331 research outputs found

    Reliability and uncertainties of the analysis of an unstable rock slope performed on RPAS digital outcrop models: The case of the gallivaggio landslide (Western Alps, Italy)

    Get PDF
    A stability investigation based on Digital Outcrop Models (DOMs) acquired in emergency conditions by photogrammetric surveys based on Remote Piloted Aerial System (RPAS) was conducted on an unstable rock slope near Gallivaggio (Western Alps, Italy). The predicted mechanism of failure and volume of the unstable portion of the slope were successively verified on the DOMs acquired after the rockfall that effectively collapsed the May 29th, 2018. The comparison of the pre-and post-landslide 3D models shows that the estimated mode of failure was substantially correct. At the same time, the predicted volume of rock involved in the landslide was overestimated by around 10%. To verify if this error was due to the limited accuracy of the models georeferenced in emergency considering only the Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU)-information of RPAS, several Ground Control Points (GCPs) were acquired after the failure. The analyses indicate that the instrumental error in the volume calculation due to the direct-georeferencing method is only of the 1.7%. In contrast, the significant part is due to the geological uncertainty in the reconstruction of the real irregular geometry of the invisible part of the failure surface. The results, however, confirm the satisfying relative accuracy of the direct-georeferenced DOMs, compatible with most geological and geoengineering purposes

    Robust GNSS Carrier Phase-based Position and Attitude Estimation Theory and Applications

    Get PDF
    Mención Internacional en el título de doctorNavigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises.La información de navegación es un elemental fundamental para el funcionamiento de sistemas de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra angular para la navegación en exteriores, dando acceso a localización y sincronización temporal a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término genérico que define una constelación de satélites que transmiten señales de radio, usadas primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar GNSS y estimar soluciones de navegación robustas y precisas. Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo cual implica unos problemas de estimación de elevada complejidad. Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello, primero se aborda la máxima efectividad del problema de localización, proponiendo cotas inferiores para el procesamiento de la señal en el receptor y para el problema de estimación mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de navegación precisa, capaces de hacer frente a los ruidos atípicos.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Giorgi Gabriele.- Vocal: Fabio Dovi

    Incorporation of LEO GNSS observations into global network solutions

    Get PDF
    This research focuses on specific aspects of geodesy with the aim of deepening the understanding of Earth's dynamic geodetic parameters and refining the precision and completeness of global network solutions. The work comprises various investigations, each addressing key aspects of geodetic research and contributing to a broader understanding. The central approach involves the integration of observations from Global Navigation Satellite Systems (GNSS) collected by satellite-based receivers aboard Low Earth Orbiters (LEOs) into the determination of a global GNSS network solution. The focus is on the influence of integrating LEO-GNSS observations on resulting parameters such as GNSS and LEO orbits, geodetic parameters, such as Earth's center-of-mass coordinates and Earth rotation parameters, and ground station coordinates. Fundamental to this is the current state of realizing terrestrial reference frames (TRFs). The incorporation of LEO-GNSS observations addresses conceptual deficiencies in TRFs by considering the gravity field. Satellites in low Earth orbits play a crucial role, acting in the role of "Space Ties", and being highly sensitive to the gravitational field. These satellites become integral components for various satellite geodetic techniques, promising a comprehensive and improved representation of Earth's geodetic reference frame. One aspect of the work involves an examination of traditional methods for precise orbit determination (POD) of LEOs using observations from the Global Positioning System (GPS). Traditionally relying on fixed GPS orbits and clock corrections derived from ground-based receivers, this work highlights the potential of integrating LEO-GNSS observations into global network solutions. A comprehensive analysis, including data from LEOs, equipped with dual-frequency GNSS receivers, is methodically scrutinized through a joint least-squares adjustment process, resulting in a combined GNSS-LEO solution. The analysis shows a significant improvement in the observability of the estimated geodetic parameters. Acknowledging the observational advantages of LEO satellites due to their proximity to the Earth's surface, this work emphasizes their complementary role alongside established systems like GPS. The investigation carefully analyzes the potential for further qualitative enhancements in the framework of network solutions when LEOs are seamlessly integrated, particularly in conjunction with multiple GNSS systems

    An Integrated Transmission-Media Noise Calibration Software For Deep-Space Radio Science Experiments

    Get PDF
    The thesis describes the implementation of a calibration, format-translation and data conditioning software for radiometric tracking data of deep-space spacecraft. All of the available propagation-media noise rejection techniques available as features in the code are covered in their mathematical formulations, performance and software implementations. Some techniques are retrieved from literature and current state of the art, while other algorithms have been conceived ex novo. All of the three typical deep-space refractive environments (solar plasma, ionosphere, troposphere) are dealt with by employing specific subroutines. Specific attention has been reserved to the GNSS-based tropospheric path delay calibration subroutine, since it is the most bulky module of the software suite, in terms of both the sheer number of lines of code, and development time. The software is currently in its final stage of development and once completed will serve as a pre-processing stage for orbit determination codes. Calibration of transmission-media noise sources in radiometric observables proved to be an essential operation to be performed of radiometric data in order to meet the more and more demanding error budget requirements of modern deep-space missions. A completely autonomous and all-around propagation-media calibration software is a novelty in orbit determination, although standalone codes are currently employed by ESA and NASA. The described S/W is planned to be compatible with the current standards for tropospheric noise calibration used by both these agencies like the AMC, TSAC and ESA IFMS weather data, and it natively works with the Tracking Data Message file format (TDM) adopted by CCSDS as standard aimed to promote and simplify inter-agency collaboration

    Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines

    Get PDF
    © 2015, Science China Press and Springer-Verlag Berlin Heidelberg. Care should be taken to minimize adverse impact of receiver differential code biases (DCBs) on global navigation satellite system (GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs, preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs (BR-DCBs) from dual-frequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese BeiDou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years (January 2013–March 2015) with a 30-s time resolution for five receiver-pairs (four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the BeiDou BR-DCB daily weighted average (DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers

    Multi-GNSS integer ambiguity resolution enabled precise positioning

    Get PDF
    In this PhD thesis multi-Global Navigation Satellite System (GNSS) positioning results when combining the American Global Positioning System (GPS), Chinese BeiDou Navigation Satellite System (BDS), European Galileo and Japanese Quasi-Zenith Satellite System (QZSS) will be presented. The combined systems will be evaluated in comparison to the single-systems, for short (atmosphere-fixed) to long (atmosphere-present) baselines. It will be shown that the combined systems can provide for improved integer ambiguity resolution and positioning performance over the single-systems

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    An experimental investigation into ALS uncertainty and its impact on environmental applications

    Get PDF
    This study takes an experimental approach to investigating the reliability and repeatability of an airborne laser scanning (ALS) survey. The ability to characterise an area precisely in 3-D using ALS is essential for multi-temporal analysis where change detection is an important application. The reliability and consistency between two ALS datasets is discussed in the context of uncertainty within a single epoch and in the context of well known point- and grid-based descriptors and metrics. The implications of repeatability, verifiability and reliability are discussed in the context of environmental applications, specifically concerning forestry where high resolution ALS surveys are commonly used for forest mensuration over large areas. The study used a regular 10-by-10 layout of standard school tables and decreased the separation from 2.5 metres apart to 0.5 metres in order to evaluate the effects of object separation on their detection. Each configuration was scanned twice using the same ALS scanning parameters and the difference between the datasets is investigated and discussed. The results quantify uncertainty in the ability of ALS to characterise objects, estimate vertical heights and interpret features / objects with certainty. The results show that repeat scanning of the same features under the same conditions result in a laser point cloud with different properties. Objects that are expected to be present in 40 points per metre2 laser point cloud are absent, and the investigation reveals that irregular point spacing and lack of consideration of the ALS footprint size and the interaction with the object of interest are significant factors in the detection and characterisation of features. The results strongly suggest that characterisation of error is important and relevant to environmental applications that use multi-epoch ALS or data with high resolution / point density for object detection and characterisatio

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    The Improvement of Multi-Satellite Orbit Determination Through the Incorporation of Intersatellite Ranging Observations

    Get PDF
    For many satellite remote sensing and communications missions, particularly those involving a formation or constellation of satellites, having precise knowledge of the satellites’ positions in both an absolute and relative sense is essential. However, the capabilities of Global Navigation Satellite Systems (GNSS)-based precise orbit determination (POD) alone may not be enough to fulfill the mission’s requirements. This thesis examines potential gains to POD when additional Intersatellite Range (ISR) observations (range magnitude only, not range direction or rate) are combined with standard GNSS observables. These ISR observations can be obtained from simple radio frequency (RF) or optical sensors. The methodology behind the combination approach is described and illustrated through a series of simulated case studies involving multiple satellites in low Earth orbit (LEO) using realistic hardware-derived (where possible) measurement noise. The results demonstrate that substantial improvements (factor of two or better) in the POD of the constellation satellites can be obtained with even intermittent ranging measurements, and with only millimeter-level ranging precision. This improved positioning capability enables new mission concepts for small-satellite constellations and formations, and makes these multi-satellite systems resilient to disruptions in GNSS signal availability. This GNSS-denial could be due to a variety of factors, such as intermittent or total hardware failure, power-related duty cycling, or ground-based jamming. Results show that under appropriate phasing of periodic GNSS-denial, combined with the new information from the ISR observations, POD levels approaching the non-GNSS-denied case can be achieved. For the cases of region-specific or single-satellite total GNSS-denial, constellations with ISR capability can be designed to completely compensate for the loss of GNSS observations and perform at levels better than with GNSS alone. Furthermore, the GNSS-denied case has an extended application for providing ISR-only POD for constellations around planetary bodies through the inversion of the invariant non-spherical gravity fields. Case studies are presented using high resolution invariant Earth and lunar gravity fields. In these example cases, ISR-only POD is demonstrated at the sub-meter level with the same millimeter precision of ISR. This research provides opportunities for new mission concepts that require precise positioning, improvements to mission operations, and enables new paradigms for orbit determination without access to GNSS.Ph.D
    corecore