781 research outputs found

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    Extracting proofs from documents

    Get PDF
    Often, theorem checkers like PVS are used to check an existing proof, which is part of some document. Since there is a large difference between the notations used in the documents and the notations used in the theorem checkers, it is usually a laborious task to convert an existing proof into a format which can be checked by a machine. In the system that we propose, the author is assisted in the process of converting an existing proof into the PVS language and having it checked by PVS. 1 Introduction The now-classic ALGOL 60 report [5] recognized three different levels of language: a reference language, a publication language and several hardware representations, whereby the publication language was intended to admit variations on the reference language and was to be used for stating and communicating processes. The importance of publication language ---often referred to nowadays as "pseudo-code"--- is difficult to exaggerate since a publication language is the most effective way..

    Web-based user interface prototyping and simulation

    Get PDF
    PVSio-web is a platform for the simulation and prototyping of user interfaces that has been developed by researchers at Queen Mary University of London. This platform aims to reduce barriers to the use of PVS by users unfamiliar with formal methods. The main features of PVSio-web focus on creating, opening and saving projects, loading images and creating widget areas over them, and not least, editing PVS files. Editing files is limited to only one file per project and the platform also does not have image editing features. PVSio-web can then be improved by implementing features to support editing multiple files and images (such as cropping and resizing). The interaction areas can also be improved to thereby enhance the quality of the prototype, by adjusting the precision of the dimensions and positioning of the area relatively to the image. In this dissertation the improvements achieved on the editing of files, images and interaction areas in PVSio-web, in order to increase the quality and optimize its use in a real environment, are described.PVSio-web é uma plataforma para prototipagem e simulação de interfaces de utilizador que tem vindo a ser desenvolvida por investigadores da Queen Mary Universidade de Londres. Esta plataforma tem por objectivo diminuir as barreiras à utilização do PVS por parte de utilizadores não familiarizados com métodos formais. Para dar suporte à criação de protótipos, o PVSio-web possui funcionalidades para criar, abrir e gravar projectos, carregar de imagens e definir áreas de interação sobre esta e, não menos importante, edição de ficheiros PVS. A edição de ficheiros está limitada a apenas um único ficheiro por projecto e a plataforma não possui também funcionalidades de edição de imagem. O PVSio-web pode então ser melhorado com a implementação de funcionalidades para o suporte de edição de múltiplos ficheiros e de imagem (por exemplo corte e redimensionamento). As áreas de interação podem também ser melhoradas para assim aumentar a qualidade do protótipo, ajustando a precisão das dimensões e posicionamento da área em relação à imagem. Nesta dissertação são descritos os melhoramentos realizados a nível de edição de ficheiros, imagens e áreas de interação no PVSio-web de modo a aumentar a qualidade e otimizar o seu uso em ambiente real

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc

    From Verified Models to Verifiable Code

    Get PDF
    Declarative specifications of digital systems often contain parts that can be automatically translated into executable code. Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing. For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS functional specifications into an intermediate language and subsequently to multiple target programming languages. Several case studies are presented to illustrate the tool's functionality. The generated code can be analyzed by software verification tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that the generated code is correct

    A PVS-Simulink Integrated Environment for Model-Based Analysis of Cyber-Physical Systems

    Get PDF
    This paper presents a methodology, with supporting tool, for formal modeling and analysis of software components in cyber-physical systems. Using our approach, developers can integrate a simulation of logic-based specifications of software components and Simulink models of continuous processes. The integrated simulation is useful to validate the characteristics of discrete system components early in the development process. The same logic-based specifications can also be formally verified using the Prototype Verification System (PVS), to gain additional confidence that the software design complies with specific safety requirements. Modeling patterns are defined for generating the logic-based specifications from the more familiar automata-based formalism. The ultimate aim of this work is to facilitate the introduction of formal verification technologies in the software development process of cyber-physical systems, which typically requires the integrated use of different formalisms and tools. A case study from the medical domain is used to illustrate the approach. A PVS model of a pacemaker is interfaced with a Simulink model of the human heart. The overall cyber-physical system is co-simulated to validate design requirements through exploration of relevant test scenarios. Formal verification with the PVS theorem prover is demonstrated for the pacemaker model for specific safety aspects of the pacemaker design

    IEEE/NASA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation

    Get PDF
    This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation, with a special track on the theme of Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23-24 September 2005 at the Loyola College Graduate Center, Columbia, MD, USA. The idea behind the Workshop arose from the experience and feedback of ISoLA 2004, the 1st International Symposium on Leveraging Applications of Formal Methods held in Paphos (Cyprus) last October-November. ISoLA 2004 served the need of providing a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verification, certification, construction, test, and maintenance of systems from the point of view of their different application domains

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI
    corecore