100 research outputs found

    Semantic cut elimination for the logic of bunched implications, formalized in Coq

    Get PDF
    The logic of bunched implications (BI) is a substructural logic that forms the backbone of separation logic, the much studied logic for reasoning about heap-manipulating programs. Although the proof theory and metatheory of BI are mathematically involved, the formalization of important metatheoretical results is still incipient. In this paper we present a self-contained formalized, in the Coq proof assistant, proof of a central metatheoretical property of BI: cut elimination for its sequent calculus. The presented proof is *semantic*, in the sense that is obtained by interpreting sequents in a particular "universal" model. This results in a more modular and elegant proof than a standard Gentzen-style cut elimination argument, which can be subtle and error-prone in manual proofs for BI. In particular, our semantic approach avoids unnecessary inversions on proof derivations, or the uses of cut reductions and the multi-cut rule. Besides modular, our approach is also robust: we demonstrate how our method scales, with minor modifications, to (i) an extension of BI with an arbitrary set of \emph{simple structural rules}, and (ii) an extension with an S4-like â–¡\Box modality.Comment: 15 pages, to appear in CPP 202

    MacNeille Completion and Buchholz\u27 Omega Rule for Parameter-Free Second Order Logics

    Get PDF
    Buchholz\u27 Omega-rule is a way to give a syntactic, possibly ordinal-free proof of cut elimination for various subsystems of second order arithmetic. Our goal is to understand it from an algebraic point of view. Among many proofs of cut elimination for higher order logics, Maehara and Okada\u27s algebraic proofs are of particular interest, since the essence of their arguments can be algebraically described as the (Dedekind-)MacNeille completion together with Girard\u27s reducibility candidates. Interestingly, it turns out that the Omega-rule, formulated as a rule of logical inference, finds its algebraic foundation in the MacNeille completion. In this paper, we consider a family of sequent calculi LIP = cup_{n >= -1} LIP_n for the parameter-free fragments of second order intuitionistic logic, that corresponds to the family ID_{<omega} = cup_{n <omega} ID_n of arithmetical theories of inductive definitions up to omega. In this setting, we observe a formal connection between the Omega-rule and the MacNeille completion, that leads to a way of interpreting second order quantifiers in a first order way in Heyting-valued semantics, called the Omega-interpretation. Based on this, we give a (partly) algebraic proof of cut elimination for LIP_n, in which quantification over reducibility candidates, that are genuinely second order, is replaced by the Omega-interpretation, that is essentially first order. As a consequence, our proof is locally formalizable in ID-theories

    A linear algebra approach to linear metatheory

    Get PDF
    Linear typed λ-calculi are more delicate than their simply typed siblings when it comes to metatheoretic results like preservation of typing under renaming and substitution. Tracking the usage of variables in contexts places more constraints on how variables may be renamed or substituted. We present a methodology based on linear algebra over semirings, extending McBride's kits and traversals approach for the metatheory of syntax with binding to linear usage-annotated terms. Our approach is readily formalisable, and we have done so in Agda

    When Conditional Logic and Belief Revision Meet Substructural Logics

    Get PDF
    International audienceTwo threads of research have been pursued in parallel in logic and artificial intelligence. On the one hand, in artificial intelligence, logic-based theories have been developed to study and formalize belief change and the so-called "common sense reasoning" , i.e. the actual reasoning of humans. On the other hand, in logic, substructural logics, i.e. logics lacking some of the structural rules of classical logic, have been studied in depth from a theoretical point of view. However, the powerful (proof-theoretical) techniques and methods developed in logic have not yet been applied to artificial intelligence. Conditional logic and belief revision theory are prominent theories in artificial intelligence dealing with common sense reasoning. We show in this article that they can both be embedded within the framework of substructural logics and can both be seen as extensions of the Lambek calculus. This allows us to compare and relate them to each other systematically, via a natural formalization of the Ramsey test

    A recovery operator for non-transitive approaches

    Get PDF
    In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities.Fil: Barrio, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; ArgentinaFil: Szmuc, Damián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentin

    Formalized Proof Systems for Propositional Logic

    Get PDF
    We have formalized a range of proof systems for classical propositional logic (sequent calculus, natural deduction, Hilbert systems, resolution) in Isabelle/HOL and have proved the most important meta-theoretic results about semantics and proofs: compactness, soundness, completeness, translations between proof systems, cut-elimination, interpolation and model existence

    Defining Logical Systems via Algebraic Constraints on Proofs

    Full text link
    We comprehensively present a program of decomposition of proof systems for non-classical logics into proof systems for other logics, especially classical logic, using an algebra of constraints. That is, one recovers a proof system for a target logic by enriching a proof system for another, typically simpler, logic with an algebra of constraints that act as correctness conditions on the latter to capture the former; for example, one may use Boolean algebra to give constraints in a sequent calculus for classical propositional logic to produce a sequent calculus for intuitionistic propositional logic. The idea behind such forms of reduction is to obtain a tool for uniform and modular treatment of proof theory and provide a bridge between semantics logics and their proof theory. The article discusses the theoretical background of the project and provides several illustrations of its work in the field of intuitionistic and modal logics. The results include the following: a uniform treatment of modular and cut-free proof systems for a large class of propositional logics; a general criterion for a novel approach to soundness and completeness of a logic with respect to a model-theoretic semantics; and a case study deriving a model-theoretic semantics from a proof-theoretic specification of a logic.Comment: submitte
    • …
    corecore