5,785 research outputs found

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Collaborative Semantic Content Management: an Ongoing Case Study for Imaging Applications

    Get PDF
    This paper presents a collaborative solution for knowledge management, implemented as a semantic content management system (CMS) with the purpose of knowledge sharing between users with different backgrounds. The CMS is enriched with semantic annotations, enabling content to be categorized, retrieved and published on the Web thanks to the Linked Open Data (LOD) principle which enables the linking of data inside existing resources using a standardized URI mechanism. Annotations are done collaboratively as a social process. Users with different backgrounds express their knowledge using structured natural language. The user knowledge is captured thanks to an ontologic approach and it can be further transformed into RDF(S) classes and properties. Ontologies are at the heart of our CMS and they naturally co-evolve with their communities of use to provide a new way of knowledge sharing inside the network. The ontology is modeled following the so-called DOGMA (Developing Ontology-Grounded Methods and Applications) paradigm, grounded in natural language. The approach will be demonstrated on a use case concerning the semantic annotation of anatomical data (e.g. medical images).257-26

    a survey

    Get PDF
    Building ontologies in a collaborative and increasingly community-driven fashion has become a central paradigm of modern ontology engineering. This understanding of ontologies and ontology engineering processes is the result of intensive theoretical and empirical research within the Semantic Web community, supported by technology developments such as Web 2.0. Over 6 years after the publication of the first methodology for collaborative ontology engineering, it is generally acknowledged that, in order to be useful, but also economically feasible, ontologies should be developed and maintained in a community-driven manner, with the help of fully-fledged environments providing dedicated support for collaboration and user participation. Wikis, and similar communication and collaboration platforms enabling ontology stakeholders to exchange ideas and discuss modeling decisions are probably the most important technological components of such environments. In addition, process-driven methodologies assist the ontology engineering team throughout the ontology life cycle, and provide empirically grounded best practices and guidelines for optimizing ontology development results in real-world projects. The goal of this article is to analyze the state of the art in the field of collaborative ontology engineering. We will survey several of the most outstanding methodologies, methods and techniques that have emerged in the last years, and present the most popular development environments, which can be utilized to carry out, or facilitate specific activities within the methodologies. A discussion of the open issues identified concludes the survey and provides a roadmap for future research and development in this lively and promising field

    An ontology co-design method for the co-creation of a continuous care ontology

    Get PDF
    Ontology engineering methodologies tend to emphasize the role of the knowledge engineer or require a very active role of domain experts. In this paper, a participatory ontology engineering method is described that holds the middle ground between these two 'extremes'. After thorough ethnographic research, an interdisciplinary group of domain experts closely interacted with ontology engineers and social scientists in a series of workshops. Once a preliminary ontology was developed, a dynamic care request system was built using the ontology. Additional workshops were organized involving a broader group of domain experts to ensure the applicability of the ontology across continuous care settings. The proposed method successfully actively engaged domain experts in constructing the ontology, without overburdening them. Its applicability is illustrated by presenting the co-created continuous care ontology. The lessons learned during the design and execution of the approach are also presented

    Collaborative ontology engineering: a survey

    No full text
    Building ontologies in a collaborative and increasingly community-driven fashion has become a central paradigm of modern ontology engineering. This understanding of ontologies and ontology engineering processes is the result of intensive theoretical and empirical research within the Semantic Web community, supported by technology developments such as Web 2.0. Over 6 years after the publication of the first methodology for collaborative ontology engineering, it is generally acknowledged that, in order to be useful, but also economically feasible, ontologies should be developed and maintained in a community-driven manner, with the help of fully-fledged environments providing dedicated support for collaboration and user participation. Wikis, and similar communication and collaboration platforms enabling ontology stakeholders to exchange ideas and discuss modeling decisions are probably the most important technological components of such environments. In addition, process-driven methodologies assist the ontology engineering team throughout the ontology life cycle, and provide empirically grounded best practices and guidelines for optimizing ontology development results in real-world projects. The goal of this article is to analyze the state of the art in the field of collaborative ontology engineering. We will survey several of the most outstanding methodologies, methods and techniques that have emerged in the last years, and present the most popular development environments, which can be utilized to carry out, or facilitate specific activities within the methodologies. A discussion of the open issues identified concludes the survey and provides a roadmap for future research and development in this lively and promising fiel

    User-Friendly Ontology Creation Methodologies - A Survey

    Get PDF
    The convergence of the semantic web and the social web to the social semantic web leads to new challenges in ontology engineering. As of today ontologies are created by highly specialized ontology engineers. In order to unite the wisdom of crowds and ontologies new approaches to ontology creation are necessary to bridge the ontology gap and enable novice users to create formalized knowledge. Numerous ontology development methodologies are available; in this paper we will briefly present 16 ontology development methodologies and evaluate them against criteria for their user-friendliness and their suitability for usage by novice users and domain experts. Our eventual goal is the identification of best practices and required research for user-friendly ontology design

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Soft computing agents for e-health applied to the research and control of unknown diseases

    Get PDF
    This paper presents an Ontology-based Holonic Diagnostic System (OHDS) that combines the advantages of the holonic paradigm with multi-agent system technology and ontology design, for the organization of unstructured biomedical research into structured disease information. We use ontologies as 'brain' for the holonic diagnostic system to enhance its ability to structure information in a meaningful way and share information fast. To integrate dispersed heterogeneous knowledge available on the web we use a fuzzy mechanism ruled by intelligent agents, which automatically structures the information in the adequate ontology template. Our vision of how this system implementation should be backed by a solid security shield that ensures the privacy and safety of medical information concludes the paper
    corecore