350 research outputs found

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc

    Applying Algebraic Approaches for Modeling Workflows and their Transformations in Mobile Networks

    Get PDF
    In emergency scenarios we can obtain a more effective coordination among team members, each of them equipped with hand-held devices, through the use of workflow management software. Team members constitute a Mobile Ad-hoc NETwork (MANET), whose topology both influences and is influenced by the workflow. In this paper we propose an algebraic approach for modeling workflow progress as well as its modifications as required by topology transformations. The approach is based on Algebraic Higher-Order Nets and sees both workflows and topologies as tokens, allowing their concurrent modification

    Development and Specification of Virtual Environments

    Get PDF
    This thesis concerns the issues involved in the development of virtual environments (VEs). VEs are more than virtual reality. We identify four main characteristics of them: graphical interaction, multimodality, interface agents, and multi-user. These characteristics are illustrated with an overview of different classes of VE-like applications, and a number of state-of-the-art VEs. To further define the topic of research, we propose a general framework for VE systems development, in which we identify five major classes of development tools: methodology, guidelines, design specification, analysis, and development environments. Of each, we give an overview of existing best practices

    Declarative Support for Prototyping Interactive Systems

    Get PDF
    The development of complex, multi-user, interactive systems is a difficult process that requires both a rapid iterative approach, and the ability to reason carefully about system designs. This thesis argues that a combination of declarative prototyping and formal specification provides a suitable way of satisfying these requirements. The focus of this thesis is on the development of software tools for prototyping interactive systems. In particular, it uses a declarative approach, based on the functional programming paradigm. This thesis makes two contributions. The most significant contribution is the presentation of FranTk, a new Graphical User Interface language, embedded in the functional language Haskell. It is suitable for prototyping complex, concurrent, multi-user systems. It allows systems to be built in a high level, structured manner. In particular, it provides good support for specifying real-time properties of such systems. The second contribution is a mechanism that allows a formal specification to be derived from a high level FranTk prototype. The approach allows this to be done automatically. This specification can then be checked, with tool support, to verify some safety properties about a system. To avoid the state space explosion problem that would be faced when verifying an entire system, we focus on partial verification. This concentrates on key areas of a design: in particular this means that we only derive a specification from parts of a prototype. To demonstrate the scalability of both the prototyping and verification approaches, this thesis uses a series of case studies including a multi-user design rationale editor and a prototype data-link Air Traffic Control system

    An Integrated Formal Task Specification Method for Smart Environments

    Get PDF
    This thesis is concerned with the development of interactive systems for smart environments. In such scenario different interaction paradigms need to be supported and according methods and development strategies need to be applied to comprise not only explicit interaction (e.g., pressing a button to adjust the light) but also implicit interactions (e.g., walking to the speaker’s desk to give a talk) to assist the user appropriately. A task-based modeling approach is introduced allowing basing the implementing of different interaction paradigms on the same artifact

    On lions, impala, and bigraphs: modelling interactions in physical/virtual spaces

    Get PDF
    While HCI has a long tradition of formally modelling task-based interactions with graphical user interfaces, there has been less progress in modelling emerging ubiquitous computing systems due in large part to their highly contextual nature and dependence on unreliable sensing systems. We present an exploration of modelling an example ubiquitous system, the Savannah game, using the mathematical formalism of bigraphs, which are based on a universal process algebra that encapsulates both dynamic and spatial behaviour of autonomous agents that interact and move among each other, or within each other. We establish a modelling approach based on four perspectives on ubiquitous systems—Computational, Physical, Human, and Technology—and explore how these interact with one another. We show how our model explains observed inconsistencies in user trials of Savannah, and then, how formal analysis reveals an incompleteness in design and guides extensions of the model and/or possible system re-design to resolve this

    MODELING REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS

    Get PDF
    In this paper, we discuss some requirements for future CASE (Computer Aided Software/Systems Engineering) environments. These requirements include increased modifiability and flexibility as well as support for task and agent models. We claim that they can only be addressed by developing more powerful representation and modeling techniques. As a possible basis for a modeling technique, we propose the GOPRR (Graph-Object-Property-Relationship-Role) data model, which addresses some of these requirements. In addition, a general information architecture for a future CASE environment is outlined. It includes three kinds of models for methodology specification: meta-datamodels, activity (task) models, and agent models. These models are defined using the GOPRR model with some additional concepts for IS development process and agent participation
    • 

    corecore