48,073 research outputs found

    An approach for the formal verification of DSP designs using Theorem proving

    Get PDF
    This paper proposes a framework for the incorporation of formal methods in the design flow of digital signal processing (DSP) systems in a rigorous way. In the proposed approach, DSP descriptions were modeled and verified at different abstraction levels using higher order logic based on the higher order logic (HOL) theorem prover. This framework enables the formal verification of DSP designs that in the past could only be done partially using conventional simulation techniques. To this end, a shallow embedding of DSP descriptions in HOL at the floating-point (FP), fixed-point (FXP), behavioral, register transfer level (RTL), and netlist gate levels is provided. The paper made use of existing formalization of FP theory in HOL and a parallel one developed for FXP arithmetic. The high ability of abstraction in HOL allows a seamless hierarchical verification encompassing the whole DSP design path, starting from top-level FP and FXP algorithmic descriptions down to RTL, and gate level implementations. The paper illustrates the new verification framework on the fast Fourier transform (FFT) algorithm as a case study

    Modeling and verification of DSP designs in HOL

    Get PDF
    In this thesis we propose a framework for the incorporation of formal methods in the design flow of DSP (Digital Signal Processing) systems in a rigorous way. In the proposed approach we model and verify DSP descriptions at different abstraction levels using higher-order logic based on the HOL (Higher Order Logic) theorem prover. This framework enables the formal verification of DSP designs which in the past could only be done partially using conventional simulation techniques. To this end, we provide a shallow embedding of DSP descriptions in HOL at the floating-point, fixed-point, behavioral, RTL (Register Transfer Level), and netlist gate levels. We make use of existing formalization of floating-point theory in HOL and introduce a parallel one for fixed-point arithmetic. The high ability of abstraction in HOL allows a seamless hierarchical verification encompassing the whole DSP design path, starting from top level floating- and fixed-point algorithmic descriptions down to RTL, and gate level implementations. We illustrate the new verification framework using different case studies such as digital filters and FFT (Fast Fourier Transform) algorithms

    Towards the formal specification of the requirements and design of a processor interface unit

    Get PDF
    Work to formally specify the requirements and design of a Processor Interface Unit (PIU), a single-chip subsystem providing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system, is described. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance free operation, or both. The approaches that were developed for modeling the PIU requirements and for composition of the PIU subcomponents at high levels of abstraction are described. These approaches were used to specify and verify a nontrivial subset of the PIU behavior. The PIU specification in Higher Order Logic (HOL) is documented in a companion NASA contractor report entitled 'Towards the Formal Specification of the Requirements and Design of a Processor Interfacs Unit - HOL Listings.' The subsequent verification approach and HOL listings are documented in NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit' and NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings.

    On the Verification of a WiMax Design Using Symbolic Simulation

    Get PDF
    In top-down multi-level design methodologies, design descriptions at higher levels of abstraction are incrementally refined to the final realizations. Simulation based techniques have traditionally been used to verify that such model refinements do not change the design functionality. Unfortunately, with computer simulations it is not possible to completely check that a design transformation is correct in a reasonable amount of time, as the number of test patterns required to do so increase exponentially with the number of system state variables. In this paper, we propose a methodology for the verification of conformance of models generated at higher levels of abstraction in the design process to the design specifications. We model the system behavior using sequence of recurrence equations. We then use symbolic simulation together with equivalence checking and property checking techniques for design verification. Using our proposed method, we have verified the equivalence of three WiMax system models at different levels of design abstraction, and the correctness of various system properties on those models. Our symbolic modeling and verification experiments show that the proposed verification methodology provides performance advantage over its numerical counterpart.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    On the Verified-by-Construction Approach

    No full text

    What is the method in applying formal methods to PLC applications?

    Get PDF
    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system development should be made very clear. Developers and customers ought to understand very well what they can rely on or not, and we see our task in trying to make this explicit. Therefore, for us the answer to the question above leads to the following questions: Which parts of the system can be treated formally? What formal methods and tools can be applied? What does their successful application tell (or does not) about the proper functioning of the whole system

    Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification

    Full text link
    Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era, when the ISA played an important role in verification by enabling a clean separation of concerns between software and hardware, verification of these "accelerator-rich" SoCs presents new challenges. From the perspective of hardware designers, there is a lack of a common framework for the formal functional specification of accelerator behavior. From the perspective of software developers, there exists no unified framework for reasoning about software/hardware interactions of programs that interact with accelerators. This paper addresses these challenges by providing a formal specification and high-level abstraction for accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), developed informally in our previous work, and shows its application in modeling and verification of accelerators. This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular, and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for image processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.Comment: 24 pages, 3 figures, 3 table
    corecore