7 research outputs found

    Strong Induction in Hardware Model Checking

    Get PDF
    Symbolic Model checking is a widely used technique for automated verification of both hardware and software systems. Unbounded SAT-based Symbolic Model Checking (SMC) algorithms are very popular in hardware verification. The principle of strong induction is one of the first techniques for SMC. While elegant and simple to apply, properties as such can rarely be proven using strong induction and when they can be strengthened, there is no effective strategy to guess the depth of induction. It has been mostly displaced by techniques that compute inductive strengthenings based on interpolation and property directed reachability (PDR). In this thesis, we prove that strong induction is more concise than induction. We then present kAvy, an SMC algorithm that effectively uses strong induction to guide interpolation and PDR-style incremental inductive invariant construction. Unlike pure strong induction, kAvy uses PDR-style generalization to compute and strengthen an inductive trace. Unlike pure PDR, kAvy uses relative strong induction to construct an inductive invariant. The depth of induction is adjusted dynamically by minimizing a proof of unsatisfiability. We have implemented kAvy within the Avy Model Checker and evaluated it on HWMCC instances. Our results show that kAvy is more effective than both Avy and PDR, and that using strong induction leads to faster running time and solving more instances. Further, on a class of benchmarks, called shift, kAvy is orders of magnitude faster than Avy, PDR and pure strong induction

    Model Checking Delay Differential Equations Against Metric Interval Temporal Logic

    Get PDF
    Delay differential equations (DDEs) play an important role in the modeling of dynamic processes. Delays arise in contemporary control schemes like networked distributed control and can cause deterioration of control performance, invalidating both stability and safety properties. This induces an interest in DDE especially in the area of modeling and verification of embedded control. In this article, we present an approach aiming at automatic safety verification of a simple class of DDEs against requirements expressed in a linear-time temporal logic. As requirements specification language, we exploit metric interval temporal logic (MITL) with a continuous-time semantics evaluating signals over metric spaces. We employ an over-approximation method based on interval Taylor series to enclose the solution of the DDE and thereby reduce the continuous-time verification problem for MITL formulae to a discrete-time problem over sequences of Taylor coefficients. We encode sufficient conditions for satisfaction as SMT formulae over polynomial arithmetic and use the iSAT3 SMT solver in its bounded model-checking mode for discharging the resulting proof obligations, thus proving satisfaction of time-bounded MITL specifications by the trajectories induced by a DDE. In contrast to our preliminary work in [44], we can verify arbitrary time-bounded MITL formulae, including nesting of modalities, rather than just invariance properties

    Timed Refinement for Verification of Real-Time Object Code Programs

    Get PDF
    Real-time systems such as medical devices, surgical robots, and microprocessors are safety- critical applications that have hard timing constraint. The correctness of real-time systems is important as the failure may result in severe consequences such as loss of money, time and human life. These real-time systems have software to control their behavior. Typically, these software have source code which is converted to object code and then executed in safety-critical embedded devices. Therefore, it is important to ensure that both source code and object code are error-free. When dealing with safety-critical systems, formal verification techniques have laid the foundation for ensuring software correctness. Refinement based technique in formal verification can be used for the verification of real- time interrupt-driven object code. This dissertation presents an automated tool that verifies the functional and timing correctness of real-time interrupt-driven object code programs. The tool has been developed in three stages. In the first stage, a novel timed refinement procedure that checks for timing properties has been developed and applied on six case studies. The required model and an abstraction technique were generated manually. The results indicate that the proposed abstraction technique reduces the size of the implementation model by at least four orders of magnitude. In the second stage, the proposed abstraction technique has been automated. This technique has been applied to thirty different case studies. The results indicate that the automated abstraction technique can easily reduce the model size, which would in turn significantly reduce the verification time. In the final stage, two new automated algorithms are proposed which would check the functional properties through safety and liveness. These algorithms were applied to the same thirty case studies. The results indicate that the functional verification can be performed in less than a second for the reduced model. The benefits of automating the verification process for real-time interrupt-driven object code include: 1) the overall size of the implementation model has reduced significantly; 2) the verification is within a reasonable time; 3) can be applied multiple times in the system development process.Several parts of this dissertation was funded by a grant from the United States Government and the generous support of the American people through the United States Department of State and the United States Agency for International Development (USAID) under the Pakistan ? U.S. Science & Technology Cooperation Program. The contents do not necessarily reflect the views of the United States Government

    Timed Refinement for Verification of Real-Time Object Code Programs

    Get PDF
    Real-time systems such as medical devices, surgical robots, and microprocessors are safety- critical applications that have hard timing constraint. The correctness of real-time systems is important as the failure may result in severe consequences such as loss of money, time and human life. These real-time systems have software to control their behavior. Typically, these software have source code which is converted to object code and then executed in safety-critical embedded devices. Therefore, it is important to ensure that both source code and object code are error-free. When dealing with safety-critical systems, formal verification techniques have laid the foundation for ensuring software correctness. Refinement based technique in formal verification can be used for the verification of real- time interrupt-driven object code. This dissertation presents an automated tool that verifies the functional and timing correctness of real-time interrupt-driven object code programs. The tool has been developed in three stages. In the first stage, a novel timed refinement procedure that checks for timing properties has been developed and applied on six case studies. The required model and an abstraction technique were generated manually. The results indicate that the proposed abstraction technique reduces the size of the implementation model by at least four orders of magnitude. In the second stage, the proposed abstraction technique has been automated. This technique has been applied to thirty different case studies. The results indicate that the automated abstraction technique can easily reduce the model size, which would in turn significantly reduce the verification time. In the final stage, two new automated algorithms are proposed which would check the functional properties through safety and liveness. These algorithms were applied to the same thirty case studies. The results indicate that the functional verification can be performed in less than a second for the reduced model. The benefits of automating the verification process for real-time interrupt-driven object code include: 1) the overall size of the implementation model has reduced significantly; 2) the verification is within a reasonable time; 3) can be applied multiple times in the system development process.Several parts of this dissertation was funded by a grant from the United States Government and the generous support of the American people through the United States Department of State and the United States Agency for International Development (USAID) under the Pakistan ? U.S. Science & Technology Cooperation Program. The contents do not necessarily reflect the views of the United States Government

    Theory and Implementation of Software Bounded Model Checking

    Get PDF
    This thesis provides a detailed overview of the theory of software bounded model checking (SBMC) and its implementation in LLBMC, which is based on the LLVM compiler framework. The whole process from a C program to an SMT formula is described in detail. Furthermore, a theory of dynamic memory allocation is introduced which allows modelling C\u27s memory model with high precision. Finally, it is shown that LLBMC\u27s approach to software bounded model checking performs well compared to competing tools
    corecore