10,271 research outputs found

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A unified view of parameterized verification of abstract models of broadcast communication

    Get PDF
    We give a unified view of different parameterized models of concurrent and distributed systems with broadcast communication based on transition systems. Based on the resulting formal models, we discuss related verification methods and tools based on abstractions and symbolic state exploration

    An interface aware guided search method for error-trace justification in large protocols

    Get PDF
    technical reportMany complex concurrent protocols that cannot be formally verified due to state explosion can often be formally verified by initially creating a collection of abstractions (overapproximations), and subsequently refining the overapproximated protocol in response to spurious counterexample traces. Such an approach crucially depends on the ability to check whether a given error trace in the abstract protocol corresponds to a concrete trace in the original protocol. Unfortunately, this checking step alone can be as as hard verifying the original protocol directly without abstractions, which is infeasible. Our approach tracks the interface behavior at the interfaces erected by our abstractions, and employs a few heuristic search methods based on a classification of the abstract system generating these traces. This collection of heuristic search methods form a tailor-made guided search strategy that works very efficiently in practice on three realistic multicore hierarchical cache coherence protocols. It could correctly analyze ?? ?? spurious error traces and genuine error scenarios, each within seconds. Also, on ?? of the ?? ?? of the spurious errors, our approach can precisely report which transition in the abstract protocol is overly approximated that leads to the spurious error

    Efficient First-Order Temporal Logic for Infinite-State Systems

    Get PDF
    In this paper we consider the specification and verification of infinite-state systems using temporal logic. In particular, we describe parameterised systems using a new variety of first-order temporal logic that is both powerful enough for this form of specification and tractable enough for practical deductive verification. Importantly, the power of the temporal language allows us to describe (and verify) asynchronous systems, communication delays and more complex properties such as liveness and fairness properties. These aspects appear difficult for many other approaches to infinite-state verification.Comment: 16 pages, 2 figure

    Parameterized verification

    Get PDF
    The goal of parameterized verification is to prove the correctness of a system specification regardless of the number of its components. The problem is of interest in several different areas: verification of hardware design, multithreaded programs, distributed systems, and communication protocols. The problem is undecidable in general. Solutions for restricted classes of systems and properties have been studied in areas like theorem proving, model checking, automata and logic, process algebra, and constraint solving. In this introduction to the special issue, dedicated to a selection of works from the Parameterized Verification workshop PV \u201914 and PV \u201915, we survey some of the works developed in this research area
    • …
    corecore