

 University of Groningen

Semantic cut elimination for the logic of bunched implications, formalized in Coq
Frumin, Dan

Published in:
CPP 2022 - Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs,
co-located with POPL 2022

DOI:
10.1145/3497775.3503690

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Frumin, D. (2022). Semantic cut elimination for the logic of bunched implications, formalized in Coq. In A.
Popescu, & S. Zdancewic (Eds.), CPP 2022 - Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, co-located with POPL 2022 (pp. 291-306). (CPP 2022 -
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs, co-
located with POPL 2022). Association for Computing Machinery, Inc.
https://doi.org/10.1145/3497775.3503690

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1145/3497775.3503690
https://research.rug.nl/en/publications/2000b079-05c2-42bf-811f-f2bfe500c60c
https://doi.org/10.1145/3497775.3503690

Semantic Cut Elimination for the Logic of Bunched
Implications, Formalized in Coq

Dan Frumin
Bernoulli Institute, University of Groningen

The Netherlands
d.frumin@rug.nl

Abstract

The logic of bunched implications (BI) is a substructural logic
that forms the backbone of separation logic, the much stud-
ied logic for reasoning about heap-manipulating programs.
Although the proof theory and metatheory of BI are mathe-
matically involved, the formalization of important metathe-
oretical results is still incipient. In this paper we present a
self-contained formalized, in the Coq proof assistant, proof
of a central metatheoretical property of BI: cut elimination
for its sequent calculus.
The presented proof is semantic, in the sense that is ob-

tained by interpreting sequents in a particular łuniversalž
model. This results in a more modular and elegant proof than
a standard Gentzen-style cut elimination argument, which
can be subtle and error-prone in manual proofs for BI. In
particular, our semantic approach avoids unnecessary inver-
sions on proof derivations, or the uses of cut reductions and
the multi-cut rule.
Besides modular, our approach is also robust: we demon-

strate how our method scales, with minor modifications, to
(i) an extension of BI with an arbitrary set of simple structural

rules, and (ii) an extension with an S4-like □ modality.

CCS Concepts: · Theory of computation→ Proof the-

ory; Logic and verification.

Keywords: cut elimination, bunched implications, interac-
tive theorem proving, Coq, substructural logics

ACM Reference Format:

Dan Frumin. 2022. Semantic Cut Elimination for the Logic of Bunched

Implications, Formalized in Coq. In Proceedings of the 11th ACM

SIGPLAN International Conference on Certified Programs and Proofs

(CPP ’22), January 17ś18, 2022, Philadelphia, PA, USA. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3497775.3503690

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9182-5/22/01.

https://doi.org/10.1145/3497775.3503690

1 Introduction

The logic of bunched implications (BI) [32] is an extension
of intuitionistic logic with substructural connectives. BI (and
its classical cousin Boolean BI) is known for, among other
things, forming a basis for separation logic [31, 40] ś a pop-
ular program logic for verification of heap-manipulating
programs. The BI itself, and many of its important models,
are based on the idea that propositions denote ownership of
resources and BI includes a separating conjunction connec-
tive ∗, which signifies ownership of disjoint resources [39].
As an adjoint to ∗, BI also includes a magic wand connective
−∗, which is determined by the property

𝐴 ⊢ 𝐵 −∗ 𝐶 ⇐⇒ 𝐴 ∗ 𝐵 ⊢ 𝐶.

Additionally, BI includes a unit element Emp for the separat-
ing conjunction ∗.

Proof theoretically, BI can be formalized in a Gentzen-style
sequent calculus, which operates on the judgments of the
form Δ ⊢ 𝐴, where Δ is not merely a multiset of formulas,
but a bunch: a tree in which leaves are formulae and nodes
are connected with either ; or , (signifying connecting the
resources using ∧ and ∗, respectively). For example, a bunch
might be ((𝑎 ∧𝑏) ; 𝑐) , (𝑑 ; 𝑒). Due to this nested structure of
bunches, the left rules in the BI sequent calculus can apply
deep inside bunches. For example, an instance of the left rule
for ∧, specialized to the bunch above, is

((𝑎 ; 𝑏) ; 𝑐) , (𝑑 ; 𝑒) ⊢ 𝜑

((𝑎 ∧ 𝑏) ; 𝑐) , (𝑑 ; 𝑒) ⊢ 𝜑

That is, 𝑎 ∧ 𝑏 got łdestructedž into 𝑎 ; 𝑏 in the context
([−] ; 𝑐) , (𝑑 ; 𝑒), where [−] signifies a hole that can be
filled.

BI treats separating conjunction ∗ (and, hence, ,) as a sub-
structural connective, that does not admit contraction and
weakening (i.e. neither 𝑎 ⊢ 𝑎 ∗ 𝑎 nor 𝑎 ∗ 𝑏 ⊢ 𝑎 hold), but it re-
tains the usual structural rules for intuitionistic conjunction
∧ (and, hence, ;). In the sequent calculus, the corresponding
structural rules can as well be applied deeply inside bunches.
For example, an instance of a contraction rule might look
like this:

(

(𝑎 , 𝑏) ; (𝑎 , 𝑏)
)

, 𝑐 ⊢ 𝜑

(𝑎 , 𝑏) , 𝑐 ⊢ 𝜑

Here we contract the bunch (𝑎 , 𝑏) inside the context [−] , 𝑐 .
In BI we have to permit contraction on arbitrary bunches,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

291

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3497775.3503690
https://doi.org/10.1145/3497775.3503690

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

whereas in intuitionistic logic contraction on individual for-
mulas is sufficient.

As usual, BI includes a cut rule, which formalizes the infor-
mal process of applying an intermediate lemma in a proof.
Similar to the other rules, the cut rule can be applied on a
formula deeply nested inside a bunch:

Δ
′ ⊢ 𝜓 Δ(𝜓) ⊢ 𝜑

Δ(Δ′) ⊢ 𝜑

where Δ(−) is an arbitrary bunch with a hole.
In this paper we study the cut elimination property for BI.

That is, every sequent that has a proof in BI involves the cut
rule also has a proof that is cut-free (i.e. does not use of the
cut rule). From a theoretical point of view, cut elimination
can be used to show important meta-theoretical properties
(subformula property, consistency, conservativity). From a
more practical standpoint, cut elimination is an important
ingredient in proof search.

Why formalize cut elimination? Cut elimination is a
staple in metatheory of logics. Because of that, the question
of cut elimination is often one of the first to be raised, when-
ever a new logic or a new sequent calculus is proposed. It
is then common to prove cut elimination directly, by pro-
viding a recursive procedure on derivation trees, potentially
using additional measure(s) to prove that this procedure
terminates.

Proofs organized along those lines are repetitive, consist of
many sub-cases, and include many implicit details (e.g. about
the structure of the contexts). As a result, it is not uncommon
to see proofs that are łanalogousž to known correct proofs
of cut elimination for related systems, or proofs that only
discuss a couple of cases that are considered illustrative,
with the bulk of the proof being left as a (rarely completed)
exercise for the reader.
Unfortunately, due to the interplay and complexity of all

the details, such informal proofs can be quite risky. In the
case of BI, the deep nested structure of bunches and explicit
structural rules contribute to the complexity and the level of
details. For example, a proof of cut elimination for BI given
in [38, Chapter 6] had a gap, that was later fixed in [3]. The
issue seems to arise from the treatment of the contraction
rule. In presence of explicit contraction a naive approach of
pushing each instance of the cut rule up along the derivation
tree does not necessarily work. In order to resolve this, the
cut rule should be generalized to themulticut rule, combining
contraction and cut together. Then cut elimination is gener-
alized to multicut elimination, offering a stronger induction
hypothesis that can be applied to subproofs. Unfortunately,
this generalization was originally done in a way that only
works for some of the cases. See [3] for more details.1

1It is possible to avoid the multicut generalization by using more fine-

grained measure functions, see [8] for the case of intuitionistic logic. As

This is not the only instance of erroneous proofs of cut
elimination slipping in. Several sequent calculus formula-
tions for bi-intuitionistic logic were wrongly believed to en-
joy cut elimination. These mistakes were later fixed in [37].
Other instances include an incorrect proof of cut elimination
for full intuitionistic linear logic, fixed in [5, 15]; an incor-
rect proof of cut elimination for nested sequent systems for
modal logic [10], fixed in [30]. While not incorrect in itself,
cut elimination for a formulation of the provability logic GL
by Sambin and Valentini [41] with explicit structural rules
was subject of some controversy until it was resolved in [22].

Semantic cut elimination. To counterbalance informal
pen-and-paper proofs of cut elimination for BI, we provide a
fully formalized proof in the Coq proof assistant. However,
instead of trying to formalize an intricate Gentzen-style pro-
cess, as in [3], we approach cut elimination using the ideas of
algebraic proof theory: a research area aimed at making tight
connections between structural proof theory and algebraic
semantics of logics. In our proof we adapt the methods of
algebraic semantic cut elimination for linear logic [33, 34],
in which cut elimination is obtained by constructing a spe-
cial model for linear logic that is universal w.r.t. cut-free
provability. We believe that this approach to cut elimination
is more amendable to formalization and extension, than a
direct Gentzen-style proof.
Semantic cut elimination for BI was first developed by

Galatos and Jipsen [19], building on their work on residu-
ated frames [18]. Their approach is quite general, and the
proof makes heavy use of intermediate structures (the afore-
mentioned residuated frames), which lie in between sequent
calculus and algebraic semantics. By contrast, the proof pre-
sented here only involves the łsyntaxž (sequent calculus),
and the łsemanticsž (algebraic models) parts. This leaves us
with fewer structures to consider in the formalization.

To demonstrate the modularity of our proof, we extend
it to cover two different types of extensions of BI. Firstly,
we consider BI extended with a particular class of structural
rules (simple structural rules), which cover weakening and
contraction (both for , and ;), as well as many other kinds
of structural rules. Secondly, we consider BI extended with
an S4-like □ modality. In both cases we show that we do
not have to make a lot of modifications to the proof, and
the modifications that we do have to make are, in a way,
systematic.

1.1 Contributions and Outline

The main contributions of this paper are as follows. We
present an algebraic proof of cut elimination for BI. Our
proof can be seen as a simplification of the Galatos and
Jipsen’s method [19], without the framework of residuated
frames. We demonstrate the modularity of our approach by

another alternative, Brotherston [9] gave a proof of cut elimination for BI

by going through a displayed calculus.

292

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

extending it to cut elimination of BI with an S4-like modality
(modalities were not previously considered in the framework
of residuated frames). We formalize the results in the Coq
proof assistant, which is to our knowledge the first published
formalization of cut elimination for BI.

The remained of the paper is structured as follows. In Sec-
tion 2 we present the main idea behind semantic proofs of cut
elimination. In Section 3 and Section 4 we recall the sequence
calculus for BI and its (standard) algebraic semantics via BI
algebras. In Section 5 we consider when a closure operator
on a BI algebra induces a subalgebra itself. We then apply
this construction in Section 6 to obtain a łuniversalž model
for cut-free provability, and use it to prove cut elimination.
In Section 7 we extend the proof of cut elimination to all
possible extensions of BI with a particular class of structural
rules. In Section 8 we extend the proof to account for an
S4-like modality. We discuss our formalization efforts in Sec-
tion 9. We discuss related work in Section 10 and conclude
in Section 11.

1.2 Formalization

The formalization is available online at:

https://github.com/co-dan/BI-cutelim.

In this paper we specifically refer to the version with git
hash 93aa954, permanently available under DOI 10.5281/zen-
odo.5770478. Throughout the paper, identifiers inmonospaced
font (like this) accompany statements and proposition.
They indicate the names of the statements in the Coq for-
malization and link to the corresponding place in the online
documentation. For example, the link proves points to the
inductive definition of the BI sequent calculus.

2 Semantic Cut Elimination

In this section we explain some of the ideas and intuitions
behind a semantic proof of cut elimination in a semi-formal
way, before diving straight into the complexities of BI. The
starting point is that there is a class of algebras in which
we can interpret logic. The main idea is to find a particular
algebra C, in which we can interpret the sequent calculus,
and which has a property that if J𝜓K ≤ J𝜑K in C, then𝜓 ⊢ 𝜑
is derivable without applications of the cut rule. In this case,
we say that C is a łuniversalž algebra for cut-free provabil-
ity. Then, cut elimination can be obtained by the (sound)
interpretation of sequent calculus into C.

Finding such a łuniversalž algebra is reminiscent of prov-
ing completeness of a logic w.r.t. a class of algebras. In the
case of completeness, we construct a łuniversalž algebra
L such that J𝜓K ≤ J𝜑K implies derivability of 𝜓 ⊢ 𝜑 . This
Lindenbaum-Tarski algebra L is usually defined to be the
collection of equivalence classes of formulas modulo inter-
provability:

[𝜑] ≜ {𝜓 | (𝜓 ⊢ 𝜑) ∧ (𝜑 ⊢ 𝜓)}

And the ordering ≤ on L is induced by provability:

[𝜑] ≤ [𝜓] ⇐⇒ 𝜑 ⊢ 𝜓 .

Provability does not depend on the representative of the
equivalence class, and so we get a poset L. The logical oper-
ators are interpreted in L in such a way that J𝜑K = [𝜑]. The
argument for completeness then goes as follows: suppose
that J𝜑K ≤ J𝜓K in all the possible algebras; then, in particular
that inequality holds in L, which amounts to 𝜑 ⊢ 𝜓 . Thus,
any valid sequent is derivable.
It is precisely the connection between provability and

the order on the algebra that makes this model useful. We
can imagine a reformulation of the above model in terms of
cut-free provability in sequent calculus:

[𝜑] ≤ [𝜓] ⇐⇒ 𝜑 ⊢cf 𝜓 .

This adaptation, however, does not work. In order to prove
that the ordering ≤ is transitive, we need to show

𝜑 ⊢cf 𝜓 𝜓 ⊢cf 𝜒

𝜑 ⊢cf 𝜒

which amounts to showing that cut is admissible in the
cut-free fragment. We seem to be back at square one.

To fix this, instead of interpreting formulas as sets of equiv-
alent formulas (which is what equivalence classes can be seen
as), we would like to interpret formulas as sets of contexts
which prove the formula:

⟨𝜑⟩ ≜ {Δ | Δ ⊢cf 𝜑}.

Then, inclusion of sets is a good candidate for the ordering,
because𝜓 ∈ ⟨𝜓 ⟩ and, hence, ⟨𝜓 ⟩ ⊆ ⟨𝜑⟩ implies𝜓 ⊢cf 𝜑 .
But how do we interpret logical connectives? We can in-

terpret ⊤ as the set of all contexts; then, clearly ⊤ = ⟨True⟩.
However, we cannot pick the empty set as an interpretation
of⊥: the set ⟨False⟩ is non-empty, as it contains at least False
itself. What we need is to find an interpretation J−K such
that J𝜑K ⊆ J𝜓K implies 𝜑 ⊢cf 𝜓 (or, equivalently 𝜑 ∈ ⟨𝜓 ⟩).
Okada [33] proposed a sufficient condition for such an inter-
pretation: for any formula 𝜑 , 𝜑 ∈ J𝜑K and J𝜑K ∈ ⟨𝜑⟩. Then,
the desired property on the interpretation follows via a chain
of inclusions:

𝜑 ∈ J𝜑K ⊆ J𝜓K ⊆ ⟨𝜓 ⟩.

Note that the set of all contexts does not satisfy this con-
dition: as we have seen, the empty set a counter-example.
It is the least element w.r.t set inclusion, but False ∉ ∅, so
we cannot set JFalseK = ∅. This suggests that, instead of
considering arbitrary sets of contexts, we need to refine the
powerset algebra somehow. A good starting point would
be to consider the carrier of the algebra containing just the
sets of the form ⟨𝜑⟩, i.e. C = {⟨𝜑⟩ | 𝜑 ∈ Frml} (by analogy
with the Lindenbaum-Tarski algebra, which consists only of
elements of the form [𝜑]). We can then interpret bottom as
⊥ = ⟨False⟩, and it indeed will be the least element in the
algebra.

293

https://github.com/co-dan/BI-cutelim
https://github.com/co-dan/BI-cutelim/tree/93aa9549cd122330d9cdb38900c69c21d2f5380a
https://doi.org/10.5281/zenodo.5770478
https://doi.org/10.5281/zenodo.5770478
https://github.com/co-dan/BI-cutelim
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc.html#proves

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

Looking at other connectives, we cannot interpret dis-
junction as set-theoretic union, because the union ⟨𝜑⟩ ∪ ⟨𝜓 ⟩
cannot always be written as ⟨𝜒⟩, for some formula 𝜒 . That
is, we cannot actually show that C, as given above, is closed
under unions, so ∪ is not a well-defined operation on C.
How should we then interpret disjunction if not as the

union of sets? If we cannot use the set union, we will use the
łnext best thingž: the smallest set in C that actually contains
the union. Formally, we set:

𝑋 ∨ 𝑌 =

⋂

{𝑍 ∈ C | 𝑋 ∪ 𝑌 ⊆ 𝑍 }.

This definition is still not without issues: for this operation
to be defined, we need to ensure that C is closed under
arbitrary intersections. It turns out that we can achieve this
by modifying the carrier of C and łbaking inž the closedness
under arbitrary intersections. Such a construction is obtained
in a generic way as a subalgebra of the powerset algebra
generated by a particular closure operator, as we will see in
Sections 5 and 6.

In the remainder of the paper we develop this construction
in details. But first, to make the matters concrete, we recall
the BI sequent calculus and properties of its cut-free fragment
(Section 3), and the algebraic semantics for BI (Section 4).

3 Sequent Calculus for BI

In this section we briefly recall the sequent calculus formu-
lation of BI [32], and some of the properties of its cut-free
fragment. The formulas of BI are obtained from the following
grammar:

𝜑,𝜓 ::= True | False | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | 𝜑 → 𝜓

| Emp | 𝜑 ∗𝜓 | 𝜑 −∗ 𝜓 | 𝑎 (𝑎 ∈ Atom)

BI extends intuitionistic propositional logic with separat-
ing conjunction (∗), magic wand (−∗, adjoint to separating
conjunction), and the empty proposition (Emp, unit for sep-
arating conjunction). We also include atomic propositions
drawn from a fixed set Atom.

The sequent calculus for BI is given in Figure 1. It operates
on the sequents of the form Δ ⊢ 𝜑 , where 𝜑 is a formula and
Δ is a bunch ś a tree composed of binary nodes labeled with
, and ;, and leaves being either formulas or empty bunches
∅𝑚 and ∅𝑎 . Morally, we view bunches as equivalence classes
of such trees modulo commutative monoid laws for (,,∅𝑚),
and (;,∅𝑎). These are given using structural congruence ≡,
the rules for which are also given in Figure 1. We could have
defined provability on such equivalence classes, but we opt
for using explicit context conversions using eqiv.

Most of the structural rules and the left rules can be applied
to formulas that occur nested inside some bunch with a
hole Δ(−). We refer to such bunches with holes as bunched
contexts. For example, in the application of the rule ∧L below

we use the bunched context (𝑝 , [−]):

∧L
𝑝 , (𝑝 ; 𝑞) ⊢ 𝑝 ∗ 𝑞

𝑝 , (𝑝 ∧ 𝑞) ⊢ 𝑝 ∗ 𝑞.

3.1 Cut-free Provability

Let us write Δ ⊢cf 𝜑 if Δ ⊢ 𝜑 is derivable without the cut rule.
In the rest of this section we prove invertibility of several
rules in the cut-free fragment of BI. Those derived rules will
be useful to us when constructing the algebraic model in
Section 6.
The first observation about the sequent calculus, is that

we have formulated the łaxiomž rule 𝜑 ⊢ 𝜑 only for atomic
formulas 𝑎 ∈ Atom. This will significantly simplify some
of the proofs (for example, Lemma 3.3), but does not limit
the expressivity of the system, as witness by the following
lemma.

Proposition 3.1 (Identity expansion, seqcalc_id_ext). For

every formula 𝜑 we can derive a sequent 𝜑 ⊢cf 𝜑 .

Proof. By induction on the structure of 𝜑 . □

For the construction presented in this paper we need to
show that a number of rules are invertible in the cut-free
sequent calculus. Specifically, we need to show that −∗R, →R,
∗L, ∧L, EmpL, and TrueL are invertible.

Lemma 3.2 (wand_r_inv and impl_r_inv). The following
rules are admissible:

−∗R-inv
Δ ⊢cf 𝜑 −∗ 𝜓

Δ , 𝜑 ⊢cf 𝜓

→R-inv

Δ ⊢cf 𝜑 → 𝜓

Δ ; 𝜑 ⊢cf 𝜓

Proof. By induction on the derivations Δ ⊢cf 𝜑 −∗ 𝜓 and
Δ ⊢cf 𝜑 → 𝜓 . □

At the end of the day, the proof of Lemma 3.2 by induction
on derivations is not very complicated, because the form of
the context on the left-hand side of the sequent is relatively
simple. It is easy to show that the left rules can commute
with −∗R and →R. By contrast, showing that the rules ∗L and
∧L are invertible is more involved for several reasons.

First of all, just like for other sequent calculi with explicit
contraction, structural induction on the proof is not strong
enough. Consider the following derivation of 𝜑 ∗𝜓 ⊢cf 𝜒 :

𝜑 ∗𝜓 ; 𝜑 ∗𝜓 ⊢cf 𝜒

𝜑 ∗𝜓 ⊢cf 𝜒

Since 𝜑 ∗𝜓 occurs twice in the premise, we need to apply
the induction hypothesis twice. From the first application of
the induction hypothesis we get a proof

𝜑 ∗𝜓 ; (𝜑 , 𝜓) ⊢cf 𝜒,

but this proof is not a strict subderivation of the original
derivation. Therefore, we cannot use the induction hypothe-
sis second time to obtain a proof of (𝜑 , 𝜓) ; (𝜑 , 𝜓) ⊢cf 𝜒 .

294

https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc.html#Seqcalc.seqcalc_id_ext
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height.html#SeqcalcHeight.wand_r_inv
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height.html#SeqcalcHeight.impl_r_inv

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

Equivalence of bunches

Δ1 , Δ2 ≡ Δ2 , Δ1 Δ1 ; Δ2 ≡ Δ2 ; Δ1 Δ1 , (Δ2 , Δ3) ≡ (Δ1 , Δ2) , Δ3 Δ1 ; (Δ2 ; Δ3) ≡ (Δ1 ; Δ2) ; Δ3

Δ , ∅𝑚 ≡ Δ Δ ; ∅𝑎 ≡ Δ
Δ ≡ Δ

′

Γ(Δ) ≡ Γ(Δ′)

Structural rules

ax

𝑎 ∈ Atom

𝑎 ⊢ 𝑎

eqiv

Δ
′ ⊢ 𝜑 Δ ≡ Δ

′

Δ ⊢ 𝜑

W;
Δ(Δ1) ⊢ 𝜑

Δ(Δ1 ; Δ2) ⊢ 𝜑

C;
Δ(Δ1 ; Δ1) ⊢ 𝜑

Δ(Δ1) ⊢ 𝜑

cut

Δ
′ ⊢ 𝐴 Δ(𝐴) ⊢ 𝐵

Δ(Δ′) ⊢ 𝐵

Multiplicatives

EmpR

∅𝑚 ⊢ Emp

EmpL

Δ(∅𝑚) ⊢ 𝜑

Δ(Emp) ⊢ 𝜑

∗R
Δ1 ⊢ 𝜑 Δ2 ⊢ 𝜓

Δ1 , Δ2 ⊢ 𝜑 ∗𝜓

∗L
Δ(𝜑 , 𝜓) ⊢ 𝜒

Δ(𝜑 ∗𝜓) ⊢ 𝜒

−∗R
Δ , 𝜑 ⊢ 𝜓

Δ ⊢ 𝜑 −∗ 𝜓

−∗L
Δ1 ⊢ 𝜑 Δ(Δ2 , 𝜓) ⊢ 𝜒

Δ(Δ1 , Δ2 , 𝜑 −∗ 𝜓) ⊢ 𝜒

Additives

TrueR

∅𝑎 ⊢ True

TrueL
Δ(∅𝑎) ⊢ 𝜑

Δ(True) ⊢ 𝜑

∧R
Δ1 ⊢ 𝜑 Δ2 ⊢ 𝜓

Δ1 ; Δ2 ⊢ 𝜑 ∧𝜓

∧L
Δ(𝜑 ;𝜓) ⊢ 𝜒

Δ(𝜑 ∧𝜓) ⊢ 𝜒

→R

Δ ; 𝜑 ⊢ 𝜓

Δ ⊢ 𝜑 → 𝜓

→L

Δ1 ⊢ 𝜑 Δ(Δ2 ;𝜓) ⊢ 𝜒

Δ(Δ1 ; Δ2 ; 𝜑 → 𝜓) ⊢ 𝜒

FalseL

Δ(False) ⊢ 𝜑

∨R1
Δ ⊢ 𝜑

Δ ⊢ 𝜑 ∨𝜓

∨R2
Δ ⊢ 𝜓

Δ ⊢ 𝜑 ∨𝜓

∨L
Δ(𝜑) ⊢ 𝜒 Δ(𝜓) ⊢ 𝜒

Δ(𝜑 ∨𝜓) ⊢ 𝜒

Figure 1. BI sequent calculus.

In order to circumvent this, we do induction on the height
of the derivation, strengthening the statement to:

Lemma 3.3 (sep_l_inv). If there is a derivation of

Δ(𝜑 ∗𝜓) ⊢cf 𝜒

with height 𝑛, then there is a derivation of

Δ(𝜑 , 𝜓) ⊢cf 𝜒

with height strictly less than 𝑛.

Note that this lemma would be false if we would have
included an axiom rule for arbitrary formulas: there would
be a proof 𝜑 ∗𝜓 ⊢cf 𝜑 ∗𝜓 of height 0, but the smallest proof of
𝜑 ,𝜓 ⊢cf 𝜑 ∗𝜓 is of height 1. That is why we have restricted
the axiom rule to atomic formulas, and got the general form
of the axiom rule as a derived statement (Proposition 3.1).

Similarly, by induction on the derivation height, we show
that EmpL and TrueL are invertible. We only care about the
derivation height for the purposes of induction, so we sum-
marize the results on invertible rules in the following lemma.

Lemma 3.4. The following rules are admissible:

∧L-inv
Δ(𝜑 ∧𝜓) ⊢cf 𝜒

Δ(𝜑 ;𝜓) ⊢cf 𝜒

∗L-inv
Δ(𝜑 ∗𝜓) ⊢cf 𝜒

Δ(𝜑 , 𝜓) ⊢cf 𝜒

⊤L-inv
Δ(True) ⊢cf 𝜒

Δ(∅𝑎) ⊢cf 𝜒

EmpL-inv

Δ(Emp) ⊢cf 𝜒

Δ(∅𝑚) ⊢cf 𝜒

Let us write (Δ)∗ for interpretation of Δ as a formula: we
substitute every occurrence of , inΔwith ∗, every occurrence
of ∅𝑚 with Emp, and similarly for the additive connectives.
Clearly, there is a derivation from Δ ⊢cf 𝜒 to (Δ)∗ ⊢cf 𝜒 , by
repeated application of ∗L and ∧L. For the other direction
we have the following.

Corollary 3.5 (collapse_l_inv). The following rule is ad-
missible:

Δ
′((Δ)∗) ⊢cf 𝜒

Δ
′(Δ) ⊢cf 𝜒

Proof. By induction on Δ, using Lemma 3.4. □

295

https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height.html#SeqcalcHeight.sep_l_inv
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height.html#SeqcalcHeight.collapse_l_inv

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

4 Algebraic Semantics for BI

We interpret the BI sequent calculus in the algebraic struc-
tures known as BI algebras, which are bounded Heyting
algebras with a compatible residuated monoidal structure.

Definition 4.1. A BI algebra B is a tuple
(𝐵,⊥,⊤,∧,∨,→, Emp, ∗,−∗) where

• (𝐵,⊥,⊤,∧,∨,→) is a bounded Heyting algebra, i.e. a
bounded distributive lattice with the Heyting implica-
tion satisfying

𝑎 ∧ 𝑏 ≤ 𝑐 ⇐⇒ 𝑎 ≤ 𝑏 → 𝑐

• ∗ : B × B → B is a monotone commutative and
associative function;

• Emp : B is a unit element for ∗;
• −∗ : B × B → B is a binary operation satisfying

𝑎 ∗ 𝑏 ≤ 𝑐 ⇐⇒ 𝑎 ≤ 𝑏 −∗ 𝑐

Definition 4.2. Let B be an arbitrary BI algebra. Given an
interpretation 𝑖 : Atom → B of atomic propositions, we
interpret formulas of BI in B in the usual tautological way:

JEmpK = Emp JTrueK = ⊤

J𝜑 ∗𝜓K = J𝜑K ∗ J𝜓K J𝜑 ∧𝜓K = J𝜑K ∧ J𝜓K

J𝜑 −∗ 𝜓K = J𝜑K −∗ J𝜓K J𝜑 → 𝜓K = J𝜑K → J𝜓K

J𝜑 ∨𝜓K = J𝜑K ∨ J𝜓K JFalseK = ⊥

J𝑎K = 𝑖 (𝑎)

Theorem 4.3 (Soundness, seq_interp_sound). If Δ ⊢ 𝜑 is

derivable, then J(Δ)∗K ≤ J𝜑K holds in any BI algebra.

Proof. By induction on the derivation. □

4.1 BI Algebras from Monoids

In practice, a lot of BI algebras arise as predicates over a par-
tial commutative monoid. Let (𝑀, ·, 𝑒) be a partially commu-
tative monoid; we write 𝑥 ·𝑦 = ⊥ if composition of 𝑥 and 𝑦 is
undefined. Then the powerset ℘(𝑀) is a (complete) Heyting
algebra, and it forms a BI algebra (℘(𝑀), ∅, 𝑀,∩,∪,→, 0, •,−•)
with the following operators:

0 ≜ {𝑒}

𝑋 • 𝑌 ≜ {𝑥 · 𝑦 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑥 · 𝑦 ≠ ⊥}

𝑋 −• 𝑌 ≜ {𝑧 | ∀𝑥 ∈ 𝑋 . 𝑧 · 𝑥 ≠ ⊥ =⇒ 𝑧 · 𝑥 ∈ 𝑌 }.

BI algebra from the monoid of contexts. Let us write
Bunch for the set of bunches, modulo the equivalence≡ (from
Figure 1). We can endow the set Bunch of bunches with the
structure of a monoid. Composition of two contexts Δ and
Δ
′ is just putting them next to each other using ,:

Δ · Δ′
≜ (Δ , Δ′)

then, up to equivalence of bunches, ∅𝑚 is the unit element.
Using the powerset constructionwe get a BI algebra ℘(Bunch).
This model is very much łfreely generatedž from syntax,

but it is not very useful, as it does not involve any notion

of provability (only equivalence of contexts). In this next
sections we are going to refine this model, in order to obtain
a submodel which can be used to prove completeness and
cut-elimination.

5 Moore Closures on BI Algebras

For cut elimination, we will be interested in subalgebras of
the powerset algebra ℘(𝑀) for some partial commutative
monoid 𝑀 ; specifically subalgebras arising from a particular
closure operator. For the rest of this section we fix a partial
commutative monoid𝑀 .

Definition 5.1. A Moore collection is a family of sets C ⊆
℘(𝑀) that is closed under arbitrary intersections:

(∀𝑖 ∈ 𝐼 . 𝐴𝑖 ∈ C) =⇒
⋂

𝑖∈𝐼

𝐴𝑖 ∈ C.

If 𝑋 ∈ C we say that 𝑋 is closed.

Alternatively, a Moore collection can be given in terms of
a closure operator cl(−) satisfying the following conditions:

• 𝑋 ⊆ cl(𝑋);
• monotonicity: 𝑋 ⊆ 𝑌 =⇒ cl(𝑋) ⊆ cl(𝑌);
• idempotence: cl(cl(𝑋)) = cl(𝑋).

Given a Moore collection C we define the associated closure
operator as cl(𝑋) =

⋂

{𝑌 ∈ C | 𝑋 ⊆ 𝑌 }. In the other
direction, given a closure operator we define cl(−)-closed
sets as C = {𝑋 | cl(𝑋) = 𝑋 }.

Some basic theory behind posets with such a closure oper-
ator is given in [17]. Here, we recall only the results that we
will be needing. First of all, we are going to use the following
rule often.

Lemma 5.2 (cl_adj). The closure operator satisfies the fol-
lowing adjunction rule:

𝑋 ⊆ 𝑌 in ℘(𝑀)

cl(𝑋) ⊆ 𝑌 in C

for a closed set 𝑌 .

Since C is closed under intersections, 𝑋 ∩ 𝑌 is a meet of
two closed sets 𝑋 and 𝑌 . However, given two closed sets,
their union 𝑋 ∪𝑌 is not always closed. Instead, we interpret
join as cl(𝑋 ∪ 𝑌).

Proposition 5.3. The collection C is a complete bounded

lattice: the least upper bound is given by
∨

𝑖∈𝐼 𝑋𝑖 = cl(
⋃

𝑖∈𝐼 𝑋𝑖).
In particular, the bottom element of C is cl(∅).

It is not necessarily the case that C has Heyting implica-
tion, but if it does, then we can describe it in terms of the
implication on ℘(𝑀) and a dual of the closure operator.

Proposition 5.4 (impl_from_int). For a set 𝑋 ∈ ℘(𝑀), we
write int(𝑋) for the largest closed set contained in 𝑋 :

int(𝑋) =
∨

{𝑌 ∈ C|𝑌 ⊆ 𝑋 }.

296

https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc.html#Seqcalc.seq_interp_sound
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#cl_adj
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#impl_from_int

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

Then for closed sets 𝑋 and 𝑌 ,

𝑋 → 𝑌 = int(𝑋 ⊃ 𝑌)

where 𝑋 ⊃ 𝑌 denotes implication in ℘(𝑀).

Proof. We reason as follows:

int(𝑋 ⊃ 𝑌) =
∨

{𝑍 ∈ C|𝑍 ⊆ 𝑋 ⊃ 𝑌 }

=

∨

{𝑍 ∈ C|𝑍 ∩ 𝑋 ⊆ 𝑌 }

=

∨

{𝑍 ∈ C|𝑍 ⊆ 𝑋 → 𝑌 } = 𝑋 → 𝑌

□

In light of the previous propositions, we can see that some
Heyting algebra structure on C arises from the same opera-
tions on ℘(𝑀). Can we similarly lift the BI operations? Let
us denote the residuated monoidal structure (defined as in
Section 4.1) on ℘(𝑀) as (0, •,−•). In the rest of this section
we describe how to lift this structure to C.

5.1 BI Algebra Structure on Closed Sets

A sufficient condition for C to be a BI algebra is the following.

Definition 5.5. We say that the closure operator is strong
if for any 𝑋 and 𝑌

cl(𝑋) • 𝑌 ⊆ cl(𝑋 • 𝑌)

If cl(−) is strong, then we define the BI operators on C as
follows:

Emp = cl(0)

𝑋 ∗ 𝑌 = cl(𝑋 • 𝑌)

𝑋 −∗ 𝑌 = cl(𝑋 −• 𝑌)

We shall verify that with these connectives C is a BI algebra.

Proposition 5.6 (wand_intro_r, wand_elim_l’). There is
an adjunction between ∗ and −∗:

𝑋 ∗ 𝑌 ⊆ 𝑍 ⇐⇒ 𝑋 ⊆ 𝑌 −∗ 𝑍 .

Proof. We reason as follows.

𝑋 ∗ 𝑌 ⊆ 𝑍 (def. of ∗)

⇐⇒ cl(𝑋 • 𝑌) ⊆ 𝑍 (𝑍 is closed)

⇐⇒ 𝑋 • 𝑌 ⊆ 𝑍 (adjunction)

⇐⇒ 𝑋 ⊆ 𝑌 −• 𝑍

=⇒ 𝑋 ⊆ cl(𝑌 −• 𝑍) (def. of −∗)

⇐⇒ 𝑋 ⊆ 𝑌 −∗ 𝑍 .

On the other hand,

𝑋 ⊆ cl(𝑌 −• 𝑍) (monotonicity of •)

=⇒ 𝑋 • 𝑌 ⊆ cl(𝑌 −• 𝑍) • 𝑌 (strength of cl(−))

=⇒ 𝑋 • 𝑌 ⊆ cl((𝑌 −• 𝑍) • 𝑌)

=⇒ 𝑋 • 𝑌 ⊆ cl(𝑍) = 𝑍

⇐⇒ cl(𝑋 • 𝑌) ⊆ 𝑍 .

□

Proposition 5.7 (sep_comm’, sep_assoc’, and emp_sep_1,
emp_sep_2). (C, ∗, Emp) is a commutative monoid.

Proof. The commutativity of ∗ is evident from its definition.
Let us verify the unit laws:

Emp ∗ 𝑋 = cl(cl(0) • 𝑋) ⊆ cl(cl(0 • 𝑋)) = 𝑋

𝑋 = 0 • 𝑋 ⊆ cl(0) • 𝑋 ⊆ cl(cl(0) • 𝑋) = Emp ∗ 𝑋 .

We reason similarly for associativity of ∗. □

We can summaries these results in the following theorem.

Theorem 5.8. Let 𝑀 be a PCM, and let cl(−) be a strong

closure operator on ℘(𝑀), such that C has Heyting implication.

Then the set C of closed elements is a BI algebra.

Finally, some times it is more convenient to use an alter-
native condition in place of closure strength:

Proposition 5.9. The closure operator is strong iff 𝑋 −• 𝑌 is

closed whenever 𝑌 is closed, i.e. C forms an exponential ideal.

Proof. Suppose that C is an exponential ideal w.r.t −•. Then
we reason as follows:

cl(𝑋) • 𝑌 ⊆ cl(𝑋 • 𝑌)

cl(𝑋) ⊆ 𝑌 −• cl(𝑋 • 𝑌)

𝑋 ⊆ 𝑌 −• cl(𝑋 • 𝑌) (the r.h.s. is closed)

𝑋 • 𝑌 ⊆ cl(𝑋 • 𝑌)

Hence, cl(−) is strong.
For the other direction, if 𝑌 is closed, then

cl(𝑋 −• 𝑌) ⊆ 𝑋 −• 𝑌 ⇐⇒ cl(𝑋 −• 𝑌) • 𝑋 ⊆ 𝑌

⇐= cl((𝑋 −• 𝑌) • 𝑋) ⊆ 𝑌

⇐⇒ (𝑋 −• 𝑌) • 𝑋 ⊆ 𝑌

□

A remark on (im)predicativity. In practice, we want to
start with some collection B ⊆ ℘(𝑀) of sets, and generate
C freely from arbitrary intersections of elements of B (think
of generating a topology from a closed basis). Then C is a
Moore collection and the associated closure operator can be
given as cl(𝑋) =

⋂

{𝑌 ∈ C | 𝑋 ⊆ 𝑌 }. Unfortunately, this
definition is impredicative (we define an element of C by
quantifying over elements of C), which, when formalized in
type theory, increases the universe level.
That means that we cannot use the closure operator to

define the set C, i.e. the set {𝑋 | 𝑋 = cl(𝑋)}will have a higher
universe level than C. To circumvent this, we can instead
define the closure operator equivalently by quantifying not
over all the closed sets, but only over the basic closed sets:
cl(𝑋) =

⋂

{𝑌 ∈ B | 𝑋 ⊆ 𝑌 }. Then we can define C to be the
set of elements satisfying 𝑋 = cl(𝑋).

297

https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#wand_intro_r
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#wand_elim_l'
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#sep_comm'
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#sep_assoc'
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#emp_sep_1
https://co-dan.github.io/BI-cutelim/93aa954/bunched.algebra.from_closure.html#emp_sep_2

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

6 Cut-elimination via a Syntactic Model

In this sectionwe construct a special BI algebraC ⊆ ℘(Bunch)
that has the following property: if J𝜑K ≤ J𝜓K holds in C, then
𝜑 ⊢cf 𝜓 . By composing this with the soundness theorem, we
will obtain the cut-elimination result.

6.1 Principal Closed Sets

We are going to construct C as a particular Moore collection
on ℘(Bunch). To define when a predicate 𝑋 is closed (e.g.
when 𝑋 ∈ C), we start with principal closed elements, and
generate C as families of intersections of principal closed
sets.

Definition 6.1. A principal closed set is a set of the form:

⟨𝜑⟩ = {Δ | Δ ⊢cf 𝜑}

for a formula 𝜑 .

We can then generate closed sets by closing the collection
of principal closed sets under arbitrary intersections:

cl(𝑋) ≜
⋂

{⟨𝜑⟩ | 𝑋 ⊆ ⟨𝜑⟩} =
⋂

{⟨𝜑⟩ | ∀Δ ∈ 𝑋 . Δ ⊢cf 𝜑}.

We then define the collection C of closed sets as

C ≜ {𝑋 | 𝑋 = cl(𝑋)}.

Then every element of C can be written as some intersection
⋂

𝑖∈𝐼 ⟨𝜑𝑖⟩.
Let us briefly describe some useful properties of closed

sets:

Proposition 6.2 (C_inhabited, C_weaken, C_contract, and
C_collapse). Let 𝑋 be a closed set. Then the following holds.

1. False ∈ 𝑋 ;

2. Δ ∈ 𝑋 =⇒ (Δ ; Δ′) ∈ 𝑋 ;

3. (Δ ; Δ) ∈ 𝑋 =⇒ Δ ∈ 𝑋 ;

4. Δ ∈ 𝑋 ⇐⇒ (Δ)∗ ∈ 𝑋 .

Proof. For the first point, observe that False ⊢cf 𝜑 , so False ∈
⟨𝜑⟩ for any formula 𝜑 .
For the second point, let𝑋 be

⋂

𝑖∈𝐼 ⟨𝜑𝑖⟩. Then, Δ ∈ 𝑋 ⇐⇒
∀𝑖 ∈ 𝐼 . Δ ⊢cf 𝜑𝑖 . If Δ ∈ 𝑋 , then, using weakening:

Δ ⊢cf 𝜑𝑖

Δ ; Δ′ ⊢cf 𝜑𝑖

for any 𝑖 ∈ 𝐼 . Hence, Δ;Δ′ ∈ 𝑋 .
Similarly for the other two cases, using contraction, and

the left rules, and Corollary 3.5. □

As an example of a calculation in C, we show the following
characterization of meets.

Proposition 6.3 (C_and_eq). The following holds in C:

𝑋 ∧ 𝑌 = cl({Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 })

Proof. For the inclusion from left to right: suppose that Δ ∈
𝑋 ∩ 𝑌 . Then,

(Δ ; Δ) ∈ {Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 }

⊆ cl({Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 }) .

From Proposition 6.2 we get

Δ ∈ cl({Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 }) .

For the inclusion from right to left: it suffices to show:

{Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 } ⊆ 𝑋 ∩ 𝑌 .

If Δ ∈ 𝑋 and Δ
′ ∈ 𝑌 , then Δ ; Δ′ ∈ 𝑋 ∩ 𝑌 by Proposition 6.2.

□

6.2 BI Structure

In order to apply Theorem 5.8 and obtain a BI algebra struc-
ture on C, we have to ensure that the Heyting implication of
closed sets is closed, and that 𝑋 −• 𝑌 ∈ C whenever 𝑌 ∈ C.

For the following lemma we will use the fact that the −∗R

is invertible and Corollary 3.5.

Lemma 6.4 (wand_is_closed). If 𝑌 is closed, then so is

𝑋 −• 𝑌 ; furthermore, it can be described as:

𝑋 −• 𝑌 = {Δ | ∀Δ′ ∈ 𝑋 . (Δ , Δ′) ∈ 𝑌 }.

Proof. It is straightforward to check that 𝑋 −• 𝑌 defined as
above is indeed a right adjoint to the • operation. Thus, it
remains to show that 𝑋 −• 𝑌 is closed.
Since 𝑌 is closed, it can be written as an intersection of

some family of principal closed sets: 𝑌 =
⋂

𝑗 ∈𝐽 ⟨𝜑 𝑗 ⟩. Then,
we claim,

𝑋 −• 𝑌 =

⋂

(Δ′, 𝑗) ∈𝑋×𝐽

⟨(Δ′)∗ −∗ 𝜑 𝑗 ⟩.

Direction from left to right: let Δ ∈ 𝑋 −• 𝑌 , and let
(Δ′, 𝑗) ∈ 𝑋 × 𝐽 . We are to show: Δ ⊢cf (Δ

′)∗ −∗ 𝜑 𝑗 . We argue
as follows:

Δ , Δ
′ ⊢cf 𝜑 𝑗

Δ , (Δ′)∗ ⊢cf 𝜑 𝑗

Δ ⊢cf (Δ
′)∗ −∗ 𝜑 𝑗

Direction from right to left: suppose that

Δ ∈
⋂

(Δ′, 𝑗) ∈𝑋×𝐽

⟨(Δ′)∗ −∗ 𝜑 𝑗 ⟩,

and let Δ′ ∈ 𝑋 . We are to show Δ , Δ
′ ⊢cf 𝜑 𝑗 for any 𝑗 ∈ 𝐽 .

By the assumption we have

Δ ⊢cf (Δ
′)∗ −∗ 𝜑 𝑗 .

We then reason similarly as in the previous direction, but
using inversions Lemma 3.2 and corollary 3.5:

Δ ⊢cf (Δ
′)∗ −∗ 𝜑 𝑗

Δ , (Δ′)∗ ⊢cf 𝜑 𝑗

Δ , Δ
′ ⊢cf 𝜑 𝑗 □

298

https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_inhabited
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_weaken
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_contract
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_collapse
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_and_eq
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#wand_is_closed

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

We can give a similar characterization of the Heyting
implication in C:

Proposition 6.5 (has_heyting_impl). For every closed𝑋,𝑌 ,

the Heyting implication is closed and can be described as:

𝑋 → 𝑌 = {Δ | ∀Δ′ ∈ 𝑋, (Δ ; Δ′) ∈ 𝑌 }.

Proof. Using Proposition 6.3, it is straightforward to check
that 𝑋 → 𝑌 as defined above is a right adjoint to the meet
operation ∩. The proof of closedness follows the proof of
Lemma 6.4. □

To sum up, by Theorem 5.8 we have a BI algebra C in
which operations are defined as follows:

Emp = cl({∅𝑚}) ⊤ = Bunch

⊥ = cl(∅) 𝑋 ∨ 𝑌 = cl(𝑋 ∪ 𝑌)

𝑋 ∗ 𝑌 = cl({Δ , Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 })

𝑋 ∧ 𝑌 = cl({Δ ; Δ′ | Δ ∈ 𝑋,Δ′ ∈ 𝑌 })

𝑋 −∗ 𝑌 = {Δ | ∀Δ′ ∈ 𝑋 . (Δ , Δ′) ∈ 𝑌 }

𝑋 → 𝑌 = {Δ | ∀Δ′ ∈ 𝑋 . (Δ ; Δ′) ∈ 𝑌 }

6.3 Fundamental Property of C

We can interpret formulas in the model C by picking the
interpretation of atomic propositions to be J𝑎K = ⟨𝑎⟩. Now
we are ready to prove the main theorem: if J𝜑K ⊆ J𝜓K, then
𝜑 ⊢cf 𝜓 . To obtain this, we prove the following property, due
to Okada [33].

Lemma 6.6 (okada_property). For any formula 𝜑 ,

𝜑 ∈ J𝜑K ⊆ ⟨𝜑⟩

(where the leftmost instance of 𝜑 is a bunch consisting of a

single leaf with the formula 𝜑).

Proof. By induction on 𝜑 .
Case 𝜑 = False. We have JFalseK = cl(∅). Clearly, cl(∅) ⊆

⟨𝜑⟩, because ⟨𝜑⟩ is closed and ∅ ⊆ ⟨𝜑⟩. By Proposition 6.2
we have False ∈ JFalseK.

Case 𝜑 = True. We have JTrueK = Bunch = ⟨True⟩.

Case 𝜑 = Emp. In order to show JEmpK = cl({∅𝑚}) ⊆
⟨Emp⟩, it suffices to show {∅𝑚} ⊆ ⟨Emp⟩, by the characteri-
zation of the closure operator. That inclusion holds because
∅𝑚 ⊢cf Emp. In order to show Emp ∈ cl({∅𝑚}), it suffices
to show ∅𝑚 ∈ cl({∅𝑚}) by Proposition 6.2, which holds
trivially.

Case 𝜑 = 𝜓1 ∗ 𝜓2. In order to show the set inclusion
J𝜓1 ∗𝜓2K = cl(J𝜓1K • J𝜓2K) ⊆ ⟨𝜓1 ∗𝜓2⟩, it suffices to show
J𝜓1K • J𝜓2K ⊆ ⟨𝜓1∗𝜓2⟩, by the characterization of the closure

operator. If (Δ1,Δ2) ∈ J𝜓1K • J𝜓2K, then, by the induction
hypothesis Δ𝑖 ⊢cf 𝜓𝑖 , and we can reason as follows:

Δ1 ⊢cf 𝜓1 Δ2 ⊢cf 𝜓2

Δ1,Δ2 ⊢cf 𝜓1 ∗𝜓2

Hence, (Δ1,Δ2) ∈ ⟨𝜓1 ∗𝜓2⟩.
As for the element inclusion𝜓1∗𝜓2 ∈ cl(J𝜓1K • J𝜓2K), note

that by Proposition 6.2 it suffices to show (𝜓1,𝜓2) ∈ cl(J𝜓1K •
J𝜓2K), which is evident from the induction hypotheses.

Case 𝜑 = 𝜓1 ∧ 𝜓2. In order to show the set inclusion,
suppose that Δ ∈ J𝜓1 ∧ 𝜓2K = J𝜓1K ∩ J𝜓2K. Then, by the
induction hypothesis, Δ ∈ ⟨𝜓1⟩ ∩ ⟨𝜓2⟩, and we can reason as
follows:

Δ ⊢cf 𝜓1 Δ ⊢cf 𝜓2

Δ ; Δ ⊢cf 𝜓1 ∧𝜓2

Δ ⊢cf 𝜓1 ∧𝜓2

As for the element inclusion 𝜓1 ∧ 𝜓2 ∈ J𝜓1K ∩ J𝜓2K, we
argue as follows. By the induction hypothesis, 𝜓1 ∈ J𝜓1K.
By Proposition 6.2 (item 1), (𝜓1;𝜓2) ∈ J𝜓1K, and by Propo-
sition 6.2 (item 3), 𝜓1 ∧ 𝜓2 ∈ J𝜓1K. Similarly we can show
𝜓1 ∧𝜓2 ∈ J𝜓2K.

Case 𝜑 = 𝜓1 −∗ 𝜓2. In order to show J𝜓1 −∗ 𝜓2K = J𝜓1K −∗
J𝜓2K ⊆ ⟨𝜓1 −∗ 𝜓2⟩, suppose that Δ ∈ J𝜓1K −∗ J𝜓2K. We are to
show Δ ⊢cf 𝜓1 −∗ 𝜓2. By the induction hypothesis,𝜓1 ∈ J𝜓1K;
hence

(Δ , 𝜓1) ∈ J𝜓2K ⊆ ⟨𝜓2⟩.

We can then reason using the right rule for −∗:

Δ , 𝜓1 ⊢cf 𝜓2

Δ ⊢cf 𝜓1 −∗ 𝜓2

In order to show 𝜓1 −∗ 𝜓2 ∈ J𝜓1K −∗ J𝜓2K, suppose that
Δ ∈ J𝜓1K. We are to show (Δ , 𝜓1 −∗ 𝜓2) ∈ J𝜓2K. Let us write
J𝜓2K as

⋂

𝑖∈𝐼 ⟨𝜑𝑖⟩. Then our goal can be reduced to showing

Δ , 𝜓1 −∗ 𝜓2 ⊢cf 𝜑𝑖

for any 𝑖 ∈ 𝐼 . We argue as follows, using the left rule for −∗:

Δ ⊢cf 𝜓1 𝜓2 ⊢cf 𝜑𝑖

Δ , 𝜓1 −∗ 𝜓2 ⊢cf 𝜑𝑖

where the first assumption holds because Δ ∈ J𝜓1K ⊆ ⟨𝜓1⟩
and the second assumption holds because𝜓2 ∈ ⟨𝜓2⟩.

Case 𝜑 = 𝜓1 → 𝜓2. Similarly to the case 𝜑 = 𝜓1 −∗ 𝜓2,
using the characterization of the Heyting implication in C.

Case 𝜑 = 𝜓1 ∨ 𝜓2. In order to show J𝜓1 ∨ 𝜓2K = J𝜓1K ∨
J𝜓2K ⊆ ⟨𝜓1 ∨𝜓2⟩, it suffices to show J𝜓1K ⊆ ⟨𝜓1 ∨𝜓2⟩ and
J𝜓2K ⊆ ⟨𝜓1 ∨𝜓2⟩. To show that J𝜓𝑖K ⊆ ⟨𝜓1 ∨𝜓2⟩, for 𝑖 = 1, 2,
it suffices to show ⟨𝜓𝑖⟩ ⊆ ⟨𝜓1 ∨𝜓2⟩. We show that using the
right rules for disjunction.

To show𝜓1 ∨𝜓2 ∈ J𝜓1 ∨𝜓2K = cl(J𝜓1K ∪ J𝜓2K), we appeal
to the definition of cl(−): Let 𝜑 be a formula such that J𝜓1K∪
J𝜓2K ⊆ ⟨𝜑⟩. We are to show𝜓1 ∨𝜓2 ∈ ⟨𝜑⟩, i.e.𝜓1 ∨𝜓2 ⊢cf 𝜑 .
By assumption we have 𝜓𝑖 ∈ J𝜓𝑖K, for 𝑖 = 1, 2, and, hence

299

https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#has_heyting_impl
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#okada_property

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

𝜓𝑖 ∈ ⟨𝜑⟩, or, equivalently, 𝜓𝑖 ⊢cf 𝜑 . We obtain the desired
result using ∨L. □

Theorem 6.7 (C_interp_cf). If J(Δ)∗K ≤ J𝜑K holds in C,
then Δ ⊢cf 𝜑 .

Proof. By Lemma 6.6, we have (Δ)∗ ∈ J(Δ)∗K, and hence
(Δ)∗ ∈ J𝜑K. By Proposition 6.2 we have furthermore have
Δ ∈ J𝜑K which is equivalent to Δ ⊢cf 𝜑 . □

As a consequence, we get the cut admissibility:

Theorem 6.8 (cut). The cut rule is admissible in the cut-free

fragment ⊢cf of BI.

Proof. Suppose Δ ⊢cf 𝜓 and Γ(𝜓) ⊢cf 𝜑 . We are to show
that Γ(Δ) ⊢cf 𝜑 . By Theorem 6.7 it suffices to show that
J(Γ(Δ))∗K ≤ J𝜑K holds in C.

From soundness we have that J(Δ)∗K ≤ J𝜓K. By induction
on Γ we can show that J(Γ(Δ))∗K ≤ J(Γ(𝜓))∗K, from which
we obtain

J(Γ(Δ))∗K ≤ J(Γ(𝜓))∗K ≤ J𝜑K.

□

Overview. In the next sections we will be looking at ad-
justing the construction of C to extensions of BI. At this
point we would like to give an overview of the argument,
and see what kind of conditions we need.

• To show that the closure operator cl(−) is strong, we
had to use invertibility of certain rules. Firstly, we used
the fact that BI satisfies a strong form of the deduction
theorem for both implications (the rules →R and −∗R

are invertible). Secondly, we used the fact that the left
rules are invertible for connectives that form bunches
(EmpL, TrueL, ∧L, ∗L).

• Additionally, we need to verify that all the rules of
sequent calculus are validated in C.

• Finally, we need to show that Okada’s property
(Lemma 6.6) holds in C.

This list gives us a sort of roadmap for extending the cut
elimination argument. For every rule that we want to add
to BI, we need to re-verify the invertibility of certain rules,
and that the rule is validated in C. If we want to add a new
connective to the system, we need to additionally come up
with the interpretation of this connective on C, and re-verify
Okada’s property.

7 Extending the Logic: Simple Structural
Rules

An important extension of BI is affine BI, which extends the
sequent calculus of Figure 1 with the weakening rule for ,:

W,

Δ(Δ1) ⊢ 𝜑

Δ(Δ1 , Δ2) ⊢ 𝜑

An algebraic structure for interpreting affine BI is a BI al-
gebra in which the following inequality holds: 𝑝 ∗ 𝑞 ≤ 𝑝 .
Can we extend the argument presented so far to cover affine
BI? As we discussed at the end of the previous section, be-
cause we are adding a new rule, we have to make sure that
the analogues of Lemma 3.2 and Lemma 3.4 still hold (the
appropriate rules are invertible), and that C validates the
inequality 𝑋 ∗ 𝑌 ⊆ 𝑋 .

To verify that𝑋∗𝑌 ⊆ 𝑋 it suffices to verify that𝑋 • 𝑌 ⊆ 𝑋 ,
since 𝑋 is closed. Let us write 𝑋 =

⋂

𝑖∈𝐼 ⟨𝜑𝑖⟩. Suppose that
Δ1 ∈ 𝑋,Δ2 ∈ 𝑌 . We are to show that Δ1 , Δ2 ⊢cf 𝜑𝑖 for any 𝑖;
however we know that Δ1 ⊢cf 𝜑𝑖 by the assumption, and the
desired result follows by W,.

This kind of argument for W, can be generalized to infin-
itely many structural rules of a particular shape, which we
call, following [18], simple structural rules. In the remainder
of this section we show how to define such simple structural
rules, and we prove cut elimination for BI extended with any
combination of such rules.

7.1 Simple Structural Rules and Bunched Terms

Simple structural rules are rules of the shape

Π(𝑇1 [Δ1, . . . ,Δ𝑛]) ⊢ 𝜑 . . . Π(𝑇𝑚 [Δ1, . . . ,Δ𝑛]) ⊢ 𝜑

Π(𝑇 [Δ1, . . . ,Δ𝑛]) ⊢ 𝜑

where 𝑇1, . . . ,𝑇𝑚,𝑇 are bunched terms ś bunches built out
of connectives ,, ;, and variables 𝑥1, . . . , 𝑥𝑛 . The notation

𝑇𝑖 [®Δ] stands for the bunch obtained from 𝑇𝑖 by replacing all
the variables 𝑥 𝑗 with Δ 𝑗 . Furthermore, in the rule above we
require that 𝑇 is a linear bunched term ś a term in which
every variable 𝑥 𝑗 occurs at most once.

We identify a structural rule with a tuple ({𝑇1, . . . ,𝑇𝑚},𝑇).
The ruleW, above is representedwith a tuple ({𝑥1}, 𝑥1,𝑥2). If
𝐿 is a set of such tuples, we write BI+𝐿 for a sequent calculus
of BI extended with the structural rules from 𝐿.
For the rest of this section, we fix a finite collection 𝐿 of

simple structural rules and the extended system BI+𝐿. We
write ⊢cf for cut-free provability in BI+𝐿, and we denote
by C the BI algebra constructed in Section 6, but for BI+𝐿-
provability.

Firstly, we need to check that the construction of C works
out. We need to verify that the rules →L, −∗L, ∧L, ∗L, TrueL,
EmpL are still invertible, in presence of the additional rules
from 𝐿. For that, we just follow the proof of Lemma 3.4.

7.2 Interpretation of Simple Structural Rules in C

Additionally, we need to verify that C validates all the rules
from 𝐿.
Each bunched term 𝑇 [𝑥1, . . . , 𝑥𝑛] can be interpreted as a

function J𝑇 K : 𝐴𝑛 → 𝐴 on any BI algebra 𝐴. For example,
a (non-linear) bunched term (𝑥1 , 𝑥2) ; 𝑥1 gives rise to a
mapping (𝑋1, 𝑋2) ↦→ (𝑋1 ∗ 𝑋2) ∧ 𝑋1.

300

https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_interp_cf
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#cut

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

In order to interpret a simple structural rule given by a
tuple ({𝑇1, . . . ,𝑇𝑚},𝑇) in a BI algebra 𝐴, we require that the
following inequality holds in 𝐴 for any 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴:

J𝑇 K(𝑎1, . . . , 𝑎𝑛) ≤ J𝑇1K(𝑎1, . . . , 𝑎𝑛) ∨ · · · ∨ J𝑇𝑚K(𝑎1, . . . , 𝑎𝑛).

In this case, we say that 𝐴 validates the simple structural
rule. For example, recall that the weakening rule W, for
, is represented as ({𝑥1}, (𝑥1 , 𝑥2)). Then the associated
inequality is:

J𝑥1 , 𝑥2K(𝑝, 𝑞) ≤ J𝑥1K(𝑝, 𝑞) ⇐⇒ 𝑝 ∗ 𝑞 ≤ 𝑝.

Lemma 7.1 (seq_interp_sound). If a BI algebra𝐴 validates

the rules in 𝐿, then Δ ⊢ 𝜑 implies JΔK ≤ J𝜑K in 𝐴.

Proof. For the case of a simple structural rule ({𝑇1, . . . ,𝑇𝑚},𝑇),
we assume that J𝑇𝑖K(𝑎) ≤ J𝜑K holds for any 1 ≤ 𝑖 ≤ 𝑚. Then,
∨

1≤𝑖≤𝑚J𝑇𝑖K(𝑎) ≤ J𝜑K. Since the rule is validated in 𝐴 we
have

J𝑇 K(𝑎) ≤
∨

1≤𝑖≤𝑚

J𝑇𝑖K(𝑎) ≤ J𝜑K.

□

In order to show that C validates all the rules from 𝐿, we
need the following lemmas about J𝑇 K. For the algebra C we
have the following description:

Lemma 7.2 (bterm_C_refl). Let 𝑋1, . . . , 𝑋𝑛 ∈ C, and Δ𝑖 ∈
𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then for any bunched term 𝑇 ,

𝑇 [®Δ] ∈ J𝑇 K(®𝑋)

Proof. By induction on 𝑇 . □

Lemma 7.3 (blinterm_C_desc’). For any 𝑋1, . . . , 𝑋𝑛 ∈ C
and any linear bunched term 𝑇 we have

J𝑇 K(𝑋1, . . . , 𝑋𝑛) = cl({𝑇 [Δ1, . . . ,Δ𝑛] | Δ𝑖 ∈ 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑛})

Proof. In view of Lemma 7.2 it suffices to show that the left-
hand side is included in the right-hand side. This is done by
induction on 𝑇 . We show only the case for ,, as the other
case is similar. If 𝑇 (®𝑥) = 𝐹 (®𝑥) , 𝑈 (®𝑥), then, since 𝑇 is linear,
we can write it down as

𝑇 (®𝑦®𝑧) = 𝐹 (®𝑦) , 𝑈 (®𝑧)

for some factorization ®𝑦®𝑧 = ®𝑥 , and for some linear terms 𝐹
and𝑈 . By the induction hypothesis we have

J𝑇 K(®𝑌 ®𝑍) = cl(cl({𝐹 [®Γ] | ®Γ ∈ ®𝑌 }) • cl({𝑈 [®Γ] | ®Γ ∈ ®𝑍 })).

In order to show the inclusion into cl({𝑇 [®Δ] | ®Δ ∈ ®𝑌 ®𝑍 }) it
suffices to show

{𝐹 [®Γ] | ®Γ ∈ ®𝑌 } • {𝑈 [®Γ] | ®Γ ∈ ®𝑍 } ⊆ {𝑇 [®Δ] | ®Δ ∈ ®𝑌 ®𝑍 }.

Let ®Γ ∈ ®𝑌 and ®Θ ∈ ®𝑍 . Then, ®Γ ®Θ ∈ ®𝑋 , and, hence 𝐹 [®Γ] ,

𝑈 [®Θ] = 𝑇 [®Γ ®Θ], which concludes the proof the inclusion. □

With the two lemmas at hand we can prove that C is a
model of BI+𝐿.

Lemma 7.4 (C_extensions). Every rule from the set 𝐿 is

validated in C.

Proof. Suppose that ({𝑇1, . . . ,𝑇𝑚},𝑇) is a simple structural

rule from 𝐿. We have to show J𝑇 K(®𝑋) ⊆ cl(
⋃

1≤𝑖≤𝑚J𝑇𝑖K(®𝑋)).
By Lemma 7.3, it suffices to show

{𝑇 [Δ1, . . . ,Δ𝑛] | ®Δ ∈ ®𝑋 } ⊆ cl(
⋃

1≤𝑖≤𝑚

J𝑇𝑖K(®𝑋))

where ®Δ ∈ ®𝑋 is a shorthand for Δ𝑖 ∈ 𝑋𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

Suppose that 𝜑 is such that
⋃

1≤𝑖≤𝑛J𝑇𝑖K(®𝑋) ⊆ ⟨𝜑⟩. We are

to show that 𝑇 [®Δ] ⊢cf 𝜑 , for any ®Δ ∈ ®𝑋 . By Lemma 7.2, we

have 𝑇𝑖 [®Δ] ∈ J𝑇𝑖K(®𝑋) ⊆ ⟨𝜑⟩. So we get 𝑇𝑖 [®Δ] ⊢cf 𝜑 , from

which we can conclude that 𝑇 [®Δ] ⊢cf 𝜑 □

Theorem 7.5 (cut). The cut rule is admissible in the cut-free

fragment ⊢cf of BI+𝐿.

8 Extending the Logic: an S4 Modality

In this section we look at a different kind of extension to BI,
the one obtained by łfreelyž adding an (intuitionistic) S4-like
modality. This amounts to adding the following rules (usual
for intuitionistic formulation of S4 sequent calculus [6]):

□R

□Δ ⊢ 𝐴

□Δ ⊢ □𝐴

□L

Δ(𝐴) ⊢ 𝐵

Δ(□𝐴) ⊢ 𝐵

where □Δ is the same as Δ, but with boxes □ put in front of
all the formulas, e.g.

□(∅𝑚 ; (𝜑 , 𝜓) ; 𝜒) ≜ ∅𝑚 ; (□𝜑 , □𝜓) ; □𝜒.

We denote the extended system (the sequent calculus from
Figure 1 with the rules □R, □L above) as BIS4. We can ver-
ify that the relevant rules are still invertible (a version of
Lemma 3.4 and Lemma 3.2 for BIS4).

Interpreting the modality. As per the roadmap at the
end of Section 6 we need to interpret the modality □ on C
somehow. The usual way of interpreting a □ modality in
intuitionistic setting is with an interior operator (c.f. the
notion of a CS4 algebra [1, Definition 3]).

Definition 8.1. A BIS4 algebra is a tuple (B,□) whereB is a
BI algebra and □ : B → B is a monotone function satisfying:

1. □𝑝 ≤ 𝑝;
2. □𝑝 ≤ □□𝑝;
3. ⊤ = □⊤
4. Emp = □Emp;
5. □𝑝 ∧ □𝑞 ≤ □(𝑝 ∧ 𝑞);
6. □𝑝 ∗ □𝑞 ≤ □(𝑝 ∗ 𝑞).

We define the interior operator □ on C as:

□𝑋 ≜ cl({□Δ | Δ ∈ 𝑋 }) .

In order to show that C satisfies the conditions from Defi-
nition 8.1, we will use the following lemmas.

301

https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc.html#Seqcalc.seq_interp_sound
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#bterm_C_refl
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#blinterm_C_desc'
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#C_extensions
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim.html#cut

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

Lemma 8.2 (box_l_inv). The following rule is admissible:

□-idemp

Γ(□□Δ) ⊢ 𝜑

Γ(□Δ) ⊢ 𝜑

Proof. By induction on the height of the derivation, similar
to the proof of Lemma 3.4. □

Lemma 8.3 (C_necessitate, C_bunch_box_idemp). Let 𝑋
be a closed set.

• If Δ ∈ 𝑋 , then □Δ ∈ 𝑋 .

• If □□Δ ∈ 𝑋 , then □Δ ∈ 𝑋 .

Proof. By examining the definitions of □ and cl(−), using
Lemma 8.2 for the second item. □

Lemma 8.4 (C_alg_box). (C,□) is a BIS4 algebra.

Proof. The conditions (1) and (2) follow from Lemma 8.3.
The conditions (3) and (4) can be shown by examining the
definitions of all the connectives involved.

The condition (6) can be shown as follows. To show □𝑋 ∗
□𝑌 ⊆ □(𝑋 ∗ 𝑌), we reason as follows:

□𝑋 ∗ □𝑌 = cl(cl({□Δ | Δ ∈ 𝑋 }) • cl({□Δ | Δ ∈ 𝑌 })) ⊆

cl(cl({□Δ | Δ ∈ 𝑋 } • cl({□Δ | Δ ∈ 𝑌 }))) =

cl({□Δ | Δ ∈ 𝑋 } • cl({□Δ | Δ ∈ 𝑌 })).

To show that

cl({□Δ | Δ ∈ 𝑋 } • cl({□Δ | Δ ∈ 𝑌 })) ⊆ □(𝑋 ∗ 𝑌)

it suffices to show that

{□Δ | Δ ∈ 𝑋 } • cl({□Δ | Δ ∈ 𝑌 }) ⊆ □(𝑋 ∗ 𝑌).

And, since

{□Δ | Δ ∈ 𝑋 } • cl({□Δ | Δ ∈ 𝑌 })

⊆ cl({□Δ | Δ ∈ 𝑋 } • {□Δ | Δ ∈ 𝑌 }),

it suffices to show

{□Δ | Δ ∈ 𝑋 } • {□Δ | Δ ∈ 𝑌 } ⊆ □(𝑋 ∗ 𝑌).

Let Δ be such that Δ = □Δ1 , □Δ2, for Δ1 ∈ 𝑋 , Δ2 ∈ 𝑌 . Then
Δ = □(Δ1 , Δ2), with Δ1 , Δ2 ∈ 𝑋 ∗ 𝑌 .
Finally, the condition (5) is shown similarly. □

All it remains to verify is that Okada’s property (Lemma 6.6)
still holds. Since we have added only the □modality we need
to check one extra case:

Lemma 8.5. Assume that 𝜑 is such that 𝜑 ∈ J𝜑K ⊆ ⟨𝜑⟩. Then

□𝜑 ∈ J□𝜑K ⊆ ⟨□𝜑⟩.

Proof. In order to show the first inclusion, note that by the
hypothesis, we have 𝜑 ∈ J𝜑K. Hence,

□𝜑 ∈ {□Δ | Δ ∈ J𝜑K} ⊆ □J𝜑K.

To show the second inclusion it suffices to show

{□Δ | Δ ∈ J𝜑K} ⊆ ⟨□𝜑⟩.

So, let us assume Δ ∈ J𝜑K. By the induction hypothesis we
have Δ ⊢cf 𝜑 , and, hence □Δ ⊢cf □𝜑 . Which gives us the
desired result □Δ ∈ ⟨□𝜑⟩. □

Theorem 8.6 (cutelim_s4.cut). The cut rule is admissible

in the cut-free fragment ⊢cf of BIS4.

9 The Coq Formalization

As we mentioned, the results of this paper has been formal-
ized in the Coq proof assistant. In this section we describe
some of the design choices and trade-offs that we made.
Instead of formalizing sequent calculus with the cut rule

and deriving a cut-free sequence calculus from that, we opted
for formalizing just the cut-free sequent calculus and proving
that cut it admissible in that system. The sequent calculus
(and, consequently, the algebra C) is parameterized by a
collection of simple structural rules (as in Section 7), which
is represented in Coq as a module of the following signature:

Module Type SIMPLE_STRUCT_EXT.

Definition bterm := bterm nat.

Parameter rules :

list (list bterm * bterm).

Parameter rules_good :

∀ (Ts : list bterm) (T : bterm),

(Ts, T) ∈ rules → linear_bterm T.

End SIMPLE_STRUCT_EXT.

The type bterm represents bunched terms, and each simple
structural rule is given as a tuple (Ts , T) of bunched terms
in the premises and in the conclusion.

As for the algebraic semantics, we used a slightly modified
formalization of BI algebras from the Iris Coq library [25, 27].
The original formulation BI algebras in Iris also includes
a persistence modality [7], which behaves quite differently
from an S4-like modality that we use in Section 8. To our
knowledge, the proof theory of this modality has not been
studied and there is no sequent calculus for this logic. The
Iris formalization makes heavy use of setoids, which allows
us to easily formulate the model ℘(Bunch) of predicates on
bunches quotiented by bunch equivalence.

The trickiest proofs to formalize were the admissibility of
the inverted rules (Lemma 3.4) in the cut-free sequent calcu-
lus. Firstly, as was mentioned in Section 3, those admissibility
proofs proceed by induction on the height of the derivation.
To handle this in the Coq formalization, we use an aux-
iliary relation proves : bunch → formula → nat → Prop

which includes the (upper bound on the) height of the deriva-
tion. Our reasoning behind this definition is that if we were
to define a proof height function and do induction on its
value, we would have to formulate our goal (and the proof)
in a rather unwieldy way: we would have to package to-
gether the context, the formula, and the derivation into a
Σ-type: Σ (Δ : bunch) (𝜑 : formula) , proves Δ 𝜑 .

302

https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height_s4.html#box_l_inv
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim_s4.html#Cl.C_necessitate
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim_s4.html#Cl.C_bunch_box_idemp
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim_s4.html#Cl.C_alg_box
https://co-dan.github.io/BI-cutelim/93aa954/bunched.cutelim_s4.html#cut
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc.html#SIMPLE_STRUCT_EXT
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_height.html#SeqcalcHeight.proves

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

Δ⇝ ⟨(−) | Δ⟩
Δ1 ⇝ ⟨Π(−) | Δ⟩

Δ1 , Δ2 ⇝ ⟨Π(−) , Δ2 | Δ⟩

Δ2 ⇝ ⟨Π(−) | Δ⟩

Δ1 , Δ2 ⇝ ⟨Δ1 , Π(−) | Δ⟩

Δ1 ⇝ ⟨Π(−) | Δ⟩

Δ1 ; Δ2 ⇝ ⟨Π(−) ; Δ2 | Δ⟩

Δ2 ⇝ ⟨Π(−) | Δ⟩

Δ1 ; Δ2 ⇝ ⟨Δ1 ; Π(−) | Δ⟩

Figure 2. Inductive rules for decomposition of bunches.

Secondly, evenwith induction on proof height, in the proof
of Lemma 3.4 we often end with a situation where we have
a bunch Δ that can be decomposed multiple ways that we
need to related to each other. For example, in the proof of
invertibility of ∗L, we want to obtain a proof of Δ0 (𝜑 ,𝜓) ⊢ 𝜒

from a proof of Δ0 (𝜑 ∗𝜓) ⊢ 𝜒 . Suppose that the last applied
rule in the proof was weakening

Δ1 (Γ1) ⊢cf 𝜒

Δ1 (Γ1 ; Γ2) ⊢cf 𝜒

with Δ1 (Γ1 ; Γ2) = Δ0 (𝜑 ∗𝜓). In order to apply the induction
hypothesis we have to locate the formula 𝜑 ∗𝜓 somewhere
in the bunch Δ1 (Γ1). The formula may appear either in Γ1, Γ2,
or be part of the bunched context Δ1 (·), depending on the
relation between Δ0 and Δ1. This is an example of informal
observation that comes up often in the BI sequent calculus
because all the left rules (and structural rules) can be applied
deep inside an arbitrary bunch. As such, reasoning about
what appears where in bunched contexts is of importance.

In order to reason about situations like this in Coq, we
define an auxiliary inductive system Δ ⇝ ⟨Π(−) | Δ

′⟩
that captures exactly when Δ = Π(Δ′). The rules for the
decomposition of bunches is given in Figure 2.

Lemma 9.1 (bunch_decomp_iff). Δ = Π(Δ′) if and only if

Δ⇝ ⟨Π | Δ′⟩.

Using this inductive system we can prove the following
lemmas about decomposition of contexts, that we use for
formalizing proofs from Section 3:

Lemma 9.2 (fill_is_frml). If Π(Δ) = 𝜑 then Π is an

empty context and Δ = 𝜑 .

Lemma 9.3 (bunch_decomp_ctx). If Π(Δ) ⇝ ⟨Π′(−) | 𝜑⟩
then one of the two conditions hold:

• The formula 𝜑 appears in Δ itself. That is, there is Π0 (−)
such that Δ⇝ ⟨Π0 (−) | 𝜑⟩ and Π

′(−) = Π(Π0 (−)).
• Or the formula 𝜑 appears in the context Π(−). Then we can

think of Π′(−) as a context with two holes, one of which is

already filled with Δ. Formally we represent this situation as

follows. There are functions Π0,Π1 from bunches to bunched

contexts, such that:

– For any bunch Λ, we have Π(Λ) ⇝ ⟨Π0 (Λ) (−) | 𝜑⟩.
– For any bunch Λ, we have Π′(Λ) ⇝ ⟨Π1 (Λ) (−) | Δ⟩.
– For any bunches Λ,Λ′, we have Π0 (Λ) (Λ

′) = Π1 (Λ
′) (Λ).

Similarly, in order to prove the invertibility of relevant
rules for the extension of BI with a set of simple structural
rules (as in Section 7), we additionally make use of the fol-
lowing auxiliary lemma:

Lemma 9.4 (bterm_ctx_act_decomp). If 𝑇 is a linear

bunched term with variables 𝑥1, . . . , 𝑥𝑛 , and 𝑇 [®Δ] = Π(𝜑)
for some bunched context Π, then there is a variable 𝑥 𝑗 occur-

ring in 𝑇 , and a context Π′ such that

• Δ 𝑗 = Π
′(𝜑);

• for any bunch Γ,

𝑇 [Δ1, . . . ,Δ 𝑗−1,Π
′(Γ),Δ 𝑗+1, . . . ,Δ𝑛] = Π(Γ).

In order to prove the invertibility of relevant rules for
BIS4 (Section 8), including Lemma 8.2 we make use of the
following auxiliary lemma:

Lemma 9.5 (bunch_decomp_box). If □Δ = Π(□𝜑), then
there is a bunched context Π′ such that

• Δ = Π
′(𝜑);

• for any Γ, □Π′(Γ) = Π(□Γ).

10 Related Work

There has been a long line of work on formalizing cut elimina-
tion and other meta-theoretical properties of logics in proof
assistants. Here, wemention a few recent ones. Pfenning [36]
formalized cut elimination for intuitionistic and classical
propositional logic in Elf, using only structural induction
and avoiding termination measures. Chaudhuri, Lima, and
Reis [11] have formalized cut elimination for various frag-
ments of linear logic in Abella. Xavier, Olarte, Reis, and
Nigam [43] have formalized cut elimination and complete-
ness of focusing for first-order linear logic in Coq, along with
some other meta-theoretical properties. In [14], Dawson and
Goré describe their framework for formalizing sequent calcu-
lus with explicit structural rules in Isabelle/HOL. They apply
their framework for the provability logic GL and formalize
the cut elimination argument for it. Their framework was
later ported Coq [13] and used to formalize cut elimination
for a modal logic Kt. Another proof of cut elimination for
GL was formalized in Coq [23]; the authors noticed during
the formalization process that the proof can be simplified in
several parts.
Tews [42] used Coq to formalize Pattinson’s and

Schröder’s proof [35] of cut elimination for coalgebraic
modal logics. During his formalization effort, Tews has un-
covered a number of fixable gaps in the proof.
The formalized proofs mentioned above are syntactic. A

formalized semantic proof of cut elimination for the (∀,→,⊥)
fragment of intuitionistic FOL was given by Herbelin and
Lee [24], using Kripkemodels. The only similar formalization

303

https://co-dan.github.io/BI-cutelim/93aa954/bunched.bunch_decomp.html#bunch_decomp
https://co-dan.github.io/BI-cutelim/93aa954/bunched.bunch_decomp.html#bunch_decomp_iff
https://co-dan.github.io/BI-cutelim/93aa954/bunched.bunch_decomp.html#fill_is_frml
https://co-dan.github.io/BI-cutelim/93aa954/bunched.bunch_decomp.html#bunch_decomp_ctx
https://co-dan.github.io/BI-cutelim/93aa954/bunched.bunch_decomp.html#bterm_ctx_act_decomp
https://co-dan.github.io/BI-cutelim/93aa954/bunched.seqcalc_s4.html#bunch_decomp_box

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

that we are aware is the formalization by Larchey-Wendling
[29] of the Okada’s semantic proof of cut elimination for
linear logic [33, 34]. A similar formalization of cut elimina-
tion for implicational relevance logic was used by the author
used part of a larger formalization [28]. In personal commu-
nication Larchey-Wendling mentioned that he has adapted
the aforementioned phase semantics proof to the logic of
Bunched Implications, but was not completely satisfied with
it.

After Okada’s proof, related methods for proving cut elim-
ination were discussed for various logics. For example, Be-
lardinelli, Jipsen, and Ono [4] use intermediate structures
(Gentzen structures) to interpret sequent calculi and prove
cut elimination for various substructural variants of the Lam-
bek calculus. This method was generalized to handle non-
associative logics (i.e. without the exchange rule) [20]. Cia-
battoni, Galatos, and Terui [12] prove semantic cut elimina-
tion for a wide ride of hypersequent calculi for nonclassical
logics.

Galatos and Jipsen [18] introduced the framework of resid-
uated frames which they use to prove cut elimination (and
other related properties) for many extensions of Lambek
calculus with arbitrary structural rules. The authors later
extended their framework [19] to cover extensions of dis-
tributive Lambek calculus and BI. 2

Our proof can be seen as a simplification of the Galatos
and Jipsen’s method. Instead of making heavy use of the
residuated frames, our proof goes directly through algebraic
semantics. While this is a less general framework, it still
allows us to extend the proof to cover, e.g. modal exten-
sions of BI, which were not covered by the residuated frames
framework. We conjecture that the algebra we construct in
Section 6 is isomorphic to the Galois algebra constructed in
[19, Section 4].

11 Conclusion and Future Work

In this paper we have presented a fully formalized semantic-
based proof of cut elimination for the logic of bunched im-
plications. We show that this proof can be extended to cover
various extensions of BI, and demonstrated which parts of
the proof have to be modified, and which remain unchanged.

As for future work, we see several ways of going forward.
Firstly, we can look at extensions of BI. For example, we can
probably extend the construction presented here to cover
first-order/predicate BI. The algebra C is already complete
(has all the meets and joins), so it is suitable for interpreting
quantifiers. Unfortunately, formalizing this would require
dealing with variable binders, which we decided to forgo in

2The residuated frames framework was used to derive other meta-

theoretical properties, such as the finite model property. Unfortunately,

the finite model property proof in [19] does not hold. The argument there

relies on a version of the Curry’s lemma (limiting a number of contractions

that can occur in a given sequent in a proof search) which does not hold in

BI (see [26]).

this paper. It would also be natural to look at extensions such
as GBI [19], extensions of BI with various modalities that
are used in separation logic [7, 16], or the recently proposed
polarized sequent calculus for BI [21].
Secondly, it would be interesting to go from logic to

type theory. The algebra C is a subalgebra of predicates
Bunch → Prop, where Prop is the type of propositions. One
can imagine it is possible to consider instead presheaves
Bunch → Set, and look for a categorification of C ś a re-
flexive subcategory of the category of presheaves, which
is universal for cut-free provability. That might give us
some insight into the connections to the normalization-by-
evaluation method for type theories [2], which is usually
based on the category of presheaves.

Acknowledgments

The author would like to thank Jorge Pérez, Revantha Ra-
manayake, Niels van der Weide, and Dominique Larchey-
Wendling, for their insightful comments on the earlier ver-
sion of this article and for pointing me to some of the related
work. The author would also like to thank the anonymous
CPP reviewers for providing their invaluable feedback.
The author was supported by VIDI Project No.

016.Vidi.189.046 (Unifying Correctness for Communi-
cating Software).

References
[1] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter.

2001. Categorical and Kripke Semantics for Constructive S4 Modal

Logic. In Computer Science Logic (Lecture Notes in Computer Science),

Laurent Fribourg (Ed.). Springer, Berlin, Heidelberg, 292ś307. https:

//doi.org/10.1007/3-540-44802-0_21

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995.

Categorical Reconstruction of a Reduction Free Normalization Proof.

In Category Theory and Computer Science (Lecture Notes in Computer

Science), David Pitt, David E. Rydeheard, and Peter Johnstone (Eds.).

Springer, Berlin, Heidelberg, 182ś199.

[3] Ryuta Arisaka and Shengchao Qin. 2012. LBI Cut Elimination Proof

with BI-MultiCut. In 2012 Sixth International Symposium on Theoretical

Aspects of Software Engineering. 235ś238. https://doi.org/10.1109/

TASE.2012.30

[4] Francesco Belardinelli, Peter Jipsen, and Hiroakira Ono. 2004. Al-

gebraic Aspects of Cut Elimination. Studia Logica 77, 2 (July 2004),

209ś240. https://doi.org/10.1023/B:STUD.0000037127.15182.2a

[5] Gavin Bierman. 1996. A Note on Full Intuitionistic Linear Logic. Annals

of Pure and Applied Logic 79, 3 (June 1996), 281ś287. https://doi.org/

10.1016/0168-0072(96)00004-8

[6] Gavin Bierman and Valeria de Paiva. 2000. On an Intuitionistic Modal

Logic. Studia Logica 65, 3 (Aug. 2000), 383ś416. https://doi.org/10.

1023/A:1005291931660

[7] Aleš Bizjak and Lars Birkedal. 2018. On Models of Higher-Order

Separation Logic. Electronic Notes in Theoretical Computer Science 336

(April 2018), 57ś78. https://doi.org/10.1016/j.entcs.2018.03.016

[8] Mirjana Borisavljević, Kosta Došen, and Zoran Petrić. 2000. On Permut-

ing Cut with Contraction. Mathematical Structures in Computer Science

10, 2 (April 2000), 99ś136. https://doi.org/10.1017/S0960129599003011

[9] James Brotherston. 2012. Bunched Logics Displayed. Studia Logica

100, 6 (2012), 1223ś1254.

304

https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1109/TASE.2012.30
https://doi.org/10.1109/TASE.2012.30
https://doi.org/10.1023/B:STUD.0000037127.15182.2a
https://doi.org/10.1016/0168-0072(96)00004-8
https://doi.org/10.1016/0168-0072(96)00004-8
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1016/j.entcs.2018.03.016
https://doi.org/10.1017/S0960129599003011

Semantic Cut Elimination for the Logic of Bunched Implications, Formalized in Coq CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

[10] Kai Brünnler and Lutz Straßburger. 2009. Modular Sequent Systems

for Modal Logic. In Automated Reasoning with Analytic Tableaux and

Related Methods (Lecture Notes in Computer Science), Martin Giese

and Arild Waaler (Eds.). Springer, Berlin, Heidelberg, 152ś166. https:

//doi.org/10.1007/978-3-642-02716-1_12

[11] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2017. Formalized

Meta-Theory of Sequent Calculi for Substructural Logics. Electronic

Notes in Theoretical Computer Science 332 (June 2017), 57ś73. https:

//doi.org/10.1016/j.entcs.2017.04.005

[12] Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. 2008. From

Axioms to Analytic Rules in Nonclassical Logics. In 2008 23rd Annual

IEEE Symposium on Logic in Computer Science. 229ś240. https://doi.

org/10.1109/LICS.2008.39

[13] Caitlin D’Abrera, Jeremy Dawson, and Rajeev Goré. 2021. A For-

mally Verified Cut-Elimination Procedure for Linear Nested Sequents

for Tense Logic. In Automated Reasoning with Analytic Tableaux and

Related Methods (Lecture Notes in Computer Science), Anupam Das and

Sara Negri (Eds.). Springer International Publishing, Cham, 281ś298.

https://doi.org/10.1007/978-3-030-86059-2_17

[14] Jeremy E. Dawson and Rajeev Goré. 2010. Generic Methods for For-

malising Sequent Calculi Applied to Provability Logic. In Logic for

Programming, Artificial Intelligence, and Reasoning (Lecture Notes in

Computer Science), Christian G. Fermüller and Andrei Voronkov (Eds.).

Springer, Berlin, Heidelberg, 263ś277. https://doi.org/10.1007/978-3-

642-16242-8_19

[15] Valeria de Paiva and Torben Braüner. 1996. Cut-Elimination for Full

Intuitionistic Linear Logic.

[16] Robert Dockins, Andrew W. Appel, and Aquinas Hobor. 2008. Multi-

modal Separation Logic for Reasoning About Operational Semantics.

Electronic Notes in Theoretical Computer Science 218 (Oct. 2008), 5ś20.

https://doi.org/10.1016/j.entcs.2008.10.002

[17] C. J. Everett. 1944. Closure Operators and Galois Theory in Lattices.

Trans. Amer. Math. Soc. 55, 3 (1944), 514ś525. https://doi.org/10.2307/

1990306

[18] Nikolaos Galatos and Peter Jipsen. 2013. Residuated Frames with

Applications to Decidability. Trans. Amer. Math. Soc. 365, 3 (2013),

1219ś1249.

[19] Nikolaos Galatos and Peter Jipsen. 2017. Distributive Residuated

Frames and Generalized Bunched Implication Algebras. Algebra uni-

versalis 78, 3 (Nov. 2017), 303ś336. https://doi.org/10.1007/s00012-

017-0456-x

[20] Nikolaos Galatos and Hiroakira Ono. 2010. Cut Elimination and Strong

Separation for Substructural Logics: An Algebraic Approach. Annals

of Pure and Applied Logic 161, 9 (June 2010), 1097ś1133. https://doi.

org/10.1016/j.apal.2010.01.003

[21] Alexander Gheorghiu and Sonia Marin. 2021. Focused Proof-search in

the Logic of Bunched Implications. In Foundations of Software Science

and Computation Structures - 24th International Conference, FOSSACS

2021 (Lecture Notes in Computer Science, Vol. 12650), Stefan Kiefer and

Christine Tasson (Eds.). Springer, 247ś267. https://doi.org/10.1007/978-

3-030-71995-1_13

[22] Rajeev Goré and Revantha Ramanayake. 2012. Valentini’s Cut-

Elimination for Provability Logic Resolved. The Review of Sym-

bolic Logic 5, 2 (June 2012), 212ś238. https://doi.org/10.1017/

S1755020311000323

[23] Rajeev Goré, Revantha Ramanayake, and Ian Shillito. 2021. Cut-

Elimination for Provability Logic by Terminating Proof-Search: For-

malised and Deconstructed Using Coq. In Automated Reasoning with

Analytic Tableaux and Related Methods (Lecture Notes in Computer

Science), Anupam Das and Sara Negri (Eds.). Springer International

Publishing, Cham, 299ś313. https://doi.org/10.1007/978-3-030-86059-

2_18

[24] Hugo Herbelin and Gyesik Lee. 2009. Forcing-Based Cut-Elimination

for Gentzen-Style Intuitionistic Sequent Calculus. In Logic, Language,

Information and Computation (Lecture Notes in Computer Science), Hi-

roakira Ono, Makoto Kanazawa, and Ruy de Queiroz (Eds.). Springer,

Berlin, Heidelberg, 209ś217. https://doi.org/10.1007/978-3-642-02261-

6_17

[25] Iris team. 2021. The Iris Project website and Coq development. https:

//iris-project.org/. Accessed: 2021-09-08.

[26] Peter Jipsen and Tadeusz Litak. 2018. AnAlgebraic Glimpse at Bunched

Implications and Separation Logic. arXiv:1709.07063 [cs.LO] To appear

in łOutstanding Contributions: Hiroakira Ono on Residuated Lattices

and Substructural Logicsž..

[27] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: A general, extensible modal framework for

interactive proofs in separation logic. PACMPL 2, ICFP (2018), 77:1ś

77:30. https://doi.org/10.1145/3236772

[28] Dominique Larchey-Wendling. 2020. Constructive Decision via

Redundancy-Free Proof-Search. Journal of Automated Reasoning 64, 7

(Oct. 2020), 1197ś1219. https://doi.org/10.1007/s10817-020-09555-y

[29] Dominique Larchey-Wendling. 2021. Semantic Cut-Elimination for ILL

via relational phase semantics. https://github.com/DmxLarchey/Coq-

Phase-Semantics. Accessed: 2021-09-08.

[30] Sonia Marin and Lutz Straßburger. 2014. Label-Free Modular Systems

for Classical and Intuitionistic Modal Logics. In Advances in Modal

Logic 10. Groningen, Netherlands.

[31] Peter O’Hearn. 2019. Separation logic. CACM 62, 2 (2019), 86ś95.

https://doi.org/10.1145/3211968

[32] Peter O’Hearn and David Pym. 1999. The Logic of Bunched Impli-

cations. The Bulletin of Symbolic Logic 5, 2 (1999), 215ś244. https:

//doi.org/10.2307/421090

[33] Mitsuhiro Okada. 1999. Phase Semantic Cut-Elimination and Normal-

ization Proofs of First- and Higher-Order Linear Logic. Theoretical

Computer Science 227, 1-2 (1999), 333ś396. https://doi.org/10.1016/

S0304-3975(99)00058-4

[34] Mitsuhiro Okada. 2002. A uniform semantic proof for cut-elimination

and completeness of various first and higher order logics. Theoretical

Compututer Science 281, 1 (June 2002), 471ś498. https://doi.org/10.

1016/S0304-3975(02)00024-5

[35] Dirk Pattinson and Lutz Schröder. 2010. Cut Elimination in Coalgebraic

Logics. Information and Computation 208, 12 (Dec. 2010), 1447ś1468.

https://doi.org/10.1016/j.ic.2009.11.008

[36] Frank Pfenning. 2000. Structural Cut Elimination: I. Intuitionistic and

Classical Logic. Information and Computation 157, 1-2 (2000), 84ś141.

https://doi.org/10.1006/inco.1999.2832

[37] Luís Pinto and Tarmo Uustalu. 2009. Proof Search and Counter-Model

Construction for Bi-Intuitionistic Propositional Logic with Labelled

Sequents. In Automated Reasoning with Analytic Tableaux and Related

Methods (Lecture Notes in Computer Science), Martin Giese and Arild

Waaler (Eds.). Springer, Berlin, Heidelberg, 295ś309. https://doi.org/

10.1007/978-3-642-02716-1_22

[38] David Pym. 2002. The Semantics and Proof Theory of the Logic of

Bunched Implications. Springer Netherlands. https://doi.org/10.1007/

978-94-017-0091-7

[39] David Pym, Peter O’Hearn, and Hongseok Yang. 2004. Possible Worlds

and Resources: The Semantics of BI. Theoretical Computer Science 315,

1 (May 2004), 257ś305. https://doi.org/10.1016/j.tcs.2003.11.020

[40] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In LICS. IEEE Computer Society, 55ś74. https://doi.

org/10.1109/LICS.2002.1029817

[41] Giovanni Sambin and Silvio Valentini. 1982. The Modal Logic of

Provability. The Sequential Approach. Journal of Philosophical Logic

11, 3 (Aug. 1982), 311ś342. https://doi.org/10.1007/BF00293433

[42] Hendrik Tews. 2013. Formalizing Cut Elimination of Coalgebraic

Logics in Coq. In Automated Reasoning with Analytic Tableaux and

Related Methods (Lecture Notes in Computer Science), Didier Galmiche

305

https://doi.org/10.1007/978-3-642-02716-1_12
https://doi.org/10.1007/978-3-642-02716-1_12
https://doi.org/10.1016/j.entcs.2017.04.005
https://doi.org/10.1016/j.entcs.2017.04.005
https://doi.org/10.1109/LICS.2008.39
https://doi.org/10.1109/LICS.2008.39
https://doi.org/10.1007/978-3-030-86059-2_17
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1016/j.entcs.2008.10.002
https://doi.org/10.2307/1990306
https://doi.org/10.2307/1990306
https://doi.org/10.1007/s00012-017-0456-x
https://doi.org/10.1007/s00012-017-0456-x
https://doi.org/10.1016/j.apal.2010.01.003
https://doi.org/10.1016/j.apal.2010.01.003
https://doi.org/10.1007/978-3-030-71995-1_13
https://doi.org/10.1007/978-3-030-71995-1_13
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.1007/978-3-030-86059-2_18
https://doi.org/10.1007/978-3-642-02261-6_17
https://doi.org/10.1007/978-3-642-02261-6_17
https://iris-project.org/
https://iris-project.org/
https://arxiv.org/abs/1709.07063
https://doi.org/10.1145/3236772
https://doi.org/10.1007/s10817-020-09555-y
https://github.com/DmxLarchey/Coq-Phase-Semantics
https://github.com/DmxLarchey/Coq-Phase-Semantics
https://doi.org/10.1145/3211968
https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/S0304-3975(02)00024-5
https://doi.org/10.1016/S0304-3975(02)00024-5
https://doi.org/10.1016/j.ic.2009.11.008
https://doi.org/10.1006/inco.1999.2832
https://doi.org/10.1007/978-3-642-02716-1_22
https://doi.org/10.1007/978-3-642-02716-1_22
https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1016/j.tcs.2003.11.020
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/BF00293433

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Dan Frumin

and Dominique Larchey-Wendling (Eds.). Springer, Berlin, Heidelberg,

257ś272. https://doi.org/10.1007/978-3-642-40537-2_22

[43] Bruno Xavier, Carlos Olarte, Giselle Reis, and Vivek Nigam. 2018.

Mechanizing Focused Linear Logic in Coq. Electronic Notes in Theo-

retical Computer Science 338 (Oct. 2018), 219ś236. https://doi.org/10.

1016/j.entcs.2018.10.014

306

https://doi.org/10.1007/978-3-642-40537-2_22
https://doi.org/10.1016/j.entcs.2018.10.014
https://doi.org/10.1016/j.entcs.2018.10.014

	Abstract
	1 Introduction
	1.1 Contributions and Outline
	1.2 Formalization

	2 Semantic Cut Elimination
	3 Sequent Calculus for BI
	3.1 Cut-free Provability

	4 Algebraic Semantics for BI
	4.1 BI Algebras from Monoids

	5 Moore Closures on BI Algebras
	5.1 BI Algebra Structure on Closed Sets

	6 Cut-elimination via a Syntactic Model
	6.1 Principal Closed Sets
	6.2 BI Structure
	6.3 Fundamental Property of C

	7 Extending the Logic: Simple Structural Rules
	7.1 Simple structural rules and bunched terms
	7.2 Interpretation of Simple Structural Rules in C

	8 Extending the Logic: an S4 Modality
	9 The Coq Formalization
	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References

