
The Knowledge Engineering Review, Vol. 29:1, 101–131. & Cambridge University Press, 2013
doi:10.1017/S0269888913000192
First published online 3 May 2013

Collaborative ontology engineering: a survey

E LENA S IMPERL 1 and MARKUS LUCZAK-RÖSCH2

1Web and Internet Science, University of Southampton, UK, Highfield Campus, Building 32, SO17 1BJ, Southampton, UK;

e-mail: e.simperl@soton.ac.uk;
2Networked Information Systems Workgroup (AG NBI), Free University of Berlin, Königin-Luise-Straße 24-26,

14195 Berlin, Germany;

e-mail: markus.luczak-roesch@fu-berlin.de

Abstract

Building ontologies in a collaborative and increasingly community-driven fashion has become a

central paradigm of modern ontology engineering. This understanding of ontologies and ontology

engineering processes is the result of intensive theoretical and empirical research within the Semantic

Web community, supported by technology developments such as Web 2.0. Over 6 years after the

publication of the first methodology for collaborative ontology engineering, it is generally

acknowledged that, in order to be useful, but also economically feasible, ontologies should

be developed and maintained in a community-driven manner, with the help of fully-fledged environ-

ments providing dedicated support for collaboration and user participation. Wikis, and similar

communication and collaboration platforms enabling ontology stakeholders to exchange ideas and

discuss modeling decisions are probably the most important technological components of such

environments. In addition, process-driven methodologies assist the ontology engineering team

throughout the ontology life cycle, and provide empirically grounded best practices and guidelines for

optimizing ontology development results in real-world projects. The goal of this article is to analyze

the state of the art in the field of collaborative ontology engineering. We will survey several of the

most outstanding methodologies, methods and techniques that have emerged in the last years, and

present the most popular development environments, which can be utilized to carry out, or facilitate

specific activities within the methodologies. A discussion of the open issues identified concludes the

survey and provides a roadmap for future research and development in this lively and promising field.

1 Introduction

Several decades ago, ontologies were introduced to information and communication technologies

(ICT) as a novel means to represent the kinds of things that can be talked about in a system in a formal

and explicit manner. Used in information retrieval, information extraction, as well as data and process

integration (Fensel, 2001), ontologies provide reusable pieces of declarative knowledge, which can

be—together with problem-solving methods and reasoning functionality assembled into high-quality

technology and application systems in an economical fashion (Neches et al., 1991; Guarino, 1998). The

Semantic Web is one of the most important application areas of ontologies. Initially introduced by Tim

Berners Lee (Berners-Lee et al., 2001), the originator of the World Wide Web, the idea of extending the

current Web into a computer-processable knowledge infrastructure in addition to its actual, semi-

structured and human-understandable content foresees the usage of knowledge components, which can

be easily integrated into and exchanged by ICT systems in an operationalized manner. In this context,

the knowledge components, that is, the ontologies, are formalized using Web-suitable, semantically

unambiguous representation languages such as Resource Description Framework (RDF) Schema



(Brickley & Guha, 2004) and Web Ontology Language (OWL; Patel-Schneider et al., 2004), and are

pervasively accessible and shared across the Web.

Notably, the popularity of ontologies on the Semantic Web has led during the past years to the

reinforced study of ontology engineering as a consensus-building process, in which a—potentially

open and geographically distributed—group of stakeholders, or a community of practice, agrees

upon a common view upon a domain of interest, and upon the way their shared knowledge can be

structured in terms of concepts, attributes, relationships and constraints. This understanding of

ontologies and ontology engineering processes is the result of intensive theoretical and empirical

research in the Semantic Web community, supported by technology developments such as Web 2.0.

Over 6 years after the publication of the first methodology for collaborative ontology engineering

(Holsapple & Joshi, 2002a), it is generally acknowledged that, in order to be useful, but also

economically feasible, ontologies should be developed and maintained in a community-driven

manner, with the help of fully fledged environments providing dedicated support for collaboration

and user participation (Vrandecic et al., 2005; Tempich, 2006; Hepp, 2007). Wikis, and other similar

communication and collaboration platforms enabling ontology stakeholders to exchange ideas and

discuss modeling decisions, are probably the most important technological components of such

environments. In addition, process-driven methodologies assist the ontology engineering team

throughout the ontology life cycle, and provide empirically grounded best practices and guidelines

for optimizing ontology development results in real-world projects. The goal of this article is to

analyze the state of the art in the field of collaborative ontology engineering. We will survey several

of the most outstanding methodologies, methods and techniques that have emerged in the last years,

and present the most popular development environments, which can be utilized to carry out, or

facilitate specific activities within the methodologies surveyed. A discussion of the open issues

identified concludes the survey and provides a roadmap for future research and development. The

article targets collaborative ontology engineering researchers, but also technology providers and

potential adopters, interested in getting a comparative overview of the state of the art in the field,

pointers to ongoing projects, and some ideas about directions in which this field could evolve.

This article is structured as follows. Section 2 reviews the key aspects of collaborative ontology

engineering. In Section 3, we describe several established methodologies, which address these aspects

from a process-oriented perspective, while in Section 4 we present software environments typically

used when developing and maintaining an ontology by a group of stakeholders. We discuss our

findings and based upon them recommend future directions of research and development for the

ontology engineering community in Section 5.

2 Collaborative ontology engineering

Ontology engineering refers to the study of the ‘activities that concern the ontology development

process, the ontology life cycle, and the methodologies, tools and languages for building ontologies’

(Gomez-Perez et al., 2004). In a collaborative ontology engineering scenario process, methods

and tools are explicitly designed to support a decentralized group of stakeholders or community

of interest—in the sense of geographical dispersion, varying levels of skills, experience and

responsibilities, as well as potentially divergent agendas—to reach a consensus in an incremental and

asynchronous fashion1.

A collaborative ontology engineering process typically starts with an analysis of the domain to be

captured by the ontology, and of the requirements imposed by the ontology-based application—as it

is common in any other ontology engineering process. However, in this special case, the stakeholders

1 While collaboration is not characteristic to decentralized scenarios, we argue that methodological and tool

support becomes a critical issue particularly when the ontology engineering team is diverse in terms of

location, skills, experience, responsibilities and interests. Collaborative ontology engineering emerged as an

independent research topic in the ontology engineering community in response to the needs of process and

technology-level support in such decentralized scenarios.

102 E . S IM P ERL AND M . LUCZAK -R Ö S CH



agree on these requirements and their priorities, and propose and discuss various alternatives to

create a conceptual model complying with these requirements and reflecting both their individual

interests and the shared goals of the community of interest. The stakeholders need to investigate the

different ways to model specific domain knowledge as concepts, attributes, relationships or con-

straints; to decide upon the adequate level of granularity of the model, upon conventions for labeling

and documenting ontological entities, and upon the overall engineering process and associated

(decision-making) procedures to be followed. The conceptual model is implemented in a formal

knowledge representation language such as the Semantic Web ontology languages RDFS and OWL.

In response to changes in the target domain, evolving application requirements, and discussions

on whether and how to capture specific domain aspects in ontological terms, the community

continuously revises and extends the ontology, and releases new versions of it. In parallel, different

stakeholders may continue to maintain and use different versions of the ontology, while some of the

changes may be integrated into a new shared release. In order to facilitate the systematic evolution

of the joint ontology and to operationalize consensus-building, the community needs to undertake

each activity in a controlled manner, and to be able to monitor the engineering process and the

results achieved so far. Instruments for resolving conflicts, which might arise if several parties hold

irreconcilable views at some point in the process, may become crucial to ensure progress. New

stakeholders joining the community need to understand the rationales behind particular engineering-

related decisions, and to follow the history of various releases of the ontology, in order for them to

effectively participate in the process. Carefully documenting every step facilitates the inclusion of

newcomers into the process.

A notable aspect of traditional ontology engineering, preserved by collaborative practices, is

the foundation of an iterative approach to developing and maintaining ontologies, based on

combinations of the activities discussed above. There are, however, several aspects in which the

two differ extensively, which lead to the creation of specific methodological and technical tools

assisting the ontology editors and contributors in handling these aspects. Collaborative ontology

engineering projects can host potentially very large, open communities with diverse backgrounds

in domain, technical or organizational terms. In such a scenario, it is thus essential to define

appropriate roles and policies for developing and modifying the shared ontology, and for

managing different versions thereof, and to provide widely accessible software support to docu-

ment the entire process and its results and to facilitate interaction between participants. The core

ontology engineering life cycle known from the literature (Gomez-Perez et al., 2004) is adapted to

reflect the collaborative nature of the process. For example, Braun et al. (2007) argue for the need

of a pre-conceptualization step in the collaborative ontology engineering process. In this step, the

participants share knowledge informally—for example, through tagging. The tag collection built

in this way undergoes continuous evolution with gradual formalization through discussions and

decisions within the community. Another example is the use of customizable workflows, as

explicitly stated guidelines for running collaborative ontology engineering projects in specific

environments. These workflows are specified by the community itself, thus reflecting their

(organizational) requirements toward the ontology engineering process. In the following, we detail

the main features of collaborative ontology engineering practices.

2.1 Key roles

The team developing the shared ontology consists of stakeholders with different, and perhaps

divergent, interests and complementary competencies. The number of participant parties greatly

varies across application scenarios, from dozens to thousands of organizations, and their roles in

the project need to be precisely defined in order to allow for a smooth operation of the process.

Classical ontology engineering distinguishes between three roles: knowledge engineers, ontology

engineers and domain experts (Gomez-Perez et al., 2004). Domain experts are knowledgeable in

the domain that is captured by the ontology; they have intricate knowledge about domain-relevant

concepts and their attributes, as well as their interdependencies and relationships. The role

Collaborative ontology engineering: a survey 103



of knowledge engineers is to elicit these insights from the domain experts—for instance, via

interviews—to create a conceptual model of the domain. This conceptual model is then represented

in a suitable knowledge representation language by ontology engineers. In collaborative ontology

engineering, each member of the community can play several roles, depending on the types of

contributions the respective individual is allowed to perform on the shared ontology, but also on

the level of technology support in place and on the type of ontology that the project targets.

Recent approaches to collaborative ontology engineering have in fact investigated the trade-offs

between the level of expressivity of the ontology and the level of expertise predicated by the

underlying formalization task, arguing for lightweight ontologies that are possibly less powerful

with respect to the knowledge they can cover and the associated reasoning functionality, but

whose development and maintenance can be undertaken by laymen (Siorpaes & Hepp, 2007).

Two commonly occurring roles in collaborative ontology engineering are ontology editors and

ontology contributors, where the former have the authority to perform changes in the ontology.

Contributors may give feedback on the ontology and propose changes based on new and evolving

requirements of their particular setting. This role may overlap with the one of ontology users,

based on the obvious fact that an important class of ontology change requests are identified during

the usage of the ontology. There is no commonly agreed view on the distinction between these two

roles in the collaborative ontology engineering literature. One could argue that only a designated

subset of the users—those, who, for instance, possess some ontology engineering expertise—

document usage-driven changes requests, and discuss them with the editors. In addition, changes

are not always a consequence of user feedback, but can be equally motivated by changes in the

domain of the ontology and in the application scenario. The (strategic) decision to, for instance,

expand the domain of an ontology to cover areas that have not yet been considered, is not

necessarily directly related to usage feedback. Some methodologies introduce additional roles in

response to the importance of discussion and decision-making activities in a collaborative

ontology engineering scenario, as outlined in Section 3.

Many recent collaborative ontology engineering enterprises come from the biomedical sector.

We survey some of the most prominent ones, which illustrate the diverse collaboration models in

which community-accepted ontologies are developed and maintained. We start with the FMA

project2, in which a small team of editors jointly created a foundational model of anatomy

containing over 75 000 classes. In contrast, the Gene Ontology, a project which aims to provide a

widely accepted terminology for the description of gene products, exhibits a different form of

collaboration3. The underlying ontology is developed by a large base of scientists, who report on

issues occurred during the usage of the ontology, whereas changes at the level of the shared

ontology are undertaken by a small dedicated editing team (Tudorache et al., 2008). Another

interesting example is the NCI Thesaurus4, a medical ontology that captures knowledge about

cancer biology and oncology. Changes in the NCI Thesaurus are implemented by a team of

around 20 editors, under the supervision of a lead editor, who coordinates the process and

approves the changes. The user community can accept or reject these changes based on their

individual needs. Collaborative ontology engineering is popular beyond the biomedical sector.

eClass5 (or its OWL variant eClassOWL)6 is a standard classification for products and services to

support interoperability in electronic commerce by allowing stakeholders to refer to a common

vocabulary. The standard is maintained according to formally defined procedures by the eClass

Foundation. Changes can be proposed by the user community via fax; in regular meetings, these

proposals are discussed and, if consensus is achieved, a new release of the standard is issued.

2 http://sig.biostr.washington.edu/projects/fm/AboutFM.html
3 http://www.geneontology.org/
4 http://nciterms.nci.nih.gov/
5 http://www.eclass.de
6 http://www.heppnetz.de/eclassowl/

104 E . S IM P ERL AND M . LUCZAK -R Ö S CH



In general, and as shown through the previous examples, the model of the roles and associated

access policies depend on the characteristics of the ontology engineering project, including the size of

the community, the nature of the project and the intended collaboration style. Policies can range

from informal agreements between participants to formal documents whose infringement is avoided

through the implementation of specific monitoring and enforcement mechanisms, and can be defined

upfront (statically) or dynamically—similarly to those in a Web forum where contributors can work

their way up to a certain role subject to pre-defined rules. With reference to the previously mentioned

projects, we provide a common set of access policies related to the user roles in Table 1. Defining

such policies in an optimal way is one of the challenges of collaborative ontology engineering.

2.2 Ontology development and evolution

Publishing new ontology versions in a collaborative ontology engineering project is different to

centralized scenarios due to the need to synchronize editing. Ontology editing can be done using

desktop and Web-based (dedicated) development environments. To facilitate concurrent access,

versioning is managed through software such as SVN (Subversion)7, and distributed versioning

approaches. However, as ontology languages allow to express the same semantics by use of a

number of different syntactic variants, general-purpose versioning software relying on textual

differences in files is not a perfect fit to the requirements of ontology versioning. To avoid the

emergence of ontology versions that are not consensual, an agreement—usually informally

documented—is reached between participants prior to carrying out specific editing actions

(Tempich, 2006). In addition to challenges associated with mediating among potentially divergent

viewpoints and interests, difficulties arise when using versioning software, which has not been

designed to support ontology-specific efforts, especially in projects with a large number of

contributors, handling a complex ontology, or both. Eventually, interests of different stakeholders

are reflected in the emergence of branches of the shared ontology, in which certain parts of the

ontology are preferentially edited without taking into account the opinions of the rest of the

community. In such situations using general-purpose versioning software that use linear text files

is likely to fail when applied for ontologies that are not serialized in a unique way. These issues are

tackled by versioning software that builds around the structure of the conceptualization such as

Noy and Musen (2007), Luczak-Rösch et al. (2010). Alternatively, wiki-based technology has

proven to be feasibly applicable for facilitating community participation and feedback. Turning

back to the biomedical sector, platforms such as, for instance, LexWiki enable users of the

community-developed BiomedGT to browse the ontology, make comments and propose changes

in textual form8. The wiki stores textual change suggestions as annotations of the ontology, while

Table 1 Access policies in collaborative ontology engineering pocesses

Permission

Lead editor/project

administrator/

super user/

moderator

Editor/

content

reviewer

Reporter/

contributor/

content provider

(named user)

User/content

consumer

(unknown)

Implementation level

Approve and propagate changes %

Commit changes % %

Conceptualization level

Propose changes % % %

Discuss issues and ideas % % %

Report issues and ideas % % % %

7 http://subversion.tigris.org/
8 http://biomedgt.nci.nih.gov/wiki/index.php/Main_Page

Collaborative ontology engineering: a survey 105



editors can access these suggestions and implement changes directly in the ontology. As will be

elaborated in Section 4, wikis offer an intuitively usable community-based forum for discussions.

They can also be extended into additional ontology engineering features improving their usability

in ontology-related projects, such as class hierarchy browsing and auto-completion; despite their

natural appeal, other features are much more difficult to implement: editors must switch back and

forth to implement changes, while simple semantic checks on the data are not supported due to the

textual nature of the annotations provided. Additionally, each wiki software implements its own

collaboration process that cannot be customized during the project.

2.3 Collaboration process

A common characteristic of early ontology engineering methodologies has been the notion of a pre-

defined process model that guides the ontology engineering activities and yields a dedicated set of

roles, policies and tools to perform it in a consistent fashion—examples, can be found, for instance in

Holsapple and Joshi (2002a), Gomez-Perez et al. (2004) and Vrandecic et al. (2005). With increasing

adoption of collaborative ontology engineering principles and practices, the trend moved toward

greater flexibility for the engineering team in defining their own models to optimize the results of the

project, and providing the tools to support this flexibility (Braun et al., 2007). Tudorache et al. (2008)

provide several examples of such projects, which have been publishing and refining their workflows

for years, including the Gene Ontology project discussed above. In other cases, knowledge and

ontology engineers have been actively working on how to formalize the process models they follow.

Given proper tool support, the availability of such formal models promise to further enhance the

flexibility of the underlying approach by allowing changes to be made during the (now adaptable)

ontology development life cycle. An instance thereof is the NeOn project9 developing an ontology for

the United Nations Food and Agriculture Organization (UN FAO).

Factors to be taken into account in collaborative engineering scenarios are the organizational

structure underlying the project, the size and the openness of the community of contributors, the

required level of rigor in quality control and the complexity of the representation (Tudorache

et al., 2008). At the same time, a proper balance must be struck between the formal representation

of the process model and the added value of this representation as per automatic use in the project.

VoCamps10 denote informal bar-camp-style events organized by the Semantic Web community, in

which a group of stakeholders and enthusiasts (usually around 20) meet at a physical location to

develop lightweight vocabularies capturing domains of interests that are proposed democratically

by the participants. From a methodological point of view, the VoCamp approach is the most

unstructured from all examples presented in this survey. It does not introduce any process model,

neither for the ontology development activities nor for the deployment, maintenance and use of

the resulting ontology. Moreover, there is no explicit model of roles and policies. Nevertheless, the

appeal of the approach lies precisely in its participatory and informal nature. It builds upon the

real needs of the community interested in developing ontologies in specific domains.

With respect to reaching consensus, generic techniques that found applicability in the ontology

engineering field include the Nominal Group (Dunnette et al., 1963) and the Delphi (Linstone &

Turoff, 1975) approaches, supported by elementary communication channels such as discussion

forums and chats (Holsapple & Joshi, 2002a; Tudorache et al., 2008). Further examples of

collaboration are provided in the following sections.

2.4 Collaboration tools

Collaborative ontology engineering environments can be characterized by a significant amount of

deliberation between contributors regarding both the ontology to be developed and the engineering

9 http://www.neon-project.org
10 http://vocamp.org

106 E . S IM P ERL AND M . LUCZAK -R Ö S CH



process itself. Discussions between participants usually take place via email, instant messaging and

discussion forums. While these channels can provide general-purpose communication and archiving

support, a direct linking between the threads of discussions and the content of the ontology the

discussions refer to is largely missing. As such, gaining an understanding of the status of the

discussion, and of the rationale behind a certain decision require extensive effort, especially for any

part of the community that is not at the core of the editing team, or that joins the project at a later

stage. These limitations have been recently addressed within the Protégé initiative, which released a

collaborative version of their popular ontology engineering environment (Tudorache et al., 2008).

Going beyond such links, taking an informed decision on any ontology-related issue, be that the

resolution of a conflicting situation, the detection of inconsistencies, or the assessment of the

necessity to introduce specific changes in the ontology, requires dedicated tool support. Such

support is not offered per default through the channels mentioned above, or even by more

specialized tools such as (wiki-based) ontology editors, if these are not customized to the task and

the domain at hand. One exception might be the topic of argumentation, which is at the core

of several methodologies and collaborative engineering environments (Vrandecic et al., 2005;

Dellschaft et al., 2008). Furthermore, while face-to-face meetings commonly do occur in the

majority of collaborative ontology engineering projects, recording minutes, decisions and actions as

structured information linked to the ontology is not fully supported by the technology available.

The remaining sections will present and perform a comparative analysis of the most important

methodologies and associated software environments created in the context of collaborative

ontology engineering over the past decade. Each methodology will be presented in terms of their

main activities and tasks, as well as tool support and real-world application. The second part of

the survey will concentrate on the most promising tools in this area and on how they support

particularly challenging themes such as evolution and collaboration.

3 Ontology engineering methodologies

In order to facilitate the operationalization of the ontology engineering process in terms of results, labor

and duration, significant efforts have been spent in the Semantic Web community to understand the life

cycle of semantic content and to design methodologies providing descriptions of the process through

which user needs are translated into semantic artifacts. In general a methodology can be defined as

‘a comprehensive, integrated series of techniques or methods creating a general systems theory of how

a class of thought-intensive work ought be performed’ (IEEE Computer Society, 1990). In particular, a

methodology includes a description of the process to be performed and of the roles involved in the

process, assigns responsibilities to activities and people, and gives recommendations in form of best

practices and guidelines. It can be related to a specific process model, which provides additional details

on the order and relationships between activities foreseen by the corresponding life cycle11.

Depending on the setting in which they can be applied in, methodologies can be divided into

two main categories:

Methodologies for centralized ontology engineering: The ontology engineering team is concentrated

in one location and communication between team members occurs, among others, in regular

face-to-face meetings. This setting is particularly relevant for the development of ontologies

for a specific purpose within an organization.

Methodologies for decentralized ontology engineering: This type of approach applies to the

Semantic Web or any other open, large-scale environment where the ontology engineering

team and IT systems and infrastructure are distributed. The ontology engineering team is

composed of different stakeholders dispersed over several geographical locations, applying

11 See the NeOn project for a recent analysis of ontology life cycles at http://http://www.neon-

project.org

Collaborative ontology engineering: a survey 107



the shared ontology in different settings. The ontology provides a lingua-franca within the

contributing community or ensures interoperability between machines, humans or both.

Early ontology engineering methodologies such as Uschold and King (1995), Swartout et al. (1996),

and Fox and Gruninger (1998) (see Fernández-López & Gómez-Pérez, 2002 for an overview) focussed

on core ontology development activities: requirements analysis, conceptualization, implementation,

evaluation and maintenance. They assume that the formal specification of the domain knowledge to be

used in an application system precedes the actual development of the system. A second generation of

methodologies shifted this focus towards a more iterative engineering process in which application-

specific requirements are seen as an integral part of the requirements analysis activity. Furthermore,

several versions of the ontology are released incrementally in order to ensure that requirements are

optimally met, and to respond to changing requirements. Common to all these approaches is the

division between domain experts, knowledge engineers, ontology engineers and users with respect to

their development and post-development responsibilities. The ontology engineering process is driven

by engineers, who gather requirements from domain experts and users, implement these requirements,

test the resulting ontology and steer its evolution. Representative for this second generation of

methodologies areMethonotology (Fernandez-Lopez et al., 1997) and OnToKnowledge (Sure, 2002; see

(Gomez-Perez et al., 2004) for an overview) The third and current generation of ontology engineering

methodologies follows a participatory approach. The emphasis is on making ontology engineering a

truly collaborative effort carried out by a potentially large group of contributors with diverse back-

grounds and skills, and on providing the technological support that makes it easier for non-experts to

become involved in ontology-related activities beyond requirements elicitation. In the following, we

describe several of the most prominent methodologies in the field of collaborative ontology engineering

in the last of the three aforementioned categories in chronological order of their publication.

3.1 The methodology of Holsapple and Joshi

Holsapple and Joshi (2002a) proposed the first comprehensive methodology to collaborative ontology

design based on a Delphi-like (Linstone & Turoff, 1975) approach to structure the consensus-building

process. First, an initial ontology is developed by merging or integrating existing ontologies. This

ontology provides a starting point for the design process, which is performed collaboratively by

revising the ontology based on the feedback received from the various parties involved. The engineering

process is divided into four phases (Figure 1, Holsapple & Joshi, 2002a).

Preparation: Defines design criteria, and determines boundary conditions and standards that can

then be used for evaluation.

Anchoring: Produces a first ontology that helps for orientation of the participants.

Iterative improvement: Adjusts and extends the anchor ontology developed in the previous step.

This is achieved with the help of an expert panel, which is interviewed through questionnaires

to collect their feedback on the ontology. The consolidated results are handed to the experts

with the aim to achieve a consensus on all design issues. The ontology is edited by ontology

developers, who implement the changes consensually agreed among the participants.

Application: Is the actual usage of the ontology in a specific context.

3.1.1 Collaborative aspects

In this approach, collaboration is facilitated through the application of a Delphi-like approach to

incrementally improve the shared ontology.

3.1.2 Roles, policies and tasks

The methodology differentiates between an expert panel, which takes the role of the content

reviewers and contributors, and a team of lead editors.

108 E . S IM P ERL AND M . LUCZAK -R Ö S CH



3.1.3 Application areas

The methodology was applied in a knowledge management project in order to describe the

conduct of knowledge management in organizations (Holsapple & Joshi, 2002b). The findings of

this case study confirm the usefulness of the Delphi method to guide decentralized ontology

engineering; they also raise several issues related to the resource-intensive nature of collaboration,

the need for additional support tool to ensure a consistent execution of the Delphi process (e.g. by

facilitating the access to the information gathered from the panelists in each round), and to

potential biases induced by the anchoring ontology.

3.2 Dogma-Mess

Dogma-Mess (De Moor et al., 2006; Spyns et al., 2007) is an extension of the Dogma methodology

(Jarrar & Meersman, 2009) toward inter-organizational support. In Dogma, an ontology consists of

a base of lexons, holding conceptualizations of a domain12 and a layer of ontological commitments.

Define design criteria

Determine boundary conditions

Determine evaluation standards

Identify diverse panel of participants

Iterate until consensus reached

Demonstrate uses of the ontology

Elicit their critiques and
comments on the ontology

Revise the ontology to address
panelists' feedack

Specify the initial ontology that
will seed the collaborative effort

A collaborative approach to
ontology design.

Preparation

Anchoring

Application

Iterative
Improvement

Figure 1 Overview of the Methodology of Holsapple and Joshi

12 Lexons can be considered as a combination of RDF/OWL triples and their inverses, defining taxonomical

or domain-specific relationships.

Collaborative ontology engineering: a survey 109



Dogma-Mess was explicitly conceived for those ontology engineering settings that involve multiple

stakeholders. It distinguishes between five major phases:

Formulate vision statement: The stakeholders develop a shared specification of scope and aim of

the ontology.

Conduct feasibility study: The vision statement is refined and evaluated in terms of costs, benefits

and technology.

Project management: Project management activities (time management, planning, controlling) are

initiated.

Preparation nd scoping: This phase is carried out as a sequence of five tasks: (i) definition of user

requirements; (ii) definition of purpose; (iii) identification of domain experts; (iv) compilation

of knowledge resources; and (v) scoping of knowledge resources.

Domain conceptualization: This is the core of the ontology engineering methodology. It involves the

analysis of the domain and leads to a Dogma-style ontology. It involves the following activities:

Knowledge discovery: This is performed semi-automatically within the following tasks:

> collect, select and pre-process an appropriate corpus;
> discover sets of equivalent words and expressions;
> validate the sets with the help of a domain expert;
> discover sets of semantic relations and extend the sets of equivalent words and expressions;
> validate the relations and extended concept definitions with the help of a domain expert;
> create a formal representation.

Knowledge elicitation: This activity allows domain experts produce a conceptualization based

on their domain expertise. The activity encompasses brainstorming, abstraction and the

compilation of the baseline taxonomy.

Knowledge negotiation: This activity concerns a conversational gathering of feedback from

domain experts with respect to the meaning of concepts based on efficiently handling

context dependencies, in particular specialization dependencies.

Knowledge breakdown: Here the aim is to generate a hierarchical structure using linguistic

techniques. For this purpose, the methodology recommends (i) verbalizing elementary

sentences, which involves extracting elementary facts; and (ii) engineering lexons, which

aims at the creation of verbalized facts in natural language.

Application specification: This final phase includes structuring the applications domain, tailoring

the domain conceptualization according to application-specific constraints and preparing the

validation of the ontology.

3.2.1 Collaborative aspects

In Dogma-Mess, collaboration is considered in the context of what the authors call ‘inter-organizational’

ontology engineering. The authors propose a pragmatic approach to handle adaptations of shared

ontologies in local environments by looking into ways to use formal techniques to context

management in ontology engineering projects, while ensuring the efficiency of these projects. The

methodology does not give any details on how to reach consensus on the shared ontology, in fact the

core activities rely exclusively on Dogma, which did not target collaborative settings.

3.2.2 Roles, policies and tasks

Dogma-Mess involves domain experts covering the role of content reviewers and providers and core

domain experts covering the role of the lead editors. To support the core domain experts, who are

typically not ontology-engineering experts, knowledge engineers may take the role of lead editors, too.

110 E . S IM P ERL AND M . LUCZAK -R Ö S CH



3.2.3 Application areas

In De Moor et al. (2006), the authors introduce a Web-based system that applies Dogma-Mess to

engineer ontologies within and across organizations. Preliminary evaluation results in a project in

the Dutch bakery sector are mentioned in the same publication, however, they remain very limited.

A second application sector was Human Resources (De Leenheer et al., 2009).

3.3 DILIGENT

DILIGENT (Vrandecic et al., 2005) proposes a methodology for collaborative ontology

engineering based on the IBIS argumentation model (Kunz & Rittel, 1970). The process model is

divided into several phases to be carried out in multiple iterations:

Build: A core team of domain experts, users, knowledge engineers and ontology engineers build an

ontology that is not required to be complete as with respect to the requirements to be fulfilled.

Local adaptation: The ontology is made available and users adapt it to their own needs in their

local environments. However, the ‘original’ ontology remains unchanged while local adap-

tions are logged for future analysis.

Analysis: Local branches of the shared ontology are analyzed with respect to their mutual

differences and an ontology engineering board selects changes to be carried over into the next

version of the shared ontology.

Revision: The changes agreed in the previous phase are implemented in the shared ontology

and a new version thereof is released.

Local updates: Users may decide to align their local ontologies with the new version of the

ontology released by the board in order to ensure compliance to commonly agreed standards,

as well as communication and interoperability benefits arising from the usage of an ontology

that is shared within the community.

An overview of the methodology is presented in Figure 2 (see Tempich et al., 2007).

Decisions
Positions

Ar
gu

m
en

ts

Ontology engineers #1 Optional:
acquired users from

the target group

Optional:
ontology engineers #2

Customer

Argue Argue

Argue

Persistent
ontology
versions

Issues

Ideas

Argue

Argues

Board
Argue

Elaborations

Figure 2 Overview of DILIGENT

Collaborative ontology engineering: a survey 111



3.3.1 Collaborative aspects

Collaboration is performed throughout all phases of the engineering cycle as all the different

stakeholders argue for and against the implemented ontology primitives. It is based on an argu-

mentation process consisting of several phases. First, the participants in an ontology engineering

discussion choose a moderator. The basic rules for moderation also apply in this case: the

moderator does not contribute to the discussion, but structures it; he does not take part in

decision, but organizes the decision process. Any participant may take the role of the moderator

and the moderator role may move from one participant to the next. In the second step, the

participants agree on a mechanism to reach agreements during the discussions. They decide upon a

voting procedure such as majority voting, and on the conditions triggering a new voting round.

For instance, they can vote within fixed time intervals or if no new arguments have been brought

forward for a certain period of time. Then ontology engineering discussions are initiated by

specifying issues that arose during the process, corresponding to domain or application require-

ments for the ontology to be built. Once the discussion evolves, issues can be grouped according to

their priority for the target setting and treated accordingly. Discussions around ‘issues’ are

structured with the help of ‘ideas’. Provided a generally agreed relevant issue, participants bring

forward ideas to formalize it. Other participants may express their agreement or disagreement with

arguments and alternative ideas in order to strengthen or weaken them. This step is of particular

importance for the ontology design as the effectiveness and efficiency of the entire process depends

on the decisions based on the provided arguments. DILIGENT proposes the use of the Rhetorical

Structure Theory (RST; Mann & Thompson, 1987) to define the types of arguments that can be

used during the discussions while reaching a balance between the manageability of the overall

process and the ease-of-use of the approach by a large community.

3.3.2 Roles, policies and tasks

In DILIGENT, users take part in the engineering process by proposing issues and ideas and

arguing on them. The users, as well as knowledge engineers, domain experts and, potentially, a

customer take the role of the contributors. Ontology engineers act as the editors implementing

changes to the ontology and a dedicated board of ontology engineers is allowed to decide on the

deployment of changes to the consensual ontology model as a group of lead editors.

3.3.3 Application areas

The methodology was evaluated at various stages of its development through case studies in

domains as diverse as tourism, law (Casanovas et al., 2007) and academic research. While the

findings of the case studies are positive with respect to the applicability of the overall approach to

collaboratively engineer an ontology, they also emphasize the importance of software support in

many phases of the engineering process. This issue has been taken up in several research projects,

which produced a suite of (Web-based) ontology editors facilitating RST-like discussions and

translating the results of these discussions in changes at the level of the ontology. Examples of

such tools are coefficientMakna (Tempich et al., 2007) and Cicero as part of the NeOn Toolkit

(Dellschaft et al., 2008).

3.4 Human-Centered Ontology Engineering Methodology

The Human-Centered Ontology Engineering Methodology (HCOME; Kotis & Vouros, 2005) is, like

DILIGENT, a methodology that explicitly focuses on the distributed creation of ontologies in

knowledge-intensive organizations. It differentiates between several information spaces in which

conceptualization efforts are carried out: a personal information space, reflecting the view of an

individual party on the domain of interest and a shared information space based on which different

parties synergistically develop a commonly agreed conceptualization, by aligning individual viewpoints

and putting joint results into the context of their own experiences. Orthogonally, the methodology is

organized in three major phases, each with several tasks and goals, which may refer to these spaces.

112 E . S IM P ERL AND M . LUCZAK -R Ö S CH



Specification: This phase establishes the engineering teams that collaborate toward defining a joint

aim and scope of the ontology and analyzes the requirements for developing a shared

ontology, which are recorded in a requirements specification document.

Conceptualization: Conceptualization first takes place locally within the various teams. It covers

the following tasks: (i) importing existing ontologies from ontology libraries; (ii) consulting

generic top ontologies for better understanding; (iii) improvising ontologies, that is,

from-scratch-development, based on the input of domain experts; (iv) managing, mapping

and merging of ontology versions; and (v) ontology evolution.

Exploitation: In this phase, the ontology is used and against alternatives developed by other

stakeholders. Structured conversation and critical dialogue facilitate achievement of a

common understanding with respect to the directions in which the shared ontology should be

adjusted or extended. The tasks performed in this phase include: (i) inspection of ontologies

by collaborators; (ii) comparisons of versions of one ontology in order to spot differences;

and (iii) publication of comments and feedback.

An overview of the methodology is provided in Figure 3 (from Kotis & Vouros, 2005).

3.4.1 Collaborative aspects

HCOME also identifies a number of principles, which should be fulfilled by collaborative ontology

engineering environments. Besides the need for an eclectic approach to the development of ontologies,

the authors argue in favor of providing techniques and tools that leverage various information

sources as input for the ontological conceptualization, and for a conversational collaboration style by

which knowledge workers can seamlessly deploy and evaluate the shared ontology and become active

in its evolution. Finally, it is seen as critical that ontology engineering environments allow knowledge

workers to interact with ontologies in a natural and consistent way, which means not only different

levels of details, but also interfaces that abstract from the particulars of knowledge representation

languages, and features for consistency checking and ontology matching.

To support the usage of the methodology in real-world projects, HCOME is accompanied by

the HCONE tool suite, which includes, among other things, features for the development and

Goals Tasks

discuss requirements (S)
produce documents (S)
identify collaborators (S)
specify the scope, aim of the ontology (S)

Acquire knowledge
import from ontology libraries (P)
consult generic top ontology (P)
consult domain experts by discussion (S)

Conceptualisation
improvise (P)
manage conceptualisations (P)
merge versions (P)
compare own versions (P)
generalize/specialize versions (P)
add documentation (P)

Use ontology
browse ontology (P)
exploit in applications

Exploitation
Evaluate ontology

initiate arguments and criticism (S)
compare others’ versions (S)
browse/exploit agreed ontologies (S)

Ontology
life-cycle phases

Define aim / scope /
requirements / teams

Develop
&
Maintain
Ontology

manage the recorded discussions upon an
ontology (S)
propose new ontology versions by
incorporating suggested changes (S)

Specification

Figure 3 Overview of HCOME, (S) denotes shared space, and (P) denotes private spaces

Collaborative ontology engineering: a survey 113



management of shared ontologies. Collaboration is supported through a version of the IBIS

argumentation model and a notification system, which updates the participants on the status of

the discussions. Users of the tools can browse the shared ontology, examine how it differs from its

personal counterparts and consult the rationale behind specific design issues. Feedback can be

collected by posting to a moderated discussion thread.

3.4.2 Roles, policies and tasks

HCOME introduces no dedicated model for roles and policies. Instead, it differentiates between

the personal space, the shared space and the agreed space. Each member of the community can

deploy her ontologies to the personal space and the shared space for personal and collaborative

revision, respectively. Finally, a consensual ontology is deployed to the agreed space as the result

of an argumentation process between all community members.

3.4.3 Application areas

There is scant evidence of the application of HCOME/HCONE in real-world projects. As a

continuation of the work, the authors proposed several years later the HCOME-3O framework,

which allows for an improved management of the collaboration process using meta-ontologies

(capturing administrative information, changes to various ontology versions, and the rationale

therefor) and semantic wiki technology (Kotis, 2008).

3.5 RapidOWL

RapidOWL applies the agile engineering paradigm to ontology engineering (Auer & Herre, 2006).

The approach does not commit to a specific process model or an ontology life cycle, but aims at

providing a number of guidelines to be taken into account by the engineering team. The general

goal is to allow domain experts to become an integral part of the ontology development process,

by identifying simple, tool-supported strategies and techniques, which they can apply without

extensive intervention of knowledge representation experts. The main components of RapidOWL

are, as illustrated in Figure 4 (Auer & Herre, 2006):

Values: RapidOWL subscribes to the philosophy of eXtreme Programming: Communication, as

crucial enabler of a collaborative approach to any engineering endeavor; Feedback, to steer

the evolution of the shared ontology following the needs and requirements of the stake-

holders; Simplicity, to facilitate the maintainability of the ontology and the underlying data;

and Courage, to foster progress despite potential modeling dead-ends. Communication and

Feedback are merged into a new category, termed Community, which covers both the social

aspects involved in collaborative design and the evolution of the ontology by gathering the

feedback of the participants. In addition to these category, RapidOWL introduced a new one,

Transparency, by which the full record of changes to the ontologies are made visible to the

entire community, thus acknowledging the contributions of the corresponding parties and

facilitating an effective monitoring of the activities of the participants.

Principles: Complementarily to these four tenets of XP, which are understood as long-term goals

of every agile ontology engineering project, RapidOWL recommends that every agile

ontology engineering process be guided in the mid-term by several principles. They are

partially adopted from the design goals for wiki systems defined by Ward Cunningham13.

Among the most important ones we highlight: uniform authoring methods for both schema

and instance representation and modeling, observable development and rapid feedback

(to ensure that the ontology reflects the views of a high number of community members and

to ease the maintainability).

13 http://c2.com/cgi/wiki?WikiDesignPrinciples

114 E . S IM P ERL AND M . LUCZAK -R Ö S CH



Practices: A third component of the RapidOWL approach are engineering best practices,

which are inspired both by general-purpose eXtreme Programming and by other works on

collaborative knowledge base design such as Knublauch (2002). Important aspects are the

Joint Ontology Design (between knowledge engineers, domain experts and users), View

Generation (to reflect the needs and requirements of individual stakeholders) and Modeling

Standards (to ensure reusability and interoperability).

3.5.1 Collaborative aspects

Collaboration is addressed in RapidOWL at the level of general guidelines, be that long-term values to

be taken into account, mid-term principles according to which the engineering process should be

carried out, or concrete practices, which aid knowledge engineers, domain experts and users during

this process. There are no concrete methods, techniques and tools proposed as integral part of the

methodology; as such, the approach could be used as an assessment framework for other methodo-

logical attempts in the ontological engineering field, and less as a ‘cookbook’, which describes how the

engineering process should be performed in terms of phases, activities, tasks, roles and best practices.

3.5.2 Roles, policies and tasks

The set of general guidelines to which RapidOWL subscribes distinguishes between knowledge

engineers, who act as lead editors, and domain experts and users, who act as editors in the

ontology engineering process.

3.5.3 Application areas

RapidOWL guidelines have been applied to build the ontology underlying the ‘Vernetzte Kirche’

(in English: Networked Church) project, which runs a series of Web-based portals on behalf of the

Lutheran Church in Bavaria (Auer & Pieterse, 2005). The methodology is supported by the

POWL14 software. Recently, the University of Leipzig realized its catalogue of professors using

ontologies that were build following RapidOWL15.

3.6 Ontology maturing

Ontology maturing is a community-driven approach to ontology engineering (Braun et al., 2007)

that puts emphasis on the role of the user community in steering a sustainable, long-term evolution

of an ontology. The maturing process consists of four phases, which result in ontologies with an

increasing degree of formality and expressivity (Figure 5, from Braun et al., 2007):

Emergence of ideas: In the first phase, new concept ideas are collected in an ad hoc fashion.

This is achieved through the assignment of simple tags.

Rapid Feedback

Simplicity CommunityCourageTransparency

OpenIncremental Organic Uniform

WYSIWYMObservable Convergent

Interactive Cooperation Joint Ontology Design

Community Modeling

Modeling Standards

Ontology Evolution Short ReleasesConsistency Checking

Simple Knowl. Model

Values

Principles

Practices

View Generation

Information Integration

Figure 4 Overview of RapidOWL

14 http://sourceforge.net/projects/powl/ and OntoWikihttp://code.google.com/p/

ontowiki/
15 http://catalogus-professorum.org/cpm/

Collaborative ontology engineering: a survey 115



Consolidation in communities: The tags generated in the first phase are reused and adapted by the

user community. The aim is to extract concepts from the available tags leading to a common

terminology.

Formalization: This phase adds taxonomic and ad hoc relations to the common terminology

yielding lightweight but formal ontologies.

Axiomatization: The ontology is further refined with logical axioms.

3.6.1 Collaborative aspects

How collaboration is carried on in the Ontology Maturing methodology is underspecified.

However, the core principle is a focus on the consolidation of knowledge in communities that is

core phase of the overall process of ontology maturing.

3.6.2 Roles, policies and tasks

Just as for the collaborative aspects, the concrete roles policies and tasks in this methodology are

underspecified.

3.6.3 Application areas

While the collaboration-related aspects of the methodology, including roles, policies and tasks are

underspecified, Ontology Maturing excels in providing a number of detailed case studies in which

the methodology was successfully applied (Braun et al., 2008; Braun et al., 2010)16. The case

studies are supported by the tool SOBOLEO (Braun & Zacharias, 2010), which facilitates the

collaborative editing of the ontology in a user-friendly manner and its subsequent usage in tasks

such as semantic search or semantic annotation. While these case studies show the feasibility of the

approach, their practical findings remain so far very generic to have significant implications for

the future research and development in the ontology engineering community.

3.7 Comparative analysis

In order to analyze the collaborative ontology engineering, methodologies introduced above we

adapted the framework proposed in Fernández-López and Gómez-Pérez (2002), which is used in the

ontology engineering literature to compare methodologies in terms of the following nine criteria:

C1. Inheritance from knowledge engineering: This criterion assesses the influence of traditional

knowledge engineering on the methodology. Building upon the insights and results of a

Emergence
of ideas

Consolidation
in Communities Formalization

new concept
ideas tags

common
terminology

formal
lightweight
ontology

Axiomatization

heavy-weight
ontology

Figure 5 Overview of Ontology Maturing

16 http://mature-ip.eu/demonstrators

116 E . S IM P ERL AND M . LUCZAK -R Ö S CH



research field as renowned as knowledge engineering ensures a solid grounding of the new

approaches. In the same time, compatibility with established practices has a positive effect on

adoption and impact.

C2. Detail of the methodology: This criterion assesses the level of detail of the methodology, as the

availability of elaborated process descriptions accompanied by empirically driven best

practices and guidelines is crucial for adoption.

C3. Recommendations for knowledge formalization: This criterion considers the knowledge

formalism(s) the methodology is tailored to. Strong dependencies toward a particular

formalism or knowledge representation language may influence the applicability of the

methodology in settings that have constraints in this respect.

C4. Strategy for building ontologies: This criterion discusses whether the strategy underlying the

methodology is application-dependent, application-semidependent or application-independent.

The underlying assumption is that there is a trade-off between the level of assistance provided by

a fine-grained methodology in a specific environment and its applicability to other environments,

which might not exhibit the same characteristics.

C5. Strategy for identifying concepts: This criterion researches whether the strategy for identifying

concepts is top-down, bottom-up, or middle-out (Uschold & Grueninger, 1996). The

choice of an appropriate strategy depends on the type of ontology engineering scenario

(centralized vs. decentralized), and on the availability of domain-related documentation and

requirements, which describe the knowledge to be encoded in the ontology.

C6. Recommended life cycle: This criterion investigates whether the methodology proposes a life

cycle; the life cycle needs to match the requirements of the scenario for which the ontology is

being developed.

C7. Differences between the methodology and IEEE 1074-1995: This criterion summarizes the

differences between the methodology and the IEEE 1074-1995 standard. This standard

provides a schema to generate software development and maintenance (in short, software life

cycle processes) processes. Similarly, criterion C1 gives an assessment of the potential impact

of the methodology, as standards-compliant approaches are expected to yield a greater

potential for adoption.

C8. Recommended techniques: This criterion investigates whether the methodology proposes the

use of specific techniques for carrying out activities. The availability of such techniques can

have a positive effect on the usability of the methodology, as these techniques provide support

the ontology engineering team.

C9. Usage of the methodology: This criterion outlines ontologies that have been developed following

the methodology, giving an account on the degree to which that methodology has been

validated in real-world projects and on the types of scenarios to which it is well or less suited.

We extended and adapted this catalogue of criteria to reflect the characteristics of decentralized

ontology engineering projects. The result contains ten criteria, which are explained below. Table 2

summarizes the results of our analysis following these 10 criteria.

C-I. Detail of the methodology: Same as above.

C-II. Recommendations for knowledge formalization: Extending the scope of the original definition,

this criterion analyzes for which level of expressivity of the ontology the methodology is

designed (e.g. controlled vocabulary or fully axiomatized ontology). It accounts for the trend

observed in decentralized ontology engineering methodology to put more emphasis on

lightweight ontologies, which can be feasibly developed and maintained by a community of

non-experts.

Collaborative ontology engineering: a survey 117



Table 2 Overview of collaborative ontology engineering methodologies

Criterion Holsapple and Joshi Dogma-Mess DILIGENT HCOME RapidOWL Ontology maturing

Detail of the

methodology

Detailed Detailed Very detailed Very detailed Not detailed Not detailed

Rec. for knowledge

formalization

Fully axiomatized

ontologies

Controlled

vocabularies for

inter-organizational

communication

formalized via lexons

Fully axiomatized

ontologies

Fully axiomatized

ontologies

formalized in

NeoClassic

Degree of

formalization not

prescribed, all

knowledge

representation based

on RDF-triples

Lightweight

ontologies

Strategy for building

ontologies

Application-

semi-independent

Application-dependent Application-

independent

Application-

semi-independent

Application-

independent

Application-

semi-independent

Strategy for

identifying concepts

Delphi method,

top-down

Brainstorm, abstract

and compile baseline

taxonomy; generate a

hierarchical structure

using linguistic

techniques

Middle-out,

proposals of

abstract design

issues and collection

of ideas of concrete

implementations of

the issues

Bottom-up, ontology

reuse, improvising

of ontologies,

alignment of

multiple ontologies

Open community

modeling and

information

integration,

middle-out

Emergence of ideas,

consolidation within

the community and

formalization,

bottom-up

Rec. life cycle Iterative Iterative Iterative Iterative Rapid prototyping No life cycle model

proposed

Rec. techniques Delphi method for

feedback collection

Decomposition of

generic ontology base

and application-

dependent

commitment layer,

template and context

dependencies

management,

knowledge discovery

based on linguistic

resources

IBIS decision support IBIS decision

support, Latent

Semantic Indexing,

alignment to

linguistic resources

like WordNet,

support for views

and conversational

feedback gathering,

ontology alignment

View-based editing

for different roles,

providing concrete

techniques for

performing different

practices is stressed

but not explicitly

defined

Tagging, wikis

1
1
8

E
.

S
I
M

P
E
R
L

A
N

D
M
.

L
U

C
Z
A
K
-
R
Ö
S
C
H



Table 2 (Continued)

Roles Knowledge workers Ontology engineers,

domain experts

Domain experts,

knowledge and

ontology engineers,

ontology users

Knowledge workers Domain experts,

knowledge

engineers, users

Domain experts

Evolution Iterative

improvement based

on feedback

collected by use

of questionnaires

Complex selection

process to identify

relevant concepts

from the individually

evolved

organizational

ontologies for

adoption in the new

version of the

inter-organizational

ontology

Iterative process of

local adaption and

change of the shared

ontology and then

analysis, revision,

and implementation

of relevant changes

from the local

branches back to the

shared ontology

Iterative process of

local use and

evaluation of the

shared ontology and

then propagation,

discussion and

implementation of

agreed changes

Frequent evolution

based on the

feedback of the

community

Continuous process

that results

ontologies with an

increasing level of

formality

Collaboration Delphi method Knowledge negotiation IBIS-based

argumentation

framework and

argumentation

ontology

Shared HCONE

discussion model

based on IBIS, later

semantic wikis

– Wiki-based

collaboration

Usage of the

methodology

Describing the

conduct of

knowledge

management in

organizations

Experimental

inter-organizational

ontology engineering

in the Dutch bakery

and HRM sectors

Used within

Iuriservice, a

Web-based

intelligent FAQ for

judicial use

(Casanovas et al.,

2007)

Graduate project at

the University of the

Aegean

Catalogue of

professors at

University of

Leipzig, semantic

application for the

Lutheran Church in

Bavaria

Image-based

navigation and

bookmarking of

digital cultural and

scientific resources

C
o
lla

b
o
ra
tive

o
n
to
lo
g
y
en
g
in
eerin

g
:
a
su
rvey

1
1
9



C-III. Strategy for building ontologies: Same as above.

C-IV. Strategy for identifying concepts: Same as above.

C-V. Recommended life cycle: Same as above.

C-VI. Recommended techniques: Same as above.

C-VII. Roles: Collaborative ontology engineering is based on a potentially complex roles model

of editors and contributors, which ensures that the engineering process is performed in

an efficient manner despite the size of the engineering team and the decentralized nature of

the setting.

C-VIII. Evolution: This criterion reflects on how the methodology supports the publication and

management of ontology versions. The evolution of the ontology to which many stakeholders

contribute might cause inconsistencies in conceptual modeling and discussions about how to

optimally implement the needs and preferences of these stakeholders.

C-IX. Collaboration: This criterion investigates the procedures, techniques and support tools

facilitating consensus finding within the ontology community.

C-X. Usage of the methodology: Same as above.

Most of the surveyed methodologies provide a detailed description of the process model to be

followed within a decentralized ontology engineering scenario, describing the phases, activities and

tasks to be performed by each category of contributors. RapidOWL relies on existing principles

from related engineering disciplines, leaving out any details on how these principles should be

translated into ontology engineering terms. DILIGENT, in contrast, gives a full account of the

approach to be applied, describing all activities in terms of the roles, tasks, inputs, outputs

and tool assistance required. As such, it gives an excellent example of how such a methodology

should be documented for feasible external use. Despite this promising baseline, all methodologies

would benefit from a more elaborated and precise description of the criteria to be taken into

account when taking certain decisions along the engineering process and from the availability

of comprehensive case study findings and domain-specific guidelines. In this respect, the case

studies around the Ontology Maturing approach provide a useful baseline, besides being an

interesting reading of the types of systems and projects collaborative ontology engineering is

currently being applied.

With respect to the strategy for building ontologies, it is important to highlight that several

methodologies have been classified as ‘application-independent’, though no substantial empirical

evidence could be found of their usability across application scenarios. This assessment is based on

the declared aim of the methodologies. Other methodologies have a clear application-semi-inde-

pendent character (Fernández-López & Gómez-Pérez, 2002), as the authors identify a series of

core application scenarios for which the methodology is implicitly or explicitly designed for. Only

Dogma-Mess relies on application-specific linguistic resources for the development of the ontol-

ogy; naturally, the resulting ontology is application-dependent, though the two domains in which

it was applied speak in favor of the generality of its principles.

Regarding the recommended life cycle model, the only two methodologies that do not explicitly

propose an iterative model are RapidOWL and Ontology Maturing. The methodologies are not

described at the same level of detail as the others surveyed, and do not explicitly propose an

integrative phase model for the full set of engineering activities. Especially, RapidOWL is rather a

set of principles and guidelines than an engineering methodology (in the IEEE sense). Most

methodologies recommend various techniques that can be applied as part of specific phases of the

engineering process. The two most prominent examples therefor are DILIGENT and HCOME.

As part of the HCONE environment, the latter offers an impressive portfolio of features that are

expected to crucially ease the development of the ontology, especially when it comes to leveraging

120 E . S IM P ERL AND M . LUCZAK -R Ö S CH



existing resources such as thesauri and others. As for DILIGENT, the methodology includes, in

addition to a description of the phases, activities, tasks and associated roles, recommendations for

techniques and tools that could be used to assist the engineering team at various stages of the

process. The work is also useful for the detailed analysis of the requirements for automation

support for collaborative ontology engineering, and as such, as inspiration for development

roadmaps for ontology development environments (ODEs).

With respect to the roles defined within the process, we observe an average split of three

approaches, which address less technically skilled target groups, and other three that address both

technically savvy ontology engineers and laymen. Interestingly, in case of RapidOWL and

Ontology Maturing, this correlates with the complexity level of the technologies recommended to

be used, such as wikis and other Web 2.0 tools, which are rather lightweight. Both inspired by

the IBIS model, DILIGENT and HCOME propose an argumentation/discussion model to

facilitate consensus finding. Holsapple and Joshi’s methodology goes along with this and

recommends a Delphi-inspired approach. RapidOWL and Ontology Maturing assume that

Web 2.0 communication platforms will enable collaboration and exchange of ideas among the

participants, whereas Dogma-Mess recommends a knowledge negotiation phase in which domain

experts discuss the meaning of concepts in particular application contexts.

To summarize, there are several methodologies that provide a detailed description of the

collaborative engineering process according to which ontologies are developed and maintained

in decentralized scenarios. DILIGENT and HCOME are the most prominent examples therefor,

however, they are limited in terms of the available concrete case study descriptions, and,

meanwhile, also with respect to the associated technological support. In this respect, an approach

such as Ontology Maturing can be seen as complementary. RapidOWL offers an interesting list

of guidelines, which could be used to design collaborative ontology engineering methodologies,

and to better align existing ones to the more general principles of agile engineering and rapid

prototyping.

Most methodologies, despite obviously advancing the field of ontology engineering and

aligning it with developments such as Web 2.0, have found only modest adoption. Among

the factors that one can assume to have led to this somehow disappointing state are the lack of

user-friendly development environments, and the general historical limited uptake of semantic

technologies. Nevertheless, the key ontology engineering practices promoted by this research have

been leveraged by many ongoing projects, not last by those mentioned earlier in this article. This

speaks in favor of a mature engineering field, with stable and consolidated principles and process-

oriented components. To keep this advantage, collaborative ontology engineering will have to

adjust to the latest developments in the Semantic Web area, where we witness a rapid uptake of

‘open data’ principles for large data sets using structured vocabularies. In the light of these

developments, methodologies should investigate how these valuable amounts of publicly available

data can be used to bootstrap and speed-up the engineering process. This has to include a revision

of the processes and procedures currently in use, putting a stronger focus on data- and reuse-

driven ontology development in contrast to development from scratch, but also on improvements

of the optimal combination of manual and automatic ontology engineering activities. The avail-

ability of large amounts of semi-structured data and ontologies used to describe such data might

also be leveraged to define different forms of discussion and argumentation mechanisms, which

take into account the statistically grounded impact of an ontology or ontology fragment in

relation to a particular design decision.

4 Ontology engineering tools

The availability of automated techniques and tools supporting the application of a methodology is

acknowledged to play a crucial role in its adoption. Besides the functionality that is typically

exposed by traditional ODEs (e.g. editing, storage, management, alignment), the collaborative

scenario raises new challenges in terms of technological assistance: multi-user interfaces, integrated

Collaborative ontology engineering: a survey 121



communication channels and concurrency control, to name but a few (Tudorache et al., 2008).

Moreover, features related to ontology evolution, maintenance and versioning, which have been

investigated also in the context of centralized ontology engineering, become particularly important

in a decentralized scenario, with a higher number of participants in the engineering process

working on different variants of the same ontology.

In this section, we present examples of collaborative ontology engineering tools developed over

the last decade. Our primary focus is on those that support the process of building and main-

taining ontologies at the schema level, and integrate any technical mechanism for collaboration

and consensus finding. As such, tools such as TopBraid Composer17, one of the most advanced

and mature ODEs, are out of scope of this article, as they do not support collaborative work

beyond features such as shared access and version control. An interesting example is also the Hozo

ontology editor developed at the Osaka University (Kozaki et al., 2009). Hozo’s declared aim is to

allow different stakeholders to explore an ontology according to a multitude of viewpoints, with

the help of an automatically customized hierarchical structure (for instance, based on relationships

such as is-a and part-of) and a conceptual map. In this way, the participants in a joint ontology

engineering endeavor are provided with an environment by which a shared ontology is visualized

along a variety of perspectives, which, the authors claim, contributes to an enhanced collaboration

experience and a better understanding of an emergent knowledge structure. The tool has been

applied for developing and using ontologies in the medical domain. Collaborative platforms for

the creation and sharing of data expressed as RDF, sometimes as instances of a pre-defined

ontology, such as Freebase18, Semantic MediaWiki19, DBin20 and BOWiki (in the area of life

sciences)21 are as well out of the scope of our article, and deserve a dedicated survey.

4.1 Integrated development environments

Features for allowing multiple users to simultaneously access and edit the same ontology have

been part of ontology engineering environments since their very beginning. Ontolingua, for

instance, was one of the first to provide group access control and multi-user sessions (Farquhar

et al., 1997). Users are notified of the changes in the ontologies made by the other users via

hyperlinks that describe such changes in terms of basic operations—add, delete and modify.

WebOnto supports asynchronous and synchronous discussions on ontologies through the

Tadzebao system (Domingue, 1998). As part of such discussions, a user issues an argument or

comments on a particular argument through the placement of a poster visible to all other users.

In OntoEdit, emphasis is put on facilitating interaction among users during the requirements

analysis phase of the engineering process (Sure, 2003). With the OntoKick plug-in, the engineering

team collaboratively specifies the domain and goal of the ontology, design guidelines, relevant

resources and the means to extract structured knowledge out of these resources. A second

OntoEdit plug-in, Mind2Onto, focuses on integration of the extracted structures towards an initial

ontology. Collaboration is supported in the form of brainstorming sessions whose results are

recorded with the help of the plug-in. It integrates the mind map tool for graphical representations

of hierarchical structures. Moreover, it allows users to simultaneously refine the initial version of

the ontology into a formal ontology based on the specified requirements. To do so, the system

employs a locking and transaction protocol to ensure the model consistency and concurrency.

Such features are also covered by the KAON ontology management framework (Maedche et al.,

2003), which, among other things, defines a set of interfaces for accessing distributed ontologies,

and for consistency checking, change tracking or concurrency conflict detection.

17 http://www.topquadrant.com/products/TB_Composer.html
18 http://www.freebase.com/
19 http://semantic-mediawiki.org/
20 http://www.dbin.org/
21 www.bowiki.net/

122 E . S IM P ERL AND M . LUCZAK -R Ö S CH



With ontology-based technology, gaining more and more popularity outside research labs

industry-strength ontology engineering environments providing fully fledged collaboration

support have become available. The NeOn Toolkit and Collaborative Protégé are two of the most

prominent freely available examples. The NeOn Toolkit is developed as a set of Eclipse plug-ins

for engineering interconnected ontologies22. It offers standard features for ontology development,

including ontology editing, browsing and import/export (F-logic, OWL), as well as more advanced

plug-ins for visual modeling (OntoModel), ontology reuse (Watson, Oyster), ontology learning

(Text2Onto), ontology alignment (R2O, FOAM) and collaboration (WikiFactory, Cicero).

WikiFactory enables the automatic creation of semantic wiki-based Web sites, their dynamical

management at run time, and the synchronization between wiki content and OWL ontologies.

In this way, specific aspects of an ontology engineering process, most notably those that take

most benefit from an interactive environment, can be carried out in a wiki, and their results

transferred into an ontology. Complementary, Cicero allows asynchronous discussions on

ontology-engineering-related issues, and supports decision making. It is based on a simplified

version of DILIGENT (as discussed in Section 3.3).

Collaborative Protégé is an alternative version of the existing base Protégé system, and probably

the most comprehensive tool for collaborative ontology engineering currently available23.

It implements features for discussion and conflict resolution in order to facilitate interaction

between the participants. The system allows multiple users to edit the same ontology in multi-user

or standalone mode. In addition to common editing operations, the system enables annotation

with pre-defined annotation types for both ontological primitives (i.e. classes, properties, individuals)

and ontology changes (i.e. class creation/deletion/renaming). In this way, it allows the user

to document the ontology engineering process, in particular the rationale for taking specific

decisions, in a systematic way. Collaborative Protégé furthermore offers search and filter

functionalities for accessing such user annotations. It also provides discussion threads for users to

reply to comments and a chat channel for direct communication. Decisions follow two types of

voting mechanisms, a five-star and agree/disagree type of voting, implemented and represented as

annotation types in the system.

Wiki-based tools

Wikis have received increasing attention in the Semantic Web community over the last 5 years24.

This popularity is probably due to the user-friendliness of the core technology—a feature that is

not necessarily characteristic to semantic applications—and to their focus on collaborative and

community aspects. Existing semantic wikis primarily support the creation of semantic (instance)

data expressed in Semantic Web languages such as RDF(S) or OWL; the development of the

underlying ontologies is addressed—just as in the case of native ontology editors—mostly at

implementation level, while the collaborative nature of wikis is assumed to inherently ease the

consensus building within the engineering team. Exceptions from this are, for instance, the

argumentation tool Cicero, which was previously mentioned in the context of the NeOn Toolkit,

but also the tools that will be presented in the remainder of this section.

IkeWiki (Schaffert, 2006) is a semantic wiki system for collaborative ontology engineering.

It aims to formalize informal texts into formal ontologies using interactive user interfaces.

Users can annotate pages and links between pages semantically in RDFS and OWL. These

annotations are utilized for context-specific presentation of pages, advance querying and

consistency checking as well as summarizing conclusions. IkeWiki offers a WYSIWYG editor

using AJAX technology to communicate with the server and supports OWL-RDFS reasoning in

order to derive implicit information from the facts stored in the knowledge base. Similar features

22 http://www.neon-toolkit.org
23 http://protegewiki.stanford.edu/index.php/Collaborative_Protege
24 See, for instance, the series of workshops on semantic wiki topics at http://www.semwiki.org/

Collaborative ontology engineering: a survey 123



are provided by OntoWiki25, which also includes an alternative visualization for geographical data

in the form of Google Maps and calendars automatically generated from the semantic statements

stored in the system with the purpose to ease the understanding of semantic information for

non-experts (Auer et al., 2007).

Similarly to Cicero, the coefficientMakna (Tempich et al., 2007) system captures the ontology

engineering discussions as instances of the argumentation ontology based on DILIGENT.

It allows users to query data for monitoring the status of discussions, progress, and possible

conflicts as well as reconstruct the rationale behind certain decisions.

Usability is one of the main concerns of myOntology system (Siorpaes & Hepp, 2007). To allow

non-experts to participate in the process, myOntology focuses primarily on engineering light-

weight ontologies, and implements several visualization techniques such as tag clouds and topic

maps, and automatically builds links to Wikipedia and Flickr26 for documentation purposes.

4.2 Comparative analysis

In order to perform a comparative analysis of the tools we surveyed, we have defined a list of

features that are acknowledged to be particularly challenging from a technical or an organiza-

tional point of view in collaborative ontology engineering projects. In general, these features refer

either to the development and evolution of the ontology in a multi-user mode, or to the process

model according to which the participants interact. Tempich provides a similar features list, which

is, however, slightly biased towards the DILIGENT methodology (Tempich, 2006).

Key roles: As mentioned in Section 2, projects in this area adopt various role models specifying the

policies according to which stakeholders can contribute to an ontology. But, there is no

commonly agreed view on the distinction of a set of standard roles in collaborative ontology

engineering and thus it is traceable that the same fact holds for ontology engineering tools.

In most cases, the name for a role results from some tool-dependent duties or permissions and

not from those in the ontology development process. However, it is possible to draw the line

between those users who are allowed to perform changes to the ontology (ontology lead

editors), those who use the ontology, give feedback of any form and propose changes

(ontology contributors), and those who simply use an ontology (ontology users). Since the

distinction between the latter two roles is quite hard to capture, we additionally assume that

the ontology contributor performs an explicit feedback in a way that is accessible and usable

by the ontology development tool. That yields that the ontology editor may also name

reviewers, super users, moderators or administrators. For the ontology contributor, we also

find the names of contributors, providers and regular contributors while the ontology users is

named content consumer in some cases.

Ontology development and evolution: The main technical challenges in collaborative ontology

engineering are related to multi-user access, in particular at the knowledge level, and version

management. The shared ontology evolves to accommodate the requirements of the various

stakeholders and new versions are released as consensus among these stakeholders is

achieved. At the same time, localized variants of the ontology at a particular site will be in

use. Consequently, tools have to provide functionality for managing several versions of an

ontology in order to allow participants to work with the version that best fits theirs needs and

expectations, as well as the usual concurrency control for handling multiple edits on a given

ontology. One can differentiate between two collaborative editing modes: synchronous and

asynchronous. In a synchronous mode, multiple users simultaneously edit the same ontology

with changes taking effect immediately. An asynchronous mode allows users to modify an

25 http://aksw.org/Projects/OntoWiki
26 http://www.flickr.com/

124 E . S IM P ERL AND M . LUCZAK -R Ö S CH



ontology or a partial ontology, and then submitting their changes to the main version.

In order to ensure the consistency of the ontological content during the decentralized

development process, it is important that tools implement consistency checking mechanisms,

based on a built-in or externally accessible inference engine.

In addition to these specific features, collaborative ontology development benefits from the

availability of all kinds of features that facilitate the interaction with ontological content—be

that searching, browsing, editing or ontology alignment—in particular for non-expert users.

The most important feature in this respect is probably ontology visualization, which provides

techniques by which users can easily get a better insight about the content and structure of an

ontology. A hierarchy of concepts is the most widely adopted visualization technique. It

represents the taxonomical backbone of the ontology through multiple tree views with

expanding and contracting levels. A 2D graph visualization may provide more effective

presentation in graphical views, illustrating an ontology with many features such as panning

and zooming. Another feature is related to the conformance to standard representation

formats that enables the development of an ontology in a multitude of technical settings, thus

the import and export formats are important.

Collaboration: A basic component of a decentralized ontology engineering approach are the

communication channels. Where communication is concerned, integrated communication

channels as well as documentation support—for instance, in the form of annotations of

ontological primitives—enable effective collaboration within geographically distributed

teams. In addition, consensus-building techniques should be put in place in order to structure

the discussions and mediate potential conflicts.

Usage: For a proper understanding and a valuable conclusion about the scalable and reliable

function of any tool, its usage in well-described real-world scenarios is crucial. This feature

does not only provide an insight on how well-developed and -maintained a tool is in general,

but potentially also about specific application areas where a tool has been proved and tested

exhaustively and could represent a quasi standard.

Tables 3–11 below elaborate on the features offered by each of the aforementioned colla-

borative ontology engineering tools. Our analysis focuses on those tools that are still under active

development and maintenance, and that can be effectively used in ontology engineering projects at

present. These tools are representative for the state of the art in this area; they can be divided into

two main categories—integrated development environments (IDEs) and wiki-based tools.

In the second category, we observe differences in the degree to which the particulars of

formal semantic representations are hidden from the user with the help of abstract conceptual

models and visualization techniques. Both aspects are crucial for ensuring a wide usability of the

corresponding system, and indirectly, for the adoption of ontology engineering practices across

communities of practice. Tools such as myOntology and OntoWiki, but also SemanticMediaWiki

that was not considered in this work due to its slightly different focus, offer interesting features

in this respect. Another differentiating aspect is related to the expressiveness of the ontologies

supported by wiki-based platforms, as most of them trade richer ontology engineering features

for ease-of-use and a low barrier of entry. In the choice of the ontology engineering technology

optimally matching the needs of a specific project setting one should take into account these

issues, and be aware of the fact that the development of an expressive, highly axiomatized

ontology will require the use of a traditional (collaborative) ontology editor, possibly on top

of a wiki-based system that facilitates knowledge sharing and exchange in an informal manner,

but does not support the formalization of complex conceptualizations going beyond classes

and relationships between them. myOntology and IkeWiki provide a feasible mixture of the

two; within myOntology, for instance, it is possible to develop ontologies in terms of classes,

attributes and relationships, to document these entities using various means and to align

between different ontologies.

Collaborative ontology engineering: a survey 125



Table 3 Shared access and concurrent working

NeOn Toolkit Local working copy from a distributed version repository and conflict resolution

mechanism for concurrently committed changes

Protégé Multiple clients can edit simultaneously the same ontology hosted on a Protégé server

(concurrent mode), changes are immediately visible to other users (concurrent mode),

multiple users access the same ontology in succession stored on a shared network drive

(consecutive mode)

myOntology Wiki-based concurrency control at the page level

coefficientMakna Wiki-based access and editing to each resource individually, wiki-based concurrency

control at the page level

Ikewiki Wiki-based access and editing to each resource individually, wiki-based concurrency

control at the page level

OntoWiki Wiki-based access and editing as well as inline and view-based editing, wiki-based

concurrency control at the page level

Table 4 Ontology versioning

Neon Toolkit Distributed version control system, OWL diff plug-in

Protégé Repository of versions, check-in/check-out mechanisms, version comparison (diff)

myOntology Wiki-like version control of all pages, versioning of ontologies calculated from the

consensus of an engineering group, direct deployment of all consensual ontologies for

use by other people and applications

coefficientMakna Wiki-like version control of all pages, versioning of ontologies calculated from the

consensus of an engineering group, direct deployment of all consensual ontologies for

use by other people and applications

Ikewiki Wiki-like version control of all pages, diff, and rollback, direct deployment of all

consensual ontologies for use by other people and applications

OntoWiki Wiki-like version control of all pages, diff, and rollback, direct deployment of all

consensual ontologies for use by other people and applications

Table 5 Visualization

Neon Toolkit Concept and property trees, alternative visualizations (e.g. graph) via plug-ins

Protégé Concept and property trees, alternative visualizations (e.g. graph) via plug-ins

myOntology Tag cloud, icons for specific primitives, info box

coefficientMakna Wiki pages for ontology resources with specific icons per ontology primitives, infobox

with collected information about the semantics

Ikewiki Infoboxes as an overview over incoming and outgoing RDF edge, context-dependent

visualizations

OntoWiki Context-dependent views (e.g. maps or calendars) for the visualization of ontological

data, wiki-like pages

Table 6 Consistency checking

Neon Toolkit Inconsistency handler plug-in, RaDON plug-in for inconsistency detection within

networks of ontologies

Protégé FaCT11 reasoning engine, Pellet reasoning engine, different reasoning engines as plug-in

myOntology Manual, community-driven

coefficientMakna JENA reasoning engine

IkeWiki JENA reasoning engine

OntoWiki DL-Learner plug-in for OWL reasoning and consistency checking

126 E . S IM P ERL AND M . LUCZAK -R Ö S CH



Shared access and version control is usually offered as an integral feature of the underlying wiki

software, with tools such as myOntology extending this functionality in order to be able to support

different role models and access policies. Consensus-building is covered by the coefficientMakna

wiki, which realizes structured argumentation flows (conforming the DILIGENT argumentation

ontology) related to design issues and ontological primitives. The import and export formats

supported by the IDEs are to a large extent common and ranges from RDF(s), OWL, UML, to

XML. These tools also implement specific solutions for shared access and version control, which

differ in detail. The application of these tools is, in contrast to the wiki-based approaches, intended

for distributed, but defined group of stakeholders that pursue an ontology engineering endeavor in

Table 7 Import/export format

Neon Toolkit OWL, F-Logic, EMF, UML, XML

Protégé OWL, RDF, OBO, KRSS2, UML, XML

myOntology OWL, RDF

coefficientMakna OWL, RDF

IkeWiki OWL, RDF, Wiki Interchange Format

OntoWiki OWL, RDF

Table 8 Roles management

NeOn Toolkit Contributors (Cicero)

Protégé Flexible model of roles formalized as an ontology

myOntology Content consumers, content providers, content reviewers, super users

coefficientMakna Moderator, contributors

IkeWiki Regular contributors, administrators

OntoWiki Regular contributors

Table 9 Collaborative communication

NeOn Toolkit CICERO wiki plug-in supports discussions conforming the DILIGENT argumentation

framework

Protégé Collaborative annotations of both ontology components and ontology changes

myOntology Discussion page

coefficientMakna Discussion pages for the argumentation with reference to design issues and

implementation ideas with specific icons per argumentation type

IkeWiki Threaded discussions for each page

OntoWiki No explicit communication support

Table 10 Consensus-building techniques

NeOn Toolkit CICERO wiki plug-in allows the tracking of the design rationale and detection of

inconsistencies in argumentations

Protégé No automatic consensus building but annotations can automatically evaluated

myOntology No consensus building techniques

coefficientMakna Discussions conforming the DILIGENT argumentation ontology, decisions incorporate

the semantics of the argumentation process automatically

IkeWiki Threaded discussions without any computational support

OntoWiki No consensus building techniques

Collaborative ontology engineering: a survey 127



a particular domain of interest—therefore the life sciences domain offers many examples (see also

Section 2). Collaborative communication channels and consensus building techniques are,

however, still very important. Specific models are sometimes recommended by engineering

methodology—for instance, DILIGENT emphasizes the importance of an editorial board, while

the approach of Holsapple and Joshi uses a Delphi-driven expert panel to steer the con-

ceptualization process. Protégé implements annotation functionality to enable user comments with

reference to classes, properties and instances, as well as to changes performed to the ontology.

Annotations can be browsed and filtered, but an automated calculation of the degree of consensus

within a team with respect to a particular issue is not possible. This feature is supported by the

NeOn Toolkit in combination with the Cicero wiki plug-in. In this way, discussions can be

structured and recorded according to the DILIGENT argumentation ontology in a similar fashion

as it is provided by coefficientMakna. Consistency checking is typically supported by IDEs, but

also by some of the surveyed wikis, though the links between potential inconsistencies and the

argumentation and discussion items could be improved.

5 Conclusions and outlook

In this article, we surveyed some of the most important state-of-the-art methodologies and tools

for collaborative ontology engineering. We considered six methodologies that have emerged in the

last years in the ontology engineering research community. The methodologies were selected based

on their impact in the research community and beyond, as reflected by the adoption of the

corresponding approaches by external organizations and initiatives, and by the quality of the

related publications. Similar criteria were used for the choice of tools, in addition to their

development status. Our assessment was based on a survey of the literature and documentation

available, and on our own experience of many years in collaborative ontology engineering

projects. All tools have undergone tests of their ground functionality carried out in a hands-on lab

setting. To allow for a systematic comparative analysis, we have identified a number of criteria

that are acknowledged to be essential in collaborative ontology engineering scenarios. Each

approach was briefly described in terms of these criteria and a comparison was performed to

identify their strengths and weaknesses.

Our study revealed that collaboration ontology engineering is a maturing, but active research

field, in particular in terms of technological development. While there are a series of elaborated

methodologies, none of them has found full adoption in real-world ontology-related projects,

though there is evidence from case studies that many of their best practices and recommendations

have proven useful. Tool support is available, both in forms of ODEs with collaborative features,

Table 11 Usage

NeOn Toolkit Production of a network of populated fisheries ontologies for a ontology-driven fish

stock depletion assessment system, development of ontologies for pharmaceutical case

studies, ontology development for a semantic nomenclature, ontology development for

pharma case studies invoice management

Protégé Tool for CommonKADS, ontology modeling in a large number of projects and a variety

of domains

myOntology Collaborative ontology development for Semantic Web-based e-commerce,

collaborative ontology creation for knowledge management

coefficientMakna Students ontology engineering project within a lecture

IkeWiki Internal knowledge base at a research group, store tutorials of an EU project,

conference wiki, prototype for representing mathematical knowledge, prototype of the

QVIZ platform (archive platform)

OntoWiki System for intra-corporate semantic collaboration, base technology for a collaborative

portal for tourism related information, ontological collaboration platform, intranet

knowledge base

128 E . S IM P ERL AND M . LUCZAK -R Ö S CH



and as customized wiki platforms that can be used also by non-experts at the cost of reduced

knowledge representation expressivity. In order to further advance the state-of-the-art in the

field, there is a need for additional case studies; such case studies should offer insights about

the types of features that are actually in use and give recommendations about how to achieve

a better integration between expert and wiki-based tools. A qualitative, rather than merely

incremental improvement could be enabled by leveraging the Web of data as a valuable input

for the creation of widely accepted, shared ontologies. The means to achieve this vary from

developing methodologies that pay proper account to offering a combination of human and

computational intelligence, to tools providing access and using Linked Open Data during design

and maintenance.

Collaborative approaches have found wide adoption in particular vertical domains, in which a

community of interest, possibly much more limited than originally expected, uses methodologies

such as DILIGENT and tools such as Collaborative Protégé to develop and maintain valuable

ontologies. In this context wiki-based technology is still far from reaching its full potential;

however, if we consider the success this technology has experienced in other scenarios, the focus

should be less on using this technology to conceptualize and formalize knowledge in form of

ontologies and more in referencing existing ontologies and populating them with real instances.

Numerous initiatives in domains such as life sciences, agriculture or eCommerce demonstrate that

ontology engineering practices and development environments are usable and useful, at least when it

comes to projects with a clearly defined scope and purpose, operated by a decentralized group of

stakeholders. In contrast, the breakthrough toward fully open, community-driven initiatives has still

not happened, despite the availability of several wiki-based ontology engineering platforms with

interesting functionality and high usability. These platforms enjoy great popularity at the creation of

structured, semantically represented content, a scenario that shows many similarities with ontology

population. Freebase and Semantic Media Wiki are two of the most prominent examples thereof.

We understand this state-of-affairs as an indicator of the real nature of the collaborative ontology

engineering, which seem to have been ignored by the wiki-driven research conducted in the

field in the last couple of years. A convincing use case for Web-scale ontology engineering is still

missing—despite supportive initiatives such as VoCamps.

A last aspect that deserves particular attention is related to consensus building techniques.

Though it seems that the R&D community around ontology engineering shares the same

understanding of the features that need to be supported (IBIS model, structured discussions,

logging of modeling decisions and rationale thereof, communication channels), there is no

evidence how this rich range of features are used in ongoing, successful projects. Detailed case

studies and experience reports would be helpful for defining a research roadmap for collaborative

ontology engineering for the next years. Several recent technology trends could have an impact on

the future directions of research and development in the field; among others, Linked Open Data.

As more and more (RDF) data are published online, the need for shared ontologies describing

the meaning and structure of this data will become essential for the effective usage of the data.

The collaborative ontology engineering community will have to adjust its methods and techniques

to the particularities of this new setting, and leverage the huge volume of data on the Web as a

valuable input for the machine-supported creation of joint ontologies. Such methods and techniques

will have to put emphasis on the smooth integration between human and computational intelligence,

using Web-based data as the primary instrument for developing new shared ontologies, be that

by extracting structured knowledge from these sources, or by combining available ontologies.

This has several consequences. Existing methodologies will have to show commitment to the

transition from development from scratch to wide-scale reuse of an arbitrarily high number

of ontologies. They will have to shift their focus from a tool-assisted, but primarily manual

engineering process to a data-driven approach in which human involvement is optimally leveraged

for the resolution of those issues that can not be feasibly automatized. Finally, collaboration

and consensus-building procedures, and associated tool support will have to be adapted to reflect

these changes.

Collaborative ontology engineering: a survey 129



References

Auer, S. & Herre, H. 2006. RapidOWL – An agile knowledge engineering methodology. In Ershov Memorial

Conference, Virbitskaite, I. & Voronkov A. (eds). Lecture Notes in Computer Science 4378, 424–430.

Springer.

Auer, S. & Pieterse, B. 2005. ‘‘Vernetzte Kirche’’: Building a Semantic Web. In Proceedings of the 1st

International ISWC Workshop on Semantic Web Case Studies and Best Practices for eBusiness SWCASE

2005, Dublin.

Auer, S., Tramp, S., Lehmann, J. & Riechert, T. 2007. OntoWiki: a tool for social, semantic collaboration. In

Proceedings of the Workshop on Social and Collaborative Construction of Structured Knowledge CKC2007

at the 16th International World Wide Web Conference WWW2007, Edinburgh.

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The Semantic Web. Scientific American 284(5), 34–43.

Braun, S., Kunzmann, C. & Schmidt, A. 2010. People tagging & ontology maturing: towards collaborative

competence management. In From CSCW to Web2.0: European Developments in Collaborative Design

Selected Papers from COOP08, Computer Supported Cooperative Work, Randall, D. & Salembier, P. (eds).

Springer.

Braun, S., Schmidt, A., Walter, A., Nagypal, G. & Zacharias, V. 2007. Ontology maturing: a collaborative

Web 2.0 approach to ontology engineering. In Proceedings of the Workshop on Social and Collaborative

Construction of Structured Knowledge at the 16th International World Wide Web Conference (WWW 2007),

Edinburgh.

Braun, S., Schmidt, A., Walter, A. & Zacharias, V. 2008. Using the ontology maturing process model for

searching, managing and retrieving resources with semantic technologies. In OnTheMove Federated

Conferences 2008 (DAO, COOP, GADA, ODBASE), Monterrey, Mexico. Lecture Notes in Computer

Science, 1568–1578. Springer.

Braun, S. & Zacharias, V. 2010. SOBOLEO – Editor and Repository for Living Ontologies. In Proceedings of

the 1st International Workshop on Ontology Repository and Editors for the Semantic Work ORES2010 at

the Extended Semantic Web Conference ESWC2010, Hersonissos, Greece.

Brickley, D. & Guha, R. V. 2004. ‘RDF Vocabulary Description Language 1.0: RDF Schema’.

Retrieved 4 April 2013 from http://www.w3.org/TR/rdf-schema/

Casanovas, P., Casellas, N., Tempich, C., Vrandecić, D. & Benjamins, R. 2007. ‘Opjk and diligent: Ontology

modeling in a distributed environment’. Artificial Intelligence Law 15, 171–186.

De Leenheer, P., Christiaens, S. & Meersman, R. 2009. Business semantics management: a case study for

competency-centric HRM. Journal of Computers in Industry: Special Issue about Semantic Web Computing

in Industry 61(8), 760–775.

De Moor, A., De Leenheer, P. & Meersmann, R. 2006. DOGMA-MESS: a meaning evolution support

system for interorganizational ontology engineering. In Conceptual Structures: Inspiration and Application,

Schärfe, H., Hitzler, P. & Øhrstrøm, P. (eds). Lecture Notes in Computer Science 4068, 189–202. Springer.

Dellschaft, K., Engelbrecht, H., Barreto, J. M., Rutenbeck, S. & Staab, S. 2008. Cicero: tracking design

rationale in collaborative ontology engineering. In Proceedings of the ESWC 2008 Demo Session,

Teneriffe, Spain.

Domingue, J. 1998. Tadzebao and WebOnto: discussing, browsing, and editing ontologies on the Web.

In Eleventh Workshop on Knowledge Acquisition, Modeling and Management, 18–23 April 1998, Banff,

Alberta, Canada.

Dunnette, M. D., Campbell, J. D. & Jaastad, K. 1963. The effect of group participation on brainstorming

effectiveness for two industrial samples. Journal of Applied Psychology 47, 30–37.

Farquhar, A., Fikes, R. & Rice, J. 1997. The ontolingua server: a tool for collaborative ontology construction.

Fensel, D. 2001. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer.

Fernández-López, M. & Gómez-Pérez, A. 2002. Overview and analysis of methodologies for building

ontologies. The Knowledge Engineering Review 17(2), 129–156.

Fernandez-Lopez, M., Gomez-Perez, A. & Juristo, N. 1997. Methontology: from ontological art towards

ontological engineering. In AAAI97 Spring Symposium Series on Ontological Engineering, Stanford, USA.

Fox, M. S. & Gruninger, M. 1998. Enterprise modeling. AI Magazine 109–121.

Gomez-Perez, A., Fernandez-Lopez, M. & Corcho, O. 2004. Ontological Engineering, Advanced Information

and Knowledge Processing. Springer.

Guarino, N. 1998. Formal Ontology and Information Systems. IOS Press, 3–15.

Hepp, M. 2007. Possible ontologies: how reality constrains the development of relevant ontologies. IEEE

Internet Computing 11(7), 96–102.

Holsapple, C. W. & Joshi, K. D. 2002a. A collaborative approach to ontology design. Communications of the

ACM 45(2), 42–47.

Holsapple, C. W. & Joshi, K. D. 2002b. Knowledge manipulation activities: results of a Delphi study.

Information and Management 39(6), 477–490.

130 E . S IM P ERL AND M . LUCZAK -R Ö S CH



IEEE Computer Society 1990. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.121990.

Jarrar, M. & Meersman, R. 2009. Ontology engineering – the DOGMA approach. In Advances in Web

Semantics I, Dillon, T. S., Chang, E., Meersman, R. & Sycara, K. (eds). Springer-Verlag, 7–34.

Knublauch, H. 2002. An Agile Development Methodology for Knowledge-Based Systems Including a Java

Framework for Knowledge Modeling and Appropriate Tool Support. PhD thesis, Universitt Ulm. Fakultät

für Informatik.

Kotis, K. 2008. On supporting hcome-3o ontology argumentation using semantic wiki technology. In

OTM ’08: Proceedings of the OTM Confederated International Workshops and Posters on On the Move to

Meaningful Internet Systems, 193–199, Madeira, Portugal.

Kotis, K. & Vouros, G. 2005. Human-centered ontology engineering: the hcome methodology. Knowledge

and Information Systems 10(1), 109–131.

Kozaki, K., Hirota, T., Kou, H., Ohta, M. & Mizoguchi, R. 2009. Viewpoint management for multi-

perspective issues of ontologies. Proceedings of the Poster and Demo Track of the International Semantic

Web Conference ISWC 2009, Washington DC, USA.

Kunz, W. & Rittel, H. W. J. 1970. Issues as Elements of Information Systems. Working Paper 131, Institute

of Urban and Regional Development, University of California.

Linstone, H. A. & Turoff, M. 1975. The Delphi Method: Techniques and Applications. Addison-Wesley

Educational Publishers Inc.

Luczak-Rösch, M., Coskun, G., Paschke, A., Rothe, M. & Tolksdorf, R. 2010. Svont – version control of owl

ontologies on the concept level. In Proceedings of the 5th International Workshop on Applications of

Semantic Technologies (AST 2010), part of INFORMATIK 2010. Lecture Notes in Informatics, Gesell-

schaft für Informatik 176, 79–84.

Maedche, A., Motik, B. & Stojanovic, L. 2003. Managing multiple and distributed ontologies on the semantic

web. The VLDB Journal 12(4), 286–302.

Mann, W. C. & Thompson, S. A. 1987. Rhetorical structure theory: a theory of text organization. In The

Structure of Discourse, Polanyi, L. (ed.). Ablex Publishing Corp, 85–96.

Neches, R., Fikes, R. E., Finin, T., Gruber, T. R., Senator, T. & Swartout, W. R. 1991. Enabling technology

for knowledge sharing. AI Magazine 12(3), 35–56.

Noy, N. &Musen, M. A. 2007. Ontology versioning in an antology management framework. IEEE Intelligent

System 19, 6–13.

Patel-Schneider, P. F., Hayes, P. & Horrocks, I. 2004. Owl web ontology language semantics and abstract

syntax. Retrieved 4 April 2013 from http://www.w3.org/TR/owl-absyn/

Schaffert, S. 2006. Ikewiki: a semantic wiki for collaborative knowledge management.

Siorpaes, K. & Hepp, M. 2007. myOntology: the marriage of collective intelligence and ontology engineering.

In Proceedings of the Workshop Bridging the Gap between Semantic Web and Web 2.0 at the ESWC 2007,

Innsbruck, Austria.

Spyns, P., Tang, Y. & Meersman, R. 2007. A Model Theory Inspired Collaborative Ontology Engineering

Methodology. Technical report, VUB StarLab.

Sure, Y. 2002. On-to-knowledge: ontology based knowledge management tools and their application.

Künstliche Intelligenz 1, 35–37.

Sure, Y. 2003. Methodology, Tools and Case Studies for Ontology Based Knowledge Management. PhD thesis,

University of Karlsruhe.

Swartout, B., Patil, R., Knight, K. & Russ, T. 1996. Toward distributed use of large-scale ontologies.

In Proceedings of the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.

Tempich, C. 2006. Ontology Engineering and Routing in Distributed Knowledge Management Scenarios.

PhD thesis, University of Karlsruhe.

Tempich, C., Simperl, E., Luczak, M., Studer, R. & Pinto, H. S. 2007. Argumentation-based ontology

engineering. IEEE Intelligent Systems 22(6), 52–59.

Tudorache, T., Noy, N. F., Tu, S. & Musen, M. A. 2008. Supporting collaborative ontology development in

Protégé. In ISWC’08: Proceedings of the 7th International Conference on The Semantic Web, Sheth, A. P.,

Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. & Thirunarayan, K. (eds). Springer, 17–32.

Uschold, M. & Grueninger, M. 1996. Ontologies: Principles, methods, and applications. Knowledge

Engineering Review 11(2), 93–155.

Uschold, M. & King, M. 1995. Towards a methodology for building ontologies.

Vrandecic, D., Pinto, S., Tempich, C. & Sure, Y. 2005. The diligent knowledge process. Journal of Knowledge

Management 9(5), 85–96.

Collaborative ontology engineering: a survey 131


