loss

function (Felzenszwalb et al. 2010, Yu and Joachims 2009) to learn classifiers for

events. Ma et al. (2012) propose a SVM-like approach that fundamentally mines
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the correlation between the descriptors and the semantic information using example

videos. They compare their approach with a baseline where classifiers are learned

using a SVM with Gaussian and χ2 kernel. The same authors made use of a very

similar approach (Ma et al. 2013) where they learn correlations between the video

attributes and an event. In the paper, the semantic labels of external videos (e.g.,

web videos) are used as attributes in contrast to the conventional understanding of

attributes where they might be defined as adjectives such as “furry” (e.g., cat) or

discriminative phrases “dogs have it but sheep do not” and “has wheel” (Farhadi et al.

2009).

In addition to the SVM classifier, a few other techniques have been employed for

better video event detection. Shirahama et al. (2014) present a hidden conditional

random field approach to train a retrieval model. They compare their model with

SVM with two different pooling techniques (i.e., average and maximum). According

to their results, their method outperforms the SVM based retrieval models slightly.

Gkalelis and Mezaris (2014) propose a novel nonlinear discriminant analysis method

called generalized subclass discriminant analysis as an alternative to kernel based

SVMs. They show that their proposed method enables them to improve the retrieval

accuracy within the context of video event detection with exemplars. Mazloom et al.

(2013b) use a video as a query to retrieve videos similar to the query video. This

approach can be summarized as a k-nearest neighbor approach (i.e., finding similar

videos for a given video). Alternatively it can be considered “query by example” as in

“query by document” where a document is used as a query (Yang et al. 2009b) and

“query by image” in which search is based on an image or a visual sketch Snoek and

Worring (2008). Bhattacharya et al. (2014) also follow the same setting (i.e., query by

video) to discover minimally needed evidence to identify the presence of an event in a

video. Mazloom et al. (2014) use tag propagation for video event retrieval in a similar

setting.

26



The SVM classifier and a few variations have been employed in video event detection

studies. These studies have a commonality: using all of the available example videos to

train a retrieval model. It is often required to do so to generalize a query using example

videos. However, it might be insufficient if example videos do not always share common

concepts. For example, we might have “repairing an oven”, “repairing a refrigerator”,

and “repairing a dishwasher” as example videos for the “repairing an appliance” query.

For this example, we can learn general characteristics of “repairing an appliance” using

all available example videos. However, we would be discarding specific characteristics

of the individual examples. We address this issue by incorporating one-exemplar

models into video event detection. In addition to a global model that uses all available

example videos, we create several one-exemplar models each of which is trained using

one example. One-exemplar models are specific to their exemplar; therefore, we learn

specific characteristics of individual exemplars as well. In Chapter 4, we detail our

approach and show that our space efficient representation with query-independent

concepts can be improved by using one-exemplar models. Further, we have evaluated

our one-exemplar models using other descriptors to show that it is robust to multiple

descriptors and not only good for our method.

Malisiewicz et al. (2011) make use of a similar one-exemplar approach for object

detection. They create exemplar-based models each of which is trained on one positive

example for object recognition. Unlike their work, we focus on the video event

detection task and deal with videos. In another study, Can et al. (2014) incorporate

query-specific feedback into learning-to-rank models. They point out that models

that are trained on a single query provide statistically significant improvements on

the retrieval accuracies compared to using a standard learning-to-rank model which is

trained on multiple queries.
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2.1.5 Ranking

Once the concepts are detected and classifiers are trained, the issue is to rank test

videos according to their relevance to a given event query. For this purpose, test videos

are run against the classifiers. A classification score is obtained for each video. This

classification score is then used for ranking purposes. When multiple descriptors are

employed, multiple classification scores are obtained. These scores are fused to have a

final score for ranking. This approach is called “late fusion” where the classification

scores are combined.

Mazloom et al. (2013b) take the arithmetic mean of the classification scores to fuse

multiple scores. Tamrakar et al. (2012) use geometric mean to merge classification

scores. They also compare weighted combinations of the scores and point out that

tuning weights for each score does not change the final performance significantly. More

complicated methods than average mean and geometric mean are also employed in late

fusion. Natarajan et al. (2011) fuse classification scores using both Bayesian model

combination (BAYCOM) as well as a weighted-average method. Jiang et al. (2012)

focus on fusion of descriptors and concepts, that is based on collective classification.

They encode concepts into graphs and diffuse the scores on the graph for the final

fused prediction. In order to construct the graph, they make use of logarithmic

and exponential loss functions and two collective classification techniques: Gibbs

sampling and Markov random walk. They theoretically show that their method is

scalable. Oh et al. (2013) compare arithmetic mean, geometric mean, MFoW (i.e.,

Maximal-Figure-of-Merit) (Kim et al. 2012), and Expert Forest (Liu et al. 2012) fusion

methods and conclude that geometric mean and expert forest provide higher retrieval

accuracies than the others. Oh et al. (2014) focus on a MFoW-based fusion method

that is formulated in a linear discriminant function. Myers et al. (2014) evaluate a

number of fusion techniques such as arithmetic mean, geometric mean, and weighted

fusion methods. They note that arithmetic mean and geometric mean are the best
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fusion techniques in terms of retrieval accuracy. Besides, these methods do not require

additional steps to learn weights and can be applied directly to the classification scores.

Oneata et al. (2012) and Aly et al. (2013) learn the weights for each classification

score using part of the training set and their final score consists of a weighted sum

of the scores obtained using the classifiers trained on multiple descriptors. Yang and

Shah (2012) use sparse coding (Olshausen 2000) to perform late fusion but did not

detail their method. Modolo and Snoek (2013) choose arithmetic mean as their fusion

method. Lan et al. (2012) describe a fusion schema called double fusion that combines

early fusion and late fusion. Their main focus in this work is to mine the example

videos to find out the most discriminative features. Their experimental results show

that their fusion is better than its precedents. Even though there have been a number

of different methods used for late fusion, arithmetic and geometric mean are often

reported to be successful and simple methods for late fusion.

As an alternative to late fusion, “early fusion” is also employed (Ayari et al. 2011,

Bhattacharya et al. 2014, Natarajan et al. 2011; 2012, Tamrakar et al. 2012). In

contrast to late fusion, here fusion is performed before the classification step. In other

words, the histograms of the descriptors are concatenated and the merged histograms

are fed to the classifier for training. Ayari et al. (2011) indicate that early fusion

improves the retrieval accuracies more than late fusion. However, Tamrakar et al.

(2012) report that late fusion outperforms early fusion. There is no consensus on early

and late fusion within the context of video event detection with exemplars.

To sum up, simple techniques such as average mean and geometric mean seem

to be chosen over complicated methods. They do not require any additional steps

which might be costly. Further, none of the other methods have been shown to

be significantly and constantly better than these mean based techniques. For the

comparison of late over early fusion, there is no strong evidence to chose one over the

other. As a result they can be assumed equally effective. Keeping these motivations in
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mind, we prefer late fusion and arithmetic mean when we evaluate our one-exemplar

models in the context of fusion of multiple descriptors.

2.2 The Zero-Shot Case

Zero-shot video event detection is the problem of searching videos for a given event

query where no exemplars are available. Therefore, it is a challenging task. In contrast

to the video event detection with exemplars case, here we cannot take advantage of the

exemplars to train retrieval models. Therefore, we need to focus on a retrieval model

that bridges the text description of an event query and the semantic information that

we aim to extract from the video content. To this end, concepts are preferred over

descriptors since concepts are expected to carry more semantic information.

Unlike the video event detection with exemplars case, there have only been a few

papers on zero-shot video event detection. It might be partly because it is challenging

and therefore the retrieval accuracies are too low.

Early attempts were based on hand-crafted decision functions that map descriptors

to a single concept. For instance, Zhang et al. (1995) mainly focus on detecting “news

anchor person” in news videos.

The number of concepts has increased to handle different types of queries in recent

studies. For example, Dalton et al. (2013) use multiple modalities to tackle zero-shot

event detection problem. They use text extracted from videos, texts recognized in

the speech of their audio track, as well as concepts in videos for zero-shot video event

detection. They also expand the queries and use relevance feedback for a better

retrieval. Similar to Dalton et al. (2013), Jiang et al. (2014) also focus on relevance

feedback. They propose a multimodal pseudo relevance feedback method for event

search in videos and evaluate their method on different descriptors such as audio

speech recognition and video optical character recognition (OCR). Similar to Dalton

et al. (2013), Younessian et al. (2012) focus on automatic speech recognition (ASR)
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transcripts as well but they are more interested in acoustic concept indexing and ASR

then multimodal approach. They propose an adaptive semantic similarity approach

to measure textual similarity between ASR transcripts.

Chen et al. (2014) propose an automatic semantic concept discovery scheme by

exploiting Internet images and their associated tags. They report that their discovery

technique provides promising results on the multimedia event detection task without

examples.

Rastegari et al. (2013) focus on bi-concepts for image search. They analyze bi-

concepts by searching for concept pairs where a joint classifier is more accurate than

their individual counterparts. Mazloom et al. (2013a) use a similar idea in video event

detection. They propose bi-concepts where a concept detector is created to cover a pair

of concepts. For example, they create a “cat and food” concept that is created using

examples having “cat” and “food” together. Concept combinations are practically

defined as concept co-occurrences in annotations. Therefore, it is no different than

creating yet another concept detector that is tuned to only fire when “cat and food”

exist together in a video. The main issue here is that bi-concepts are carved for very

specific queries. For example, “cat and food” might provide a strong evidence for

the “feeding a cat” query. However, we cannot use this concept for “petting a cat”.

Further, finding examples to create a “cat and food” detector might be harder than

finding examples with “cat” and “food” individually.

In a similar work, Habibian et al. (2014) expand the idea of bi-concepts in video

event detection. They make use of both ‘and’ and ‘or’ logic operations to combine

concepts compared to using only ‘and’ operator (Mazloom et al. 2013a). They also

combine individual concepts after creating the detectors. This is different than the

work of Rastegari et al. (2013) and Mazloom et al. (2013a) where joint detectors are

created. In their work, they identify concepts to be combined based on training data

for each query. This work gets closer to be a video event detection with exemplars
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work rather than a zero-shot detection work as concepts to be combined are identified

using a number of example videos.

Unlike the previous work, we provide an Markov random field (MRF) based

retrieval model that exploits the spatial- and temporal-dependencies in addition to the

individual occurrences of concepts that have not been studied previously. Exploiting

dependencies of concepts enables us to capture the concept - video relations better.

In this way, we provide better coverage for different types of queries. Our dependency

work is based on individual concepts (not joint concepts like Rastegari et al. (2013)

and Mazloom et al. (2013a)) and does not require example videos to select concepts.

We also provide three different ways to use the concept detection outputs. We

first quantize concept detector outputs into presence/absence information and use

the frequency of occurrences of present concepts in our estimations. In addition

to quantization, we also use the concept detector output scores directly. The first

approach might eliminate some noise but might also trim some useful information.

Unlike the first approach, the latter one does not trim any useful information. However,

it does not remove any noise either. Our final approach considers these approaches

together aiming at leveraging advantages of both methods. In Chapter 5, we detail

the ways we used in our estimations and show that the final approach improves the

retrieval accuracies of the first two approaches.

2.3 Multimedia Event Detection Track

The TRECVID Multimedia Event Detection (MED) Track started in 2010. It aims at

searching multimedia recordings (e.g., videos with audio) to satisfy an information

need. This need, for this task, is defined to be user-defined events that are based

on pre-computed metadata (Over et al. 2010). Multimedia event detection is an

extended version of its precedents including video retrieval. These extensions include,

but are not limited to, the definition of an information need. While video retrieval
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does not shape the limits of a query, the MED Track requires that a query be related

to an event, a complex activity, involving people interacting with other people and/or

objects, and consisting of several actions/activities (Jiang et al. 2013, NIST 2012,

Over et al. 2010). Further, an information need is also defined to contain not only a

textual description of a query (e.g., “a birthday party”) but also several explanatory

metadata items such as definition and explication.

Even though the ultimate goal is to reach the point where we can produce a system

which retrieves videos relevant to an event query without supervision, the track has

also another subtask: MED with exemplars where we can gain knowledge from the

exemplars and use that to provide better ad-hoc MED. In addition to detection of

an event, identifying its location in the video (e.g., event recounting) is also targeted

in the track. Considering these tasks, extracting concepts (e.g., objects and actions)

from videos is highly encouraged as concepts are expected to provide semantically

meaningful information about the content of videos. Using semantically meaningful

information might help us on ad-hoc MED and event recounting.

Evaluations were required to be provided in terms of missed detection rate by

false alarm rate in the beginning of the track. Information retrieval (IR) evaluations

including average precision, have been preferred later. In addition to evaluation metrics,

test and training sets evolved drastically throughout the track. More videos and queries

have been added to the evaluation sets every year, which makes it challenging to settle

upon a standardized dataset, forcing researchers to come up with their own settings.

It is, therefore, possible to see multiple inconsistent settings in the literature. For

example, Mazloom et al. (2013b) focus on a set that consists of approximately 9,000

videos. The same authors in the same year but in a different study focus on a set

of approximately 35,000 videos (Mazloom et al. 2013a). Further, for the MED with

exemplars case, the number of positive examples is also affected by consistently growing
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datasets. Fortunately, a good amount of effort has been dedicated to standardize the

evaluation settings for the track.

The highest retrieval accuracies are obtained by blending results of multiple

descriptors. Jiang et al. (2010) started to blend results of multiple descriptors within

the context of VED. They discover that fusing results of SIFT descriptors, spatio-

temporal interest points, and MFCC audio features yield higher retrieval accuracies

compared to considering them individually. Many researchers now fuse results of

multiple descriptors especially before their formal evaluation submissions.

There has been also a formal evaluation every year. Multiple research teams

participated in this evaluation by providing their results on a pre-determined evaluation

set and queries by NIST. Then, NIST announces the results. Our work has been

part of the research team compiled at University of Massachusetts Amherst mostly

partnering with SRI International. Therefore, our work is aligned with the tasks

provided by the track. In the following, we will explain the impact of the track on our

work.

2.3.1 MED Tasks vs. Our Work

In our experiments, our main focus is on video event detection (VED) rather than

multimedia event detection, where we eliminate the audio and textual modalities while

ranking videos as our core contributions are centered around the visual modality. As

in the MED track, we focus on two major sub problems: video event detection with

exemplars (VED-ex) and video event detection with no exemplars (VED-zero). In

addition to focusing on the same sub-problems, some of our design choices are also

based on the requirements of the track. Below we explain these choices.

Concept Selection: The core aim in the track is to be able to retrieve videos relevant

to an event query without any supervision. In order to achieve this, we are encouraged
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to extract semantic information from videos. For this purpose, we focus on concepts

(e.g., objects and actions) in videos for both sub tasks (i.e., VED-ex and VED-zero).

For VED-ex, we compile our own concepts each of which is created using static

images. To do so, we first collect a number of images from a large database of images

(Image-Net 2014). After collecting the images, we extract descriptors from those

images, which is followed by training classifiers specific to their concepts (i.e., concept

detectors). We detail this process in the following chapter (see Section 3.3.2).

The images on ImageNet are human-annotated and they mostly represent an

object. “Airplane, umbrella, magnifying glass, pumpkin, leopard, toyshop, and bean”

are instances of these concepts. The concepts we use in Chapters 3 and 4 are created

using images from this database. We state that we make use of query-independent

concepts within the context of VED-ex and the concepts are selected without any

prior knowledge to queries and bias. Therefore, it might be difficult to reason using

the “magnifying glass” concept to identify videos relevant to a query that is totally

unrelated with it. However, in the next chapter we show that labels of concepts have

little effect on retrieval accuracy within the context of VED-ex. Note that, these

query-independent concepts and sparse representation are part of our submission to

the track in 2012 and 2013.

Our claim of using query-independent concepts works for only VED-ex. For the

other task, VED-zero, we select a number of concepts for each query. As VED-zero is

more challenging compared to VED-ex, we borrow action-based concepts from our

partners (SRI International and UCF). They make use of existing action recognition

sets: HMDB (Kuehne et al. 2011) and UCF101 (Soomro et al. 2012), while creating

their concepts. These concepts are mostly for generic actions such as “running”. They

created 152 action-based concepts from these sets. In addition to existing sets, as

encouraged by the early years of the TRECVID MED track, some of their concepts

are inspired by known queries. In other words, they first go over the description of
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an event query and determine the concepts to be created for this query. They then

create the selected concepts. Therefore, it is not surprising to get a concept labeled

as “cutting a tree”, which is dedicated to the “felling a tree” event query. These

action-based concepts did not have a brief description as we have for the concepts we

created using ImageNet. However, human annotators added brief descriptions to some

of the action-based concepts. In our work, we create a dictionary of concepts using all

of these concepts, that includes these specific concepts as well as a number of generic

concepts such as “running”. Rather than manually determining the concepts to be

used for a query considering our prior knowledge, we automatically detect a subset

based on textual similarity of concept labels and query description. We detail this

automatic approach in the chapter where we introduce our VED-zero approach (see

Section 5.1.1).

Evaluation Settings: In our experiments, we aim at using the standardized sets and

queries. To do so, we use the most recent data made available by NIST for the track.

The training sets used in this study are EK100 where each query has 100 example

videos, and EK10 in which each query has 10 example videos. We make use of EK100

in the evaluation of our QIC and sparse representation. EK10 meets our needs for

evaluating one-exemplar models. As the test bed, we focus on a set of approximately

27,000 videos with 30 queries, that is the most recent publicly available test bed for

the track. We provide experimental results in terms of average precision (in percent)

as it is the most recent decision in the track and standard in IR. More information

about our experimental settings is provided in the next chapter while introducing the

experimental environment (see Section 3.3).

Space and Time in Event Queries: When we analyze the queries provided by

NIST, it sometimes might be difficult to see queries explicitly matching with the

official definition (i.e., a complex activity occurring at a specific time and space). For
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example, while the definition of the “landing a fish” query states that the “landing

a fish” event takes place on or at the shore of a body of water, it does not provide

information about its “time”.

Extracting “space” and “time” information from a definition of a query is rather

complicated. Therefore, using “space” and “time” information in our approaches is

also difficult. In our work on dependencies, we treat the “place” constraint as two

concepts occurring at the same location at the same time (i.e., same frame). The

“time” constraint is treated as concepts co-occurring in an order (e.g., “landing a fish”

is expected to be following a “catching a fish”). We detail our spatial and temporal

concepts in the last chapter (see Section 5.1.2). Note that our work for VED-zero was

used as part of the submission to the track in 2014.
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CHAPTER 3

VIDEO EVENT DETECTION
USING QUERY-INDEPENDENT CONCEPTS

This decade has seen an upsurge of interest in video event detection. Motivated by

the importance of this task, we identify some shortcomings of recent approaches and

provide solutions to address them.

In this chapter, we investigate query-independent concepts as an alternative to

selecting concepts based on queries. In particular, we show that query-independent

concepts can be used as an alternative to query-dependent concepts without sacrificing

the effectiveness of video retrieval. Using query-independent concepts enables us

to skip the concept selection step, which is an inevitable step for query-dependent

concepts. This is especially important when new concepts are needed to be created

(e.g., in case the selected concepts are not in the vocabulary) as creating new concepts

can be very time consuming.

Another shortcoming of recent approaches is the non-sparse representation of

videos. While using all concepts to represent videos is a common practice in VED-ex,

it has a drawback: final representations are dense; therefore, they are costly to store

on the disk and expensive when training/testing retrieval models. To address this

issue, we provide a space-efficient technique to represent videos using concepts.

In the following, we first detail query-independent concepts and then explain the

details of our space-efficient technique. Next, we present the experimental results and

discussion, which are followed by an extended analysis of our approach in terms of

concept detection, classifier choice, and parameter selection.
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3.1 Query-Independent Concepts (QIC)

In the video event detection problem, several concepts are used to represent a video

since events are defined to be complex activities. One of the challenges in this problem

is the selection of concepts.

Recent approaches focus on selecting concepts based on underlying queries (Chen

et al. 2014, Jiang et al. 2012; 2013). For example, Chen et al. (2014) identify a set of

possible concepts for a given query then use these concepts for video event detection.

In this case, a new query requires revisiting the concept selection process. This process

is expensive particularly when new concept detectors need to be created.

As an alternative to query-dependent concepts, we hypothesize that concepts that

are selected independently from the queries can be used for video event detection. In

this way, higher efficiency can be achieved. We also claim that using query-independent

or query-dependent concepts is not a factor for the effectiveness of video retrieval.

To integrate query-independent concepts in video event detection, we create a

fixed set of concepts selected without prior knowledge of the queries and use that set

of concepts for any query. Using a fixed set of concepts enables us to save time since

we do not have to construct a new set of concepts for each query. This is important

as it enables us to skip the concept selection process for a new query. For example,

while Chen et al. (2014) need to spend time to construct a new set of concepts for

every new query, we use the same set of concepts for all queries. Note that when we

construct the fixed set of concepts, we do not require that concepts have semantic

relationships with queries. Therefore, the selected concepts might be semantically

irrelevant to some queries.

Representing a video with a set of predefined concepts is motivationally similar to

representing an object with other objects in object recognition (Cusano et al. 2012,

Torresani et al. 2010). Further, word embeddings, a recent and fast-paced growing

topic, stem from a similar idea: words are mapped to vectors, where distributional
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similarities of words are used to describe the target word (Mikolov et al. 2013, Socher

et al. 2013, Turian et al. 2010). An older type of word embedding—latent semantic

analysis (LSA)—learns semantic word vectors as well (Deerwester et al. 1990, Maas

et al. 2011).

In word embeddings, the vectors are often (or at least claimed to be) semantically

similar to the target word. In object recognition, Torresani et al. (2010) use a set of

objects to describe another object. They claim that a distribution of the outputs of a

set of object detectors may be used to describe an object. For example, they report

that “helmet,” “sports track,” “cake pan,” “collectible,” and “muffin pan” are observed

to be important objects while describing a “cowboy hat” in their work. Cusano et al.

(2012) embellish their idea, making the claim that the label of a pre-defined category

adds nothing to the classifier trained specific to this category. They group the examples

of objects considering their visual characteristics rather than their labels. They revisit

an important observation from (Torresani et al. 2010): “we work on the assumption

that modern category recognizers are essentially quite dumb: so a swimmer recognizer

looks mainly for water texture, and the bomber plane recognizer contains some tuning

for the ‘C’ shapes corresponding to the airplane nose and perhaps the ‘V’ shapes at

the wing and tail”. Cusano et al. (2012) claim, on top of this observation, that the

labels add nothing to the final recognition as the labels do not have direct implications

on the recognizers.

Query-independent concepts center around a similar idea. Videos relevant to an

event query are expected to be somewhat visually similar to each other. Therefore,

the concepts with a high detection confidence on those videos should also be similar

to each other independent of their semantic labels. Concept detectors are basically

classifiers that we train. A concept detector may fire not only when we have that

particular concept but may also have a reasonable response when other concepts are

present. This stems from the idea that these detectors are responding to certain visual
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features or elements of the picture but not necessarily the semantics. Experimentally,

we observe that the distribution of the responses of concept detectors (even those

which are not semantically related to the concept) often respond consistently to certain

video events.

For example, we learn from the example videos that detecting the cκ concept is

more likely than the cτ concept in videos relevant to the “horse riding competition”

event query. When we rank videos according to their relevance to this query, we put

videos that are rich in terms of the cκ concept on the top ranks, while pushing the ones

loaded with the cτ concept to the bottom ranks. Knowing the semantic labels of cκ and

cτ adds nothing to the ranking. In our approach, we compile a fixed set of concepts

by randomly selecting concepts from a large concept pool. No semantic knowledge

from the queries and concepts is involved in this process. Therefore, the concepts are

query-independent concepts. The size of this fixed set of query-independent concepts

is decided by tuning.

Later in this chapter (Section 3.4.1), we show that our hypothesis holds by showing

that we are able to obtain comparable retrieval accuracies using a set of query-

independent concepts compared to the ones obtained using their query-dependent

counterparts. So far, we have detailed the query-independent concepts, next we explain

our space-efficient representation that we use with query-independent concepts.
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Figure 3.1. Sample video frames of the “horse riding competition” event.
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3.2 Space-Efficient Representation

To detect concepts in videos, we need detectors specific to their concepts. One way of

learning a concept detector is to acquire a number of examples relevant to this specific

concept and use these examples to learn such a concept detector (Vijayanarasimhan

and Grauman 2011). For example, in order to create an airplane detector, we can

make use of the images provided in Figure 3.2 (see Section 3.3.2 for details of learning

concept detectors).

Figure 3.2. Sample airplane images.

A concept detector should detect or measure the likelihood of that particular

concept in a video. In other words, the output score of a concept detector indicates

the chance of observing that particular concept in a video.

It is common to detect concepts at frame or video clip level in video event detection

since concepts capture simple actions, or objects. Videos contain several video clips

(i.e., short clips of video) and many frames (a usual video is recorded at 24 frames

per second FinalCutPro7-Documentation (2015)). Therefore, multiple scores (e.g.,

from different parts of a video) of a concept detector are obtained for a video. The

chance of observing a concept is then calculated by considering a combination of these

multiple scores. This process is called “pooling”. For example, Cheng et al. (2012),

Jiang et al. (2013), Liu et al. (2013a) use average and maximum pooling of scores over

frames.

Assume we have scores as provided in Table 3.1, then the final representation of a

video with average and maximum pooling becomes as shown in Table 3.2.
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Table 3.1. Concept detector scores Φi of the concepts {c1, c2, ..., c10} at video frames
v1 to v5.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

v1 0.13 0.20 0.04 0.04 0.07 0.12 0.19 0.03 0.02 0.15
v2 0.08 0.20 0.07 0.05 0.06 0.10 0.06 0.07 0.21 0.11
v3 0.17 0.11 0.10 0.04 0.09 0.02 0.12 0.07 0.17 0.12
v4 0.15 0.18 0.07 0.07 0.05 0.07 0.21 0.12 0.01 0.07
v5 0.06 0.10 0.04 0.08 0.16 0.07 0.15 0.09 0.16 0.08

Table 3.2. Final representation calculated by pooling the scores in Table 3.1 over
frames.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Avg. Pooling 0.12 0.16 0.06 0.06 0.09 0.08 0.15 0.08 0.11 0.11
Max. Pooling 0.17 0.20 0.10 0.08 0.16 0.12 0.21 0.12 0.21 0.15

The main issue with these pooling techniques is that the final representation of a

video is non-sparse. In the example above, there are ten concepts (|C|= 10) and the

final representation with average or maximum pooling has ten non-zero values. Sparse

representations require less space than their dense counterparts. Further, training a

retrieval model using a non-sparse representation takes more time than the sparse

ones.

We address these space and time problems by considering only a small num-

ber of highly responsive concepts. In this way, the final representation of a video

becomes sparser compared to using all concepts. Representation of a video H =

{H1, H2, ..., H|C|} with our space-efficient technique can be computed as follows:

Hi =
∑
t

ϕ(ci, vt, k) (3.1)
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where ϕ(ci, vt, k) is defined to be:

ϕ(ci, vt, k) =


1, Φi(t) ≥ Φk(t)

0, otherwise

(3.2)

where Φi(t) is the detector score for the concept ci at video frame vt and Φk(t) is the

kth maximum score in video frame vt. By using the equation above, we assume the

presence of only k concepts in each frame. Note that these k concepts will change for

each frame. However, the final representation does not become a dense representation

(see Section 3.4.3.3 for details). k is often tuned to a small number such as 10 or 20 per

frame where the total number of possible concepts is a large value (e.g., 1,000). Since

only k (where k << |C|) concepts are considered for each frame, the representation

becomes very sparse which enables us to have efficient training and testing.

When we consider the scores in Table 3.1, our space-efficient representation where

k = 3 only considers the concepts below in each frame:

v1 → {c2, c7, c10}

v2 → {c2, c9, c10}

v3 → {c1, c7, c9}

v4 → {c1, c2, c7}

v5 → {c5, c7, c9}

Using Equations 3.1 and 3.2, the representation of the video, H, becomes:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

H 2 3 0 0 1 0 4 0 3 2

where each bin corresponds to a concept. For example, the 1st column (H1 = 2)

indicates that c1 occurs two times (above the threshold) over the frames v1 to v5, and

c3 does not occur at all (H3 = 0). In the example above, the number of non-zero values
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is six, whereas it was ten with average and maximum pooling. Our space-efficient

technique provides a sparser representation.

After constructing this representation of the videos, we normalize the representa-

tions since the videos have different lengths ranging from 1 second to 4,000 seconds

in our data. (The average length of videos is approximately 110 seconds where the

standard deviation is approximately 162 seconds. This shows that the variance in the

video lengths is very large, motivating our choice to normalize video representations

so that comparing them will be easier and more accurate.)

We make use of a normalization technique that is based on the maximum term-

frequency normalization used in Information Retrieval (Baeza-Yates et al. 1999), also

known as L∞ normalization. The main motivation stems from the assumption that

higher frequencies of concepts are observed in longer videos since longer videos tend

to repeat the same patterns over and over. Furthermore, we also take the logarithm

of the values due to the large variance in video lengths. The normalization technique

used in the space-efficient technique is as follows:

H ′i =
log (Hi)

log (max (H1, H2, ..., H|C|))
(3.3)

where H ′ is the normalized representation of Hi.

No spatial layout is enforced for simplicity while detailing our space-efficient

representation. Lazebnik et al. (2006) point out that considering spatial layout

increases the descriptive ability of descriptors. They state that without considering the

spatial layout it is difficult to differentiate an object from its background. They also

note that other solutions to this difficult issue—such as generative part models (Fei-

Fei et al. 2007, Fergus et al. 2003)—are often computationally expensive. Their

approach involves repeatedly subdividing the image and computing histograms of
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local features at increasingly finer resolutions. Spatial layouts have been shown to

be successful (Bosch et al. 2007, Griffin et al. 2007, Lampert et al. 2008, Yang et al.

2009a). In our representation, we also make use of a spatial layout as illustrated in

Figure 3.3. We use the video frame itself (level0 = {r0}), the video frame divided into

four regions (level1 = {r1, r2, r3, r4}), and the video frame divided into sixteen regions

(level2 = {r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20}). For each region

we calculate its own representation, each of which are then concatenated for the final

representation.

r20

r18

r12

r10r9

r11

r17

r19r16

r14

r8

r6r5

r7

r13

r15

r1
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r2

r0
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Figure 3.3. Illustration of spatial layout used in our representation.

So far, we have detailed the query-independent concepts with a space-efficient

representation for the video event detection with exemplars problem. Next, we

introduce our experimental setup. We follow this with the experimental results and

discuss them.

3.3 Experimental Setup

Before we provide the experimental results, we introduce our experimental environment

starting with the datasets and queries used for evaluation purposes.
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3.3.1 Datasets and Event Queries

We evaluated query-independent concepts with a space-efficient representation on a

collection of 30 event queries and approximately 27,000 test videos (referred to as

MEDTEST, see Table 3.3). Note that 27,000 videos is a larger collection compared to

recent action recognition datasets which contains in the range of 5 to 10 thousand videos

(e.g., HMDB (Kuehne et al. 2011)). Further, 27,000 videos correspond approximately

to 3 million frames/clips.

Retrieval models for the 30 event queries in Table 3.3 are trained using 100 example

videos per query and 5,000 non-relevant videos (referred to as EK100). The queries

and the datasets are used in the evaluation of NIST’s TRECVID Multimedia Event

Detection track (Jonathan Fiscus 2014). Note that the event queries from E16 to E20

are officially not released.

Apart from MEDTEST and EK100, a small development set (referred to as

TINYSET) is also created for tuning parameters such as the concept vocabulary size

|C|= 1, 000 and the number of concepts to be considered at each frame k = 10.

3.3.2 Concept Detection

Representing videos with a set of concepts requires concept detectors. In order to

create concept detectors, we first need to extract characteristic features of sample

images. For example, we can compute gradient orientation distributions on corner

points (e.g., nose, end of wings, joints of body and wings) or alternatively on densely

sampled points (e.g., every 5 pixel horizontally and vertically) in the airplane images

provided in Figure 3.4. We can make use of well known descriptors such as SIFT (Lowe

1999), SURF (Bay et al. 2008), FREAK (Alahi et al. 2012), and BRIEF (Calonder

et al. 2012) for this purpose. In Figure 3.5, we illustrate the gradient orientation

distributions of the nose of an airplane. According to the illustration, gradients in the

north-east, east, and south-east orientations are the ones having the largest magnitude.
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Table 3.3. Id, title, and number of relevant videos of each query in MEDTEST.

Id Title # relevant videos

E6 Birthday party 186
E7 Changing a vehicle tire 111
E8 Flash mob gathering 132
E9 Getting a vehicle unstuck 95
E10 Grooming an animal 87
E11 Making a sandwich 140
E12 Parade 234
E13 Parkour 104
E14 Repairing an appliance 78
E15 Working on a sewing project 81
E21 Attempting a bike trick 16
E22 Cleaning an appliance 23
E23 Dog show 20
E24 Giving directions to a location 27
E25 Marriage proposal 33
E26 Renovating a home 33
E27 Rock climbing 18
E28 Town hall meeting 19
E29 Winning a race without a vehicle 22
E30 Working on a metal crafts project 21
E31 Beekeeping 28
E32 Wedding shower 28
E33 Non-motorized vehicle repair 26
E34 Fixing musical instrument 23
E35 Horse riding competition 29
E36 Felling a tree 25
E37 Parking a vehicle 20
E38 Playing fetch 22
E39 Tailgating 27
E40 Tuning musical instrument 26

Then using a machine learning algorithm such as support vector machines (SVM), we

can learn the discriminative gradient orientation distributions specific to airplanes so

that we will be able to calculate the likelihood of observing an airplane in an image.

In our case, we first extract densely sampled (i.e., every 5 pixels) SIFT—denseSIFT—

descriptors from static images. A SIFT descriptor is a 128-dimensional vector in-

dicating the gradient distributions at a point. The vector is normalized; therefore,
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Figure 3.4. Sample airplane images.

Figure 3.5. An illustration of gradient orientation distributions of the nose of an
airplane.

SIFT is invariant to scale, rotation, and partially to the viewpoint of the camera

and illumination (Lowe 2004). We use the implementation of Vedaldi and Fulker-

son (Vedaldi and Fulkerson 2008) to extract denseSIFT descriptors. The next step is

to quantize the extracted descriptors into visual words. To do so, we randomly choose

a large number of denseSIFT descriptors (from static images), each of which is a 128-

dimensional vector. We then cluster these descriptors. These clusters are also known

as a “codebook” or “visual vocabulary” (Zhang et al. 2010). A denseSIFT descriptor

is assigned to the visual word that is the closest cluster centroid to this descriptor

(in terms of L2 distance). Finally, each image is represented by frequencies of these

“visual words”. This method is known as “bag-of-words” (Fei-Fei and Perona 2005).

After representing images by frequencies of visual words, we feed these “bags-of-words”
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representations to a SVM classifier for training concept detectors. Next, we run these

detectors against the videos to measure the likelihoods of observing these concepts in

videos, which will be used to create representation of videos. These representations

are used in training/testing a retrieval model.

3.3.3 Training a Retrieval Model

For each query in our collection, we train a retrieval model using example videos

as well as non-relevant videos in the EK100 dataset. The retrieval model is trained

using a SVM classifier with an intersection kernel. The intersection kernel has been

used commonly as a kernel for SVM in computer vision applications ranging from

image annotation to action recognition (Can and Manmatha 2013, Wang et al. 2009).

It is based on the histogram intersection approach proposed for color indexing with

application to object recognition by Swain and Ballard (1991). The intersection kernel

for two vector HA and HB is defined as follows:

K(HA, HB) =
∑
i

min (HA
i , H

B
i ) (3.4)

where HA
i is the ith bin for the vector HA (in other words ith feature value), and

similarly HB
i for HB.

Even though a SVM classifier is a classification algorithm, it can also be used

for ranking purposes. SVM classifiers are two-class classification algorithms which

often produce binary decisions: relevant if sign(f(x)) is larger than zero or otherwise

non-relevant where f(x) is the decision function. A decision function of a non-linear

kernel is as follows (Joachims 1999, Maji et al. 2008):

f(x) =

#sv∑
j=1

αjK(x, zj) + b (3.5)
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where #sv is the total number of support vectors, K is the mapping function (e.g.,

map data to another presumably higher dimension), x is a descriptor vector of an

example (e.g., representation of a video, H, in our case), zj is a support vector, and

αj is a set of coefficients for the support vector zj. In the case of a SVM classifier

with a linear kernel, the mapping function is the dot product of x and zj. In order

to rank videos, we, as does the rest of the community, use f(x) for ranking purposes

when we use a SVM classifier.

3.3.4 Evaluation

After training a model, we run test videos against the trained model. The output

scores of this process are used for ranking purposes. The evaluation of the ranked

lists obtained by running our retrieval models is performed by using the relevance

judgment released by NIST and the trec eval (http://trec.nist.gov/trec_eval)

tool. Average precision (in percent) and mean average precision (in percent) are used

as evaluation metrics in our experiments.

Here, we provide our design choices (i.e., concept detectors, classifier choice, and

parameters) that we use in our experiments. We also provide an extended analysis

of our design choices, after providing results and discussion, detailing how we choose

them and why we choose them (see Section 3.4.3).

3.4 Experiments and Discussion

We first show that we are able to obtain comparable retrieval accuracies with query-

independent concepts compared to using query-dependent concepts. We then investi-

gate the efficiency and effectiveness of our space-efficient representation comparing it

to the techniques that use all concepts.
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3.4.1 Query-Independent Concepts (QIC) vs.

Query-Dependent Concepts (QDC)

We first compare our results with the results of Chen et al. (2014) since it is a recent

and quite successful work on video event detection using query-dependent concepts.

To select query-dependent concepts, they first extract nouns and verbs from the event

descriptions (an example event description is provided in Figure 3.6) using a natural

language processing tool kit (Bird 2006). Then, they form a noun-verb pair using

a noun and a verb extracted from the textual description of an event query. Next,

they use a number of noun-verb pairs as a textual query to perform a text-based

image search on image databases such as Flickr and Image-Net (they mention that

the images crafted from Flickr provide better video event detection results compared

to images obtained from other sources). Next, they filter the images that might have

no visual meaning. They give “economy” as an example and note that this concept

is highly abstract, making it difficult to train detectors for it. To remove the image

categories having no visual meaning, they measure the accuracy of the concepts using

a cross-validation technique.

Event name: Making a sandwich

Definition: Constructing an edible food item from ingredients, often including one or more slices of bread plus fillings.

Explication: Sandwiches are generally made by placing food items on top of a piece of bread, roll or similar item, and placing
another piece of bread on top of the food items. Sandwiches with only one slice of bread are less common and are called ”open
face sandwiches”. The food items inserted within the slices of bread are known as ”fillings” and often include sliced meat,
vegetables (commonly used vegetables include lettuce, tomatoes, onions, bell peppers, bean sprouts, cucumbers, and olives),
and sliced or grated cheese. Often, a liquid or semi-liquid ”condiment” or ”spread” such as oil, mayonnaise, mustard, and/or
flavored sauce, is drizzled onto the sandwich or spread with a knife on the bread or top of the sandwich fillers.

Evidential description:
scene: indoors (kitchen or restaurant or cafeteria) or outdoors (a park or backyard)

objects/people: bread of various types; fillings (meat, cheese, vegetables), condiments, knives, plates, other utensils

activities: slicing, toasting bread, spreading condiments on bread, placing fillings on bread, cutting or dishing up fillings.

audio: noises from equipment hitting the work surface; narration of or commentary on the process

Figure 3.6. An example textual description of a query.
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In Table 3.4, we compare the retrieval accuracies of query-independent concepts

(QIC) with our space-efficient representation and the query-dependent method of Chen

et al. (2014) (CSI). MEDTEST is used as a test set and EK100 is used for training.

Note that Chen et al. (2014) evaluate their method on twenty queries.

Table 3.4. Experimental results of Query-Independent Concepts (QIC) with space-
efficient representation and the query-dependent method of Chen et al. (2014), Con-
cepts learned from Selected Images (CSI). Test set: MEDTEST; Training set: EK100.
Results are provided in terms of average precision (in percent).

E. Id and Name CSI(Chen et al. 2014) QIC

E6 Birthday party 7.5 13.5
E7 Changing a vehicle tire 26.0 26.7
E8 Flash mob gathering 33.0 61.7
E9 Getting a vehicle unstuck 30.0 30.2
E10 Grooming an animal 6.0 17.5
E11 Making a sandwich 10.0 14.7
E12 Parade 17.5 29.9
E13 Parkour 20.2 31.5
E14 Repairing an appliance 20.3 35.5
E15 Working on a sewing project 12.5 16.5
E21 Attempting a bike trick 2.5 7.3
E22 Cleaning an appliance 2.0 15.9
E23 Dog show 30.0 28.2
E24 Giving directions to a location 12.0 3.6
E25 Marriage proposal 1.0 5.1
E26 Renovating a home 7.2 11.1
E27 Rock climbing 11.5 4.9
E28 Town hall meeting 21.0 24.9
E29 Winning a race without a vehicle 12.5 22.8
E30 Working on a metal crafts project 7.2 13.5

Avg. 14.5 20.8

Chen et al. (2014) argue that the query-dependent concepts are better compared

to concepts learned from random images. In Table 3.4, we show that we are able to

obtain superior effectiveness with query-independent concepts to the ones obtained

using query-dependent concepts (see Table 3.5 for sample concepts used in CSI for
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the “making a sandwich” query and of query-independent concepts). While we have a

retrieval accuracy of 20.8%, query-dependent concepts are able to provide a retrieval

accuracy of only 14.5%: that is a 43% relative improvement. This is a statistically

significant improvement (p=0.002). Further, on seventeen events out of twenty, our

query-independent concepts outperform Chen et al. (2014)’s query-dependent concepts.

Table 3.5. Example concepts of Chen et al. (2014) for the “E11:making a sandwich”
event query and our query-independent concepts. Note that there are 1,000 concepts
but we only show five for illustration.

Method E11:making a sandwich

CSI(Chen et al. 2014) sandwich, food, bread, cooking, cheese

QIC magnifying glass, pumpkin, leopard, toyshop, bean

Even though our and Chen et al. (2014)’s experimental settings are quite similar,

in order to be sure that the effectiveness of query-independent concepts is not due

to other reasons such as the source of images, we also compare query-independent

concepts with query-dependent concepts within our environment. To do so, we repeat

a similar concept selection process of Chen et al. (2014) based on queries and compare

it with query-independent concepts. We identify concepts expected to be relevant to

events by querying noun phrases in a query description against the textual information

of concept. The resulting ranked list consists of the concepts sorted according to their

relevance to an event query.

Identification of Query-Dependent Concepts: We collect sample images to

train concept detectors from Image-Net (www.image-net.org). Each category (i.e.,

concept) has a brief description and a title (provided by ImageNet). For example,

for images titled “microflora”, the brief description is “microscopic plants; bacteria

are often considered to be microflora.” For the query in Figure 3.6, the nouns such

as “sandwich,” are used to rank the concepts according to their relevance which is
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a similar approach to the one used by Chen et al. (2014). In other words, we run

these phrases against the concept titles and descriptions (provided by ImageNet) using

standard IR approaches of query-likelihood modeling without query expansion to rank

the concepts according to their estimated relevance to the “making a sandwich” query.

Then we accept the top m concepts as the relevant concepts to the given query. The

nouns are extracted using a part-of-speech tagger (Klein and Manning 2003). We

provide a few top concept retrievals for the “making a sandwich” query in Table 3.6.

Table 3.6. Top concept retrievals for the “making a sandwich” event query.

ImageNet Title ImageNet Description

gyro a Greek sandwich: sliced roast lamb with
onion and tomato stuffed into pita bread

garlic bread French or Italian bread sliced and spread with
garlic butter then crisped in the oven

French toast bread slice dipped in egg and milk and fried;
topped with sugar or fruit or syrup

dip tasty mixture or liquid into which bite-sized
foods are dipped

chicken sandwich a sandwich made with a filling of sliced
chicken

In Table 3.7, we compare query-independent concepts with query-dependent con-

cepts within our settings. In the experiments, all the settings are the same except the

concept selection process. For query-dependent concepts, a different set of concepts

are selected for every query (e.g., gyro, garlic bread, french toast, dip, and chicken

sandwich are some sample concepts selected for the “making a sandwich” query).

MEDTEST is used for evaluation of both methods and EK100 is used for training.

Unlike the previous case, here we consider thirty queries: E6 to E40 since Chen et al.

(2014) provide results for only E6 to E30.

Among fourteen events out of thirty, query-dependent concepts outperform their

independent counterparts. While we obtain a mean average precision of 19.4% with
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Table 3.7. Experimental results of Query-Independent Concepts (QIC) with space-
efficient representation and the Query-Dependent concepts (QDC) with space-efficient
representation. Test set: MEDTEST; Training set: EK100. Results are provided in
terms of average precision (in percent).

E. Id & Name QDC QIC

E6 Birthday party 13.4 13.5
E7 Changing a vehicle tire 29.3 26.7
E8 Flash mob gathering 62.0 61.7
E9 Getting a vehicle unstuck 28.2 30.2
E10 Grooming an animal 14.3 17.5
E11 Making a sandwich 13.7 14.7
E12 Parad 30.6 29.9
E13 Parkour 31.4 31.5
E14 Repairing an appliance 39.7 35.5
E15 Working on a sewing project 14.5 16.5
E21 Attempting a bike trick 8.7 7.3
E22 Cleaning an appliance 21.4 15.9
E23 Dog show 36.0 28.2
E24 Giving directions to a location 4.5 3.6
E25 Marriage proposal 3.9 5.1
E26 Renovating a home 9.3 11.1
E27 Rock climbing 5.5 4.9
E28 Town hall meeting 22.9 24.9
E29 Winning a race without a vehicle 14.9 22.8
E30 Working on a metal crafts project 14.8 13.5
E31 Beekeeping 22.4 19.5
E32 Wedding shower 10.1 9.2
E33 Non-motorized vehicle repair 26.2 26.5
E34 Fixing musical instrument 21.2 19.6
E35 Horse riding competition 17.7 25.3
E36 Felling a tree 7.3 10.2
E37 Parking a vehicle 17.6 16.7
E38 Playing fetch 2.0 2.6
E39 Tailgating 16.0 19.7
E40 Tuning musical instrument 14.0 17.0

Avg. 19.1 19.4

query-independent concepts, we obtain 19.1% with query-dependent concepts. The
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difference is negligibly small. Further, no statically significant difference is observed

between the two sets of results (p=0.33).

The similarity in retrieval accuracies obtained with query-dependent and query-

independent concepts stems from the idea that a concept detector may fire not only

for its specific concept but may also provide strong signals when other concepts are

present. Further, concept detectors often respond consistently to certain video events

and we learn these detectors (distributions of these detector responses practically)

while training a retrieval model. Therefore, we obtain good retrievals even when we

use query-independent concepts.

Even though the results of query-dependent concepts are improved within our

settings (compared to Chen et al. (2014)’s query-dependent concepts), they still

cannot outperform the results obtained with query-independent concepts. This finding

supports that our hypothesis holds: we can obtain comparable retrieval accuracies

with query-independent concepts to the ones obtained using query-dependent concepts.

Our findings also align with the observations of Cusano et al. (2012): the semantic

labels do not contribute to the final accuracy. In our case, semantic labels of the

concepts added nothing to the retrieval accuracies as well.

3.4.2 Space-Efficient Representation

After showing that we are able to obtain comparable retrieval accuracies using query-

independent concepts to the ones obtained using query-dependent concepts, we focus

on evaluating our space-efficient representation in terms of first efficiency and then

effectiveness.

As our space-efficient representation provides a sparser representation compared

to using all concepts with a pooling technique such as maximum and average, we

need less space to store our representations. This is also important while training and

testing retrieval models. The sparser the representations are, the faster the retrieval
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models are trained. In Table 3.8, we provide the amount of space required to store

our space-efficient representations and representations created using all concepts. Our

space-efficient representation enables us to store the representations created using all

concepts with a 1-to-5 ratio of efficiency.

Table 3.8. Amount of space required to store our space-efficient representations and
the representations created using all concepts with a pooling technique. Numbers are
provided in terms of megabytes (MB)

Our Space-Efficient Rep. Average Pooling Maximum Pooling
Training 268 MB 1,492 MB 1,615 MB
Testing 1,452 MB 6,340 MB 7,911 MB

The sparsity of the representations directly affects the running time for training a

retrieval model and testing test examples against it as well. In Table 3.9, we provide

the running time required to train and test a retrieval model using the representations

created by our space-efficient technique as well as the techniques using all concepts.

Similar to the space situation, our efficient technique enables us to train and test

retrieval models five times faster than the techniques that use all concepts. Note

that testing requires more time than training in all of the cases since the MEDTEST

dataset (used for testing) is five times larger than the EK100 set.

Table 3.9. Running time to train/test a retrieval model using our space-efficient
representations and the representations created using all concepts with a pooling
technique. Numbers are provided in terms of seconds (s).

Our Space-Efficient Rep. Average Pooling Maximum Pooling
Training 245 s 1,005 s 1,504 s
Testing 1,217 s 5,012 s 7,341 s

So far, we have analyzed the efficiency of our technique. We investigate its

effectiveness as well. In Table 3.10 we compare the effectiveness of our approach with

the techniques using all concepts, namely average and maximum pooling.
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Table 3.10. Experimental results of our space-efficient technique (QIC) compared
with the techniques using all concepts: average pooling (QIC-AVG) and maximum
pooling (QIC-MAX) Test set: MEDTEST; Training set: EK100. Results are provided
in terms of average precision (in percent).

E. Id QIC QIC-AVG QIC-MAX

E6 13.5 8.5 3.0
E7 26.7 9.3 1.5
E8 61.7 39.6 25.9
E9 30.2 25.1 6.0
E10 17.5 4.6 1.9
E11 14.7 10.4 6.4
E12 29.9 23.9 10.1
E13 31.5 11.5 4.1
E14 35.5 23.8 15.0
E15 16.5 10.6 7.1
E21 7.3 6.2 1.1
E22 15.9 1.3 5.4
E23 28.2 25.4 13.4
E24 3.6 1.1 1.4
E25 5.1 6.9 3.5
E26 11.1 7.8 1.9
E27 4.9 5.2 1.1
E28 24.9 11.2 11.4
E29 22.8 12.7 5.5
E30 13.5 10.9 0.5
E31 19.5 6.4 1.2
E32 9.2 3.2 7.2
E33 26.5 13.0 3.3
E34 19.6 9.9 3.2
E35 25.3 5.1 3.2
E36 10.2 2.1 1.9
E37 16.7 9.7 0.6
E38 2.6 0.7 0.4
E39 19.7 8.3 1.7
E40 17.0 9.0 1.6

Average 19.4 10.8 5.0

Our space-efficient technique significantly outperforms the techniques using all

concepts with average pooling and maximum pooling. While a mean average precision
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of 10.8% is obtained with the technique using all concepts with average pooling, this

score drops to 5% with maximum pooling. This huge difference can be explained

with the number of concepts used to represent videos. In our case, we focus on the

highly responsive concepts. The other approaches consider all concepts. Using a more

informative subset of concepts than using all concepts is a better choice in terms of

efficiency as well as effectiveness within the context of video event detection. Previous

observations support our findings as well. Habibian et al. (2013) investigate concept

vocabularies for video event detection and conclude that a subset of concepts should

be considered for a better video event detection. Merler et al. (2012) and Mazloom

et al. (2013a) focus on finding the optimal concept dictionary. They report that using

a subset of the concepts performs better than using all of the concepts and some

subset of concepts are more informative than others. We follow a similar principle in

our work.

Note that blending results of different approaches for higher scores is generally a

common practice in video event detection. However, using all of the concepts is a

terrible choice within the context of VED-ex. Therefore, we do not consider blending

our space-efficient representation with the techniques using all of the concepts.

3.4.3 Further Analysis

3.4.3.1 Concept Detection

It is common to create individual concept detectors within the context of video event

detection (Chen et al. 2014, Cheng et al. 2012, Habibian et al. 2014, Liu et al. 2013a,

Oh et al. 2013). For example, in order to train a “dog” concept, a number of images

having “dog” in them are collected. Then, SVM is employed to train a dog detector

using descriptors extracted from the sample dog images. In this way, each concept

detector is trained independently.
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As an alternative to individual concept detectors, multiple concept detectors

(MCD) can be considered as well. An MCD learns multiple concepts together rather

than learning them independently. For example, if there are 3 concepts: car, bike,

and mountain, we create an MCD based on these three concepts using a multi-class

classifier (see illustration in Figure 3.7). An MCD produces a car-bike-mountain

detector (first row in the figure), whereas the other approach considers a car detector,

a bike detector, and a mountain detector, each of which is trained separately using a

two-class (e.g., binary) classifier (last row in the figure).

CAR

MOUNTAIN

BIKE

Figure 3.7. Illustration of a multiple concept detector (first row) and individual
concept detectors (second row) .
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We make use of a linear multi-class SVM Joachims (2014) to train an MCD. The

implementation used in this study is a one-vs-rest multi-class SVM. In other words, it

creates k separating hyperplanes for k classes. Therefore, an MCD outputs k scores,

each of which represents a score of a concept. By employing an MCD, we are able to

obtain k scores from the same model which enables us to have a better comparison of

the concept detector scores to identify the ones that are most likely to be in a video

compared to the scores of individual concept detectors. After creating an MCD, we

run test videos against it to measure the likelihood of observing concepts in videos.

In order to run videos against an MCD, we need to extract denseSIFT descriptors

from videos as well as static images. We first sub-sample videos into video frames at

a rate of 3 frames per second. Then we follow the same procedures for video frames

that we did for images. We can run video frames against the MCD after completing

extraction of denseSIFT descriptors from videos. Figure 3.7 summarizes how video

frames are run against an MCD.

In our case, we make use of a MCD to obtain detector scores. We would like to

have concept detector scores calculated using the same model, which enables us to

have more reliable comparison of scores. To validate our choice, we compare these two

methods within the context of video event detection with exemplars. In Table 3.11, we

provide the retrieval accuracies of both methods: using individually created concept

detectors (QIC-IND) and using a multiple concept detector.

Video event detection results when using a multiple-concept detector are better than

the ones obtained using individually created concept detectors. Retrieval accuracies

with MCD on 20 of 30 queries are higher than the individually created concepts.

There is a 10% relative difference in mean average precision, which is a statistically

significant improvement where p=0.01. These results verify our choice for concept

detectors. Even though individually created concept detectors can be used, a MCD

fits better in our formulation.
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Table 3.11. Comparison of using individually created concepts (QIC-IND) and
multiple-concept detector. Test set: MEDTEST; Training set: EK100. Results are
provided in terms of average precision (in percent).

E. Id E. Name QIC-IND QIC

E6 Birthday party 14.1 13.5
E7 Changing a vehicle tire 27.8 26.7
E8 Flash mob gathering 58.5 61.7
E9 Getting a vehicle unstuck 19.3 30.2
E10 Grooming an animal 12.8 17.5
E11 Making a sandwich 16.2 14.7
E12 Parade 27.9 29.9
E13 Parkour 24.4 31.5
E14 Repairing an appliance 34.8 35.5
E15 Working on a sewing project 16.0 16.5
E21 Attempting a bike trick 7.6 7.3
E22 Cleaning an appliance 17.9 15.9
E23 Dog show 26.6 28.2
E24 Giving directions to a location 3.2 3.6
E25 Marriage proposal 4.7 5.1
E26 Renovating a home 9.5 11.1
E27 Rock climbing 3.9 4.9
E28 Town hall meeting 24.6 24.9
E29 Winning a race without a vehicle 12.1 22.8
E30 Working on a metal crafts project 9.3 13.5
E31 Beekeeping 21.7 19.5
E32 Wedding shower 11.8 9.2
E33 Non-motorized vehicle repair 27.8 26.5
E34 Fixing musical instrument 24.6 19.6
E35 Horse riding competition 15.7 25.3
E36 Felling a tree 8.1 10.2
E37 Parking a vehicle 9.8 16.7
E38 Playing fetch 1.0 2.6
E39 Tailgating 17.2 19.7
E40 Tuning musical instrument 18.7 17.0

Avg. 17.6 19.4

3.4.3.2 Classifier Choice

So far, the results that have been reported in this chapter are obtained using a SVM

classifier with an intersection kernel. It has been used commonly as a kernel for SVM in
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computer vision applications ranging from image annotation to action recognition (Can

and Manmatha 2013, Wang et al. 2009). It is a non-linear kernel which requires more

memory and time for training and testing compared to linear kernels. Approximations

are proposed to reduce the memory and time requirements in the testing phase (Maji

et al. 2008). As an alternative to the intersection kernel, we also provide our results

using linear kernels considering the faster training and classification speeds with

significantly less memory requirements compared to a non-linear kernel.

SVM-rank learns a model based on pair-wise comparisons of the training examples

in contrast to point-wise (or example-wise) comparisons in SVM classification methods.

Joachims (2002) showed that a ranking problem can be formulated by maximizing the

number of following inequalities satisfied:

∀(vi, vj) : wxi > wxj (3.6)

where xi is a descriptor vector (e.g., representation of a video using concepts, H, in

our case), w is the weight vector, vi is a relevant example, and vj is a non-relevant

example. Non-negative slack variables are employed to solve the optimization problem

(focusing on ROC-area) by transforming inequalities to equalities in a similar way

to SVM classification. SVM-rank produces prediction scores which are then used for

ranking purposes.

Here, we investigate whether similar retrieval accuracies can be achieved with

faster ranking algorithms. For this purpose, we compare retrieval accuracies when

retrieval models are trained using SVM-rank with a linear kernel.

In Table 3.12, we provide the retrieval accuracies using a SVM classifier with an

intersection kernel (SVM IK.) and SVM-rank with a linear kernel (SVM-rank Linear

K.). The results are calculated when the EK100 dataset is used for training and the

MEDTEST dataset for testing on thirty events (E6-E40).
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Table 3.12. Comparison of using SVM classifier with an intersection kernel (QIC
SVM IK.) with SVM-rank with a linear kernel (QIC SVM-rank Linear K.) in video
event detection with exemplars. Test set: MEDTEST; Training set: EK100. Results
are provided in terms of average precision (in percent).

QIC QIC
E. Id SVM-rank Linear K. SVM IK.

E6 11.8 13.5
E7 25.5 26.7
E8 59.7 61.7
E9 29.5 30.2
E10 13.2 17.5
E11 11.7 14.7
E12 29.9 29.9
E13 27.9 31.5
E14 34.3 35.5
E15 14.4 16.5
E21 4.4 7.3
E22 19.1 15.9
E23 27.1 28.2
E24 2.7 3.6
E25 4.2 5.1
E26 11.7 11.1
E27 4.9 4.9
E28 25.0 24.9
E29 18.4 22.8
E30 9.4 13.5
E31 19.2 19.5
E32 5.9 9.2
E33 22.3 26.5
E34 19.2 19.6
E35 19.9 25.3
E36 11.4 10.2
E37 19.1 16.7
E38 2.6 2.6
E39 19.3 19.7
E40 14.4 17.0

Avg. 17.9 19.4

Results obtained using a SVM classifier with an intersection kernel outperform

the results obtained using SVM-rank with a linear kernel, as expected. However,
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there are eight event queries where SVM-rank with a linear kernel does better than

SVM IK. In Table 3.13, we provide the required times (in terms of seconds and

averaged over thirty events) for training and testing a retrieval model using 1) SVM

classifier with an intersection kernel (SVM IK.), and 2) SVM-rank with a linear kernel

(SVM-rank Linear K.). Note that the fast version of the intersection kernel (Maji et al.

2008) is used in all our computations. The table shows that—considering the time

requirements of a linear kernel and an intersection kernel— a linear kernel might be

preferred over an intersection kernel when efficiency is most important with a small

loss in performance. Note that testing requires more time than training in all of the

cases since the MEDTEST dataset (used for testing) is five times larger than the

EK100 set.

Table 3.13. Amount of time (in seconds) required to train and test an event detection
model using SVM classifier with an intersection kernel (SVM IK.), and SVM-rank with
a linear kernel (SVM-rank Linear K.). Test set: MEDTEST; Training set: EK100.

SVM IK. SVM-rank Linear K.
Train 245 s 27 s
Test 1,217 s 103 s

3.4.3.3 Parameter Selection

So far, we have provided results of our experiments. Now we detail our parameter

choices in our algorithm. Apart from MEDTEST and EK100, a small development

set (referred to as TINYSET) is also created for tuning parameters. There are two

parameters that we have tuned in our settings: 1) the number of concepts considered

at each frame, k = 10 and 2) the total number of concepts, |C|= 1, 000. We also tune

the regularization parameter of the SVM classifiers on the TINYSET dataset.

Tuning-|C|: We tune the |C| parameter on the TINYSET. In Figure 3.8, we provide

the retrieval accuracies for different values of concept vocabulary size |C|. The retrieval
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accuracy increases when |C| gets larger untill |C|= 1, 000. For |C|> 1, 000 it becomes

steady and do not change or changes slightly. Therefore, we set |C| to 1,000.

Figure 3.8. Illustration of tuning the concept vocabulary size, |C|, on the TINYSET
dataset.

Tuning-k: We tune the k = 10 parameter on the TINYSET. In Figure 3.9, we

illustrate the retrieval accuracies obtained for different values of k. While the retrieval

accuracies for small values of (i.e., 5 to 50) are comparable to each other, they

drastically drop for values larger than 50.

k vs. # of non-zero values in H In Figure 3.10, we provide the ratio of the number

of concepts considered in H (i.e., the non-zero values in H) to the total number of

available concepts for different values of k.

Figure 3.10 shows that when k becomes larger, the non-zero values in the video

representation, H, decrease. The values provided in the figure are averaged over the
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Figure 3.9. Illustration of tuning the k parameter on the TINYSET dataset.

videos in the TINYSET. Besides, for large values of k we need more time for training

and testing an event detection model according to the figure.

Selection of a Concept Vocabulary In our experiments, we have selected a concept

vocabulary of |C|= 1, 000 and we use the same fixed set for all experiments in this

chapter.

In order to gather the concept vocabulary we make use of a large dataset of images:

ImageNet (Image-Net 2014). Using the same set in our experiments enables us to

be sure that the changes in the retrieval accuracies is not due to different concepts.

However, here we would like to investigate if using different concept vocabularies of

the same size would yield significant changes on the retrieval accuracies.
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Figure 3.10. The ratio of the number of concepts considered in H to the total
number of available concepts (non-zero values in H) for different values of k.

In order to show that the concept vocabulary is not a significant factor for the

retrieval accuracies, we randomly selected ten more concept vocabularies having the

same size. We then perform the same experiments that we have done in this chapter

using different concept vocabularies. We run these experiments on the TINYSET as

well.

In Figure 3.11, we provide the retrieval accuracies obtained using different concept

vocabularies. In the experiments, we fix the concept vocabulary size to 1,000 and k to

10. The results show that using different concept vocabularies does not change the

final accuracies. Even though retrieval accuracies of individual queries are different,

their mean average precision are very close to each other. This finding supports that

the retrieval accuracies we obtained in our experiments are not stemmed from using a

“good” concept vocabulary.
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Figure 3.11. Illustration of the results using different concept vocabularies on the
TINYSET dataset.

3.5 Summary of the chapter

Here we show that for event detection query-independent concepts provide as good

retrievals as query-dependent concepts (when concepts are selected based on queries).

This argues for using the same set of concepts for any query, which enables us to save

time since we do not have to revisit the concept selection process multiple times.

In our experiments, we empirically show that query-independent concepts can be

used as an alternative to using concepts selected for each query. The comparisons are

performed within our settings as well as with a previous work using query-dependent

concepts. The results supports our claim.

In addition to query-independent concepts, we provide a sparse way of representing

videos using concepts. Existing techniques to represent videos using concepts is costly

as they use all concepts. As an alternative, we provide a space-efficient representation
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of videos. We show that our sparse representation is efficient as well as effective

compared to using all concepts.

Finally, we discuss our design choices. For example, we discuss the reasons to

choose using multiple concept detector (MCD) as an alternative to individual concept

detectors. Further, we also analyze the efficiency and effectiveness of using a linear

kernel instead of an intersection kernel (i.e., a non-linear kernel) within the context of

VED-ex. At last, we explain our parameter selection experiments to show how we

select the parameters (e.g., k and |C|) used in our experiments.
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CHAPTER 4

INCORPORATING ONE-EXEMPLAR MODELS
INTO VIDEO EVENT DETECTION

Recent approaches (Chen et al. 2014, Jiang et al. 2012; 2013, Ma et al. 2013) in video

event detection with exemplars (VED-ex) use a large number of example videos for a

query. The retrieval models trained on a large collection of example videos most likely

provide better retrieval accuracies than the models created using a few exemplars.

However, collecting a large number of exemplars is often either difficult or unrealistic.

Here, we present a method that incorporates multiple one-exemplar models into video

event detection aiming at improving retrieval accuracies when there are few exemplars

available.

A single retrieval model is usually trained using all available example videos in

VED-ex. While it might be sufficient for the queries where example videos are visually

similar, it is problematic for learning stronger characteristics of the queries when

example videos are visually different from each other. For example, exemplars of the

“repairing an appliance” query contain events such as repairing an oven, repairing

a refrigerator, and repairing a washing machine. In Figure 4.1, we show sample

frames of “repairing an appliance” videos. Conventionally, a single global model

is trained using these examples, implicitly assuming that these exemplars are all

visually similar to each other. The resulting retrieval model then becomes weak and

overly-generic (Malisiewicz et al. 2011). This is a major problem especially when we

have very few exemplars. In contrast to creating one single global model, we create

multiple one-exemplars models, each of which is trained using one exemplar. We
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present a method that incorporates these models into video event detection aiming at

improving retrieval accuracies by addressing the issue discussed above.

Figure 4.1. Sample frames of example videos of the “repairing an appliance” query.

Our one-exemplar models are created for each exemplar and are specific to their

exemplars. For example, three one-exemplar models are created for the “repairing an

appliance” query (see Figure 4.1), in contrast to creating only one single global model.

The global model works well when the example videos are visually similar. Our

one-exemplar models work better when the example videos are visually different (see

Figure 4.1). It is very difficult and expensive to estimate the variance of the example

videos in advance. Therefore, incorporating one-exemplar models into the global model

enables us to deal with this difficulty within the context of video event detection with

very few exemplars (VED-exfew).
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Similar approaches to one-exemplar models have been considered to solve various

problems ranging from object detection to learning-to-rank (Can et al. 2014, Mal-

isiewicz et al. 2011). Our approach is related in spirit to Malisiewicz et al. (2011).

They create a number of object detectors each of which consists of a positive example

and a number of negative ones. They conclude that the results are very promising. In

another work, McCallum et al. (2000) point out that the reduction in the computa-

tional cost obtained by dividing the data into overlapping subsets—called canopies—in

the context of efficient clustering can be performed without any performance loss.

In the following, we first detail our one-exemplar models within the context of VED-

exfew. We then present the experimental results and discussion which are followed

by analysis of the extension of our approach to tackle the query specific relevance

feedback problem in the learning-to-rank framework.

4.1 One-Exemplar Models

Consider a set of video clips T = {V1, V2, ...V`} associated with event query E, and

T = Tp ∪ Tn where Tp consists of example videos of E and Tn consists of clips non-

relevant to E. As there are |Tp|= k exemplars, we create k one-exemplar models

(Mi), each of which considers one exemplar Vi ∈ Tp and multiple negative examples

∀j, Vj ∈ Tn. Consider an example to illustrate one-exemplar models and the global

model. Assume that there are eight videos: three positive exemplars, Tp, and the

rest are not-relevant videos, Tn, (illustrated in Figure 4.2). We first train a global

model (M) using all the videos (as illustrated in the left side of the figure). We then

train three one-exemplar models (M1, M2, and M3) using one exemplar per model (as

illustrated on the right side of the figure).

After creating one-exemplar models (Mi) and the global model (M), we run the

test videos against these models for ranking purposes. Figure 4.3 illustrates the testing
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One-exemplar Models

M M1 M2 M3Tp

Global Model

Tn Tn Tn Tn

Figure 4.2. Illustration of one-exemplar models (M1,M2,M3) and the global model
(M).

phase of our approach. Test videos—Vj ∈ Z—are run against M as well as the models

Mi, and their combination provides the final ranking of the videos.

Each test video gets a score for an event query E indicating the likelihood of that

video being relevant to the event query E. Given that there are k one-exemplar models

and a global model, there will be k+ 1 outputs—one from each model. (One-exemplar

models are trained independent of each other and independent of the global model.)

To improve the retrievals by incorporating these models, we jointly consider a global

model and one-exemplar models. In our approach, we aim to estimate a probability,

P (E|Vj), of a test video Vj being relevant to a query, E, considering models M and

Mi. Our sample space is a collection of disjoint one-exemplar models (e.g., Mi) and

a global model (e.g., M). We estimate P (E|Vj) considering multiple one-exemplar

models and one global model, from the law of total probability, and assuming the

disjointness of the models as follows:
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Test Videos

Z = {V1, V2, .., Vm}

M

M1

M2

Mk

Rank Video Score
1 V7 0.75
2 V2 0.74
3 V1 0.6
...
...
m V3 0.2

. . .

. . .

Figure 4.3. Illustration of testing videos against the standard model M and exemplar-
based models Mi.

P (E|Vj) =
∑
i

P (EM , EMi
|Vj) (4.1)

assuming EM is conditionally independent of EMi
given Vj (i.e., EM ⊥ EMi

| Vj)

P (E|Vj) =
k∑
i

P (EM |Vj)P (EMi
|Vj) (4.2)

where P (EM |Vj) is the probability of a video Vj being relevant to a query E calculated

using the model M , and similarly P (EMi
|Vj) indicates the probability of a video Vj

being relevant to E calculated using the model Mi. We use this final estimation of a

test video Vj being relevant to an event E for ranking purposes. A posterior relevance

probability is approximated for each Vj as proposed by Platt et al. (1999). As proposed

in Platt et al. (1999)’s work, a sigmoid function is used for this purpose (Chang and

Lin 2011, Platt et al. 1999). Note that we take logarithms not to deal with very small
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numbers during the calculation (a sigmoid function does not approximate to zero

probability by definition).

4.2 Experiments and Discussion

So far, we have explained our one-exemplar approach within the context of VED-exfew.

Here, we provide empirical evidence to show that our approach improves retrieval

accuracy when there are very few exemplars available.

In the previous chapter (Chapter 3), we made use of query-independent concepts

with a space-efficient representation. Here, we first evaluate our approach using the

same approach and settings except the training set. Fortunately, NIST provides a

collection of videos where the event queries have only ten example videos (Jonathan Fis-

cus 2014). This collection aligns well with our evaluation purposes. The collection is

referred to as EK10 where each of thirty event queries has ten example videos and

approximately 5,000 non-relevant videos. We also consider the cases when there are

less than ten example videos available to see if our approach also works with much

fewer exemplars. We also analyze the robustness of our approach in terms of different

descriptors. To do so, we also evaluate our approach on multiple descriptors used in

video event detection.

4.2.1 Experiments comparing with and without one-exemplar models

In Section 3.3, we introduced the event queries and the test collection (i.e., MEDTEST)

used for evaluation purposes. Here, we use the same settings except the training

set is different as we use a dataset with 10 examples rather than 100 for evaluation

purposes. In Table 4.1, we compare our approach, one-exemplar models combined

with the global model are incorporated into video event detection (w/ OX), with the

case where only a global model is considered and our one-exemplar models are not
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involved in the detection (w/o OX). Bold face indicates a higher average precision

over its counterparts.

Table 4.1. Experimental results of the case when one-exemplar models are incorpo-
rated into video event detection (w/ OX) with the case when they are not involved
in the detection (w/o OX). Test set: MEDTEST; Training set: EK10. Results are
provided in terms of average precision (in percent).

E. Id and E. Name w/o OX w/ OX

E6 Birthday Party 2.8 3.3
E7 Changing a vehicle tire 4.8 5.8
E8 Flash mob gathering 33.0 34.1
E9 Getting a vehicle unstuck 5.5 6.4
E10 Grooming an animal 3.8 4.2
E11 Making a sandwich 6.2 6.4
E12 Parade 11.0 12.0
E13 Parkour 16.5 16.7
E14 Repairing an appliance 9.1 14.0
E15 Working on a sewing project 4.1 3.7
E21 Attempting a bike trick 1.1 2.4
E22 Cleaning an appliance 1.9 1.9
E23 Dog show 1.8 1.8
E24 Giving directions to a location 0.5 0.5
E25 Marriage proposal 0.3 0.4
E26 Renovating a home 0.4 0.4
E27 Rock climbing 6.1 5.4
E28 Town hall meeting 8.0 12.1
E29 Winning a race without a vehicle 2.4 2.9
E30 Working on a metal crafts project 4.0 6.8
E31 Beekeeping 3.6 3.6
E32 Wedding shower 3.3 3.6
E33 Non-motorized vehicle repair 7.6 6.6
E34 Fixing musical instrument 1.3 1.6
E35 Horse riding competition 11.0 10.1
E36 Felling a tree 3.7 3.9
E37 Parking a vehicle 2.9 3.2
E38 Playing fetch 0.6 0.7
E39 Tailgating 13.0 12.9
E40 Tuning musical instrument 3.0 4.2

Avg. 5.8 6.5
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According to Table 4.1, our approach enables us to improve the retrieval accuracies

to 6.5% from 5.8% within the context of VED-exfew. It is a statistically significant

improvement (p<0.008, calculated using paired t-test). Further, there are 20 events

where our approach outperforms its counterpart. The average relative improvements

on these events are approximately 30%.

One-exemplar models works well when the example videos are visually different

and a single global model works well in the other case. The experimental results

also validate this claim. For example, our approach boosts retrieval accuracies for

several events such as “repairing an appliance” where there are video clips related to

repairing an oven, a refrigerator, and a washing machine. Even the videos related to

“repairing a refrigerator” are visually different than each other: one is about repairing

the ice-maker in the freezer, whereas the other one is about fixing a refrigerator shelf.

Similarly, example videos of the “working on a metal craft project” query are all

different from each other (see Figure 4.4). However, for the “non-motorized vehicle

repair” event, a single global model—without one-exemplar models— works better

than our approach. When we analyze the example videos for this event, we find out

that nine out of ten videos are related to fixing bikes. Only one video is different from

the others and it is about fixing a ski. In Figure 4.5, we provide sample video frames

from these example videos. The first nine (top three row) frames are about repairing

a bike and the last one (the fourth row) is about fixing a ski.

Motivated by the sample frames in Figure 4.5, we perform an experiment where

we remove the outlier example (i.e., the last frame, fourth row, in the figure) from the

training set and train the retrieval model (a global model) with the remaining nine

exemplars. The retrieval accuracy grows to 8.9% from 7.6%, that is obtained using

the retrieval model trained using ten exemplars. This shows that having a training set

consisting of visually similar examples enables us to have a stronger retrieval model.
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Figure 4.4. Sample video frames extracted from example “working on a metal craft
project” videos.

In Figure 4.6, we illustrate pair-wise similarities between example videos of the

“E30: working on a metal crafts project” (on the left V 30
1 , V 30

10 ) and “E33: non-motorized

vehicle repair” (on the right V 33
1 , ..., V 33

10 ). In the Figure, darker colors show higher

similarity between pairs. For E30, the colors are lighter compared to E33, which

indicates that the pairwise similarities of exemplars of E33 are higher than the ones

of E30. As the similarities are higher for the E33 case, one global retrieval model

works better than one-exemplar models. Similarly, for the E30 case, one-exemplar

models work better since the exemplars are dissimilar to each other. Note that, in our

illustrations in the figure, we embed the weights trained for the retrieval model on top
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Figure 4.5. Sample video frames extracted from example “non-motorized vehicle
repair” videos.

of the descriptors to visualize the similarities. It is rather difficult to identify visually

different examples automatically from the rest only considering their descriptors and

without any learning stage. This suggests us to use stronger descriptors as well

as compiling a subset of concepts based on the query in the zero-shot video event

detection (VED-zero) case. In VED-zero there is no training phase and the problem

gets more difficult. In the next Section (Section 5), we detail how to address this issue.

82



Figure 4.6. Illisturation of the similarities between example videos of the “working
on a metal crafts project” (on the left) and “non-motorized vehicle repair” (on the
right).

4.2.1.1 One-exemplar models considering different number of positive ex-

amples

So far, we have focused on the case where we have ten example videos. We might end

up with fewer example videos. Here, we investigate this case and analyze our approach

when we have fewer example videos: five exemplars (EK5) and two exemplars (EK2)

per event query. To do so, we randomly select two and five example videos for each

event query. We repeat this process multiple times to avoid biased selections. We

then report the average values calculated over these multiple iterations.

In Table 4.2, we provide the retrieval accuracies of our approach (w/ OX) when

there are fewer example videos (e.g., five:EK5 and two:EK2) as well as the case when

one-exemplar models are not involved in the detection (w/o OX). According to the

results, our approach enables us to improve the retrieval accuracies even when there

83



Table 4.2. Experimental results of the case when one-exemplar models are incorpo-
rated into video event detection (w/ OX) with the case when they are not involved
in the detection (w/o OX). Test set: MEDTEST; Training set: EK5 (five example
videos per event query) and EK2 (two example videos per event query). Results are
provided in terms of average precision (in percent).

EK5 EK2
E. Id w/oOX w/OX w/oOX w/OX

E6 2.8 3.1 2.3 2.5
E7 3.3 4.3 1.5 1.9
E8 24.7 25.8 13.1 13.2
E9 4.0 4.7 1.2 2.4
E10 1.5 2.7 1.8 1.6
E11 4.2 3.9 1.5 1.8
E12 9.1 9.5 5.0 5.7
E13 10.1 11.4 4.3 4.4
E14 4.8 6.8 1.4 1.6
E15 1.3 1.6 1.6 1.6
E21 0.8 0.9 0.1 0.2
E22 1.2 1.2 0.5 0.7
E23 3.5 3.9 1.5 1.6
E24 0.3 0.3 0.2 0.3
E25 0.3 0.3 0.2 0.2
E26 0.3 0.5 0.3 0.3
E27 3.8 3.9 2.0 2.4
E28 3.8 5.0 2.6 3.0
E29 3.1 2.6 2.3 2.6
E30 3.3 3.6 1.4 2.0
E31 4.5 4.8 1.6 1.6
E32 2.0 2.4 1.3 2.1
E33 4.4 4.3 2.2 2.1
E34 1.0 1.1 0.5 0.4
E35 3.7 3.8 1.6 2.0
E36 2.2 3.1 2.1 2.2
E37 1.8 1.9 0.7 0.9
E38 0.2 0.9 0.2 0.2
E39 6.4 7.1 2.3 2.4
E40 3.0 3.0 1.0 0.8

Avg. 3.8 4.3 1.9 2.2
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are five and two example videos per query. This shows that our approach is robust to

different number of example videos.

For the EK5 case, we are able to improve the retrieval accuracies to 4.3% from

3.8%, which is a statistically significant improvement (p<0.00008). There are 24

event queries where our approach outperforms its counterpart. The average relative

improvement on those events is approximately 30%. For the EK2 case, we are able

to improve the retrieval accuracies to 2.2% from 1.9%, which is also a statistically

significant improvement (p<0.0001). There are 21 event queries where our approach

does better than the case where one-exemplar models are not involved in the detection.

The average relative improvements on those events is similar to the EK5 case. However,

we obtain higher statistical significance in the EK5 case compared to the EK2 case.

In the EK2 case, the models are created using only two exemplars rather than five

example videos.

Recalling our running example, for the “non-motorized vehicle repair” event, the

difference in retrieval accuracies shrink to almost zero considering the case where

one-exemplar models are involved in detection (w/ OX) or not (w/o OX). However,

this situation was different when we have more exemplars (i.e., 7.6% w/o OX and

6.6% w/ OX in EK10). For this event, the exemplars are visually similar to each

other and splitting the exemplars into smaller subsets causes weaker retrieval models.

On the other hand, for the “working on a metal craft project” event, incorporating

one-exemplar models into the detection enables us to improve retrieval accuracies for

the EK10 case as well as for the EK5 and EK2 cases since the exemplars are visually

different from each other.

Up to that point, we have discussed one-exemplar models when we have few

exemplars including ten, five, and two. We also create as many one-exemplar models

as the number of exemplars. For example, if we have five example videos in our

training set, then we create five one-exemplar models. When we have more example
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videos in our training set, we might consider a different approach. There are two

reasons we might follow a different approach: efficiency and effectiveness. Creating

few one-exemplar models and running videos against them are not costly steps.

However, many one-exemplar models might require additional considerations for

efficiency purposes such as using multiple cores. One exemplar models work well when

exemplars are different than each other. When we have many example videos, the

chances of observing similar videos are higher. For example, the chance of having two

“repairing an oven” is larger when we have many example videos compared to having

few exemplars. Splitting similar examples is usually not a desired outcome. Perhaps,

a method that considers grouping example videos and creating few-exemplar models

might be a solution. However, our preliminary experiments on an approach that aims

at grouping similar exemplars in a training set show that grouping similar exemplars

without any supervision is quite challenging. As an alternative, we can select a subset

of exemplars and create one-exemplar models using only this subset. We also observe

that selecting this subset without any supervision/feedback is challenging. However,

in another work of ours (Can et al. 2014), we show that we can use explicit relevance

feedback to select such a subset of exemplars. In the same work, we also observe that

optimal size of a subset (based on effectiveness) would be half of the total number of

positive examples in the training set.

4.2.2 Robustness of one-exemplar models to different descriptors

So far, we have focused on our query-independent concepts and space-efficient repre-

sentation in our experiments to valuate one-exemplar models. Here we investigate the

case where we have different descriptors used to represent videos.

A broad range of visual cues can be employed to describe content of videos in

addition to our query-independent concepts. The visual cues might be similar QIC

where detectors are built on top of other descriptors. Alternatively, the descriptors
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that are used to built concept detectors might be used directly as well (e.g., Red,

Green, and Blue distributions of an image/video). Edge orientation histograms help

to describe the gradient distributions of the regions in an image/video which can

later be used in the problems such as for tracking, object identification, and object

recognition Lowe (2004). Similarly, trajectory based features focus on the magnitude

and shape of the motion in a video.

We focus on three more descriptors to show that our approach is not only good for

query-independent concepts (QIC) that we have introduced in the previous chapter

but for other descriptors as well. The first descriptor we focus on is the histogram

of oriented gradients calculated on densely extracted trajectories, HOG,(Dalal and

Triggs 2005). The second descriptor is motion boundary histograms calculated on

densely extracted trajectories, MBH, (Dalal et al. 2006) as well. The last one is

called Overfeat and calculated using convolution neural networks that are learned on

images (Sermanet et al. 2013). The first two descriptors exploit motion information

in videos. The last one as well as QIC are image-based concepts. Overfeat uses other

descriptors (i.e., deep learning features) to built detectors as QIC. In this way, we

evaluate our approach on descriptors structurally and motivationally different.

In Table 4.3, we provide the results of the experiments to evaluate our approach

on different descriptors. According to the table, our approach is robust to multiple

descriptors, where we obtain statistically significant improvements on HOG, MBH,

and Overfeat (p<0.03, p<0.008, and p<0.002 respectively).

When one-exemplar models are incorporated into the detection, we are able

to improve the retrieval accuracies to 5.4% from 4.7% with HOG. For 23 out of

30 events our approach provides higher retrieval accuracies. Further, the average

relative improvements on these events are approximately 20%. We observe similar

improvements considering the MBH descriptor. There are 20 event queries, where

our approach enables us to improve retrieval accuracies. Considering the Overfeat
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Table 4.3. Experimental results of different descriptors (HOG, MBH, Overfeat) for
the case when one-exemplar models are incorporated into video event detection (w/
OX) with the case when they are not involved in the detection (w/o OX). Test set:
MEDTEST; Training set: EK10. Results are provided in terms of average precision
(in percent).

HOG MBH Overfeat
E. Id w/o OX w/ OX w/o OX w/ OX w/o OX w/ OX

E6 3.4 3.7 4.0 5.1 4.4 5.0
E7 3.2 3.3 1.2 1.3 26.2 28.2
E8 18.9 20.0 31.0 31.5 35.2 37.0
E9 3.7 3.8 3.6 6.5 26.7 29.3
E10 3.0 4.2 5.0 5.3 8.4 9.7
E11 4.3 3.9 6.2 6.1 5.5 5.8
E12 12.5 22.2 22.5 22.3 14.2 14.7
E13 14.8 15.1 50.2 50.2 17.9 19.9
E14 5.7 8.7 4.0 4.7 17.3 19.0
E15 2.3 2.3 7.4 8.0 2.5 2.7
E21 2.5 3.6 1.2 2.3 10.1 6.7
E22 0.5 0.7 1.7 2.4 1.5 2.1
E23 1.6 1.6 4.0 4.2 6.8 8.3
E24 0.4 0.4 0.5 0.4 0.5 0.5
E25 0.1 0.2 0.4 0.4 0.1 0.2
E26 1.8 3.4 5.3 5.2 5.6 6.7
E27 1.5 1.6 10.1 10.1 6.4 6.9
E28 8.2 8.7 12.3 12.6 2.6 2.8
E29 2.3 2.5 17.8 19.1 5.5 6.6
E30 7.4 8.0 1.7 2.0 9.1 8.0
E31 2.1 2.3 5.2 3.3 25.5 26.4
E32 2.9 3.0 1.4 1.5 1.7 1.8
E33 4.4 4.3 1.2 1.2 9.4 9.6
E34 0.6 0.6 0.7 0.8 7.3 10.6
E35 16.2 16.3 21.3 23.0 7.5 7.8
E36 1.9 2.1 4.9 5.9 7.1 7.4
E37 4.4 4.5 8.0 8.8 8.5 10.1
E38 0.4 0.5 0.9 0.9 0.5 0.7
E39 7.6 8.5 3.0 3.8 7.1 7.8
E40 1.4 1.3 8.2 8.5 2.8 2.6

Avg. 4.7 5.4 8.2 8.6 9.5 10.2
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descriptor, we observe a relative improvement of approximately 20% on 26 event

queries where our approach outperforms its counterpart.

In addition to individual descriptors, we also evaluate our method on their fusion.

Fusing a number of descriptors is a common practice in video event detection Cheng

et al. (2012), Jiang et al. (2010), Liu et al. (2013a), Natarajan et al. (2012). We blend

the resulting ranked list from different descriptors for a final list. We consider the

HOG, MBH, and Overfeat descriptors in addition to our query-independent concepts.

In Table 4.4, we provide the results of blending four descriptors. Consdering the blend

of these four descriptors, we observe similar improvements in the retrieval. There are

23 out of 30 events where incorporating one-example models into the global detection

model improves the retrievals. The improvements are statistically significant as well

(p<0.003).

4.3 Summary of the chapter

Here, we show that our one-exemplar models enables us to improve retrieval accuracies

statistically significantly when we have few exemplars. One-exemplar models are

specific to its example and video event detection models generalize over the example

videos. Our approach leverage from both approaches.

Experimental results show that our approach is robust to the number of example

videos. We investigate our approach when there are five and two example videos per

query. Similar to the case where we have ten example videos, our approach provides

statistically significant improvements compared to the case when one-example models

are not considered in the detection.

In our detailed analysis of our experiments, we observe that one-exemplar models

work better when example videos of a query are dissimilar to each other. On the

other hand, a global retrieval model works better when example videos of a query

are related to each other. For example, for the “working on a metal craft project”
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Table 4.4. Experimental results of the case when four descriptors are blended. Test
set: MEDTEST; Training set: EK10. Results are provided in terms of average
precision (in percent).

Fusion of HOG, MBH, Overfeat, and QIC
E. Id & Name w/o OX w/ OX

E6 Birthday party 5.9 7.2
E7 Changing a vehicle tire 18.3 20.6
E8 Flash mob gathering 44.8 46.9
E9 Getting a vehicle unstuck 26.9 30.4
E10 Grooming an animal 10 11.8
E11 Making a sandwich 6.4 8.2
E12 Parade 18.5 19.4
E13 Parkour 47.2 44.8
E14 Repairing an appliance 18.7 24.6
E15 Working on a sewing project 6.7 7.7
E21 Attempting a bike trick 11.1 12.4
E22 Cleaning an appliance 3.3 3.0
E23 Dog show 5.7 7.4
E24 Giving directions to a location 1.0 1.1
E25 Marriage proposal 0.3 0.3
E26 Renovating a home 6.3 6.6
E27 Rock climbing 11.8 11.7
E28 Town hall meeting 12.1 12.3
E29 Winning a race without a vehicle 7.4 9.7
E30 Working on a metal crafts project 8.7 11.4
E31 Beekeeping 21.2 18.2
E32 Wedding shower 3.4 3.6
E33 Non-motorized vehicle repair 12.8 12.7
E34 Fixing musical instrument 2.0 3.2
E35 Horse riding competition 22.5 18.5
E36 Felling a tree 7.7 10.8
E37 Parking a vehicle 10.5 12.8
E38 Playing fetch 1.0 1.0
E39 Tailgating 18.4 19.4
E40 Tuning musical instrument 6.1 6.9

Avg. 12.6 13.5

query, one-exemplar models work better compared to a single global model since the

examples of this query are dissimilar to each other.
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We also investigate the robustness of our approach to different type of descriptors

as well as their fusion. To do so, we evaluate our approach using multiple descriptors.

The results show that our approach is robust to multiple descriptors and their fusion

within the context of video event detection with very few exemplars.
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CHAPTER 5

ZERO-SHOT VIDEO EVENT DETECTION

So far, we have focused on the video event detection with exemplars case (VED-ex

and VED-exfew). There is yet another case of video event detection where an event

query consists of only textual description and no example videos. This is a more

realistic case of video event detection compared to the previous cases. However, as no

exemplars are associated with event queries, we cannot benefit from machine learning

algorithms to learn a retrieval model while determining the relevance of videos to an

event query, which makes the problem more challenging. Here, we tackle this more

realistic and also more challenging video event detection problem: zero-shot video

event detection (VED-zero).

Events are complex activities localized in time and space (Jiang et al. 2013,

NIST 2012, Over et al. 2010). Most of the recent zero-shot video event detection

studies (Chen et al. 2014, Jiang et al. 2014, Liu et al. 2013b, Wu et al. 2014) consider

the bag-of-concepts approach that assumes that concepts in videos are independent

of each other and that order does not matter which is, we believe, an insufficient

assumption. Videos are sequence of frames and the ordering of frames is not utilized

in the bag-of-concepts approach. Assume that two concepts are detected in a video

and consider these two scenarios: 1) one of these concepts is detected at the beginning

of video and the other is detected at the end, 2) they are detected at consecutive

frames. We cannot differentiate these two scenarios when we use bag-of-concepts.

However, concepts detected at consecutive frames would get greater share of evidence

than those detected far away from each other (similar ideas have been used in different
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problems such as positional language model (Lv and Zhai 2009), and proximity-based

named entity retrieval (Petkova and Croft 2007).

We believe that considering concepts and their relationships might enable us to

have better evidence to recognize videos relevant to an event and, hence, we tackle the

problem of exploiting concepts dependencies in videos. The idea is that if important

concepts show dependencies in a video, that would be stronger evidence for relevance

of this video to an event query.

Our dependency work uses a MRF based approach (Metzler and Croft 2005), a

widely accepted algorithm in the information retrieval community. Feng and Manmatha

(2008) use a similar approach to tackle the image retrieval problem. In our work, we

focus on three dependency assumptions: (1) full independence, (2) spatial dependence,

and (3) temporal dependence.

In the following, we first detail our approach to tackle the zero-shot video event

detection problem. Next, we present the experimental results and discussion.

5.1 Our Approach

The main task in VED-zero is similar to the VED-ex cases: ranking videos according

to their relevance to an event query. The major difference is that in VED-zero there

are no example videos associated with a query; therefore, no retrieval model can be

trained. Unlike the previous cases, we cannot leverage the same set of concepts for

every query. We need to modify our pipeline for this problem. Below, we start by

discussing concept detection and concept detector output scores indexing issues. We

then detail concept selection and ranking.

As in VED-ex, we first detect concepts in videos. This process consists of running

concept detectors against videos. We then need to store the detector output scores in

a way so that we can efficiently run queries. In Chapter 3, we showed that we can use

the same set of and query-independent concepts for retrieval. This holds when example
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videos are associated with a query. Leveraging example videos enables us to learn

a retrieval model specific to its query using even the same set of query-independent

concepts. However, we cannot apply the same idea for VED-zero since we rely on only

the detector outputs and no learning is involved in this case. Therefore, for VED-zero

we identify a number of concepts that are expected to be relevant for an event query

(Section 5.1.1).

As we select a different set of concepts for each query, we need a different structure

to store the detector output scores than in VED-ex. Therefore, we create concept

indexes, similar to the inverted indexes in information retrieval. In this way, we can

efficiently search the videos for the selected concepts. Further, searching different

concepts (e.g., for a different query) does not require traversing the whole collection

of videos but, is rather, limited to traversing the disk space of the selected concepts.

Fortunately, concept detection and indexing can be performed offline.

When concepts are detected in videos and indexing the output scores is completed,

we can run a query against the videos in our collection. In Figure 5.1, we summarize

the steps to run an event query against videos. For an event query (i.e., textual

description of a query), we first identify a number of concepts that are expected to be

relevant to this query. Then, we use these selected concepts to rank videos according

to their relevance to the given query. In what follows we explain these steps in detail.

EVENT

QUERY
Concept Mapping RANKED

LIST
Video Retrieval

Figure 5.1. Illustration of the steps to run an event query against videos.
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5.1.1 Concept Mapping

Information need can be expressed in infinitely many different ways. Creating a concept

detector to cover each query that a person can use to express his information need is

infeasible as it would require crafting an extensive amount of resources. Therefore, we

have a limited vocabulary of concepts and we map an event query to a subset of the

concepts in our vocabulary that are expected to be more related to this query than

others.

As we do not have one-to-one matching between the textual description of a query

and the set of concepts, we consider a mapping that focuses on identifying concepts

that are expected to be relevant to a query. Let C = {c1, c2, ..., cn} be the set of

concepts in our vocabulary and consider a mapping from an event query E to a subset

of concepts C ′:

E → C ′ (5.1)

where C ′ ⊆ C. We follow a similar approach when we select concepts based on queries

in Chapter 3. Here we apply the same approach to identify concepts that are expected

to be relevant to a query. We first extract noun phrases from the textual description of

a query (an example textual description of a query is illustrated in Figure 5.2). Then

we run these noun phrases against the descriptions of the concepts. The resulting list is

a list of concepts ranked according to their relevance to an event query (see Table 5.1).

We then focus on the top m concepts (C ′) in this list while retrieving videos. The

concept selection process is performed automatically without any human involvement.

In addition to our work, Chen et al. (2014) and Dalton et al. (2013) also employ a

similar approach in their work. Chen et al. (2014) focus on Flickr tags to identify

possible matches with query descriptions. They also filter some candidates such as

“economy” since it seems to be an abstract concept which is difficult to illustrate in

images. Dalton et al. (2013) use a sequential dependence model by adjusting different

weights to different fields (e.g., definition and explication Figure 5.2) in the query
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description. Against this automatic approach, alternative approaches including using

a training set to identify a set of concepts for each query (Habibian et al. 2014), have

been used in VED-zero. Habibian et al. (2013) determine the concepts to be used for

a query by mining a training set.

Event name: Felling a tree

Definition: One or more people fell a tree.

Explication: Felling is the process of cutting down an individual tree transforming its position from vertical to horizontal.
Felling a tree can be done by hand or with a motorized machine. If done by hand, it usually involves a tool such as a
saw, chainsaw, or axe. A tree-felling machine, known as a feller buncher, can also be used. Felling is part of the logging
process, but can also be done to single trees in non-logging contexts. possibly climbing the tree or accessing upper parts of
the tree from a cherry-picker bucket and then cutting branches from the tree before felling it, possibly cutting a horizontal
wedge from the tree’s trunk to cause the tree to fall in a desired direction, cutting horizontally through the trunk of the tree
with saw(s) or ax(es), using wedges or rope(s) to prevent the tree from falling in some particular direction (such as onto a house).

Evidential description:
scene: outdoors, with one or more trees

objects/people: persons in work clothing, hand saws or chain saws, axes, metal wedges, tree-felling machines

activities: sawing, chopping, operating tree felling machine

audio: chainsaw motor, sounds of chopping, sawing, tree falling

Figure 5.2. An example textual description of a query.

Table 5.1. Example of concepts retrieved in top ranks for the query provided in
Figure 5.2

Concepts

cutting a tree
chopping a tree
tree falling
sawing a tree
putting down an object on the floor
person sawing
people marching on street
cutting fabric
falling
machine sawing
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5.1.2 Video Retrieval

After selecting a subset of concepts that are expected to be relevant to a query, we now

can run this query against videos in our collection by focusing on only these concepts.

Our dependency work uses a MRF based retrieval model and makes three depen-

dency assumptions: (1) full independence, (2) spatial dependence, and (3) temporal

dependence. The idea is that when important concepts show dependencies in a video,

there is a stronger evidence for relevance of this video to a query. In Figure 5.3, we

illustrate these dependency assumptions (vt is a video frame at time t, vt+1 is a video

frame at time t + 1, ci, and cj are concepts). The left-most figure illustrates the

independence assumption. The graph in the middle shows the spatial dependency

between concepts ({(vt, ci, cj), (vt+1, ci, cj)}), where the presence of two concepts in

the same video frame is treated as important. The right-most graph illustrates the

temporal dependency between concepts({(vt, vt+1, ci, cj)}, where having concepts occur

in consecutive frames is treated as important.

vt vt+1

ci cj ci cj

vt vt+1

ci cj ci cj

vt vt+1

ci cj

FULL INDEPENDENCE SPATIAL DEPENDENCE TEMPORAL DEPENDENCE

Figure 5.3. Illustration of dependency assumptions in our MRF based retrieval
model.

In order to rank videos for a given query, we calculate the probability of a video

given a query P (V |E) which, by Bayes Rule can be formulated as follows:

P (V |E) =
P (E|V )P (V )

P (E)
(5.2)
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where P (E) is the same for all videos and can be ignored for ranking purposes. The

prior probability is commonly assumed as uniform across all videos so we ignore it as

well. Then the equation becomes:

P (V |E)
rank
= P (E|V ) (5.3)

When we consider the spatial and temporal dependence of concepts, we need to

modify our function. We apply a similar MRF framework that is provided for term

dependencies by Metzler and Croft (2005) and Feng and Manmatha (2008) for image

retrieval. Then, we modify the posterior for ranking purposes as follows:

PΛ(V |E)
rank
=

∑
`∈L(G)

log(ψ(`; Λ)) (5.4)

where L(G) is the set of cliques in graph G, and each non-negative potential function

(ψ) over cliques is parametrized by Λ. Potential functions are often parametrized:

ψ(`; Λ) = eλ`f(`) (5.5)

where f(`) is a feature function over cliques and λ` is the coefficient to f(`). Then

the ranking function becomes:

PΛ(V |E)
rank
=

∑
`∈L(G)

λ`f(`) (5.6)

The potential functions for different variants (illustrated in Figure 5.3): full indepen-

dence, spatial dependence, and temporal dependence might be defined as illustrated

in Figure 5.4.
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vt vt+1

ci cj ci cj

vt vt+1

ci cj ci cj

vt vt+1

ci cj

FULL INDEPENDENCE SPATIAL DEPENDENCE TEMPORAL DEPENDENCE

logψI = λI logP (ci|V ) logψS = λS logPS(ci, cj|V ) logψT = λT logPT (ci, cj|V )

Figure 5.4. Illustration of dependency assumptions in our MRF based retrieval
model.

where ψI is the potential function for the full independence case and in this case the

cliques are defined to be between a concept (e.g., ci) and a video frame (e.g., vt). In

the spatial dependence case, cliques are defined to be between two concepts (e.g., ci

and cj) and a video frame (e.g., vt) and ψS is the potential function for this case. The

potential function for the temporal dependence case is ψT . In this case, the cliques

are defined to be between two concepts (e.g., ci and cj) and consecutive frames (e.g.,

vt and vt+1). Replacing the potential functions our formulation becomes:

∑
ci∈C′

λI log P (ci|V ) +
∑

ci,cj∈C′

λS log PS(ci, cj|V ) +
∑

ci,cj∈C′

λT log PT (ci, cj, t|V ) (5.7)

where C ′ ⊆ C is the selected concepts for this particular event query, E, and the

coefficients (λ) can be set to λI = λS = λT or alternatively they can be tuned as well.

For a given query, we employ the ranking function above to rank videos in terms

of their relevance. The probabilities for the full independence might be estimated

(considering a smoothed language model) as follows:

log PI(ci|V ) = log [(1− α)
f(ci, V )∑
j f(cj, V )

+ α
f(ci,W )∑
j f(cj,W )

] (5.8)

where f(ci, V ) is the frequency of ci in video V (it can also be interpreted as the

total number of frames in video V where ci concept is present) and f(ci,W ) is the
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total frequency of ci in video collection W . We leverage linear smoothing (Jelinek

and Mercer 1980) in our estimations not to encounter zero probabilities. α acts as

the smoothing parameter, which can be tuned and λI is the coefficient for the full

independence case.

As we mention earlier in this chapter, the concept detector output scores can be

interpreted differently. In this work, we use these output scores in two different ways.

In the following, we explain them in detail.

5.1.3 Estimation of Probabilities

We focus on two different ways of interpreting the output scores of concept detectors.

Concept detectors measure the likelihood of observing a concept in videos. The output

scores can be unbounded real numbers. However, for simplicity we map them between

zero and one, where an output score close to one indicates a higher confidence than

an output score close to zero.

The first interpretation we consider in our work is the presence/absence of concepts

(referred to as Boolean concepts) in videos. In Chapter 3, we showed that using

a number of concepts that have the highest output score at each frame enables us

to have successful retrieval. Here, we employ the same idea to convert the output

scores into presence/absence of concepts in videos. We consider concepts having the k

highest output scores as present in a frame, and assume the rest are not detected in

this particular frame.

When we use Boolean concepts, we can directly use the probability estimations

used in (Metzler and Croft 2005) since the Boolean concepts are countable. Recall

the example in Table 3.1 where the concept output scores are as follows:
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

v1 0.13 0.20 0.04 0.04 0.07 0.12 0.19 0.03 0.02 0.15

v2 0.08 0.20 0.07 0.05 0.06 0.10 0.06 0.07 0.21 0.11

v3 0.17 0.11 0.10 0.04 0.09 0.02 0.12 0.07 0.17 0.12

v4 0.15 0.18 0.07 0.07 0.05 0.07 0.21 0.12 0.01 0.07

v5 0.06 0.10 0.04 0.08 0.16 0.07 0.15 0.09 0.16 0.08

and when we assume that the concepts having the three highest output score as

present in this video then it becomes:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

v1 0 1 0 0 0 0 1 0 0 1

v2 0 1 0 0 0 0 0 0 1 1

v3 1 0 0 0 0 0 0 0 1 1

v4 1 1 0 0 0 0 1 0 0 0

v5 0 0 0 0 1 0 1 0 1 0

When we have Boolean concepts as in the example above, we can directly use the

frequencies of concepts while estimating the probabilities. In the example, concept

pairs as spatial dependence includes: {(c1, c2), (c1, c7), (c2, c7)} for v4 and {(c5, c7),

(c5, c9), (c7, c9)} for v5. The concept pairs considering temporal dependence of concepts

in v4 and v5 are: {(cv41 , c
v5
5 ), (cv41 , c

v5
7 ), (cv41 , c

v5
9 ), (cv42 , c

v5
5 ), (cv42 , c

v5
7 ), (cv42 , c

v5
9 ), (cv47 , c

v5
5 )

(cv47 , c
v5
9 )}.

Analogous to the full independence case, the spatial dependence term in Equa-

tion 5.7, considering a linearly smoothed language model, can be estimated as follows:

logPS(ci, cj|V ) = log[(1− α)
fS(ci, cj, V )∑
a,b fS(ca, cb, V )

+ α
fS(ci, cj,W )∑
a,b fS(ca, cb,W )

] (5.9)

where fS(ci, cj, V ) is the total number of frames in which ci and cj occur together in

video V , fs(ci, cj,W ) is the total number of frames in which ci and cj co-occur in video
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collection W .
∑

a,b fS(ca, cb, V ) is the total number of frames including co-occurrences

of all concepts pairs (ca, cb) where ∀a,b ca ∈ C ′, cb ∈ C ′(a 6= b) in video V .

The temporal dependence case is mostly similar to the spatial dependence case;

but we consider the concepts occurring in a window of consecutive frames rather than

concepts occurring in the same frame. The temporal dependence term in Equation 5.7

can be, considering a linearly smoothed language model, estimated as follows:

logPT (ci, cj, t|V ) = log[(1− α)
fT (ci, cj, V )∑
a,b fT (ca, cb, V )

+ α
fT (ci, cj,W )∑
a,b fT (ca, cb,W )

] (5.10)

where fT (ci, cj,W ) is the total number of times in which ci and cj co-occur in a window

of consecutive frames in video V and fT (ci, cj,W ) is the total number of times where

ci and cj occur together in window of consecutive frames.

Using Boolean concepts enables us to calculate frequencies without any modification

to the common language model estimations. Boolean concepts are strong and ignoring

a number of concepts (e.g., concepts having low confidence are not assumed to be

present) might help reducing noisy concept detection. However, while reducing the

noise we might also lose some valuable information. As an alternative to Boolean

concepts, we also employ the output scores directly in our formulations to address

this issue.

When we use the output scores of concept detectors directly (referred to as scored

concepts) we cannot use the same equations that we have used for the Boolean concepts.

In order to address this issue, we modify Equations 5.8, 5.9, and 5.10. For the full

independence case, we are able to use the output scores as frequencies and consider

maximum likelihood estimation as we did for the Boolean concepts. The estimation

for the full independence model then becomes:

(1− α)
f ′(ci, V )∑
j f
′(cj, V )

+ α
f ′(ci,W )∑
j f
′(cj,W )

(5.11)
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where f ′(ci, V ) is the sum of ci’s output scores in video V and defined to be: f ′(ci, V ) =∑|V |
t=1 Φi(t) in which |V | is the total number of frames and Φi(t) is output score of ci

at frame t.

Similarly, f ′(ci,W ) is the sum of ci’s output scores in video collection W.

The main challenge is to calculate the co-occurrence counts using scored concepts.

The output scores usually do not follow a specific distribution. This might stem from

their unconstrained nature. Therefore, estimating co-occurrences based on formal

distributions becomes difficult.

In order to address this challenge, we focus on an approximation method that

estimates the co-occurrence counts of the concepts in videos. Our approximation

method aims at maximizing the co-occurrence values as much as possible considering

the maximum output score of concepts efficiently. Similar ad-hoc approximations are

shown to be successful and efficient by Srikanth and Srihari (2002) as well as Lin and

Och (2004). The estimation below is used for the spatial dependence case:

(1− α)
f ′S(ci, cj, V )∑
a,b f

′
S(ca, cb, V )

+ α
f ′S(ci, cj,W )∑
a,b f

′
S(ca, cb,W )

(5.12)

where f ′S(ci, cj, V ) is the approximation of co-occurrences of concepts ci and cj in

video V and defined to be: f ′S(ci, cj, V ) =
∑|V |

t=1 max(Φi(t),Φj(t)) in which Φi(t)

and Φj(t) are output scores of ci and cj at frame t. f ′S(ci, cj,W ) is calculated

as follows:
∑

υ∈W f ′S(ci, cj, υ). We consider only the cases where the following

constraints are satisfied: Φi(t) > 0 and Φj(t) > 0. The temporal dependence

case is analogous to the spatial case except and f ′T is defined to be as follows:

f ′T (ci, cj, V ) =
∑|V |−1

t=1 max(Φi(t),Φj(t+ 1)). Similar to the spatial case, we consider

only the cases there the following constraints are satisfied: Φi(t) > 0 and Φj(t+ 1) > 0.

So far, we have explained our approach to tackle the zero-shot video event detection

problem starting from concept detection / indexing to ranking models. Next, we detail
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the experimental environment. We then provide experimental results and discuss

them.

5.2 Experimental Setup

In order to evaluate our MRF based retrieval, we again focus on MEDTEST, a

collection of videos with thirty event queries (E6-E40), as our test collection. Here, we

do not need any training data; therefore, the sets EK10 and EK100 are not involved

in the evaluation of our approach for zero-shot video event detection.

The concept detectors used in this chapter are different than those used for VED-ex

experiments. Previously our concept detectors were created on top of static images

with densely sample SIFT features (DSIFT). As the zero-shot event detection case is

much more challenging due to non-existence of exemplars, here we employ stronger

detectors. For this purpose, we focus on the detectors created using three descriptors:

DSIFT, histogram of oriented gradients (HOG), and motion boundary histograms

(MBH). The last two descriptors are calculated on top of densely extracted trajectories

and they exploit the motion information in video. Therefore, they are calculated on

video clips (i.e., a small part of a video consisting of a sequence of frames: 270 frames

in our case) formed using a sliding window approach where the step size is 90. In total

there are 676 concepts used in this work. Ten of them are selected for each query.

For the Boolean concepts, we focus on the concepts having the top ten highest

output scores in each frame. The smoothing parameter is set to 0.1 and is fixed for

all experiments. The co-efficients for the dependence terms in our formulation is set

to 1.0) and not changed for all experiments. For the temporal dependence case we

not only look for two consecutive frames but we also consider three more consecutive

frames as it is a common practice in information retrieval (Metzler and Croft 2005).
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The evaluation of the ranked lists obtained by running our retrieval models is

performed by using the relevance judgement released by NIST and the trec eval 1

tool. Average precision (percent) and mean average precision (percent) are used as

evaluation measures in our experiments.

5.3 Experiments and Discussion

We compare our MRF based retrieval model with a baseline where a bag-of-concepts

approach is used. In the baseline, concepts are assumed to be independent from each

other. We focus on the Boolean concepts in the first part of our evaluation. We then

provide the experimental results focusing on scored concepts. Finally, we provide the

results of the case where we combine these two approaches.

In the last part of the evaluation of our approach, we compare our results with

previously reported results (Chen et al. 2014, Habibian et al. 2014, Mazloom et al.

2013a, Rastegari et al. 2013). Recent studies on zero-shot video event detection show

promising improvements. Chen et al. (2014) provide a mean average precision of 2.2%

(on twenty events E6-E30). There are also other results reported such as 3.5% by

Rastegari et al. (2013) and 4.2% by Mazloom et al. (2013a), which are higher than

Chen et al. (2014)’s results. Recently Habibian et al. (2014) improve these results and

set the bar to 6.4%.

5.3.1 MRF based Retrieval Model

In Table 5.2, we provide the results of our MRF based model as well as the baseline:

a bag-of-concepts approach with independence of concepts assumption.

For Boolean concepts, our MRF based model improves the baseline from 5.5% to

6.2%, which is a statistically significant improvement where p < 0.0005 calculated

using a paired t-test. This shows that our model not only provides improvements on

1http://trec.nist.gov/trec_eval
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Table 5.2. Results of our MRF based model as well as the baseline. Test set:
MEDTEST

Boolean concepts Scored concepts
Id & Name Baseline Our Baseline Our

Approach Approach

E6 Birthday party 13.4 13.6 10.3 9.8
E7 Changing a vehicle tire 10.2 10.4 9.9 9.5
E8 Flash mob gathering 9.7 10.2 10.3 15.1
E9 Getting a vehicle unstuck 2.7 3.1 3.7 4.4
E10 Grooming an animal 5.8 6.1 4.1 5.3
E11 Making a sandwich 8.6 9.5 9.7 9.2
E12 Parade 27.6 27.6 28.2 25.5
E13 Parkour 19.5 22.4 14.3 26.0
E14 Repairing an appliance 6.0 6.9 5.4 5.5
E15 Working on a sewing project 7.5 8.5 9.6 12.3
E21 Attempting a bike trick 1.3 2.0 1.2 2.0
E22 Cleaning an appliance 0.7 0.7 0.5 0.6
E23 Dog show 0.3 0.4 0.5 0.7
E24 Giving directions to a location 1.7 2.6 1.4 1.4
E25 Marriage proposal 0.8 1.9 1.7 2.9
E26 Renovating a home 0.8 0.7 1.3 1.2
E27 Rock climbing 4.4 4.8 5.5 6.9
E28 Town hall meeting 0.3 0.3 0.5 0.5
E29 Winning race without a vehicle 1.4 1.5 8.9 9.1
E30 Working on metal crafts project 9.1 10.2 3.5 7.7
E31 Beekeeping 5.4 5.4 3.8 5.7
E32 Wedding shower 1.8 5.1 2.0 2.7
E33 Non-motorized vehicle repair 1.8 2.0 1.8 2.6
E34 Fixing musical instrument 2.6 1.9 1.0 1.3
E35 Horse riding competition 8.1 11.0 14.1 15.4
E36 Felling a tree 4.9 5.6 6.3 15.5
E37 Parking a vehicle 2.7 2.9 1.8 3.1
E38 Playing fetch 4.7 4.7 0.4 0.4
E39 Tailgating 0.6 0.6 1.0 1.2
E40 Tuning musical instrument 1.8 2.3 5.2 5.2

Average 5.5 6.2 5.6 7.0

only one event but we obtain improvements on many events. We observe that our

MRF based model outperforms the baseline on 22 out of 30 queries.
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For Scored concepts, our MRF based retrieval model enables us to boost the

retrieval accuracy from 5.6% to 7%, which is a statistically significant improvement

(p < 0.008). On 21 out of 30 events, our MRF based retrieval model outperforms the

baseline, where the average improvements on those events are approximately 45%.

When we compare these two approaches, we observe that the improvements with

Boolean concepts over the baseline is larger compared to the improvements with Scored

concepts over the baseline based on retrieval accuracies. Dependencies of concepts

would be a very strong evidence for relevance and when we exploit these dependencies

using scored concepts we obtain 25% relative improvements over the baseline. However,

this figure is approximately 15% for the Boolean concepts case. It might stem from

the idea that some of the concepts (and so are their dependencies) are ignored due to

their weak signals.

Further, there a number of queries where either Boolean concepts or the other

approach provides higher retrieval accuracies. This discrepancy between Boolean and

scored concepts makes sense upon further investigation. We believe that this is due to

the amount of noise happening during concept detection (e.g., selected concepts might

not be detected with high confidence). We can rephrase the same idea as: the Boolean

concepts approach usually provides better retrieval when the concept detectors work

really well, because we trim most of the noise and only the concepts having a higher

confidence remain. For example, for the “E24:Giving directions to a location” query,

Boolean concepts outperforms scored concepts. When we analyze the top ranked

videos for this event, we observe that the concepts selected for this query align with

the concepts detected in these videos and therefore they are strong signals. For this

query, the presence of especially the “talking” and “pointing directions” concepts

helps pull the related videos to top ranks.

The selected concepts for the “E36:Felling a tree” query are not good matches with

the concepts detected with high confidence in videos. In this case, scored concepts
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outperforms the Boolean concepts. The main advantage of this approach is that it

still works even if the detectors are very noisy. Here, our latter approach is favorable.

5.3.2 MRF based Retrieval Model with Blend of Two Approaches

We know motivationally and observe empirically that Boolean concepts and scored

concepts outperform each other for different cases. In other words, both methods have

advantages when they are used in our retrieval model. We can leverage the advantages

of both methods by considering them together in a hybrid approach. Therefore, we

also focus on their fusion, where we create an ensemble of the results of Boolean and

scored concepts by taking the average of the final estimations of both methods.

In Table 5.3, we provide the experimental results of our MRF based retrieval model

as well as the baseline when Boolean concepts and scored concepts are considered

together.

Scores in the hybrid approach is calculated by averaging the final estimations

of both methods. Averaging of the scores is an efficient approach which does not

require additional efforts and shown to be successful in action recognition (Can and

Manmatha 2013, Can et al. 2015). For the hybrid approach, we are able to obtain

a mean average precision of 8% which improves the baseline 25% relatively and is

a statistically significant improvement (p <0.0001). The p value here is less than

the previous cases. Blending multiple results yield improvements when the results

are different than each other. In other words, blending two different, and preferably

equally accurate, ranked lists would yield better results than blending two similar

ranked lists. Having a smaller p value here might indicate that we obtain a more

accurate ranked list when we fuse the results of our MRF based model compared to

fusion of the baseline. The number of event queries showing improvement also aligns

with this finding. The hybrid approach of our MRF based retrieval model enables

us to outperform the hybrid approach of the baseline on 26 out of 30 queries. The

108



Table 5.3. Results of our MRF based model as well as the baseline when blending
Boolean concepts and scored concepts. Test set: MEDTEST

Blended Blended
Id & Name Baseline Our Approach

E6 Birthday party 13.6 13.7
E7 Changing a vehicle tire 12.0 14.6
E8 Flash mob gathering 10.4 12.8
E9 Getting a vehicle unstuck 3.2 4.5
E10 Grooming an animal 6.8 8.1
E11 Making a sandwich 9.3 11.2
E12 Parade 29.2 32.9
E13 Parkour 21.6 29.1
E14 Repairing an appliance 7.3 8.7
E15 Working on a sewing project 10.2 13.7
E21 Attempting a bike trick 1.4 2.4
E22 Cleaning an appliance 0.7 0.8
E23 Dog show 0.5 0.7
E24 Giving directions to a location 2.0 2.7
E25 Marriage proposal 1.4 5.1
E26 Renovating a home 0.9 1.0
E27 Rock climbing 5.2 6.3
E28 Town hall meeting 0.4 0.5
E29 Winning a race without a vehicle 2.1 2.9
E30 Working on a metal crafts project 10.7 9.6
E31 Beekeeping 7.1 8.2
E32 Wedding shower 2.1 4.0
E33 Non-motorized vehicle repair 2.4 3.1
E34 Fixing musical instrument 2.5 2.3
E35 Horse riding competition 12.2 14.0
E36 Felling a tree 7.3 12.6
E37 Parking a vehicle 2.7 2.7
E38 Playing fetch 4.7 4.7
E39 Tailgating 0.8 1.1
E40 Tuning musical instrument 3.3 5.5

Avg. 6.5 8.0

number in the previous cases was 21 for scored concepts and 22 for Boolean concepts.

Recall that the average performance from Table 5.2 was 6.2% for Boolean concepts

and 7.0% for scored concepts.
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5.3.3 Comparing Our Results with Previously Reported Numbers

So far, we have evaluated our model by comparing it with a baseline that considers a

bag-of-concepts approach with an independence assumption. Here, we also compare

our results with the previously reported results on the same dataset.

In Table 5.4, we compare our MRF based retrieval model (hybrid approach) with

four previously reported results on the same dataset. Note that the comparison is

provided on only twenty event queries since Chen et al. (2014), Habibian et al. (2014),

Mazloom et al. (2013a), Rastegari et al. (2013) provide their results on only twenty

events.

According to the results, our approach outperforms the results of Chen et al.

(2014) by 300%, Mazloom et al. (2013a) by 115%, Rastegari et al. (2013) by 160%,

and Habibian et al. (2014) by 40%. On 14 out of 20 events, our approach provides

higher retrieval accuracy compared to these results in the literature. Note that these

comparisons are performed on 20 events as most of the previous work only provided

their results on these 20 event queries.

In addition to the mean average precision, our method outperforms the previous

work on 70% of the queries. Among these majority, there are some event queries,

our approach did really well. For example, for the “E13: Parkour” event query, our

method outperforms the previous work drastically. This stems from the concept

detectors. In other words, the concepts we use for this particular event query work

really well and enable us to obtain videos relevant to this query on the top ranks.

On the other hand, there are some event queries where our method does not do well

compared to the previous work. The “E29: Winning a race without a vehicle” event

query is an instance where Habibian et al. (2014)’s method provide quite high retrieval

accuracy compared to the other methods. This might also stem from using different

concept detectors. Having different experimental environments reduces our confidence

in comparison with our results with the previously reported ones. To address this,
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Table 5.4. Results of our MRF based hybrid approach as well as the previously
reported results. Test set: MEDTEST

Id Semantic
E. Desc.

Select. C. Bi
Concepts

Composite C. Our Approach

(Chen
et al. 2014)

(Mazloom
et al.

2013a)

(Rastegari
et al. 2013)

(Habibian
et al. 2014)

E6 3.1 4.9 4.7 7.6 13.7
E7 3.8 1.0 1.8 1.8 14.6
E8 5.5 23.0 9.0 37.3 12.8
E9 1.0 0.4 3.1 5.5 4.5
E10 1.1 0.9 0.9 0.9 8.1
E11 2.8 7.7 7.4 7.9 11.2
E12 10.5 21.9 19.3 22.4 32.9
E13 2.5 0.5 0.9 2.2 29.1
E14 4.6 1.2 0.9 2.5 8.7
E15 1.1 1.4 1.4 1.5 13.7
E21 0.2 1.1 0.6 2.2 2.4
E22 1.2 0.5 0.5 0.8 0.8
E23 0.2 0.1 0.3 0.1 0.7
E24 0.1 0.6 0.6 2.3 2.7
E25 0.9 0.1 0.2 0.2 5.1
E26 0.1 0.6 0.6 2.3 1.0
E27 1.2 14.2 13.9 14.7 6.3
E28 2.0 1.0 0.6 1.5 0.5
E29 2.8 3.1 3.1 13.6 2.9
E30 0.2 0.4 0.5 0.6 9.6

Avg. 2.2 4.2 3.5 6.4 9.1

we simulate a similar environment to the one defined in (Habibian et al. 2014) and

re-calculate their results using our concepts. In this way, we can compare different

methods by eliminating the effect of using different detectors. We provide the results

of these experiments in Table 5.5.

Our approach still outperforms the results of Habibian et al. (2014) using our

concepts. While the mean average precision on twenty events (see Table 5.4) is

6.7%, here it slightly increases and becomes 7% (on the same twenty event queries).

Changing the source of concepts led to approximately 5% difference on the results. We
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Table 5.5. Results of our MRF based model as well as the results of Habibian et al.
(2014) using our concepts. Test set: MEDTEST

Id & Name Habibian et al. (2014) Our hybrid approach

E6 Birthday party 9.8 13.7
E7 Changing a vehicle tire 7.4 14.6
E8 Flash mob gathering 31.5 12.8
E9 Getting a vehicle unstuck 1.8 4.5
E10 Grooming an animal 3.8 8.1
E11 Making a sandwich 2.8 11.2
E12 Parade 27.6 32.9
E13 Parkour 29.3 29.1
E14 Repairing an appliance 1.3 8.7
E15 Working on a sewing project 5.3 13.7
E21 Attempting a bike trick 0.2 2.4
E22 Cleaning an appliance 0.5 0.8
E23 Dog show 3.0 0.7
E24 Giving directions to a location 0.4 2.7
E25 Marriage proposal 0.3 5.1
E26 Renovating a home 0.8 1.0
E27 Rock climbing 6.4 6.3
E28 Town hall meeting 0.9 0.5
E29 Winning race without a vehicle 6.0 2.9
E30 Working on metal crafts project 0.4 9.6
E31 Beekeeping 6.1 8.2
E32 Wedding shower 0.8 4.0
E33 Non-motorized vehicle repair 10.1 3.1
E34 Fixing musical instrument 0.7 2.3
E35 Horse riding competition 5.2 14.0
E36 Felling a tree 3.8 12.6
E37 Parking a vehicle 0.6 2.7
E38 Playing fetch 0.7 4.7
E39 Tailgating 1.4 1.1
E40 Tuning musical instrument 1.1 5.5

Avg. 5.7 8.0

believe that the main issue is not the source of concepts but the way to select the pair

of concepts in their work. The process is based on performances of concepts calculated

on a training set per event query. In other words, concepts providing better retrieval

on a training set are favored for a particular query. Even though this does not fit in the
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context of zero-shot video event detection, we also investigate the performance of our

approach using the concepts selected in their way. When we use their concepts in our

blended MRF based retrieval model, we are able to obtain a mean average precision

of 10.4%, while it was 8% with our concepts. The improvement on the retrieval

accuracies are not surprising since selecting the concepts on training data usually

yield better retrievals. Observing these improvements also leads us to investigate the

performance of our approach when we have exemplars. In other words, we use training

examples to train weights for the tuples (e.g., concept-frame pairs: full independence,

concept-concept-frame triples: spatial dependence, and concept-concept-frame-frame

quadruples: temporal dependence).

5.3.4 Applying Zero-shot to VED-exfew

So far, we have assumed that each tuple has the same weight in the model. Different

weights for each tuple can be trained by leveraging the example videos of a query.

We employ ten example videos per query (using the EK10 set as training set) and

train a retrieval model using these examples. Then we run test videos against these

models. The final retrieval accuracy for ten queries becomes 11.5% for our blended

MRF based retrieval model, whereas the baseline (bag-of-concepts) turns out to be

9.5%. This statistically significant improvement (p < 0.0001 and improvements on

25 out of 30 event queries) shows that our approach can also be used when there are

example videos associated with queries.

In Chapter 4, by incorporating one-exemplar models into video event detection,

we were able to improve, on the average (e.g., multiple descriptors), 22 event queries

out of 30. In this case, when we use the same training set, we observe improvements

on 25 out of 30 events. The p value here is less than the ones in the previous chapter

(i.e., 0.008, 0.002, 0.008, and 0.03 for multiple descriptors). We observe that exploiting
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dependencies of concepts improves retrieval slightly more than the one-exemplar

approach.

5.4 Summary of the chapter

In this chapter, we focused on zero-shot video event detection, which is the video event

detection case when no example videos are associated with queries. As no exemplars

are available, we cannot leverage them to learn a retrieval model. Therefore, it is a

more challenging and realistic task.

We tackle this problem considering the dependencies of concepts in videos. Events

often involve multiple concepts and their interactions. Most of the recent attempts on

this problem consider the bag-of-concepts approach with an independence assumption.

We believe that it is a weak assumption and we have shown empirically that using

dependencies of concepts provides higher retrieval accuracy than the independence

assumption.

We focus on a MRF based retrieval model with three dependency assumptions:

(1) full independence, (2) spatial dependence, and (3) temporal dependence. The idea

is that if important concepts show dependencies in a video, that would be a stronger

evidence for relevance of this video to a query.

In our formulations we interpret the concept detector outputs in two different ways:

1) assuming concepts having higher confidence are present and the rest are not present

in a video (i.e., Boolean concepts) and 2) using the output scores directly without

any selection (i.e., scored concepts). Both approaches have their advantages and we

leverage their advantages by also considering a hybrid approach. Experimental results

show that we are able to outperform a bag-of-concepts with independence assumption

baseline in all of the cases. We also compare our results with previously reported

results on the same evaluation datasets. We show that our MRF based retrieval model

outperforms previous figures by 40% (i.e., 6.4% vs. 9.1%) to 300% (2.2% vs. 9.1%).
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We further investigate the effectiveness of our approach in the context of VED-

ex. Experimental results show that, exploiting dependencies improves the retrieval

accuracy when there are also example videos associated with event queries. The

improvements obtained by exploiting dependencies seem to be slightly higher than

the ones obtained with incorporating one-exemplar models into video event detection.
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CHAPTER 6

CONCLUSION

Searching videos has become increasingly important as huge number of videos are

available online and people spend plenty of time watching videos online. In this thesis,

we tackled the video event detection problem, that is the task of searching videos for

events of interest to a user. The problem can be seen as retrieving videos that are

expected to be relevant to a query.

Most of the recent commercial video search engines (e.g., Youtube) focus on the text

similarity between a query and metadata associated with videos for retrieval. However,

considering only textual similarity might be misleading or insufficient. Further, it

is implausible to use text-based when there is no metadata associated with videos.

Text-based approaches can be used or can be improved with the help of visual features

(i.e., concepts). However, in this thesis, we mainly investigate the relative advantages

of different ways of using visual content of videos. It is an promising approach when

no metadata associated with videos. Using only visual features and ignoring the

text modality is the major factor of low accuracy scores. Even though VED using

only visual features has not reached its “product ready” state, we believe that recent

progress, especially on deep learning oriented features, will help researchers to reach

that point faster.

In order to include the content of videos into retrieval, we extract semantic

information from videos. For this purpose, we create object-based concept detectors

and leverage action-based concept detectors. We then run these detectors against
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videos to measure the likelihood of observing them in videos. In this way, we have an

understanding of the concepts (e.g., objects and actions) in videos.

Creating a concept detector involves labor- and resource-intensive steps and there-

fore it is an expensive process. As a consequence, our concept dictionary is limited

in size; therefore, we need to build a mapping between queries and our dictionary.

One way of doing this is to look for the semantic (e.g., textual) similarities between

concepts and query descriptions. For example, for a “horse grazing” query, we would

be looking for concepts such as “horse” and “grass”. Alternatively, we can compile a

fixed set of concepts and use them for any query within the context of video event

detection with exemplars (VED-ex). We hypothesized that using query-independent

(i.e., using a fixed and the same set of concepts for any query) or query-dependent

(i.e., selecting concepts based on queries—and perhaps a different set of concepts

for different queries) concepts would not change the retrieval accuracies significantly.

In Chapter 3, we showed that we are able to obtain similar retrieval accuracies

by using query-independent concepts compared to using the ones obtained using

query-dependent concepts within the context of VED-ex.

In addition to the query-independent concepts, we also provided a space-efficient

way of representing videos, which enables us to reduce the resources required to process

the representations. We focused on only concepts that we detect with high confidence

at each frame and ignore the rest. As a result, the final representation of a video

become sparser. Having a sparse representation enables us to save space to store them

on disk and time to train/test them (1-to-5 ratio in both cases). Further, we agreed

with Mazloom et al. (2013a), Merler et al. (2012), as well as Habibian et al. (2013)

and empirically showed that using a subset of concepts is advantageous compared to

using all them.

Up to that point, we have assumed that several example videos are associated

with an event query. The major parameter in the video event detection problem is
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the number of example videos associated with queries. Having a large number of

example videos is ideal; however, it is costly. As the number of exemplars decreases,

the quality of the retrieval models—trained on them—decreases as well. We presented

a method that incorporates multiple one-exemplar models into video event detection

aiming at improving retrieval accuracies when there are few exemplars available.

One-exemplar models are created using only one example video and therefore they

are specific to their exemplars. For instance, example videos for the “repairing an

appliance” query might include contents of repairing different appliances such as oven,

refrigerator, and washing machine. In the common video event detection approach, a

single global model is trained using all of the example videos. Against this practice,

we create several one-exemplars each of which is trained using one exemplar video and

incorporated them into this global model. Our approach enabled us to improve the

retrieval accuracies anywhere from 15 to 35% when there are few exemplars available.

In this thesis, we also focus on the video event detection problem when no example

videos are associated with queries (i.e., zero-shot video event detection). When

example videos are unavailable, we cannot train a retrieval model using them, which

makes the problem more challenging.

We tackled the zero-shot video event detection problem by exploiting dependencies

of concepts. Events are complex activities which are localized in space and time.

We hypothesized that considering concepts individually might be insufficient and

considering concepts and their relationships might enable us to have a stronger

evidence to retrieve videos relevant to an event query.

Our dependency work employs a Markov random field (MRF) based retrieval model

that is a broadly accepted algorithm in information retrieval community. We focus

on three dependency assumptions: 1) full independence, concepts being independent

from each other; 2) spatial dependence, co-occurrences of concepts in the same frame
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are treated as important, and 3) temporal-dependence, co-occurrences of concepts in

consecutive frames are treated as important.

The concept detectors measure the likelihood of observing concepts in videos. We

considered two different interpretations of output scores in our formulations. On the

one hand, we treated only the concepts having high confidence as present in videos

and fed these Boolean concepts into our retrieval model. On the other hand, we fed

the output scores directly into the model. The first approach reduces noise due to

low quality detectors. However, it might also trim some useful information. The

latter approach keeps the potential useful information along with some amount of

noise. Both approaches have their own advantages. We considered both approaches

individually as well as a hybrid approach that benefits from both of them.

Evaluation of our approach showed that our MRF based retrieval model statisti-

cally significantly improves the common bag-of-concepts approach with independence

assumption ranging from 10% to 150%. Comparison with the previously reported

results on the same dataset showed that our approach outperforms the previously

reported figures by 40% (i.e., 6.4% vs. 9.1%) to 300% (2.2% vs. 9.1%).

6.1 Future Work

So far, we have explained and discussed the approaches that we have provided to

tackle the video event detection problem. Here, we present our thoughts for the next

directions based on this work.

6.1.1 Determining the Numbers of Concepts to Consider at Each Frame

In Chapter 3 and 5, we focus on only a subset of concepts at each frame depending

upon their output scores. In other words, we assume that only k concepts of those

having the highest output scores are present in a frame.
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The k parameter is tuned on a validation set and based on the maximization of

the mean average precision figure. In the analysis of individual queries, we observe

that queries have their peak results at different values of k. For example, while we

obtain the peak retrieval accuracy for a number of queries when k = 25, for other

queries this value becomes 5 or 10. We use k = 10 as it is the optimal parameter

validated based on the mean average precision across multiple queries.

Developing an efficient way to estimate different values of k for different queries is

a promising direction. Relationships between k and the inputs (e.g., query and data)

can be exposed with further analysis.

6.1.2 Richer Dependencies

In our MRF based retrieval model, we consider three dependency assumptions: full

independence, spatial dependence, and temporal dependence. The spatial dependence

case exploits the co-occurrence of concepts in the same frame. We consider the co-

occurrences of concepts in a window of consecutive frames in the temporal dependence

case.

The window size in our experiments was fixed. Developing an efficient way of

covering co-occurrence of concepts in different window sizes and selecting one or more

of them is a promising direction. In this way, we would not miss temporal dependencies

of concepts co-occurring at different distances. For example, for the “horse riding

competition” event query, the “horse riding” and “jumping over fence“ concepts might

co-occur in a short window of frames, whereas for the “felling a tree” query, we might

need a larger window for the co-occurrence of “sawing a tree” and “tree falling” as

“sawing a tree” usually takes a considerable amount of time.

In addition to temporal dependence, we can improve spatial dependence as well.

If we have higher quality detection, we can also focus on co-occurrences of concepts

in a finer level. For example, the co-occurrence of “horse” and “person” in the same
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frame is good evidence for the “horse-riding competition” query. However, “person”

on top of “horse” is stronger evidence for the same query.

6.1.3 Creating a Larger Concept Dictionary Efficiently

One of the major challenges to create a concept detector is to collect positive examples

related to a particular concept. As a results of this issue, the total number of concept

detectors stays in the range of few thousands.

We believe that having a richer concept dictionary would enable us to have better

retrievals. We can use publicly available datasets to create more detectors efficiently.

ImageNet (http://www.image-net.org/) is one of the datasets that provides a

number of annotated images. ImageNet has been partially used so far; however,

we also need to consider larger datasets, which might contain videos as well. For

example, Yahoo Labs has recently announced another dataset, which consists of

approximately 100 million annotated images as well as about 700,000 annotated videos

(http://labs.yahoo.com/news/yfcc100m/).

In addition to existing datasets, we can also make use of social multimedia. In

other words, we can use the videos/images posted online since they already have

comments or descriptions associated with them. Even though information on social

media is too noisy, we still believe that it is one of the most efficient ways to address

the lack of annotated data issue.

6.1.4 Handling Concept Selection Errors

In Section 5.1.1, we have explained how to select concepts based on a query within the

context of VED-zero. Our approach is based on identifying concepts that are expected

to be relevant to a query. The identification process relies on similarity between textual

description of queries and concepts and highly dependent upon matching words.

In the concept dictionary we used in VED-zero, several concepts are created based

on queries as our evaluation environment is dedicated to test the correctness of our
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methods. Further, we make use of the full description of a query including name,

definition, and explication. Therefore, we did not face the problem of having no

concepts identified as relevant to a query.

Having a larger dictionary of concepts might solve this problem or decrease the

chance of facing with this problem. However, when we use only the title of a query, we

might need expand the query to catch concepts that might be relevant to this query.

Query expansion techniques might be employed to address this issue. For example,

Allan et al. (2013) show that it is possible to use only titles of queries. They run

query titles against the Wikipedia, and in this way more terms are compiled for a

query. This expansion process increases the chance of identifying relevant concepts to

a query.

6.1.5 Towards Higher Quality Detectors

Even though the major parameter in the approaches tackling video event detection is

the detectors, we researchers do not pay much attention to the quality of the detectors.

The main reason stems from the urge for creating a very large dictionary of concepts.

Therefore, we focused on the quantity more than the quality. In some cases, we take

the quality of concepts for granted.

For example, the HMDB dataset was released for evaluating approaches for the

action recognition problem (Kuehne et al. 2011). When it was first released (in 2011),

the state-of-the-art for that dataset was around 20% (Kuehne et al. 2011). Then,

researchers improved the state-of-the-art to 65%. We transfer the knowledge we have

gained from HMDB and apply to video event detection. However, we then observe that

recognizing the “running” action with 80% accuracy in HMDB does not necessarily

mean that we can detect the “running” actions in videos with the same quality.

A number of solutions seem promising to address this issue. HMDB is hand-

crafted (not only HMDB but most of the existing datasets also suffer from the same
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issue). It is a simple dataset (e.g., videos having similar lengths, only one action, and

similar quality) compared to videos we have in video event detection (e.g., different

in size as well as quality, and may contain multiple actions). First, we can focus on

unconstrained and not-hand-crafted sets while creating our detectors. We can also try

to focus on robust descriptors which might work fairly similar in different datasets.

Recent progress on deep learning oriented features shows promising and robust results

in object detection and recognition.

Increasing quality of detectors relies on accepting the fact that detectors are key

to video event detection. Therefore, we need to focus on the quality of detectors in

addition to the quantity of them.

Recent progress on deep learning approaches has shown that high quality descriptors

can be created to understand the content of images. For example, a new deep learning

oriented descriptor named Overfeat has shown promising results on object detection and

recognition (Sermanet et al. 2013). In Section 4.2.2, we also observe that concepts that

are created using Overfeat descriptors show promising retrieval accuracies. Perhaps, a

deeper analysis in this direction might yield higher quality detectors and we can take

the advantage of them by replacing them with low-quality detectors.

We believe that increasing the quality of the detectors will result in higher accuracy

scores for both query-dependent concepts (QDC) and query-independent concepts

(QIC). QDC might show relatively larger improvements compared to QIC. The success

of QIC is correlated with quality of the detectors. In other words, the current detectors

are not good enough to detect concepts very effectively, where QDC cannot make

a difference compared to using their query independent counterparts. Using higher

quality detectors, especially the ones created with deep learning features, we might

be able to take better advantage of QDC. A further analysis on comparing query-

dependent and -independent concepts might be yet another direction for future studies

on VED.

123



For the one-exemplar case, we believe that our approach will still work using

higher quality detectors. When we evaluated our approach, we also investigated its

robustness on multiple detectors. We also evaluated one-exemplar models using a

deep learning oriented feature (i.e., Overfeat (Sermanet et al. 2013)) and the results

showed that our approach works on this descriptor as well.

Similar to VED-ex, we believe that higher quality detectors will yield decent

improvements on accuracy scores within the context of VED-zero. While we can

take the advantage of example videos in VED-ex, our models rely on only concept

outputs in VED-zero. Therefore, any change in the quality of the detectors will have

a relatively larger impact on accuracy scores in VED-zero compared to VED-ex.
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