24 research outputs found

    Chatbot for training and assisting operators in inspecting containers in seaports

    Get PDF
    The paper presents the chatbot applicability for the health and safety of workers in the container transportation context. Starting from a literature review of risks and hazardous activities in sea container terminals, the paper underlines the need of innovative systems to ensure the lowest level of risks for labours. An analysis of the 4.0 technologies solutions in sea container terminals shows the lack of empirical application of chatbots in such a context. Focus is given to the current chatbot applications, and on the conceptual methodology for the chatbot design, defining five models and presenting a taxonomy for the chatbot feature definition. A case study shows the possible application of the conceptual methodology and the taxonomy, introducing the Popeye chatbot, consisting of a voice service, spoken language understanding component and an image processing app, to cope with the hazards in the process of examining freight and containers in dock areas. The main application of Popeye is the training of new employees involved in container safety-critical quality inspection and controls operations

    A risk assessment approach to improve the resilience of a seaport system using Bayesian networks

    Get PDF
    Over the years, many efforts have been focused on developing methods to design seaport systems, yet disruption still occur because of various human, technical and random natural events. Much of the available data to design these systems are highly uncertain and difficult to obtain due to the number of events with vague and imprecise parameters that need to be modelled. A systematic approach that handles both quantitative and qualitative data, as well as means of updating existing information when new knowledge becomes available is required. Resilience, which is the ability of complex systems to recover quickly after severe disruptions, has been recognised as an important characteristic of maritime operations. This paper presents a modelling approach that employs Bayesian belief networks to model various influencing variables in a seaport system. The use of Bayesian belief networks allows the influencing variables to be represented in a hierarchical structure for collaborative design and modelling of the system. Fuzzy Analytical Hierarchy Process (FAHP) is utilised to evaluate the relative influence of each influencing variable. It is envisaged that the proposed methodology could provide safety analysts with a flexible tool to implement strategies that would contribute to the resilience of maritime systems

    Resilience framework for seaport infrastructure: theory and application

    Get PDF
    The efficient movement of goods is crucial to the economic growth of communities. This makes the existence of seaports essential for the marine transportation system. Due to their natural location, ports are continuously threatened by natural hazards such as wind action, which necessitates a continuous monitoring and assessment for their performance. The work presented here aims at assessing the resilience of ports against natural disasters. This is done by identifying the performance and the recovery rate of such infrastructure during the period following the event. The research commenced with gathering information about the port’s main components that are influenced by natural hazards. The collected data has been compiled in the form of indicators, which have been filtered and grouped under four dimensions in the proposed “PORT framework”. Each of the indicator has been allocated a measure to enable its quantitative evaluation. The aggregation of the indicators’ values allows identifying the port resilience

    Integrated Performance Assessment of Engineering Projects at the Interface of Emergent Properties and Uncertainty

    Get PDF
    Investigation of the performance of engineering project organizations is critical for understanding and eliminating inefficiencies in today’s dynamic global markets. The existing theoretical frameworks consider project organizations as monolithic systems and attribute the performance of project organizations to the characteristics of the constituents. However, project organizations consist of complex interdependent networks of agents, information, and resources whose interactions give rise to emergent properties that affect the overall performance of project organizations. Yet, our understanding of the emergent properties in project organizations and their impact on project performance is rather limited. This limitation is one of the major barriers towards creation of integrated theories of performance assessment in project organizations. The objective of this paper is to investigate the emergent properties that affect the ability of project organization to cope with uncertainty. Based on the theories of complex systems, we propose and test a novel framework in which the likelihood of performance variations in project organizations could be investigated based on the environment of uncertainty (i.e., static complexity, dynamic complexity, and external source of disruption) as well as the emergent properties (i.e., absorptive capacity, adaptive capacity, and restorative capacity) of project organizations. The existence and significance of different dimensions of the environment of uncertainty and emergent properties in the proposed framework are tested based on the analysis of the information collected from interviews with senior project managers in the construction industry. The outcomes of this study provide a novel theoretical lens for proactive bottom-up investigation of performance in project organizations at the interface of emergent properties and uncertaint

    Seaport Climate Vulnerability Assessment at the Multi-Port Scale: A Review of Approaches

    Get PDF
    In the face of climate change impacts projected over the coming century, seaport decision makers have the responsibility to manage risks for a diverse array of stakeholders and enhance seaport resilience against climate and weather impacts. At the single port scale, decision makers such as port managers may consider the uninterrupted functioning of their port the number one priority. But, at the multi-port (regional or national) scale, policy-makers will need to prioritize competing port climate-adaptation needs in order to maximize the efficiency of limited physical and financial resources and maximize the resilience of the marine transportation system as a whole. This chapter provides an overview of a variety of approaches that set out to quantify various aspects of seaport vulnerability. It begins with discussion of the importance of a “multi-port” approach to complement the single case study approach more commonly applied to port assessments. It then addresses the components of climate vulnerability assessments and provides examples of a variety of approaches. Finally, it concludes with recommendations for next steps

    Making sense of maritime supply chain: a relationship marketing approach

    Get PDF
    Building a relationship with the maritime supply chain partners is considered imperative for organisations to survive and remain competitive. Yet, several studies that examined the maritime supply chain have not adequately explored nor assessed the relationship constructs that impacts maritime supply chain performance. This study intends to fill this gap and ascertain the influence that certain relationship elements have on the maritime supply chain performance. The study is solely a desk research. After providing a general overview of maritime supply chain and its structure, relationship marketing paradigm and relationship constructs, this study examines the influence that the identified relationship constructs (i.e. trust, commitment and satisfaction) has on supply chain performance. The study asserts that the present of the identified relationship constructs (i.e. trust, commitment and satisfaction) among supply chain partners will influence supply chain performance positively. Hence, building a successful long-term relationship among maritime supply chain partners requires an understanding of these key relationship constructs

    An integrated fuzzy risk assessment for seaport operations

    Get PDF
    Seaport operations are characterised by high levels of uncertainty, as a result their risk evaluation is a very challenging task. Much of the available data associated with the system’s operations is uncertain and ambiguous, requiring a flexible yet robust approach of handling both quantitative and qualitative data as well as a means of updating existing information as new data becomes available. Conventional risk modelling approaches are considered to be inadequate due to the lack of flexibility and an inappropriate structure for addressing the system’s risks. This paper proposes a novel fuzzy risk assessment approach to facilitating the treatment of uncertainties in seaport operations and to optimise its performance effectiveness in a systematic manner. The methodology consists of a fuzzy analytical hierarchy process, an evidential reasoning (ER) approach, fuzzy set theory and expected utility. The fuzzy analytical hierarchy process is used to analyse the complex structure of seaport operations and determine the weights of risk factors while ER is used to synthesise them. The methodology provides a robust mathematical framework for collaborative modelling of the system and allows for a step by step analysis of the system in a systematic manner. It is envisaged that the proposed approach could provide managers and infrastructure analysts with a flexible tool to enhance the resilience of the system in a systematic manner

    Comprehensive review on risk assessment methodologies for HAZMAT transportation between 1995-2015

    Get PDF
    Issue related to safety, health and environmental has become major priority to be concerned of in the transportation of hazardous materials (HAZMAT) worldwide. Due to the high risk that entailed in the operation of HAZMAT transportation, many accidents in this industry have been reported which include chemicals spillage, fire and explosion. In order to quantify the degree of hazards and risks of these accidents, various assessment methods have been introduced either by the academia, the industry as well as the authority. The methods present various approaches for the assessment, ranging from a simple to highly complicated ones depending on the purpose of the assessment and the available resources and constraints. To date there is yet any study conducted to review those available methods. This paper intends to present a comprehensive review of the existing methods for hazards and risks assessment of HAZMAT transportation between years 1995-2015 which considers road, marine, railway, air and pipeline system. Based on careful screening of the abundance of methods available, 151 of them were selected – that is those specifically meant for hazards and risks assessment of HAZMAT transportation only. The methods are reviewed in terms of the types of assessment; either qualitative, quantitative or hybrid techniques, as well as their specific application in different mode of transportation. Also, statistical analysis was performed to determine the trend of past publications regarding on the type of journal, year of publication and also financial support received in the context of hazard and risk assessment of HAZMAT transportation
    corecore