2 research outputs found

    Intelligent agent simulator in massive crowd

    Get PDF
    Crowd simulations have many benefits over real-life research such as in computer games, architecture and entertainment. One of the key elements in this study is to include elements of decision-making into the crowd. The aim of this simulator is to simulate the features of an intelligent agent to escape from crowded environments especially in one-way corridor, two-way corridor and four-way intersection. The addition of the graphical user interface enables intuitive and fast handling in all settings and features of the Intelligent Agent Simulator and allows convenient research in the field of intelligent behaviour in massive crowd. This paper describes the development of a simulator by using the Open Graphics Library (OpenGL), starting from the production of training data, the simulation process, until the simulation results. The Social Force Model (SFM) is used to generate the motion of agents and the Support Vector Machine (SVM) is used to predict the next step for intelligent agent

    Ontology-based methodology for error detection in software design

    Get PDF
    Improving the quality of a software design with the goal of producing a high quality software product continues to grow in importance due to the costs that result from poorly designed software. It is commonly accepted that multiple design views are required in order to clearly specify the required functionality of software. There is universal agreement as to the importance of identifying inconsistencies early in the software design process, but the challenge is how to reconcile the representations of the diverse views to ensure consistency. To address the problem of inconsistencies that occur across multiple design views, this research introduces the Methodology for Objects to Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design (OSSD), as a common information model to integrate specification knowledge and design knowledge in order to facilitate the interoperability of formal requirements modeling tools and design tools, with the end goal of detecting inconsistency errors in a design. The methodology, which transforms designs represented using the Unified Modeling Language (UML) into representations written in formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented concepts in order to take advantage of the benefits that both approaches can provide. The OSSD model is a hierarchical decomposition of software development concepts, including ontological constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans. The methodology includes a consistency checking process that defines a consistency framework and an Inter-View Inconsistency Detection technique. MOA enhances software design quality by integrating multiple software design views, integrating object-oriented and agent-oriented concepts, and defining an error detection method that associates rules with ontological properties
    corecore