10,479 research outputs found

    Recommending audio mixing workflows

    Get PDF
    This paper describes our work on Audio Advisor, a workflow recommender for audio mixing. We examine the process of eliciting, formalising and modelling the domain knowledge and expert’s experience. We are also describing the effects and problems associated with the knowledge formalisation processes. We decided to employ structured case-based reasoning using the myCBR 3 to capture the vagueness encountered in the audio domain. We detail on how we used extensive similarity measure modelling to counter the vagueness associated with the attempt to formalise knowledge about and descriptors of emotions. To improve usability we added GATE to process natural language queries within Audio Advisor. We demonstrate the use of the Audio Advisor software prototype and provide a first evaluation of the performance and quality of recommendations of Audio Advisor

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Two-phased knowledge formalisation for hydrometallurgical gold ore process recommendation and validation

    Get PDF
    This paper describes an approach to externalising and formalising expert knowledge involved in the design and evaluation of hydrometallurgical process chains for gold ore treatment. The objective was to create a case-based reasoning application for recommending and validating a treatment process of gold ores. We describe a twofold approach. Formalising human expert knowledge about gold mining situations enables the retrieval of similar mining contexts and respective process chains, based on prospection data gathered from a potential gold mining site. Secondly, empirical knowledge on hydrometallurgical treatments is formalised. This enabled us to evaluate and, where needed, redesign the process chain that was recommended by the first aspect of our approach. The main problems with formalisation of knowledge in the domain of gold ore refinement are the diversity and the amount of parameters used in literature and by experts to describe a mining context. We demonstrate how similarity knowledge was used to formalise literature knowledge. The evaluation of data gathered from experiments with an initial prototype workflow recommender, Auric Adviser, provides promising results

    Formalising the Continuous/Discrete Modeling Step

    Full text link
    Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train) is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Decentralised Clinical Guidelines Modelling with Lightweight Coordination Calculus

    No full text
    Background: Clinical protocols and guidelines have been considered as a major means to ensure that cost-effective services are provided at the point of care. Recently, the computerisation of clinical guidelines has attracted extensive research interest. Many languages and frameworks have been developed. Thus far, however,an enactment mechanism to facilitate decentralised guideline execution has been a largely neglected line of research. It is our contention that decentralisation is essential to maintain a high-performance system in pervasive health care scenarios. In this paper, we propose the use of Lightweight Coordination Calculus (LCC) as a feasible solution. LCC is a light-weight and executable process calculus that has been used successfully in multi-agent systems, peer-to-peer (p2p) computer networks, etc. In light of an envisaged pervasive health care scenario, LCC, which represents clinical protocols and guidelines as message-based interaction models, allows information exchange among software agents distributed across different departments and/or hospitals. Results: We outlined the syntax and semantics of LCC; proposed a list of refined criteria against which the appropriateness of candidate clinical guideline modelling languages are evaluated; and presented two LCC interaction models of real life clinical guidelines. Conclusions: We demonstrated that LCC is particularly useful in modelling clinical guidelines. It specifies the exact partition of a workflow of events or tasks that should be observed by multiple "players" as well as the interactions among these "players". LCC presents the strength of both process calculi and Horn clauses pair of which can provide a close resemblance of logic programming and the flexibility of practical implementation

    Shape exploration in design : formalising and supporting a transformational process

    Get PDF
    The process of sketching can support the sort of transformational thinking that is seen as essential for the interpretation and reinterpretation of ideas in innovative design. Such transformational thinking, however, is not yet well supported by computer-aided design systems. In this paper, outcomes of experimental investigations into the mechanics of sketching are described, in particular those employed by practising architects and industrial designers as they responded to a series of conceptual design tasks,. Analyses of the experimental data suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules. A set of shape rules, formalising the reinterpretation and transformations of shapes, e.g. through deformation or restructuring, are presented. These rules are suggestive of the manipulations that need to be afforded in computational tools intended to support designers in design exploration. Accordingly, the results of the experimental investigations informed the development of a prototype shape synthesis system, and a discussion is presented in which the future requirements of such systems are explored
    corecore