
Theory and Implementation of
Software Bounded Model Checking

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurswissenschaften

der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Florian Merz
aus Herford

Tag der mündlichen Prüfung: 29.01.2016

Erster Gutachter: Dr. Carsten Sinz

Zweiter Gutachter: Prof. Dr. Bernhard Beckert

Externer Gutachter: Prof. Dr. Armin Biere

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197517175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

i

Acknowledgments

This work would not have been possible without the invaluable scientific guidance
and support of my supervisor Dr. Carsten Sinz.

I’m grateful to Prof. Dr. Armin Biere and Prof. Dr. Bernhard Beckert for agreeing
to review my dissertation on such short notice. I’m also thankful to Armin Biere for
inviting me to Linz for a research visit in 2010. The visit was tremendously helpful,
as I learned a lot from him. Besides, the train ride to Linz sparked the idea for my
first proper scientific contribution.

Furthermore, I wish to say thank you to Prof. Dr. Ralf Reussner and Prof. Dr.
Klemens Böhm for agreeing to act as examiners for my thesis defense.

My colleague, Dr. Stephan Falke, greatly contributed to LLBMC’s implementation
as well as its participation in the International Software Verification Competition.
My diploma thesis at Robert Bosch GmbH in 2008/2009 sparked my interest in this
area of research. This would not have happened without my supervisors back then
Dr. Hendrik Post and Thomas Gorges.

I’d also like to say thank my current and former colleagues at the KIT Tomáš
Balyo, Lilian Beckert, Dr. Thorsten Bormer, Dr. Christian Engel, Dr. David Faragó,
Dr. Aboubakr Achraf El Ghazi, Dr. Christoph Gladisch, Dr. Daniel Grahl, Sarah
Grebing, Simon Greiner, Mihai Herda, Markus Iser, Dr. Vladimir Klebanov, Michael
Kristen, Felix Kutzner, Dr. Tianhai Liu, Simone Meinhart, Dr. Mattias Ulbrich,
Reimo Schaupp, Dr. Christoph Scheben, Alexander Weigl, Dr. Benjamin Weiß, and
Dr. Frank Werner, for countless interesting discussions and conversations, for their
support, and for numerous wonderfully distracting lunches.

I owe my gratitude to my parents for their love and support. Last but not least, I’d
like thank my wife Christina, for proof reading this thesis, but far more importantly
for being by my side throughout these years. Without you this would not have been
possible. Thank you.

Florian Merz

ii

iii

Zusammenfassung (German Summary)

In den vergangenen Jahrzehnten hat die Bedeutung von Software stark zugenom-
men, so dass sie inzwischen beinahe allgegenwärtig geworden ist. Einen großen Anteil
daran hat Software in sogenannten eingebetteten Systemen. Dabei handelt es sich
um Computer, die lediglich einen Teil eines größeren technischen Systems darstel-
len. Gerade in Autos, Flugzeugen, Zügen und medizinischen Geräten übernehmen
eingebettete Systeme oft auch eine steuernde Funktion. Dies wird am Beispiel der
Fahrerassistenzsysteme deutlich, die als Einparkhilfen oder Abstands- und Spurhal-
teassistenten den Fahrer “mit-steuernd” unterstützen. Da Fehler in solchen Systemen
meist großen finanziellen Schaden anrichten können und sogar teils eine Gefahr für
Leib und Leben darstellen, gelten diese Systeme als sicherheitskritisch.

Die Entwicklung fehlerfreier sicherheitskritischer Systeme hat sich als enorme Her-
ausforderung herausgestellt. Ein Beispiel hierfür ist der Erstflug der Ariane Rakete
(Ariane Flug 501), der in der Explosion der 500 Millionen Euro teuren Rakete 37 Se-
kunden nach deren Abheben endete. Ursache hierfür war ein sogenannter Laufzeit-
fehler, der in der Qualitätssicherung nicht entdeckt wurde. Das Beispiel zeigt, dass
klassische Methoden der Qualitätssicherung, insbesondere Software-Tests und leicht-
gewichtige statische Analyse, nicht die erforderliche Software-Qualität sicherstellen
können. Dies ist wenig überraschend, können Tests in der Realität doch niemals
eine hundertprozentige Abdeckung erzielen und daher lediglich die Anwesenheit
von Fehlern anzeigen (Falsifikation), nicht jedoch deren Abwesenheit (Verifikation).
Leichtgewichtige statische Analyseverfahren wiederum erkennen verdächtige Muster
im Programmcode und können so auf Fehler hinweisen, bieten jedoch auch keine Ve-
rifikation. Die Software nachfolgender Generationen der Ariane Rakete wurden daher
mit schwergewichtigen, verifizierenden statischen Analyseverfahren auf bestimmte
Fehlerklassen geprüft.

Schwergewichtigere statische Analyseverfahren basieren meist auf formalen, mathe-
matischen Methoden. Neben der Abstrakten Interpretation, welche bei der Entwick-
lung der Ariane Rakete zum Einsatz kam, gibt es hier zwei große Gruppen, die zu
unterscheiden sind. Dies ist zum einen die deduktive Verifikation, bei der der ma-
thematische Beweis der Korrektheit eines Programms im Mittelpunkt steht. Der
Einsatz dieser Methoden stellt oft einen erheblichen Arbeitsaufwand dar, da die
Beweise zu großen Teilen von Spezialisten von Hand erstellt werden müssen. Zum
anderen gibt es die sogenannte Modellprüfung, bei der für ein gegebenes Modell (im
modelltheoretischen Sinne) und eine gegebene Spezifikation (üblicherweise gegeben
in temporaler Logik) vollautomatisch geprüft wird, ob das Modell die Spezifikation
erfüllt.

Der klassische Modellprüfungsansatz basiert auf der iterativen expliziten Auflistung
der erreichbaren oder fehlerhaften Programmzustände (Explizite Modellprüfung).
Klassische Modellprüfung wurde erfolgreich zur Prüfung von Protokollen und von
abstrakten Modellen komplexerer Systeme eingesetzt. Die Methode leidet jedoch
stark unter dem Problem der sogenannten Zustandsraumexplosion. Hierbei wächst
die Menge der zu untersuchenden Zustände mit der Anzahl der Zustandsvariablen
so stark, dass die Zustände nicht mehr effizient verwaltet werden kann. Eine Wei-
terentwicklung der Modellprüfung, die symbolische Modellprüfung, basiert auf der
Darstellung der Zustandsmengen und -übergangsrelation des Programms als logische
Formel mittels sogenannter binärer Entscheidungsdiagramme. Die Zustandsmengen

iv

müssen dadurch nicht mehr explizit aufgezählt werden, wodurch es möglich wird,
Systeme mit mehr als 1020 Zuständen zu analysieren.

Eine weitere Variante der Modellprüfung, die beschränkte Modellprüfung (Bounded
Model Checking), basiert schließlich auf der Umformung eines beschränkten Teils des
Modellprüfungsproblems in ein Problem der Erfüllbarkeit der Aussagenlogik (SAT).
Das System wird dabei bis zu einer festgelegten Grenze k abgerollt und der System-
zustand und die Zustandsübergangsrelation jeweils k mal in einer aussagenlogischen
Formel kodiert. Anschließend wird die Formel mithilfe eines leistungsfähigen SAT-
Solvers gelöst. Die Grenze k kann dabei iterativ vergrößert werden, bis ein Fehler
gefunden wurde. Die beschränkte Modellprüfung findet so kürzestmögliche Gegen-
beispiele und ist verifizierend, falls eine ausreichend große Schranke erreicht wurde.
Die Methode hat sich in der Praxis insbesondere bei der Qualitätssicherung von
Mikroprozessorentwürfen bewährt.

Die vorliegende Arbeit beschäftigt sich mit Theorie und Implementierung von Soft-
ware Bounded Model Checking (SBMC), also der Anwendung von Bounded Model
Checking auf Software Systeme. Die Übertragung der Methode auf Software ist dabei
keineswegs trivial, da sich Software-Systeme strukturell stark von Hardware-System
oder abstrakten Modellen unterscheiden. Ein Grund hierfür ist die mannigfaltigere
Struktur von Software, in der Schleifen und rekursive Funktionsaufrufe praktisch
beliebig ineinander geschachtelt sein können. Dies erschwert das iterative Abrollen
von Zuständen erheblich, und die beschränkte Modellprüfung kann daher auch nicht
ohne weiteres auf Software-Systeme übertragen werden.

SBMC konzentriert sich primär auf sogenannte Sicherheitseigenschaften, also auf
die Frage “ob etwas schlechtes passieren kann”. Für die Sprachen C und C++, die
in eingebetteten Systemen vorwiegend eingesetzt werden, stellen die sogenannten
Laufzeitfehler eine wichtige Gruppe von Sicherheitseigenschaften dar. Dabei han-
delt es sich beispielsweise um die Division durch Null, Speicherzugriffsfehler und
arithmetische Überläufe.

Die Arbeit bietet einen detaillierten Einblick in Theorie und Implementierung des
Low-level Software Bounded Model Checking Werkzeugs LLBMC. Dieses wurde
maßgeblich im Rahmen dieser Arbeit konzipiert und realisiert. LLBMC hat mehrmals
an internationalen Software-Verifikationswettbewerben (SVCOMP-2011, SVCOMP-
2012 und SVCOMP-2013) teilgenommen und dabei mehrere Gold-, Silber- und
Bronzemedaillen in verschiedenen Kategorien gewonnen. Beim Vienna Summer Of
Logic wurde das LLBMC-Team für diese Leistung mit der Kurt-Gödel-Medaille ausge-
zeichnet. Der Autor dieser Arbeit wurde darüber hinaus für seinen wissenschaftlichen
Beitrag mit dem Intel Doctoral Student Honor Award geehrt.

Anstatt C-Programme direkt zu analysieren setzt LLBMC auf dem Compiler Fra-
mework LLVM auf und nutzt dessen Zwischensprache LLVM-IR als Eingabesprache.
LLBMC nutzt die Compiler-Optimierungen von LLVM um die Analyse erheblich
zu beschleunigen. Für die Übersetzung von C-Programmen in LLVM-IR wird dabei
auf den Code Generator des Compiler Frameworks zurückgegriffen In der Dissertati-
on wird beschrieben, wie dieser Generator so angepasst werden kann, dass bei der
Übersetzung keine Information verloren geht die für die Prüfung der gewünschten
Eigenschaften relevant ist.

In dieser Dissertation wird auch die sogenannte Intermediate Logic Representation
(ILR) vorgestellt. ILR bildet den Kern von LLBMC, ist eng an das Design von LLVM-

v

IR angelehnt und bildet so das logische Gegenstück dazu. ILR ist dabei gleichzeitig
ein Schema für Theorien der Prädikatenlogik erster Stufe, als auch Grundlage für
Termersetzungssysteme, welche eine zentrale Rolle in LLBMC spielen.

Ein zentraler Bestandteil dieser Arbeit ist die detaillierte Darstellung der Kodierung
von beschränkten Fragmente von LLVM-IR Programmabläufen in ILR. Eine wichtige
Rolle bei diesem Prozess spielen spezialisierte Varianten von Aufruf- und Kontroll-
flussgraphen, die ebenfalls in dieser Promotionsschrift dargestellt werden. Diese Gra-
phen kodieren dabei unter anderem die für den beschränkten Modellprüfungsprozess
benötigten Schranken bezüglich der Anzahl der Schleifeniterationen und der Rekursi-
onstiefe. Die Kodierung ist als ILR-basiertes Termersetzungssystem formalisiert. Die
bei der Kodierung entstehende ILR-Formel ist dabei genau dann erfüllbar, wenn das
untersuchte beschränkte Programmfragment eine Sicherheitseigenschaft verletzt. Ist
dies der Fall, so kann das Modell der Formel auf ein vollständiges Gegenbeispiel auf
Programmebene zurück abgebildet werden.

Die Erfüllbarkeit von ILR-Formeln wird in LLBMC mit Hilfe sogenannter SMT-Solver
festgestellt. Es handelt sich dabei um hochperformante Implementierungen effizienter
Entscheidungsverfahren ausgewählter Theorien der quantorenfreien Prädikatenlogik
erster Stufe. Die vorliegende Arbeit beschreibt, wie hierfür ILR-Formeln mit Hilfe
von Termersetzung auf Formeln der Theorien der Bitvektoren und Arrays reduziert
werden können.

Ein weitere bedeutender Beitrag dieser Arbeit ist eine Erweiterung von ILR zur
Unterstützung dynamischer Speicherallokation und zur Prüfung der Korrektheit von
Speicherzugriffen. Darüber hinaus wird ein partielles Entscheidungsverfahren für diese
Theorie vorgestellt, das die für das Software Bounded Model Checking relevante
Teilmenge von Probleme durch Termersetzung auf ein reines Bitvector-Problem
reduziert.

Abschließend beschreibt die Arbeit wie der Kern-Algorithmus von LLBMC weiter-
führend eingesetzt werden kann, beispielsweise um eine große Zahl von Sicherheits-
eigenschaften gleichzeitig zu prüfen.

Zusammenfassend bietet die Promotionsschrift einen detaillierten Einblick in die Ar-
chitektur und Funktionsweise des Software Bounded Model Checkers LLBMC. Zu den
Beiträgen der Dissertation gehören der Einsatz einer Compiler-Zwischensprache und
Lösungsvorschläge für die daraus resultierenden Herausforderung, die Beschreibung
einer Kodierung von LLVM-Programmen in einer speziell hierfür entwickelten Logik,
sowie Entscheidungsverfahren die es ermöglichen Eigenschaften von Speicherzugriffs-
und verwaltungsoperation zu prüfen. Der Fokus der Arbeit liegt dabei auf der Verbes-
serung von Präzision, Skalierbarkeit und Vertrauenswürdigkeit von Software Bounded
Model Checking im Einsatz zur Verifikation von Laufzeitfehlern in eingebetteten
Systemen.

vi

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Challenges . 5

1.2.1 Precision . 6
1.2.2 Trustworthiness . 7
1.2.3 Scalability . 7
1.2.4 Extensive Language Support 8

1.3 Contributions . 8
1.3.1 Additional Contributions 9

1.4 Overview of This Thesis . 10

2 Theoretical Background and State of the Art 13
2.1 Theoretical Background and Foundations 13

2.1.1 Many-Sorted First-Order Logic 13
2.1.2 Satisfiability Modulo Theories 14
2.1.3 The Theory of Bitvectors 16
2.1.4 The Theory of Arrays . 17
2.1.5 Temporal Logic . 17
2.1.6 Term Rewriting Systems 18
2.1.7 Graphs . 20

2.2 Related Work and State of The Art 21
2.2.1 A Brief History of Formal Software Verification 22
2.2.2 Explicit State Model Checking 22
2.2.3 Symbolic Model Checking 23
2.2.4 Bounded Model Checking 24
2.2.5 Software Bounded Model Checking 25

3 LLBMC: An Efficient Implementation of SBMC 29
3.1 An Overview of LLBMC . 29

3.1.1 A Multi-Layered Architecture 30
3.1.2 Model Checking Algorithm 33

3.2 LLVM and Its Intermediate Representation 34
3.2.1 Values and Types . 37
3.2.2 Instructions . 38
3.2.3 Undefined Values and Undefined Behavior 40
3.2.4 LLVM’s Instruction Set . 40
3.2.5 Basic Blocks and Terminators 45
3.2.6 Modules and Functions . 47

vii

viii CONTENTS

3.3 Verification of Source Languages 48
3.3.1 Verifying Embedded C Code 49
3.3.2 Undefined Behavior in C 50
3.3.3 Translating C to LLVM-IR 52

3.4 Compiler Optimization Passes in LLBMC 61
3.4.1 Optimizations for Performance Improvement 61
3.4.2 Optimizations for Extending Language Support 62

3.5 Control Flow Graphs . 63
3.5.1 Graphical Illustration of Control Flow Graphs 64
3.5.2 Bounded Control Flow Graphs 65

3.6 Call Graphs . 66
3.6.1 Context-Sensitivity in Call Graphs 67
3.6.2 Call-Site-Sensitive Call Graphs 69

3.7 LLBMC’s Intermediate Logic Representation 70
3.7.1 Sorts . 72
3.7.2 Booleans . 73
3.7.3 Integers and Pointers . 74
3.7.4 Miscellaneous . 80
3.7.5 Memory . 81
3.7.6 Instantiating ILR . 85
3.7.7 Sharing of ILR Terms . 85

3.8 Summary and Outlook . 86

4 Encoding LLVM-IR in ILR 87
4.1 Sorts, Functions, and Instruction Patterns 87

4.1.1 Pattern Matching . 91
4.2 Symbolic Evaluation . 93

4.2.1 Instructions . 93
4.2.2 Function Arguments . 96
4.2.3 Constants . 96

4.3 Control Flow and Execution Conditions 97
4.4 Memory . 99

4.4.1 Memory State . 99
4.4.2 Stack . 102

4.5 Safety . 103
4.5.1 Custom Assertions and Source-level Properties 103
4.5.2 Undefined Behavior and Poison Values 104
4.5.3 Bounds Checking . 107
4.5.4 Safety of a Whole Program 108

4.6 A Term Rewriting System for Encoding LLVM-IR 108
4.6.1 Variations of the Term Rewriting System 108
4.6.2 Implementation of the Term Rewriting System 110

4.7 Summary and Outlook . 110

5 Dynamic Memory Allocation and Memory Access Safety 113
5.1 Dynamic Memory Allocation in the C Standard 115
5.2 Extending ILR . 117

5.2.1 Sorts . 117
5.2.2 Functions . 119

5.3 A Partial Decision Procedure Based on Term Rewriting 121

CONTENTS ix

5.3.1 Rewriting Validity Checks 122
5.3.2 Rewriting the Auxiliary Functions 124
5.3.3 Allocatability . 127
5.3.4 Summary . 128

5.4 Encoding Dynamic Memory Allocation 128
5.5 Encoding Memory Access Safety 130
5.6 Summary and Outlook . 131

6 Simplification, Satisfiability Solving, and Evaluation 133
6.1 Simplifications . 133

6.1.1 Constant Propagation Rules 134
6.1.2 Non-Constant Simplification Rules 136
6.1.3 Reduction Rules . 137
6.1.4 Running Simplifications . 137

6.2 Solving ILR Formulæ . 138
6.2.1 Working with Multiple Counterexamples 140
6.2.2 Shadowing of Checks . 141

6.3 Evaluation . 143
6.3.1 International Software Verification Competition 2012 144
6.3.2 International Software Verification Competition 2013 145
6.3.3 International Software Verification Competition 2014 146
6.3.4 Detailed Example . 146

6.4 Summary and Outlook . 150

7 Conclusion 151

A Simplification Rules 153
A.1 Constant Propagation . 153
A.2 Boolean . 156
A.3 Arithmetic . 158
A.4 Safety . 159
A.5 Bitwise Operations . 159
A.6 Shifts . 161
A.7 Comparison . 162
A.8 Miscellaneous . 162
A.9 Reduction . 162

B Evaluation Results 165
B.1 Participants of SV-COMP 2012 . 165
B.2 Results of SV-COMP 2012 . 166
B.3 Participants of SV-COMP 2013 . 167
B.4 Results of SV-COMP 2013 . 168
B.5 Participants of SV-COMP 2014 . 169
B.6 Results of SV-COMP 2014 . 170

C Detailed Example 171
C.1 LLVM-IR Code . 171
C.2 Call and Control Flow Graphs . 173
C.3 Encoding . 174

Bibliography 177

x CONTENTS

List of Figures 189

List of Tables 191

List of Listings 193

Symbols 195

Index 199

Publications 203

Chapter 1

Introduction

Software has become ubiquitous in the last few decades. This can readily be seen
on mobile phones and tablet computers, on personal computers and workstations at
home and in our offices, and certainly not the least on the Internet.

Equally important these days, but far less visible, is embedded software, software
controlling devices that are generally not perceived as computers at all. This includes
devices such as cars, trains, airplanes, rockets, cash machines, pacemakers, radio
therapy machines, and many more. A fair number of these systems are safety or
security critical, meaning failures can cause injury, death or other harm to persons
or their assets.

At the same time, it is a matter of common knowledge that every non-trivial software
system contains a considerable number of undetected errors, as shown in [McC04].
In this book, McConnell estimates an industry standard of 15-50 errors per 1000 line
of code. In the past, system failures caused by software bugs in safety or security
critical systems have caused monetary loss, injury, and have last but not least cost
lives.

Therac-25. The Therac-25 was a radiation therapy machine produced by Atomic
Energy of Canada Limited in the mid-80s and was subsequently in use in several
hospitals across the United States and Canada. The machine was particularly versatile
because it was designed to operate in two different modes: one for low-power, direct
electron beam therapy, and another for x-ray therapy. The later mode operated by
having a high-power electron beam collide into a target made of tungsten to convert
the beam into x-rays.

Between June 1985 and January 1987 the Therac-25 was involved in multiple
incidents, in which patients were exposed to about a hundred times the intended
dose of radiation. This resulted in death of three patients and caused serious injuries
to three more.

While the Therac-25 incidents were never officially investigated, the cause was
eventually identified to be a software error by independent researchers in [LT93].
The radiation therapy machine’s predecessors, the Therac-6 and Therac-20, used

1

2 CHAPTER 1. INTRODUCTION

hardware safety interlocks to ensure that only the low-power electron beam and
x-rays could hit the patient but never the high-power electron beam directly.

In contrast, the Therac-25 relied solely on software safety interlocks for this, which
turned out to be an unfortunate design decision. If the machine’s operator pressed
a specific sequence of keys in less than seven seconds, a race condition occurred
and caused the software interlocks to fail. Ironically, the more experienced and
therefore the faster the operator was in handling the machine, the more likely this
race condition was to occur.

Finally, even though the Therac-25 did issue a warning in this case, this warning was
routinely ignored by the operator due to the large number of spurious warnings the
machine regularly generated. With this, the last opportunity to prevent the disaster
was missed.

The exposure to high energy radiation caused serious symptoms of radiation poison-
ing with all of the affected patients and has even led to the deaths of three of them,
as reported in Leveson and Turner [LT93].

Ariane flight 501. In 1987, the European Space Agency (ESA) initiated devel-
opment of a new rocket, Ariane 5, a “major evolution for the the Ariane family”
[ESA15]. The ESA considers the rocket “the cornerstone of Europe’s independent
access to space” [ESA15] and calls it “one of the most reliable launchers in the
world” [ESA15] though this certainly was not true from the beginning.

On the fourth of June 1996 the first ever launch of an Ariane 5 rocket, flight
Ariane 501, was scheduled to take place at ESA’s Kourou based launch site. The
rocket was intended to bring a set of four satellites to orbit. After briefly being
put on hold due to bad visibility, lift-off finally took place at 9:33:59 local time.
Approximately 37 seconds later, the rocket went off course and shortly after self-
destructed.

On the 19th of July 1996 the Ariane 501 Inquiry Board which was tasked with
investigating the catastrophe published the report Ariane 5 – Flight 501 Failure
[AIB96]. In this report they concluded that a software error was the primary cause
of the event.

Software from the Ariane 4 system was reused in the Ariane-5 rocket. This software
was not suited for the higher horizontal acceleration of this new, more powerful
rocket. This led to an overflow during conversion of a 64-bit floating point number
to a 16-bit signed integer. Range checks, though enabled for most of the system,
were omitted for this particular operation for efficiency reasons.

The self destruction of Ariane 501 is estimated to have caused a total loss of 370
million US dollars [Lan97].

Toyota Camry. In 2005 on a highway off-ramp in Oklahoma, a Toyota Camry
unexpectedly and allegedly unintended by the driver accelerated, veered off the road,
and caused an accident in which one of the occupants of the car was killed.

After a ten month investigation by NASA in 2010 and 2011 no evidence for the car’s
electronics having caused the crash was identified, but such an error could not be

3

ruled out entirely either. There simply was not sufficient time to come to a clear
conclusion.

On October 24th 2013 in the course of an Oklahoma County lawsuit, a second,
more thorough investigation by embedded systems experts was conducted. After
20 month of thoroughly reviewing the Toyota source code, this investigation came
to the conclusion, that the unintended acceleration “[. . .] was more likely than
not caused by the death of a redacted-name task, [. . .] ” [SRS13]. Furthermore,
“Toyota’s electronic throttle control system (ECTS) source code is of unreasonable
quality” [Dun13], “Toyota’s source code is defective and contains bugs, including
bugs that can cause unintended acceleration (UA)” [Dun13], and “Toyota’s fail safes
are defective and inadequate [. . .] ” [Dun13].

The software bug cost Toyota at least $2.2 billion dollars [Gan14] and ruined the
company’s image, which was previously known to produce very reliable cars, for years
to come.

Boeing 787 Dreamliner. The Boeing 787 Dreamliner was and still is Boeing’s
prestige project, with the company pitching it as a “game-changer” [Gat11]. The
total cost of the program was estimated by the Seattle Times to be $32 billion in
September 2011, half of which are development costs [Gat11].

On the first of May 2015 news spread around the world about a defect in the
Dreamliner’s software having been found. The Federal Aviation Administration issued
an airworthiness directive dictating that the plane’s generators require a reboot after
120 days of uptime [FR14].

The Boeing Dreamliner has four generators that provide AC power to the plane, two
of them attached to each of the plane’s two turbines. A counter in these generator’s
software was programmed to increase by one every tenth of a second, starting at
zero when the system was booted. The counter was implemented using a 32-bit
signed integer and as a consequence a little over 284 days of continuous uptime
the counter would overflow. In this event, the counter’s value would switch from a
large positive number (231− 1) to a large negative number (−231). The system was
programmed to react to a value less than zero by transitioning to a fail-safe state.
In this state, the affected generator would not provide power to the plane any more.

If all four generators were booted at the same time, which they often are, they would
also transition to this faile-safe state at the same time. This in turn would shut
down the plane’s AC power system, rendering the plane uncontrollable. Had this
happened during take-off or landing, the consequences would have been catastrophic.
Fortunately, the bug was found during laboratory testing at Boeing, so this bug never
lead to an incident and no one was harmed.

Even despite the massive damage for Boeing as a brand, the company can still
consider itself lucky in this case. But luck should not be relied upon when it comes
to safety critical software. Methods for the development of reliable software are of
major importance in the development of this type of software.

4 CHAPTER 1. INTRODUCTION

1.1 Motivation

The radiation therapy machine Therac 25, the Ariane 5 rocket, the Toyota Camry,
and the Boeing 787 Dreamliner all have one thing in common: they rely heavily on
so called embedded systems. Embedded systems are computer systems that are part
of a larger electric or mechanical system.

Unfortunately, the terms failure, error, fault, and defect are defined and used dif-
ferently and may cause considerable confusion. We will use the terms as defined
in ISO 26262-1 - Road Vehicles – Functional Safety [ISO26262]. We will use the
term software failure (or simply failure) to refer to to “termination of the ability of
an element to perform a function as required” [ISO26262]. We will use the term
software fault (or simply fault) to refer to an “abnormal condition that can cause
an element or an item to fail” [ISO26262]. A software error (or simply error) is the
“discrepancy between a computed, observed or measured value or condition, and the
true, specified or theoretically correct value or condition” [ISO26262]. We will use
the term software defect (or simply defect) synonymously with the term software
fault. In general, faults in the program’s code lead to errors which in turn lead to
the system’s failures. The terms are not used consistently in literature, e.g. Parhami
[Par97] uses a finer distinction between fault and defect, however this refinement is
not required in the scope of this thesis.

The Therac 25 incidents, the explosion of Ariane 501, the Toyota Camry accident,
and and the issuing of the airworthiness directive for the Boeing Dreamliner all share
a common cause: their embedded software systems contained defects and these
defects caused the failure of the system as a whole. All these systems share another
property: they are safety critical . Failure of these systems can cause injury or death
to human beings.

The failure of Ariane 501 and the Dreamliner incidents show that even in an industry
with extremely strict safety standards, software defects and the resulting system
failures are hard, if not impossible, to rule out completely. The Camry’s failure on
the other hand shows that these kinds of error can equally well occur in everyday
systems, such as cars.

Software failures such as the ones listed above can have a wide range of different
causes. In the case of Therac 25 this was a timing and concurrency error. Another
cause is misconfiguration, as was the case for the crash of the Airbus A400M in
Sevilla in May 2015 [Gal15]. In the case of the Toyota Camry not a single specific
cause was made public, certainly to some degree because of the sheer number of
different quality issues in the code. Last, but certainly not least, The Ariane 501 and
the Dreamliner incidents were caused by runtime errors, the error type which this
dissertation is primarily motivated by and focused on.

Runtime errors are errors which occur while the software system is running. This is
in contrast to compile time errors, errors which occur when the software is compiled.
Some of the most well known examples for runtime errors are the division by zero,
arithmetic overflows, and array index out of bounds accesses. Runtime errors can
result in the immediate termination of the program. Whether this happens or not
depends mostly on which programming language the program is written in. For
example the Java programming language’s form of a runtime error, an uncaught
RuntimeException, will always terminate the program. In contrast, for C it depends

1.2. CHALLENGES 5

to some degree on the particular kind of runtime error and to some degree on the
implementation, meaning primarily the compiler and the target architecture. The
premature termination of the program differentiates runtime errors from functional
errors. Functional errors result in incorrect output, but never terminate the program
prematurely. Note that runtime errors that do not cause termination of the program
frequently result in subsequent functional errors.

The examples mentioned above show that current methods of software quality
assurance are not yet sufficient to prevent such incidents. This is to a large degree
because most methods in use today, including software testing, code reviews, and
light-weight static code analysis, can only provide falsification but not verification.
Falsification methods are able to detect faults in the code, but they are not able to
prove their absence. Verification methods, on the other hand, provide guarantees,
as strong as mathematical proofs, of the program’s correctness.

Verification methods can be roughly split into two kinds: interactive tools and
automatic tools. Interactive tools are often labor intensive, requiring a specialist to
construct a proof of correctness by hand. In contrast, fully automatic tools do not
require human interaction but often do not scale sufficiently well for the systems
with millions of lines of code, a common size for embedded systems these days. Some
error types are easier to verify automatically than others. For example, functional
errors are often hard to verify, as are concurrency errors. Verifying the absence of
runtime errors however is more feasible, though certainly not trivial, to do.

The explosion of Ariane 501 shows the dramatic consequences of runtime errors,
while the issuing of the airworthiness directive concerning Boeing’s Dreamliner
illustrates nicely that runtime errors, while often underestimated, still are an unsolved
problem. Consequently, static code analysis for the verification of runtime errors is
an important challenge in the development and quality assurance of safety critical
embedded software.

1.2 Challenges

These days, most industrially used methods for verification of runtime errors in
embedded systems are based on abstract interpretation by Cousot and Cousot [CC77],
e.g. the tool Astrée [Mau04]. However, as reported by Post et al. [Pos+08], the
large number of spurious errors generated by these tools still poses a major drawback
in their industrial application. Post et al. propose using software bounded model
checking to reduce the number of false positives generated by abstract interpretation
tools.

Bounded model checking (see section 2.2.5) is a variant of model checking which
“[. . .] is widely accepted as an effective technique [. . .] ” [Bie+03]. Software
bounded model checking is the application of bounded model checking to soft-
ware systems. Software bounded model checking operates in multiple steps: First
a source code transformation is performed during which all loops in the program
are unrolled a given number of times and all function calls are inlined up to a given
depth. The resulting single, large function is then encoded in a bitvector formula.
Finally, this formula is translated to a propositional formula in conjunctive normal
form and then solved by an off-the-shelf SAT solver.

6 CHAPTER 1. INTRODUCTION

CBMC was the first publicly available software bounded model checker and was
introduced by Clarke et al. [CKL04] in 2004. CBMC has largely defined the concept
of software bounded model checking. In the following, when we refer to CBMC we
also include its derivatives SMT-CBMC [AMP06] and ESBMC [CFM09]. Both tools
are based on SMT solvers (see section 2.1.2) instead of SAT solver but keep to
CBMC architecture apart from that.

Despite of CBMC’s success there is still a number of challenges to be solved before
software bounded model checking can be successfully applied in an industrial setting,
namely

• increasing the precision,

• reliability and trustworthiness of the tool, as required in the context of tool
qualification according to the relevant standard documents, e.g. [ISO26262],

• improving scalability up to the sizes of contemporary embedded systems,

• and extensive language support, in particular including the features and lan-
guage variants used in the embedded software industry,

1.2.1 Precision

The first challenge approached in this thesis is precision. Precision is the capability to
faithfully model a system’s behavior for static analysis. Imprecise tools might generate
false positives or false negatives. A false positive occurs when a tool reports an error
which cannot happen in reality. A large number of false positives severely decreases
developers’ acceptance of a tool. In contrast, a false negative occurs when the tool
is supposed to detect an error that can happen in reality but fails to do so. However,
avoiding false negatives is particularly important if a tool is used not for falsification
but for verification of safety critical software. If the tool is the only measure in
the software development process to detect or prevent a specific kind of error, the
software system’s safety can be compromised.

C and C++ are notoriously hard to verify. Even though both languages are statically
typed, they are also weakly typed. This means the type system can easily be subverted
and therefore cannot be relied upon by a static analysis tool. Unfortunately, the
type system is regularly subverted in embedded software development for reasons of
efficiency. Furthermore, embedded software often makes use of low-level operations
and optimizations, such as bit-shifts, bit-packing, and bit-stuffing. These require
precise handling down to the bit-level which disqualifies many analysis methods, in
particular those based on mathematical integers.

CBMC is based on bitvectors and therefore already supports bit-precision in many
regards. However, CBMC’s modeling of memory is not as precise as its modeling
of bitvectors, due to its use of type based aliasing analysis. This can cause false
positives as well as false negatives. Most static analysis tools are not perfectly precise,
which can be acceptable if the limitations of the tool and the assumptions it makes
during verification are communicated clearly. However, this is often not the case for
software bounded model checkers.

1.2. CHALLENGES 7

1.2.2 Trustworthiness

When examining the results of the International Software Verification Competition
[Bey12; BW13; Bey14] carefully, one cannot fail to notice that nearly every one of the
participating tools produces incorrect results for some of the benchmarks. Based on
our own experience and observations during participation, we assume that a signifi-
cant number of these incorrect results are not caused by programmer’s errors but can
be considered evidence for limitations and imprecisions of the method implemented
in the tool.1. as well as different interpretations of a programs semantics2.

However, even though nearly all tools have such limitations and imprecisions, most
tools do not communicate these clearly. Instead, most publications about static
analysis tools (and this seems to be especially true for software bounded model
checking) are limited to pseudo-code descriptions of the higher-level algorithms.
Finer details, e.g. how the tool encodes a program’s semantics in logic, are often
not elaborated upon.

While CBMC’s most prominent assumption, the bound, is clearly communicated,
others are not. For example, CBMC changed its handling of strict-aliasing sometime
between version 3.8 and 4.2. Where CBMC previously assumed a may-alias relation in
certain situations, at some point the tool started assuming a must-alias relation. This
change to the tool’s type-based alias analysis is a considerable change to the tool’s
assumptions about the program’s semantics and can have clearly observable effects
on the tool’s results. Nonetheless, neither the semantics before nor the semantics
after the change are specified.

If the tool’s assumptions about the program’s semantics are not clear to the user,
the user loses trust in the tool with every unexpected result. In order to increase the
tool’s trustworthiness it is necessary to document these assumptions.

A complete and clear specification is also important if the tool is to be qualified to act
as an integral part of the development process for safety critical code. ISO 26262-1
- Road Vehicles – Functional Safety [ISO26262], which is the relevant standards
document for the automotive industry, provides four methods for tool qualification.
These methods include 1) proven-by-use reasoning, 2) an evaluation of the software
development process, 3) a stringent validation of the tool, and 4) application of a
software development process according to a safety standard, e.g. [ISO26262] itself.
For a static analysis tool originating from a research project, 1), 2), and 4) are barely
an option, leaving 3) as the only viable option. A stringent evaluation of the tool
requires a clear and complete specification of the tool’s limitations and imprecisions.

1.2.3 Scalability

The third challenge approached in this thesis is scalability. Scalability is the capability
of a static analysis tool to successfully analyze increasingly large software systems.
Embedded systems have grown steadily in recent years. For example, embedded

1 Based on the lively discussions that occur on the competitions’ mailing list during the prepa-
ration phase, we conclude that most participants try to fix any programmer’s errors which are
triggered by the competitions’ benchmark set before submitting their tool. We certainly did.

2The C standard is notorious for leaving much undefined or unspecified.

8 CHAPTER 1. INTRODUCTION

systems in the automotive industry have reached sizes of several million lines of
code. Any static analysis aiming to analyze such systems needs to scale accordingly.

Scalability is related to runtime and memory footprint. The unrolling of loops and the
inlining of functions, which are at the core of software bounded model checking, are
primarily responsible for the method’s large memory requirements. For CBMC and its
derivatives this is amplified by their implementations, which realize these operations
as source to source transformations. This often causes these tools to fail even before
the program is even converted to logic. Werner and Faragó [WF10] describe how this
limitation became apparent when CBMC was used to prove correctness of sensor
network applications.

1.2.4 Extensive Language Support

The fourth challenge approached in this thesis is full support for an industrially-used
programming language. Embedded systems are often developed under constraints
concerning processing power and memory available on the target architecture. This
often leads to the use of the more obscure language features and optimizations
which are often not well supported by static analysis tools. In addition, the languages
evolve and change whenever new versions of the standard documents are released
and modern compilers adopt new features early on, often even before the standard
is finalized.

It is notable that CBMC supports a real programming language instead of simply a
toy language or a simplified subset of a real language, which both are only useful in
the academic context. Nonetheless, for several years, CBMC often failed at parsing
programs and, as noted by Werner and Faragó [WF10], this requires workarounds
to be able to use CBMC at all. This has improved notably, but considering the
time needed for this, it can be assumed that this was a laborious task. Workarounds
frequently involve code transformations, which are often fragile, in particular for
C++. Furthermore, these code transformations are often done by the user with the
help of scripts, which considerably reduces the trustworthiness of the process as a
whole.

1.3 Contributions

This section briefly highlights the major contributions of this dissertation. The thesis
and its contributions are closely linked to the software bounded model checking tool
LLBMC, which is presented in depth in section 3.1.

LLBMC was one of the first tools to use LLVM’s intermediate representation as an
input language for a static analysis tool (see section 3.2 and [MFS12; FMS13c]).
Using LLVM-IR greatly reduces the complexity of writing an academic static analysis
tool targeting C and C++ and thereby enabled LLBMC surpass CBMC’s level of
language support quickly. As we describe in [FMS13b], the use of LLVM enabled
LLBMC to use compiler optimizations for improving LLBMC’s performance. Using a
compiler IR is not without its drawbacks, as extra care needs to be taken to maintain
the tools precision. Suitable measures have been addressed in section 3.3.

1.3. CONTRIBUTIONS 9

As discussed in Merz et al. [MFS12] and Falke et al. [FMS13c], LLBMC uses
a flat memory model with a single symbolic array to model the process’s entire
address space. This greatly increases the tool’s precision concerning memory related
operations in particular when the type system is subverted by the programmer.
Disadvantages of using a flat memory model concerning the tool’s performance
and scalability are counteracted with suitable formula simplifications and by using
fixed addresses for most memory objects. LLBMC’s performance in the Software
Verification Competition, in particular in comparison with the competing software
bounded model checker ESBMC, has shown that the approach is precise and performs
well (see [FMS13b]).3

LLBMC’s C language support extends itself also to the language’s standard library.
Most notable are two different approaches to C-style dynamic memory management
which were presented in [SFM10; FMS11] and which are implemented in LLBMC.
In chapter 5, a third approach is introduced which is a minor enhancement of the
approach we presented in [FMS11] but, more importantly, comes with a proof of
correctness. The approach is a precise formalization of the semantics of malloc and
free and realloc.

Finally, the thesis provides a formalization of its encoding in chapter 4. This acts as
a specification and documentation of how LLBMC models the C language, including
its limitations and imprecisions. This aims to increase the tool’s trustworthiness.

1.3.1 Additional Contributions

In addition to the research discussed and elaborated upon in this thesis, the author
contributed to a number of scientific papers during the creation of this dissertation,
which are also concerned with different aspects of software bounded model checking.

One aspect concerns the C standard library’s functions memset, memmove and memcpy,
which are frequently used in embedded projects. In software bounded model checking
the loops contained in these functions must be unrolled, which can take up con-
siderable amounts of memory. In [FSM12] we introduce a compact representation
for these particular functions via an extension to the theory of arrays, as well as
multiple decision procedures for the extended theory. The compact representation
aims at increasing LLBMC’s scalability for programs which use these functions. In
[FMS13a] we expand upon this by introducing λ-functions for loop summarization,
which also results in a compact representation for memset, memcpy and memmove
and in addition for a range of similarly structured loops, too. Because of the compact
representation of these core functions both approaches increase scalability if these
functions are used in the source code or inserted by the compiler. Furthermore,
the approach improves language support because memset, memcpy, and memmove
function calls of any size are supported without the need for a loop bound.

Abstract testing is a novel concept first introduced in [Pos+09] which uses software
bounded model checking for the symbolic execution of abstract test cases. The
method is designed to bridge the gap between requirements engineering and software
testing. This works because fewer of these abstract test cases are required and they

3 LLBMC not only won multiple medals throughout the years but in 2013 it was also the only
tool that did not generate a single incorrect result (section 6.3).

10 CHAPTER 1. INTRODUCTION

map more directly to the requirements. We advanced upon this idea in [Mer+15;
Mer+10].

In [Bec+11] we use software bounded model checking to support the annotation-
based verification process of tools such as VCC (see [Coh+09a]). When a proof does
not close during verification it is often not immediately apparent if the proof did not
close because the property does not hold or if the property holds but the tool was not
able to proof it. In this context, the annotations are translated to executable code
and passed to LLBMC with a small bound. If LLBMC provides a counterexample,
the user knows the proof did not close because the property does not hold.

Finally, in [MSF12] we examine the challenges one faces when comparing software
analysis tools. This reflects the authors’ experiences during participation in the
International Software Verification Competitions.

1.4 Overview of This Thesis

This section provides an overview of the following chapters of this dissertation.

Chapter 2 gives an introduction into the theoretical background required for under-
standing this thesis and provides an overview of related methods and the state of the
art. We provide a minimal introduction into first-order logic, satisfiability modulo
theories, the theory of bitvectors, the theory of arrays, and linear temporal logic in
section 2.1. This is mainly to establish notational conventions used throughout this
dissertation as we assume the reader is familiar with logic in computer science.

Chapter 3 introduces LLBMC, an award winning, state of the art software bounded
model checking tool. The chapter starts off with an overview of the tool in section 3.1.
This is followed by an informal introduction into LLVM’s compiler intermediate rep-
resentation LLVM-IR in section 3.2. Section 3.3 discusses the relationship between
the source language and the compiler intermediate representation and how to trans-
late the former into the latter with respect to C’s concept of undefined behavior.
Section 3.4 briefly shows how compiler optimizations interact with the use of a
compiler framework as front end for a model checking tool and how optimizations
can be used to improve model checker performance. LLBMC’s approach to software
bounded model checking makes control flow graphs and in particular call graphs
explicit. These graphs are introduced in section 3.5 and section 3.6. Last but not
least, section 3.7 presents ILR, LLBMC’s intermediate logic representation and core
data structure.

Chapter 4 presents the encoding of LLVM-IR programs in ILR formulæ via term
rewriting. The chapter introduces a language extension to ILR which comprises of a
number of sorts for different constructs of the LLVM-IR language, such as instructions
and basic blocks, as well as a number of functions for reasoning about such language
constructs, e.g. the memory state at certain points of time during execution. The
sorts and functions are introduced in section 4.1. Sections 4.2 to 4.5 present a
number of rewrite rules based on the newly introduced sorts and functions which,
in combination, can be used for encoding bounded fragments of traces through
LLVM-IR programs in ILR. Section 4.6 concludes the chapter by introducing the
term rewriting system as a whole, providing variations thereof.

1.4. OVERVIEW OF THIS THESIS 11

Chapter 5 discusses how dynamic memory allocation is handled in LLBMC. Sec-
tion 5.1 provides an overview of dynamic memory related sections of the C standard.
Section 5.2 introduces a theory of dynamic memory allocation for C. Section 5.3
defines a partial decision procedure for a subset of the theory presented in the pre-
vious section, which is based on the reduction of problems of this theory to pure
bitvector (and arrays of bitvectors) problems. Section 5.4 shows how the theory
can be used to model dynamic memory allocation in LLVM-IR programs. Finally,
section 5.5 extends the concept of the safety of instructions to memory accessing
instructions, thereby showing how the theory can be used to detect memory access
errors for statically, dynamically, and automatically allocated memory in LLVM-IR
programs.

Chapter 6 wraps up all matters concerning LLBMC by showing the formula simplifi-
cations in section 6.1, by presenting how ILR formulæ are converted to SMT-LIB
formulæ, and by discussing how satisfiability of ILR formulæ is decided in section 6.2
and how this can be used to its best effects. Furthermore, section 6.3 provides a
brief evaluation of LLBMC’s performance in the International Software Verification
Competitions.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background and
State of the Art

This chapter introduces terminology and concepts used throughout this thesis and
provides an overview of the state of the art in software bounded model checking.
Section 2.1.1 introduces terminology related to first-order logic, section 2.1.2 gives
a short introduction into satisfiability modulo theories, section 2.1.5 introduces
notational conventions for temporal logic, while section 2.1.6 does the same for term
rewriting systems, and section 2.1.7 provides a few definitions concerning graphs
which are used in this thesis.

Section 2.2.1 gives a short overview of the history of formal verification. Section 2.2.2
introduces the formal verification method of model checking. Section 2.2.3 introduces
the therefrom derived method of symbolic model checking. Section 2.2.4 introduces
bounded model checking, and finally, section 2.2.5 presents software bounded model
checking and provides related work and the state of the art in this field of research.

2.1 Theoretical Background and Foundations

This section of the dissertation provides an introduction into the notational conven-
tions used throughout this dissertation. Nonetheless, familiarity with many-sorted
first-order logic and a basic understanding of temporal logic are required to under-
stand this dissertation as whole.

2.1.1 Many-Sorted First-Order Logic

This section briefly introduces many-sorted first-order logic, primarily to introduce
the notational conventions used through this thesis but also as a starting point for a
brief discussion of the closely related Satisfiability Modulo Theories in section 2.1.2.

We will use > for true,⊥ for false, ¬ for negation, ∧ for conjunction, ∨ for disjunction,
→ for implication and ↔ for logical equality.

13

14 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

A signature Σ is a quadruple (SΣ, FΣ, PΣ, αΣ) where SΣ is a set of sorts, FΣ is a
set of function symbols, PΣ is a set of predicate symbols, and αΣ assigns sorts to
the function and predicate symbols. A function’s or predicate’s arity is given by the
functional arity(f) with f ∈ FΣ ∪ PΣ. Σ-terms, Σ-formulæ, and Σ-sentences are
defined in the usual way.

A Σ-structure D contains non-empty, pairwise disjoint sets Dσ for every sort σ ∈ SΣ,
specifying the domain of σ, and an interpretation function I mapping function
symbols in FΣ and the predicate symbols in PΣ to functions and predicates while
respecting sorts and arities. We use I(f) to denote the interpretation of f ∈ FΣ in
D and I(p) to denote the interpretation of p ∈ PΣ in D. The interpretation of an
arbitrary term t of sort σ in D is denoted JtKD ∈ Dσ and defined in the standard
way. Similarly, JφKD ∈ {>,⊥} denotes the truth value of a formula φ in D. Finally, a
structure D is a model of a formula φ if JφKD = >. A formula φ is called satisfiable,
iff a model of it exists and unsatisfiable otherwise. We will call an algorithm that
decides satisfiability of a formula a decision procedure.
A Σ-theory T is a set of Σ-sentences, its axioms. A Σ-theory is single-sorted if
|SΣ| = 1. For a single-sorted theory Ti, its only sort is usually denoted by σi.
Two signatures Σ1 = (S1, F1, P1, α1) and Σ2 = (Si, Fi, Pi, αi) are disjoint, if
F1 ∩ F2 = ∅ ∧ P1 ∩ P2 = ∅. A Σ1-theory T1 and a Σ2-theory T2 are disjoint if Σ1
and Σ2 are disjoint. The combined theory T1 ⊕ T2 of two disjoint theories T1 and
T2 is the (Σ1 ∪ Σ2)-theory containing the union of T1’s and T2’s axioms.

The equality symbol =σ is implicitly defined for most sorts σ, though an explicit
definition will be provided whenever considered beneficial. The symbol is not part of
any signature Σ and is always interpreted as the identity relation over σ. Its subscript
will be omitted usually.

For brevity we will also omit information about the sorts of terms and variables,
though only if it can be deduced from their use as arguments in functions and
predicates.

2.1.2 Satisfiability Modulo Theories

First-order logic is popular in formal methods research because it is sufficiently
expressive to formulate a large number of interesting problems from this domain.
However, due to quantifiers first-order logic in general is undecidable. Nonetheless,
for a wide range of interesting problems a decidable subset of first-order logic exists.

Over time, a number of particularly versatile first-order logic theories has emerged
and this consequently lead to growing research interest in these theories. Among
these theories are for example the theory of equality and uninterpreted functions, the
theory of linear integer arithmetics, the theory of linear real arithmetics, the theory
of bitvectors, and the theory of arrays. The research on these theories resulted in
a number of highly-optimized decision procedures. For example, efficient decision
procedures for the theory of equality of uninterpreted functions often make use of
the union-find algorithm, while decision procedures for the theory of integers often
leverage the well-known Simplex algorithm.

Satisfiability module theories (SMT) is the field of research concerned with the
satisfiability of many-sorted first-order logic formulæ with respect to certain theo-

2.1. THEORETICAL BACKGROUND AND FOUNDATIONS 15

ries. Initiated in 2003 by Ranise and Tinelli [RT03] SMT underwent a process of
standardization via the SMT-LIB initiative and language. The standard is actively
developed further and is now at version 2.5, presented in [BFT15]. If the term SMT
is used in this thesis it is always used with the SMT-LIB standard in mind.

SMT differs from first-order logic in few, but very notable aspects. Likely the most
important difference between SMT and first-order logic is the fact that in SMT logics,
all sorts and most function symbols are already interpreted. In addition, in first-order
logic a theory is a set of sentences, its axioms. In contrast, an SMT theory can be
seen as a restriction on the set of possible models for a formula. This restriction can
be formalized as a set of axioms, but it does not have to be. As a consequence, not
every SMT theory is also a theory in first-order logic. Satisfiability checking in SMT
is done “modulo” these background theories, hence the name Satisfiability Modulo
Theories.

Furthermore, SMT, as defined in the SMT-LIB standard, allows for parametric and
derived sorts, while this is uncommon in first-order logic. For example, the theory
of bitvectors does not define a single bitvector sort, but an infinite number of sorts
distinguished by an integer parameter indicating the bitwidth. Similarly, the theory
of arrays is derived from an index and an element sort. In this chapter, parametric
and derived sorts will be indicated by a parentheses-enclosed, comma-separated list
of the parameters and sorts used, e.g. the sort σBV (n), with σBV being the sort
symbol for bitvectors and n being an integer, gives the sort of bitvectors of size n,
and the sort σA(σI, σE), with σA being the sort symbol for arrays and σE and σI
being other sorts, indicates the array sort derived from the index sort σI and element
sort σE . Note that we will use a different notation in chapters 3 to 5, which follows
LLVM-IR’s notation for types more closely.

When referring to functions defined in any of the theories defined by SMT-LIB, we
will follow SMT-LIB’s naming of the those functions, though we will use first-order
logic syntax instead of SMT-LIBs Lisp-inspired syntax. We use a subscript to specify
additional information, wherever required. E.g. the SMT-LIB function (bvadd x
y) for the bitvector addition of x and y will be written as bvadd(x, y). while the
expression ((_ extract 15 8) x) for extracting bits 8 to 15 from the bitvector x
will be written as extract8,15(x).

Finally, SMT does not distinguish syntactically between formulæ and terms. Instead
formulæ are terms of a special, boolean sort. Because SMT’s booleans are terms, in
contrast to formulæ in first-order logic, they can be used as arguments to functions.
This makes it syntactically possible in SMT to define the ternary function ite (if-
then-else, see [RT03]), which takes a boolean as its first argument and returns the
second argument if the first argument is true and the third argument otherwise:

∀c, x, y, z
(
x = ite(c, y, z)↔ c ∧ x = y ∨ ¬c ∧ x = z

)
(2.1)

Just like equality, this function is implicitly defined in SMT-LIB for all sorts.

As is common in SMT, we restrict ourselves to ground formulæ and make frequent
use of uninterpreted constant symbols.

SMT has proven to be highly useful for a wide range of verification tools, with differ-
ent tools using different theories. For LLBMC, out of the SMT theories standardized
or suggested so far, the two theories that are the most relevant are the theory of

16 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

bitvectors and the theory of arrays. Furthermore, LLBMC’s use of these theories
is restricted to the quantifier free fragment. Because of the finite nature of the
theory of bitvector and the theory of arrays (of bitvectors), the resulting formulæ are
decideable. However, this comes at the cost of only being able to analyze bounded
fragments of programs.

2.1.3 The Theory of Bitvectors

The theory of bitvectors is concerned with modeling vectors of bits and operations
on these vectors in logic. The functions defined in this theory are based on the core
set of operations supported by the arithmetic logic unit of a computer’s CPU. These
are bitwise logic operations, such as bitwise conjunction and disjunction, but also
arithmetic operations, such as addition, subtraction, multiplication, et cetera.

Due to the limited number of bits in each bitvector, these arithmetic operations have
subtle differences compared their regular definition for mathematical integers. E.g.
the expression x+ 1 > x is always true for mathematical integers, but might not be
true if + and > are interpreted as operations on bitvectors. This is because if x is
the largest representable value for a given bitvector type, the additional will wrap
around and result in the smallest representable bitvector for x+ 1. This is obviously
smaller than x itself, making x+ 1 > x false for this particular value.

Most implementations of bitvector solvers apply bit-blasting in one way or the other.
The idea behind bit-blasting is to reduce a formula in the theory of bitvectors to
an equisatisfiable formula in propositional logic.1 This formula can then be solved
with an off-the-shelf SAT solver. For this, each bitvector variable is represented by
a vector of separate propositional logic variables. Functions and predicates on the
bitvectors are then replaced by propositional logic formulæ modeled after the circuit
of the function or predicate in question. Bitvector addition, for example, is usually
bit-blasted to a formula that mimics the circuit of a ripple-carry adder.

Pure bit-blasting does not make use of syntactically recognizable tautologies on the
bitvector level such as x + y = y + x. Instead with bit-blasting alone, the circuit
representation of x + y and that of y + x would be generated and the resulting
bit-vectors would be compared to each other bit by bit. Because of this, bit-blasting
is usually combined with formula transformations, that try to identify these cases
and simplify them before bit-blasting happens.

More importantly though, modern bitvector solvers try to avoid bit-blasting the
whole formula up-front, as this might not even be necessary to decide satisfiability
but can be very costly. Instead, an over-approximation of the real formula is passed
to the internal SAT solver and if the solver finds a model, it is checked against
the background theory for bitvectors. If the model is not valid with respect to the
theory the necessary circuitry to rule out this particular model is bit-blasted and the
SAT solver is run again. One such, introduced by Brummayer and Biere [BB09] for
bitvector solvers, is called lemmas on demand.

1 Each bit in each bitvector in the bitvector formula is identified with a variable in the proposi-
tional logic formula.

2.1. THEORETICAL BACKGROUND AND FOUNDATIONS 17

2.1.4 The Theory of Arrays

The second SMT theory highly relevant for this thesis is the theory of arrays. This
theory models arrays and contains three sorts, the sort I for indices, the sort E for
elements, and the binary sort σA(σI , σE) for arrays mapping from σI to σE . For
brevity we will use σA instead of σA(σI , σE), if σI and σE are obvious. The theory
has only two functions,

select : σA × σI → σE

for retrieving the value stored at a specific index in the array, and

store : σA × σI × σE → σA

for updating the element at a certain index in the array. The theory is concisely
described by McCarthy’s [McC62] axioms:

∀a, i1, i2, e
(
i1 = i2 → select(store(a, i1, e), i2) = e

)
(2.2)

∀a, i1, i2, e
(
i1 6= i2 → select(store(a, i1, e), i2) = select(a, i2)

)
(2.3)

∀a1, a2
(
a1 = a2 ↔ ∀i

(
select(a1, i) = select(a2, i)

))
(2.4)

The first axiom states that if one writes to an array at a specific index and then reads
from the result array at the same index, then the result is equal to the previously
written element. The second axiom states, that writing to a specific index does not
change elements subsequently read from a different index. The third axiom specifies
that two arrays are equal if all elements are equal. this property is called extensionality.
Note that not all SMT solvers support extensionality, e.g. STP, LLBMC’s preferred
SMT solver, never has while Boolector did and Boolector 2 at the time of writing
does not.

A simple and straightforward decision procedure for the theory of arrays (without
extensionality) can be implemented in two steps. First as a term rewriting system,
which “moves” all select operations over the store operation that makes up its
first argument, by exhaustively replacing all select(store(a, i1, e), i2) by ite(i1 =
i2, e, select(a, i2)). All store functions can now be removed from the formula. Then,
in a second step, all remaining select functions are replaced by uninterpreted terms
r1, r2, · · · ∈ σE and for all pairs (ri, rj) the constraint i = j → ri = rj is added to
the formula.

The theory of arrays is used in LLBMC to model memory and accesses to memory.
It is notable, that LLBMC does not have a hierarchical memory model, but uses a
single array to model the whole range of addressable memory.

2.1.5 Temporal Logic

Temporal logic provides means to reason about the passage of time without having
to talk about time or points in time explicitly. Temporal logic is best suited for
reasoning about concurrent systems but can also be used for sequential program.
In this thesis we restrict ourselves to linear temporal logic (LTL), as is common for
bounded model checking.

18 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

We assume the reader is familiar with LTL and will content ourselves with a short
introduction into the notational conventions used in this thesis. Using Backus-Naur
form, we defined an LTL formula as follows:

φ, ψ ::= > | ⊥ | p | ¬φ | φ ∨ ψ | φ ∧ ψ | X φ | Fφ | Gφ | φUψ | φRψ

Here, p is a proposition or a predicate, the symbols >, ⊥, ¬, ∧, ∨ are defined as
usual. Furthermore, X φ indicates φ holds in the next state, Fφ indicates φ holds in
some future state, Gφ indicates φ holds in all future states, φUψ indicates φ holds
until ψ holds and ψ is eventually true, and φRψ indicates φ holds until ψ holds or
φ holds forever.

Temporal logic makes it possible to express safety and liveness properties concisely.
Safety properties assert that “nothing bad (ever) happens”. In temporal logic a
safety property is expressed as G¬φ where φ describes an error state. while liveness
properties assert that “something good eventually happens”. In temporal logic, a
liveness property is express as Fφ, where φ describes a state that should eventually
be reached.

Another way to distinguish these properties is by the properties of the counterexam-
ples required. For safety properties, finite counterexamples are sufficient to show that
they do not hold, while liveness properties require infinitely long counterexamples
shaped like a lasso.

2.1.6 Term Rewriting Systems

Term rewriting is a major part of this thesis, as can be seen in chapters 4 and 6.
Term rewriting provides a formalism for describing how terms can be transformed,
often to retrieve simpler but equivalent terms. Notational conventions used in this
book are loosely based on the conventions introduced by Bündgen [Bün98]. Because
we apply term rewriting to first-order logic terms, we will use terms and functions
as defined in section 2.1.1.

We will use l −→ r to indicate a term rewriting rule, where the term l can be
rewritten to r. For example, we can provide a more formal description of the first
part of the decision procedure for the theory of arrays hinted at in section 2.1.4, by
using the ite function defined in equation (2.1) to combine the theory of array’s
axioms in equations (2.2) and (2.3) into a single rewrite rule

select(store(a, i1, e), i2) −→ ite(i1 = i2, e, select(a, i2)). (2.5)

Applying this rewrite rule to the term

y = select(store(store(a, k, y), j, x), i))

once, we obtain the term

y = ite(j = i, x, select(store(a, k, y), i)).

Note how the subterm matching the left hand side of the rewrite rule was replaced
by the right hand side of the rewrite rule. We can apply the same rewrite rule again
to obtain

y = ite(j = i, x, ite(k = i, y, select(a, i))).

2.1. THEORETICAL BACKGROUND AND FOUNDATIONS 19

The rewriting now terminates, because even though the term still contains a select,
we cannot apply the rewrite rule on it because its first argument is not a store and
the subterm does not match the left hand side anymore.

We will call a set of rewrite rules a term rewriting system and follow Bündgen’s
definition in [Bün98, p. 31]. A term rewriting system is applied to a term (or formula)
by applying all rewrite rules in the term rewriting system on the term (respectively
formula) and all of its subterms until no further rule can be applied.

We will frequently use conditional term rewriting rules. Such rules can only be
applied if a given condition is met. We will write l −→ r ; c to indicate that the
rewrite rule l −→ r can be applied only if the condition c holds.

For example, the rewrite rule in equation (2.5) can be supplemented by the following
two rules:

select(store(a, i1, e), i2) −→ e ; i1 = i2

select(store(a, i1, e), i2) −→ select(a, i2) ; i1 6= i2.

With this rule we can rewrite the term select(store(a, 0, e), 0) to e instead of ite(0 =
0, e, select(a, i)).

We will frequently be able to evaluate the conditions for the rewrite rules in this
dissertation statically. For example, all rewrite rules in chapter 4 only depend on
syntactic properties of the program under verification. Because of this, for any given
program a finite set of non-conditional rewrite rules, which is sufficient to rewrite
that specific program, can be derived from a conditional rewrite rule. We will refer
to this kind of conditional rewrite rule as a term rewriting rule schema.
For convenience we will occasionally use a syntax similar to term rewriting rules to
construct sets of similarly structured rewrite rules from a template. For example,
given the template

ordered(a, b, c) −→ a < b ∧ b < c (2.6)
we can rewrite the rewrite rule

foo(a, b, c, d, e) −→ ordered(a, b, c) ∧ ordered(c, d, e) (2.7)

into the rewrite rule

foo(a, b, c, d, e) −→ a < b ∧ b < c ∧ c < d ∧ d < e. (2.8)

Instead of applying the rule in equation (2.7) to the term and afterwards the rule in
equation (2.6) on the resulting term, we apply the second rule to the first and then
apply the resulting rule to the term. The result is the same, though it reduces the
overall number of rewrite operations for many formulæ.

We use such templates in multiple places for different reasons. For example, we
introduce such a template in equation (4.1) to work around the polymorphism
coming from LLVM’s concept of a value, without having to introduce a large number
of nearly redundant rules for all subtypes of these values, such as instructions, basic
blocks, or constants. Furthermore, we present a meta rule in equation (4.39) to
handle disjunction of more than two arguments where the number of arguments
is known in advance for every instance but might be different each time. Finally,
we introduce two such rules in equation (5.1) simply to avoid having to add the
functions contains and disjoint to the term rewriting system.

20 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

2.1.7 Graphs

This dissertation uses two different kinds of graphs prominently, control flow graphs
(see section 3.5) and call graphs (see section 3.6). Control flow graphs describe the
control flow between basic blocks in a single function, while call graphs describe
control flow between functions. These two types of graphs are used in LLBMC for
example to implement the bounding of the control flow from which the method
software bounded model checking has its name.

Graphs are defined as usual:

Definition 2.1 (Graph). A graph is an ordered tuple (V,E), where V is a set of
vertices and E a set of edges, with E ⊆ (V × V).

A graph can be directed or undirected:

Definition 2.2 (Directed graph). A directed graph is a graph (V,E), where each
e ∈ E is a pair.

Consequently, an undirected graph is a graph where each e ∈ E is an unordered pair.
However, in the following, we will use directed graphs exclusively and any graph
mentioned in this thesis may be assumed to be directed.

Figure 2.1 shows an example for a graphical representation of a directed graph with
three vertices (v1, v2, v3) and four edges between them ((v1, v2), (v1, v3), (v2, v3),
and (v3, v1)).

v1

v2 v3

Edge

Vertex

Figure 2.1: Example of a directed graph

When talking about calling relations between functions and when discussing coun-
terexamples we will require walks over graphs:

Definition 2.3 (Walk). Given a graph (V,E), a walk w = (v1, e1, . . . , en−1, vn)
is an alternating sequence of vertices (vi ∈ V) and edges (ei ∈ E). Its first and
last element are vertices and each edge connects its predecessor and its successor
vertex: ei = (vi, vi+1).

The graph in figure 2.1 contains the walk (v1, (v1, v3), v3, (v3, v1), v1, (v1, v2), v2),
while (v1, (v1, v2), v2, (v2, v1), v1) is not a walk in this graph, because (v2, v1) is not
an edge in this graph and (v1, (v2, v3), v3) is not a walk at all.

We furthermore require the definition of a cycle:

Definition 2.4 (Cycle). Given a graph (V,E), a cycle is a walk (v1, e1, . . . , en−1, vn),
where v1 = vn.

2.2. RELATED WORK AND STATE OF THE ART 21

In the example in figure 2.1, (v1, (v1, v3), v3, (v3, v1), v1) is a cycle.

This definition immediately leads to one of the most important graph related defini-
tions concerning software bounded model checking:

Definition 2.5 (Acyclic graph). An acyclic graph is a graph that does not contain
cycles.

The graph in figure 2.1 is, for example, not acyclic.

Given the definition of a walk in definition 2.3 we can now define a connected graph:

Definition 2.6 (Connected graph). A connected graph (V,E) is a graph, where
for all v1, v2 ∈ V there is a either a walk w = (v1, . . . , v2), or a walk w′ =
(v2, . . . , v1).

An even stronger restriction on graphs is the tree:

Definition 2.7 (Undirected tree). An undirected tree is a graph in which all pairs
of vertices are connected by exactly one path.

We can now define a directed tree with an explicitly named root:

Definition 2.8 (Directed, rooted tree). The tuple (V,E, r) is a directed, rooted
tree, if (V,E) is directed graph and ∀u ∈ V

(
(u, r) 6∈ E

)
. r is called the root of the

tree.

figure 2.2 shows an example of a directed, rooted tree.

v1

v2 v3

v4 v5 v6

Root

Figure 2.2: Example of a directed, rooted tree (V,E, v1)

2.2 Related Work and State of The Art

Software bounded model checking, the primary focus of this dissertation, is just one
small single step in the research on software verification done over many years. This
section provides an overview of the historical context of software bounded model
checking as well as insight into the current state of the art concerning this verification
method.

22 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

2.2.1 A Brief History of Formal Software Verification

Already in the earliest years of computer science as an academic discipline, formal
mathematic proofs of a program’s correctness were considered desirable. In 1949
Alan Turing asks in his paper “Checking a large routine” “How can one check a
routine in the sense of making sure that it is right” (Turing [Tur49, page 67]) and
consequently introduces an approach on how to do exactly this.

Interest in formal methods for software verification further rose in the 1960s with
McCarthy [McC62] introducing a basis for a mathematical theory of computation
and Naur [Nau66] presenting so called snapshots for conducting semi-formal proofs
on programs. Roughly at the same time, but mostly independently of each other,
Robert Floyd and C. A. R. Hoare approached the same issue in a more formal and
axiomatic way, Floyd [Flo67] for flowcharts and Hoare [Hoa69] for program code.
Both provided formal semantics for a programming language’s constructs and thereby
made formal reasoning about said programs possible.

This laid the foundation for what became later known as Floyd-Hoare logic : a formal
system for reasoning accurately about the correctness of programs. For several years,
Floyd-Hoare style verification methods were predominant in this area of research.
The methods used at this time, however, were highly theoretical and relied heavily
on theorem proving, which requires a lot of ingenuity from the user.

In the 1970s Pnueli [Pnu77] first described a temporal logic of programs. He applies
temporal logic, which was previously predominantly used in philosophy, to software
systems. Instead of reasoning about the program’s input and output, Pnueli argues
for reasoning about the ordering of events in time. Temporal logic makes it possible
to do so without introducing time explicitly, and thereby allows more elaborate
reasoning about parallel and reactive systems. The approach is particularly well-
suited for typical desired properties of concurrent systems, like mutual exclusion or
the absence of deadlocks. Pnueli, though, still advocated hand-constructed proofs.
This only changed with the advent of model checking.

2.2.2 Explicit State Model Checking

When Clarke and Emerson acquainted themselves with Pnueli’s work on temporal
logic in 1981, they realized that the proof-theoretic approach can be replaced, in
suitable cases, by a model-theoretic one. This is important in so far as this way,
proof construction, which is tedious and requires a fair amount of ingenuity, is not
required anymore. This led to the invention of model checking [CE81].2 The term
model checking nowadays refers to a diverse number of related methods. The classic
approach introduced in [CE81] and discussed in the following is nowadays commonly
referred to as explicit state model checking .

In short, explicit state model checking refers to the problem of showing that a given
structure (usually a Kripke structure) is a model for a given formula (usually provided
in temporal logic). explicit state model checking represents a system’s state space
as a so called Kripke structure. A Kripke structure is essentially a directed graph
whose nodes represent system states and whose edges represent state transitions.

2The concept was discovered independently by Queille and Sifakis [QS82].

2.2. RELATED WORK AND STATE OF THE ART 23

Additionally, a labeling function maps states to sets of atomic propositions that hold
for each state. These propositions are used in temporal logic formulæ to specify the
desired properties of the system. Each temporal logic modality can be characterized
as a fix point of a monotonic functional over the set of propositions over the set of
states. In [CE81] multiple decision-procedures for the model checking problem are
proposed, all based on the calculation of said fix point, with the best-performing
algorithm being closely related to Tarjan’s algorithm for finding strongly connected
components.

Initially model checking was applied primarily on abstract state machines (e.g. models
of network protocols), but it was also used for hardware verification as early as [MC85].
Since then, research on explicit state model checking has progressed considerably,
with the SPIN model checker, presented in [Hol97], being one of the most prominent
examples for modern explicit state model checkers. SPIN is also notable in that it
supports embedded C code as part of the model specifications, and also supports
model checking of C programs, as presented in [Hol00].

The key disadvantage is the so called state space explosion: For realistic systems, the
number of states grows exponentially, which makes reasoning about these systems
infeasible. For example a process with 4 32-bit registers would already have 2128

states, which is infeasible to handle with an explicit state model checker. While
various approaches were invented to counteract this, e.g. by making use of symmetry,
the state space explosion is still by far the biggest limitation of explicit state bounded
model checking.

2.2.3 Symbolic Model Checking

A major break-through in extending the number of states a model checker can handle
was symbolic model checking , introduced by Burch et al. [Bur+90].

In symbolic model checking the set of reachable states is represented by a character-
istic boolean function. This function is represented using binary decision diagrams
(BDD).3 This way the Kripke structure does not need to be built, and this approach
thereby avoids the space consumption of the Kripke structures. Efficient operations
on BDDs for negation, conjunction, substitution and quantification enable a far more
efficient fix point calculation, allowing model checking of systems with up to 1020

states and beyond.

Examples for successful implementations of symbolic model checking include the
pioneering SMV, presented by McMillan [McM93], as well as the newer NuSMV,
presented by Cimatti et al. [Cim+99]. The latter being a reengineering, reimple-
mentation and extension of the former. Furthermore, symbolic model checking was
applied successfully in the industrial environment. As reported by Fix [Fix08], the
method is used at Intel for finding bugs in their system design since 1995. In par-
ticular in CPU design, symbolic model checking found defects in the design that
otherwise would either have been found much later in the process (making fixing
these defects considerably more expensive) or that even might have slipped through
validation and verification and ended up in the finished product. The use of symbolic
model checking at Intel was, to no small part, driven by the fact that the Pentium

3Strictly speaking it is reduced ordered binary decision diagrams (ROBDD).

24 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

FDIV bug from 1994, which cost Intel an estimated $400-500 million and made the
company the object of ridicule around the world, could likely haven been prevented
by the use of model checking.

While the state space explosion problem is reduced considerably with symbolic model
checking, it is not eliminated. The ordering of variables has a huge impact on the
size of a BDD and it can be hard to find a good ordering for a given formula. But
even more troubling is the fact that for some problems no efficient encoding exists at
all. And these cases are highly relevant, in particular for model checking of software
systems, with a prominent example being integer multiplication. As Bryant [Bry86]
proved, no good variable ordering exists for integer multiplication.

2.2.4 Bounded Model Checking

An approach to mitigate the state space explosion proposed by Biere et al. [Bie+99] is
called bounded model checking (BMC). Bounded model checking uses SAT solving
instead of BDDs at its core and checks bounded traces through the system.

Bounded Model Checking works by unrolling the system k-times. This means for a
system with a state representable by n bits, kn bits are allocated in total, with n
bits for each of the k unrolled copies of the state. The method then adds constraints,
which encode the transition relation for each pair of successive states, to the propo-
sitional logic formula. Additionally, the desired properties are negated and expressed
in propositional logic and added to the formula. A SAT solver is then used to check
for satisfiability of the resulting formula. If the formula is satisfiable, the generated
model can be translated into a sequence of states that make up a counterexample.
However, if the formula is unsatisfiable for a given bound k, the bound is increased
by one until either a counterexample is found or a sufficiently large bound is reached.
Biere et al. [Bie+99] introduces various methods for estimating an upper bound for
the bound.

The method has a number of advantages over symbolic model checking. For once,
it suffers less from the space explosion problem than BDD based methods do. In
addition, BMC finds counterexamples quickly. This is to some degree because at
their core SAT solvers follow a depth-first approach, but this is also due to the highly
optimized SAT solvers available today. By starting with short paths through the
program and gradually increasing their length by one, BMC can also guarantee that
it finds shortest counterexamples. This is important because shorter counterexamples
are in general easier to understand than longer ones. Last but not least, unlike with
BDDs, no manual variable ordering is required.

Due to the state space explosion problem, “[m]odel checking is often used for
finding logical errors (‘falsification’) rather than for proving that they do not exist
(‘verification’)” [BAS02]. Furthermore, “[i]n practical application, checking of safety
properties is prevalent” [BAS02]. Bounded Model Checking continues this trend in
that it is best suited for falsification of safety properties.

2.2. RELATED WORK AND STATE OF THE ART 25

2.2.5 Software Bounded Model Checking

After the success of bounded model checking for hardware systems, the application
of bounded model checking to software systems seemed to be the logical next step.
Unfortunately, software systems in general have a markedly different structure to
hardware systems. Hardware systems mostly have a well-defined state which consists
of the CPU registers and the system’s memory, as well as single control loop that can
be unwound easily. In contrast, software systems in general have nested loops and
potentially recursive function calls as well as a dynamically growing and shrinking
state space resulting from heap and stack based memory allocation.

Nonetheless, bounded model checking can be applied to software, though the ap-
proach differs significantly from hardware bounded model checking. The first tool
to implement software bounded model checking was CBMC, the C Bounded Model
Checker. The tool was first presented by Clarke et al. [CKL04] and is still actively
developed at the University of Oxford under supervision of Daniel Kröning. The fol-
lowing description of CBMC’s mode of operation is based heavily on the publication
mentioned above and the slightly more in-depth technical report [CKY03].

CBMC transforms a C program into a CNF formula in seven steps:

1. The program is preprocessed using a regular C preprocessor eliminating all
preprocessor directives, such as #define and #include.

2. The program is transformed into an equivalent but simplified structure, e.g.
break and continue are replaced by equivalent goto statements.

3. Structured loops are unwound, i.e. the loop body is repeated n times, each
copy of the body being guarded by appropriate if statements. An unwinding
assertion is inserted after the last copy of the loop body to ensure the selection
of an insufficiently large bound n is detected.

4. Unstructured loops, i.e. those using backwards goto statements are unwound
similarly to structured loops.

5. Function calls are expanded. Recursive calls are unwound up to a certain bound.
An inlining assertion is inserted similarly to the one for loop unwinding. The
resulting program consists solely of assignments, if statements, assertions,
labels, and forward jumping gotos.

6. The program is transformed into single static assignment form. In this form,
each variable is only assigned once, on declaration, making each variable es-
sentially a constant value. This form is syntactically already mostly identical
to a bitvector formula.

7. Finally, the bitvector formula is bit-blasted to a CNF formula.

The CNF formula is then passed to a SAT solver, in this case MiniSat [ES03],
for solving, and if the formula is satisfiable, the model found by the SAT solver is
translated back into a counterexample for the C program.

CBMC was quite successful and inspired development on SMT-CBMC [AMP06] is a
prototypical adaptation of CBMC which uses SMT solvers as their back end instead
of SAT solvers. Work on SMT-CBMC is, to the best of the author’s knowledge,

26 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

discontinued. In the same year F-Soft was presented to the public in [GG06]. F-
Soft, like SMT-CBMC, uses SMT solvers. The tool is conceptually closer to more
traditional model checkers than CBMC and its derivatives, but improves on previous
work on traditional model checking in the extraction and efficient use of high-level
information.

In 2009 ESBMC, a second adaptation of CBMC to use SMT solvers, was presented
to the public by Cordeiro et al. [CFM09]. In contrast to SMT-CBMC, it is still
actively developed and a considerable number of research papers are based on it.
For example the tool was extended to support C++, as described by Ramalho et al.
[Ram+13].

In 2010 LLBMC was presented to the public by Sinz et al. [SFM10]. Like SMT-
CBMC and ESBMC, LLBMC is based on SMT solvers, but in contrast to the former
two, LLBMC uses a compiler framework as a front end. LLBMC is the focus of the
present thesis and will be presented in-depth in chapter 3.

Another project that took a similar approach to LLBMC was LAV, published by
Vujosevic-Janicic and Kuncak [VK12]. LAV followed LLBMC’s example in using
LLVM as its front end and an SMT-solver as its back end. LAV differs from LLBMC
in that it incrementally extends the context in which each LLVM-IR instruction is
checked. At first, LAV checks the instruction by itself, and only if the instruction is not
safe by itself is it checked in the context of the containing basic block. If necessary, the
checking context can then be extended to include the whole function. Unfortunately,
LAV never competed in the International Software Verification Competition, therefore
no direct comparison between LLBMC and LAV performance exists.

The tool FAuST by Riener and Fey [RF12] implements software bounded model check-
ing on top of LLVM-IR and SMT solvers. FAuST thereby closely follows LLBMC’s
approach. FAuST extends this by an application layer which makes it easy to use
SBMC for specific use cases such as test case generation.

Interestingly, with the exception of F-Soft, for none of these tools temporal logic
seems to play the prominent role that it did for the more traditional model check-
ing techniques. This is certainly because these tools only support checking safety
properties (Gφ). Because of this, the inventor of model checking, Clarke, would not
consider these tools model checkers at all, as he explains in Clarke [Cla08].

Case studies, like those presented by Post [Pos09] and Post et al. [Pos+09], have
demonstrated the feasibility of Software Bounded Model Checking for real world
embedded software. This includes application of the method on an implementation
of the AES crypto system, multiple versions of the Linux operating system kernel,
and several software products from the automotive industry. This is even true for
the verification of functional properties, e.g. for the Advanced Encryption Standard
(AES) in [Pos09], but also for automotive code by Post et al. [Pos+09].

Current research on software bounded model checking seems to focus primarily on
applying the method on new use cases, as well as on ways to better cope with the
inherent limitations of the method caused by the boundedness.

One approach at going past the bounds of bounded model checking attempts to use
k-induction for this. k-induction was invented by Sheeran et al. [SSS00] and adapted
to software bounded model checking by Donaldson et al. [DKR11; Don+11]. A core
limitation in bounded model checking comes from the fact that all traces that reach

2.2. RELATED WORK AND STATE OF THE ART 27

a loop bound are cut off at this point. This means checking a loop that needs to run
at least n times with a bound k < n will make the code after the loop unreachable.
k-induction tries to solve this problem, by unrolling the loop 2k times, and adding
a special state transition after the first k iterations. This transition leads to a set
of states for which nothing is known about the part of the state modified in the
loop. Execution is assumed to continue as usual afterwards. Obviously, this approach
introduces spurious counterexamples. In an attempt to reduce this problem, Rocha
et al. [Roc+15] combined k-induction with invariants for checking properties in
bounded and unbounded loops.

Concurrency is another hot topic in software bounded model checking. Work on
this started as early as 2005 by Rabinovitz and Grumberg [RG05]. Later on Morse
et al. [Mor+11] introduced context-bounded model checking. The method limits
the number of contexts (and thereby context switches) executed. The idea being
once again to make use of the small scope hypothesis for finding concurrency bugs
quickly. More recent work includes CSeq, published by Fischer et al. [FIP13], which
also interleaves contexts, and lazy CSeq [Inv+14], which was hugely successful in
the concurrency track of the International Software Verification Competition 2014.

Further related work includes an approach to modularization of software bounded
model checking presented by Hashimoto and Nakajima [HN09], as well as Franken-
bit, presented by Gurfinkel and Belov [GB14], which is a combination of LLBMC-
based software bounded model checking and UFO (see [Alb+12]), a framework for
abstraction- and interpolation-based software verification.

28 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

Chapter 3

LLBMC: An Efficient
Implementation of SBMC

This chapter provides an overview of LLBMC in section 3.1, gives an introduction
into LLVM’s intermediate representation in section 3.2, shows how properties on the
C language level are translated to LLVM-IR in section 3.3. Furthermore, the chapter
shows how compiler optimization passes can be used for the benefit of software
bounded model checking in section 3.4, and it gives an introduction into control flow
graphs (see section 3.5) and call graphs section 3.6. Finally the chapter introduces
LLBMC’s intermediate logic representation in section 3.7.

3.1 An Overview of LLBMC

LLBMC is a software bounded model checker designed for the verification of safety-
critical embedded systems. Its primary focus lies on the verification of runtime
properties, such as undefined behavior in C, though it also allows verification of
functional properties to some degree.

LLBMC was developed at the Karlsruhe Institute of Technology, more precisely at
the research group “Verification Meets Algorithm Engineering“ at the Institute for
Theoretical Computer Science. Development on LLBMC started mid-August 2009
under supervision of Dr. Carsten Sinz. Initial work on LLBMC was supported in part
by the “Concept for the Future” of the Karlsruhe Institute of Technology within the
framework of the first German Excellence Initiative.

Development on LLBMC was inspired by the software bounded model checker CBMC.
CBMC was invented by Clarke et al. [CKL04] at Carnegie Mellon University. The tool
was primarily developed by Daniel Kröning, who is supervising ongoing development
of CBMC at the University of Oxford. A more in-depth description of CMBC is
provided in section 2.2.5. In short, CBMC relies heavily on source-level transforma-
tions via goto-cc, a preprocessor which compiles C/C++ programs into a subset
of C/C++ and makes heavy use of goto statements instead of structured control
flow. The resulting program is then converted into a bitvector formula, which in turn

29

30 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

is bit-blasted to a propositional logic formula and converted to conjunctive normal
form. This formula is then solved by an off-the-shelf SAT solver.

Since publication of [CKL04], the first work on CBMC in 2004, two new frameworks
emerged: the SMT-LIB standard, which accelerated adoption of SMT in the research
community, and the compiler framework LLVM by Lattner and Adve [LA04] which
turned from a research project into a versatile and widely adopted technology.

LLVM is an open source compiler framework supporting ahead-of-time compilation
as well as just-in-time compilation for a wide range of languages and architectures
[LA04]. In addition it provides a clean architecture throughout and good standards
support, while being known for its above-average documentation. The LLVM com-
munity is also pronouncedly friendly towards research projects, with more than 240
papers published between 2002 and 2015 based on the framework1. This also resulted
in a large number of static analyses related research projects based on LLVM-IR
[CDE08; CKC11; VK12; LGR11; McM10; RF12; RE11; Alb+12; GB14]. At the
same time LLVM is increasingly used in various open source projects while also
being embraced by various IT companies, including IBM and Apple. Especially Apple
invested in the framework early on and these days, LLVM is the default compiler for
Apple’s OS X and iOS architectures.

Higher-level languages like C or C++ are often syntactically and semantically complex.
Lower-level languages like LLVM’s intermediate representation (LLVM-IR) are far
simpler to parse and reason about. LLBMC makes use of LLVM’s compiler front end
and middle end to turn C and C++ code into LLVM-IR code. Thereby the complexity
of LLBMC’s own front end is greatly reduced.

The other new technology that emerged in the mean-time, SMT, was equally im-
portant to the development of LLBMC. The idea behind SMT is explained in sec-
tion 2.1.2. Implementing efficient procedures for encoding programs as satisfiability
problems, e.g. by bit-blasting, is time consuming, error prone, and often restricts a
static analysis tool to a single encoding strategy. Using SMT Solvers instead allows
using higher-level theories, such as the theory of bitvectors or the theory of arrays.
This hides the concrete implementation behind a standardized abstraction layer.

Using LLVM and SMT in combination tremendously reduces the gap between higher-
level languages like C and the propositional logic formula at the core of a software
bounded model checker. These technologies thereby also greatly facilitate one of
the core design goals of LLBMC: a clean and extensible software architecture.

3.1.1 A Multi-Layered Architecture

LLBMC consists of eleven internal components2 (see table 3.1) and depends on
a number of external components, e.g. from the LLVM compiler framework and
multiple SMT solvers.

All internal and external components are arranged in four architectural layers, as can
be seen in figure 3.1. Components in higher layers may only depend on components

1http://llvm.org/pubs/
2 While the term modules is more fitting here, given the lack of a specified interface and

substitutability, it was avoided due to the danger of confusion, considering the same term is already
being used in LLVM for a different concept.

http://llvm.org/pubs/

3.1. AN OVERVIEW OF LLBMC 31

Call Graph Call graph representation and construction.
Configuration Translation of command line options to configuration settings

of individual components.
Encode Encoding of LLVM-IR in a call graph and an ILR formula.

ILR Language definition of the Intermediate Logic Representation.
Optimize Compiler optimizations implemented as a set of LLVM optimiza-

tion passes.
Output User friendly printing of LLBMC’s results.
Simplify Term rewriting based formula simplification for ILR formulæ.

SMT Unified interface for driving multiple SMT solvers.
Solve Classes related to solving ILR formulæ.
Tools Higher-level algorithms, e.g. the model checking algorithm itself.

Utilities Utility, support and helper libraries.

Table 3.1: LLBMC’s internal components

directly below them, but may never depend on components in the same layer or
above. The architectural layers are, from bottom to top, the utility and dependency
layer, the data structure layer, the algorithmic layer, and the policy and input/output
layer.

cl
an
g

Tools & Configuration Output

Optimizer Encoder Simplifier Solver

LLVM-IR ILR & Call Graph SMT

Utilities, Support and Abstract Data Types ST
P

Z3 ...

Policy & IO

Algorithms

Data structures

Utilities

Internal External Mixed

Figure 3.1: LLBMC’s architectural layers

The utility and dependency layer contains external dependencies, e.g. SMT solvers
such as STP, Boolector, Z3, CVC4, but also LLVM’s many utility classes and abstract
data types. The utilities in this layer are mostly generic and therefore not specific
to LLBMC’s core purpose.

The data structure layer contains the core data structures. The most important
components here are the classes implementing LLBMC’s Intermediate Logic Repre-
sentation and call graph related classes. This layer also contains LLVM’s Intermediate
Representation and an abstraction layer for uniform access to all supported SMT

32 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

solvers.

The algorithmic layer contains, as the name indicates, most of LLBMC’s core algo-
rithms. This includes various compiler optimization passes, a component for encoding
LLVM-IR in ILR, a component for simplification of ILR by term rewriting, and a
component for translating ILR to SMT as well as for using SMT solvers to solve
ILR formulæ.

The policy and IO layer provides translation from command line options to the
various configuration options of the algorithmic layers. It also contains LLBMC’s
higher-level application programming interface. Finally, this layer also translates the
tool’s output back into a user readable format.

LLBMC also consists of five language layers (see figure 3.2), which are orthogonal
to its architectural layers. Each of these layers is built around one language, be it
a programming language or logic one. The five layers correspond to the languages
C/C++, LLVM-IR, ILR, SMT, and SAT. As important as the layers themselves are
the transitions and translations between the layers and their languages.

clang / LLVM

SMT solver

LLBMC

C/C++
code

LLVM IR

ILR formula

SMT formula

SAT formula SAT model

SMT model

ILR model

LLVM trace

C/C++
trace

Code Logic

Figure 3.2: LLBMC’s language layers

Figure 3.2 gives a visual overview of the different layers in LLBMC. The figure
illustrates how LLBMC translates the input program and the properties to be checked
step-by-step from C/C++ to SAT. It also shows how the resulting satisfiability
problem is solved using a SAT solver and how the found model, if one exists, is
translated back into a counterexample on the C/C++ level.

The C layer is mostly implemented in clang, LLVM’s C language front end. LLBMC
uses a modified version of clang, which has a plugin interface added to its code
generator (see section 3.3). Because of this, LLBMC itself does not require a separate
code generator, but relies on a number of such plugins for its code generation instead.

LLBMC’s LLVM-IR layer contains LLVM’s implementation of its intermediate rep-

3.1. AN OVERVIEW OF LLBMC 33

resentation and LLVM’s built-in optimization passes. Furthermore, LLBMC adds
its own optimization passes and adapts some of LLVM’s passes for use in LLBMC
(see section 3.4). The LLVM-IR layer is connected to the ILR layer below it, by the
Encoder component, which encodes LLVM-IR formulæ in ILR (see chapter 4).

The ILR layer contains the classes implementing ILR itself (see section 3.7), as well
as the term rewriting system for simplification (see section 6.1). Additionally, this
layer contains control flow and call graph related classes (see sections 3.5 and 3.6),
though these classes are mostly closely tied to the Encoder component. An ILR
solver based on SMT, including translation from the ILR layer to the SMT layer, is
contained in the Solver component.

The SMT layer is mostly internal to the SMT solvers, as is the SAT layer below it.
LLBMC only contributes a thin wrapper around the various supported SMT solvers
in the Solver component.

Not all components in LLBMC are associated with one of these language layers. The
Tools component provides higher-level control and configuration of the algorithms
and does so for most language layers. Similarly classes from the Utility component
may be used in any language layer.

3.1.2 Model Checking Algorithm

LLBMC’s higher-level model checking algorithm is strictly sequential with five stages
executed one after the other. Because of this, this algorithm is rather simple, as can
be seen in listing 3.1. The algorithm takes an IR module p containing the system
under verification as its first argument. The second argument, the entry point e, is a
function in p that serves as an entry point into the system. The final two arguments,
bl and bc are integers indicating maximum number of loop iterations as well as the
maximum function call depth.

1 function modelcheck(p, e, bl, bc)
2 p ← optimize(p)
3 p ← unroll(p, bl)
4 g ← callgraph(p, e, bc)
5 ϕ ← encode(p, g)
6 ϕ ← simplify(ϕ)
7 r,m ← solve(ϕ)
8 if r then
9 c ← counterexample(p, ϕ,m)
10 return c
11 else
12 return null
13 end if
14 end function

Listing 3.1: Core model checking algorithm

The function optimize takes a program p and runs the LLVM optimization passes
presented in section 3.4 on all functions in p. While some passes are supposed to

34 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

increase performance of LLBMC, other passes are used to extend language support
by replacing unsupported instructions by equivalent supported instructions, e.g. a
switch instruction by a series of basic blocks and branch instructions.

The function unroll takes a module p and a loop bound bl and unrolls all loops
in p at most bl times. If LLVM’s scalar evolution analysis finds a sufficiently large
loop bound smaller than bl, then that loop bound is used instead. The function uses
a modified version of LLVM’s loop unroll optimization pass. The passes’ adaptations
make it possible to unroll a wider variety of loops that confuse the regular loop
unrolling pass. This is necessary because LLVM’s loop unroll pass misses unrolling
loops with certain unusual basic block structures.

The function callgraph takes a program p, an entry point e, and a call depth
bound bc and creates a call-site-sensitive call graph (see section 3.6) for p, rooted
at e with depth bc.

The function encode takes a program p and a call graph g and creates an ILR
formula ϕ encoding the program and all properties to be checked into the formula.
Because loops were already bounded in unroll and function call depth is bound
during call graph generation, encoding is guaranteed to terminate and produce a
finite formula. Encoding is presented in depth in chapter 4.

The function simplify takes an ILR formula ϕ and returns the same formula
simplified using the term rewriting system presented in section 6.1. Due to LLBMC’s
high context sensitivity introduced during the call graph generation, these simplifica-
tions are particularly effective in improving performance of software bounded model
checking.

In the next step, the function solve takes an ILR formula ϕ and returns a pair
(r,m) where r is true if and only if ϕ is satisfiable and m is a model for ϕ, if r is true
and undefined otherwise. This part of LLBMC is primarily described in section 6.2.

Finally, a counterexample is generated from the model m for the program p. It is
notable, that the counterexample is based on the optimized and unrolled program
and not on the original input program. however this poses no problem to the user,
as the counterexample is usually not shown directly. Instead it is mapped back to
the source language using the compiler’s debug information. While information can
get lost during optimization experience shows that the counterexample remains
readable.

3.2 LLVM and Its Intermediate Representation

LLVM, like most compilers and compiler frameworks, can be divided into three parts:
front end, back end, and middle end (see figure 3.3). The front end allows the
compiler to support a large number of programming languages, including C, C++,
Objective-C, Swift, Haskell, Python and GLSL. The compiler’s back end enables
the compiler to support multiple target architectures, e.g. x86, ARM and IA64. The
middle end provides a framework for language and architecture independent code
optimizations and thereby ties front end and back end together.

LLVM’s middle end is built around its intermediate representation (LLVM-IR). This

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 35

Front end Middle end Back end

Intermediate
Representation

C

C++

...

x86

ARM

...Optimizations

Figure 3.3: Common compiler architecture

intermediate representation is a low-level, typed, machine-independent assembler lan-
guage designed primarily for use in compiler optimizations. An extensive description
of LLVM-IR is available in the official language reference manual3. LLVM-IR is also
LLBMC’s primary input language. Because of this, a short and informal introduction
into the language is provided in this section.

Note, though, that this thesis describes a simplified dialect of LLVM-IR, because full
LLVM-IR has many features that are not relevant for this dissertation, e.g. garbage
collection, exception handling, vector operations, address spaces, function calling
conventions, function attributes, packed structures, and values of aggregate types.
Any instructions or variants of instruction related to these concepts are not handled in
this thesis. Whenever the term LLVM-IR is used in this thesis, this simplified variant
is meant, unless explicitly stated differently. However, LLBMC’s actual support of
LLVM-IR, while it does not cover all of real LLVM-IR, goes considerably beyond this
simplified variant, e.g. by covering an extensive number of additional instruction and
value types. With this extensive support, LLBMC can process nearly any C or C++
that does not use exceptions or multi-threading.

A first look at an exemplary LLVM-IR program can be found in listing 3.2 on the
following page and the corresponding C program in listing 3.3. As can be seen in this
example, an LLVM-IR program (also called module) consists of a set of functions,
each prefixed by the keyword define, followed by the function header and completed
with the function body enclosed in curly braces ({ and }). Each function consists
of a sequence of basic blocks, each prefixed by its name, with each basic block in
turn consisting of a sequence of instructions, each on a separate line.

Functions, basic blocks, instructions, and most other objects in LLVM-IR are derived
from the same basic concept, which we will refer to as a value object (or simply
value). Each separate class of objects, e.g. instruction or basic block, will be referred
to as value class.

3http://llvm.org/docs/LangRef.html

http://llvm.org/docs/LangRef.html

36 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

1 define i32 @fib(i32 %n) {
2 entry :
3 switch i32 %n , label %if. else3 [
4 i32 0, label %return
5 i32 1, label %if. then2
6]
7
8 if. then2 :
9 br label %return
10
11 if. else3 :
12 %sub = add nsw i32 %n , -1
13 %call = call i32 @fib(i32 %sub)
14 %sub4 = add nsw i32 %n , -2
15 %call5 = call i32 @fib(i32 %sub4)
16 %add = add nsw i32 %call5 , %call
17 br label %return
18
19 return :
20 %0 = phi i32 [%add , %if. else3], [1, %if. then2], [0, %entry]
21 ret i32 %0
22 }
23
24 define i32 @main (i32 %argc , i8 ** %argv) {
25 entry :
26 %call = call i32 (...) * @__llbmc_nondef_int ()
27 %call1 = call i32 @fib(i32 %call)
28 ret i32 %call1
29 }
30
31 declare i32 @__llbmc_nondef_int (...)

Listing 3.2: The Fibonacci function in LLVM-IR

1 int __llbmc_nondef_int ();
2
3 int fib(int n)
4 {
5 if (n == 0) {
6 return 0;
7 } else if (n == 1) {
8 return 1;
9 } else {
10 return fib(n -1) + fib(n -2);
11 }
12 }
13
14 int main(int argc , char ** argv)
15 {
16 int x = __llbmc_nondef_int ();
17 return fib(x);
18 }

Listing 3.3: The Fibonacci function in C

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 37

3.2.1 Values and Types

LLVM-IR a typed language, meaning all values have a type. he simplest type in
LLVM-IR is the void type (void), which is used wherever there is a type required
syntactically, but semantically none is needed. This is used for example as the return
type of functions that do not return a value. The language also has integer types
of any bitwidth. Names for these types follow the pattern iN, where N is the type’s
bitwidth (e.g. i32 for a 32-bit integer). Pointer types adhere to the pattern T*, where
T stands for the pointed-to type (e.g. i32* indicates a pointer to a 32-bit integer).
LLVM-IR also has two kinds of aggregate types, array types and struct types. Array
types are of the pattern [N x T], where <N> indicates the number of elements and
<T> indicates the element type (e.g. [40 x i16] for an array containing 40 16-bit
integers). Structure types are indicated by curly braces ({i1, i32}, for a pair of a
1-bit integer and a 32-bit integer). Last but not least, function types are indicated by
parentheses around the parameter types (i16 (i32) for a function taking a 32-bit
integer and returning a 16-bit integer). Table 3.2 shows an overview of the types
mentioned above. Note thate floating point types, are not part of this subset of
LLVM, though they basic support for these types is implemented in LLBMC.

Integers iN, where N is a positive number.
Integer types, e.g. i1, i8, i32, etc.
Pointers T*, where T is a type.
E.g. i32* for a pointer to a 32-bit integer.
Structures {X, ...}, where X is a type.
Structures, e.g. {i32, i32} for a pair of 32-bit integers.
Arrays [N x T], where N is a number and T is a type.
Arrays, e.g. [4 x i32] for an array of four 32-bit integer values.
Functions R (X, ...), where R and X are types.
Function types, e.g. void (i32) for a function that takes a 32-bit integer and
does not return a value.
Void void

Placeholder type used when a type is syntactically expected, but not semantically,
e.g. for functions without return value.

Table 3.2: LLVM-IR types

Furthermore, LLVM-IR’s structure types can also be “identified”. Identified structure
types are defined at the top-level of an IR file and always named. They are assigned to
a %-prefixed value: %typename = type { <type list> }. The code in listing 3.6
contains an example for an identified type in line 1.

A few particularities are notable about LLVM-IR’s type system, for example, the
language does not have a dedicated boolean type, but uses an integer type with a
bitwidth of one (i1) instead. Furthermore, LLVM-IR does not have distinct signed
and unsigned types. Instead of this, LLVM-IR provides signed and unsigned versions
for its arithmetic instructions, whereever needed. Finally, LLVM-IR allows for integer

38 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

types of nearly any bitwidth, so i33 is a legal, though unusual, type and does actually
occur in practice.

There is a considerable number of other types in LLVM-IR which are not listed in this
thesis, e.g. floating point types and vector types. Similarly, not all language features,
instructions and instruction variants are covered here for reasons of brevity and
clarity. This includes any instructions related to vector types, inheritance, garbage
collection, floating point types, arrays of size zero, and virtual register that contain
aggregate types, just to name the more prominent features.

Locally defined values and types in LLVM are prefixed with the sigil %. In contrast
to this, globally defined values, e.g. global variables and functions, are prefixed with
the sigil @.

LLVM-IR also has integer constants, which are simply used in-line, e.g. as in %0 =
add i32 3, 4, which adds the constants 3 and 4 and stores the result in the virtual
register %0.

Global variables are realized in LLVM-IR as pointer constants, e.g. the line @x =
global i32 0 in a module’s scope defines @x to be a pointer to a global variable
which is zero-initialized. The global variable is then used via load and store in-
structions, e.g. %1 = load i32 @x loads the current value of the global variable
@x into the virtual register named %1.

3.2.2 Instructions

An instruction in LLVM-IR is an atomic unit of execution performing a single op-
eration. An instruction has an opcode indicating what it does, e.g. add for integer
arithmetic addition, and performs this operation on zero or more operands, each one
of these being a value itself. If the operation has a result, then this result is assigned
to a target virtual register . LLVM-IR provides an unlimited number of such virtual
registers4 and all virtual registers are named.5 Certain instructions may also have
one or more instruction flags set, which modify the instructions’ semantics slightly.

Figure 3.4 shows an add instruction as an example with all its components labeled.
In this example, the nsw indicates that no signed wrap-around is expected to occur.

The term instruction is often used to refer to an instruction’s target register as well as
to the operation itself, which is possible because an instruction and its target register
are inseparable. This is because of, like most compiler intermediate representations
too, LLVM-IR is in static single assignment form (SSA) [RWZ88]. This means that
every virtual register is only ever assigned once and it is guaranteed to be defined
before it is used. Code that is not in SSA form can be transformed into this form by
versioning all variables, as can be seen by the example in listing 3.4. For this, every
time any variable is assigned a new value, a new variable is introduced instead and
all subsequent references to the old variable are immediately replaced by references
to this new variable. These steps are repeated until no variable is assigned more
than once.

4 Once the program is compiled to architecture specific code these virtual registers will be
allocated to a limited number of real registers.

5 If an instruction is not explicitly named, it is automatically assigned a unique number as a
name.

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 39

%x = add nsw i32 %y, %z
resu

lt
assi

gnm
ent

opc
ode

flag type 1st
ope

rand

2n
d ope

rand

target register operation

Figure 3.4: Exemplary add instruction and its components

1 int g;
2
3 int f(int a) {
4 int x;
5 x = a;
6 g = x;
7 x = 1;
8 return x;
9 }

(a) Before SSA transformation

1 int g;
2
3 int f(int a) {
4 int x0 , x1 ;
5 x0 = a;
6 g = x0 ;
7 x1 = 1;
8 return x1 ;
9 }

(b) After SSA transformation

Listing 3.4: Transformation to static single assignment form

All LLVM-IR instructions relevant for this thesis are introduced in tables 3.3 to 3.7
and 3.9. The instructions are introduced using so called instruction patterns.

Definition 3.1 (Instruction pattern). An instruction pattern is a string describing
LLVM-IR instructions. In an instruction pattern,

• square brackets ([and]) enclose optional elements,

• angle brackets (< and >) enclose placeholders for references to values or types,

• vertical bars (|) separate alternatives,

• curly braces followed by a star ({ and }*) indicate sequences of zero or more
elements,

• and curly braces followed by a plus ({ and }+) indicate sequences of one or
more elements.

If a list contains more than one value, elements are separated by a comma, which
is not shown here explicitly.

For easier readability, LLVM-IR code itself is set in the color , LLVM-IR’s opcodes
are highlighted in , and characters belonging to the pattern language are set in .

For instance, the pattern

<r> = add|sub [nuw] [nsw] <ty> <op1>, <op2>

represents all integer addition and subtraction instructions, with and without the

40 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

flags nsw and nuw. Similarly, the pattern

<res> = call <ty> <fptr>({<ty> <arg>}*)

represents all call instructions with any number of arguments. Instruction patterns
are not only used to present LLVM’s instruction set in this section, but also to reason
about these instructions later on. For this, pattern matching, which is inspired by
regular expressions, is used.

Definition 3.2 (· ∼ J·K). The predicate s ∼ JpK is true, if and only if the instruction
s matches the instruction pattern p.
For example if s is the instruction shown in figure 3.4 on page 39, then

s ∼ J<r> = add [nuw] nsw <t> <op1>, <op2> K

is true.

3.2.3 Undefined Values and Undefined Behavior

LLVM-IR provides a special undef value, which can be used anywhere a constant
is expected and which is used to indicate that a value is undefined. Compiler opti-
mizations may assume this to be any value suitable in order to generate the best
performing code. For example, any reference to the instruction %0 = add i32 %x,
undef by another instruction may replaced by undef, which may then again open
up new optimization opportunities.

A related, though markedly different subject is that of undefined behavior . Undefined
behavior6 is identical to C’s notion of undefined behavior: If undefined behavior
occurs, anything may happen. Like undefined values, undefined behavior opens up
optimization opportunities for the compiler.

A concept related to undefined behavior, but more specific to LLVM-IR are poison
values. “Poisonousness” can roughly be seen as an additional bit of information
attached to all values. It is caused, for example, by certain cases of arithmetic
overflow, and it is propagated to all users of a poisonous value, e.g. from instruction
to instruction, but also to and from individual memory locations. If a poisonous
instruction has an observable behavior it is undefined behavior. Undefined behavior
in LLVM-IR often occurs indirectly via poison values. Even though poison values do
solve some problems, they seem to introduce new ones as well7, and as of the time
of writing discussions in the LLVM community are ongoing about these concepts.
Because of the ill-defined behavior of poison values, in LLBMC, the generation of
poison values is already treated as undefined behavior.

3.2.4 LLVM’s Instruction Set

LLVM-IR provides the usual set of arithmetic instructions for addition, multiplication,
division, remainder calculation for signed and unsigned integers as well as floating

6 In contrast to the C standard, LLVM’s language reference manual does indeed not define
undefined behavior.

7 See also Dan Grohman’s post to the LLVM mailing list on the whys and hows of poison values:
“The nsw story” (http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-November/045730.html)

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 41

point numbers (see table 3.3). Instead of signed and unsigned integer types, LLVM-
IR has signedness-neutral types and signed and unsigned operations. For example,
sdiv and udiv are separate instruction for signed and unsigned division respectively.
All arithmetic instructions have the same type for their result as for their operands.

<res> = add|sub|mul [nuw] [nsw] <ty> <op1>, <op2>

Addition, subtraction and multiplication <op1> and <op2>, both of type <ty>.
<res> = udiv|sdiv [exact] <ty> <op1>, <op2>

Unsigned and signed division of <op1> by <op2>, both of type <ty>.
<res> = urem|srem <ty> <op1>, <op2>

Unsigned and signed remainder of the division of <op1> by <op2>, both of type
<ty>.

Table 3.3: Arithmetic instructions

The flags nuw and nsw indicate that no unsigned respectively signed overflow is
expected to happen. If this happens anyways, the result is a poison value. Similarly,
the keyword exact for division operations indicates, that the division’s remainder is
expected to be zero, and the result is a poison value if not.

LLVM-IR also has three shift instructions, including shift left and arithmetic and
logical shift right. Shift instructions have similar flags to arithmetic instructions.
These flags are mostly used when shift instructions are used as cheaper alternatives
for arithmetic instructions that have one or more of these flags set. Note that while
the flags nsw, nuw, and exact only cause poison values, shifts can also produce
undefined behavior, if the value of the second operand is larger than the first operands
bitwidth. Furthermore, LLVM-IR has bitwise instructions for bitwise conjunction,
disjunction, and exclusive disjunction (see table 3.4). Logical negation is emulated
using an xor instruction whose second argument has all bits set to 1. Note, that
logical equality is already covered by the icmp instruction shown in table 3.8.

<res> = shl [nuw] [nsw] <ty> <op1>, <op2>

Left shift of <op1> by<op2>, both of type <ty>.
<res> = lshr|ashr [exact] <ty> <op1>, <op2>

Logical and arithmetic shift of <op1> by <op2>, both of type <ty>.
<res> = and|or|xor <ty> <op1>, <op2>

Bitwise logical and, or, and exclusive or of <op1> and <op2>, both of type <ty>.

Table 3.4: Bitwise instructions

Because LLVM-IR is a strongly typed language, it needs to provide a large number
of type conversion instructions (see table 3.5). The instruction trunc truncates an
integer to an integer with a shorter bitwidth. Information in the most significant
bits is lost. The instruction zext extends an integer to a larger bitwidth while
keeping its unsigned value. The instruction sext does the same, but retains the
argument’s signed value. The ptrtoint and intotoptr are used for conversion

42 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

between pointers and integers. Both instructions implicitly perform zero extensions
or truncations as required. Pointer to pointer conversion can be done with bitcast,
though both pointer types must have the same bitwidth.

<res> = trunc <ty> <op> to <ty2>

Truncation of the integer <op> of type <ty> to the bitwidth of <ty2>.
<res> = zext|sext <ty> <op> to <ty2>

Zero extension and signed extension of the integer <op> of type <ty> to the
bitwidth of <ty2>.
<res> = ptrtoint|inttoptr <ty> <op> to <ty2>

Conversion of the pointer or integer and integer <op> of type <ty> to an integer
or pointer of type <ty2>.
<res> = bitcast <ty> <op> to <ty2>

Conversion of the pointer <op> of type <ty> to pointer of type <ty2>.

Table 3.5: Conversion instructions

All memory-related instructions are listed in table 3.6. All stack memory is allocated
in LLVM-IR via the alloca instruction and deallocated automatically. Memory access
is done using load and store. Both of these instructions may have a volatile
flag, which indicates that the value stored at this memory location might change
anytime, e.g. through a different thread, process or even the hardware itself. The
volatile flag disallows certain compiler optimizations, e.g. joining of otherwise
redundant load operations or reordering of store operations.

<res> = alloca <ty> [, <t> <num>]

Allocates <num> elements of type <ty> on the current stack frame, or a single
element, if <num> is not given. <t> is <num>’s type.
<res> = load [volatile] <ty>, <ty>* <ptr>

Loads the value stored at address <ptr> interpreting the bit pattern as <ty>.
store [volatile] <ty> <op>, <ty>* <ptr>

Stores <op> at the address <ptr> in memory.
<res> = getelementptr <ty>, <ty>* <ptrval>[, {<ity> <idx>}+]

Type safe pointer arithmetic for sub-element access in arrays and structs.

Table 3.6: Memory related instructions

The getelementptr instruction is used for type-safe, architecture independent, and
optimizable address calculation. It takes a base pointer argument to a structure or
array and any number of arguments for indexing into this aggregate type. The first
index indexes on the pointer value itself. Subsequent indices are used to index into
sub-elements of the aggregate type.

The first index argument often causes considerable confusion.8 This is because it is
8See http://llvm.org/docs/GetElementPtr.html for an explanation of getelementptr.

http://llvm.org/docs/GetElementPtr.html

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 43

zero in the most common cases, e.g. for global or stack local variable that are not
arrays, which is highly confusing when encountering this instruction for the first time.
The reason for the confusion is most likely because LLVM-IR and C use pointers
differently. In C, given a pointer p, *p dereferences the pointer. The expression *p
is equivalent to p[0], as p[i] is merely syntactic sugar for *(p + i). LLVM-IR’s
getelementptr simply does not have this syntactic sugar, so it always requires an
explicit 0.

Another consequence of getelementptr’s definition is that without an index ar-
gument it is a NOOP, a getelementptr with a single index argument is simple
pointer arithmetics, and only a getelementptr with more than one index argument
does what the name says, namely retrieving a pointer to an element of an object of
aggregate type.

1 struct RT {
2 char A;
3 int B [10][20];
4 char C;
5 };
6 struct ST {
7 int X;
8 double Y;
9 struct RT Z;
10 };
11
12 int *foo(struct ST *s) {
13 return &s[1].Z.B [5][13];
14 }

Listing 3.5: Example C input for getelementptr

The C code in listing 3.5 is taken from LLVM’s language reference manual on
getelementptr. Line 13 of the example nicely illustrates various kinds of address
calculations nested into each other such as one dimensional and two dimensional
array indexing and indexing into structures. Listing 3.6 shows the corresponding
IR code, which combines all of the example’s address calculations into a single
getelementptr instruction.

1 %RT = type { i8 , [10 x [20 x i32]], i8 }
2 %ST = type { i32 , double , %RT }
3
4 define i32* @foo(%ST* %s) {
5 entry :
6 %i = getelementptr %ST , %ST* %s , i64 1, i32 2, i32 1, i64 5, i64 13
7 ret i32* %i
8 }

Listing 3.6: Example IR for getelementptr

LLVM’s select is similar to C’s ?:-operator. If the first operand is true, the instruc-
tion returns the second operand’s value, otherwise it returns the third operand’s
value. The first operand must be of type i1, the second and third operands as well
as the instruction itself may be of any integer type, but must all be of the same

44 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

type.

The phi instruction makes SSA form work for basic blocks with multiple predecessors.
A phi instruction has a list of pairs of basic blocks and instructions as operands.
Depending on which basic block was executed immediately before the current basic
block, the phi instruction returns the value of the instruction that is paired with this
predecessor basic block (see line 20 in listing 3.2 on page 36 for an example of its
use). A phi instruction is usually not translated to machine code directly. Instead,
the compiler tries to allocate all virtual registers which are operands of the same
phi instruction in the same hardware register or, if that is not possible, stores those
values at the same memory location.

The call instruction is used to pass control flow to another function. A call’s first
operand, before the opening parenthesis, is a pointer to a function, the remaining
operands are arguments passed to the function. The instruction comes in two variants,
one of type void which does not return a value, and one for any other type but
void.

<res> = call <ty> <fptr>({<ty> <arg>}*)

Call of the function at address <fptr> with the list of arguments <arg> returning
a value of type <ty>.

call void <fptr>({<ty> <arg>}*)

Call of the function at address <fptr> with the list of arguments <arg> return
no value.
<res> = icmp <cond> <ty> <op1>, <op2>

Compare the integers <op1> and <op2> with <cond> interpreted as in table 3.8.
<res> = phi <ty> {[<val>, <label>]}+

Return <val>, if the basic block labeled <label> was executed immediately
before the current basic block.
<res> = select i1 <cond>, <ty> <val1>, <ty> <val2>

Return <val1> if <cond>, <val2> otherwise.

Table 3.7: Miscellaneous instructions

Table 3.8 shows the different variations of the icmp instruction, where ·u indicates
interpretation of the operation’s operands as unsigned integers and ·s indicates
interpretation of the operands as signed integers.

The set of instructions in LLVM-IR itself is fixed. Nonetheless, LLVM-IR is extensible
due to its so called intrinsic functions. Intrinsic functions are functions that have well
known names (starting with llvm.) and semantics. Most intrinsics are subject to
additional constraints, making their use transparent to LLVM’s optimization passes.
All intrinsics along with their constraints are extensively documented in the language
reference manual.

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 45

<res> = icmp eq <ty> <op1>, <op2> yields true iff <op1> = <op2>.
<res> = icmp ne <ty> <op1>, <op2> yields true iff <op1> 6= <op2>.
<res> = icmp ugt <ty> <op1>, <op2> yields true iff <op1> >u <op2>.
<res> = icmp uge <ty> <op1>, <op2> yields true iff <op1> ≥u <op2>.
<res> = icmp ult <ty> <op1>, <op2> yields true iff <op1> <u <op2>.
<res> = icmp ule <ty> <op1>, <op2> yields true iff <op1> ≤s <op2>.
<res> = icmp sgt <ty> <op1>, <op2> yields true iff <op1> >s <op2>.
<res> = icmp sge <ty> <op1>, <op2> yields true iff <op1> ≥s <op2>.
<res> = icmp slt <ty> <op1>, <op2> yields true iff <op1> <s <op2>.
<res> = icmp sle <ty> <op1>, <op2> yields true iff <op1> ≤s <op2>.

Table 3.8: Variations of the icmp instruction

3.2.5 Basic Blocks and Terminators

The instructions in an LLVM-IR program are grouped in so called basic blocks.
LLVM itself does not provide a definition of a basic block, but a sufficiently suitable
definition can be found in [All70], though:

Definition 3.3 (Basic block). A basic block is a linear sequence of program in-
structions having one entry point (the first instruction executed) and one exit point
(the last instruction executed). It may of course have many predecessors and many
successors and may even be its own successor.

Every basic block in LLVM-IR has a label that uniquely identifies the basic block in
the containing function. In the following, by convention, the term b refers to basic
block with the name B, b1, to the basic block labeled B1, etc.

All instructions in a basic block are executed in order, starting with the first instruction
and ending with the last instruction. If an instruction in a basic block is executed, the
subsequent instruction will be executed next (except for call instructions), unless
the former instruction terminates the program as a whole, e.g. by calling C’s exit()
directly or indirectly. This property greatly simplifies various code analyses used in
compilers.

There are some restrictions on how instructions can be used in basic blocks, with the
most notable exception concerning the instructions ret, br, switch, indirectbr,
invoke, resume, and unreachable (see table 3.9). These instructions are called
terminators. In a well-formed LLVM-IR program, only one of these instructions
may be the last instruction of a basic block, and none of these instructions may
occur anywhere else. Terminators play an important role in defining the control flow
between basic blocks.

Definition 3.4 (termB). The function termB : B → I returns a basic block’s last
instruction. This instruction is called the terminator.

The ret instruction returns control to the the calling function, br is for direct
conditional and unconditional branches, and switch acts similar to C’s switch-case

46 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

ret void

A ret instruction with type void and no argument returns control to the calling
function without returning a value.
ret <ty> <op>

A ret instruction with a non-void type returns control to the calling function
and also returns the value <op>.
br label <dst>

A br instruction with only a single argument of type label unconditionally passes
control flow to the basic block labeled <dst>.
br i1 <cond>, label <then>, label <else>

A br instruction with a condition argument of type i1 passes control flow to the
basic block labeled <then> if the condition <cond> is true and to the basic block
labeled <else> otherwise.
switch <ty> <op>, label <def> [{<ty> <val>, label <dst>}*]

The switch instruction has the same purpose as the switch statement in C and
C++. Apart from the control variable op and the default target def, switch has
pairs of constants (val) and basic block labels (dst). For each val, if op equals
val, the basic block paired with val executed.
indirectbr <ty>* <address>, [{label <dst>}+]

The indirectbr instruction branches to the basic block stored at the dynamically
calculated <address>. The address must be one of labels listed as <label>,
otherwise the behavior is undefined.
unreachable

The unreachable instruction indicates, that the end of the basic block is not
expected to be reached. Behavior is undefined if this happens nonetheless and it
is the compiler’s responsibility to ensure this does not happen.

Table 3.9: Terminator instructions

3.2. LLVM AND ITS INTERMEDIATE REPRESENTATION 47

statement. The instruction indirectbr allows for the branch target to be dynami-
cally calculated, but it must be one of the basic blocks listed in the set of possible
branch targets instruction. This set is required for LLVM’s control flow analyses to
work correctly. The instruction unreachable is not expected to be executed. It is
undefined behavior, and likely a compiler bug, if this happens nonetheless.

A basic block can be used as an operand in br and switch instructions. In this
case, the value uniquely identifies the basic block in the function. A basic block’s
address can be retrieved with the blockaddress constant, which returns an i8
pointer. This pointer can then be used in a indirectbr instruction.

Reasoning about instructions in basic blocks requires two auxiliary functions:

Definition 3.5 (firstB). The function firstB : B → I returns a basic block’s first
instruction.

Note that every well-formed basic block contains at least one instruction, making
this function total. Similarly important is the following definition:

Definition 3.6 (succB). The relation succB : I × I is true if and only if both
instructions are in the same basic block and its second argument is a direct successor
to its first argument.

3.2.6 Modules and Functions

Real LLVM-IR functions have a wide range of function attributes, which are nec-
essary to faithfully model a source function’s properties from the many supported
source languages and to provide hints for the compiler optimizations. For this thesis’
purposes, function attributes are neglected and a simpler definition of a function
suffices:

Definition 3.7 (Function). A function (n,B, e) is a tuple of a name n, a sequence
of basic blocks B = (b0, b1, . . . , bm), and an entry block e ∈ B.

Every LLVM-IR function f has a so called entry basic block, the only block in f
that is externally reachable.

Definition 3.8 (entry). Given a function f , rf = entry(f) is f ’s entry block, the
first element of f ’s sequence of blocks and the only one in f that is externally
reachable.

An exit basic block is a basic block that returns control flow to the calling function:

Definition 3.9 (exit). The predicate exit on basic blocks is defined by

exit(b)↔ termB(b) ∼ Jret <ty> <op> K ∨ termB(b) ∼ Jret void K.

LLVM-IR programs are structured in modules. Each module consists of a set of
declarations of global variables and a set of function declarations and definitions9.
Modules can be linked together into larger modules, e.g. multiple modules, each
containing the code of one translation unit can be linked together to create a single

9 As well as debug information, symbol table entries, and quite a few other things which are
not relevant for this dissertation.

48 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

module containing the whole program. In the following, whole program analysis is
performed, meaning that it is assumed that this linking process has already happened.
Because of this, the terms module and program will be used interchangeably.

Definition 3.10 (Module). A module m = (Fm, Gm) is a pair of a set of function
symbols Fm and a set of global variable symbols Gm.

Note that just because LLVM-IR as a language is called architecture independent,
this does not mean an LLVM-IR program is also architecture independent. It merely
means LLVM-IR is sufficiently expressive to describe programs for many different
architectures. Each program is still tied to one specific architecture.10 Many of
LLVM’s optimizations, and LLBMC itself as well, require information about the
target architecture. This includes, in particular, endianness of the architecture and
alignment rules for various types. An LLVM-IR module encodes this information
in so called data layout lines as a character string. A data layout line consists of
multiple entries separated by a minus (-). Each entry encodes a fact about the
target architecture, e.g. in the data layout line target datalayout = "e-m:w-p
:32:32-i64:64", e stands for little endianness and E for begin endianness, m:w
indicates windows style mangling, while p:32:32 encodes the fact that pointers
have a bitwidth of 32-bit with an alignment of 32-bit, and i64:64 indicates that
the i64-type is 64-bit aligned.

3.3 Verification of Source Languages

LLVM-IR is a compiler intermediate representation and is therefore usually not the
programming language in which the developer originally wrote the program under
analysis. However, this source language can be translated to LLVM-IR easily, provided
that the LLVM compiler framework supports the given source language. This section
shortly discusses source languages of interest for embedded development with a focus
on the C language, and shows how the translation to LLVM-IR must be adapted for
sound LLVM-IR based source code analysis.

The most popular programming language in embedded system development is, with
a comfortable lead, the C programming language11. C was invented in the early
70’s by Dennis Ritchie at Bell Laboratories for the Unix operating system, and
was, from the beginning, designed as a machine-oriented high-level language. C’s
success in the embedded world is mostly due to its well-suited mix of high and
low-level language features, but equally important are its widespread availability and
a plethora of well established and certified tools and tool chains. Finally, embedded
software development projects are oftentimes tied closely to the chip for which the
software is developed. Chip vendors often provide their own tool-chains, including
custom-tailored compilers and debuggers with the chip, which often only support C.

Assembly languages are used in many embedded projects, though usually only for
specific functions where high-level languages cannot be used and therefore nearly

10 This is in contrast to languages like Java, which are tied to a virtual machine which makes
it possible to run the same Java bytecode unmodified on any number of architectures. Though it
could also be argued that Java actually runs on no real architecture at all.

11TIOBE Index for March 2014 lists C as the most popular language among developers in general.
It is significantly more widespread in embedded systems development.

3.3. VERIFICATION OF SOURCE LANGUAGES 49

never as a project’s primary language. In particular the combination of C and assembly
occurs often.

While C is the most widespread high-level language in the embedded market, it is
not the only such language in this area. In recent years, C++, C’s object-oriented
offspring, has seen increased use in the embedded context but has not yet reached
C’s popularity and the market share seems to be decreasing recently. Java, Basic, and
C# are occasionally used in the embedded market, but none of these languages have
a market share worth mentioning. Finally, the programming language Ada, while
specifically designed for the Department of Defense’s demanding requirements12
concerning safety and security critical embedded code, is commonly considered the
better language for embedded code, but has not nearly as many users as C.

Recently, new languages showed up on the embedded market, e.g. the Mozilla
Foundation’s Rust13 programming language and Google’s Go14 language. These
languages are explicitly targeted at the embedded market, avoiding many of the
pitfalls and problems associated with the C language. Time will tell if these languages
eventually manage to replace C.15

With newer and safer languages being available, one would expect that C is slowly
replaced by these, but this does not seem to happen any time soon, as shown by a
survey conducted by the publisher of Embedded Systems Programming.16

Because of C’s continuing dominating role in the embedded software market, and
because there is no indication of this changing in the near future, the verification
of embedded software written in C are the primary concern of the remainder of this
section.

3.3.1 Verifying Embedded C Code

C code has proven to be exceptionally hard to reason about formally, and there is
even little consensus on desirable and undesirable properties, as already stated by
Cuoq et al. [CKY12]. This is partly due to C’s overly permissive cast operator, which
is responsible for the fact that type information in C is inherently unreliable and can
only cautiously be used for any kind of reasoning about the code. But this is also
due to C’s notion of undefined behavior that permeates the language’s standards
document.

The language was, from the beginning, designed for portability and efficiency. Effi-
ciency, in this context, meaning that code can be written in C which runs comparably
fast to hand-crafted assembly, and portability meaning that C code could be written
that runs equally efficient on the wide range of computer architectures available at
that time. How wide this range was becomes apparent when one considers the C
standards definition of a byte as an

12http://www.dwheeler.com/steelman/steelman.htm
13https://rust-lang.org/
14https://golang.org/
15http://www.embedded.com/design/programming-languages-and-tools/4428704/

Alternatives-to-C-C--for-system-programming-in-a-distributed-multicore-world
16http://www.embedded.com/electronics-blogs/programming-

pointers/4372180/Unexpected-trends

http://www.dwheeler.com/steelman/steelman.htm
https://rust-lang.org/
https://golang.org/
http://www.embedded.com/design/programming-languages-and-tools/4428704/Alternatives-to-C-C--for-system-programming-in-a-distributed-multicore-world
http://www.embedded.com/design/programming-languages-and-tools/4428704/Alternatives-to-C-C--for-system-programming-in-a-distributed-multicore-world
http://www.embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://www.embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends

50 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

addressable unit of data storage large enough to hold any member of the
basic character set of the execution environment. [ISOC99, section 3.6]

Note that the number of bits in a “byte” is intentionally not specified, as the
number varied from computer architecture to architecture at the time the C language
was standardized and was therefore not fixed to 8 bits, as it is now. Furthermore,
while some computer architectures used two’s complement for binary signed integer
representation, others used — the now obsolete — ones’ complement instead.

A language designed to be nearly as efficient as hand-crafted assembly on a wide
range of architectures needs to be extremely flexible. For C this was made possible by
either not defining corner cases where different architectures might behave differently,
or by explicitly leaving the behavior to be defined by the implementation.17

In the embedded market this is made even worse due to the fact that compiler
vendors often define and implement language extensions that go even beyond the
freedom provided by the standard itself.

As already noted in chapter 1, undefined behavior is a cause of errors and therefore
LLBMC focuses on proving the absence of undefined behavior or, if this is not
possible, finding counter examples for cases of undefined behavior. At the same time,
however, undefined behavior also makes the process of verification itself harder.

3.3.2 Undefined Behavior in C

Undefined Behavior and its close relatives implementation-defined and unspecified
behavior18 are deeply embedded in the C standard. The concept is mentioned
throughout the standard and in addition, Annex J of the standard, which explicitly
states that it does not claim to be complete, lists 54 cases of unspecified behavior,
191 cases of undefined behavior, and 112 cases of implementation-defined behavior.

Unspecified behavior is defined in the standard as:

Use of an unspecified value, or other behavior where this International
Standard provides two or more possibilities and imposes no further re-
quirements on which is chosen in any instance [ISOC99, section 3.4.4]

For a complete analysis of the code, all of those possibilities need to be ana-
lyzed.19Complexity increased furthermore by the fact the any implementation may
opt for a different behavior each time. This causes an exponential blow-up in the
size of the search space.

An often cited example for this is the ordering in which function arguments are
evaluated:

17A C implementation can be seen as the union of a specific compiler and its target architecture.
18 There is a fourth kind of behavior, locale specific behavior, though it is rarely relevant in the

embedded contexts.
19 For example, the order of the evaluation of function arguments is unspecified. Therefore, one

needs to analyze all possible orderings. Because the ordering may be different for each function
call, the complexity scales with the product of the number of function calls and the faculty of the
number of arguments per function. Alternatively, one could prove that the program’s behavior is
independent of the ordering of the evaluation of a function’s arguments, so that analyzing a single
ordering is sufficient for this function.

3.3. VERIFICATION OF SOURCE LANGUAGES 51

The order of evaluation of the function designator, the actual arguments,
and subexpressions within the actual arguments is unspecified, [. . .]
[ISOC99, section 6.5.2.2]

The evaluation of one such argument might depend on the evaluation of any other
argument, simply because the evaluation of an argument might modify the state the
program is in. Analyze all program executions for all orderings, while not making
verification impossible, certainly makes it infeasible for any reasonably sized program.

Implementation-defined behavior is defined as

unspecified behavior where each implementation documents how the
choice is made [ISOC99, section 3.4.4]

One prominent case of implementation-defined behavior are the sizes of integer
types. An implementation must decide on a size for each integer type and record
this decision in the implementation’s documentation.

Finally, undefined behavior poses an entirely different challenge for the verification
of C code. It is defined in the standard as

behavior, upon use of a nonportable or erroneous program construct
or of erroneous data, for which this International Standard imposes no
requirements [ISOC99, section 3.4.3]

One of the most well known examples for this is C’s handling of signed integer
overflows:

If an exceptional condition occurs during the evaluation of an expression
(that is, if the result is not mathematically defined or not in the range
of representable values for its type), the behavior is undefined. [ISOC99,
section 6.5]

When the C standard was designed, this was primarily done to ensure that C can
be implemented efficiently on two’s complement architectures, ones’ complement
architectures, and even sign-and-magnitude architectures. Though all modern com-
puter architectures use two’s complement, this undefined behavior is still used by
compilers to generate more optimized code. Consider for example the following code
fragment:

1 for (i = 0; i <= N; ++i) {
2 // do something
3 }

If i is of type unsigned int, the compiler must take into account that N might
be UINT_MAX and the loop might be an infinite loop. In contrast, if i is int, the
implementation may assume that the loop is executed exactly N+1 times, which
opens up optimization opportunities.

Most code analysis tools which approach the issue of implementation-defined be-
havior try to provide a relevant subset of real-life implementations. For example,
the bitwidth of types is often configurable while two’s complement is usually as-
sumed. Many tools also follow a specific implementation on which they are often
based. In the case of LLBMC this is LLVM, which is mostly compatible to GCC and

52 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

MSVC. Furthermore, because LLVM is open source, additional support for other
implementations can easily be added if required.

To avoid the blow-up in size of the search space caused by unspecified-behavior,
code analysis tools usually assume one specific behavior, e.g. evaluation of function
arguments from left to right, even though implementations do not guarantee this
behavior.

Proving or disproving undefined behavior is LLBMC’s main goal, and at the same
time a major challenge in building a code analyzer. This is in particular true, if the
code analyzer operates on a compiler intermediate representation, like LLBMC does.

3.3.3 Translating C to LLVM-IR

One of LLBMC’s primary purposes is the detection of undefined behavior in C pro-
grams. While clang , LLVM’s C language front end, faithfully transforms C code to
LLVM-IR, the same is not guaranteed for undefined behavior. Contrariwise, the com-
piler is explicitly allowed to make use of undefined behavior to improve performance
of the generated code. In consequence, this means the compiler needs to be adapted
to translate undefined behavior from C to LLVM-IR explicitly so that it becomes
available in the LLVM-IR code for use by LLBMC. The following section shows how
this is done in LLBMC, though first a short introduction to clang is necessary.

Figure 3.5 roughly illustrates how clang translates C code to LLVM-IR code. The
process starts with the driver which processes the command line options and passes
them on to the front end that controls the remaining compilation process. The front
end first runs the lexer, which turns the character stream from the source file into
a token stream. Note that clang does not have a separate preprocessor, but has
preprocessing integrated into the lexer instead. Macro definitions are turned into
token sequences and stored for later use. Macro expansions are then handled by
injecting the previously generated token sequence into the token stream. This is the
technical foundation for clang’s exceptionally user-friendly compiler error messages.
Next in line is the parser, which in turn drives clang’s semantic analysis module. The
result of this is the abstract synatx tree (AST). Finally, the code generator turns the
AST into LLVM-IR. In normal operation, clang would now execute a user-configured
set of optimizations and then generate binaries for the target architecture, but the
option -emit-llvm in combination with -c tells clang to forgo optimizations and
to output LLVM-IR bitcode instead of binaries.

The result of executing clang with these options on the C code in listing 3.7a can
be seen in listing 3.7b. Note how undefined behavior is handled by clang in this
example: The signed addition in line 2, which causes undefined behavior on overflow,
translates to the add instruction in line 9 of the output. This instruction has the
nsw flag set, and can therefore similarly cause undefined behavior in the case of an
overflow.20

20 The stack memory allocations (alloca), and loading and storing seems superfluous, but are
removed later on during optimization. The instructions are generated by clang, because on the C
level, the function parameters x and y are l-values. This means they do not only have a value, but
also an address, which can be passed to functions, if required. In this particular example, this is not
necessary, because the function does not make any use of its parameters’ addresses. However, clang
does not know this at this stage of code generation, so it generates the instruction just in case.
Concerning performance, the compiler relies on the fact that these superfluous memory accesses

3.3. VERIFICATION OF SOURCE LANGUAGES 53

clang -cc1 -c -emit-llvm a.c

Driver

a.c

C Code
Lexer

Token Stream
Parser

Semantic
Analysis

Abstract
Syntax Tree

Code
Generator

Intermediate
Representation

a.bc

Fr
on

te
nd

Data flow Control flow

Command line

Figure 3.5: clang’s architecture

1 int add(int x, int y) {
2 return x+y;
3 }

(a) Input C program

1 define i32 @add(i32 %x , i32 %y←↩
) {

2 entry :
3 alloca i32 %x_addr
4 alloca i32 %y_addr
5 store i32 %x , i32* %x_addr
6 store i32 %y , i32* %y_addr
7 %0 = load i32 , i32* %x_addr
8 %1 = load i32 , i32* %y_addr
9 %2 = add i32 nsw %0 , %1

10 ret i32 %2
11 }

(b) Output IR program

Listing 3.7: C and IR code for @add

54 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Indeed many potential causes of undefined behavior in a source program translate
to similar sources of undefined behavior in the IR program, because C and LLVM-IR
have a similar notion of undefined behavior. These similarities are hardly surprising,
as information about undefined behavior needs to be present in LLVM-IR in order
for LLVM to be able to make use of undefined behavior during optimization later
on. Furthermore, because LLVM is not allowed to introduce new undefined behavior
whenever there is undefined behavior on the LLVM-IR level, it is guaranteed that this
stems from undefined behavior on the C level. Practical experience with LLBMC has
shown that checking for undefined behavior on the LLVM-IR level works surprisingly
well for finding undefined behavior on the C level, though it has also shown that it
is not quite reliable.

Compiler optimizations in particular pose a problem when relying on undefined
behavior in LLVM-IR. This is because optimizations might remove the add instruction
entirely, if it is not needed or might remove the nsw flag from the instruction.
The problem can be avoided if optimizations are disabled, but this causes severe
performance penalties due to superfluous memory accesses for the code analysis and
should therefore be avoided.

This problem can be solved more elegantly by instrumentation of the IR code with
explicit checks for undefined behavior after the LLVM-IR code is generated and
before optimizations are performed on the code. The compiler is then not allowed
to change or remove this instrumentation during later optimization, and therefore
optimization of the code can be done without losing any relevant information. Note,
though, that the instrumentation itself might make some optimizations impossible.

1 define i32 @add(i32 %x , i32 %y←↩
) {

2 entry :
3 alloca i32 %x_addr
4 alloca i32 %y_addr
5 store i32 %x , i32* %x_addr
6 store i32 %y , i32* %y_addr
7 %0 = load i32 , i32* %x_addr
8 %1 = load i32 , i32* %y_addr
9 call void %check . saddo .i32(←↩

i32 %0 , i32 %1)
10 %2 = add i32 nsw %0 , %1
11 ret i32 %2
12 }

(a) @add calling @assert.saddo.i32

1 define void @check . saddo .i32(←↩
i32 %x , i32 %y) {

2 entry :
3 %r = add %x , %y
4 %xneg = icmp slt i32 %x , 0
5 %yneg = icmp slt i32 %y , 0
6 %rneg = icmp slt i32 %r , 0
7 %xpos = xor i1 %xneg , 1
8 %ypos = xor i1 %yneg , 1
9 %rpos = xor i1 %rneg , 1
10 %0 = and i1 %xneg , %yneg
11 %1 = and i1 %0 , %rpos
12 %2 = and i1 %xpos , %ypos
13 %3 = and i1 %2 , %rneg
14 %4 = or i1 %1 , %3
15 %5 = zext i1 %4 to i32
16 call void assert (i32 %5)
17 ret void
18 }

(b) Implementation of assert.saddo.i32

Listing 3.8: Instrumentation of @add

Listing 3.8a shows an example of what the instrumented IR code for the example
in listing 3.7a could look like.21 In this example, an additional checking function is

will be removed during optimization, in particular by the mem2reg optimization pass, later on.
21The implementation of the checking function in this example is inspired by [Bru10].

3.3. VERIFICATION OF SOURCE LANGUAGES 55

added to the module, which implements the check for an arithmetic overflow, and
a call to this function is added before the addition’s add instruction.

Even though instrumenting the IR code is an improvement over relying on LLVM-IR’s
undefined behavior, this is not sufficient to cover all cases of undefined behavior
in a source file. The C standard established the following about pointer to integer
conversion:

Any pointer type may be converted to an integer type. Except as previ-
ously specified, the result is implementation-defined. If the result cannot
be represented in the integer type, the behavior is undefined. [. . .]
[ISOC99, section 6.3.2.3]

In contrast to this, LLVM’s ptrtoint instruction unconditionally performs a trun-
cation if the value is not representable in the integer type, and therefore cannot
cause undefined behavior. This possible source of undefined behavior clearly gets
lost during code generation. A tool still trying to check for this particular case of
undefined behavior would have to guess where to insert checks, which would hardly
be reliable.

1 void add(int x, int y) {
2 return x+y;
3 }

(a) Input C program

Return Statement
return x+y;

Binary Operator
x+y

L-Value to R-Value
x

Decl. Ref. Expr.
x

L-Value to R-Value
y

Decl. Ref. Expr.
y

(b) Parsed AST

Figure 3.6: AST for the recurring example

This leaves the modification of clang’s code generator to take care of instrumenting
LLVM-IR with undefined behavior as the only truly viable option for implementing
code instrumentation.

Because clang’s code generator is already rather complex, a minimally invasive,
plug-in based solution was chosen.

Figure 3.7 shows how clang traverses the abstract syntax tree (shown in figure 3.6b)
during code generation of the statement highlighted in figure 3.6a. In this example,
the code generator starts with the return statement itself, recursively descends into
its subexpressions, and emits instructions where necessary.

56 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Ret
urn

Sta
tem

ent

Bin
ary

Ope
rato

r (+
)

L-va
lue

to R
-val

ue
(x)

L-va
lue

to R
-val

ue
(y)

Dec
l. R

ef. E
xpr.

(x)

Dec
l. R

ef. E
xpr.

(y)

Em
itte

d In
stru

ctio
ns

%x_addr

%0

%y_addr

%1

%2

%0 = load i32, i32* %x_addr

%1 = load i32, i32* %y_addr

%2 = add i32 %0, %1

ret i32 %2

AST Traversal Instruction Emission

Figure 3.7: clang’s code generator

3.3. VERIFICATION OF SOURCE LANGUAGES 57

The two inner-most (in the figure the right-most) expressions are so called declaration
reference expressions. As the name indicates, these expressions are used to reference
previously declared variables, in this case the integer variables x and y.

Because these variables are l-values, but the addition operator expects r-values as
arguments, the arguments are converted from l-values to r-values first. According
to the C standard, in C such conversions are implicit, trivial and always possible.
In contrast, in clang’s AST, the conversion are made explicit using dedicated AST
nodes. Finally, in the LLVM-IR code, these conversions show up as load instructions.

Eventually, an add and a ret instruction are emitted for the binary operator + and
the return statement, respectively. This concludes code generation of the return
statement and its subexpressions.

LLBMC’s instrumentation mechanism is implemented on top of a plugin system
for clang’s code generator. The system is minimally invasive and only touches a
handful of locations in clang’s code base. It installs hooks in the code generator
at the beginning and end of the code generator of each statement, expression,
and declaration. Even though instrumentation was the driving factor behind the
development of this system, it is kept sufficiently generic to be used for other purposes.
Figure 3.8 illustrates how hooks are called for the recurring example.

The instrumentation mechanism primarily makes use of the hooks called at the
end of code generation of expressions to insert checking instructions into the IR.
Figure 3.9 shows how this is done for the example above.

The plugin based approach has proven itself versatile enough to also support more
difficult expressions, such as compound assignment. Figure 3.10 shows an example
for the instrumentation of the expression x += y.

The C standard defines the semantics of compound assignment as follows:

A compound assignment of the form E1 op= E2 differs from the simple
assignment expression E1 = E1 op (E2) only in that the lvalue E1 is
evaluated only once. [ISOC99, section 6.5.16.2]

For the example above, this singular evaluation of the left-hand side operand can
be observed in clang’s traversal of the AST as a single visitation of the declaration
reference expression for x. Because the left-hand side operand is an L-value not an
R-value, there is no explicit L-value to R-value conversion node in the AST, and
consequently, the load instruction, which is nonetheless required, has to be emitted
by the compound assignment operator itself. This results in three instructions being
emitted one after the other, the load instruction itself as well as the add and the
store instruction.

The instrumentation should be added after the expression’s arguments are done, but
before the store instruction is done, due to that instruction’s side effects. Therefore,
the perfect place for instrumentation would be right after the load instruction and
before the add instruction. Unfortunately, the plugin system doesn’t provide a hook
in between these instructions, and adding such a hook would make the plugin system
far more invasive. As a compromise, the instrumentation therefore emits a second
load instruction, identical to the one emitted by clang itself later on, so the value
of x is loaded from memory and can be passed to the checking function. The two

58 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Ret
urn

Sta
tem

ent

Bin
ary

Ope
rato

r (+
)

L-va
lue

to R
-val

ue
(x)

L-va
lue

to R
-val

ue
(y)

Dec
l. R

ef. E
xpr.

(x)

Dec
l. R

ef. E
xpr.

(y)

Hoo
ks

Em
itte

d In
stru

ctio
ns

%x_addr

%0

%y_addr

%1

%2

%0 = load i32, i32* %x_addr

%1 = load i32, i32* %y_addr

%2 = add i32 %0, %1

ret i32 %2

AST Traversal Hook Execution

Figure 3.8: Callbacks for clang’s code generator

3.3. VERIFICATION OF SOURCE LANGUAGES 59

Ret
urn

Sta
tem

ent

Bin
ary

Ope
rato

r (+
)

L-va
lue

to R
-val

ue
(x)

L-va
lue

to R
-val

ue
(y)

Dec
l. R

ef. E
xpr.

(x)

Dec
l. R

ef. E
xpr.

(y)

Inst
rum

enta
tion

Em
itte

d In
stru

ctio
ns

%x_addr

%0

%y_addr

%1

%2

%0 = load i32, i32* %x_addr

%1 = load i32, i32* %y_addr

%2 = add i32 %0, %1

ret i32 %2

call void @check.saddo.i32(%0, %1)

AST Traversal Instrumentation

Figure 3.9: Instrumentation of clang’s code generator

60 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Compound Assig
nment (+=)

L-value to R-value (y)

Decl.
Ref. Expr. (y)

Decl.
Ref. Expr. (x)

Instru
mentation

Emitte
d Instru

ctio
ns

%y_addr

%0

%x_addr

%0 = load i32, i32* %y_addr

%2 = load i32, i32* %x_addr

%3 = add i32 %0, %2

store i32 %3, i32* %x_addr

%1 = load i32, i32* %x_addr

call void @check.saddo.i32(%0, %1)

AST Traversal Instrumented Code Gen.

Figure 3.10: Instrumented code generation of x += y;

3.4. COMPILER OPTIMIZATION PASSES IN LLBMC 61

redundant loads can be easily merged into a single load instruction later on during
optimization.

Section 6.3.4 shows a detailed example of how a C program is first translated to
LLVM-IR, then to ILR, then to SMT, and finally how a counterexample is generated
from this. The example also includes optimized and unoptimized LLVM-IR code, as
well as instrumented variants of each.

More recent versions of clang contain usan, the undefined behavior sanitizer. This
feature allows instrumentation of the clang code generator in a similar way to the
approach described here. This provides a good starting point for checking unde-
fined behavior if insufficient resources are available to implement instrumentation
as described above. The sanitizer however is closely interleaved with clang’s code
generator and therefore highly intrusive and hard to modify.

3.4 Compiler Optimization Passes in LLBMC

Compiler optimization passes are a core feature of LLVM. The number of optimiza-
tion passes provided by LLVM is continuously growing with currently more than 50
passes available. Each one of these is making use of different optimization opportu-
nities to modify LLVM-IR code to improve the output binary’s runtime or sometimes
memory consumption. Additionally to these passes, LLBMC contains an additional
set of LLVM-IR transformations, most of which are not targeted at optimization but
at extending LLBMC’s support for more exotic LLVM-IR language features.

Interestingly, many of these optimizations not only improve runtime on the target
architecture, but they are also often, though not always, beneficial to the runtime
of the SMT solver solving the formulæ generated from this code using LLBMC.
This is because SMT solvers use bit-blasting to lower-level bitvector operations to
propositional formulæ, and the generated formulæ closely match the circuits of real
architectures.

Using compiler optimizations in a code analysis tool has to be handled with care,
though. What is merely a missed optimization opportunity for a compiler might cause
unsoundness or incompleteness for a static analysis tool, e.g. when loop unrolling
fails because a loop has not the expected structure, the compiled code will at worst
run slightly slower but a static analysis tool relying on loop unroll, such as LLBMC,
might not be able to analyze the code at all.

3.4.1 Optimizations for Performance Improvement

Many optimizations in LLVM-IR can be used in LLBMC to improve performance.
Experience has shown that many things which are expensive for a real processor are
similarly expensive for an SMT solver.

One basic, exemplary optimization pass, instcombine, replaces one or more expen-
sive instructions by one or more cheaper instructions, as can be seen in listing 3.9.
The fact that the right hand side argument of the multiplication in listing 3.9a is the
constant 3 is used to replace the multiplication by a shift operation and an addition,
as can be seen in listing 3.9b.

62 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

1 define i32 @times3 (i32 %x) {
2 %0 = mul i32 %x , 3
3 ret %0
4 }

(a) Code before optimization

1 define i32 @times3 (i32 %x) {
2 %0 = shl i32 %x , 2
3 %1 = add i32 %0 , %x
4 ret %1
5 }

(b) Code after optimization

Listing 3.9: Example for instruction simplification optimization

The single most imprtant pass for LLBMC’s performance is LLVM’s built-in mem2reg
pass. This pass lifts values stored in memory to virtual registers where possible. This
reduces the number of memory read and write operations considerably, which in
turn reduces the load on the SMT solver’s implementation of the theory of arrays
as well.

Consider the following trivial C function:

1 int double (int x) {
2 return x*x;
3 }

This program is compiled to the IR code in listing 3.10a, and can then be optimized
to the code in listing 3.10b. While similar optimizations are done by SMT solvers,
it is paramount to do these optimizations early in order to avoid an intermediate
blow-up of the formula’s size.

1 define i32 @double (i32 %x) {
2 %x_addr = alloca i32
3 store i32 %x , %x_addr
4 %0 = load i32 %x_addr
5 %1 = add i32 %0 , %0
6 ret %1
7 }

(a) Code before optimization

1 define i32 @double (i32 %x) {
2 %1 = add i32 %x , %x
3 ret %1
4 }

(b) Code after optimization

Listing 3.10: Example for mem2reg optimization

The alloca, store, and load instructions are inserted by the clang code generator
because at the time this code is emitted, the generator does not yet know that the
address of x will never be used for anything else but loading and storing of x in the
local function. Once the whole function is emitted, the mem2reg pass can analyze
the function and can then remove the redundant memory access operations.

3.4.2 Optimizations for Extending Language Support

For programs which contain certain language constructs, the following compiler
optimizations are required by LLBMC before encoding (see chapter 4) can happen.

3.5. CONTROL FLOW GRAPHS 63

This is because LLBMC’s translation to ILR does not support all of LLVM’s language
features, so a preprocessing step is necessary to remove these.

LLVM’s optimization pass lowerindirectbranch replaces any indirectbr by an
equivalent construct of direct, conditional branches (br). This is straightforward,
because indirectbr contains a list of allowed branch targets, so one br per unique
entry in this list suffices.

LLVM’s pass lowerswitch has a similar purpose as lowerindirectbranch though
instead of replacing indirectbr instructions, it replaces switch instructions. Again,
because the conditions and associated branch targets are explicitly listed in the
switch instruction, this pass is straightforward.

LLBMC’s lowerindirectcall pass replaces indirect calls by a switch over the set
of possible call targets, with each case in the switch calling a single target. The set
of possible targets is over-approximated by the set of functions with a matching
signature. This can be refined using LLVM’s alias analysis, though this currently
does not happen in LLBMC.

LLBMC’s generalunroll optimization pass is derived from LLVM’s unroll pass
but allows unrolling in corner cases which LLVM itself does not support. Note that
this pass still relies on LLVM for detection of loops to unroll. This detection fails on
loops with multiple entry points, e.g. as used in the so called Duff’s device.

The pass scalarrepl, implemented in LLVM, replaces aggregates values by a set
of scalar values. This reduces the need for support of aggregates in LLBMC.

LLBMC’s lowergep replaces a getelementptr with more than 2 index arguments
by a sequence of shorter ones. The code in listing 3.11 is the lowered form of the
code in listing 3.6.

1 %RT = type { i8 , [10 x [20 x i32]], i8 }
2 %ST = type { i32 , double , %RT }
3
4 define i32* @foo(%ST* %s) {
5 %t1 = getelementptr %ST , %ST* %s , i32 1
6 %t2 = getelementptr %ST , %ST* %t1 , i32 0, i32 2
7 %t3 = getelementptr %RT , %RT* %t2 , i32 0, i32 1
8 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3 , i32 ←↩

0, i32 5
9 %t5 = getelementptr [20 x i32], [20 x i32]* %t4 , i32 0, i32 13
10 ret i32* %t5
11 }

Listing 3.11: Example for lowering of getelementptr

Finally, LLVM’s simplifycfg pass simplifies the program’s control flow graph and
thereby ensures that only the entry basic block has no predecessor.

3.5 Control Flow Graphs

Control flow graphs are graphs describing the order in which a program’s or function’s
basic blocks, and thereby also its instructions, are executed. They are an important

64 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

concept in compiler construction and used in many different compiler optimizations.
LLBMC leverages LLVM’s support for control flow graphs for loop unrolling but also
the optimal order in which basic blocks are encoded.

In “Control Flow Analysis”, Allen describes a control flow graph (CFG): “A control
flow graph is a directed graph in which the nodes represent basic blocks and edges
represent control flow paths ” [All70].

While this provides a good starting point for a definition of a control flow graph,
adaptations are required for one that is useful in the context of LLBMC bounded
model checking. For example, LLBMC’s definition for control flow graphs is based on
functions instead of whole programs. Before an adapted definition can be introduced,
it is necessary to define the term control flow edge first, though:

Definition 3.11 (Control flow edge). Given a function f , a pair of basic blocks
(b0, b1), b0, b1 ∈ f , where b1 is labeled <b1>, is a control flow edge, if and only if

• termB(b0) ∼ Jbr label <b1> K, or

• termB(b0) ∼ Jbr i1 <i1>, label <b1>, label <b2> K, or

• termB(b0) ∼ Jbr i1 <i1>, label <b2>, label <b1> K.

b0 is called the predecessor, and b1 is called the successor and the predicate succF(b0, b1)
is true.
Out of all of LLVM’s terminator instructions introduced in table 3.9, only br occurs
in this definition. Other terminators that pass control flow from one basic block to
another, such as switch or indirectbr, are not considered here. This is possible,
because it can be assumed, that the code transformations shown in section 3.4.2
were applied first and therefore none of these terminators occur in the code. The
definition of a control flow edge leads to the following definition of a control flow
graph:

Definition 3.12 (Control flow graph). Given a function f , a control flow graph
(Vf , Ef) for function f is a directed graph in which each node represents a basic
block in f and the edges represent control flow edges between these basic blocks.
In the context of LLBMC, a more specialized kind of control flow graph is used:

Definition 3.13 (Rooted control flow graph). Given a function f , a rooted
control flow graph (Vf , Ef , rf) is a rooted directed graph, where (Vf , Ef) is a
control flow graph and rf is the only externally reachable basic block.
In LLVM, a control flow graph’s root is called the entry block.

3.5.1 Graphical Illustration of Control Flow Graphs

Figure 3.11 shows a graphical representation of a basic block, useful for displaying
a basic block as a node in a control flow graph. We will use this style of illustration
throughout the thesis. In these illustrations, an ellipsis indicates that this part of an
instruction is not relevant for the example. Additionally, names of basic blocks as
well as locally and globally defined values are assumed to be unique in the example
in which they are used. In these illustrations, names always consist of a single letter
which is optionally followed by a number. If such a value is referred to outside of

3.5. CONTROL FLOW GRAPHS 65

the example, in particular in mathematical formulæ, the number will be displayed
as a subscript to the letter, e.g. the basic block labeled b1 will be referred to as b1.

b1:
%0 = ...

%1 = ...

br label %b2

Label

Instructions

Incoming edges

Terminator
Outgoing edges

Figure 3.11: Graphical illustration of a basic block b1

3.5.2 Bounded Control Flow Graphs

In LLBMC there are two places at which the bound, from which the method Software
Bounded Model Checking has its name, comes into play. The first is the bounding
of the call graph, and the second the bounding of the control flow graph, which is
discussed here:

Definition 3.14 (Back Edge Set). Given a rooted control flow graph (V,E, r), a
set of edges B is a back edge set if B is the smallest possible set so that (V,E\B, r)
is a connected, directed acyclic tree.

The above definition immediately leads to the following definition of a back edge:

Definition 3.15 (Back Edge). Given a rooted control flow graph (V,E, r), and a
back edge set B ⊂ E, each edge b ∈ B is called a back edge.

Which in turn leads to the following definition:

Definition 3.16 (Bounded Control Flow Graph). Given a function f and a
control flow graph (Vf , Ef , rf) and a back edge set Bf ⊆ Ef , The graph (Vf , Ef \
Bf , rf) is called the bounded control flow graph of (Vf , Ef , rf).

A program which is modified so that its control flow graph is reduced to its bounded
control flow graph (by modifying branch instructions accordingly) is entirely loop free.
Such a loop-free program can be translated into an SMT formula straightforwardly
by symbolic execution, though the semantics of the resulting program have changed
relative to the original program. More of the that program’s semantics can be
retained by unrolling loops before applying the above transformation. If a maximal
number of loop iterations is known for each loop in the program, the unrolling can be
done so that the program’s semantics do not change. This is guaranteed to be true
because the edges which are removed are known to never be executed. Unrolling in
LLBMC is done as shown in section 3.4.2.

66 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

3.6 Call Graphs

Call graphs are directed graphs which represent the calling relationships between
functions. Nodes in a call graph represent functions and the edges of a call graph
represent function calls. Call graphs are an important data structure in compilers and
software analysis tools and indispensable for a wide range of compiler optimizations.

CBMC and its derivatives use function inlining and loop unrolling to ensure that
every variable is assigned only once during any execution of the program.22 As a
consequence, the program’s call graph is only implicitly given by the single, large
resulting function. In contrast, LLBMC uses explicit call graphs for the same pur-
pose. This reduces the tool’s memory footprint but also adds more flexibility when
enhancing the core SBMC algorithm. For example, function summarization is easily
added to LLBMC by replacing regular nodes in the call graph which represent the
calling of a function, by special nodes which represent the summarization of the
function. Instead of inlining a function’s body the summarization is used instead.
DAG inlining, as presented by Lal and Qadeer [LQ15], can be implemented easily
using an explicit call graph.

This section leads towards the definition of a call graph as used in LLBMC. The terms
program, function and instruction are used as defined in section 3.2. Furthermore,
the optimizations presented in section 3.4 ensures, that indirect function calls are
replaced by direct function calls, so it is safe to assume no indirect function calls
occur in the program.

There is a wide variety of different kinds of call graphs. For the purpose of this
thesis, we can distinguish three core properties of call graphs: Call graphs can have
different levels of precision and context-sensitivity, and they can be either static or
dynamic.

A call graph is called dynamic if it was generated from the results of an instrumented
run of the program and it is called static otherwise. Because LLBMC is a static
code analysis tool, this thesis exclusively deals with static call graphs. Dynamic call
graphs are merely introduced for the sake of completeness.

We will also distinguish between precise, over-approximating, and under-approximating
call graphs. A precise call graph contains an edge for a call if and only if a trace
through the program exists which contains this call. An over-approximating call
graph contains additional edges for which the associated call cannot be executed in
reality. Finally, an under-approximating call graph lacks some edges of a precise call
graph. Grove et al. [Gro+97] provide a formalism which embeds call graphs with
different levels of precision in a lattice where the top element corresponds to the
empty call graph and the bottom element corresponds to the complete call graph,
which covers all possible executions.

Dynamic call graphs are often under-approximating, as they are generated by a
limited number of program executions during which not necessarily all paths might
have been taken. In contrast, static call graphs are often over-approximating, because
computation of a precise call graph can be too expensive for many uses, in particular
for the use in compilers. Instead of running a semantic analysis to determine if an

22This can also be seen as an inter-procedural extension of static single assignment form.

3.6. CALL GRAPHS 67

edge can actually be called, these call graphs simply assume that if a call exists in
the program syntactically then it is also an edge in the call graph.

3.6.1 Context-Sensitivity in Call Graphs

The most important property of call graphs in the context of LLBMC is context-
sensitivity . In a context-insensitive call graph every function is represented by exactly
one node and given two functions @f and @g, the graph contains a directed edge
between the nodes representing function @f and @g, if there is a function call from
@f to @g. In contrast, in a context-sensitive call graph a single function might be
represented by multiple nodes. Nodes that represent the same function differ by the
context in which a function is called. In the most basic case this context is simply the
immediately calling function, but multiple levels of calls can be taken into account,
too.

Consider, for example, a program with the functions @f, @g, and @h where @h is
called from functions @f and @g. In a context-insensitive call-graph, instead of
having a single node for function @h, one could have one node for function @h as
called from @f and another node for function @h as called from function @g. Such
a context-sensitive call graph provides a more detailed view on the calling relations
in the program and thereby can open up additional optimization opportunities for
a compiler. Nonetheless, compilers often use static, over-approximating, context-
insensitive call graphs, primarily because they can be generated quickly, and provide
the best cost-benefit ratio. In the context of software bounded model checking, the
reduced precision in a compiler’s call graphs, is not a matter of missed optimization
opportunities, but of correctness.

Figure 3.12 is the context-insensitive call graph for listing 3.12. Figure 3.13 shows
the context-sensitive call graph of listing 3.12. Note that, in contrast to the context-
insensitive call graph in figure 3.12, there are two nodes for @h and @i each.

1 define i32 @f () {
2 entry :
3 %fg = call i32 @g ()
4 %fh = call i32 @h ()
5 ret i32 %1
6 }
7
8 define i32 @g () {
9 entry :
10 %gh = call i32 @h ()
11 %gi = call i32 @i ()
12 ret i32 %1
13 }

14 define i32 @h () {
15 entry :
16 %h1 = call i32 @i ()
17 %h2 = call i32 @i ()
18 ret i32 %h2
19 }
20
21 define i32 @i () {
22 entry :
23 ret i32 0
24 }
25
26

Listing 3.12: Call graph example code

The notion of context-sensitivity can be generalized further. Instead of identifying a
node in a context-sensitive call graph only by a function and its immediate caller,
a sequence of functions can be used instead, where each element of the sequence

68 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

@f

@g

@h

@i

Figure 3.12: A context-insensitive call graph for listing 3.12

@f

@g

@h

@h

@i

@i

Figure 3.13: A context-sensitive call graph for listing 3.12

contains a call to its successor (except, of course, for the last element in the sequence).
In order to be able to express this we define a context to be such a sequence:

Definition 3.17 (Context). Given a set of functions F and a function f ∈ F , a
sequence c = (f1, . . . , fn) (with all fi ∈ F) is called a context of f if fn contains
a call to f , and for each pair fi, fi+1 in c each fi contains a call to fi+1.23

We use |c| to indicate the length of a context and we define the empty sequence to
be a context of every function. Contexts are inspired by the concept of contours as
presented by Grove et al. [Gro+97] (see also [Shi90]).

With this definition of a context we can now define context-sensitive call graphs:

Definition 3.18 (Context-sensitive call graph). A context-sensitive call graph is
a graph G = (V,E) where each v ∈ V is labeled with a sequence (f1, . . . , fn, f),
where (f1, . . . , fn) is a context of f and for all (v, u) ∈ E: if u is labeled (f1, . . . , fn,
f) then v is labeled (. . . , f1, . . . , fn).
A context-insensitive call graph can be seen as a context sensitive call graph (V,E)
where |v| = 1 for all v ∈ V . The most common type of context-sensitive call graphs
used by compilers is a context-sensitive call graph where |v| = 2 for all v ∈ V . In
addition, we will call a context-sensitive call graph a fully context-sensitive call graph
if for all (f1, . . . , fn, f) ∈ V , there is no context c of f with c = (f0, f1, . . . , fn).
Intuitively this means the context for every node reaches back all the way to the
program’s entry point.

In chapter 4 we assume that the program has a single, unique entry point. If a library
with multiple entry points is to be verified, LLBMC needs to be run multiple times,

23 A C,C++, or LLVM-IR program’s entry point is the main function. Libraries may have multiple
entry points.

3.6. CALL GRAPHS 69

once for each entry point. A call graph can then be generated based on the slice of
the program reachable from this entry point. DAG inlining, introduced by [LQ15],
is a different approach which handles multiple entry points natively.

In chapter 4, we use call graphs to guide the encoding algorithm. An infinite large
call graph would result in non-termination of the algorithm. To ensure the call graph
and therefore the encoding’s runtime are finite, the call graph needs to be bounded
artificially:

Definition 3.19 (Bounded call graph). Given a program p and its rooted, fully
context-sensitive call graph G = (V,E, r), we call Gn = (V n, En, rn) the n-
bounded call graph of G, if V n = V \ {v ∈ V : |v| > n}, En = E \ {(v, u) : v /∈
V n ∨ u /∈ V n}, and r = rn.

3.6.2 Call-Site-Sensitive Call Graphs

CBMC uses function inlining to ensure each variable is assigned a value at most once
during execution of the program. This is necessary for CBMC because it encodes
each instruction as a separate term. However, LLBMC does not do inlining and
therefore cannot have a one-to-one relation between instructions and terms. Instead,
LLBMC associates each pair (c, i) of a context c and an instruction i with a unique
term.

A context-sensitive call graph as described above is not sufficient for this because
such a graph does not distinguish between two calls to a function which are from
different call-sites inside another function.24 Consider the example in listing 3.13:
The function @g is called twice in @f, where the first call is safe, but the second call
is not.

1 define void @f () {
2 %0 = call i32 @g(i32 4)
3 %1 = call i32 @g(i32 0)
4 }

5 define i32 @g(i32 %x) {
6 %res = udiv i32 10, %x
7 return i32 %res
8 }

Listing 3.13: Example showing the importance of call sites

A call-site-sensitive call graph requires a slightly different definition of a context:

Definition 3.20 (Call-site-sensitive context). Given a function f , a sequence
(f1, i1, f2, . . . , fn, in) is a call-site-sensitive context, if each fj is a function and
each ij a call instruction in fj which calls fj+1.
We will call ij the context’s call site and (f1, i1, . . . , fn−1, in−1) the context’s parent.
We use callsite(c) to refer to c’s call site and parent(c) to refer to c’s parent. Note
that both functions are only partially defined. We will furthermore use fun(c) to
refer to the function called by c’s last instruction.

Definition 3.21 (Call-site-sensitive call graph). A call-site sensitive call graph
(V,E) is a context-sensitive call graph where each node v ∈ V is labeled with the
sequence (f1, i1, . . . , fn, in, f) and (f1, i1, . . . , fn, in, f) is a context of f .

24A call-site is the function call’s call instruction.

70 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Figure 3.14 shows the call-site-sensitive call graph of listing 3.12.

@f

@h

@g

@i

@i

@h

@i

@i

@i

%fg

%fh

%gh

%gi
%h1

%h2

%h1

%h2

Figure 3.14: A call-site-sensitive call graph for listing 3.12

The definitions of bounded, rooted, and fully call-site-sensitive call graphs follow the
corresponding definitions for context-sensitive call graphs. In the following, we use
bounded, rooted, fully call-site-sensitive call graphs. Because of the loop unrolling,
every instruction in every context is guaranteed to be called only once. Furthermore,
because we assume there are no indirect function calls so every call goes to a specific
function. Finally, due to the construction of a call-site-sensitive graph, in such a
context every call instruction leads to a distinct context. These properties together
guarantee, that for any execution of the program any pair (c, i) of a context c and
an instruction i is executed at most once. This means such a call graph can be used
in place of syntactic inlining. This is shown in more detail in chapter 4.

3.7 LLBMC’s Intermediate Logic Representation

The Intermediate Logic Representation (ILR) is LLBMC’s primary internal language
and at the same time an SMT theory. It is primarily used in LLBMC for term rewriting
and thereby acts as an intermediate step in the translation of an LLVM-IR program
into a bitvector and array formula. Its design took inspiration from all three of LLVM-
IR (see section 3.2), SMT-LIB (see section 2.1.2), and term rewriting systems (see
2.1.6). The language is designed to be sufficiently expressive to make encoding of
bounded fragments of LLVM-IR programs simple, to be easily translatable to SMT-
LIB’s quantifier-free logic of arrays and bitvectors (QF_ABV), and to be well-suited
for term rewriting.

LLVM-IR’s instruction set and the functions defined in the theory of bitvectors
already share many similar operations, including arithmetic operations, shift and
bitwise logic operations, truncation and extension operations, as well as extraction
and insertion of subranges of bitvectors. On top of this, LLVM-IR’s memory related
operations can be mapped straightforwardly to functions from SMT-LIB’s theory
of array. Of course, these commonalities were taken into account during the design
of many of ILR’s functions, which often have matching counterparts in LLVM-IR
instructions as well as QF_ABV.

Because ILR is intended to encode LLVM-IR programs, ILR, like LLVM-IR itself, is
a typed language with a type system closely modeled after LLVM-IR’s type system.
Furthermore, the functions mentioned above are supplemented by a considerable

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 71

number of functions that encode desired and undesired properties of these programs,
e.g. different kinds of arithmetic overflow. This way, LLVM-IR’s notion of undefined
behavior and its instruction flags can be encoded, too.

Unlike LLVM-IR, and unlike Boogie [Bar+05], a popular intermediate representation
for verification, ILR is not a language for describing imperative programs but a
logic language. Consequently, ILR has no notion of control flow, and no implicit
program state. Instead, an LLVM-IR program’s control flow and program state are
encoded explicitly in an ILR formula. While LLVM-IR supports recursive types25 and
LLBMC’s implementation supports this as well, ILR as presented here does not do
so for reasons of readability.

As exemplified by SMT-LIB, ILR does not distinguish between terms and formulæ.
The role of formulæ in first-order logic is assumed by terms of a dedicated boolean
sort and predicates are replaced by functions of this sort. Like SMT-LIB, ILR does
not pose any constraints on the bitwidth of a bitvectors, while LLVM-IR restricts
the bitwidth to 223 − 1 bits. However, for realistic problems this is not relevant, as
such large types do not occur in practice.

The comprehensive type system and the type conversion functions are one major
differentiating point between ILR and QF_ABV. For example, unlike QF_ABV, ILR
differentiates bitvector types not just by their bitwidth but also by their use, e.g. as
integers or as pointer. Additionally, while SMT-LIB only supports single byte read
and write operations, ILR uses a flat memory model with a single, large array for the
entire memory space and therefore requires support for read and write operations
with any fixed-number of bytes.

Note that because ILR uses schemata to describe sorts, functions, and axioms, it
does not have a finite set of sorts, functions, and axioms. However, because LLVM-IR
programs are finite, LLBMC’s call graphs are finite, too, and because LLBMC’s term
rewriting systems terminates, any program can be encoded in a formula using finite
subsets.

The primary focus of this section is the introduction of ILR and it sorts and functions.
In the following ILR’s function schemata are introduced in tables, such as table 3.13.
Functions and predicates that are not part of ILR itself, but only used for the
axiomatization of ILR functions, are called auxiliary functions and predicates and
are introduced in definitions throughout the section. Note that the set of sorts and
functions introduced here comprise just the core of the ILR language, as ILR is an
extensible language. The language is extended in chapter 4 by function symbols
used for the encoding of LLVM-IR programs in ILR and in chapter 5 with features
for dynamic memory management.

Note that because ILR is only used as an intermediate representation and is never
written to disc or the screen, it currently does not have a concrete syntax. We use
the syntax of first-order logic for ILR’s abstract syntax.

Note that ILR is not fully specified, similar to how QF_ABV is not fully specified
(see [KRW09]). For example, the result of a division by zero is unspecified in ILR
and QF_ABV, and may be implemented any way, as long as x = y → x

0 = y
0 .

25 Recursive types are types that refer to themselves, e. g. a structure containing a pointer to
another structure of the same type.

72 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

3.7.1 Sorts

ILR’s sorts are listed in table 3.10. Like SMT-LIB, ILR allows for derived sorts, which
means sorts can have an arity larger than zero and may take natural numbers or
other sorts as arguments. For example, the pointer sort has an arity of one and may
take, an integer sort as its argument. For sake of simplicity, we will not consider
recursive sorts in this thesis.26

Sort Family Pattern Examples
Boolean bool bool
Integer i〈N〉 i1, i8, i32, i64
Pointer 〈S〉* i32*
Array [〈N〉 x 〈S〉] [4 x i32]
Structure {〈S〉, . . . } {i32, i8*}
Memory State m〈N〉 m16, m32 m64

Table 3.10: ILR sorts and sort schemata
(〈N〉 act as a placeholder for a positive integer and 〈S〉 for any sort except memory

states)

Like LLVM-IR but unlike C, ILR does not have a small, fixed set of sorts and functions,
but whole families of related sorts and functions instead. For example, where C has a
fixed number of integer sorts27, ILR has integer sorts with arbitrary bitwidths. Because
of this, this section primarily presents axiom schemata, which need to be instantiated
first to retrieve concrete axioms. Consequently, these schemata which make use sort
placeholders instead of concrete sorts. For example, the sort placeholder I stands
for any integer sort and an axiom schema containing I can be instantiated by
substituting all occurrences of I with a concrete integer sort, e.g. i8. Table 3.11
introduces the sort placeholders used in this section and the sorts each one may be
instantiated with.For convenience, we will apply the patterns shown in table 3.10 on
the sort placeholders from table 3.11 to express relations between sort placeholders.
For example, I* indicates a placeholder for a pointer sort pointing at an object of
sort I. For example, if I is instantiated as i8, I* must be instantiated as i8*.

Core sorts in ILR are the integer sorts (e.g. i8) and the pointer sorts (e.g. i8*). In
LLVM, integer and pointer types are so called simple value types. For consistency
with LLVM, these sorts will be called the simple value sorts in ILR. Some axiom
schemata can be instantiated for integers and pointers alike. These axioms will use
the dedicated placeholders V, V1, and V2.

Array and structure sorts refer to the same concepts in C and LLVM-IR. These are
called aggregate sorts. Note that, while LLBMC supports aggregate sorts, ILR, as
presented in this thesis, does not allow these sorts for reasons of readability. These
sorts are only used for constructing appropriate pointer sorts and for use in pointer
arithmetics based on these sorts.

26 Recursive sorts are sorts which contain pointers to themselves. Of course, LLBMC’s imple-
mentation allows for recursive sorts.

27 Namely char, short, int, long, long long and their unsigned counterparts.

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 73

Sort Placeholder Instantiatable Sorts
I, I1, I2 Integer sorts
P, P1, P2 Pointer sorts
A Array sorts
S Structure sorts
M Memory state sorts
V, V1, V2 Simple value sorts
N Native sorts
U All sorts

Table 3.11: Sort placeholders used in the following and their possible instantiations

Because simple value sorts and aggregate sorts both are also present in LLVM-IR,
these sorts will be called native sorts. Native sorts are primarily used to indicate
that something can be pointed at with a pointer. Consequently, memory state sorts
are not native sorts, as neither do they exist in LLVM nor can the be pointed at.

Sort Family Variables
Boolean b, b1, b2, . . .
Integer x, y, z, x1, x2, . . .
Pointer p, p1, p2, . . .
Memory state m, m1, m2, . . .
Integer or Pointer v, v1, v2, . . .
All sorts u, u1, u2, . . .

Table 3.12: Variable naming conventions

Not all sorts in ILR are matched by LLVM types. In contrast to LLVM-IR, ILR has
a dedicated boolean sort. Furthermore, ILR has a sort representing memory states.
LLVM-IR and SMT-LIB have notably different uses of the word array. ILR follows
LLVM-IR’s lead here, with its array sort matching LLVM-IR’s array type. SMT’s
array sort is matched by ILR’s memory sort, with the differing name being chosen
to avoid confusion with LLVM-IR inspired array sort. While SMT-LIB’s array sort
takes two arguments, the index sort and the element sort, ILR’s memory sort only
takes a single argument, the index sort, while the element sort is always i8.

3.7.2 Booleans

ILR defines a dedicated boolean sort bool. Having first-order logic in mind this
might seem redundant, but this is important for LLBMC because the sort makes it
syntactically possible to define a select function which is similar to C’s ?:-operator.28

28 Functions in first-order logic take terms as arguments, never formulæ, so select would not be
legal syntax without a dedicated boolean sort. The term select(b, x1, x2) can be “simulated” by

74 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Functions related to the boolean sort are listed in table 3.13.

Symbol : Signature Interpretation
T :→ bool Boolean true
F :→ bool Boolean false
eq : bool× bool→ bool Logical equivalence

and : bool× bool→ bool Logical conjunction
or : bool× bool→ bool Logical disjunction

not : bool→ bool Logical negation

Table 3.13: Boolean ILR functions

Definition 3.22 (〈·〉). Given a boolean b, the predicate 〈b〉 is true if b = T and
false otherwise.

This definition allows to formalize the semantics of functions related to the boolean
sort:

〈T 〉 ↔ > (3.1a)
〈F 〉 ↔ ⊥ (3.1b)

∀b1, b2
(
〈eq(b1, b2)〉 ↔ (〈b1〉 ↔ 〈b2〉)

)
(3.1c)

∀b1, b2
(
〈and(b1, b2)〉 ↔ (〈b1〉 ∧ 〈b2〉)

)
(3.1d)

∀b1, b2
(
〈or(b1, b2)〉 ↔ (〈b1〉 ∨ 〈b2〉)

)
(3.1e)

∀b1
(
〈not(b)〉 ↔ ¬〈b〉

)
(3.1f)

For brevity, we will at times use terms of sort bool as if they were formulæ, though
only when referring to them in the running text.

3.7.3 Integers and Pointers

ILR’s integers are nearly identical to QF_ABV’s bitvectors. Nonetheless, in the
context of ILR, the term integer is used instead of bitvector, in order to stay in
line with LLVM’s terminology here. To avoid confusion with mathematical integers,
those are referred to as mathematical integers explicitly.

Definition 3.23 (Integer). x = (xn−1, . . . , x0) is an integer, where xi ∈ {0, 1}
for 0 ≤ i < n.

Because LLBMC aims to verify low-level software, it requires faithful handling of
various operations on pointers that occur in such code, e.g. bit-stuffing. Because of
this, a pointer’s bit pattern is highly relevant for verification, and therefore LLBMC
cannot handle pointers in an abstract way, even thought desirable for performance
reasons, but needs to treat them as bitvectors, too:

replacing it by an uninterpreted constant symbol x of the appropriate sort and adding b → x = x1
and ¬b → x = x) as top-level constraints to the formula. This is undesirable in the context of
LLBMC’s reliance on term rewriting, though.

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 75

Definition 3.24 (Pointer). p = (pn−1, . . . , p0) is a pointer, where pi ∈ 0, 1 for
0 ≤ p < n.
Many of the axioms related to integers and pointers presented below depend on the
ability to reason about single bits in an integer or pointer. For this an auxiliary bit
extraction predicate is provided:

Definition 3.25 (Bit extraction). Given an integer or pointer b = (bn−1, . . . , b0),
the predicate ·[i] with 0 ≤ i < n is defined by b[i]↔ bi = 1.
Finally, the number of bits in an integer is equally important, requiring the following
definition:

Definition 3.26 (Bitwidth). Given an integer or pointer b = (bn−1, . . . , b0), |b| = n
is called b’s bitwidth.
We will also extend the use of the operator |·| to simple value sorts and sort place-
holders, with the obvious meaning.

Symbol : Signature Interpretation
andI : I × I → I Bitwise logical conjunction

orI : I × I → I Bitwise logical disjunction
xorI : I × I → I Bitwise exclusive or
notI : I → I Bitwise negation

Table 3.14: Bitwise ILR functions

We can now introduce the first set of ILR’s integer related functions, the bitwise
operations. These operations are closely modeled after LLVM-IR’s bitwise operations,
though the instructions’ flags (nsw, uw, and exact) are omitted here. Suitable ILR
functions for encoding these flags are presented in table 3.18. The bitwise operations
include and, or, and xor, as well as not for bitwise logical negative (see table 3.14).
While the former are present in LLVM-IR, too, the latter is not. These operations
are defined as usual:

∀x, y, i
(
0 ≤ i < |x| →(andI(x, y)[i]↔ x[i] ∧ y[i])

)
(3.2a)

∀x, y, i
(
0 ≤ i < |x| →(orI(x, y)[i]↔ x[i] ∨ y[i])

)
(3.2b)

∀x, y, i
(
0 ≤ i < |x| →(xorI(y, z)[i]↔ ¬(x[i]↔ y[i]))

)
(3.2c)

∀x, y, i
(
0 ≤ i < |x| →(notI(x)[i]↔ ¬(x[i]))

)
(3.2d)

Additionally to bitwise operations, ILR’s integers support arithmetic operations, many
of which can be defined by interpreting an integer’s bit pattern as a natural number:

Definition 3.27 (Binary encoding). 〈·〉uV : V → N is the binary encoding (unsigned
encoding) of a mathematical integer as an ILR integer or pointer with bitwidth n:

〈v〉uV =
n−1∑
i=0

vi2i

Similarly, an integer’s bit pattern can be interpreted as a mathematical integer using
two’s complement encoding:

76 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Definition 3.28 (Two’s complement encoding). 〈·〉sV : V → Z is the signed
encoding (two’s complement) of a mathematical integer as an ILR integer with
bitwidth n:

〈v〉sV = −vn−12n−1 +
n−2∑
i=0

vi2i

ILR uses truncated division for signed integer division, as in C, LLVM-IR and SMT’S
theory of bitvectors. This is in contrast to the use of floored division by Knuth
[Knu73]. Truncated division is based on the following definition of truncation:

Definition 3.29 (Truncation). The function int truncates a real number to its
integer part:

int(x) =
{
bxc if x ≥ 0
dxe otherwise

Symbol : Signature Operation
(x)I :→ I Integer constant
(x)P :→ P Pointer constant

Table 3.15: Integer and pointer constants

Integer and pointer constants are functions with arity zero, as shown in table 3.15,
e.g. (42)i32 for the number 42 as a 32-bit number, (−3)i8 for the number -3 as an
8-bit integer, and (0x0)i32∗ for a null pointer pointing at a 32-bit integer.

∀x
(
〈(x)I〉uI ≡ int(x) (mod 2|I|)

)
(3.3a)

∀x
(
〈(x)P〉P ≡ int(x) (mod 2|P|)

)
(3.3b)

Note that in equations (3.3), x may be any expression that can be evaluated to a
real number. Furthermore, any two constants (x)I and (y)I for which

int(x) ≡ int(y) (mod 2|I|)

are treated syntactically as the same constant. This means for any integer sort
I, there are exactly 2|I| different constant functions. This is important for the
effectiveness of simplifications (see section 6.1) and term sharing (see section 3.7.7).
For example, (3)I , (π)I , and (10/3)I all represent the same function. The same is
true for any pointer sort P.

ILR provides a number of arithmetic functions including addition, subtraction, mul-
tiplication, division, and remainder calculation. If signed and unsigned differ for an
operation, both variants are present. Note that signed and unsigned multiplication
do not differ in the lower half of the result. Because ILR truncates the higher half of
the result, a single multiplication function therefore suffices. Table 3.16 lists ILR’s
arithmetic functions.

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 77

Symbol : Signature Interpretation
addI : I × I → I Addition
subI : I × I → I Subtraction
mulI : I × I → I Multiplication
divuI : I × I → I Unsigned division

remu
I : I × I → I Unsigned remainder

divsI : I × I → I Signed division
rems

I : I × I → I Signed remainder

Table 3.16: Arithmetic ILR functions

To be consistent with LLVM-IR and QF_ABV, division is defined using truncation,
and neither using the floor operator nor according to the Euclidean definition. Notable
is also the behavior for a division by zero: as in SMT-LIB’s, ILR does not define
the result of a division by zero, however ∀x, y

(
x = y → x/0 = y/0

)
must be true.

LLBMC’s implementation currently returns −1 if x < 0 and the largest possible
integer if x is positive. However it is intended to be configurable in the future.

For the definition of ILR’s remainder function we first require the rem operator:

Definition 3.30 (rem). Given two integers a and b, two integers q and r exist so
that a = qb+ r∧ 0 ≤ r < |b|. r = a rem b is called the remainder of a divided by b.
The following axioms define ILR’s arithmetic functions:

∀x, y
(
〈addI(x, y)〉uI ≡ (〈x〉uI + 〈y〉uI) (mod 2|I|)

)
(3.4a)

∀x, y
(
〈subI(x, y)〉uI ≡ (〈x〉uI − 〈y〉uI) (mod 2|I|)

)
(3.4b)

∀x, y
(
〈mulI(x, y)〉uI ≡ (〈x〉uI × 〈y〉uI) (mod 2|I|)

)
(3.4c)

∀x, y
(
〈divuI(x, y)〉uI ≡ int(〈x〉uI / 〈y〉uI) (mod 2|I|)

)
(3.4d)

∀x, y
(
〈divsI(x, y)〉sI ≡ int(〈x〉sI / 〈y〉sI) (mod 2|I|)

)
(3.4e)

∀x, y
(
〈remu

I(x, y)〉uI = 〈x〉uI rem 〈y〉uI
)

(3.4f)
∀x, y

(
〈rems

I(x, y)〉sI = 〈x〉sI rem 〈y〉sI
)

(3.4g)

Symbol : Signature Interpretation
shlI : I × I → I Shift left
shruI : I × I → I Logical shift right
shrsI : I × I → I Arithmetic shift right

Table 3.17: Shift ILR functions

In contrast to C and LLVM-IR, where shift operations can cause undefined behavior
for a number of different reasons, shift operations in ILR, like in SMT-LIB, are always

78 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

well-defined:

∀x, y
(
〈shlI(x, y)〉uI ≡ (〈x〉uI × 2〈y〉

u
I) (mod 2|I|)

)
(3.5a)

∀x, y
(
〈shrsI(x, y)〉sI ≡ int(〈x〉sI / 2〈y〉

s
I) (mod 2|I|)

)
(3.5b)

∀x, y
(
〈shruI(x, y)〉uI ≡ (〈x〉uI / 2〈y〉

u
I) (mod 2|I|)

)
(3.5c)

Symbol : Signature Interpretation
addouI : I × I → bool Unsigned addition overflow
addosI : I × I → bool Signed addition overflow
subouI : I × I → bool Unsigned subtraction overflow
subosI : I × I → bool Signed subtraction overflow
mulouI : I × I → bool Unsigned multiplication overflow
mulosI : I × I → bool Signed multiplication overflow
divosI : I × I → bool Signed division overflow
xdivzI : I × I → bool Signed division overflow
divxuI : I × I → bool Unsigned division exactness
divxsI : I × I → bool Signed division exactness
shoI : I × I → bool Shift overflow

shrxsI : I × I → bool Arithmetic shift right exactness
shrxuI : I × I → bool Logical shift right exactness

Table 3.18: Checking ILR functions

All functions introduced so far have direct counterparts in LLVM-IR. In contrast, the
functions presented in table 3.18 are inspired by [Bru10] are exclusive to ILR and
are dedicated to detecting undesired behavior in LLVM-IR programs. For example,
addouI encodes whether an unsigned addition of integers of sort I overflows, and it
is used together with addI to fully encode the semantics of an add instruction that
has the nuw flag set. Other checking functions encode undefined behavior that is
unrelated to flags, e.g. sho for detecting shifts by more than the bitwidth and divz
for division by zero.

The axiomatization of most of these functions requires the definition of further
auxiliary functions:

Definition 3.31 (intmaxI and intminI). intmaxuI is the largest unsigned integer
of type I, while intminuI is the smallest such integer. intmaxsI is the largest signed
integer of type I and again intminsI is the smallest such integer.

Given these definitions, the functions introduced in table 3.18 can now be defined

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 79

with the following axioms:

∀x, y
(
〈addouI(x, y)〉 ↔ 〈x〉uI + 〈y〉uI > intmaxuI

)
(3.6a)

∀x, y
(
〈addosI(x, y)〉 ↔ 〈x〉sI + 〈y〉sI > intmaxsI ∨

〈x〉sI + 〈y〉sI < intminuI
)

(3.6b)
∀x, y

(
〈subouI(x, y)〉 ↔ 〈x〉uI − 〈y〉uI < intminuI

)
(3.6c)

∀x, y
(
〈subosI(x, y)〉 ↔ 〈x〉sI − 〈y〉sI < intminuI ∨

〈x〉sI − 〈y〉sI > intmaxsI
)

(3.6d)
∀x, y

(
〈mulouI(x, y)〉 ↔ 〈x〉uI〈y〉uI < intmaxuI

)
(3.6e)

∀x, y
(
〈mulosI(x, y)〉 ↔ 〈x〉sI〈y〉sI < intminuI ∨

〈x〉sI〈y〉sI > intmaxsI
)

(3.6f)
∀x, y

(
〈divosI(x, y)〉 ↔ 〈x〉sI = intmaxsI ∧ 〈y〉sI = −1

)
(3.6g)

∀x, y
(
〈divzI(x, y)〉 ↔ 〈y〉sI = 0

)
(3.6h)

∀x, y
(
〈divxuI(x, y)〉 ↔ 〈x〉uI rem 〈y〉uI = 0

)
(3.6i)

∀x, y
(
〈divxsI(x, y)〉 ↔ 〈x〉sI rem 〈y〉sI = 0

)
(3.6j)

∀x, y
(
〈shoI(x, y)〉 ↔ 〈y〉uI ≥ |I|

)
(3.6k)

∀x, y
(
〈shrxsI(x, y)〉 ↔ 〈x〉sI rem 2〈y〉

s
I = 0

)
(3.6l)

∀x, y
(
〈shrxuI(x, y)〉 ↔ 〈x〉uI rem 2〈y〉

u
I = 0

)
(3.6m)

Note that the above definitions are not suited for an actual implementation for de-
tecting these overflows. Optimized approaches are presented by Brummayer [Bru10],
Warren [War02], and Schultey et al. [Sch+00].

Symbol : Signature, with constraints Interpretation
extuI1,I2

: I1 → I2, with |I1| > |I2| Integer zero extension
extsI1,I2

: I1 → I2, with |I1| > |I2| Integer signed extension
truncI1,I2 : I1 → I2, with |I1| < |I2| Integer truncation

inttoptrI,P : I → P Integer to pointer conversion
ptrtointP,I : P → I Pointer to integer conversion

bitcastP1,P2 : P1 → P2, with |P1| = |P2| Pointer to pointer conversion

Table 3.19: Conversion functions

Conversion operations (see table 3.19) are straightforward:

∀x
(
〈extuI1,I2

(x)〉uI2
= 〈x〉uI1

)
(3.7a)

∀x
(
〈extsI1,I2

(x)〉sI2
= 〈x〉sI1

)
(3.7b)

∀x
(
〈truncI1,I2(x)〉uI2

≡ 〈x〉uI1
(mod 2|I2|)

)
(3.7c)

∀x
(
〈inttoptrI,P(x)〉P ≡ 〈x〉uI (mod 2|P|)

)
(3.7d)

∀p
(
〈ptrtointP,I(p)〉uI ≡ 〈p〉P (mod 2|I|)

)
(3.7e)

∀p
(
〈bitcastP1,P2(p)〉P2 = 〈p〉P1

)
(3.7f)

80 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

The functions extu for zero bitvector extension, exts for signed bitvector extension,
and trunc for bitvector truncation are defined as expected. The function ptrtoint
reinterprets the pointer’s bit pattern as an integer. If necessary, the value is truncated
or zero extended. Its counterpart inttoptr operates in the same way. Finally, bitcast
reinterprets a pointer as another type without changing the bit pattern. Note that
this operation requires that both pointers have the same bitwidth.

Symbol : Signature Interpretation
eqV : V × V → bool Equality relation
neV : V × V → bool Inequality relation
gtuV : V × V → bool Unsigned-greater-than relation
geuV : V × V → bool Unsigned-greater-or-equals relation
ltuV : V × V → bool Unsigned-less-than relation
leuV : V × V → bool Unsigned-less-or-equals relation
gtsV : V × V → bool Signed-greater-than relation
gesV : V × V → bool Signed-greater-or-equals relation
ltsV : V × V → bool Signed-less-than relation
lesV : V × V → bool Signed-less-or-equals relation

Table 3.20: Comparison functions

The usual set of comparison operations is supported for integers and pointers. The
functions are listed in table 3.20, with their semantics given by:

∀x, y
(
〈eqV(x, y)〉 ↔ 〈x〉uV = 〈y〉uV

)
(3.8a)

∀x, y
(
〈neV(x, y)〉 ↔ 〈x〉uV 6= 〈y〉uV

)
(3.8b)

∀x, y
(
〈gtuV(x, y)〉 ↔ 〈x〉uV > 〈y〉uV

)
(3.8c)

∀x, y
(
〈geuV(x, y)〉 ↔ 〈x〉uV ≥ 〈y〉uV

)
(3.8d)

∀x, y
(
〈ltuV(x, y)〉 ↔ 〈x〉uV < 〈y〉uV

)
(3.8e)

∀x, y
(
〈leuV(x, y)〉 ↔ 〈x〉uV ≤ 〈y〉uV

)
(3.8f)

∀x, y
(
〈gtsV(x, y)〉 ↔ 〈x〉sV > 〈y〉sV

)
(3.8g)

∀x, y
(
〈gesV(x, y)〉 ↔ 〈x〉sV ≥ 〈y〉sV

)
(3.8h)

∀x, y
(
〈ltsV(x, y)〉 ↔ 〈x〉sV < 〈y〉sV

)
(3.8i)

∀x, y
(
〈lesV(x, y)〉 ↔ 〈x〉sV ≤ 〈y〉sV

)
(3.8j)

3.7.4 Miscellaneous

A set of miscellaneous functions, which do not belong to any group in particular,
are listed in table 3.21.

As already mentioned, select is the primary reason why ILR has a dedicated boolean

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 81

Symbol : Signature, with constraints Interpretation
selectU : bool× U × U → U Select

φU : (U × bool)n → U Phi
concatI1,I2 : I1 × I2 → I, with |I| = |I1|+ |I2| Concatenation

extractI1,i,j : I1 → I2, with|I1| ≥ |I2| = j − i+ 1 Extraction

Table 3.21: Miscellaneous functions

sort. Its semantics are inspired by C’s ?:-operator:

∀v1, v2
(
b→ selectV(T, v1, v2) = v1

)
(3.9a)

∀v1, v2
(
¬b→ selectV(F, v1, v2) = v2

)
(3.9b)

The φ function is the variadic sibling of the select function. It is inspired by LLVM’s
phi instruction, which is used to select the ‘right’ value, depending on which control
flow edge was taken:

∀u1, b1, . . . , un, bn
(
bi → φU (u1, b1, . . . , un, bn) = ui

)
(3.10a)

∀u1, b1, . . . , un, bn
(
∀bi
(
¬bi
)
→ φU (u1, b1, . . . , un, bn) = un

)
(3.10b)

Note that the formula is unsatisfiable if two bi are true at the same time and the
corresponding ui cannot have the same value. The conditions are meant to be
mutually exclusive and construction of ILR formulæ in LLBMC ensures this is true.
While the φ function is shown as variadic here, it could equally well be defined as a
set of functions with different arity.

Concatenation of bitvectors is based on SMT-LIB’s bitvector function of the same
name:

∀i, x1, x2
(
i < |I1| → concatI1,I2(x1, x2)[i] ≡ x1[i]

)
(3.11a)

∀i, x1, x2
(
i ≥ |I1| → concatI1,I2(x1, x2)[i] ≡ x2[i− |I1|]

)
(3.11b)

The same holds for extraction of ranges of bits from an integer:

∀i, k, j, x
(
i ≤ k ≤ j → extractI,i,j(x)[k − i] = x[k]

)
(3.12)

E.g. extracti32,8,15(x) extracts the second least-significant byte of x.

3.7.5 Memory

Memory related operations are considerably more complex than most other opera-
tions. This is to some part because low-level memory operations require various bits
of knowledge about the target architecture, including data layout constraints (e.g.
alignment) and the architecture’s native bitwidth:29

29 LLVM’s data layout is introduced briefly in section 3.2

82 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

Definition 3.32 (Pointer bitwidth). The function pointerwidtha stands for the
pointer width on architecture a.

For example, for the x86 architecture, pointerwidthx86 = 32. This definition leads
immediately to the following extension of the definition of a bitwidth:

Definition 3.33 (Bitwidth). The operator |N |a stands for the width of sort N on
architecture a.

• For all integer sorts I, |I|a = |I|,

• for all pointer sorts P, |P|a = pointerwidtha,

• for all aggregate sorts A and S, |A|a and |S|a are defined as the sum of the
bitwidths of all elements.

Note that this does not yet take padding or alignment into account, so the bitwidth
can be seen as the minimum number of bits required to store a value.

Symbol : Signature Interpretation
loadbV :M×V*→ V Big-endian load
loadlV :M×V*→ V Little-endian load

storebV :M×V*× V →M Big-endian store
storelV :M×V*× V →M Little-endian store

Table 3.22: Memory accessing ILR functions

ILR’s memory accessing functions are listed in table 3.22. LLBMC treats endianness
not as a property of the target architecture but as a property of each load or store
operation. Because of this, two functions for load and store are defined each: loadb
and storeb for big-endian memory accesses and loadl and storel for little-endian
memory accesses. This approach allows reasoning about big-endian, little-endian,
mixed-endian30, and bi-endian31 architectures in a single formula. This is useful when
comparing programs compiled for different architectures. We will use load instead
of loadb or loadl if something holds for either endianness, e.g. when referring to
loading and storing of a sort with bitwidth less than or equals eight.

As already mentioned above, only loading and storing of LLVM’s simple value types
(integers and pointers) are supported. Aggregate sorts are only ever used for deriving
pointer sorts and for pointer arithmetics in the gep function introduced below.

While LLVM allows virtual registers containing integers of any bitwidth, a byte in
memory is always fixed to contain 8 bits. This is relevant when accessing memory,
e.g. because of endianness and when doing pointer arithmetics, e.g. due to alignment
constraints. Single-byte loading and storing is inspired by McCarthy’s theory of arrays
(see section 2.1.4):

∀m, p1, p2, v
(
p1 = p2 → loadi8(storei8(m, p1, v), p2) = v

)
(3.13a)

∀m, p1, p2, v
(
p1 6= p2 → loadi8(storei8(m, p1, v), p2) = selecti8(m, p2)

)
(3.13b)

30 Mixed-endian architectures have different endianness for different bitwidths.
31 Bi-endian architectures can operate both in big-endian and little-endian mode.

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 83

Extensionality of arrays is defined as usual:

∀m1,m2
(
m1 = m2 ↔ ∀p

(
loadi8(m1, p) = loadi8(m2, p)

))
(3.14)

Like LLVM itself, LLBMC not only allows for loading and storing of single bytes
but for integers and pointers with arbitrary bitwidths. The semantics of multi-byte
loading and storing is mapped to that of multiple single-byte loading and storing.
Note that in LLVM, a loadI with |I| 6≡ 0 (mod 8) is undefined if the memory at
this location was not written using a store of the same type. Similarly, the values
of the extra bytes for a store with a bitwidth smaller than eight are unspecified.
Because LLVM-IR programs generated from C programs do not store values with a
bitwidth that is not a multiple of eight we will spend the minimum amount of effort
to handle these cases.

Semantics of constant sized, multi-byte reads can be derived from single byte reads
by concatenating the result of a single-byte read and a second, complementary read:

∀m, p
(
|I| > 8→ loadbI(m, p) = concati8,I(loadi8(m, p), loadbI1

(m, p+ 1))
)

(3.15)
∀m, p

(
|I| > 8→ loadlI(m, p) = concatI,i8(loadlI1

(m, p+ 1), loadi8(m, p))
)

(3.16)

Loads smaller than a single byte are realized by truncating the result of loading a
whole byte:

∀m, p
(
|I| < 8→ loadI(m, p) = trunci8,I(loadi8(m, p))

)
(3.17)

Similarly, the effects of a constant sized, multi-byte store can be split into a single-
byte store and a second, complementary store:

∀m, p, x
(
storebI(m, p, x) = storebI2

(storei8(m, p, extractI,|I|−8,|I|−1(x)), (3.18)
p+ 1, extractI,0,|I|−9(x))

)
(3.19)

∀m, p, x
(
storelI(m, p, x) = storelI2

(storei8(m, p, extractI,0,7(x)), (3.20)
p+ 1, extractI,8,|I|−1(x))

)
(3.21)

Storing of integers with a bitwidth smaller than eight is handled using zero extension:

∀m, p, x
(
|I| < 8→ storebI(m, p, x) = storebi8(m, p, extuI,i8(x))

)
(3.22)

Loading and storing of pointers can be mapped to the loading and storing of integers
of the same size:

∀m, p1, p2
(
|I| = |P|a → storeP(m, p1, p2) = storeI(m, p1,ptrtointP,I(p2))

)
(3.23a)

∀m, p1, p2
(
|I| = |P|a → loadP(m, p1, p2) = inttoptrI,P(loadI(m, p1, p2))

)
(3.23b)

Pointer arithmetic is heavily dependent on the architecture’s data layout rules.

84 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

In order to handle pointer arithmetic via LLVM’s getelementptr for each native
sort a constant symbol is required which represents the space in memory taken up by
an array element of this sort. This is not necessarily equal to the size of the object
itself, as this has to take alignment of the second element in the array into account.
The numerical value of these constants can be retrieved from the LLVM libraries.

Definition 3.34 (Allocation bitwidth). The function allocwidthaN , indicates the
number of bits required to allocate sufficient space for an object of sort N on
architecture a so that another such object can be placed after the first object with
appropriate alignment.

And similarly:

Definition 3.35 (Offset). The function offsetaS,n is the offset in bytes of nth
element in the structure sort S.

The offsetaS,n function is the counterpart to GNU CC’s macro offsetof(s, f),
which returns the offset of the field named f in the structure s.

Symbol : Signature Interpretation
addP,I : P × I → P Pointer addition
subP,I : P × I → P Pointer subtraction

gepaP1,In
1 ,...,In,P2

: P1 × In → P2 Pointer arithmetics

Table 3.23: Pointer arithmetic ILR functions

The functions addP,V and subP,V are convenience functions for sort-correct pointer
arithmetic operations. They convert a pointer to an integer, do integer arithmetics,
and convert the resulting pointer back to the initial pointer sort.

∀p, x
(
addP,I(p, x) = inttoptrI,P(addI(ptrtointP,I(p), x))

)
(3.24a)

∀p, x
(
subP,I(p, x) = inttoptrI,P(subI(ptrtointP,I(p), x))

)
(3.24b)

gep is easily the most complex function in all of ILR. We will reason about gep as
a variadic function, but in reality, for any program p, a largest number n can be
found so that the variadic gep can be replaced by a sufficiently large series of gep
functions with arities 1 to n.

The gep function takes as arguments a base pointer and a sequence of indices. A
gep with an empty list of indices is a NOOP and returns the base pointer itself. For
a gep with at least one index argument, the first one indexes the pointer itself. A
gep with two or more index arguments is only valid, if the base pointer’s sort is
an aggregate sort. The second index operand indexes this array or structure sort.

3.7. LLBMC’S INTERMEDIATE LOGIC REPRESENTATION 85

Validity is extended analogously to gep functions with more index arguments.

gepaP1,P1
(p) =p (3.25a)

gepaN*,I,P2
(p, i) = addN*,I(p,mulI(i, (allocwidthaN)I)) (3.25b)

gepaA*,I,I,N*(p, i1, i2) = addN*,I(bitcastA*,N*(
addA*,I(p,mulI(i1, (allocwidthaA)I))),

mulI(i2, (allocwidthaN)I)) (3.25c)
gepaS*,I,I,N*(p, i1, i2) = addN*,I(bitcastS*,N*(

addS*,I(p,mulI(i1, (allocwidthaS)I))),
(offsetaS,i2)I) (3.25d)

Just like a large getelementptr is split into multiple smaller ones in section 3.4,
this can also be done with its ILR counterpart gep:

∀p, i1, . . . , in
(
gepaP,I1,I2,I3,...,In,P2

(p, i1, i2, i3, . . . , in) =
gepaP1,I,I3,...,In,P2

(gepaP,I1,I2,P1
(p, i1, i2), (0)I , i3, . . . , in)

)
(3.26)

3.7.6 Instantiating ILR

As previously mentioned, ILR is not a language but a language schema. We will call
ILRx the x instantiation of ILR. To retrieve such an instantiation, we select sufficient
instantiations of the sorts listed in table 3.10. Furthermore, we instantiate functions
from tables 3.13 to 3.23, thereby restricting ourselves to those instantiations that use
only the previously chosen sorts. The selected sorts and functions provide for ILRx’s
signature. The same is then done for all necessary language extensions, e.g. from
chapter 5 or chapter 4. The variadic functions φ and gep are then replaced each by a
finite set of derived φ and gep functions with fixed arity. The set of instantiations of
the axiom schemata related to these sorts and functions then make up the first-order
logic theory ILRx.

3.7.7 Sharing of ILR Terms

Due to LLBMC’s extremely deep nesting of terms, term sharing is of major impor-
tance for LLBMC’s memory consumption. Term sharing means that terms that are
syntactically equal are represented by the same object in memory. LLBMC also uses
this for performance improvements: Due to term sharing, structural equality can
often be replaced by identity checks.

To reflect this, ILR terms can also be represented as sets of definitorial statements
l ..= r, where r is a term and l is a newly defined alias for r. e.g. i2 ..= addi32(i0, i1)
indicates that i2 is shorthand for addi32(i0, i1).

86 CHAPTER 3. LLBMC: AN EFFICIENT IMPLEMENTATION OF SBMC

For example, given the set of terms

i0 ..= (16)i32
i1 ..= x

i2 ..= addi32(i0, i1)
b0 ..= eqi32(i0, i2)

the last line b0 is the definitorial form of

eqi32((16)i32, addi32((16)i32, x)).

3.8 Summary and Outlook

LLBMC is a software bounded model checker based on the LLVM compiler frame-
work and off-the-shelf SMT solvers. LLBMC’s primary input language is LLVM’s
intermediate representation, but by using a minimally modified code generator it can
also instrument LLVM-IR code with annotations for verification of runtime errors
in C. LLBMC uses compiler optimizations to improve performance, in particular
LLVM’s stack promotion (mem2reg). LLBMC uses a slightly modified variant of
LLVM’s built-in loop unrolling but does not do function inlining on the LLVM-level.
Instead, a call graph is maintained as a separate data structure. Finally, LLBMC has
its own intermediate logic representation ILR which is closely related to LLVM-IR
and fully axiomatized.

While LLBMC’s implementation supports an even larger part of LLVM-IR than shown
in this chapter, a few areas still remain in which support is currently lacking. Most
notable are the lack of support for floating point operations, exception handling
and runtime type information (RTTI). Furthermore, inline assembly is used in many
embedded software development projects and support for it would be a welcome
addition to LLBMC. Finally, in LLBMC function inlining and loop unrolling, the two
core concepts in software bounded model checking, are handled in markedly different
ways. A unified formalism based on combined call and control flow graphs would
make the approach more flexible for future research.

Chapter 4

Encoding LLVM-IR in ILR

Encoding, in the context of LLBMC, is the process of creating an ILR formula that
describes a bounded fragment of an LLVM-IR program’s semantics and a set of
safety properties for this program. This chapter provides an in-depth description of
LLBMC’s encoding.

There is a notable lack of detailed information about the encoding used in software
bounded model checkers. CBMC’s encoding is described by an example in [CKL04]
and has changed considerably since then. ESBMC is based on CBMC with the
encoding adapted for improved support of C++ (see [CFM09]). LAV’s encoding
([VK12]) differs in that it first checks an instruction by itself, then in its containing
basic block and finally in the function context. How this affects the structure of the
final formula is not easily apparent. FAuST’s approach to encoding is demonstrated
using a toy example in [RF12]. None of the tools provide an in-depth look at the
encoding. Lal and Qadeer [LQ15] present a markedly different approach for encoding
function calls. Instead of the tree-like calling structure in CBMC or the explicit call
tree in LLBMC, this approach works on a directed acyclic call graph, which shares
nodes whenever possible. According to the author, this improves scalability of the
tool considerably. Again, little is published about the tool’s encoding beyond this.
However, experience with LLBMC shows that minor details in the encoding can
have considerable impact on the tool’s performance and are therefore not to be
underestimated. In some cases even minor details such as the order of the nesting
of select terms can make the difference between solving a formula and getting a
timeout.

4.1 Sorts, Functions, and Instruction Patterns

As described in section 3.7, ILR is an extensible language. The first such extension
concerned with the encoding of LLVM-IR in ILR is presented in this chapter. The
extension defines additional sorts for the LLVM-IR object types instructions, basic
blocks, constants, functions, function arguments, and globals variables. Furthermore,
the language extension also contains the sort C that represents contexts, which

87

88 CHAPTER 4. ENCODING LLVM-IR IN ILR

are nodes in a call-site-sensitive call graph (see section 3.6). The sorts related to
encoding are listed in table 4.1.

LLVM-IR Object Type Sort Symbol
Basic blocks B

Execution context C

Functions F

Function arguments A

Global variables G

Instructions I

Integer constants N

Programs P

Table 4.1: Encoding related sorts

This chapter also introduces a set of function symbols, which are grouped in families
of related symbols. Each symbol family encodes a different aspect about a program,
e.g. the symbol family µ represents the memory state during execution of a program.
Table 4.2 provides an overview of these families. The symbols for function families
are decorated with the sort symbols shown in table 4.1 for the different members
or subgroups in a family, e.g. εN indicates the evaluation of a constant and σI

indicates the safety of an instruction. Furthermore, whenever a distinction between
the state before or after execution of a certain LLVM-IR language object is needed,
a decoration with a harpoon facing left (↼) is used to indicate the state before
the object’s execution (e.g. ↼

ηI for the execution condition before execution of an
instruction), while it is decorated with a harpoon pointing right (⇀) to indicate the
state after its execution (e.g. ⇀

µB for the memory state after execution of a basic
block).

Function Family Symbol
Evaluation of values ε

Memory state µ

Execution condition η

Instruction safety σ

Stack state τ

Table 4.2: Encoding related function families

The functions in family ε represent evaluation of values, such as instructions, con-
stants or function arguments, e.g. the evaluation of an instruction i in a context
c, is represented by εI

t (c, i). The function’s sort is indicated by the subscript t, e.g.
εI
i32(c, i) has sort i32. All functions related to the evaluation of LLVM-IR values are
listed in table 4.3.

Control flow is represent in LLBMC via so-called execution conditions (η). An

4.1. SORTS, FUNCTIONS, AND INSTRUCTION PATTERNS 89

Symbol : Signature Interpretation
εA
t : C× A→ t Evaluation of an argument
εN
t : N→ t Evaluation of a constant
εI
t : C× I→ t Evaluation of an instruction

Table 4.3: Functions encoding the evaluation of values

execution condition collects all control flow decisions that happened so far during
execution of the program in a term of sort bool. This includes information about
which branches were taken and which functions were called. For example, ⇀

ηB(c, b)
encodes the execution condition after execution of the basic block b in the context
c, while ↼

ηI(c, i) encodes the execution condition before execution of the instruction
i in the context c. Most of the η-functions follow the same before/after pattern
except for ηJ(c, b0, b1), which encodes the execution condition of jumping from basic
block b0 to basic block b1 in context c. All function symbols related to execution
conditions are presented in table 4.4.

Symbol : Signature Interpretation
↼
ηB : C× B→ bool Execution condition before a basic block
⇀
ηB : C× B→ bool Execution condition after a basic block
↼
ηF : C× F→ bool Execution condition before a function
⇀
ηF : C× F→ bool Execution condition after a function
↼
ηI : C× I→ bool Execution condition before an instruction
⇀
ηI : C× I→ bool Execution condition after an instruction
↼
ηP : C× P→ bool Execution condition before a program
⇀
ηP : C× P→ bool Execution condition after a program
ηJ : C× B× B→ bool Execution at a control flow edge

Table 4.4: Functions encoding execution conditions

The family µ encodes memory states, or more precisely, the memory content. For
example, ↼

µB(c, b) encodes the memory’s contents before execution of basic block b
in context c. The encoding of memory states follows the same pattern as that of
execution conditions, with the notable exception that memory requires an additional
subscript t which encodes the type of the memory, e.g. ↼

µB
m32 encodes a memory

state for a 32-bit system. All function symbols related to the encoding of memory
state are listed in table 4.5.

Stack related function symbols are listed in table 4.6. Note that we don’t need ⇀
τ F

and ⇀
τ P. ⇀

τ P is always empty, as is ⇀
τ F for the main function. Due to stack unwinding,

for any called function ⇀
τ F is the same as ↼

τ I of the calling function.

An instruction can be unsafe, e.g. when it cause undefined behavior on the LLVM-IR
level or C language level (see section 3.3), or when it represents the violation of a
functional property. The function σI represents an instruction’s safety, σF encodes

90 CHAPTER 4. ENCODING LLVM-IR IN ILR

Symbol : Signature Interpretation
↼
µB
t : C× B→ t Memory state before a basic block

⇀
µB
t : C× B→ t Memory state after a basic block

↼
µF
t : C× F→ t Memory state before a function

⇀
µF
t : C× F→ t Memory state after a function

↼
µI
t : C× I→ t Memory state before an instruction

⇀
µI
t : C× I→ t Memory state after an instruction

↼
µP
t : C× P→ t Memory state before a program

⇀
µP
t : C× P→ t Memory state after a program

Table 4.5: Functions encoding memory state

Symbol : Signature Interpretation
↼
τ B
t : C× B→ t Stack state before a basic block

⇀
τ B
t : C× B→ t Stack state after a basic block

↼
τ F
t : C× F→ t Stack state before a function

↼
τ I
t : C× I→ t Stack state before an instruction

⇀
τ I
t : C× I→ t Stack state after an instruction

↼
τ P
t : C× P→ t Stack state before a program

Table 4.6: Functions encoding stack state

4.1. SORTS, FUNCTIONS, AND INSTRUCTION PATTERNS 91

a function’s safety, and σP a program’s safety.

Symbol : Signature Interpretation
σI : C× I→ bool Safety of an instruction
σF : C× F→ bool Safety of a function
σP : C× P→ bool Safety of a program

Table 4.7: Function encoding the safety of instructions

In LLVM, the language objects, e.g. instructions, basic blocks, are all derived from
the same type, the value. In many places in LLVM-IR more than one type of value
can be used, e.g. instructions can have both constants and other instructions as
operands. To reflect this in the encoding, the function symbol εV

t (c, v) is introduced.

LLBMC’s encoding is formalized as a term rewriting system. The following set of
rules describe how the evaluation of arbitrary LLVM-IR values is concretized for
specific value subclasses, e.g. instructions or basic block:

εV
t (c, v) −→ εI

t (c, v) ; v is an instruction (4.1a)
εV
t (c, v) −→ εA

t (c, v) ; v is a function argument (4.1b)
εV
t (c, v) −→ εN

t (v) ; v is a constant (4.1c)
εV
t (c, v) −→ εF

t (v) ; v is a function (4.1d)
εV
t (c, v) −→ εB

t (v) ; v is a basic block (4.1e)

Note that because regular many-sorted logic does not have polymorphism, these rules
are, strictly speaking, syntactically invalid. This is because in many-sorted logic, the
types for instructions and values are not related, so if εV

JtK(c, v), which takes a value
as its first argument, is a well-formed term, εI(c, v), which takes an instruction as its
first argument, cannot be well-formed. An equivalent but valid approach, though it
is slightly more complex, manages without the rewrite rules above. Instead, all other
rules of the term rewriting system are interpreted not as individual rules but as rule
schemata. The symbol εV in such a schema acts as a placeholder. Concrete rules
are then derived by replacing all of these placeholders by one of the other ε-based
function symbols.

4.1.1 Pattern Matching

Most rewrite rule schemata introduced in this chapter are conditional. Their condi-
tions can be evaluated when the schemata are instantiated for a specific program.
The rewrite rules resulting from this instantiation are therefore unconditional. Many
of these conditions make use of pattern matching, which is based on instruction
patterns, as defined in definition 3.1. In the rewrite rules described below, the pat-
tern matching symbol J·K is also used outside of patterns for the capturing of values
occurring in the patterns1. For example, if

s ∼ J<r> = add [nuw] [nsw] <t> <op1> <op2> K
1 This is inspired by the concept of capturing as it is used frequently in regular expressions.

92 CHAPTER 4. ENCODING LLVM-IR IN ILR

Sort Family Variables
Basic blocks b, b1, . . .
Context c, cf , c1, c2
Functions f

Function arguments a, a1, a2, . . .
Global variables g

Instructions i, i1, . . .
Integer constants n

Program p

Table 4.8: Variable naming conventions

occurs in a rewrite rule schema’s condition and evaluates to true, then Jop1K and
Jop2K can be used in the rewrite rule to refer to the instruction’s first and second
operand respectively. The concept of capturing also applies to types. Though in
this case LLVM-IR types are also implicitly mapped to the matching ILR, i.e. in
the above example, JtK captures the LLVM-IR type of the instruction and maps it
to the corresponding ILR sort. Because ILR’s type system is modeled closely after
LLVM-IR’s type system, this mapping is trivial.

An exemplary rewrite rule schema for the integer addition instruction add is encoded
as follows:

εI
JtK(c, i) −→ addJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = add [nuw] [nsw] <t> <v0>, <v1> K (4.2)

This can be read as: if i is an add instruction, the instruction’s result rewrites to
the function add, with the function’s first argument matching the instruction’s first
argument and the function’s second argument matching the instruction’s second
argument. Here, <t> is a placeholder for an LLVM-IR type, <v0> and <v1> for
values. The flags nuw and nsw are optional, so this rule matches independently of
their presence.2

1 define i32 @f(i32 %x , i32 %y) {
2 entry :
3 %0 = add i32 %x , %y
4 %1 = zext i32 %x to i64
5 %2 = add i64 %1 , 42
6 ret i32 %0
7 }

Listing 4.1: Example code for instruction pattern instantiation

The rewrite rule schema shown in equation (4.2) instantiated for the LLVM-IR

2 Flags related to undefined behavior are encoded separately in section 4.5.

4.2. SYMBOLIC EVALUATION 93

program in listing 4.1 with

a1 =; %x,

a2 =; %y,

i0 =; %0 = add i32 %x, %y,

i1 =; %1 = zext i32 %x to i64, and
i2 =; %2 = add i64 %1, 42

produces, among others, the following concrete rewrite rules:

εI
i32(c, i0) −→ addi32(εA

i32(c, a1), εA
i32(c, a2))

εI
i64(c, i2) −→ addi64(εI

i64(c, i1), εN
i64(42))

Furthermore, for a pattern with a sequence (indicated by { and }*, see section 3.2.2)
in it such as

s ∼ Jcall <ty> <fptr>({<ty> <arg>}*) K

<ty> matches to a sequence of sorts and <arg> matches to a sequence of terms
and the ith sort in the sequence can be accessed using JtyKi, while the ith term can
be accesses using JargKi.

4.2 Symbolic Evaluation

Symbolic evaluation refers to the encoding of values in LLVM-IR as terms in ILR3.
This applies to instructions, function arguments, constant integers, and constant
pointers such as global variables.

4.2.1 Instructions

The term εI
t (c, i) represents the result of evaluating the instruction i in the context c.

Because ILR is closely modeled after LLVM-IR, the encoding of individual instructions
is mostly straightforward. All integer arithmetic operations are handled mostly the
same way as the introductory example above:

εI
JtK(c, i) −→ addJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = add [nuw] [nsw] <t> <v1>, <v2> K (4.3a)
εI

JtK(c, i) −→ subJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = sub [nuw] [nsw] <t> <v1>, <v2> K (4.3b)

εI
JtK(c, i) −→ mulJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = mul [nuw] [nsw] <t> <v1>, <v2> K (4.3c)
εI

JtK(c, i) −→ divuJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = udiv [exact] <t> <v1>, <v2> K (4.3d)

3 This is in contrast to symbolic execution, which is additionally concerned with control flow.

94 CHAPTER 4. ENCODING LLVM-IR IN ILR

εI
JtK(c, i) −→ divsJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = sdiv [exact] <t> <v1>, <v2> K (4.3e)
εI

JtK(c, i) −→ remu
JtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = urem <t> <v1>, <v2> K (4.3f)
εI

JtK(c, i) −→ rems
JtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = srem <t> <v1>, <v2> K (4.3g)

Similarly to the arithmetic instructions, LLVM-IR’s shift and bitwise instructions are
converted straightforwardly. Again, shift operations can have nuw, nsw, and exact
flags, which are ignored for now:

εI
JtK(c, i) −→ shlJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = shl [nuw] [nsw] <t> <v1>, <v2> K (4.4a)
εI

JtK(c, i) −→ shrsJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = ashr [exact] <t> <v1>, <v2> K (4.4b)

εI
JtK(c, i) −→ shruJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = lshr [exact] <t> <v1>, <v2> K (4.4c)
εI

JtK(c, i) −→ andJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = and <t> <v1>, <v2> K (4.4d)

εI
JtK(c, i) −→ orJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = or <t> <v1>, <v2> K (4.4e)
εI

JtK(c, i) −→ xorJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = xor <t> <v1>, <v2> K (4.4f)

Type conversion is again mapped one-to-one to the ILR counterparts:

εI
Jt2K(c, i) −→ truncJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = trunc <t1> <v> to <t2> K (4.5a)

εI
Jt2K(c, i) −→ extuJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = zext <t1> <v> to <t2> K (4.5b)

εI
Jt2K(c, i) −→ extsJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = sext <t1> <v> to <t2> K (4.5c)

εI
Jt2K(c, i) −→ ptrtointJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = ptrtoint <t1> <v> to <t2> K (4.5d)

εI
Jt2K(c, i) −→ inttoptrJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = inttoptr <t1> <v> to <t2> K (4.5e)

εI
Jt2K(c, i) −→ bitcastJt1K,Jt2K(εV

Jt1K(c, JvK)) ;
i ∼ J<i> = bitcast <t1> <v> to <t2> K (4.5f)

4.2. SYMBOLIC EVALUATION 95

LLVM-IR provides a single instruction for ten different kinds of integer comparisons
using an additional flag to decide which comparison to execute. ILR differs in this
respect in that it has separate functions for each of these:

εI
JtK(c, i) −→ eqJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = icmp eq <t> <v1>, <v2> K (4.6a)
εI

JtK(c, i) −→ neJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = icmp ne <t> <v1>, <v2> K (4.6b)

εI
JtK(c, i) −→ gtuJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = icmp ugt <t> <v1>, <v2> K (4.6c)
εI

JtK(c, i) −→ geuJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = icmp uge <t> <v1>, <v2> K (4.6d)

εI
JtK(c, i) −→ ltuJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = icmp ult <t> <v1>, <v2> K (4.6e)
εI

JtK(c, i) −→ leuJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = icmp ule <t> <v1>, <v2> K (4.6f)

εI
JtK(c, i) −→ gtsJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = icmp sgt <t> <v1>, <v2> K (4.6g)
εI

JtK(c, i) −→ gesJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = icmp sge <t> <v1>, <v2> K (4.6h)

εI
JtK(c, i) −→ ltsJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K)) ;

i ∼ J<i> = icmp slt <t> <v1>, <v2> K (4.6i)
εI

JtK(c, i) −→ lesJtK ε
V
JtK(c, Jv1K), εV

JtK(c, Jv2K)) ;
i ∼ J<i> = icmp sle <t> <v1>, <v2> K (4.6j)

The rewrite rule for select instructions shown in equation (4.7a) is mostly straight-
forward. The phi instruction is encoded similarly again, though this instruction is vari-
adic and therefore its arguments need to be matched as a sequence. A getelementr
is encoded similarly to a phi as it is variadic, too. Note, thought, that gep is specific
to the current program’s architecture a.

εI
JtK(c, i) −→ selectJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K), εV

JtK(c, Jv3K)) ;
i ∼ J<i> = select i1 <v1>, <t> <v2>, <t> <v3> K (4.7a)

εI
JtK(c, i) −→ φJtK(εV

JtK(c, JvK1),⇀
ηB(c, JlK1), . . . , εV

JtK(c, JvKn),⇀
ηB(c, JlKn)) ;

i ∼ J<i> = phi <t> {[<v>, <l>]}+ K (4.7b)
εI

JtK(c, i) −→ gepaJtK,JitK1,...,JitKn
(JpK, JivK1, . . . , JivKn) ;

i ∼ J<i> = getelementptr <t>, <t>* <p>[, {<it> <iv>}+] K
(4.7c)

96 CHAPTER 4. ENCODING LLVM-IR IN ILR

εI
JtK(c, i) −→ φJtK(a1, b1, . . . , a|R|, b|R|) ;

c = parent(cf) ∧ i = callsite(cf)∧
i ∼ J<i> = call <t> <fptr>({<ty> <arg>}*) K∧
R = {(ai, bi) : ai = εV

JtK(cf , JvK) ∧ bi = ⇀
ηI(cf , j)∧

j ∼ J<j> = ret <t> <v> K} (4.7d)

More need of explanation arises for the call instruction. For encoding call it is
necessary to retrieve the value from the corresponding ret of the called function. A
function may have multiple exit points, though, which makes rule equation (4.7d)
considerably more complex. In this rule cf indicates the called context, i matches
the call instruction itself. The set R is generated by matching j with all returns
in the context cf and storing a pair (ai, bi) where ai is the returned value and bi
the execution condition of the ret itself. The rule then builds a φ from these pairs,
selecting a ret’s value if that particular instruction was executed. Note that the
arguments ai, bi of the φ are meant to be the same ai, bi that make up the pairs in
the set R. Functions with return type void do not need to be handled here.

Furthermore, note that intentionally none of the rules presented so far cared for the
flags nuw, nsw, and exact, which indicate undefined behavior and poison values
(see section 3.2.2). These flags are handled in separate rewrite rules presented in
section 4.5.

4.2.2 Function Arguments

The function εA represents evaluation of a function argument. For encoding of this,
the matching argument of the call instruction that called this context is identified
and the function accordingly rewritten.

εA
JtKi

(c, ai) −→ εV
JtKi

(parent(c), JargKi) ; index(ai) = i∧
callsite(c) ∼ Jcall <ty> <fptr>({<t> <arg>}*) K (4.8)

where index(a) = i indicates that a is the ith argument.

4.2.3 Constants

Constant integers, which are always unsigned in LLVM-IR, are represented by εN and
are rewritten as follows:

εN
t (n) −→ (N)t (4.9)

Where n is an LLVM-IR constant with value N and its type is matching ILR’s sort
t.

Global variables, which are a form of constant pointers, can be handled similarly:

εG(g) −→ (pag)t (4.10a)

4.3. CONTROL FLOW AND EXECUTION CONDITIONS 97

Where pag is the position of global variable g for the architecture a. This can be
retrieved by compiling the program to the target architecture a and extracting the
position of the symbols from the binary file, or, if this level of precision is not required,
unique addresses can be assigned at will, as long as it is ensured that global variables
do not overlap with other memory objects.

Note that the addresses of global variables could also be chosen non-deterministically.
This can be done for example by using uninterpreted pointer constants and adding
appropriate non-overlapping constraints, similar to how this is done in chapter 5 for
dynamically allocated memory.

4.3 Control Flow and Execution Conditions

An execution condition is the condition under which an instruction, a basic block,
or a function is executed.4 It implicitly encodes all control flow decisions so far and
it is used as an antecedent to all properties to be checked because most properties
should only be checked if the associated instruction is actually executed. This section
presents a number of rewrite rules related to execution conditions.

Execution conditions are represented by the symbol η. ↼
ηI and ⇀

ηI stand for the
condition before and after execution of an instruction. Similarly, ↼

ηB and ⇀
ηB represent

the execution of a basic block, and ↼
ηF and ⇀

ηF the execution of a function. Last but
not least, ηJ stands for execution of a control flow edge, i.e. execution of an edge in
the control flow graph. The relationship of execution conditions to the source-level
objects is also shown in figure 4.1

b0:
%i0 = ...

%i1 = ...

br b1

b1:
%i2 = ...

%i3 = ...

ret void

↼
ηF(c, f)

⇀
ηF(c, f)

↼
ηB(c, b0)

⇀
ηB(c, b0)

↼
ηI(c, i1)
⇀
ηI(c, i1)

ηJ(c, b0, b1)

Figure 4.1: Illustration of execution conditions and their relation to LLVM-IR for
(Vf , Bf , rf) = ({b0, b1}, {(b0, b1)}, b0)

An instruction is executed when the previous instruction’s execution finishes. How-
ever, if an instruction is the first in the basic block, it is executed when the basic

4This is conceptually similar to path conditions in symbolic execution.

98 CHAPTER 4. ENCODING LLVM-IR IN ILR

block is executed:
↼
ηI(c, i) −→↼

ηB(c, b)) ; i = firstB(b) (4.11a)
↼
ηI(c, i) −→⇀

ηI(c, j) ; succB(j, i) (4.11b)

Note that this is only true for sequential programs. In concurrent programs, other
threads or processes might modify the program’s state in between execution of
instructions and might modify the execution condition, e.g. by terminating the
program.

Execution of a basic block ends when its last instruction is executed:
⇀
ηB(c, b) −→ ⇀

ηI(i) ; i = termB(b) (4.12)

The function ηJ(c, b1, b2) represents the execution condition of the control flow edge
from b1 to b2 in context c. This auxiliary function splits rewriting of control flow
graphs into two separate rewrite operations, which makes it easier to reason about
control flow edges. The instructions br, indirectbr, and switch are responsible
for a program’s control flow edge (see section 3.2.2). In LLBMC indirectbr and
switch are replaced on the LLVM-IR level by one or more branches. This leaves
only conditional and unconditional branches to be encoded:

ηJ(c, b1, <b2>) −→⇀
ηB(c, b1) ;
term(b1) ∼ Jbr label <b2> K (4.13a)

ηJ(c, b1, <b2>) −→⇀
ηB(c, b1) ∧ εV

JtK(c, JvK) ;
term(b1) ∼ Jbr i1 <v>, label <b2>, label <b3> K

(4.13b)
ηJ(c, b1, <b2>) −→⇀

ηB(c, b1) ∧ ¬εV
JtK(c, JvK) ;

term(b1) ∼ Jbr i1 <v>, label <b3>, label <b2> K
(4.13c)

A basic block is executed when any of the incoming control flow edges are executed.
However, if the basic block is the entry block, it is executed when the function’s
execution begins:

↼
ηB(c, b) −→↼

ηF(c, f) ; b = entry(c) (4.14a)
↼
ηB(c, b) −→

∨
b1 :(b1,b)∈Bf

ηJ(c, b1, b) ; b 6= entry(c) (4.14b)

In equation (4.14b) (Vf , Bf , rf) is f ’s bounded control flow graph, as defined in
section 3.5. Note that this is only valid because in LLVM-IR the entry block is not
allowed to have predecessors.

All encoding so far was intra-procedural, meaning restricted to a single function.
However, extending encoding to be inter-procedural is easily possible.

Execution of a function is finished, when any of the exit points of the function (basic
blocks with terminator ret), are finished:

⇀
ηF(c, f) −→

∨
b : exit(c,b)

⇀
ηB(c, b) (4.15)

4.4. MEMORY 99

Furthermore, the execution condition before calling a function is:

↼
ηF(c, f) −→↼

ηI(c′, i) ; c′ = parent(c) ∧ i = callsite(c) (4.16a)
↼
ηF(c, f) −→↼

ηP ; otherwise (4.16b)

In LLVM-IR regular control flow is exclusively done using terminator instructions
such as br. Nonetheless, some non-terminator instructions i might terminate the
entire program such as C’s exit() function. Furthermore, undefined behavior can
be assumed to terminate the program. After all, nothing is known about a program
after undefined behavior has occurred. This leads to the following set of rules:

⇀
ηI(c, i) −→⇀

ηF(cf , f) ; i = callsite(cf) ∧ f = JfptrK∧
callsite(c) ∼ Jcall <ty> <fptr>({<t> <arg>}*) K (4.17a)

⇀
ηI(c, i) −→ F ; i ∼ Jcall <void> exit() K (4.17b)
⇀
ηI(c, i) −→↼

ηI(c, i) ∧ σI(c, i) ; otherwise (4.17c)

Semantics of the function σI(c, i) can be chosen as needed. LLBMC’s default σI

(introduced in section 4.5) is false if instruction i in context c is unsafe. This could
also be handled differently, e.g. terminating on safety only for specific contexts,
instructions or types of instructions.

The execution condition at the beginning of the program is true, the execution
condition at the end of the program is the same as after the main function:

↼
ηP(c, p) −→ T (4.18a)
⇀
ηP(c, p) −→⇀

ηF(c, f) ; f is main (4.18b)

4.4 Memory

This section describes how memory accesses, pointer arithmetic, stack management,
and global variables are encoded.

4.4.1 Memory State

In the following, m indicates the appropriate memory sort for the program’s target
architecture while s stands for endianness of the program’s target architecture.

Some LLVM-IR instructions modify the memory state of the program, others make
use of the current memory state. Two separate functions are defined for representing
memory states: ↼

µI(c, i) represents the memory state before instruction i is executed
in context c, and ⇀

µI(c, i) represents the memory state after i is executed in c.

100 CHAPTER 4. ENCODING LLVM-IR IN ILR

Most instructions do not change memory, so the memory state after their execution
is the same as before. Some instructions modify memory, most notably store:

⇀
µI
m(c, i) −→ storesm,Jt2K(

↼
µI
m(c, i), εV

Jt1K(c, Jv1K), εV
Jt2K(c, Jv2K)) ;

i = Jstore [volatile] <t1> <v1>, <t2> <v2> K (4.19a)
⇀
µI
m(c, i) −→⇀

µF
m(cf , f) ;
c = parent(cf) ∧ i = callsite(cf)∧
i ∼ J<i> = call <t> <fptr>({<ty> <arg>}*) K (4.19b)

⇀
µI
m(c, i) −→↼

µI
m(c, i) ; otherwise (4.19c)

The load instruction loads from the current memory state:

εI
JtK(c, i) −→ load sm,JtK(

↼
µI
m(c, i), v) ; i ∼ J<i> = load <t> <v> K (4.20a)

If the instruction is the first instruction in the basic block, then the memory state
before execution of this instruction is the same as before execution of the basic
block as a whole. If the instruction is not the first instruction in a basic block, and
assuming that nothing changes the memory state in between execution of the two
instructions, then the memory state before execution of the second instruction is
the same as the memory state after execution of the first instruction. These two
properties lead to the following rewrite rules:

↼
µI
m(c, i) −→↼

µB
m(c, b)) ; i = firstB(b) (4.21a)

↼
µI
m(c, i) −→⇀

µI
m(c, i1)) ; succB(i1, i) (4.21b)

The memory state after execution of a basic block is the same as the memory state
after execution of the last instruction in the basic block:

⇀
µB
m(c, b) −→ ⇀

µI
m(c, i) ; i = termB(b) (4.22)

This again assumes the program is sequential.

The memory state before execution of a basic block depends on which basic block
was executed immediately before. This can be handled by using phi instructions,
similarly to how LLVM-IR handles values coming from one of multiple predecessor
basic blocks:

↼
µB
m(c, b) −→ φ(⇀

µB
m(c, b1), ηJ(c, b1, b), . . . ,

⇀
µB
m(c, b|P |), ηJ(c, b|P |, b)) ;

¬ entry(b) ∧ P = {bi : succF(bi, b)} (4.23a)
↼
µB
m(c, b) −→↼

µF
m(c, f) ; entry(b) (4.23b)

Note that it is not sufficient to use ⇀
ηB in equation (4.23a), but ηJ is strictly required.

This can be seen in figure 4.2, where ⇀
ηB(c, b0) and ⇀

ηB(c, b1) can be true at the same
time, if control flow goes from %b0 via %b1 to %b2. This means execution conditions

4.4. MEMORY 101

b0:
store i32 ..., i32* @x

%c = icmp eq i32 ...

br i1 %c, label %b1, label %b2

b1:
store i32 ..., i32* @x

br label %b2

b2:
%0 = load i32 i32* @x

ret i32 %0

⇀
µB

m(c, b0)

⇀
µB

m(c, b1)

↼
µB

m(c, b2)

ηJ(c, b1, b2)

ηJ(c, b0, b2)

↼
µB

m(c, b2) = φm(⇀
µB

m(c, b0), ηJ(c, b0, b2),⇀µB
m(c, b1), ηJ(c, b1, b2))

Figure 4.2: Illustration of the memory encoding rule for memory states before
execution of basic blocks

at the end of basic blocks are not sufficient to distinguish between these control
flow edges, as the ηB are not mutually excluse, but the ηJ are.

A call instruction does not modify the memory contents, so the memory state at
the beginning of the execution of a function block is the same as before execution
of the call instruction itself:

↼
µF
m(c, f) −→ ↼

µI
m(c′, i) ; c′ = parent(c) ∧ i = callsite(c) (4.24a)

↼
µF
m(c, f) −→ ↼

µP
m(c, p) ; ∀c′

(
c′ 6= parent(c)

)
(4.24b)

The memory state after execution of a function is the memory state after execution
of the ret instruction. If there are multiple ret instructions in a single function, the
right one is selected using a φ function. This is similar to how the phi instruction
handles values in LLVM-IR itself:

⇀
µF
m(c, f) −→ φJtK(a1, b1, . . . , a|R|, b|R|) ;

R = {(ai, bi) : ai = ⇀
µI
m(c, j) ∧ bi = ⇀

ηI(c, j),∧
j ∼ J<j> = ret <t1> <v> K} (4.25)

Again, like for the phi instruction, φ’s function arguments ai and bi are meant to
match ai and bi in R.

The program state before execution of the program is constructed by writing the
values specified in the initialization expressions of the program’s global variables to

102 CHAPTER 4. ENCODING LLVM-IR IN ILR

an otherwise uninterpreted fresh memory constant. The memory state after execution
of a program is the memory state after execution of the main instruction:

⇀
µP
m(c, p) = ⇀

µF
m(c, f) ; f is main (4.26)

4.4.2 Stack

Many stack allocated variables in LLVM-IR are moved to virtual registers by LLVM’s
mem2reg optimization pass. This is not always possible, though, e.g. when a pointer
to a stack allocated variable is passed to a function. For these cases LLBMC still
needs to keep track of the operating system’s stack. LLBMC uses the function
symbol τ to represent the state of the stack.

τ objects have the architecture’s i8-pointer type. For simplicity, we assume the
stack grows downwards, like on the x86 architecture. This means the stack’s top is,
counter-intuitively, the stack’s lowest address.

Returning from a function call implicitly restores the state of the stack before the
function call. Because of this, calls do not need to be handled specially and no ⇀

τ F

is actually needed. Furthermore, the stack after execution of the program is always
empty, so ⇀

τ P is not required.

Stack memory is allocated in LLVM-IR using the alloca instruction. The effect of
an alloca on the state of the stack is modeled by the following set of rewrite rules:

⇀
τ I
s(c, i) −→ subs,t(

↼
τ I
s(c, i), (allocwidthaJtK)t) ;

i ∼ J<i> = alloca <t> K ∧ |t| = |s| (4.27a)
⇀
τ I
s(c, i) −→ subs,Jt2K(

↼
τ I
s(c, i),mulJt2K(JnK, (allocwidthaJt1K)Jt2K)) ;

i ∼ J<i> = alloca <t1>, <t2> <n> K (4.27b)
⇀
τ I
s(c, i) −→

↼
τ I
s(c, i) ; otherwise (4.27c)

Because the stack grows downwards, calculating the position of the last allocated
stack variable is simple. This is simply the current stack top pointer:

εI
JtK(c, i) −→ bitcasts,JtK(

⇀
τ I
s(c, i)) ;

i ∼ J<i> = alloca <t> [, <t2> <n>] K (4.28)

Note that we currently do not take alignment into account, but this should easily
be possible by masking the required number of least significant bits.

The stack state is propagated through the program and all instructions not related
to stack management with the following set of rewrite rules:

↼
τ P
s(c, p) −→ (stacktopa)t (4.29a)

↼
τ F
s(c, f) −→↼

τ I
s(c′, i) ; c′ = parent(c) ∧ i = callsite(c) (4.29b)

↼
τ F
s(c, f) −→↼

τ P
s(c, p) ; ¬∃c′

(
c′ = parent(c)

)
(4.29c)

↼
τ B
s(c, b) −→ φ(⇀

τ B
s(c, b1), ηJ(c, b1, b), . . . ,

⇀
τ B
s(c, b|P |), ηJ(c, b|P |, b)) ;

¬ entry(b) ∧ P = {bi : succF(bi, b)} (4.29d)

4.5. SAFETY 103

↼
τ B
s(c, b) −→

↼
τ F(c, f) ; entry b (4.29e)

⇀
τ B
s(c, b) −→

⇀
τ I
s(c, i) ; i = termB(b) (4.29f)

↼
τ I
s(c, i) −→

↼
τ B
s(c, b) ; i = firstB(b) (4.29g)

↼
τ I
s(c, i) −→

⇀
τ I
s(c, i1) ; succB(i1, i) (4.29h)

4.5 Safety

LLBMC is designed for asserting safety properties, not liveness properties (see sec-
tion 2.1.5). In temporal logic, safety properties are of the form Gφ. In simplified
terms, the predicate φ describes the safety of a single state, while G indicates that
φ has to hold for all states. The presented encoding differs from this view, in that
the safety property is not attached to a state but to a state transition instead. In
LLBMC, such a state transition is the execution of an instruction, or more specifically
the execution of an instruction in a specific context.

The function σI(c, i) encodes safety of the instruction i in the context c. In terms
of temporal logic, one could say that if σI(c, i), then execution of the instruction i
in context c leads to some safe state, while if ¬σI(c, i) said execution leads to an
error state.

In LLBMC user-defined safety properties can be expressed by adding calls to the
function assert() [ISOC99, section 7.2.1.1] to the C code.

Checking these user-defined properties is usually not sufficient though. As explained
in section 3.2, LLVM-IR can have undefined behavior. If undefined behavior occurs,
nothing may be assumed about the further execution of the program. Because of this,
undefined behavior is never safe. LLBMC treats the absence of undefined behavior
as a safety property and checks for it by default.

Furthermore, LLBMC only checks a bounded fragment of the program. If configured
incorrectly, these bounds might be chosen too low. In this case, other safety properties
might not be checked, which means that reaching a bound should never go unnoticed
by the user. This leads to LLBMC’s other built-in safety property, which encodes
the absence of reached bounds.

4.5.1 Custom Assertions and Source-level Properties

The instrumentation of the C code presented in section 3.3 adds calls to various
assertion functions to the IR code. These calls are either written by the developer
of the software system using assert(), or similar calls to assertions are added by
the code generator to check for undefined behavior on the C level.

σI(c, i) −→ neJtK(v, 0) ; Jcall void assert(<t> <v>) K (4.30)

104 CHAPTER 4. ENCODING LLVM-IR IN ILR

4.5.2 Undefined Behavior and Poison Values

Several LLVM-IR instructions, e.g. udiv, can cause undefined behavior. The results
of other instructions, e.g. add, might be poison values, which in turn can cause
undefined behavior in subsequently executed instructions using these values.

The rule set in this section is used to check for LLVM-IR-level undefined behavior and
poison values. Note that in this rule set, poison values are not treated as intended
in LLVM. Instead, whenever an instruction generates poison values, this is treated
as undefined behavior. This is an overapproximation of undefined behavior in LLVM,
though experience has shown that this has little effect in practice.

Note that most rules in this section are not necessary, if the approach introduced
in section 3.3 is implemented, because in this case the properties to be checked are
already explicitly added to the bitcode. However, the rules shown in this section
make it possible to use LLBMC to analyze bitcode even for programs where the
original source language is not supported by LLBMC.

The add instruction can occur with the two flags nuw and nsw. These flags indicate
that no unsigned or respectively no signed behavior is expected to occur. If this
happens anyway, the result is a poison value. The following rewrite rules encode all
four variants of add:

σI(c, i) −→ T ; i ∼ J<i> = add <t> <v0>, <v1> K (4.31a)
σI(c, i) −→¬ addouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = add nuw <t> <v0>, <v1> K (4.31b)
σI(c, i) −→¬ addosJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = add nsw <t> <v0>, <v1> K (4.31c)
σI(c, i) −→¬ addouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ addosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = add nuw nsw <t> <v0>, <v1> K (4.31d)

Similar to the add instruction, the sub instruction has four variants for all combina-
tions of the flags nuw and nsw:

σI(c, i) −→ T ; i ∼ J<i> = sub <t> <v0>, <v1> K (4.32a)
σI(c, i) −→¬ subouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = sub nuw <t> <v0>, <v1> K (4.32b)
σI(c, i) −→¬ subosJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = sub nsw <t> <v0>, <v1> K (4.32c)
σI(c, i) −→¬ subouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ subosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = sub nuw nsw <t> <v0>, <v1> K (4.32d)

4.5. SAFETY 105

Like add and sub, mul comes in four variants:

σI(c, i) −→ T ; i ∼ J<i> = mul <t> <v0>, <v1> K (4.33a)
σI(c, i) −→¬mulouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = mul nuw <t> <v0>, <v1> K (4.33b)
σI(c, i) −→¬mulosJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = mul nsw <t> <v0>, <v1> K (4.33c)
σI(c, i) −→¬mulouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬mulosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = mul nuw nsw <t> <v0>, <v1> K (4.33d)

Division and remainder are notably more complex concerning their causes of un-
defined behavior and occurrences of poison values. For all four division related
operations, division by zero is undefined behavior. Additionally sdiv, udiv may
have the exact flag set which indicates that the division’s remainder is expected
to be zero. The instructions udiv and urem never overflow. In contrast to this, a
single combination of divisor and dividend exists for which sdiv can overflow. This
is because two’s complement representation of signed integers is asymmetrical. The-
oretically, srem cannot overflow, but for consistency only, it is defined to overflow
in the same case as sdiv:

σI(c, i) −→¬ divzJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = udiv <t> <v0>, <v1> K (4.34a)

σI(c, i) −→¬ divzJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))∧
¬ divxuJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = udiv exact <t> <v0>, <v1> K (4.34b)
σI(c, i) −→¬divzJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ divosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = sdiv <t> <v0>, <v1> K (4.34c)

σI(c, i) −→¬divzJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))∧
¬ divxsJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ divosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = sdiv exact <t> <v0>, <v1> K (4.34d)

σI(c, i) −→¬divzJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = urem <t> <v0>, <v1> K (4.34e)

σI(c, i) −→¬divzJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))
∧ ¬ divosJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = srem <t> <v0>, <v1> K (4.34f)

106 CHAPTER 4. ENCODING LLVM-IR IN ILR

Left shifts in LLVM-IR cause undefined behavior if the number by which a value
is shifted is larger than the bitwidth of the shifted value. Additionally, a left shift
can overflow as an unsigned and as a signed value. Whether this is defined to be a
poison value or not depends on the flags set:

σI(c, i) −→¬ shoJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = shl <t> <v0>, <v1> K (4.35a)

σI(c, i) −→¬ shoJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))∧
¬ shlouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = shl nuw <t> <v0>, <v1> K (4.35b)
σI(c, i) −→¬ shoJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ shlosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = shl nsw <t> <v0>, <v1> K (4.35c)

σI(c, i) −→¬ shoJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))∧
¬ shlouJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ shlosJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = shl nuw nsw <t> <v0>, <v1> K (4.35d)

Similar to the left shift instruction, both variations of the right shift instruction, logic
and arithmetic right shift, cause undefined behavior if shifted by a value larger than
the bitwidth of the shifted value. Additionally, poison values can be introduced due
to the nuw, nsw, and exact flags.

σI(c, i) −→¬ shoJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = ashr <t> <v0>, <v1> K (4.36a)

σI(c, i) −→¬ shoJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K))∧
¬ shrxsJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = ashr exact <t> <v0>, <v1> K (4.36b)
σI(c, i) −→¬ shoJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i ∼ J<i> = lshr <t> <v0>, <v1> K (4.36c)
σI(c, i) −→¬ shoJtK(εV

JtK(c, Jv0K), εV
JtK(c, Jv1K))∧

¬ shrxuJtK(εV
JtK(c, Jv0K), εV

JtK(c, Jv1K)) ;
i ∼ J<i> = lshr exact <t> <v0>, <v1> K (4.36d)

An unreachable instruction is never expected to be executed. The compiler’s code
generator and optimization passes are supposed to ensure unreachable is in fact
never reached. If this happens anyway this is undefined behavior and indicates a bug
in the compiler:

σI(c, i) −→ F ; i ∼ Junreachable K (4.37)

4.5. SAFETY 107

Not all possible sources of undefined behavior or poison values are currently sup-
ported in LLBMC. One prominent example is undefined behavior introduced by the
inbounds variant of the getelementptr instruction. Another example is undefined
behavior introduced by loads and stores with bitwidths that are not a multiple of
8 and where the type of a load does not match the type of the previous store to
the same location.

If code generation is done as described in section 3.3, and the generated LLVM-IR
consequently contains checks for undefined behavior on the C level, and if those
checks cover all cases of undefined behavior, then it is not necessary to check for
undefined behavior on the LLVM-IR level. This is because the compiler is not allowed
to introduce undefined behavior itself.5 Therefore, any occurrence of undefined
behavior on the LLVM-IR is a consequence of undefined behavior on the C level.
Consequently, any checks for undefined behavior on the LLVM-IR would be redundant
in relation to the checks inserted by the approach described in section 3.3.

4.5.3 Bounds Checking

Because LLBMC only analyses a bounded fragment of a program, the analysis might
not be complete. Checking for loop iteration bounds and call depth bounds ensures
that the user is notified about this situation. This is done by marking the involved
br and call instructions as unsafe. With the bounded call graph of the function f
containing the instruction i being given as G = (Vf , Bf , rf), the following rewrite
rules ensure insertion of loop bound checks:

σI(c, i) −→ T ; JdstK ∈ Bf ∧ i ∼ Jbr label <dst> K (4.38a)
σI(c, i) −→ F ; JdstK 6∈ Bf ∧ i ∼ Jbr label <dst> K (4.38b)
σI(c, i) −→ T ; JthenK ∈ Bf ∧ JelseK ∈ Bf∧

i ∼ Jbr i1 <cond>, label <then>, label <else> K (4.38c)
σI(c, i) −→ JcondK ; JthenK ∈ Bf ∧ JelseK 6∈ Bf∧

i ∼ Jbr i1 <cond>, label <then>, label <else> K (4.38d)
σI(c, i) −→ not(JcondK) ; JthenK 6∈ Bf ∧ JelseK ∈ Bf∧

i ∼ Jbr i1 <cond>, label <then>, label <else> K (4.38e)
σI(c, i) −→ F ; JthenK 6∈ Bf ∧ JelseK 6∈ Bf∧

i ∼ Jbr i1 <cond>, label <then>, label <else> K (4.38f)
σI(c, i) −→ T ; i ∼ Jcall <t> <fptr>({<ty> <arg>}*) K ∧ (c, i) ∈ G

(4.38g)
σI(c, i) −→ F ; i ∼ Jcall <t> <fptr>({<ty> <arg>}*) K ∧ (c, i) 6∈ G

(4.38h)

5This obviously assumes the compiler is correct.

108 CHAPTER 4. ENCODING LLVM-IR IN ILR

4.5.4 Safety of a Whole Program

The function σI(c, i) is sufficient to encode a predicate φ for a single state, but not
yet sufficient to encode Gφ. To encode this we introduce the function σP(c, p) which
indicates safety of a program as a whole. However, this is restricted to the bounded
fragment described by the call graph of which c is the root node. The function σF

is then rewritten recursively over the whole call graph until only σI remains:

σP(c, p) −→ σF(c, f) ; f = fun(c) (4.39a)

σF(c, f) −→

∧
b∈f

∧
i∈b

↼
ηI(c, i)→ σI(c, i)

 ∧
 ∧
c′∈{ci:c=parent(ci)}

σF(c′, f ′)

 (4.39b)

where f ′ = fun(c′). The σI are rewritten as explained above. Note that this
approach assumes that every safety property is attached to exactly one instruction.
This is safe to assume because every state transition is caused by an instruction so
that for any violated safety property there is an instruction that causes the state
transition from a safe to an unsafe state. If an instruction’s safety property does not
hold the instruction is called unsafe (or sometimes failing).

4.6 A Term Rewriting System for Encoding LLVM-
IR

The rewrite rule schemata presented in equations (4.1) and (4.3) to (4.39) can be
instantiated for any LLVM-IR program p to retrieve a concrete term rewriting system
Rpenc. If rules of this term rewriting system are applied exhaustively, the resulting
formula will be nearly reduced to the core ILR language as defined in section 3.7. Any
remaining function symbols from the extension introduced in this chapter can safely
be replaced by uninterpreted constants. This primarily includes the initial memory
state and values read from volatile variables. The resulting formula can then be
simplified as in section 6.1 and solved as in section 6.2.

4.6.1 Variations of the Term Rewriting System

A bounded model checker based on the presented term rewriting system can easily
be adapted to different use cases by adding, removing, and replacing term rewriting
rules as desired.

One area where this kind of configuration is interesting is undefined behavior. In the
case of undefined behavior, nothing may be assumed about the further execution
of the program, and consequently LLBMC treats this case as program termination.
Unfortunately, this might shadow other defects that occur later on during execution
because the relevant code is effectively turned into dead code. This gives false
confidence in this code, and once the first occurrence of undefined behavior is
removed, the previously shadowed defects are shown to the user unexpectedly, as
they likely do not understand the interaction between these defects. Hence, while it

4.6. A TERM REWRITING SYSTEM FOR ENCODING LLVM-IR 109

is technically correct to treat undefined behavior as program termination, in practice
users of such tools expect the tool to continue execution and behave “as expected”.

The rule in equation (4.17c) could be changed to
⇀
ηI(c, i) −→ ↼

ηI(c, i), (4.40)

to indicate that undefined behavior does not terminate the program. But consider
the case of an add with the nuw. Because the instruction has the nuw flag set,
LLVM might use the undefined behavior for compiler optimizations which might
cause unexpected behavior. This can be prevented by not running optimizations or
by simply removing the nuw before optimization. While this is not guaranteed to
make the program behave “as expected”, it likely is a sensible approximation.

Additionally, one might replace undefined behavior by an undefined value. If overflow
occurs, the result of the instruction is replaced by a fresh uninterpreted constant
symbol of the appropriate sort. This can be done by substituting the rule in equa-
tion (4.3a) by the following rule:

εI
JtK(c, i) −→ selectJtK(

addouJtK(εV
JtK(c, Jv1K), εV

JtK(c, Jv2K)), k,
addJtK(εV

JtK(c, Jv1K), εV
JtK(c, Jv2K))) ;

i ∼ J<i> = add nuw <t> <v1>, <v2> K (4.41)

where k is a fresh uninterpreted constant of sort JtK.

Another example where configuration might be done are store operations marked
as volatile. As loads from this location will not actually read from memory, the
store might as well be removed entirely:

⇀
µI

JtK(c, i) −→ store(↼
µI(c, i), εV

JtK(c, Jv0K), εV
JtK(c, Jv1K)) ;

i = Jstore <t0> <v0>, <t1> <v1> K (4.42a)
⇀
µI

JtK(c, i) −→
↼
µI(c, i) ;
i = Jstore volatile <t0> <v0>, <t1> <v1> K (4.42b)

As already mentioned in section 4.5.2, the rewriting rules presented above do not
model poison values as intended. This has not yet been of any concern for multiple
reasons, not the least of which is the fact that the approach presented above is more
strict than necessary, and LLBMC therefore does not risk missing any defects due
to this. This is because the introduction of poison values is simply a means to delay
the effects of an invalid operation, which would otherwise be undefined behavior, to
the point of using the result of the operation. If the result is not used, no undefined
behavior is present at all. This means these invalid operations can only result in
undefined behavior if poison values occur. Because LLBMC reports the calculation of
poison values, the tool is guaranteed to report all occurrences of undefined behavior.
Another reason why LLBMCs handling of poison values is a good approach in
practice is that no case has occurred in competitions or industrial applications so
far where LLBMC was too strict because of this. More importantly though, this
becomes irrelevant once properties are annotated as presented in section 3.3, which

110 CHAPTER 4. ENCODING LLVM-IR IN ILR

makes checking for poison values superfluous. Nonetheless the rewriting system can
be modified to handle poison values faithfully. We will not go into details here,
but the basic idea is to add a new family of functions π which follows roughly the
same pattern as the ε family. Instead of encoding the evaluation of an instruction
it encodes meta information about the instruction’s poisonousness, which is then
checked at the appropriate places.

4.6.2 Implementation of the Term Rewriting System

LLBMC’s implementation deviates considerably from the presented representation
of the encoding process as a term rewriting system.

First of all, rewrite rule schemata are not instantiated but implemented in its
schematic form. Not instantiating the rules reduces memory consumption and exe-
cution time of LLBMC.

Instead of implementing the function symbols such as εI or µB as part of a term
rewriting system they are implemented as maps. For example, εI is implemented as
a map {(c, i) 7→ s}, where c and i are the arguments of εI and s is the term that
would result from applying the encoding term rewriting system to εI(c, i). LLBMC
then directly creates the term s to which εI

t (c, i) would be rewritten and stores it in
this map. This is made possible because LLBMC traverses the call and control flow
graphs in the direction of execution, which ensures that the arguments of any rewrite
rules’ right hand side are stored in the map before the term itself is created. LLBMC
uses this map as a cache for term sharing during encoding, but more importantly,
the map can be used to generate LLVM-IR counterexamples from models of the ILR
formula. Corresponding maps exist for all other function symbols, too.

LLBMC’s implementation is the combination of tree traversal of the call graph and
a linear traversal of a function for each node in the call graph. This algorithm’s
termination is obvious. A proof of termination of the term rewriting system presented
above is omitted here. According to Bündgen [Bün98], a term rewriting system
terminates if a term order � exists so that for all rewrite rules l −→ r, l � r
holds. A suitable term order can be based on an order defined for all pairs (c, i) of
contexts c and instructions i. This order counts the maximal number of instructions
executed since the beginning of the program’s execution. Intuitively, the encoding’s
term rewriting can be seen as walking backwards through the call graph and the
code with respect to the direction of program’s execution. Eventually, it will always
reach the first instruction of the bounded fragment and then terminate.

4.7 Summary and Outlook

LLBMC’s encoding is based on a language extension of the core ILR language. The
encoding is formalized as a term rewriting system. Both the language extension and
the term rewriting system are schemata that need to be instantiated for concrete
programs. LLBMC can be easily configured by selecting an appropriate set of term
rewriting rules, e.g. by leaving out specific rules or replacing them by alternative
rules.

4.7. SUMMARY AND OUTLOOK 111

A likely downside of the presented approach is that a single array is used. This places
unnecessary burden on the SMT solver to find out which memory objects might align.
A possible improvement here would be the use of a (possibly cheap) alias analysis to
find groups of related memory objects. These can then be placed in separate arrays.
This might result in formulæ which are easier to solve for SMT solvers.

112 CHAPTER 4. ENCODING LLVM-IR IN ILR

Chapter 5

Dynamic Memory Allocation
and Memory Access Safety

As previously described, LLBMC uses the theory of arrays to implement a flat
memory model, meaning that a single array is used to model the program’s entire
address space. A program’s address space is a range of addresses, each of which
can be used to store information at. Storing information in memory is done using
the theory of array’s store function, while loading values from memory is modeled
with the select function1. This approach makes use of the performance provided
by SMT solvers which are optimized for the theory of arrays. This allows modeling
the main memory’s contents easily, but it does not provide any means for deciding
if a given address range in the address space may actually be accesses at a given
point of time. This chapter shows how LLBMC models memory access safety for
statically and dynamically allocated memory. While statically allocated memory ,
e.g. memory ranges used for storing global variables, poses little challenge in this
regard, dynamically allocated memory requires means to track the current state of
memory allocation for multiple address ranges during execution of the program. The
techniques implemented in LLBMC to do so are the main focus of this chapter.

Section 5.1 of this chapter gives an overview of dynamic memory allocation in
C. We then present a theory for dynamic memory allocation as an extension to
ILR in section 5.2. In addition, a partial decision procedure for this theory based
on term rewriting is presented in section 5.3 which is sufficiently expressive for
LLBMC’s purposes. Additionally, an extension to the term rewriting system presented
in chapter 4 which modifies the safety predicate σ so that it also takes memory
access safety into account is shown in section 5.4. Note, that the theory presented
in this chapter is related to the decision procedure previously published in [FMS11]
but the procedure presented here is supplemented by an axiomatization of the C
standard on which the decision procedure is based. Furthermore a proof is provided
that shows that the decision procedure is correct with respect to this axiomatization.

The presented theory was designed with careful attention to a separation of concerns.
This means the theory strictly focuses on dynamic memory allocation and memory

1 The naming of the theory of arrays functions follows the convention set by the SMT-LIB
standard

113

114 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

access correctness and does neither handle the memory’s contents nor loading and
storing. This makes it possible to combine this theory with the most suitable approach
for modeling the memory contents for any given use case. This also sets the presented
work apart from related work such as the work by Cohen et al. [Coh+09b], which
provides a combined theory for heap allocation and contents.

Dynamic memory allocation is rarely used in embedded systems. In fact, it is explicitly
disallowed by the MISRA-C guidelines [MIS13]. Nonetheless, dynamic memory is
important for the analysis of nearly all non-embedded software as well as for a
meaningful comparison with competing tools.

LLBMC uses LLVM-IR as its input language and by doing so, LLBMC is language
independent. This is not possible for dynamic memory allocation, however, because
LLVM-IR has no built-in notion of dynamic memory allocation. LLVM initially did
provide a dedicated malloc instruction, which was closely modeled after C’s malloc
function. For languages of the C family such an instruction did not provide any
benefits over simply calling C’s malloc function. Other languages supported by
LLVM had no use for the instruction at all, e.g. Java, which has a decidedly distinct
memory model. For these reasons, the malloc instruction was removed from the
language specification with release 2.7.

Because of this, LLBMC’s support for dynamically allocated memory cannot be done
language-independently and is therefore closely tied to the source language. This
thesis focuses on C’s memory model, as defined in the publicly available draft of
the C standard [ISOC99]. This is motivated to a large degree C’s prevalence in the
embedded market.

The example in listing 5.1 shows an example of the use of malloc and free in C
and the translation thereof to LLVM-IR. Note that malloc returns a pointer to an
untyped memory range of the requested size (or zero if no allocation was possible).
The pointer is only then typecast to the intended type.

1 int* foo () {
2 // allocation of an object
3 // large enough for an int
4 int* i = (int *) malloc (sizeof (

int));
5 bar(i);
6 if (*i == 0) {
7 // either deallocation
8 // of the object
9 free(i);
10 return 0;
11 } else {
12 // or return of the
13 // allocated object
14 return i;
15 }
16 }

(a) Original source file

1 define i32* @foo () {
2 entry :
3 %0 = call i8* malloc (i32 4)
4 %i = bitcast i8* %0 to i32*
5 call void @bar(i32* %i)
6 %1 = load i32 , i32* %i
7 %2 = icmp eq %1 , 0
8 br i1 %2 , label %then , label←↩

%else
9
10 then:
11 call void @free (i32* %i)
12 ret i32* 0
13
14 else:
15 return i32* %i
16 }

(b) Translation to LLVM-IR

Listing 5.1: Example for use of malloc in C

5.1. DYNAMIC MEMORY ALLOCATION IN THE C STANDARD 115

5.1 Dynamic Memory Allocation in the C Standard

For the reasons mentioned above the memory allocation model presented in this
chapter is modeled after the one presented in the ISO C’99 standard draft [ISOC99].
Subsets of the C language have been previously formalized, e.g. as in the tool Clight
by Blazy and Leroy [BL09] and in the Formalin project by Krebbers and Wiedijk
[KW11]. Clight aims at a large subset of the C language, while Formalin aims for
full support of the entire standard. In contrast to these formalizations, we prefer
LLVM for language-independence wherever we can and only concern ourselves with
the parts of the C standard related to dynamic memory allocation.

These parts are spread out all over the ISO C’99 standard including sections 3, 6,
and 7. Section 3 of the C standard introduces terms, definitions, and symbols used
throughout the standard. In this section, the standard defines an object as:

Region of data storage in the execution environment, the contents of
which can represent values. [ISOC99, section 3.14]

An object must be composed of contiguous sequences of bytes:

Except for bit-fields, objects are composed of contiguous sequences of
one or more bytes, the number, order, and encoding of which are either
explicitly specified or implementation-defined. [ISOC99, section 6.2.6.1]

Number, order, and encoding are taken care of by our implementation of choice,
LLVM, which in turn tries to be compatible either to the GCC compiler or to the
MSVC compiler.

Furthermore, the standard introduces the notion of storage duration of objects:

An object has a storage duration that determines its lifetime. There
are three storage durations: static, automatic, and allocated. Allocated
storage is described in 7.20.3. [ISOC99, section 6.2.4]

In LLVM-IR, static storage duration corresponds to global variables and automatic
storage duration refers to virtual registers and stack allocated variables. Both of these
are supported by LLBMC as described in chapter 4. This leaves only objects with
allocated storage duration, which is the standard’s name for dynamically allocated
memory, to be supported by the theory.

Section 7 of the standard is concerned with C’s standard libraries including the
functions malloc, free, realloc, and calloc which the standard provides to the
programmer for managing dynamically allocated memory:

The order and contiguity of storage allocated by successive calls to the
calloc, malloc, and realloc functions is unspecified. The pointer
returned if the allocation succeeds is suitably aligned so that it may be
assigned to a pointer to any type of object and then used to access
such an object or an array of such objects in the space allocated (until
the space is explicitly deallocated). The lifetime of an allocated object
extends from the allocation until the deallocation. Each such allocation
shall yield a pointer to an object disjoint from any other object. The
pointer returned points to the start (lowest byte address) of the allocated
space. If the space cannot be allocated, a null pointer is returned. If

116 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned, or the behavior is as if the size
were some nonzero value, except that the returned pointer shall not be
used to access an object. [ISOC99, section 7.20.3]

The most important function related to dynamic memory allocation in the standard
is the malloc function with signature void *malloc(size_t size).

The malloc function allocates space for an object whose size is specified
by size and whose value is indeterminate. [ISOC99, section 7.20.3.3]

Furthermore:

The malloc function returns either a null pointer or a pointer to the
allocated space. [ISOC99, section 7.20.3.3]

The counterpart of malloc is free with signature void free(void *ptr). The
standard states:

The free function causes the space pointed to by ptr to be deallocated,
that is, made available for further allocation. If ptr is a null pointer,
no action occurs. Otherwise, if the argument does not match a pointer
earlier returned by the calloc, malloc, or realloc function, or if the
space has been deallocated by a call to free or realloc, the behavior
is undefined. [ISOC99, section 7.20.3.2]

We will leave out the calloc function as it requires modification of the memory
contents which is not in the focus of this chapter. We will also not discuss the
function realloc as it can be emulated with malloc and free2.Apart from this,
we aim to describe a theory of heaps that faithfully captures the semantics described
above.

The sections of the standard cited so far refer to memory allocation and deallocation
leaving out accesses to memory. Two sections of the standard are relevant for this,
first:

The lifetime of an object is the portion of program execution during
which storage is guaranteed to be reserved for it. An object exists, has a
constant address, and retains its last-stored value throughout its lifetime.
If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points
to reaches the end of its lifetime. [ISOC99, section 6.2.4]

C refers to addressable objects as lvalues:

An lvalue is an expression with an object type or an incomplete type
other than void; if an lvalue does not designate an object when it is
evaluated, the behavior is undefined. [ISOC99, section 6.3.2.1]

This is in contrast to rvalues which are non-addressable temporary values. The
quoted sections of the C standard are sufficient to define a theory of C-style dynamic
memory allocation based on them.

2 This is possible, despite of the fact that this is made more complicated by the fact that
realloc might return the same pointer.

5.2. EXTENDING ILR 117

5.2 Extending ILR

This section extends ILR by an additional sort representing heap allocation states
as well as multiple functions operating on this sort.

5.2.1 Sorts

Support for C’s heap memory allocation is implemented as an extension to the
ILR language as well as an extension to the term rewriting systems for encoding.
The theory uses pairs of pointers and integers to encode individual objects but
these pairs are neither part of the language extension nor the term rewriting system.
Instead, these objects are only used in axioms and proofs and the presented extension
introduces only a single new sort which represents the heap memory allocation state
as a whole. The new sorts are shown in table 5.1. In this table 〈N〉 indicates the
width of the heap model’s pointers.

Sort Family Pattern Examples
Heap allocation state h〈N〉 h16, h32, h64

Table 5.1: Heap sort

Apart from the sort for the heap state itself, the language extension also requires
sorts for indices and sizes. The theory, as presented here, is not restricted to a single
index sort but can be used with any sort as an index sort that provides the functions
+ and the predicates < and ≤, each with the usual meaning. Bitvectors as well as
mathematical integers are both conceivable for this, though we will restrict ourselves
to ILR’s pointer for indices and integers for sizes and offsets, both of which are
bitvectors.

As already done in section 3.7 and chapter 4, we use placeholders instead of concrete
sorts because the theory is independent of the target architecture’s bitwidth. These
placeholders are shown in table 5.2. Note that we intentionally reuse the placeholders
P and I as these are the sorts used in LLBMC.

Sort Placeholder Instantiatable Sorts
H Heap allocation state
P Pointer sort
I Size and offset sort

Table 5.2: Heap sort placeholders used in the following and their possible
instantiations

For consistency with the rewrite rules presented in other parts of this thesis, we will
use ILR’s notation for the addition and comparison operations, namely addP,I and
eqI , leuI . To improve readability of axioms and proofs of this chapter, a simplified
notation is used for these. For example, we will assume a single target architecture
with a single bitwidth for pointers and we will assume all integers to be of the

118 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

same bitwidth.3 This allows us to omit the subscripts indicating the functions’
sorts. Furthermore, we use the usual mathematical symbols for addition, equality,
and integer comparison instead of ILR’s function symbols. Finally, we will omit the
predicate 〈·〉 for the boolean sort.

Variable naming conventions in the chapter are shown in table 5.3. As usual, if any
of these names are used, the sort is implied to be as given in this table.

Sort Family Variables
Heap allocation state h, h1, h2

Pointers p, q, r, o
Sizes and offsets s, t, u

Table 5.3: Heap variable naming conventions

For the axiomatization of the heap theory, we use pairs of pointers and integers to
represent objects, as defined in [ISOC99, section 6.2.6.1]. Given an object (p, s),
we will call p its address and s its size. Furthermore, the interval [p, p+ s) will be
called the object’s memory range. Equality of pairs is defined by ∀p, s, q, t

(
(p, s) =

(q, t)↔ (p = q ∧ s = t)
)
.

According to [ISOC99, section 6.3.2.1], an lvalue may only be referenced if it refers
to an object. From a low-level perspective this means a memory range may only be
accessed, if it is completely contained in an object’s memory range. This motivates
the definition of the auxiliary predicate contains:

Definition 5.1 (Contains). The predicate contains (P×I×P×I) expresses that
a memory range (p, s) another memory range (q, t) and is defined by the following
axiom:

∀p, s, q, t
(
contains(p, s, q, t)↔ p ≤ q ∧ q + t ≤ p+ s

)
.

Similarly, [ISOC99, section 7.20.3] requires objects to be mutually disjoint motivating
to the following definition of the auxiliary function disjoint:

Definition 5.2 (Disjoint). The predicate disjoint (P ×I ×P ×I) expresses that
two memory ranges (p, s) and (q, t) do not overlap and is defined by the following
axiom:

∀p, s, q, t
(
disjoint(p, s, q, t)↔ p+ s < q ∨ q + t < p

)
.

Note that the functions contains and disjoint are not part of ILR but rule templates
as described in section 2.1.6, though in the following, the two functions can be
simply assumed to be rewritten by the following rewrite rules:

containsP,I(p, s, q, t) −→ and(leuP(p, q), leuP(addP,I(q, t), addP,I(p, s))) (5.1a)
disjointP,I(p, s, q, t) −→ or(ltuP(addP,I(p, s), q), ltuP(addP,I(q, t), p)) (5.1b)

3 While LLBMC allows for objects and heap allocation states of different target architectures
in the same formula, we assume that pointers are only used on their own architecture and we
therefore will not take differing bitwidths into account.

5.2. EXTENDING ILR 119

Given the definition of disjoint, we can now define a heap allocation state as the
set of currently allocated objects where each object is identified by a base pointer
and a size:

Definition 5.3 (Heap Allocation State). Given a bitwidth n ∈ N, a heap alloca-
tion state h of sort h〈N〉 is a set of pairs (P × I) where

∀(p, s) ∈ h
(
p 6= 0

)
, and (5.2)

∀(p, s) ∈ h, (q, t) ∈ h
(
(p, s) 6= (q, t)→ disjoint(p, s, q, t)

)
. (5.3)

Both the requirement for p 6= 0 and the one for disjointness of objects follow directly
from [ISOC99, section 7.20.3.3]. The additional constraint concerning alignment
mentioned in that section is omitted in this thesis.

The terms heap and heap state are usually used to refer to the contents of dynamically
allocated memory objects. Because we do not handle memory’s contents in this
chapter and for the sake of brefity, we will refer to the heap allocation state as heap
or heap state exclusively.

5.2.2 Functions

The core functions of the theory of dynamic memory allocation are listed in table 5.4.
The function emptyH creates a heap constant without any allocated objects. The
function malloc allocates a memory object given by a pointer to its lowest address
and its size, while the function freeH deallocates a previously allocated memory ob-
ject. The functions validaccessH and validfreeH check if memory allocation related
operations are valid. The predicate allocatableH asserts that a memory object given
by a pair of a pointer and size can be allocated.

Symbol : Signature Interpretation
emptyH :→ H Empty heap
mallocH : H×P × I → H Heap allocation

freeH : H×P → H Heap deallocation
validaccessH : H×P × I → bool Access validity

validfreeH : H×P → bool Deallocation validity
allocatableH : H×P × I → bool Allocatability

Table 5.4: Functions encoding heap state (|H| = |P| = |I|)

An empty heap does not contain any objects:

emptyH = ∅ (5.4)

The function malloc is the counterpart to C’s malloc function. In contrast to C’s
function, malloc does not return a pointer to the allocated heap but takes the pointer
as an argument instead.

120 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

There are two reasons for this, one of which is that malloc already returns the
modified heap state. This could be handled in multiple ways, e.g. by returning the
modified heap state and the pointer as a pair. Another approach is to return only
the modified heap state and provide a separate function for retrieving a pointer to
the last allocated object on a heap.

The second and more important reason for choosing the mentioned approach is that
we consider malloc to have two separate concerns: First it identifies an allocatable
memory range, and second it modifies the heap state to contain an object allocated at
this address. The presented signature of malloc allows separating these two concerns
cleanly. With the proposed solution, malloc itself is only concerned with modifying
the heap allocation state by adding an object at a given memory range. We provide
the function allocatableH for identifying suitable memory ranges, but the use of
it is not enforced and it is perfectly fine to identify allocatable memory ranges in
other ways. For example, LLBMC can be configured to either use allocatableH to
identify allocatable memory ranges or to use fixed addresses which do not overlap
by construction.

This separating of concerns is not without its disadvantages, however. The approach
makes it possible to pass invalid memory ranges to malloc, Namely, those that
overlap with ranges already contained in the heap object. To prevent this, the “good”
and the “bad” case need to be handled separately:

∀h, p, s
(
p 6= 0 ∧ ∀(r, u) ∈ h

(
disjoint(r, u, p, s)

)
→

malloc(h, p, s) = h ∪ {(p, s)}
)

(5.5a)
∀h, p, s

(
p = 0 ∨ ∃(r, u) ∈ h

(
¬disjoint(r, u, p, s)

)
→

malloc(h, p, s) = h
)

(5.5b)

The function freeH removes an object from the heap allocation state if it was
previously allocated and does nothing if it was not (see [ISOC99, section 7.20.3.2]):

∀h, p, q, t
(
freeH(h, p) = h \ {(q, t) : q = p}

)
(5.6)

Deallocating a non-allocated object is undefined behavior in C, but we strongly prefer
the function freeH to be total. If free is called for a non-existent object, the only
sensible thing to do is to ignore the request. Because of this, freeH is a NOOP if
the pointer does not point at a currently allocated object.

A memory access is either a read or a write operation. This can be a load or a
store instruction but also a memcpy or a similar function. A memory access to a
range of memory is valid if and only if an object exists that contains the range (see
[ISOC99, section 6.2.4]):

∀h, p, s
(
validaccessH(h, p, s)↔ ∃(r, u) ∈ h

(
contains(r, u, p, s)

))
(5.7)

A deallocation is valid if the pointer to be deallocated was allocated in the heap
allocation state (see [ISOC99, section 7.20.3.2]):

∀h, p
(
validfreeH(h, p)↔ ∃(r, u) ∈ h

(
r = p

))
(5.8)

The function allocatableH can be used to ensure that a pointer points at a suitable
range of memory for allocating an object of a given size. An object is allocatable if

5.3. A PARTIAL DECISION PROCEDURE BASED ON TERM REWRITING121

and only if it does not overlap with any previously allocated object and its address
is not null (see [ISOC99, section 7.20.3]):

∀h, p, s
(
allocatableH(h, p, s)↔ (p 6= 0 ∧ ∀(r, u) ∈ h

(
disjoint(r, u, p, s)

)
)
)
(5.9)

5.3 A Partial Decision Procedure Based on Term
Rewriting

In this section, we present a partial decision procedure for the theory of heap allocation
as presented above. The procedure is based on the reduction of the problem to an
equisatisfiable problem restricted to the theories of bitvectors and arrays.

The presented decision procedure is only partial because it does not handle uninter-
preted constants of the heap allocation state sort. This is sufficient for the use in
LLBMC though, as the tool is designed for whole program analysis and therefore
always starts with an empty heap. All other heap states are then derived from this
initial heap state by using malloc and freeH. If analysis of a non-main function is
desired, an appropriate heap needs to be constructed explicitly.

As a second restriction, the decision procedure requires that the antecedent for
equation (5.5b) (the “bad” case) is always false and the one for equation (5.5a)
(the “good” case) is always true. This is ensured in LLBMC by construction of the
formula. We can therefore use a simplified axiom for malloc:

∀h, p, s
(
malloc(h, p, s) = h ∪ {(p, s)}

)
(5.10)

Like in the C standard, we use the null pointer as a sentinel value. Whenever an
object with specific properties is requested, the sentinel indicates that no such object
exists. For this we frequently need to distinguish between the working and the failing
case which are mutually exclusive. We will use the symbol Y to indicate exclusive
or, where (x Y y)↔ ((x ∧ ¬y) ∨ (¬x ∧ y)).

The general idea for the procedure is inspired by the eager decision procedure for
the theory of arrays presented in section 2.1.4. The idea is to “move” the predicates
validaccessH, validfreeH, and allocatableH over the functions mallocH, freeH and
emptyH. At each such step, the corresponding part of their definition is expanded.
After repeating this step exhaustively, an equisatisfiable formula is generated which
only contains terms of sorts bitvector and array.

The decision procedure requires the two auxiliary functions listed in table 5.5 to be
part of the term rewriting system. The function containerH identifies the object
containing a given range of memory. This is used for checking memory access validity.
The predicate overlapperH is a counterpart to containerH which identifies objects
that overlap with a given memory range. Note that a memory range’s container is
unique if it exists at all, while a memory range might overlap with multiple objects at
the same time. Because of this, containerH is a function, which is easier to handle
with term rewriting, while overlapperH must be a predicate.

The function containerH(h, o, p, s) either returns the address of an object which

122 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

Symbol : Signature Interpretation
containerH : H×P × I → P An object containing a range

overlapperH : H×P × P × I An object overlapping with a range

Table 5.5: Auxiliary functions of the decision procedure for dynamic memory
allocation

contains a given address range or it returns the null pointer if no such object exists.

∀h, o, p, s
(
o = containerH(h, p, s)↔ (o = 0 Y ∃(r, u) ∈ h

(
o = r ∧
contains(r, u, p, s)

)
)
)

(5.11)

This function is used to decide whether an access to a memory range is valid or not.

The predicate overlapperH(h, o, p, s) is true if q is either the null pointer or q is an
object in h which overlaps with the range (p, s). The predicate is false otherwise.

∀h, o, p, s
(
overlapperH(h, o, p, s)↔ (o = 0 Y ∃(r, u) ∈ h

(
o = r ∧
¬disjoint(r, u, p, s)

)
)
)

(5.12)

This auxiliary predicate is used to decide allocatability, as for a range (p, s) the
existence of such an overlapping object makes the range not allocatable.

For a sound and complete decision procedure based on term rewriting any possible
application of any of the decision procedure’s rewrite rules must produce an equisat-
isfiable formula. Therefore it is necessary to show for each rewrite rule l −→ r that
l = r. In the following, we will introduce the rewrite rules as well as prove equality
of l and r for each.

5.3.1 Rewriting Validity Checks

We begin the presentation of the term rewriting system of the decision procedure
with the six rewrite rules for validaccessH and validfreeH.

A memory access to an empty heap is never valid:

validaccessH(emptyH, p, s) −→ F (5.13)

Proof. For all p, s:

validaccessH(emptyH, p, s)
⇐⇒ ∃(r, u) ∈ emptyH

(
contains(r, u, p, s)

)
[5.7]

⇐⇒ ∃(r, u) ∈ ∅
(
contains(r, u, p, s)

)
⇐⇒ ⊥

5.3. A PARTIAL DECISION PROCEDURE 123

A validaccessH can be “moved over” a mallocH. It is either contained in the newly
allocated object or it was already valid before the allocation:

validaccessH(mallocH(h, q, t), p, s) −→
or(containsP,I(q, t, p, s), validaccessH(h, p, s)) (5.14)

Proof. For all h, p, s, q, t:

validaccessH(mallocH(h, q, t), p, s)
⇐⇒ ∃(r, u) ∈ mallocH(h, q, t)

(
contains(r, u, p, s)

)
[5.7]

⇐⇒ ∃(r, u) ∈ h ∪ {(q, t)}
(
contains(r, u, p, s)

)
[5.10]

⇐⇒ ∃(r, u) ∈ {(q, t)}
(
contains(r, u, p, s)

)
∨

∃(r, u) ∈ h
(
contains(r, u, p, s)

)
⇐⇒ contains(q, t, p, s) ∨ ∃(r, u) ∈ h

(
contains(r, u, p, s)

)
⇐⇒ contains(q, t, p, s) ∨ validaccessH(h, p, s) [5.10]

The remaining proofs in this section follow roughly the same pattern as the proof
above.

The function validaccessH cannot be “moved over” a freeH as easily as mallocH
in equation (5.14). This is because the freeH lacks the size operand to immediately
decide if the access is contained in the deallocated object. But the access can be
rewritten by identifying the object which contains the access using the containerH
function. Consequently, a heap access is only valid if there is an object containing it:

validaccessH(freeH(h, q), p, s) −→ neP(containerH(freeH(h, q), p, s), (0)P)
(5.15)

Note that we can prove a slightly more general case, as a validaccessH can always
be expressed using containerH and not just in the above case:

Proof. For all h, p, s:

validaccessH(h, p, s)
⇐⇒ ∃(r, u) ∈ h

(
contains(r, u, p, s)

)
[5.7]

⇐⇒ ∃(r, u) ∈ h
(
∃o
(
(o = r) ∧ contains(r, u, p, s)

))
⇐⇒ ∃o

(
∃(r, u) ∈ h

(
o = r ∧ contains(r, u, p, s)

))
⇐⇒ ∃o

(
(r = 0 Y ∃(r, u) ∈ h

(
o = r ∧ contains(r, u, p, s)

)
) ∧ o 6= 0

)
⇐⇒ ∃o

(
o = containerH(h, p, s) ∧ o 6= 0

)
[5.11]

⇐⇒ ∃o
(
containerH(h, p, s) 6= 0

)
⇐⇒ containerH(h, p, s) 6= 0

It is trivial to “move” a validfreeH over an empty heap because no object exists in
an empty heap:

validfreeH(emptyH, p) −→ F (5.16)

124 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

Proof. For all p:

validfreeH(emptyH, p)
⇐⇒ ∃(r, u) ∈ emptyH

(
r = p

)
[5.8]

⇐⇒ ∃(r, u) ∈ ∅
(
r = p

)
[5.4]

⇐⇒ ⊥

A free is valid if and only if the object was previously allocated:

validfreeH(mallocH(h, q, t), p) −→ or(validfreeH(h, p), eqP(q, p)) (5.17)

Proof. For all h, p, s, q, t:

validfreeH(mallocH(h, q, t), p)
⇐⇒ ∃(r, u) ∈ mallocH(h, q, t)

(
r = p

)
[5.8]

⇐⇒ ∃(r, u) ∈ h ∪ {(q, t)}
(
r = p

)
[5.10]

⇐⇒ ∃(r, u) ∈ h
(
r = p

)
∨ ∃(r, u) ∈ {(q, t)}

(
r = q

)
⇐⇒ ∃(r, u) ∈ h

(
r = p

)
∨ q = p

⇐⇒ validfreeH(h, p) ∨ q = p [5.8]

A free cannot be valid if the pointer was already freed before (this is called a
double-free). The following rewrite rule reflects this:

validfreeH(freeH(h, q), p, s) −→ and(validfreeH(h, p, s),neP(q, p)) (5.18)

Proof. For all h, p, s, q:

validfreeH(freeH(h, p), q)
⇐⇒ ∃(r, u) ∈ freeH(h, p)

(
r = q

)
[5.8]

⇐⇒ ∃(r, u) ∈ h \ {(r′, u′) : r′ = p}
(
r = q

)
[5.6]

⇐⇒ ∃(r, u) ∈ h
(
r = q ∧ r 6= p

)
⇐⇒ ∃(r, u) ∈ h

(
r = q ∧ q 6= p

)
⇐⇒ ∃(r, u) ∈ h

(
r = q

)
∧ q 6= p

⇐⇒ validfreeH(h, p, s) ∧ q 6= p [5.6]

5.3.2 Rewriting the Auxiliary Functions

Like with the previously presented rewrite rules, for the two auxiliary functions
containerH and overlapperH a rule is required for moving each of these two functions

5.3. A PARTIAL DECISION PROCEDURE 125

over every function of sort heap, so that no such function remains in the rewritten
formula.

The function containerH needs to be rewritten, too. Obviously, an empty heap does
not contain any objects:

containerH(emptyH, p, s) −→ (0)P (5.19)

Proof. for all o, p, s:

o = containerH(emptyH, p, s)
⇐⇒ o = 0 Y ∃(r, u) ∈ emptyH

(
o = r ∧ contains(r, u, p, s)

)
[5.11]

⇐⇒ o = 0 Y ∃(r, u) ∈ ∅
(
o = r ∧ contains(r, u, p, s)

)
[5.4]

⇐⇒ o = 0 Y⊥
⇐⇒ o = 0

We defined the function select in section 3.7 in equation (3.9).

Lemma 5.1. For all d, c, a, b:

d = select(c, a, b) ⇐⇒ (c ∧ (d = a) Y (¬c ∧ (d = b)) (5.20)

The proof of this lemma is trivial and therefore omitted. Using this lemma, we can
now prove the next rewrite rule for moving containerH over mallocH:

containerH(mallocH(h, q, t), p, s) −→
selectP(containsP,I(q, t, p, s), p, containerH(h, p, s)) (5.21)

Note that the proof uses the fact that objects on a heap do ot overlap.

Proof. For all h, p, s, q, t, o:

o = containerH(mallocH(h, q, t), p, s)
⇐⇒ o = 0 Y ∃(r, u) ∈ mallocH(h, q, t)

(
o = r ∧ contains(r, u, p, s)

)
[5.11]

⇐⇒ o = 0 Y ∃(r, u) ∈ h ∪ {q, t}
(
o = r ∧ contains(r, u, p, s)

)
[5.10]

⇐⇒ o = 0 Y ∃(r, u) ∈ h
(
o = r ∧ contains(r, u, p, s)

)
Y

∃(r, u) ∈ {q, t}
(
o = r ∧ contains(r, u, p, s)

)
⇐⇒ o = 0 Y ∃(r, u) ∈ h

(
o = r ∧ contains(r, u, p, s)

)
Y

(o = q ∧ contains(q, t, p, s))
⇐⇒ o = containerH(h, p, s) Y (o = q ∧ contains(q, t, p, s)) [5.11]
⇐⇒ (o = containerH(h, p, s) ∧ ¬ contains(q, t, p, s)) ∨

(o = q ∧ contains(q, t, p, s))
⇐⇒ o = select(contains(q, t, p, s), q, containerH(h, p, s)) [5.20]

126 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

The function containerH similarly excludes deallocated objects:

containerH(freeH(h, q), p, s) −→
selectP(q = containerH(h, p, s), (0)P , containerH(h, p, s)) (5.22)

Proof. For all h, p, s, q, r:

o = containerH(freeH(h, q), p, s)
⇐⇒ o = 0 Y ∃(r, u) ∈ freeH(h, q)

(
o = r ∧ contains(r, u, p, s)

)
[5.11]

⇐⇒ o = 0 Y ∃(r, u) ∈ h \ {(r′, u′) : r′ = q}
(
o = r ∧ contains(r, u, p, s)

)
[5.6]

⇐⇒ o = 0 Y (∃(r, u) ∈ h
(
o = r ∧ contains(r, u, p, s) ∧ r 6= q

)
)

⇐⇒ o = 0 Y (∃(r, u) ∈ h
(
o = r ∧ contains(r, u, p, s) ∧ o 6= q

)
)

⇐⇒ o = 0 Y (∃(r, u) ∈ h
(
o = r ∧ contains(r, u, p, s)

)
∧ o 6= q)

⇐⇒ (containerH(h, p, s) = q ∧ o = 0) ∨
(containerH(h, p, s) 6= q ∧ o = containerH(h, p, s))

⇐⇒ o = select(containerH(h, p, s) = q, 0, containerH(h, p, s))

An empty heap, which is commonly used to model the heap state at the beginning
of a program’s execution, can obviously not contain an object that overlaps with a
given range:

overlapperH(emptyH, r, p, s) −→ ⊥ (5.23)

Proof. For all r, p, s:

overlapperH(emptyH, o, p, s)
⇐⇒ ∃(r, u ∈ emptyH)

(
o = r ∧ ¬ disjoint(r, u, p, s)

)
[5.12]

⇐⇒ ∃(r, u) ∈ ∅
(
o = r ∧ ¬ disjoint(r, u, p, s)

)
[5.4]

⇐⇒ ⊥

An object q overlapping with a range (p, s) in a heap h created by a mallocH can
only exist if it either was allocated by this mallocH or if it was already part of the
heap before:

overlapperH(mallocH(h, q, t), o, p, s) −→
or(and(eqP(q, o),¬disjointP,I(q, t, p, s)), overlapperH(h, o, p, s)) (5.24)

Proof. For all h, q, t, o, p, s:

overlapperH(mallocH(h, q, t), o, p, s)
⇐⇒ ∃(r, u) ∈ mallocH(h, q, t)

(
o = r ∧ ¬ disjoint(r, u, p, s)

)
[5.12]

⇐⇒ ∃(r, u) ∈ h ∪ {(q, t)}
(
o = r ∧ ¬ disjoint(r, u, p, s)

)
[5.10]

5.3. A PARTIAL DECISION PROCEDURE 127

⇐⇒ ∃(r, u) ∈ {(q, t)}
(
o = r ∧ ¬ disjoint(r, u, p, s)

)
∨

∃(r, u) ∈ h
(
o = r ∧ ¬ disjoint(r, u, p, s)

)
⇐⇒ ∃(r, u) ∈ {(q, t)}

(
o = r ∧ ¬ disjoint(r, u, p, s)

)
∨

overlapperH(h, o, p, s) [5.12]
⇐⇒ (q = o ∧ ¬ disjoint(q, t, p, s)) ∨ overlapperH(h, o, p, s)

An object q in the heap state h can only contain a range (p, s) if the object was not
previously deallocated:

overlapperH(freeH(h, q), o, p, s) −→ and(overlapperH(h, o, p, s),neP(o, q))
(5.25)

Proof. For all h, q, o, p, s:

overlapperH(freeH(h, q), o, p, s)
⇐⇒ ∃(r, u) ∈ freeH(h, q)

(
o = r ∧ ¬ disjoint(r, u, p, s)

)
[5.12]

⇐⇒ ∃(r, u) ∈ h \ {(r′, u′) : r′ = q}
(
o = r ∧ ¬ disjoint(r, u, p, s))

)
[5.6]

⇐⇒ ∃(r, u) ∈ h
(
o = r ∧ ¬ disjoint(r, u, p, s) ∧ r 6= q

)
⇐⇒ ∃(r, u) ∈ h

(
o = r ∧ ¬ disjoint(r, u, p, s) ∧ o 6= q

)
⇐⇒ ∃(r, u) ∈ h

(
o = r ∧ ¬ disjoint(r, u, p, s)

)
∧ o 6= q

⇐⇒ overlapperH(h, o, p, s) ∧ o 6= q [5.12]

This concludes the theory’s rewrite rules and the related proofs. The previously
mentioned case of underspecification of the mallocH axiom and the related rewrite
rule still needs to be handled.

5.3.3 Allocatability

Memory allocation of a range (p, s) via the function mallocH can only be suc-
cessful if p 6= 0 ∧ ∀(r, u) ∈ h

(
disjoint(r, u, p, s)

)
. This is exactly the definition

of allocatableH(h, p, s), so obviously adding the constraint allocatableH(h, p, s)
for every mallocH(h, p, s) ensures that the axiom equation (5.5a) applies for all
mallocH(h, p, s) and axiom equation (5.5b) is never needed.

Note that for a given size s, an allocatable object might not exist because no
sufficiently large, contiguous range of memory is available. allocatableH(h, p, s) is
unsatisfiable in this case and, because the negation of this term is added to the
following instruction’s execution condition, any instruction after this allocation is
unreachable. This makes the code after the malloc dead code. LLBMC is currently
not able to detect when this happens.

Obviously, allocatableH needs to be rewritten, too. The rule for this is as follows:

allocatableH(h, p, s) −→ and(overlapperH(h, oi, p, s), and(oi = 0,neP(p, (0)P)))
(5.26)

128 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

where oi is a previously uninterpreted pointer constant. Both sides of the rewrite
rules are equivalent, if we assume that the oi was part of the formula from the
beginning. This is possible because the structure of the formula ensures that only a
finite number of oi will be introduced during rewriting.

Proof. For all h, p, s, and oi:

allocatableH(h, p, s)
⇐⇒ p 6= 0 ∧ ∀(r, u) ∈ h

(
disjoint(r, u, p, s)

)
[5.9]

⇐⇒ p 6= 0 ∧ ¬∃(r, u) ∈ h
(
¬disjoint(r, u, p, s)

)
⇐⇒ ((∃(r, u) ∈ h

(
qi = r ∧ ¬ disjoint(r, u, p, s)

)
∧ oi 6= 0)∨

(¬∃(r, u) ∈ h
(
qi = r ∧ ¬ disjoint(r, u, p, s)

)
∧ oi = 0)) ∧ oi = 0 ∧ p 6= 0

⇐⇒ (∃(r, u) ∈ h
(
qi = r ∧ ¬ disjoint(r, u, p, s)

)
Y oi = 0) ∧ oi = 0 ∧ p 6= 0

⇐⇒ overlapperH(h, oi, p, s) ∧ oi = 0 ∧ p 6= 0 [5.12]

5.3.4 Summary

The rewrite system given by equation (5.1) and equations (5.13) to (5.19) and (5.21)
to (5.26) is a decision procedure for a fragment of the theory of dynamic memory
allocation presented above. Exhaustive application of these rewrite rules results
in an equisatisfiable formula which does not contain any of the function symbols
validaccessH, validfreeH, allocatableH, mallocH, freeH, and emptyH. Satisfiability
of the resulting formula can then be checked by an off-the-shelf SMT solver for the
quantifier free logic of bitvectors and arrays. The decision procedure is only partial
because it currently does not support uninterpreted constants of the sort heap
allocation state.

In the future, extending the decision procedure to support equality of heaps would
open up further possibilities for checking heap allocation related function safety
properties as well as modifications to LLBMC’s core model checking algorithm. In
particular the former would greatly benefit if LLBMC had support for uninterpreted
heap constants, which currently only exists in prototypical form.

5.4 Encoding Dynamic Memory Allocation

Function symbols related to heap memory management are shown in table 5.6. In
this section, the symbol h represents the appropriate heap sort for the program’s
architecture.

Propagation of the heap allocation state through the program is done nearly identical
to that of the memory state in section 4.4:

↼
ρP
h(c, p) −→ emptyt (5.27a)

⇀
ρP
h(c, p) −→⇀

ρF(c, f) ; f is main (5.27b)

5.4. ENCODING DYNAMIC MEMORY ALLOCATION 129

Symbol : Signature Interpretation
↼
ρB
t : C× B→ t Heap state before a basic block

⇀
ρB
t : C× B→ t Heap state after a basic block

↼
ρF
t : C× F→ t Heap state before a function

⇀
ρF
t : C× F→ t Heap state after a function

↼
ρI
t : C× I→ t Heap state before an instruction

⇀
ρI
t : C× I→ t Heap state after an instruction

↼
ρP
t : C× P→ t Heap state before a program

⇀
ρP
t : C× P→ t Heap state after a program
ρJ
t : C× B× B→ t Heap state at a jump

Table 5.6: Functions encoding heap state

↼
ρF
h(c, f) −→↼

ρI
h(c′, i) ; c′ = parent(c) ∧ i = callsite(c) (5.27c)

↼
ρF
h(c, f) −→↼

ρP
h(c, p) ; ∃c′(c′ = parent(c)) (5.27d)

⇀
ρF
m(c, f) −→ φJtK(a1, b1, . . . , a|R|, b|R|) ;

R = {ai, bi : ai = ⇀
ρI
m(c, j) ∧ bi = ⇀

ηI(c, j),∧
j ∼ J<j> = ret <t1> <v> K} (5.27e)

↼
ρB
h(c, b) −→ φ(⇀

ρB
h(c, b1), ηJ(c, b1, b), . . . ,

⇀
ρB
h(c, b|P |), ηJ(c, b|P |, b)) ;

¬ entry(b) ∧ P = {bi : succF(bi, b)} (5.27f)
↼
ρB
h(c, b) −→↼

ρF(c, f) ; entry(b) (5.27g)
⇀
ρB
h(c, b) −→⇀

ρI
h(c, i) ; i = termB(b) (5.27h)

↼
ρI
h(c, i) −→↼

ρB
h(c, b) ; i = firstB(b) (5.27i)

↼
ρI
h(c, i) −→⇀

ρI
h(c, i1) ; succB(i1, i) (5.27j)

⇀
ρI
h(c, i) −→⇀

ρF
h(cf , f) ;
c = parent(cf) ∧ i = callsite(cf)∧
i ∼ J<i> = call <t> <fptr>({<ty> <arg>}*) K (5.27k)

Memory allocation is treated as two separate operations that need to be done.
These operations are the identification of a suitable pointer for the object which
is to be allocated and the respective modification of the heap allocation state.
These two effects are implemented by the rewrite rules in equation (5.28). In these
rules pc,i is an uninterpreted constant of sort i8*, which is unique to this context-
instruction pair (c, i), and represents the newly generated pointer. Equation (5.28b)
then asserts that the pointer does not overlap with existing objects and is not null,
while equation (5.28a) updates the heap allocation state accordingly.

⇀
ρI
h(c, i) −→ malloch(↼

ρI
h(c, i), pc,i, εJt1K(c, JsK)) ;

i ∼ J<res> = call <t> malloc(<t1> <s>) K (5.28a)
⇀
ηI(c, i) −→ and(↼

ηI(c, i), allocatableh(↼
ρI
h(c, i), pc,i, εV

Jt1K(c, JsK))) ;
i ∼ J<res> = call <t> malloc(<t1> <s>) K (5.28b)

130 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

Note that additional caution must be taken when placing objects with dynamic
object duration. It is necessary to ensure that heap allocated objects do not overlap
with automatically allocated objects or statically allocated objects. To ensure that
this never happens, objects can be placed in separate segments of the address
space separated by their storage duration. This closely follows most real computer
architectures, so can likely be considered an acceptable under-approximation. The
heap segment can then be defined by its lower bound heapbota and its upper bound
heaptopa:

⇀
ηI(c, i) −→ and(and(↼

ηI(c, i), allocatableh(↼
ρI
h(c, i), pc,i, εV

Jt1K(c, JsK))),
and(leu((heapbota)P , pc,i), leu(pc,i, (heaptopa)P))) ;

i ∼ J<res> = call <t> malloc(<t1> <s>) K (5.29)

Furthermore, in the case of bitvectors, wraparound must be taken into account. For
this it is sufficient to ensure that every object and every memory access does not
wrap around, e.g. by adding suitable constraints using the addou function.

Note that equation (5.28b) is not necessary if other means ascertain that objects
do not overlap. This could be done by placing each object at a specific address,
e.g. by assigning appropriate constants to each context-instruction pair (c, i) if the
instruction i is a call to the malloc function and its size is known. Care must be
taken to ensure that these objects do not overlap with objects that were not placed
at fixed addresses, either by placing them in separate regions of the address space
or by adding appropriate constraints.

A memory deallocation is handled rather straightforwardly:
⇀
ρI
h(c, i) −→ freeh(↼

ρI
h(c, i), εJt1K(JpK)) ;

i ∼ J<res> = call <t> free(<t1> <p>) K (5.30a)

5.5 Encoding Memory Access Safety

Memory accesses are correct if they either go to a global variable, a stack allocated
variable, or a heap allocated variable. This leads to the following extension of the
safety property:

We first define the helper functions σI
stack, σI

global, and σI
heap which are not part of

ILR but immediately rewritten according to the following rewrite rules:

σI
stack(c, i) −→ contains(↼

τ I
s(c, i), subI((stacktopa)P ,

↼
τ I
s(c, i)), JpK, (|JtK|)I) ;

i ∼ J<i> = load <t>, <t>* <p> K (5.31)
σI
stack(c, i) −→ contains(↼

τ I
s(c, i), subI((stacktopa)P ,

↼
τ I
s(c, i)), JpK, (|JtK|)I) ;

i ∼ Jstore <t> <v>, <t>* <p> K (5.32)

σI
global(c, i) −→

∨
g∈Gp

contains(εG(g), (|g|)I , JpK, (|JtK|)I) ;

i ∼ J<i> = load <t>, <t>* <p> K (5.33)

5.6. SUMMARY AND OUTLOOK 131

σI
global(c, i) −→

∨
g∈Gp

contains(εG(g), (|g|)I , JpK, (|JtK|)I) ;

i ∼ Jstore <t> <v>, <t>* <p> K (5.34)
σI
heap(c, i) −→ validaccessH(↼

ρI(c, i), JpK, (|JtK|)I) ;
i ∼ J<i> = load <t>, <t>* <p> K (5.35)

σI
heap(c, i) −→ validaccessH(↼

ρI(c, i), JpK, (|JtK|)I) ;
i ∼ Jstore <t> <v>, <t>* <p> K (5.36)

with |I| = |P |.

Note that this modeling is simplified, as it does not model the storing of a call’s
return address on the stack and therefore cannot detect accidental (or malicious)
modification of this address.

This leads to the following adaptation of σI:

σI(c, i) −→ or(or(σI
stack(c, i), σI

global(c, i)), σI
heap(c, i)) ;

i ∼ J<i> = load <t>, <t>* <p> K (5.37)
σI(c, i) −→ or(or(σI

stack(c, i), σI
global(c, i)), σI

heap(c, i)) ;
i ∼ Jstore <t> <v>, <t>* <p> K (5.38)

A call to the function free can fail if the passed-in pointer was not previously
allocated and the pointer is not null. The first part is handled by the function
validfreeH presented above:

σI(c, i) −→ or(validfreeh(↼
ρI
h(c, i), εJt1K(JpK)), eqJt1K(εJt1KJpK, (0)P)) ;

i ∼ J<res> = call <t> free(<t1> <p>) K (5.39)

Note that it is not necessary to modify σI for a call to malloc, as this function cannot
cause undefined behavior. According to the ISO C’99 standard’s draft [ISOC99,
section 7.20.3], a null pointer is returned if the space cannot be allocated. If the
requested size is zero, behavior is implementation defined. Either a null pointer is
returned or behavior is as if the requested size was non-zero, but the returned pointer
shall not be used to access an object. Nonetheless, if the case of malloc returning a
null pointer is not explicitly handled, an error might occur later on during execution.
To model this, the return value of malloc could be set non-deterministically to null
or to a pointer to a newly allocated object.

5.6 Summary and Outlook

In this chapter, we introduced the theory of heap memory allocation as well as a
partial decision procedure for it. The theory’s strength is its closeness to the C
standard’s definition. For many cases, however, in particular when type safety is not
violated, a higher-level model could encode most relevant properties more efficiently,
though not as precisely. For example, using type information can improve the tool’s
performance, as was observed in [Coh+09b].

132 CHAPTER 5. DYNAMIC MEMORY ALLOCATION

Furthermore, C not only defines memory accesses as undefined behavior, but in
certain situations also pointer arithmetics. For example, it is valid to calculate a
pointer which points at an element one past the end of an array but it is not allowed
to dereference it. In contrast, it is undefined behavior to even calculate a pointer
more than one past the end of an array. For a complete safety analysis of memory
accesses in C, these potential sources of undefined behavior need to be supported,
too. However, at the time of writing this is still future work. Furthermore future
work is the support for heap equality and uninterpreted heap constants, which are a
requirement for many modularization approaches.

Chapter 6

Simplification, Satisfiability
Solving, and Evaluation

This chapter discusses three separate but related topics, formula simplification, sat-
isfiability solving, and a brief evaluation of LLBMC’s performance.

Formula simplification in LLBMC serves two purposes. Most simplification rules are
designed to improve the SMT solver’s performance, e.g. by replacing terms with
equivalent terms which are less costly for the SMT solver. A second, smaller set of
simplification rules is designed to reduce the complexity of translating ILR formulæ
to SMT formulæ. This is done by replacing ILR functions that cannot be translated
straightforwardly to SMT by equivalent ones that can. Reduction by simplification
is important to keep the translation to SMT itself simple.

The second topic is satisfiability solving of ILR formulæ using off-the-shelf SMT
solvers. This part is primarily concerned with the translation of ILR formulæ to
SMT-LIB formulæ. This requires simplifications for reducing ILR functions which are
not supported by SMT-LIB and translation of the remaining functions to SMT-LIB
counterparts. Furthermore, this part shortly discusses how the SMT solver can be
driven to detect violations of multiple safety properties with a single SMT solver
process by using an SMT solvers incremental solving feature.

Finally, this part also gives a short evaluation of LLBMC’s performance by discussing
its result in the International Software Verification Competitions as well as showing
the results of running LLBMC on a small example.

6.1 Simplifications

Formula simplification reduces the complexity of a formula by replacing subterms
(resp. subformulæ) with equivalent terms (resp. formulæ), which are known to be
cheaper for the SMT solver. Simplification, and in particular constant propagation,
is particularly effective for software bounded model checking because many values
that are hard to track in the general case are often constants in each individual
context. This opens up many opportunities for constant propagation throughout

133

134 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

the formula. While most state-of-the-art SMT solvers already apply simplifications
themselves, simplification on the ILR level is still important to reduce the size of
the formula as early as possible during the different stages in LLBMC to avoid an
intermediate blow-up of the formula size. A subset of the simplifications presented
in this chapter have been presented by Sinha [Sin08].

Because of the large number of simplification rules provided in LLBMC, these rules
are listed in appendix A. Rules of particular interest are shown in this section, too,
but with the rule’s number set in square brackets to indicate that this is not the
rule’s definition but merely a reference to a rule defined somewhere else, e.g.

and(T, T) −→ T [A.1a]

refers to equation (A.1a) defined in appendix A.

6.1.1 Constant Propagation Rules

Constant propagation, similar to the compiler optimization of the same name, re-
places functions with constant arguments by the result of evaluation, which is again
a constant.1 Formulæ generated by LLBMC’s encoding typically contain many oppor-
tunities for constant propagation and making use of these opportunities can greatly
reduce the size of the formula passed to the SMT solver.

Consider the example in listing 6.1. The code contains a loop which is executed
four times and reads a value from an array each time. Unrolling of the loop and
subsequent optimization of the code results in four copies of the loop’s body, as is
shown in listing 6.2. Note how optimization causes the length of each copy of the
loop’s body to be reduced from eight instructions to three instructions. In particular,
everything related to the loop counter variable r was optimized out as well as the
icmp instructions. This shows how constant propagation is particularly effective
in reducing code size after unrolling loops. For the same reasons, this is also true
for function inlining, which is closely related to loop unrolling. However, LLBMC’s
use of an explicit call graph makes the compiler unable to take advantage of these
optimization opportunities in some cases because part of the necessary information
is only present in the call graph’s data structures, which are not available to the
compiler’s optimization passes. Because of this, LLBMC implements a similar set of
optimizations on the ILR formula level to re-enable these optimizations.

The first versions of LLBMC performed inlining on the LLVM-IR level. This made it
possible to use LLVM’s inlining functionality and subsequently its constant propaga-
tion. During development, LLBMC’s architecture was changed to perform inlining as
part of the encoding which reduces the effectiveness of performing constant propaga-
tion on the LLVM-IR level. For compensation, constant propagation for ILR formulæ
was added to LLBMC’s rewrite system. The rewrite rules for constant propagation
are listed extensively in appendix A.1. A typical constant propagation rule is the
following rule for addition:

addI((n)I , (m)I) −→ (n+m)I [A.2a]

1 Note that this does not apply to uninterpreted constants, but only to fully interpreted constants.

6.1. SIMPLIFICATIONS 135

1 define i32 @contains (i32* %a) {
2 entry :
3 br label %for .body
4
5 for.body:
6 %i = phi i32 [0, %entry], [%inc , %for .body]
7 %r = phi i32 [0, %entry], [%add , %for .body]
8 %arrayidx = getelementptr i32* %a , i32 %i
9 %0 = load i32* %arrayidx , align 4
10 %add = add i32 %0 , %r
11 %inc = add i32 %i , 1
12 %cmp = icmp eq i32 %inc , 4
13 br i1 %cmp , label %return , label %for .body
14
15 return :
16 ret i32 %add
17 }

Listing 6.1: Example for constant propagation before unrolling

1 define i32 @contains (i32* %a) {
2 entry :
3 %0 = load i32* %a , align 4
4 %arrayidx .1 = getelementptr i32* %a , i32 1
5 %1 = load i32* %arrayidx .1, align 4
6 %add .1 = add nsw i32 %1 , %0
7 %arrayidx .2 = getelementptr i32* %a , i32 2
8 %2 = load i32* %arrayidx .2, align 4
9 %add .2 = add nsw i32 %2 , %add .1
10 %arrayidx .3 = getelementptr i32* %a , i32 3
11 %3 = load i32* %arrayidx .3, align 4
12 %add .3 = add i32 %3 , %add .2
13 ret i32 %add .3
14 }

Listing 6.2: Example for constant propagation after unrolling

136 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

The rule can be applied if both arguments of the addition are constants (in this case
called (n)I and (m)I). The addition can be replaced by the constant one receives
from evaluating the expression (n + m)I . This is possible because of the way we
defined integer and pointer constants in section 3.7.

Note that (·)I is defined to perform a modulo calculation with 2|I|, so there is no
need to calculate (n+m) mod 2|I| explicitly. We furthermore assume that for any
function operating on unsigned (resp. signed) I, n and m are representable as a
unsigned (resp. signed) I. Because of this, there is no need to calculate n mod 2|I|
(or its signed integer counterpart) explicitly. This allows succinct expression of such
rewrite rules, e.g. for unsigned and signed division:

divuI((n)I , (m)I) −→ (n/m)I [A.2d]
divsI((n)I , (m)I) −→ (n/m)I [A.2e]

6.1.2 Non-Constant Simplification Rules

Clearly, not all simplification rules are constant propagation. In particular, boolean
operations and arithmetic operations provide further optimization opportunities.
Some of these are related to a compiler optimization technique called constant
folding, others do not have a direct counterpart in compiler optimizations.

Simplification rules for the functions and, or, eq, and not of the sort bool are listed
in appendix A.2. These rules are mostly straightforward.

Rewrite rules for the arithmetic functions addI , subI , mulI , divuI , divsI , remu
I , and

rems
I are listed in appendix A.3. A number of these rules are closely related to

compiler optimizations, e.g. unsigned division can be replaced by a simple shift if
the division is by a power of two. Similar operations are possible for calculation of a
product or a remainder:

mulI(x, (2m)I) −→ shlI(x, (m)I [A.14e]
divuI(x, (2m)I) −→ shruI(x, (m)I [A.15b]
remu

I(x, (m)I) −→ andI(x, (m− 1)I) ; ∃n ∈ N(2n = m) [A.16b]

Calculation of the signed remainder for the division by a power of two number is
slightly more complicated as both the positive and negative case need to be taken
into account:

rems
I(x, (m)I) −→ selectI(

gesI(x, (0)I),
andI(x, (m− 1)I),
subI(0, andI(subI((0)I − x), (m− 1)I)))) ;
∃n ∈ N(2n = m) [A.16g]

Rewrite rules for safety checking functions are listed in appendix A.4. Bitwise op-
erations are handled in appendix A.5 and shifts in appendix A.6. Rules related to
integer and pointer comparison are listed in appendix A.7, while other rules, mostly
type conversion, are shown in appendix A.8.

6.1. SIMPLIFICATIONS 137

6.1.3 Reduction Rules

ILR provides features that are closely related to LLVM-IR but do not have a counter-
part in SMT, e.g. the gep function and multi-byte loading and storing. To simplify
translation of ILR formulæ to SMT, LLBMC contains a set of rewrite rules for
reducing such ILR functions to ones that match SMT featues more closely. These
rules are listed in appendix A.9.

The rules in this particular set of rules often follow the original definition of the
function closely, e.g. a multi-byte load (loadbI) is defined by the axiom

∀m, p
(
|I| > 8→ loadbI(m, p) = concati8,I(loadi8(m, p), loadbI1

(m, p+ 1))
)

[3.15]

and can be rewritten by the rewrite rule

loadbI(m, p) −→ concati8,I(loadi8(m, p), loadbI1
(m, p+ 1)) ;

|I| > 8 ∧ |I1| = |I| − 8, [A.25a]

which is directly derived from the above axiom. In this example, the antecedent of
the axiom is turned into the rewrite rule’s condition, while the rewrite rule itself
results from replacing the equality symbol with the rewrite symbol oriented from
left to right.

6.1.4 Running Simplifications

The function simplify introduced in listing 3.1 and listed in listing 6.3 is respon-
sible for applying the simplification rules listed above on an ILR formula. TRSsimpl
is a term rewriting system containing all rules listed in appendices A.1 to A.8.
TRSheap contains the rules listed in chapter 5 and TRSred contains the rules listed
in appendix A.9.

1 function simplify(ϕ)
2 ϕ ← innermostFirst(TRSsimpl, ϕ)
3 ϕ ← innermostFirst(TRSsimpl ∪ TRSheap, ϕ)
4 ϕ ← innermostFirst(TRSsimpl ∪ TRSheap ∪ TRSred, ϕ)
5 return ϕ
6 end function

Listing 6.3: Algorithm for formula simplification

As apparent from the function’s listing, simplification in LLBMC is done in multiple
passes. The reason for this is that reduction rules, in particular heap rules, tend
to increase the size of the formula. Therefore, all other simplification rules are
applied to the formula to reduce the formula’s size as far as possible, first, then the
rules introduced as part of the decision procedure for dynamic memory allocation
presented in section 5.3 are applied to the formula together with the simplification
rules. Finally, the full set of simplifying rewrite rules is used. While the result is the
same as applying all rules at once, this approach reduces the maximal size of the

138 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

formula during rewriting. We will call the subset of ILR which remains after running
the full set of rewrite rules described so far the reduced ILR.

Simplification in LLBMC is done innermost-first. This means the term rewriting
system tries to rewrite subterms before their respective parent terms. This provides
better performance for LLBMC than outermost-first because constant propagation,
the most important kind of simplifications in LLBMC, works best with an innermost-
first approach.

For specific use cases, additional simplification passes can at times cause performance
improvements of rewriting. Nonetheless, the setup described above is a good all-
round configuration of LLBMC, as was confirmed in multiple international software
verification competitions (see section 6.3).

6.2 Solving ILR Formulæ

In LLBMC, an ILR formula is solved by translating it to an equisatisfiable SMT
formula, which in turn is solved by an off-the-shelf SMT solver for the quantifier-free
logic of arrays and bitvectors. However, this translation is implemented in LLBMC
only for a subset of ILR. All terms of ILR that are not in this subset are replaced by
equivalent terms of this subset using the reduction rules presented in the previous
section. The sorts remaining after simplification are mapped to matching SMT sorts,
e.g. integers and pointers to bitvectors and memory states to arrays. All terms
remaining after simplification are then trivial to translate to SMT because they
either have a direct counterpart in SMT, as is the case for arithmetic and bitwise
functions, for example, or the functions are NOOPs in SMT. This is for example
the case for all conversion functions that do not change the value’s bitwidth such
as a bitcast. Note that a subset of the functions defined in chapter 4 are neither
removed during encoding nor during simplification or reduction. Among others, this
is the case for the initial memory state and for all arguments of the root context.
During translation to SMT, these functions are replaced by uninterpreted constants
of the appropriate sort. The translation and the subsequent execution of the SMT
solver on the generated SMT formula is implemented in LLBMC’s solve function
(see listing 3.1).

Due to the preceding simplifications, the translation process is straightforward. Fur-
thermore, because the SMT solver is treated as a black box in LLBMC, the solving of
SMT formulæ is of no further concern in the thesis. LLBMC’s work is not complete
with solving, though: while solving an ILR formula allows deciding if a program
is safe or not, it is not sufficient to identify which instruction in the program is
unsafe and under which circumstances safety properties are violated. This can be
approached by making use of the fact that most SMT solvers make it easy to retrieve
interpretations for arbitrary terms of satisfiable SMT formulæ. These interpretations
can be mapped back to terms of ILR formulæ and finally to an LLVM-IR program’s
state during execution.

As mentioned in section 2.1.1, given a model m of a formula φ we use JsKm for
the interpretation of an arbitrary subterm s of φ. Recall now that the first step
of the term rewriting system for encoding is implemented as a set of maps (see
section 4.6.2). For example, εI

t (c, i) is not a term in a term rewriting system but

6.2. SOLVING ILR FORMULÆ 139

an entry in a map εI : {(c, i) 7→ s} that maps the pair (c, i) to the term s which
would result from rewriting εI

t (c, i). While this means that the term εI(c, i) itself is
not part of the formula passed to the SMT solver anymore, the map can be used
to retrieve the corresponding term s which is part of the solved formula. Given a
context c and an instruction i which is not void, Jε(c, i)Km results in the value
stored in i’s virtual register during execution of context c in the model m. Note
that we can similarly retrieve execution conditions, the memory state, and all other
information related to executed instructions from corresponding maps.

A simple use case for this is the identification of the failing instruction associated
with a model. The failing instruction associated with a model m is the instruction
i for which a context c exists so that J¬σ(c, i)Km. This is only possible because
the encoding presented in chapter 4 ensures that any model always has exactly one
failing instruction. Modifications to the encoding introduced later in this section
will relax this property, which makes it necessary at times to retrace the program’s
execution in order to identify the first failing instruction.

While it is important to the tool’s user to be able to identify the failing instruction,
LLBMC can provide additional benefits to the user in the form of a counterexample
which illustrates how execution of the program leads to the instruction’s failure.
Counterexample generation is implemented in LLBMC’s function counterex-
ample. The concept of counterexamples is based on traces:

Definition 6.1 (Trace). A trace t = ((c1, i1), . . . , (cn, in)) is a list of pairs (c, i) of
contexts c and instructions i where an assignment to the program’s input variables
exists so that all (c, i) ∈ t are executed exactly in this order.

Note that a trace does not have to begin with the main context’s first instruction
and it does not have to end at the main context’s return instruction. Furthermore,
with this definition, a trace does not contain the actual values stored in virtual
registers or memory locations.

A counterexample is a trace through a program which leads to a failing instruction
and which is enriched by all necessary information about the values stored in virtual
registers and in memory at any point of time:

Definition 6.2 (Counterexample). Given a program p, a call graph (Vp, Ep, cp)
of p, a trace t through p, and a model m of the formula generated by rewriting
¬σP(c, p), we call (t,m) a counterexample if and only if for all (c, i) in t, JηI(c, i)Km
is true and for all (c, i) not in t, J¬ηI(c, i)Km holds.

Note that a counterexample (t,m) always begins at the main context’s first instruc-
tion and ends in the context c at instruction i for which J¬σI(c, i)Km.

Counterexamples are easily created by starting with the first executed instruction of
the main context, walking along the sequence of executed instruction, and evaluating
each one along the trace. Branch conditions need to be evaluated to identify the
next instruction to be executed at the end of basic blocks. LLBMC prints out
counterexamples on the command line, with one line per instruction. However, for
better readability, LLBMC indents counterexamples according to the call depth of
an instruction’s context. In the case of memory modifying instructions, the modified
memory range can be shown on demand. If available, LLBMC uses LLVM’s debug
information to map the contents of virtual registers and memory locations to variables

140 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

of the source language.2

6.2.1 Working with Multiple Counterexamples

The model checking algorithm presented in listing 3.1 can be used to check a large
number of safety properties with a single run of the algorithm. However, it always
returns at most a single counter example. This is sufficient to decide whether the
program as a whole is safe or to show that at least one safety property is violated,
but not if multiple safety properties are violated. This is because, if a counterexample
is found for one of the safety properties, the algorithm terminates and nothing is
known about other instructions and safety properties. In contrast to this, if it can
be guaranteed that at least one for each violated safety property a counterexample
is generated, then all safety properties for which no counterexample is generated are
proven safe within the bounds.

A simplistic algorithm for generating a counterexample per violated safety property
is to run the core model checking algorithm (see listing 3.1) separately for each
property. However, when checking multiple properties of the same program, large
parts of the generated formulæ are nearly identical. This is because these parts
are primarily related to the program’s code and mostly independent of the checked
properties. While the SMT solver is running, it accumulates a considerable amount
of information about the program, e.g. aliasing information. However, separate runs
of the core algorithm for each property lose all information gained by the SMT solver
about the formula during previous runs. Because of this, it is highly desirable to
reduce the number of restarts of the core algorithm as much as possible.

A simple way to do this is to first check all properties in a single run of the core
algorithm. Then, if a counterexample is found, the violated safety property can be
removed from the list of properties to check. The core algorithm is then restarted with
the reduced list of properties. This process is repeated until no more counterexamples
are generated. All properties for which no counterexample was generated are thereby
proven safe. While this does not eliminate restarting of the core algorithm completely,
the number of restarts is reduced from the number of checked properties to the
number of violated properties. Because the number of violated properties is usually
significantly smaller than the number of checked properties, this approach can result
in considerable performance improvements over the previously presented approach.

However, the number of restarts can be reduced further if the SMT solver supports
incremental solving. With incremental solving the SMT solver retains its internal
state after it finishes satisfiability checking. Additional constraints can then be added
to the formula and execution of the solver can be continued. The added constraints
are taken into account when searching for a new model.

In software verification, incremental solving is often used for abstraction refinement.
For this, a simpler, more abstract model of the original program is encoded in an
SMT formula. Satisfiability of the formula is then checked with an SMT solver which
supports incremental solving. If the solver reports satisfiability, the counterexample
generated from the model is examined. If the counterexample is spurious, it is used to

2 An example for LLBMC’s counterexample output, which is based on the program in listing 6.7,
is shown in listing 6.9.

6.2. SOLVING ILR FORMULÆ 141

refine the formula to more closely match the real problem to be solved. Execution of
the solver is then continued until the SMT solver returns a model which corresponds
to a non-spurious counterexample or until the formula becomes unsatisfiable. In
contrast to this, LLBMC uses incremental solving not for abstraction refinement but
for the generation of multiple counterexamples.

The core model checking algorithm shown in listing 3.1 can be adapted to gener-
ate multiple counterexamples. This adaptation is shown in listing 6.4. The main
difference to the core algorithm is the loop and the constraint function. This
function adds additional constraints to the formula ϕ which ensure that a different
model is found the next time solve is called. Constraints can be used to ensure
the same safety property is not checked again.

1 function multicheck(p, e, bl, bc)
2 C ← ∅
3 p ← optimize(p)
4 p ← unroll(p, bl)
5 g ← callgraph(p, e, bc)
6 ϕ ← encode(p, g)
7 ϕ ← simplify(ϕ)
8 r,m← solve(ϕ)
9 while ¬r do
10 c ← counterexample(p, ϕ,m)
11 C ← C ∪ {c}
12 ϕ ← ϕ ∧ constraint(p, g, c)
13 r,m← solve(ϕ)
14 end while
15 return C
16 end function

Listing 6.4: Adapted software bounded model checking algorithm for multiple
counterexamples

If a counterexample with the trace t = (c1, i1, . . . , cn, in) was found, the constraint

¬

 ∧
cf :fun(cf)=fun(c)

σI(cf , i)

can be added to the solver to ensure no further counterexamples ending at instruction
i are found. Because every safety property is associated with exactly one instruction,
this ensures that for each violated safety property exactly one counterexample is
generated.

6.2.2 Shadowing of Checks

As already mentioned in section 3.3, undefined behavior in C is a challenge for any
static code analysis tool. This is also true for undefined behavior in LLVM-IR, as it is
closely modeled after the former. Because nothing can be known about a program’s

142 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

behavior if undefined behavior occurs, there are no sensible assumptions to be made
about a program’s state in this case. Consequently, LLBMC’s encoding essentially
cuts off all traces through a program as soon as undefined behavior occurs. At times,
this results in unexpected behavior of LLBMC for the user.

Consider the example in listing 6.5. The two add instructions fail for exactly the
same values of %x and %y. However, if the first instruction causes undefined be-
havior, LLBMC treats the program as if execution terminates immediately (see
equation (4.17c)). This means execution never reaches the second instruction for
those cases for which undefined behavior would occur. LLBMC will therefore report
the second instruction as safe. Experience shows that many users argue that the
second instruction should be unsafe, after all it is identical to the first instruction.
And, to some degree, they rightfully do: if anything can happen with undefined be-
havior, execution of the program can also continue with the second add instruction
and %x and %y unchanged.

1 define void @foo(i32 %x , i32 %y) {
2 entry :
3 %0 = add nsw i32 %x , %y
4 %1 = add nsw i32 %x , %y
5 ret void
6 }

Listing 6.5: Example for shading of checks

This means, neither is it useful to allow any behavior after undefined behavior occurs,
nor is it ideal to cut off the program’s execution on undefined behavior entirely.
How to handle this, needs to be defined for each instruction and for each cause of
undefined behavior individually.

LLBMC can be easily modified to prevent shadowing of checks. In its simplest form,
LLBMC would then assume execution continues with the successor instruction after
undefined behavior. This non-shadowing mode can be realized through two changes
to the system.

First, the rewrite rule in equation (4.17c) needs to be changed to

⇀
ηI(c, i) −→ ↼

ηI(c, i) (6.1)

to allow continuation of the program’s execution even if an instruction is unsafe.
However, as a minor consequence of this, a model does not have a unique failing
instruction anymore. If two instructions fail, the counterexample needs to be traced
to identify which one failed first.

If LLBMC uses the previously presented algorithm to generate multiple counterex-
amples, modification of the rewrite rule is not yet sufficient to prevent shadowing.
This is because after a counterexample for the first instruction is found, the algo-
rithm adds a constraint to the formula which excludes any further counterexamples
for this instruction to force the SMT solver to search for a counterexample for a
different instruction. If the second instruction only fails if the first instruction does,
this implicitly excludes any counterexamples for the second instruction, too.

6.3. EVALUATION 143

The solution to this problem requires adding one uninterpreted constant ti of sort
bool per checked instruction i, where each ti can be used to turn off checks for
instruction i. For this, the additional function symbol σI

t must be introduced along
with the rewrite rule

σI
t (c, i) −→ and(σI(c, i), ti). (6.2)

Equation (4.39b) then needs to be adapted to use σI
t in place of σI. All counterex-

amples for instruction i can then be disabled by adding the constraint ¬〈ti〉 to the
formula.

6.3 Evaluation

This section is dedicated to the evaluation of LLBMC in comparison with other tools.
The evaluation of software verification tools is no easy task for a number of reasons.

Even though LLBMC in theory supports most languages that are supported by LLVM,
in practice, development of LLBMC was focused primarily on embedded software
written in C or C++. Furthermore, LLBMC is designed for checking safety properties,
or more specifically undefined behavior. LLBMC can therefore not be compared to
tools that target other kinds of software systems, such as concurrent systems, other
languages, such as Java, or other types of properties, such as liveness properties.
LLBMC can only be compared meaningfully to other static analysis tools which are
designed for checking safety properties of sequential C or C++ programs.

However, even when tools focus on the same general use case, the set of supported
features often varies greatly and different tools are optimized for different properties.
This is in particular true for tools which check for undefined behavior in C and C++
as no tool supports all causes and kinds of undefined behavior listed in the standard.

Furthermore, all tools make some assumptions about the code in question. Some
are more obvious, such as the bounds used in bounded model checking or the use of
mathematical integers instead of bitvector arithmetics. Other assumptions are less
obvious, such as the restrictions implied by a tool’s memory model or assumptions
about the aliasing of objects. This is particularly complex given C programmer’s
tendency to perform low-level operations that subvert C’s type system.

A fair and unbiased evaluation of software verification tools which compares tools by
running them on a representative set of benchmarks is a challenge of its own. A good
way to guarantee an unbiased selection of benchmarks and tools is an independently
organized and executed tool competition. In the case of LLBMC, the best-fitting
competition is the International Software Verification Competition. LLBMC took
part in the first competition [Bey12] in 2012, in the second competition [BW13]
in 2013 and in the third competition [Bey14] in 2014. Therefore, the following
evaluation of LLBMC is based on these competitions.

The International Software Verification Competition (SV-COMP) is an international
competition comparing academic software verification tools. The competition is
chaired by Dirk Beyer and took place for the first time in 2012. In the competition, the
participating tools are executed on all benchmarks from the competition’s benchmark
set. The benchmarks consist of safe and unsafe programs and the tools get scored
based on whether they provided the correct answer for both kinds of benchmarks.

144 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

The precise number of points given varies between the years, but in general, safe
benchmarks are higher-rated than unsafe benchmarks, because proving safety is
considered the harder challenge. Furthermore, an incorrect result leads to a negative
score which is always bigger than the corresponding positive score. This ensures that a
randomly guessing tool’s score has a negative expected value. The rules were modified
over the course of the years and improved upon each year by the competition’s jury,
which consists of one member of each participating team. Benchmarks are mostly
reduced to reachability of error labels, so tools do not need to handle different kinds
of runtime errors explicitly. This considerably lowers the barrier of entry for tools
and research prototypes. It also means the competition is more aimed at comparing
a tool’s algorithm than a tool’s feature set.

In total 14 tools competed in the three years in which LLBMC participated. The
tools implement a wide variety of different approaches. Symbiotic combines code in-
strumentation, program slicing, and symbolic execution. UFO combines interpolants
and abstract interpretation in an abstraction refinement loop. CPAchecker is a
whole software verification framework supporting many different approaches rang-
ing from predicate abstraction to interpolation-based refinement. Like CPAChecker,
Ultimate is a framework supporting different approaches for software verification.
Both CPAChecker and Ultimate participated with multiple tools implementing dif-
ferent approaches based on the respective framework. The tool BLAST is based
on counterexample-guided abstraction refinement. Frankenbit combines bitvector
decision procedures with invariant generalization of linear arithmetics. ESBMC , like
LLBMC, does software bounded model checking, as is already discussed in sec-
tion 2.2.5. The tools CSeq, in all its variations, and Threader are designed for
concurrent programs. Internally, both tools use bounded model checking to some
degree. Predator is based on separation logic, though it uses a graph-based heap
representation internally. The tool FShell is designed for test case generation and
uses bounded model checking with a CBMC-based implementation. SATabs is a
bit-precise verifier based on predicate abstraction. Wolverine uses Craig interpolation
to derive program invariants. Finally, QARMC-HSF is based on horn clauses.

6.3.1 International Software Verification Competition 2012

In 2012, LLBMC participated in six out of seven categories and won one gold and
one silver medal.

LLBMC won a silver medal in the category Heap Manipulation, being only second
to Predator. These two tools were the only tools that did not give incorrect results
in this category. Predator performed noticeably better than LLBMC both in the
number of solved instances and with respect to runtime, though this was expected
considering that Predator is explicitly designed for checking properties related to
heap manipulation.

LLBMC performed well in the category DeviceDrivers, winning the gold medal in this
category, but performed badly in the category DeviceDrivers64. Because LLBMC
uses bitvectors, a performance hit was expected from using 64 bits, though not in
this magnitude. Analysis of the results showed that LLBMC’s inferior performance is
mostly caused by a number of benchmarks in this category which rely on a simplified
memory model which LLBMC does not support well.

6.3. EVALUATION 145

In contrast to other competitions, such as the ones for SAT and SMT solvers, in
SV-COMP tools are not disqualified if they return an incorrect result for a benchmark.
This is mostly because otherwise it would result in the disqualification of nearly all
tools as nearly all tools return incorrect results for at least one benchmark. However,
this also means SV-COMP is open for falsification tools. Even though LLBMC can do
verification if a sufficiently large bound is set, for SV-COMP LLBMC was configured
for falsification by using small bounds and deactivating bounds checks. This setup
is based on the small scope hypothesis which assumes that most bugs can be found
by checking in a relatively small scope and in the case of bounded model checking,
this is applied to the bounds. LLBMC used the same bounds settings per category
as ESBMC did which ranged between 2 and 8 loop iterations. This provided a large
runtime improvement and often resulted in good results whereas a setting tuned for
verification resulted in timeouts.

6.3.2 International Software Verification Competition 2013

LLBMC took part in the International Software Verification Competition 2013 and
won two gold and four silver medals.

Like in the previous year, LLBMC was configured with an extremely low loop iteration
count. Despite of this, LLBMC was the only tool in that year’s competition that did
not generated incorrect results. This can be interpreted as strong evidence for the
small scope hypothesis of software bounded model checking.

LLBMC had a perfect score in the category bitvectors, solving all benchmarks cor-
rectly, as well as a perfect score and the best runtime in the subcategory ControlFlow-
Integer-MemPrecise. Nonetheless, LLBMC was not scored in the category Control-
FlowInteger overall because it did not participate in the subcategory ControlFlow-
Integer-MemSimple. The category is based on a simplified memory model which
expects specific behavior from the verification tool where the C standard has unde-
fined behavior. LLBMC does not support this simplified memory model and therefore
did not take part in this category.

Learning from last years experience with the category DeviceDrivers64. LLBMC
explicitly opted out of the category DeviceDrivers64 due to the simplified memory
model, which LLBMC does not support.

LLBMC showed good average performance for the category FeatureChecks, even
being comparable to the category’s winner Predator, though the results strongly
impacted by three benchmarks which LLBMC faired particularly bad at. Interestingly
in this category LLBMC timed out for exactly those cases which made Predator
crash, so while the tools have markedly different technology, they seem to have
similar strong and weak points. This also becomes apparent when comparing the
overall performance of these two tools.

LLBMC did not participate in the category Overall because the results for this
category were calculated from all categories’ results including the ones a tool opted-
out from. A tool which simply detects functions of the phreads library in the source
code therefore had considerably better scores than a tool that opted out for the
concurrency category. The effect of this scoring can be seen in UFO’s scores for
the overall category, which are negative even though the tool itself won several gold

146 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

medals and performed exceptionally well in all categories which it did not opt out
from.

6.3.3 International Software Verification Competition 2014

LLBMC took part in SV-COMP 2014, won one gold, one silver, and four bronze
medals. Furthermore, later that year, the LLBMC team won a Gödel medal during
the FLoC Olympic Games for the tool’s performance in the past three years.

For the year 2014’s competition, LLBMC was modified to detect the use of unsup-
ported features, e.g. the use of pthreads, and immediately return unknown in this
case. This modification resulted in a more realistic scoring of LLBMC in the overall
category. Because of this LLBMC took part in the Overall category and won a bronze
medal.

6.3.4 Detailed Example

This section is dedicated to show a full example of how LLBMC operates, from the
initial C source code to the generated counterexamples.

1 int isintmax (int n) {
2 return n + 1 < n;
3 }
4
5 int * allocate (int n, int v) {
6 int *p = 0;
7 if (! isintmax (n)) {
8 p = (int *) malloc (sizeof (int));
9 }
10 *p = v;
11 return p;
12 }

Listing 6.6: C source of full example

Appendix C.1.1 shows the LLVM-IR code generated for the example by clang. This
code is already valid input for LLBMC, though the excessive memory accesses would
result in excessive strain on the SMT solver’s decision procedure for the theory of
arrays. These memory accesses therefore are an obvious target for optimization.

Running compiler optimizations on this code results in the LLVM-IR code shown in
appendix C.1.2. In particular mem2reg and early-cde are effective for this example.
LLVM’s default optimization settings causes the function isintmax to be inlined.
However, this makes it impossible to demonstrate the use of multiple contexts in this
example. Because of this, LLVM’s inline pass was disabled. The code resulting
from optimization contains significantly fewer memory accesses but it also does
not contain the addition anymore. The latter is troubling, as this means undefined
behavior got lost during optimization and cannot be checked anymore.

The instrumentation presented in section 3.3 fixes this by producing the LLVM-
IR code shown in appendix C.1.3. The instrumentation functions called in this

6.3. EVALUATION 147

example are listed in appendix C.1.4. Internally, these function call LLBMC’s built-in
functions which map directly to the corresponding ILR function. Note in particular
that after instrumentation, LLVM’s optimizations do not hide the undefined behavior
in isintmax anymore, as can be seen in listing 6.7.

1 define i32 @isintmax (i32 %n) {
2 entry :
3 call void @check . saddo .i32(i32 %n , i32 1)
4 ret i32 0
5 }
6
7 define i32* @allocate (i32 %n , i32 %v) {
8 entry :
9 %call = call i32 @isintmax (i32 %n)
10 %tobool = icmp ne i32 %call , 0
11 br i1 %tobool , label %if.end , label %if.then
12
13 if.then:
14 %call1 = call i8* @malloc (i32 4)
15 %0 = bitcast i8* %call1 to i32*
16 br label %if.end
17
18 if.end:
19 %p .0 = phi i32* [null , %entry], [%0 , %if.then]
20 %t = bitcast i32* %p .0 to i8*
21 call void @check . access (i8* %t , i32 4)
22 store i32 %v , i32* %p.0, align 4
23 ret i32* %p .0
24 }

Listing 6.7: Full example optimized instrumented LLVM-IR code

For this example, LLBMC is configured to check only for the assertions inserted
during instrumentation and not for cases of undefined behavior on the LLVM-IR
level. Furthermore the call graph shown in appendix C.2.1 was generated and used
for this example. In addition, two call graphs are generated, one in appendix C.2.2
and appendix C.2.3.

After instrumentation and optimization, encoding can now take place. Because
not all instructions have a named virtual register, we will refer to instructions by
i suffixed with the instruction’s line number. For example, i3 refers to the call to
check.saddo.i8 in isintmax in listing 6.7. In the following equations, each line
represents a different state during the encoding:

σP(c1, p)
σF(c1, allocate) (6.3)

and(ηI(c1, i3), σI(c1, i3), σF(c2, isintmax)) (6.4)
and(or(not(ηI(c1, i3)), σI(c1, i3)), or(not(ηI(c2, i21), σI(c2, i21))) (6.5)

As can be seen above, the formula’s size grows rapidly during encoding. The same
is true for the nesting depth of terms and at the same time, term sharing gets more
frequent. For readability, we will use the notation introduced in section 3.7.7 to

148 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

represent the terms in a flattened form:

t5 ..=↼
ηI(c2, i3)

t4 ..=σI(c2, i3)
t3 ..=↼

ηI(c1, i20)
t2 ..=σI(c1, i20)
t1 ..= and(or(not(t5), t4), or(not(t3)t2,))

t1

Note that the last line is not in definitorial form but contains the top-level constraint,
which is to be checked for satisfiability later on. Applying term rewriting to each of
the named terms above results in the following formula:

t5 ..=↼
ηF(c2, isintmax)

t4 ..= not(addosi32(εA
i32(c2, n)))

t3 ..=⇀
ηI(c1, i19)

t2 ..= validaccessh32(
↼
ρI
h32(c1, i20), εI

i32*(c1, i19), (4)i32)
t1 ..= and(or(not(t5), t4), or(not(t3)t2,))

t1

As can be seen in appendix C.3, which contains the state of the formula after
three additional steps of parallel term rewriting, the formula’s size continues to grow
quickly. The formula resulting from encoding can be seen in appendix C.3.4. Note
that for technical reasons and for reasons of readability, the naming of terms after
encoding uses different letters to indicate the terms’ sort, e.g. b for booleans, i
for integers, and p for pointers. In additional, the encoding used for generating this
formula deviates slightly from the encoding presented in this thesis due to differences
between LLBMC’s implementation and the encoding TRS presented in this thesis.

Simplifications considerably reduce the formula’s complexity, as can be seen by the
following result of simplification:

i0 ..=n

b0 ..= addosi32(i0, (1)i32)
b1 ..= not(b0))

b1

Finally, the formula simplified in this way is reduced to the set of functions supported
by SMT, which in this case means addos is expanded to an equivalent term and
converted to the SMT-LIB formula shown in listing 6.8.

Solving this formula with an SMT solver and mapping the model back to a LLVM-IR
level counterexample results in the counterexample shown in listing 6.9.

6.3. EVALUATION 149

1 (set - logic QF_AUFBV)
2 (set -info :smt -lib - version 2.0)
3 (set -info : status unknown)
4 (set -info : category " industrial ")
5 (declare -fun n_0 () (_ BitVec 32))
6 (assert
7 (let ((? x1 (_ bv1 32)))
8 (let ((? x2 ((_ extract 31 31) n_0)))
9 (let ((? x3 ((_ extract 31 31) ?x1)))
10 (let ((? x4 (bvadd n_0 ?x1)))
11 (let ((? x5 ((_ extract 31 31) ?x4)))
12 (let ((? x6 (bvnot ?x5)))
13 (let ((? x7 (bvand ?x2 ?x3)))
14 (let ((? x8 (bvor ?x2 ?x3)))
15 (let ((? x9 (bvnot ?x8)))
16 (let ((? x10 (bvand ?x7 ?x6)))
17 (let ((? x11 (bvand ?x9 ?x5)))
18 (let ((? x12 (bvor ?x10 ?x11)))
19 (let (($x13 (= ?x12 (_ bv1 1))))
20 (let (($x14 (not $x13)))
21 (let (($x15 (not $x14)))
22 $x15
23)))))))))))))))
24)
25 (check -sat)
26 (exit)

Listing 6.8: SMT-LIB Formula for the detailed example

1 initial memory content :
2 default = 00
3
4 define i32* @allocate (i32 %n , i32 %v) {
5 ; i32 %n = 2147483647
6 ; i32 %v = 0
7
8 entry : ; executed
9 %call = call i32 @isintmax (i32 %n) ; 0
10
11 define i32 @isintmax (i32 %n) {
12 ; i32 %n = 2147483647
13
14 entry : ; executed
15 call void @check . saddo .i32(i32 %n , i32 1)
16
17 define void @check . saddo .i32(i32 %x , i32 %y) {
18 ; i32 %x = 2147483647
19 ; i32 %y = 1
20
21 entry : ; executed
22 %0 = call i1 @llbmc . saddo .i32(i32 %x , i32 %y) ; unknown
23 call void @llbmc . assert (i1 %0) ; error

Listing 6.9: Counterexample for the detailed example

150 CHAPTER 6. SIMPLIFICATION AND SATISFIABILITY SOLVING

6.4 Summary and Outlook

LLBMC uses a set of formula simplifications, which are implemented in a term
rewriting system, to reduce the formulæ’s size and complexity. The same term
rewriting system is used to reduce any ILR formula to a simple, SMT-like subset.
Finally, the simpler bounded model checking approach presented in listing 3.1 was
extended to return multiple counterexamples for different violated safety properties.

A limitation of the simplification approach presented in this chapter is its strict
separation from LLBMC’s encoding component, which is presented in chapter 4.
Both components are formalized as a term rewriting system and combining these
systems in a single system would reduce the size of intermediate formulæ because
the encoding’s negative effect on the formulas size is balanced to some degree by
the simplifications’ positive impact. Combining these systems more closely would
also open up opportunities to achieve a closer approximation of the program’s real
call graph because simplifications are often sufficient to decide if a call is executed
at all.

Chapter 7

Conclusion

In this thesis we identified precision, trustworthiness, scalability, and extensive lan-
guage support as core challenges concerning the use of software bounded model
checking for the verification of runtime errors in embedded software systems. We also
presented a number of scientific and technical contributions aiming at the method’s
practical application. In addition, the thesis provided an in-depth insight into the
award-winning, state-of-the-art low-level software bounded model checker LLBMC.

In particular, we showed how LLBMC leverages the compiler framework LLVM, its
intermediate representation LLVM-IR, and compiler optimizations for use in software
bounded model checking. However, using a compiler intermediate representation is
not without disadvantages, e.g. the required adaptations to the compiler’s front-end
and optimizations in order to support this markedly different use case, and the thesis
therefore discussed suitable measures to counteract these.

LLBMC’s memory model was also discussed in this thesis: It uses a flat memory
model, which leverages an SMT solver’s performance, primarily by having the SMT
solver’s highly-optimized decision procedure for the theory of arrays decide pointer
aliasing. Formula simplification and memory objects with fixed addresses are used to
counteract the approach’s negative impacts on the tool’s performance. We partici-
pated with LLBMC in multiple competitions which showed that LLBMC’s memory
model provides a good compromise between precision and performance. The thesis
introduced a highly precise model for C-style dynamic memory allocation, which is
an advancement on previously published research.

The thesis introduced LLBMC’s intermediate logic representation ILR, which is specif-
ically designed as a logic counterpart to LLVM-IR, as well as a term rewriting-based
formalization of LLBMC’s logical encoding, which clearly showed the assumptions
made by the tool about the code under verification. In addition, the thesis described
how term rewriting can be used for simplification of ILR formulæ, for the reduction
of dynamic memory accesses to pure bitvector logic, and finally for the translation
from ILR to a quantifier-free formula for the logic of bitvectors and arrays.

The combination of the contributions listed above comprise a first step towards the
application of software bounded model checking for the static analysis of runtime
errors in real-life embedded C and C++ programs.

151

152 CHAPTER 7. CONCLUSION

Appendix A

Simplification Rules

A.1 Constant Propagation

A.1.1 Boolean

and(T, T) −→ T (A.1a)
and(T, F) −→ F (A.1b)
and(F, T) −→ F (A.1c)
and(F, F) −→ F (A.1d)

or(T, T) −→ T (A.1e)
or(T, F) −→ T (A.1f)
or(F, T) −→ T (A.1g)
or(F, F) −→ F (A.1h)
eq(F, F) −→ T (A.1i)
eq(T, F) −→ F (A.1j)
eq(F, T) −→ F (A.1k)
eq(T, T) −→ F (A.1l)

not(F) −→ T (A.1m)
not(T) −→ F (A.1n)

A.1.2 Arithmetics

addI((n)I , (m)I) −→ (n+m)I (A.2a)
subI((n)I , (m)I) −→ (n−m)I (A.2b)
mulI((n)I , (m)I) −→ (n ·m)I (A.2c)
divuI((n)I , (m)I) −→ (n/m)I (A.2d)
divsI((n)I , (m)I) −→ (n/m)I (A.2e)

153

154 APPENDIX A. SIMPLIFICATION RULES

remu
I((n)I , (m)I) −→ (n remm)I (A.2f)

rems
I((n)I , (m)I) −→ (n remm)I (A.2g)

A.1.3 Overflows

addouI((n)I , (m)I) −→ T ; n+m > intmaxuI (A.3a)
addouI((n)I , (m)I) −→ F ; n+m ≤ intmaxuI (A.3b)
addosI((n)I , (m)I) −→ T ; n+m > intmaxsI ∨n+m < intminuI (A.3c)
addosI((n)I , (m)I) −→ F ; n+m ≤ intmaxsI ∧n+m ≥ intminuI (A.3d)
subouI((n)I , (m)I) −→ T ; n−m < 0 (A.3e)
subouI((n)I , (m)I) −→ F ; n−m ≥ 0 (A.3f)
subosI((n)I , (m)I) −→ T ; n−m > intmaxsI ∨n−m < intminuI (A.3g)
subosI((n)I , (m)I) −→ F ; n−m ≤ intmaxsI ∧n−m ≥ intminuI (A.3h)
mulouI((n)I , (m)I) −→ T ; n ·m > intmaxuI (A.3i)
mulouI((n)I , (m)I) −→ F ; n ·m ≤ intmaxuI (A.3j)
mulosI((n)I , (m)I) −→ T ; n ·m > intmaxsI ∨n ·m < intminuI (A.3k)
mulosI((n)I , (m)I) −→ F ; n ·m ≤ intmaxsI ∧n ·m ≥ intminuI (A.3l)
divosI((n)I , (m)I) −→ T ; n = intminsI ∧m = −1 (A.3m)
divosI((n)I , (m)I) −→ F ; n 6= intminsI ∨m 6= −1 (A.3n)
divzI((n)I , (m)I) −→ T ; m = 0 (A.3o)
divzI((n)I , (m)I) −→ F ; m 6= 0 (A.3p)
divxuI((n)I , (m)I) −→ T ; n remm 6= 0 (A.3q)
divxuI((n)I , (m)I) −→ F ; n remm = 0 (A.3r)
divxsI((n)I , (m)I) −→ T ; n remm 6= 0 (A.3s)
divxsI((n)I , (m)I) −→ F ; n remm = 0 (A.3t)
shoI((n)I , (m)I) −→ T ; m ≥ |I| (A.3u)
shoI((n)I , (m)I) −→ F ; m < |I| (A.3v)

shrxsI((n)I , (m)I) −→ T ; n rem 2m 6= 0 (A.3w)
shrxsI((n)I , (m)I) −→ F ; n rem 2m = 0 (A.3x)
shrxuI((n)I , (m)I) −→ T ; n rem 2m 6= 0 (A.3y)
shrxuI((n)I , (m)I) −→ F ; n rem 2m = 0 (A.3z)

A.1.4 Bitwise and Shift

andI((n)I , (m)I) −→ (l)I ; ∀i
(
0 ≤ i < |m| → l[i] = m[i] ∧ n[i]

)
(A.4a)

orI((n)I , (m)I) −→ (l)I ; ∀i
(
0 ≤ i < |m| → l[i] = m[i] ∨ n[i]

)
(A.4b)

xorI((n)I , (m)I) −→ (l)I ; ∀i
(
0 ≤ i < |m| → l[i] = ¬(m[i]↔ n[i])

)
(A.4c)

notI((n)I) −→ (l)I ; ∀i
(
0 ≤ i < |n| → l[i] = ¬n[i]

)
(A.4d)

shrsI((n)I , (m)I) −→ (n/2m)I (A.4e)

A.1. CONSTANT PROPAGATION 155

shruI((n)I , (m)I) −→ (n/2m)I (A.4f)
shlI((n)I , (m)I) −→ (2mn)I (A.4g)

A.1.5 Memory

loadi8(storei8(m, (p)i8*, (n)i8), (q)i8*) −→ (n)i8 ; p = q (A.5a)
loadi8(selecti8(c,m1,m2), p) −→ loadi8(m1, p) ; c (A.5b)

loadi8(selecti8(c,m1,m2)) −→ loadi8(m2, p) ; ¬c (A.5c)
addP,V((n)P , (m)I) −→ (n+m)P (A.5d)
subP,V((n)P , (m)I) −→ (n−m)P (A.5e)

(A.5f)

A.1.6 Comparison

eqV((n)I , (m)I) −→ T ; (n)I = (m)I (A.6a)
eqV((n)I , (m)I) −→ F ; (n)I 6= (m)I (A.6b)
neV((n)I , (m)I) −→ T ; (n)I 6= (m)I (A.6c)
neV((n)I , (m)I) −→ F ; (n)I = (m)I (A.6d)
geuV((n)I , (m)I) −→ T ; (n)I ≥ (m)I (A.6e)
geuV((n)I , (m)I) −→ F ; (n)I 6≥ (m)I (A.6f)
leuV((n)I , (m)I) −→ T ; (n)I ≤ (m)I (A.6g)
leuV((n)I , (m)I) −→ F ; (n)I 6≤ (m)I (A.6h)
gtuV((n)I , (m)I) −→ T ; (n)I > (m)I (A.6i)
gtuV((n)I , (m)I) −→ F ; (n)I 6> (m)I (A.6j)
ltuV((n)I , (m)I) −→ T ; (n)I < (m)I (A.6k)
ltuV((n)I , (m)I) −→ F ; (n)I 6< (m)I (A.6l)
gesV((n)I , (m)I) −→ T ; (n)I ≥ (m)I (A.6m)
gesV((n)I , (m)I) −→ F ; (n)I 6≥ (m)I (A.6n)
lesV((n)I , (m)I) −→ T ; (n)I ≤ (m)I (A.6o)
lesV((n)I , (m)I) −→ F ; (n)I 6≤ (m)I (A.6p)
gtsV((n)I , (m)I) −→ T ; (n)I > (m)I (A.6q)
gtsV((n)I , (m)I) −→ F ; (n)I 6> (m)I (A.6r)
ltsV((n)I , (m)I) −→ T ; (n)I < (m)I (A.6s)
ltsV((n)I , (m)I) −→ F ; (n)I 6< (m)I (A.6t)

A.1.7 Miscellaneous

extuI1,I2
((n)I1) −→ (n)I2 (A.7a)

156 APPENDIX A. SIMPLIFICATION RULES

extsI1,I2
((n)I1) −→ (n)I2 (A.7b)

truncI1,I2((n)I1) −→ (n)I2 (A.7c)
inttoptrI,P((n)I) −→ (n)P (A.7d)
ptrtointP,I((n)P) −→ (n)I (A.7e)

bitcastP1,P2((n)P1) −→ (n)P2 (A.7f)
selectI(T, (n)I , (m)I) −→ (n)I (A.7g)
selectI(F, (n)I , (m)I) −→ (m)I (A.7h)

selectP(T, (n)P , (m)P) −→ (n)P (A.7i)
selectP(F, (n)P , (m)P) −→ (m)P (A.7j)

φU ((m1)I , b1, . . . , (mn)I , bn) −→ (mi)I ; bi (A.7k)
concatI1,I2((n)I1 , (m)I2) −→ (2|I2|n+m)I ; |I| = |I1|+ |I2| (A.7l)

extractI1,i,j((n)I1) −→ (n/2j mod 2j−i+1)I2 ; |I2| = j − i+ 1
(A.7m)

A.2 Boolean

A.2.1 Logical Conjunction

and(T, b) −→ b (A.8a)
and(F, b) −→ F (A.8b)
and(b, T) −→ b (A.8c)
and(b, F) −→ F (A.8d)
and(b, b) −→ b (A.8e)

and(b,not(b)) −→ F (A.8f)
and(not(b), b) −→ F (A.8g)

and(or(b0, b1), or(b0,not(b1))) −→ b1 (A.8h)
and(or(b0, b1), or(not(b0), b1)) −→ b1 (A.8i)
and(or(b0, b1), or(b1,not(b0))) −→ b1 (A.8j)
and(or(b0, b1), or(not(b1), b0)) −→ b0 (A.8k)

and(b0, or(b0, b1)) −→ b0 (A.8l)
and(b0, or(b1, b0)) −→ b0 (A.8m)
and(or(b0, b1), b1) −→ b1 (A.8n)
and(or(b0, b1), b1) −→ b1 (A.8o)

and(b0,not(or(b0, b1))) −→ F (A.8p)
and(b0,not(or(b1, b0))) −→ F (A.8q)
and(not(or(b0, b1)), b1) −→ F (A.8r)
and(not(or(b1, b0)), b1) −→ F (A.8s)

A.2. BOOLEAN 157

A.2.2 Logical Disjunction

or(F, b) −→ b (A.9a)
or(T, b) −→ T (A.9b)
or(b, F) −→ b (A.9c)
or(b, T) −→ T (A.9d)
or(b, b) −→ b (A.9e)

or(b,not(b)) −→ T (A.9f)
or(not(b), b) −→ T (A.9g)

or(and(b0, b1), and(b0,not(b1))) −→ b0 (A.9h)
or(and(b0, b1), and(not(b1), b0)) −→ b0 (A.9i)
or(and(b1, b0), and(b0,not(b1))) −→ b0 (A.9j)
or(and(b1, b0), and(not(b1), b0)) −→ b0 (A.9k)

or(not(and(b0, b1)), b1) −→ T (A.9l)
or(not(and(b1, b0)), b1) −→ T (A.9m)
or(b1,not(and(b0, b1))) −→ T (A.9n)
or(b1,not(and(b1, b0))) −→ T (A.9o)

or(b0, and(b0, b1)) −→ b0 (A.9p)
or(b0, and(b1, b0)) −→ b0 (A.9q)
or(and(b0, b1), b0) −→ b0 (A.9r)
or(and(b1, b0), b0) −→ b0 (A.9s)

A.2.3 Logical Equivalence

eq(b, T) −→ b (A.10a)
eq(T, b) −→ b (A.10b)
eq(b, F) −→ not(b) (A.10c)
eq(F, b) −→ not(b) (A.10d)
eq(b, b) −→ T (A.10e)

eq(b,not(b)) −→ F (A.10f)
eq(not(b), b) −→ F (A.10g)

A.2.4 Negation

not(not(b)) −→ b (A.11a)

158 APPENDIX A. SIMPLIFICATION RULES

A.3 Arithmetic

A.3.1 Addition

addI(x, 0) −→ x (A.12a)
addI(0, x) −→ x (A.12b)

addI(x, subI(y, x)) −→ y (A.12c)
addI(subI(y, x), x)) −→ y (A.12d)

A.3.2 Subtraction

subI(x, 0) −→ x (A.13a)
subI(x, x) −→ 0 (A.13b)

subI(addI(x, y), x) −→ y (A.13c)
subI(addI(x, y), y) −→ x (A.13d)
subI(x, addI(x, y)) −→ subI((0)I , y) (A.13e)
subI(y, addI(x, y)) −→ subI((0)I , x) (A.13f)

A.3.3 Multiplication

mulI(1, x) −→ x (A.14a)
mulI(x, 1) −→ x (A.14b)
mulI(0, x) −→ 0 (A.14c)
mulI(x, 0) −→ 0 (A.14d)

mulI(x, (2m)I) −→ shlI(x, (m)I (A.14e)

A.3.4 Division

divuI(x, 1) −→ x (A.15a)
divuI(x, (2m)I) −→ shruI(x, (m)I (A.15b)

divuI(x, x) −→ (1)I (A.15c)
divsI(x, 1) −→ x (A.15d)

divsI(x, (−1)I) −→ subI((0)I , x) (A.15e)
divsI(x, x) −→ (1)I (A.15f)

divsI(x, (intminuI)I) −→ selectI(eqI(x, (intminuI)I), (1)I , (0)I) (A.15g)

A.4. SAFETY 159

A.3.5 Remainder

remu
I(x, (1)I) −→ (0)I (A.16a)

remu
I(x, (m)I) −→ andI(x, (m− 1)I) ; ∃n ∈ N(2n = m) (A.16b)
remu

I(x, x) −→ (0)I (A.16c)
rems

I(x, (1)I) −→ (0)I (A.16d)
rems

I(x, (−1)I) −→ (0)I (A.16e)
rems

I(x, x) −→ (0)I (A.16f)
rems

I(x, (m)I) −→ selectI(
gesI(x, (0)I),
andI(x, (m− 1)I),
subI(0, andI(subI((0)I − x), (m− 1)I)))) ;
∃n ∈ N(2n = m) (A.16g)

A.4 Safety

addouI(x, (0)I) −→ F (A.17a)
addouI((0)I , y) −→ F (A.17b)
addosI(x, (0)I) −→ F (A.17c)
addosI((0)I , y) −→ F (A.17d)
subosI(x, (0)I) −→ F (A.17e)
mulosI((0)I , y) −→ F (A.17f)
mulosI((1)I , y) −→ F (A.17g)
mulosI(x, (0)I) −→ F (A.17h)
mulosI(x, (1)I) −→ F (A.17i)

divosI(x, y) −→ eqI(x, intminsI) ∧ eqI(y, (−1)I) (A.17j)
addouI(extsI1,I(x), extsI2,I(y)) −→ F ; |I1| < |I| ∧ |I2| < |I| (A.17k)
addosI(extsI1,I(x), extsI2,I(y)) −→ F ; |I1| < |I| ∧ |I2| < |I| (A.17l)

A.5 Bitwise Operations

A.5.1 Bitwise Conjunction

andI((1)I , x) −→ x (A.18a)
andI((0)I , x) −→ (0)I (A.18b)
andI(x, (1)I) −→ x (A.18c)
andI(x, (0)I) −→ (0)I (A.18d)

andI(x, x) −→ x (A.18e)

160 APPENDIX A. SIMPLIFICATION RULES

andI(x, notI(x)) −→ (0)I (A.18f)
andI(notI(x), x) −→ (0)I (A.18g)

andI(orI(x, y), orI(x, notI(y))) −→ x (A.18h)
andI(orI(x, y), orI(notI(x), y)) −→ y (A.18i)
andI(orI(x, y), orI(y,notI(x)) −→ y (A.18j)

andI(orI(x, y), orI(notI(y), x)) −→ x (A.18k)
andI(x, orI(x, y)) −→ x (A.18l)
andI(x, orI(y, x)) −→ x (A.18m)

andI(orI(x, y), y)) −→ y (A.18n)
andI(orI(x, y), y)) −→ y (A.18o)

andI(x, notI(orI(x, y))) −→ (0)I (A.18p)
andI(x, notI(orI(y, x))) −→ (0)I (A.18q)
andI(notI(orI(x, y)), y) −→ (0)I (A.18r)
andI(notI(orI(y, x)), y) −→ (0)I (A.18s)

A.5.2 Bitwise Disjunction

orI((0)I , x) −→ x (A.19a)
orI((−1)I , x) −→ (−1)I (A.19b)

orI(x, (0)I) −→ x (A.19c)
orI(x, (−1)I) −→ (−1)I (A.19d)

orI(x, x) −→ x (A.19e)
orI(x,notI(x)) −→ (−1)I (A.19f)
orI(notI(x), x) −→ (−1)I (A.19g)

orI(andI(x, y), andI(x, notI(y))) −→ x (A.19h)
orI(andI(x, y), andI(notI(y), x)) −→ x (A.19i)
orI(andI(y, x), andI(x, notI(y))) −→ x (A.19j)
orI(andI(y, x), andI(notI(y), x)) −→ x (A.19k)

orI(notI(andI(x, y)), y) −→ (−1)I (A.19l)
orI(notI(andI(y, x)), y) −→ (−1)I (A.19m)
orI(y,notI(andI(x, y))) −→ (−1)I (A.19n)
orI(y,notI(andI(y, x))) −→ (−1)I (A.19o)

orI(x, andI(x, y)) −→ x (A.19p)
orI(x, andI(y, x)) −→ x (A.19q)
orI(andI(x, y), x) −→ x (A.19r)
orI(andI(y, x), x) −→ x (A.19s)

A.6. SHIFTS 161

A.5.3 Bitwise Exclusive Or

xorI(x, (0)I) −→ x (A.20a)
xorI(x, (−1)I) −→ notI(x) (A.20b)

xorI((0)I , y) −→ y (A.20c)
xorI((−1)I , y) −→ notI(y) (A.20d)

xorI(x, x) −→ (0)I (A.20e)
xorI(x,notI(x)) −→ (−1)I (A.20f)
xorI(notI(x), x) −→ (−1)I (A.20g)

xorI(notI(x),notI(y)) −→ xorI(x, y) (A.20h)

A.5.4 Bitwise Negation

notI(notI(x)) −→ x (A.21a)
notI(notI(x)) −→ x (A.21b)

notI(eqI(x, y)) −→ neI(x, y) (A.21c)
notI(neI(x, y)) −→ eqI(x, y) (A.21d)
notI(ltuI (x, y)) −→ geuI (x, y) (A.21e)
notI(leuI (x, y)) −→ gtuI (x, y) (A.21f)
notI(gtuI (x, y)) −→ leuI (x, y) (A.21g)
notI(geuI (x, y)) −→ geuI (x, y) (A.21h)
notI(ltsI(x, y)) −→ gesI(x, y) (A.21i)
notI(lesI(x, y)) −→ gtsI(x, y) (A.21j)
notI(gtsI(x, y)) −→ lesI(x, y) (A.21k)
notI(gesI(x, y)) −→ gesI(x, y) (A.21l)

A.6 Shifts

shrsI(x, (0)I) −→ x (A.22a)
shrsI((0)I , y) −→ (0)I (A.22b)

shrsI((−1)I , y) −→ (−1)I (A.22c)
shruI(x, (0)I) −→ (0)I (A.22d)
shruI((0)I , y) −→ (0)I (A.22e)
shlI(x, (0)I) −→ (0)I (A.22f)
shlI((0)I , y) −→ (0)I (A.22g)

162 APPENDIX A. SIMPLIFICATION RULES

A.7 Comparison

eqV(x, x) −→ T (A.23a)
neV(x, x) −→ F (A.23b)
geuV(x, x) −→ T (A.23c)
leuV(x, x) −→ T (A.23d)
gtuV(x, x) −→ F (A.23e)
ltuV(x, x) −→ F (A.23f)
gesV(x, x) −→ T (A.23g)
lesV(x, x) −→ T (A.23h)
ltsV(x, x) −→ F (A.23i)
gtsV(x, x) −→ F (A.23j)

A.8 Miscellaneous

extuI1,I2
(extuI,I1

(x)) −→ extuI,I2
(x) (A.24a)

extsI1,I2
(extsI,I1

(x)) −→ extsI,I2
(x) (A.24b)

truncI1,I2(truncI,I1(x)) −→ truncI,I2(x) (A.24c)
inttoptrI,P(ptrtointP1,I(p)) −→ bitcastP1,P(x) (A.24d)
ptrtointP,I(inttoptrI,P(i)) −→ i (A.24e)

ptrtointP,I(inttoptrI1,P(i)) −→ extuI1,I(i) ; |I1| < |I| (A.24f)
ptrtointP,I(inttoptrI1,P(i)) −→ truncI1,I(i) ; |I1| > |I| (A.24g)

bitcastP,P(p) −→ p (A.24h)
bitcastP1,P2(bitcastP,P1(p) −→ bitcastP,P2(p) (A.24i)

selectU (b, u, u) −→ u (A.24j)
selectU (T, u1, u2) −→ u1 (A.24k)
selectU (F, u1, u2) −→ u2 (A.24l)

A.9 Reduction

A.9.1 Memory

loadbI(m, p) −→ concati8,I(loadi8(m, p), loadbI1
(m, p+ 1)) ;

|I| > 8 ∧ |I1| = |I| − 8 (A.25a)
loadlI(m, p) −→ concatI,i8(loadlI1

(m, p+ 1), loadi8(m, p)) ;
|I| > 8 ∧ |I1| = |I| − 8 (A.25b)

loadI(m, p) −→ trunci8,I(loadi8(m, p)) ; |I| < 8 (A.25c)

A.9. REDUCTION 163

storebI(m, p, x) −→ storebI2
(storei8(m, p, extractI,|I|−8,|I|−1(x)),

p+ 1, extractI,0,|I|−9(x)) (A.25d)
storelI(m, p, x) −→ storelI2

(storei8(m, p, extractI,0,7(x)),
p+ 1, extractI,8,|I|−1(x)) (A.25e)

addP,I(p, x) −→ inttoptrI,P(addI(ptrtointP,I(p), x)) (A.25f)
subP,I(p, x) −→ inttoptrI,P(subI(ptrtointP,I(p), x)) (A.25g)

A.9.2 Miscellaneous

φU (u1, b1, . . . , ui−1, bi−1, ui, bi, ui+1, bi+1, . . . , un, bn) −→
φU (u1, b1, . . . , ui−1, bi−1, ui+1, bi+1, . . . , un, bn) ; ¬bi (A.26a)

φU (u1, b1, . . . un, bn) −→ ui ; bi (A.26b)

164 APPENDIX A. SIMPLIFICATION RULES

Appendix B

Evaluation Results

B.1 Participants of SV-COMP 2012

To
ol

Ju
ry

M
em

be
r

A
ffi
lia
tio

n

Pr
ed
at
or

20
11

-1
0-
11

To
m
as

Vo
jn
ar

Br
no

Un
iv
er
sit
y
of

Te
ch
no

lo
gy
,C

ze
ch

Re
p.

BL
AS

T
2.
7

Va
di
m

M
ut
ili
n

Ru
ss
ia
n
Ac

ad
em

y
of

Sc
ien

ce
s,
Ru

ss
ia

CP
Ac

he
ck
er
-M

em
or
izi
ng

D
an
iel

W
on

isc
h

Un
iv
er
sit
y
of

Pa
de
rb
or
n,

Ge
rm

an
y

ES
BM

C
1.
17

Be
rn
d
Fi
sc
he
r

Un
iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

LL
BM

C
0.
9

Ca
rs
te
n
Si
nz

K
ar
lsr
uh

e
In
st
itu

te
of

Te
ch
no

lo
gy
,G

er
m
an
y

W
ol
ve
rin

e
0.
5c

Ge
or
g
W
eis

se
nb

ac
he
r

Pr
in
ce
to
n
Un

iv
er
sit
y,
US

A
CP

Ac
he
ck
er
-A

BE
1.
0.
10

Ph
ili
pp

W
en
dl
er

Un
iv
er
sit
y
of

Pa
ss
au
,G

er
m
an
y

SA
Ta

bs
3.
0

M
ich

ae
lT

au
ts
ch
ni
g

O
xf
or
d
Un

iv
er
sit
y,
UK

FS
he
ll
1.
3

H
elm

ut
Ve

ith
TU

Vi
en
na
,A

us
tr
ia

Q
AR

M
C-
H
SF

An
dr
ey

Ry
ba
lch

en
ko

TU
M
un

ich
,G

er
m
an
y

165

166 APPENDIX B. EVALUATION RESULTS

B.2 Results of SV-COMP 20121

BL
AS
T

CP
Ac
hec
ker
-A
BE

CP
Ac
hec
ker
-M
em
o

ES
BM

C
FS
hel
l

LL
BM

C
Pr
eda

torQA
RM

C-H
SF

SA
Ta
bs

Wo
lve
rin
e

Co
ntr
olF
low
Int
ege
r

71
14

1
14

0
10

2
28

10
0

17
14
0

75
39

(93
tas
ks
/ 1
44
pts
)

99
00

s
10

00
s

32
00

s
45

00
s

58
0s

24
00

s
11

00
s

48
00

s
54

00
s

58
0s

De
vic
eD
riv
ers

72
51

51
63

20
80

80
–

71
68

(59
tas
ks
/ 1
03
pts
)

30
s

97
s

93
s

16
0s

3.
5s

1.
6s

1.
9s

–
14

0s
65

s

De
vic
eD
riv
ers
64

55
26

49
10

0
1

0
–

32
16

(41
tas
ks
/ 5
5 p
ts)

14
00

s
19

00
s

50
0s

87
0s

0s
11

0s
0s

–
32

00
s

13
00

s

He
ap
Ma
nip
ula
tio
n

–
4

4
1

–
17

20
–

–
–

(14
tas
ks
/ 2
4 p
ts)

–
16

s
16

s
22
0s

–
21

0s
1.
0s

–
–

–

Sy
ste
mC

33
45

36
67

–
8

21
8

57
36

(62
tas
ks
/ 8
7 p
ts)

40
00

s
11

00
s

45
0s

76
0s

–
2.
4s

63
0s

82
0s

50
00

s
19
00

s

Co
ncu

rre
ncy

–
0

0
6

0
–

0
–

1
–

(8
tas
ks
/ 1
1 p
ts)

–
0s

0s
27

0s
0s

–
0s

–
1.
4s

–

Ov
era
ll

23
1

26
7

28
0

24
9

48
20

6
13
8

14
8

23
6

15
9

(27
7 t
ask
s /

43
5 p
ts)

15
00

0s
41

00
s

43
00

s
68

00
s

58
0s

27
00

s
17

00
s

56
00

s
14

00
0s

38
00

s

1Results from http://sv-comp.sosy-lab.org/2012

http://sv-comp.sosy-lab.org/2012

B.3. PARTICIPANTS OF SV-COMP 2013 167

B.3 Participants of SV-COMP 2013

To
ol

Ju
ry

M
em

be
r

A
ffi
lia
tio

n

BL
AS

T
2.
7.
1

Va
di
m

M
ut
ili
n

Ru
ss
ia
n
Ac

ad
em

y
of

Sc
ien

ce
s,
Ru

ss
ia

CP
Ac

he
ck
er
-E
xp
lic
it
1.
1.
10

St
ef
an

Lö
we

Un
iv
er
sit
y
of

Pa
ss
au
,G

er
m
an
y

CP
Ac

he
ck
er
-S
eq
Co

m
1.
1.
10

Ph
ili
pp

W
en
dl
er

Un
iv
er
sit
y
of

Pa
ss
au
,G

er
m
an
y

CS
eq

20
12

-1
0-
22

Be
rn
d
Fi
sc
he
r

Un
iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

ES
BM

C
1.
20

Lu
ca
s
Co

rd
eir

o
Un

iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

/
UF

AM
,B

ra
zil

LL
BM

C
20

12
-1
0-
23

Ca
rs
te
n
Si
nz

K
ar
lsr
uh

e
In
st
itu

te
of

Te
ch
no

lo
gy
,G

er
m
an
y

Pr
ed
at
or

20
12

-1
0-
20

To
m
as

Vo
jn
ar

Br
no

Un
iv
er
sit
y
of

Te
ch
no

lo
gy
,C

ze
ch

Re
pu

bl
ic

Sy
m
bi
ot
ic

20
12

-1
0-
21

Ji
ri
Sl
ab
y

M
as
ar
yk

Un
iv
er
sit
y
at

Br
no

,C
ze
ch

Re
pu

bl
ic

Th
re
ad
er

0.
92

An
dr
ey

Ry
ba
lch

en
ko

TU
M
un

ich
,G

er
m
an
y

UF
O

20
12
-1
0-
22

Ar
ie

Gu
rfi
nk
el

Un
iv
er
sit
y
of

To
ro
nt
o,

Ca
na
da

/
SE

I,
US

A
Ul
tim

at
e
20

12
-1
0-
25

M
at
th
ia
s
H
eiz

m
an
n

Un
iv
er
sit
y
of

Fr
eib

ur
g,

Ge
rm

an
y

168 APPENDIX B. EVALUATION RESULTS

B.4 Results of SV-COMP 20132

BL
AS
T

CP
Ac
hec
ker
-Ex
pli
cit

CP
Ac
hec
ker
-Se
qC
om

CS
eq

ES
BM

C
LL
BM

C
Pr
eda

tor
Sy
mb
iot
ic

Th
rea
der

UF
O

Ult
im
ate

Bit
Ve
cto
rs

–
16

17
–

24
60

-7
5

–
–

–
–

(32
tas
ks
/ 6
0 p
ts)

–
86

s
19

0s
–

48
0s

36
s

95
s

–
–

–
–

Co
ncu

rre
ncy

–
0

0
17

15
–

0
–

43
–

–

(32
tas
ks
/ 4
9 p
ts)

–
0s

0s
27

0s
1
40

0s
–

0s
–

57
0s

–
–

Co
ntr
olF
low
Int
ege
r

93
14

3
14

1
–

90
–

-2
7

–
–

14
6

–

(94
tas
ks
/ 1
46
pts
)

71
00

s
12

00
s

34
00

s
–

17
00

0s
–

65
0s

–
–

45
0s

–

Co
ntr
olF
low
Int
ege
r-M

em
Pr
eci
se

52
78

78
–

69
78

-2
8

28
–

78
63

(48
tas
ks
/ 7
8 p
ts)

25
00

s
26

0s
13

00
s

–
10

00
0s

70
s

65
0s

34
s

–
17

0s
54

0s

Co
ntr
olF
low
Int
ege
r-M

em
Sim

ple

41
65

63
–

22
–

0
–

–
68

–

(46
tas
ks
/ 6
8 p
ts)

46
00

s
92

0s
21

00
s

–
63

00
s

–
0s

–
–

28
0s

–

De
vic
eD
riv
ers
64

23
38

23
40

21
86

–
22

33
–

0
87
0

–
24
08

–

(12
37
tas
ks
/ 2
41
9 p
ts)

24
00

s
97

00
s

30
00

0s
–

46
00

0s
–

0s
23

0s
–

25
00

s
–

Fe
atu
reC

hec
ks

13
0

15
9

15
9

–
13

2
16

6
16
6

23
–

74
–

(11
8 t
ask
s /

20
6 p
ts)

42
s

18
0s

16
0s

–
86

s
25

0s
6.
0s

11
s

–
46

s
–

He
ap
Ma
nip
ula
tio
n

–
22

22
–

–
32

40
–

–
–

–

(28
tas
ks
/ 4
8 p
ts)

–
30

s
29

s
–

–
31

0s
2.
3s

–
–

–
–

Lo
op
s

35
51

50
–

94
11
2

36
–

–
54

–

(79
tas
ks
/ 1
22
pts
)

55
0s

37
0s

14
00

s
–

50
00

s
54
0s

17
s

–
–

75
0s

–

Me
mo
ryS
afe
ty

–
0

0
–

3
24

52
–

–
–

–

(36
tas
ks
/ 5
4 p
ts)

–
0s

0s
–

13
00

s
38

s
61

s
–

–
–

–

Pr
od
uct
Lin
es

65
2

65
5

91
5

–
91

4
92

6
86
5

–
–

92
9

–

(59
7 t
ask
s /

92
9 p
ts)

16
00

0s
73

00
s

31
00

s
–

12
00

s
36

00
s

75
00

s
–

–
50

00
s

–

Sy
ste
mC

34
61

58
–

57
49

-6
0

–
65

45

(62
tas
ks
/ 8
7 p
ts)

26
00

s
35

00
s

18
00

s
–

85
00

s
19

00
s

14
00

s
0s

–
30

00
s

48
00

s

Ov
era
ll

80
20

30
20

90
–

19
19

–
79
9

–
–

-2
08

–

(23
15
tas
ks
/ 3
79
1 p
ts)

30
00

0s
22

00
0s

41
00

0s
–

81
00

0s
–

97
00
s

–
–

12
00

0s
–

2Results from http://sv-comp.sosy-lab.org/2013

http://sv-comp.sosy-lab.org/2013

B.5. PARTICIPANTS OF SV-COMP 2014 169

B.5 Participants of SV-COMP 2014

To
ol

Ju
ry

M
em

be
r

A
ffi
lia
tio

n

BL
AS

T
2.
7.
2

Va
di
m

M
ut
ili
n

Ru
ss
ia
n
Ac

ad
em

y
of

Sc
ien

ce
s,
Ru

ss
ia

CB
M
C

M
ich

ae
lT

au
ts
ch
ni
g

Un
iv
er
sit
y
of

O
xf
or
d,

UK
CP

Ac
he
ck
er

St
ef
an

Lö
we

Un
iv
er
sit
y
of

Pa
ss
au
,G

er
m
an
y

CP
Al
ien

Pe
tr

M
ul
ler

Br
no

Un
iv
er
sit
y
of

Te
ch
no

lo
gy
,C

ze
ch

Re
pu

bl
ic

CS
eq
-L
az
y

Be
rn
d
Fi
sc
he
r

Un
iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

CS
eq
-M

U
Ge

nn
ar
o
Pa

rla
to

Un
iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

ES
BM

C
1.
22

Lu
ca
s
Co

rd
eir

o
Un

iv
er
sit
y
of

So
ut
ha
m
pt
on

,U
K

/
Fe
d.

Un
iv
.o

fA
m
az
on

as
,B

ra
zil

Fr
an
ke
nB

it
Ar

ie
Gu

rfi
nk
el

SE
I,
US

A
/
Un

iv
er
sit
y
Co

lle
ge

D
ub

lin
,I
re
la
nd

LL
BM

C
St
ep
ha
n
Fa

lk
e

K
ar
lsr
uh

e
In
st
itu

te
of

Te
ch
no

lo
gy
,G

er
m
an
y

Pr
ed
at
or

To
m
as

Vo
jn
ar

Br
no

Un
iv
er
sit
y
of

Te
ch
no

lo
gy
,C

ze
ch

Re
pu

bl
ic

Sy
m
bi
ot
ic

2
Ji
ri
Sl
ab
y

M
as
ar
yk

Un
iv
er
sit
y
at

Br
no

,C
ze
ch

Re
pu

bl
ic

Th
re
ad
er

Co
rn
eli
u
Po

pe
ea

TU
M
un

ich
,G

er
m
an
y

UF
O

Aw
s
Al
ba
rg
ho

ut
hi

Un
iv
er
sit
y
of

To
ro
nt
o,

Ca
na
da

/
SE

I,
US

A
Ul
tim

at
e
Au

to
m
ize

r
M
at
th
ia
s
H
eiz

m
an
n

Un
iv
er
sit
y
of

Fr
eib

ur
g,

Ge
rm

an
y

Ul
tim

at
e
Ko

ja
k

Al
ex
an
de
rN

ut
z

Un
iv
er
sit
y
of

Fr
eib

ur
g,

Ge
rm

an
y

170 APPENDIX B. EVALUATION RESULTS

B.6 Results of SV-COMP 20143

BL
AS
T

CB
MC

CP
Ac
hec
ker

CP
Ali
en

CS
eq-
La
zy

CS
eq-
MU

ES
BM

C
Fra
nk
enB

it

LL
BM

C

Pr
eda

tor
Sy
mb
iot
ic

Th
rea
der

UF
O

Ult
im
ate

Au
tom

ize
r

Ult
im
ate

Ko
jak

Bit
Ve
cto
rs

–
86

78
–

–
–

77
–

86
-9
2

39
–

–
–

-2
3

(49
tas
ks
/ 8
6 p
ts)

–
23

00
s

69
0s

–
–

–
15

00
s

–
39
s

28
s

22
0s

–
–

–
11

00
s

Co
ncu

rre
ncy

–
12

8
0

–
13

6
13
6

32
–

0
0

-8
2

10
0

–
–

0

(78
tas
ks
/ 1
36
pts
)

–
29

00
0s

0.
0s

–
10

00
s

12
00

s
30

00
0s

–
0.
0s

0.
0s

5.
7s

30
00

s
–

–
0.
0s

Co
ntr
olF
low

50
8

39
7

10
09

45
5

–
–

94
9

98
6

96
1

51
1

41
–

91
2

16
4

21
4

(84
3 t
ask
s /

12
61
pts
)

32
00

0s
42

00
0s

90
00

s
65

00
s

–
–

35
00

0s
63

00
s

13
00

0s
34
00

s
39

00
0s

–
14

00
0s

60
00

s
51

00
s

Co
ntr
olF
low
Int
ege
r

64
-2
98

17
9

12
1

–
–

85
14
9

74
-2
8

-1
51

–
18
4

33
57

(18
1 t
ask
s /

25
5 p
ts)

78
00

s
35

00
0s

48
00

s
34

00
s

–
–

24
00

0s
53
00

s
10

00
0s

22
00

s
22

00
0s

–
95

00
s

58
00

s
50

00
s

Lo
op
s

25
99

68
-1
6

–
–

88
76

95
27

26
–

44
26

29

(65
tas
ks
/ 9
9 p
ts)

32
0s

11
00

s
60

0s
91

s
–

–
36

00
s

50
s

16
0s

14
s

4.
9s

–
44

s
17

0s
15
0s

Pr
od
uct
Lin
es

63
9

91
8

92
8

71
5

–
–

92
8

90
5

92
5

92
9

34
7

–
92
7

0
0

(59
7 t
ask
s /

92
9 p
ts)

24
00

0s
66

00
s

35
00

s
31

00
s

–
–

75
00

s
95

0s
26

00
s

12
00

s
17
00

0s
–

48
00

s
0.
0s

0.
0s

De
vic
eD
riv
ers
64

26
82

24
63

26
13

–
–

–
23
58

26
39

0
50

98
0

–
26
42

–
0

(14
28
tas
ks
/ 2
76
6 p
ts)

13
00

0s
39

00
00

s
28

00
0s

–
–

–
14

00
00

s
30

00
s

0.
0s

9.
9s

22
00

s
–

57
00

s
–

0.
0s

He
ap
Ma
nip
ula
tio
n

–
13

2
10
7

71
–

–
97

–
10
7

11
1

10
5

–
–

–
18

(80
tas
ks
/ 1
35
pts
)

–
12

00
0s

21
0s

70
s

–
–

97
0s

–
13

0s
9.
5s

15
s

–
–

–
35

s

Me
mo
ryS
afe
ty

–
4

95
9

–
–

-1
36

–
38

14
-1
30

–
–

–
0

(61
tas
ks
/ 9
8 p
ts)

–
11

00
0s

46
0s

69
0s

–
–

15
00

s
–

17
0s

39
s

7.
5s

–
–

–
0.
0s

Re
cur
siv
e

–
30

0
–

–
–

-5
3

–
3

-1
8

6
–

–
12

9

(23
tas
ks
/ 3
9 p
ts)

–
11

00
0s

0.
0s

–
–

–
49

00
s

–
0.
38

s
0.
12

s
0.
93

s
–

–
85

0s
54

s

Se
qu
ent
iali
zed
Co
ncu

rre
nt

–
23

7
97

–
–

–
24
4

–
20
8

-4
6

-3
2

–
83

49
9

(26
1 t
ask
s /

36
4 p
ts)

–
47

00
0s

92
00

s
–

–
–

38
00

0s
–

11
00

0s
77

00
s

77
0s

–
48

00
s

30
00

s
12

00
s

Sim
ple

30
66

67
–

–
–

31
37

0
0

-2
2

–
67

–
0

(45
tas
ks
/ 6
7 p
ts)

54
00

s
15

00
0s

43
0s

–
–

–
27

00
0s

83
0s

0.
0s

0.
0s

13
s

–
48

0s
–

0.
0s

Ov
era
ll

–
3
50

1
2
98

7
–

–
–

97
5

–
1
84
3

-1
84

-2
20

–
–

39
9

13
9

(28
68
tas
ks
/ 4
71
8 p
ts)

–
56

00
00

s
48
00

0s
–

–
–

28
00

00
s

–
24

00
0s

11
00

0s
42

00
0s

–
–

10
00

0s
76

00
s

3Results from http://sv-comp.sosy-lab.org/2014

http://sv-comp.sosy-lab.org/2014

Appendix C

Detailed Example

C.1 LLVM-IR Code

C.1.1 Initial LLVM-IR Code

1 define i32 @isintmax (i32 %n) {
2 entry :
3 %n.addr = alloca i32 , align 4
4 store i32 %n , i32* %n.addr , align 4
5 %0 = load i32* %n.addr , align 4
6 %add = add nsw i32 %0 , 1
7 %1 = load i32* %n.addr , align 4
8 %cmp = icmp slt i32 %add , %1
9 %conv = zext i1 %cmp to i32
10 ret i32 %conv
11 }
12
13 define i32* @allocate (i32 %n , i32 %v) {
14 entry :
15 %v.addr = alloca i32 , align 4
16 %n.addr = alloca i32 , align 4
17 %p = alloca i32*, align 4
18 store i32 %v , i32* %v.addr , align 4
19 store i32 %n , i32* %n.addr , align 4
20 store i32* null , i32 ** %p , align 4
21 %0 = load i32* %n.addr , align 4
22 %call = call i32 @isintmax (i32 %0)
23 %tobool = icmp ne i32 %call , 0
24 br i1 %tobool , label %if.end , label %if.then
25
26 if.then:
27 %call1 = call i8* @malloc (i32 4)
28 %1 = bitcast i8* %call1 to i32*
29 store i32* %1 , i32 ** %p , align 4
30 br label %if.end
31
32 if.end:
33 %2 = load i32* %v.addr , align 4
34 %3 = load i32 ** %p , align 4
35 store i32 %2 , i32* %3 , align 4
36 %4 = load i32 ** %p , align 4
37 ret i32* %4
38 }

171

172 APPENDIX C. DETAILED EXAMPLE

C.1.2 Optimized LLVM-IR Code (-O3

1 define i32 @isintmax (i32 %n) {
2 entry :
3 ret i32 0
4 }
5
6 define i32* @allocate (i32 %n , i32 %v) {
7 entry :
8 %call = call i32 @isintmax (i32 %n)
9 %tobool = icmp ne i32 %call , 0
10 br i1 %tobool , label %if.end , label %if.then
11
12 if.then:
13 %call1 = call i8* @malloc (i32 4)
14 %0 = bitcast i8* %call1 to i32*
15 br label %if.end
16
17 if.end:
18 %p .0 = phi i32* [null , %entry], [%0 , %if.then]
19 store i32 %v , i32* %p.0, align 4
20 ret i32* %p .0
21 }

C.1.3 Instrumented, non-optimized LLVM-IR Code

1 define i32 @isintmax (i32 %n) {
2 entry :
3 %n.addr = alloca i32 , align 4
4 store i32 %n , i32* %n.addr , align 4
5 %0 = load i32* %n.addr , align 4
6 call void @check . saddo .i32(i32 %0 , i32 1)
7 %add = add nsw i32 %0 , 1
8 %1 = load i32* %n.addr , align 4
9 %cmp = icmp slt i32 %add , %1
10 %conv = zext i1 %cmp to i32
11 ret i32 %conv
12 }
13
14 define i32* @allocate (i32 %n , i32 %v) {
15 entry :
16 %v.addr = alloca i32 , align 4
17 %n.addr = alloca i32 , align 4
18 %p = alloca i32*, align 4
19 store i32 %v , i32* %v.addr , align 4
20 store i32 %n , i32* %n.addr , align 4
21 store i32* null , i32 ** %p , align 4
22 %0 = load i32* %n.addr , align 4
23 %call = call i32 @isintmax (i32 %0)
24 %tobool = icmp ne i32 %call , 0
25 br i1 %tobool , label %if.end , label %if.then
26
27 if.then:
28 %call1 = call i8* @malloc (i32 4)
29 %1 = bitcast i8* %call1 to i32*
30 store i32* %1 , i32 ** %p , align 4
31 br label %if.end
32
33 if.end:
34 %2 = load i32* %v.addr , align 4
35 %3 = load i32 ** %p , align 4
36 %t = bitcast i32* %3 to i8*
37 call void @check . access (i8* %t , i32 4)
38 store i32 %2 , i32* %3 , align 4
39 %4 = load i32 ** %p , align 4
40 ret i32* %4

C.2. CALL AND CONTROL FLOW GRAPHS 173

41 }

C.1.4 Instrumentation

1 define void @check . access (i8* %p , i32 %s) {
2 entry :
3 %0 = call i1 @llbmc . valid . access (i8* %p , i32 %s)
4 call void @llbmc . assert (i1 %0)
5 ret void
6 }
7
8 define void @check . saddo .i32(i32 %x , i32 %y) {
9 entry :
10 %0 = call i1@llbmc . saddo .i32(i32 %x , i32 %y)
11 call void @llbmc . assert (i1 %0)
12 ret void
13 }

C.2 Call and Control Flow Graphs

C.2.1 Call Graph

isintmax

c0

allocate

c1

i

C.2.2 Control Flow Graph for @isintmax

entry:

call void @assert.saddo.i32(i32 %n, i32 1)

ret i32 0)

174 APPENDIX C. DETAILED EXAMPLE

C.2.3 Control Flow Graph for @allocate

entry:

%call = call i32 @isintmax(i32 %n)

%tobool = icmp ne %call, 0

br i1 %to.bool, label %ifend, label %ifthen

ifthen:
%call1 = call i8* @malloc(i32 %4)

%0 = bitcast i8* %call1 to i32*

br label %ifend

ifend:
%p0 = phi i32* [null, %entry], [%0, %ifthen]

call void @assert.access(i32* %p.0, i32 4)

store i32 %v, i32* %p.0

ret i32* %p.0

C.3 Encoding

C.3.1 Step 1

t8 ..= εI
i32*(c1, i19)

t7 ..=↼
ρI
h32(c1, i20)

t6 ..= εA
i32(c2, n)

t5 ..=↼
ηF(c2, isintmax)

t4 ..= not(addosi32(t6))
t3 ..=⇀

ηI(c1, i19)
t2 ..= validaccessh32(t7, t8, (4)i32)
t1 ..= and(or(not(t5), t4), or(not(t3), t2))

C.3. ENCODING 175

C.3.2 Step 2

t8 ..=φi32*
(
(0)i32*, ηJ(c1, entry, ifend), εI

i32*(c1, i15), ηJ(c1, ifthen, ifend)
)

t7 ..=↼
ρB
h32(c1, ifend)

t6 ..= εA
i32(c1, n)

t5 ..=↼
ηI(c1, i9)

t4 ..= not(addosi32(t6))
t3 ..=↼

ηB(c1, ifend)
t2 ..= validaccessh32(t7, t8, (4)i32)
t1 ..= and(or(not(t5), t4), or(not(t3), t2))

C.3.3 Step 3

t11 ..= ηJ(c1, entry, ifend)
t10 ..= εI

i32*(c1, i15)
t9 ..= ηJ(c1, ifthen, ifend)
t8 ..=φi32* ((0)i32*, t11, t10, t9)
t7 ..=↼

ρB
h32(c1, ifend)

t6 ..= εA
i32(c1, n)

t5 ..=↼
ηI(c1, i9)

t4 ..= not(addosi32(t6))
t3 ..=↼

ηB(c1, ifend)
t1 ..= and(or(not(t5), t4), or(not(t3)t2,))

176 APPENDIX C. DETAILED EXAMPLE

C.3.4 After Encoding

i0 ..=n

b0 ..= not(T))
b1 ..= addosi32(i0, (1)i32)
b2 ..= not(b1))
b3 ..= or(b0, b2))
b4 ..= and(T, b2))
i1 ..= nei32((0)i32 , (0)i32)
b5 ..= eqi1(i1, (0)i1)
b6 ..= not(b5))
b7 ..= and(b4, b6))
b8 ..= and(b7, T))
b9 ..= and(b8, T))
p0 ..= bitcasti8*,i32*((2147483644)i8*)
b10 ..= eqi1(i1, (0)i1)
b11 ..= and(b4, b10))
b12 ..= or(b9, b11))
p1 ..= selecti32*(b9, p0, (0)i32*)
p2 ..= bitcasti32*,i8*(p1)
b13 ..= leui8*((2147483644)i8* , p2)
i2 ..= ptrtointi8*,i32(p2)
i3 ..= addi32(i2, (4)i32)
p3 ..= inttoptri32,i8*(i3)
b14 ..= leui8*(p3, (2147483648)i8*)
b15 ..= and(b13, b14))
b16 ..= and(b7, b15))
b17 ..= addoui32(i2, (4)i32)
b18 ..= not(b17))
b19 ..= and(b16, b18))
i4 ..= selecti1(b19, (1)i1 , (0)i1)
b20 ..= eqi1(i4, (0)i1)
b21 ..= not(b12))
b22 ..= or(b21, b20))

b3

b22

Bibliography

[ÁH14] Erika Ábrahám and Klaus Havelund, eds. Tools and Algorithms for
the Construction and Analysis of Systems - 20th International Confer-
ence, TACAS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings. Vol. 8413. Lecture Notes in Computer
Science. Springer, 2014.

[AIB96] Ariane 501 Inquiry Board. Ariane 5 – Flight 501 Failure. Tech. rep.
European Space Agency, 1996.

[Alb+12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. “Ufo: A
Framework for Abstraction- and Interpolation-Based Software Verifica-
tion”. In: Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Ed. by
P. Madhusudan and Sanjit A. Seshia. Vol. 7358. Lecture Notes in
Computer Science. Springer, 2012, pp. 672–678.

[All70] Frances E. Allen. “Control Flow Analysis”. In: Proceedings of a Sym-
posium on Compiler Optimization. Urbana-Champaign, Illinois: ACM,
1970, pp. 1–19.

[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
“Bounded Model Checking of Software Using SMT Solvers Instead of
SAT Solvers”. In: Model Checking Software, 13th International SPIN
Workshop, Vienna, Austria, March 30 - April 1, 2006, Proceedings.
Ed. by Antti Valmari. Vol. 3925. Lecture Notes in Computer Science.
Springer, 2006, pp. 146–162.

[Bar+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. “Boogie: A Modular Reusable Verifier for
Object-Oriented Programs”. In: Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures. Ed. by Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de
Roever. Vol. 4111. Lecture Notes in Computer Science. Springer, 2005,
pp. 364–387.

[BAS02] Armin Biere, Cyrille Artho, and Viktor Schuppan. “Liveness Checking
as Safety Checking”. In: Electr. Notes Theor. Comput. Sci. 66.2 (2002),
pp. 160–177.

[BB09] Robert Brummayer and Armin Biere. “Lemmas on Demand for the
Extensional Theory of Arrays”. In: JSAT 6.1-3 (2009), pp. 165–201.

177

178 BIBLIOGRAPHY

[Bec+11] Bernhard Beckert, Thorsten Bormer, Florian Merz, and Carsten Sinz.
“Integration of Bounded Model Checking and Deductive Verification”.
In: Formal Verification of Object-Oriented Software - International
Conference, FoVeOOS 2011, Turin, Italy, October 5-7, 2011, Revised
Selected Papers. Ed. by Bernhard Beckert, Ferruccio Damiani, and
Dilian Gurov. Vol. 7421. Lecture Notes in Computer Science. Springer,
2011, pp. 86–104.

[Bey12] Dirk Beyer. “Competition on Software Verification - (SV-COMP)”. In:
Tools and Algorithms for the Construction and Analysis of Systems -
18th International Conference, TACAS 2012, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Ed. by
Cormac Flanagan and Barbara König. Vol. 7214. Lecture Notes in
Computer Science. Springer, 2012, pp. 504–524.

[Bey14] Dirk Beyer. “Status Report on Software Verification - (Competition
Summary SV-COMP 2014)”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund.
Vol. 8413. Lecture Notes in Computer Science. Springer, 2014, pp. 373–
388.

[BFT15] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.5. Tech. rep. Available at www.SMT-LIB.org. Depart-
ment of Computer Science, The University of Iowa, 2015.

[Bie+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. “Bounded model checking”. In: Advances in Com-
puters 58 (2003), pp. 117–148.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
“Symbolic Model Checking without BDDs”. In: Tools and Algorithms
for Construction and Analysis of Systems, 5th International Confer-
ence, TACAS ’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam, The
Netherlands, March 22-28, 1999, Proceedings. Ed. by Rance Cleave-
land. Vol. 1579. Lecture Notes in Computer Science. Springer, 1999,
pp. 193–207.

[BL09] Sandrine Blazy and Xavier Leroy. “Mechanized Semantics for the Clight
Subset of the C Language”. In: Computing Research Repository abs/
0901.3619 (2009).

[Bru10] Robert Brummayer. “Efficient SMT Solving for Bit Vectors and the
Extensional Theory of Arrays”. PhD thesis. Johannes Kepler University
of Linz, 2010.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation”. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691.

[Bün98] Reinhard Bündgen. Termersetzungssysteme – Theorie, Implemen-
tierung, Anwendung. Vieweg, 1998.

BIBLIOGRAPHY 179

[Bur+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. “Symbolic Model Checking: 10ˆ20 States and
Beyond”. In: Proceedings of the Fifth Annual Symposium on Logic in
Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June
4-7, 1990. IEEE Computer Society, 1990, pp. 428–439.

[BW13] Dirk Beyer and Philipp Wendler. “Reuse of Verification Results - Con-
ditional Model Checking, Precision Reuse, and Verification Witnesses”.
In: Model Checking Software - 20th International Symposium, SPIN
2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings. Ed. by
Ezio Bartocci and C. R. Ramakrishnan. Vol. 7976. Lecture Notes in
Computer Science. Springer, 2013, pp. 1–17.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints”. In: Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977. Ed. by Robert M. Graham, Michael A.
Harrison, and Ravi Sethi. ACM, 1977, pp. 238–252.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex Sys-
tems Programs”. In: Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation. OSDI’08. San Diego,
California: USENIX Association, 2008, pp. 209–224.

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”. In:
Logics of Programs, Workshop, Yorktown Heights, New York, May
1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer
Science. Springer, 1981, pp. 52–71.

[CFM09] Lucas C. Cordeiro, Bernd Fischer, and João Marques-Silva. “SMT-
Based Bounded Model Checking for Embedded ANSI-C Software”. In:
ASE 2009, 24th IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand, November 16-20, 2009.
IEEE Computer Society, 2009, pp. 137–148.

[Cim+99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. “NUSMV: A New Symbolic Model Verifier”. In: Computer
Aided Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings. Ed. by Nicolas Halbwachs and
Doron Peled. Vol. 1633. Lecture Notes in Computer Science. Springer,
1999, pp. 495–499.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: a
platform for in-vivo multi-path analysis of software systems”. In: Pro-
ceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011. Ed. by Rajiv
Gupta and Todd C. Mowry. ACM, 2011, pp. 265–278.

180 BIBLIOGRAPHY

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for
Checking ANSI-C Programs”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, 10th International Conference,
TACAS 2004, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings. Ed. by Kurt Jensen and Andreas Podel-
ski. Vol. 2988. Lecture Notes in Computer Science. Springer, 2004,
pp. 168–176.

[CKY03] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. “Behavioral
Consistency of C and Verilog Programs Using Bounded Model Check-
ing”. In: Proceedings of the 40th Design Automation Conference, DAC
2003, Anaheim, CA, USA, June 2-6, 2003. ACM, 2003, pp. 368–371.

[CKY12] Pascal Cuoq, Florent Kirchner, and Boris Yakobowski. “Benchmarking
Static Analyzers”. In: Proceedings of the 1st International Workshop
on Comparative Empirical Evaluation of Reasoning Systems, Manch-
ester, United Kingdom, June 30, 2012. Ed. by Vladimir Klebanov,
Bernhard Beckert, Armin Biere, and Geoff Sutcliffe. Vol. 873. CEUR
Workshop Proceedings. CEUR-WS.org, 2012, pp. 32–35.

[Cla08] Edmund M. Clarke. “The Birth of Model Checking”. In: 25 Years of
Model Checking - History, Achievements, Perspectives. Ed. by Orna
Grumberg and Helmut Veith. Vol. 5000. Lecture Notes in Computer
Science. Springer, 2008, pp. 1–26.

[Coh+09a] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan To-
bies. “VCC: A Practical System for Verifying Concurrent C”. In: The-
orem Proving in Higher Order Logics, 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings.
Ed. by Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makar-
ius Wenzel. Vol. 5674. Lecture Notes in Computer Science. Springer,
2009, pp. 23–42.

[Coh+09b] Ernie Cohen, Michal Moskal, Stephan Tobies, and Wolfram Schulte. “A
Precise Yet Efficient Memory Model For C”. In: Electr. Notes Theor.
Comput. Sci. 254 (2009), pp. 85–103.

[DBZ13] Ewen Denney, Tevfik Bultan, and Andreas Zeller, eds. 2013 28th
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
IEEE, 2013.

[DKR11] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. “Auto-
matic analysis of DMA races using model checking and k-induction”.
In: Formal Methods in System Design 39.1 (2011), pp. 83–113.

[Don+11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp
Rümmer. “Software Verification Using k-Induction”. In: Static Analysis
- 18th International Symposium, SAS 2011, Venice, Italy, September
14-16, 2011. Proceedings. Ed. by Eran Yahav. Vol. 6887. Lecture
Notes in Computer Science. Springer, 2011, pp. 351–368.

BIBLIOGRAPHY 181

[Dun13] Michael Dunn. Toyota’s Killer Firmware: Bad Design and Its Con-
sequences. Oct. 2013. url: http : / / www . edn . com / design /
automotive / 4423428 / Toyota - s - killer - firmware -- Bad -
design-and-its-consequences.

[ES03] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In:
Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers. Ed. by Enrico Giunchiglia and Armando Tac-
chella. Vol. 2919. Lecture Notes in Computer Science. Springer, 2003,
pp. 502–518.

[ESA15] European Space Agency. Ariane 5. Sept. 2015. url: http : / /
www.esa.int/Our_Activities/Launchers/Launch_vehicles/
Ariane_5.

[FIP13] Bernd Fischer, Omar Inverso, and Gennaro Parlato. “CSeq: A concur-
rency pre-processor for sequential C verification tools”. In: 2013 28th
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
Ed. by Ewen Denney, Tevfik Bultan, and Andreas Zeller. IEEE, 2013,
pp. 710–713.

[Fix08] Limor Fix. “Fifteen Years of Formal Property Verification in Intel”.
In: 25 Years of Model Checking - History, Achievements, Perspectives.
Ed. by Orna Grumberg and Helmut Veith. Vol. 5000. Lecture Notes
in Computer Science. Springer, 2008, pp. 139–144.

[Flo67] Robert W. Floyd. “Assigning Meanings to Programs”. In: Proceedings
of Symposia in Applied Mathematics Vol. 19. 1967, pp. 19–32.

[FMS11] Stephan Falke, Florian Merz, and Carsten Sinz. “A Theory of C-Style
Memory Allocation”. In: 9th International Workshop on Satisfiability
Modulo Theories (SMT 2011), 14-15 July 2011, Snowbird, UT, USA.
2011, pp. 71–80.

[FMS13a] Stephan Falke, Florian Merz, and Carsten Sinz. “Extending the The-
ory of Arrays: memset, memcpy, and Beyond”. In: Verified Software:
Theories, Tools, Experiments - 5th International Conference, VSTTE
2013, Menlo Park, CA, USA, May 17-19, 2013, Revised Selected Pa-
pers. Ed. by Ernie Cohen and Andrey Rybalchenko. Vol. 8164. Lecture
Notes in Computer Science. Springer, 2013, pp. 108–128.

[FMS13b] Stephan Falke, Florian Merz, and Carsten Sinz. “LLBMC: Improved
Bounded Model Checking of C Programs Using LLVM - (Competition
Contribution)”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-
ceedings. Ed. by Nir Piterman and Scott A. Smolka. Vol. 7795. Lecture
Notes in Computer Science. Springer, 2013, pp. 623–626.

http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5
http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5
http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5

182 BIBLIOGRAPHY

[FMS13c] Stephan Falke, Florian Merz, and Carsten Sinz. “The bounded model
checker LLBMC”. In: 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2013, Silicon Valley, CA,
USA, November 11-15, 2013. Ed. by Ewen Denney, Tevfik Bultan,
and Andreas Zeller. IEEE, 2013, pp. 706–709.

[FR14] Federal Register. Airworthiness Directives; The Boeing Company
Airplanes. Oct. 2014. url: https : / / www . federalregister .
gov / articles / 2015 / 05 / 01 / 2015 - 10066 / airworthiness -
directives-the-boeing-company-airplanes.

[FSM12] Stephan Falke, Carsten Sinz, and Florian Merz. “A Theory of Arrays
with set and copy Operations”. In: 10th International Workshop on
Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30
- July 1, 2012. Ed. by Pascal Fontaine and Amit Goel. Vol. 20. EPiC
Series. EasyChair, 2012, pp. 98–108.

[Gal15] Sean Gallagher. Airbus Confirms Software Configuration Error Caused
Plane Crash. June 2015. url: http : / / arstechnica . com /
information - technology / 2015 / 06 / airbus - confirms -
software-configuration-error-caused-plane-crash.

[Gan14] Jack Ganssle. Toyota’s Expensive Software. Mar. 2014. url: http:
/ / www . embedded . com / electronics - blogs / break - points /
4429601/Toyota-s-Expensive-Software.

[Gat11] Dominic Gates. Boeing Celebrates 787 Delivery as Program’s Costs
Top $32 Billion. Sept. 2011. url: http://www.seattletimes.com/
business/boeing-celebbrates-787-delivery-as-programs-
costs-top-32-billion.

[GB14] Arie Gurfinkel and Anton Belov. “FrankenBit: Bit-Precise Verifica-
tion with Many Bits - (Competition Contribution)”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 20th In-
ternational Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings. Ed. by Erika Ábrahám
and Klaus Havelund. Vol. 8413. Lecture Notes in Computer Science.
Springer, 2014, pp. 408–411.

[GG06] Malay K. Ganai and Aarti Gupta. “Accelerating high-level bounded
model checking”. In: 2006 International Conference on Computer-
Aided Design, ICCAD 2006, San Jose, CA, USA, November 5-9, 2006.
Ed. by Soha Hassoun. ACM, 2006, pp. 794–801.

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, eds. Computer Aided Ver-
ification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Vol. 6806. Lecture Notes in Com-
puter Science. Springer, 2011.

[Gro+97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. “Call
Graph Construction in Object-Oriented Languages”. In: Proceedings
of the 1997 ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications (OOPSLA ’97), Atlanta,
Georgia, October 5-9, 1997. Ed. by Mary E. S. Loomis, Toby Bloom,
and A. Michael Berman. ACM, 1997, pp. 108–124.

https://www.federalregister.gov/articles/2015/05/01/2015-10066/airworthiness-directives-the-boeing-company-airplanes
https://www.federalregister.gov/articles/2015/05/01/2015-10066/airworthiness-directives-the-boeing-company-airplanes
https://www.federalregister.gov/articles/2015/05/01/2015-10066/airworthiness-directives-the-boeing-company-airplanes
http://arstechnica.com/information-technology/2015/06/airbus-confirms-software-configuration-error-caused-plane-crash
http://arstechnica.com/information-technology/2015/06/airbus-confirms-software-configuration-error-caused-plane-crash
http://arstechnica.com/information-technology/2015/06/airbus-confirms-software-configuration-error-caused-plane-crash
http://www.embedded.com/electronics-blogs/break-points/4429601/Toyota-s-Expensive-Software
http://www.embedded.com/electronics-blogs/break-points/4429601/Toyota-s-Expensive-Software
http://www.embedded.com/electronics-blogs/break-points/4429601/Toyota-s-Expensive-Software
http://www.seattletimes.com/business/boeing-celebbrates-787-delivery-as-programs-costs-top-32-billion
http://www.seattletimes.com/business/boeing-celebbrates-787-delivery-as-programs-costs-top-32-billion
http://www.seattletimes.com/business/boeing-celebbrates-787-delivery-as-programs-costs-top-32-billion

BIBLIOGRAPHY 183

[GV08] Orna Grumberg and Helmut Veith, eds. 25 Years of Model Checking
- History, Achievements, Perspectives. Vol. 5000. Lecture Notes in
Computer Science. Springer, 2008.

[HN09] Yuusuke Hashimoto and Shin Nakajima. “Modular Checking of C Pro-
grams Using SAT-Based Bounded Model Checker”. In: 16th Asia-
Pacific Software Engineering Conference, APSEC 2009, 1-3 December
2009, Batu Ferringhi, Penang, Malaysia. Ed. by Shahida Sulaiman and
Noor Maizura Mohamad Noor. IEEE Computer Society, 2009, pp. 515–
522.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (1969), pp. 576–580.

[Hol00] Gerard J. Holzmann. “Logic Verification of ANSI-C Code with SPIN”.
In: SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000,
Proceedings. Ed. by Klaus Havelund, John Penix, and Willem Visser.
Vol. 1885. Lecture Notes in Computer Science. Springer, 2000, pp. 131–
147.

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans.
Software Eng. 23.5 (1997), pp. 279–295.

[Inv+14] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La
Torre, and Gennaro Parlato. “Lazy-CSeq: A Lazy Sequentialization Tool
for C - (Competition Contribution)”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund.
Vol. 8413. Lecture Notes in Computer Science. Springer, 2014, pp. 398–
401.

[ISO26262] International Standards Organisation. ISO 26262-1 - Road Vehicles –
Functional Safety. Tech. rep. International Organization for Standard-
ization, 2009.

[ISOC99] International Standards Organisation. ISO C Standard 1999. Tech. rep.
International Organization for Standardization, 1999.

[JMP12] Rajeev Joshi, Peter Müller, and Andreas Podelski, eds. Verified Soft-
ware: Theories, Tools, Experiments - 4th International Conference,
VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceed-
ings. Vol. 7152. Lecture Notes in Computer Science. Springer, 2012.

[Kle+12] Vladimir Klebanov, Bernhard Beckert, Armin Biere, and Geoff Sutcliffe,
eds. Proceedings of the 1st International Workshop on Comparative
Empirical Evaluation of Reasoning Systems, Manchester, United King-
dom, June 30, 2012. Vol. 873. CEUR Workshop Proceedings. CEUR-
WS.org, 2012.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume I:
Fundamental Algorithms, 2nd Edition. Addison-Wesley, 1973.

184 BIBLIOGRAPHY

[KRW09] Daniel Kröning, Philipp Rümmer, and Georg Weissenbacher. “A Pro-
posal for a Theory of Finite Sets, Lists, and Maps for the SMT-Lib
Standard”. In: 7th International Workshop on Satisfiability Modulo
Theories (SMT 2009), 2-3 August 2009, Montreal, Canada. 2009.

[KW11] Robbert Krebbers and Freek Wiedijk. “A Formalization of the C99
Standard in HOL, Isabelle and Coq”. In: Intelligent Computer Math-
ematics - 18th Symposium, Calculemus 2011, and 10th International
Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceed-
ings. Ed. by James H. Davenport, William M. Farmer, Josef Urban, and
Florian Rabe. Vol. 6824. Lecture Notes in Computer Science. Springer,
2011, pp. 301–303.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: 2nd IEEE /
ACM International Symposium on Code Generation and Optimization
(CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer
Society, 2004, pp. 75–88.

[Lan97] Gérard Le Lann. “An Analysis of the Ariane 5 Flight 501 Failure – A
System Engineering Perspective”. In: 1997 Workshop on Engineering
of Computer-Based Systems (ECBS ’97), March 24-28, 1997, Mon-
terey, CA, USA. IEEE Computer Society, 1997, pp. 339–246.

[LGR11] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. “KLOVER: A
Symbolic Execution and Automatic Test Generation Tool for C++ Pro-
grams”. In: Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture
Notes in Computer Science. Springer, 2011, pp. 609–615.

[LQ15] Akash Lal and Shaz Qadeer. “DAG inlining: a decision procedure for
reachability-modulo-theories in hierarchical programs”. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15-17, 2015.
Ed. by David Grove and Steve Blackburn. ACM, 2015, pp. 280–290.

[LT93] Nancy G. Leveson and Clark Savage Turner. “Investigation of the
Therac-25 Accidents”. In: IEEE Computer 26.7 (1993), pp. 18–41.

[Mau04] Laurent Mauborgne. “Astrée: verification of absence of run-time er-
ror”. In: Building the Information Society, IFIP 18th World Computer
Congress, Topical Sessions, 22-27 August 2004, Toulouse, France. Ed.
by René Jacquart. Vol. 156. IFIP. Kluwer/Springer, 2004, pp. 385–392.

[MC85] Bhubaneswaru Mishra and Edmund M. Clarke. “Hierarchical Verifi-
cation of Asynchronous Circuits Using Temporal Logic”. In: Theor.
Comput. Sci. 38 (1985), pp. 269–291.

[McC04] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction. 2nd edition. Microsoft Press, 2004.

[McC62] John McCarthy. “Towards a Mathematical Science of Computation”.
In: IFIP Congress. 1962, pp. 21–28.

BIBLIOGRAPHY 185

[McM10] Kenneth L. McMillan. “Lazy Annotation for Program Testing and Veri-
fication”. In: Computer Aided Verification, 22nd International Confer-
ence, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. Ed.
by Tayssir Touili, Byron Cook, and Paul Jackson. Vol. 6174. Lecture
Notes in Computer Science. Springer, 2010, pp. 104–118.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[Mer+10] Florian Merz, Carsten Sinz, Hendrik Post, Thomas Gorges, and Thomas

Kropf. “Abstract Testing: Connecting Source Code Verification with
Requirements”. In: Quality of Information and Communications Tech-
nology, 7th International Conference on the Quality of Information
and Communications Technology, QUATIC 2010, Porto, Portugal, 29
September - 2 October, 2010, Proceedings. Ed. by Fernando Brito e
Abreu, João Pascoal Faria, and Ricardo Jorge Machado. IEEE Com-
puter Society, 2010, pp. 89–96.

[Mer+15] Florian Merz, Carsten Sinz, Hendrik Post, Thomas Gorges, and Thomas
Kropf. “Bridging the gap between test cases and requirements by
abstract testing”. In: ISSE 11.4 (2015), pp. 233–242.

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. “LLBMC: Bounded
Model Checking of C and C++ Programs Using a Compiler IR”. In:
Verified Software: Theories, Tools, Experiments - 4th International
Conference, VSTTE 2012, Philadelphia, PA, USA, January 28-29,
2012. Proceedings. Ed. by Rajeev Joshi, Peter Müller, and Andreas
Podelski. Vol. 7152. Lecture Notes in Computer Science. Springer,
2012, pp. 146–161.

[MIS13] Motor Industry Software Reliability Association and Motor Industry
Software Reliability Association Staff. MISRA C:2012: Guidelines for
the Use of the C Language in Critical Systems. Tech. rep. Motor
Industry Research Association, 2013.

[Mor+11] Jeremy Morse, Lucas C. Cordeiro, Denis Nicole, and Bernd Fischer.
“Context-Bounded Model Checking of LTL Properties for ANSI-C Soft-
ware”. In: Software Engineering and Formal Methods - 9th Inter-
national Conference, SEFM 2011, Montevideo, Uruguay, November
14-18, 2011. Proceedings. Ed. by Gilles Barthe, Alberto Pardo, and
Gerardo Schneider. Vol. 7041. Lecture Notes in Computer Science.
Springer, 2011, pp. 302–317.

[MSF12] Florian Merz, Carsten Sinz, and Stephan Falke. “Challenges in Com-
paring Software Verification Tools for C”. In: Proceedings of the 1st
International Workshop on Comparative Empirical Evaluation of Rea-
soning Systems, Manchester, United Kingdom, June 30, 2012. Ed. by
Vladimir Klebanov, Bernhard Beckert, Armin Biere, and Geoff Sutcliffe.
Vol. 873. CEUR Workshop Proceedings. CEUR-WS.org, 2012, pp. 60–
65.

[Nau66] Peter Naur. “Proof of Algorithms by General Snapshots”. English. In:
BIT Numerical Mathematics 6.4 (1966), pp. 310–316.

[Par97] Berhooz Parhami. “Defect, Fault, Error,..., or Failure?” In: IEEE Trans-
actions on Reliability 46.4 (Dec. 1997), pp. 450–451.

186 BIBLIOGRAPHY

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977. IEEE Computer Society,
1977, pp. 46–57.

[Pos+08] Hendrik Post, Carsten Sinz, Alexander Kaiser, and Thomas Gorges.
“Reducing False Positives by Combining Abstract Interpretation and
Bounded Model Checking”. In: 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2008), 15-19 Septem-
ber 2008, L’Aquila, Italy. IEEE Computer Society, 2008, pp. 188–197.

[Pos+09] Hendrik Post, Carsten Sinz, Florian Merz, Thomas Gorges, and Thomas
Kropf. “Linking Functional Requirements and Software Verification”.
In: RE 2009, 17th IEEE International Requirements Engineering Con-
ference, Atlanta, Georgia, USA, August 31 - September 4, 2009. IEEE
Computer Society, 2009, pp. 295–302.

[Pos09] Hendrik Post. “Verifikation von systemnaher Software mittels Bounded
Model Checking”. PhD thesis. Karlsruhe Institute of Technology, 2009.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and Verifica-
tion of Concurrent Systems in CESAR”. In: International Symposium
on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Pro-
ceedings. Ed. by Mariangiola Dezani-Ciancaglini and Ugo Montanari.
Vol. 137. Lecture Notes in Computer Science. Springer, 1982, pp. 337–
351.

[Ram+13] Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio Marques, Lucas
C. Cordeiro, and Bernd Fischer. “SMT-Based Bounded Model Check-
ing of C++ Programs”. In: 20th IEEE International Conference and
Workshops on Engineering of Computer Based Systems, ECBS 2013,
Scottsdale, AZ, USA, April 22-24, 2013. Ed. by Jerzy W. Rozenblit.
IEEE Computer Society, 2013, pp. 147–156.

[RE11] David A. Ramos and Dawson R. Engler. “Practical, Low-Effort Equiv-
alence Verification of Real Code”. In: Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz
Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer, 2011,
pp. 669–685.

[RF12] Heinz Riener and Görschwin Fey. “FAuST: A Framework for Formal
Verification, Automated Debugging, and Software Test Generation”.
In: Model Checking Software - 19th International Workshop, SPIN
2012, Oxford, UK, July 23-24, 2012. Proceedings. Ed. by Alastair F.
Donaldson and David Parker. Vol. 7385. Lecture Notes in Computer
Science. Springer, 2012, pp. 234–240.

[RG05] Ishai Rabinovitz and Orna Grumberg. “Bounded Model Checking of
Concurrent Programs”. In: Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005, Proceedings. Ed. by Kousha Etessami and Sriram K. Rajamani.
Vol. 3576. Lecture Notes in Computer Science. Springer, 2005, pp. 82–
97.

BIBLIOGRAPHY 187

[Roc+15] Herbert Rocha, Hussama Ismail, Lucas C. Cordeiro, and Raimundo S.
Barreto. “Model Checking C Programs with Loops via k-Induction and
Invariants”. In: CoRR abs/1502.02327 (2015).

[RT03] Silvio Ranise and Cesare Tinelli. “The SMT-LIB Format: An Initial
Proposal”. In: Pragmatics of Decision Procedures in Automated Rea-
soning , PDPAR 2003, Miami, USA, July 29 2003. 2003.

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. “Global
Value Numbers and Redundant Computations”. In: Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, San Diego, California, USA, January 10-13, 1988.
Ed. by Jeanne Ferrante and P. Mager. ACM Press, 1988, pp. 12–27.

[Sch+00] Michael J. Schultey, Mustafa Goky, Pablo I. Balzolay, and Robert W.
Brocatoz. “Combined Unsigned and Two’s Complement Saturating
Multipliers”. In: (2000), pp. 185–196.

[SFM10] Carsten Sinz, Stephan Falke, and Florian Merz. “A Precise Memory
Model for Low-Level Bounded Model Checking”. In: 5th International
Workshop on Systems Software Verification, SSV’10, Vancouver, BC,
Canada, October 6-7, 2010. Ed. by Ralf Huuck, Gerwin Klein, and
Bastian Schlich. USENIX Association, 2010.

[Shi90] Olin Shivers. “Data-flow Analysis and Type Recovery in Scheme”. In:
(1990).

[Sin08] Nishant Sinha. “Symbolic Program Analysis Using Term Rewriting
and Generalization”. In: Formal Methods in Computer-Aided Design,
FMCAD 2008, Portland, Oregon, USA, 17-20 November 2008. Ed. by
Alessandro Cimatti and Robert B. Jones. IEEE, 2008, pp. 1–9.

[SRS13] Safety Research and Strategy Inc. Toyota Unintended Acceleration
and the Big Bowl of “Spaghetti” Code. Nov. 2013. url: http://
www.safetyresearch.net/blog/articles/toyota-unintended-
acceleration-and-big-bowl-%C3%A2%C2%80%C2%9Cspaghetti%
C3%A2%C2%80%C2%9D-code.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. “Checking Safety
Properties Using Induction and a SAT-Solver”. In: Formal Methods
in Computer-Aided Design, Third International Conference, FMCAD
2000, Austin, Texas, USA, November 1-3, 2000, Proceedings. Ed. by
Warren A. Hunt Jr. and Steven D. Johnson. Vol. 1954. Lecture Notes
in Computer Science. Springer, 2000, pp. 108–125.

[Tur49] Alan M. Turing. “Checking a Large Routine”. In: Report on a Con-
ference on High Speed Automatic Computation, June 1949. Ed. by
Anonymous. Inaugural conference of the EDSAC computer at the
Mathematical Laboratory, Cambridge, UK. Cambridge, UK: University
Mathematical Laboratory, Cambridge University, 1949, pp. 67–69.

[VK12] Milena Vujosevic-Janicic and Viktor Kuncak. “Development and Eval-
uation of LAV: An SMT-Based Error Finding Platform - System De-
scription”. In: Verified Software: Theories, Tools, Experiments - 4th
International Conference, VSTTE 2012, Philadelphia, PA, USA, Jan-
uary 28-29, 2012. Proceedings. Ed. by Rajeev Joshi, Peter Müller,

http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%C3%A2%C2%80%C2%9Cspaghetti%C3%A2%C2%80%C2%9D-code
http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%C3%A2%C2%80%C2%9Cspaghetti%C3%A2%C2%80%C2%9D-code
http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%C3%A2%C2%80%C2%9Cspaghetti%C3%A2%C2%80%C2%9D-code
http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%C3%A2%C2%80%C2%9Cspaghetti%C3%A2%C2%80%C2%9D-code

188 BIBLIOGRAPHY

and Andreas Podelski. Vol. 7152. Lecture Notes in Computer Science.
Springer, 2012, pp. 98–113.

[War02] Henry S. Warren. Hacker’s Delight. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[WF10] Frank Werner and David Faragó. “Correctness of Sensor Network Ap-
plications by Software Bounded Model Checking”. In: Formal Methods
for Industrial Critical Systems - 15th International Workshop, FMICS
2010, Antwerp, Belgium, September 20-21, 2010. Proceedings. Ed. by
Stefan Kowalewski and Marco Roveri. Vol. 6371. Lecture Notes in
Computer Science. Springer, 2010, pp. 115–131.

List of Figures

2.1 Example of a directed graph . 20
2.2 Example of a directed, rooted tree 21

3.1 LLBMC’s architectural layers . 31
3.2 LLBMC’s language layers . 32
3.3 Common compiler architecture . 35
3.4 Exemplary add instruction and its components 39
3.5 clang’s architecture . 53
3.6 AST for the recurring example . 55
3.7 clang’s code generator . 56
3.8 Callbacks for clang’s code generator 58
3.9 Instrumentation of clang’s code generator 59
3.10 Instrumented code generation of x += y; 60
3.11 Graphical illustration of a basic block b1 65
3.12 A context-insensitive call graph for listing 3.12 68
3.13 A context-sensitive call graph for listing 3.12 68
3.14 A call-site-sensitive call graph for listing 3.12 70

4.1 Illustration of execution conditions and their relation to LLVM-IR . . 97
4.2 Illustration of the memory encoding rule for memory states before

execution of basic blocks . 101

189

190 LIST OF FIGURES

List of Tables

3.1 LLBMC’s internal components . 31
3.2 LLVM-IR types . 37
3.3 Arithmetic instructions . 41
3.4 Bitwise instructions . 41
3.5 Conversion instructions . 42
3.6 Memory related instructions . 42
3.7 Miscellaneous instructions . 44
3.8 Variations of the icmp instruction 45
3.9 Terminator instructions . 46
3.10 ILR sort patterns and examples . 72
3.11 Sort placeholders used in the following and their possible instantiations 73
3.12 Variable naming conventions . 73
3.13 Boolean ILR functions . 74
3.14 Bitwise ILR functions . 75
3.15 Integer and pointer constants . 76
3.16 Arithmetic ILR functions . 77
3.17 Shift ILR functions . 77
3.18 Checking ILR functions . 78
3.19 Conversion functions . 79
3.20 Comparison functions . 80
3.21 Miscellaneous functions . 81
3.22 Memory accessing ILR functions 82
3.23 Pointer arithmetic ILR functions 84

4.1 Encoding related sorts . 88
4.2 Encoding related function families 88
4.3 Functions encoding the evaluation of values 89
4.4 Functions encoding execution conditions 89
4.5 Functions encoding memory state 90
4.6 Functions encoding stack state . 90
4.7 Function encoding the safety of instructions 91
4.8 Variable naming conventions . 92

5.1 Heap sort . 117
5.2 Heap sort placeholders used in the following and their possible in-

stantiations . 117
5.3 Heap variable naming conventions 118
5.4 Functions encoding heap state . 119

191

192 LIST OF TABLES

5.5 Auxiliary functions of the decision procedure for dynamic memory
allocation . 122

5.6 Functions encoding heap state . 129

List of Listings

3.1 Core model checking algorithm . 33
3.2 The Fibonacci function in LLVM-IR 36
3.3 The Fibonacci function in C . 36
3.4 Transformation to static single assignment form 39
3.5 Example C input for getelementptr 43
3.6 Example IR for getelementptr 43
3.7 C and IR code for @add . 53
3.8 Instrumentation of @add . 54
3.9 Example for instruction simplification optimization 62
3.10 Example for mem2reg optimization 62
3.11 Example for lowering of getelementptr 63
3.12 Call graph example code . 67
3.13 Example showing the importance of call sites 69

4.1 Example code for instruction pattern instantiation 92

5.1 Example for use of malloc in C 114

6.1 Example for constant propagation before unrolling 135
6.2 Example for constant propagation after unrolling 135
6.3 Algorithm for formula simplification 137
6.4 Adapted software bounded model checking algorithm for multiple

counterexamples . 141
6.5 Example for shading of checks . 142
6.6 C source of full example . 146
6.7 Full example optimized instrumented LLVM-IR code 147
6.8 SMT-LIB Formula for the detailed example 149
6.9 Counterexample for the detailed example 149

193

194 LIST OF LISTINGS

Symbols

Encoding

⇀ after. 86

A function argument. 86

B Basic block. 86

↼ before. 86

C execution context. 86

ε evaluation of values. 86

F function. 86

G global variable. 86

η execution condition. 86

I instructions. 86

µ memory state. 86

N integer constant. 86

P program. 86

σ safety. 86

τ stack state. 86

First-Order Logic

arity function’s or predicate’s arity. 12

∧ logical conjunction. 11

∨ logical disjunction. 11

↔ logical equality. 11

⊥ logical false. 11

→ logical implication. 11

J·KD interpretation. 12

¬ logical negation. 11

195

196 Symbols

Σ signature. 11

T theory. 12

> logical true. 11

LLVM-IR

allocwidtha the width required to allocate an object on an architecture. 82

|a| a sort’s bitwidth on an architecture. 79

define function definition. 33

exact exactness flag. 39

exit exit block of a function. 45

firstB first instruction in a basic block. 45

{ function begin indicator. 33

} function end indicator. 33

@ sigil for globally defined values. 36

% sigil for locally defined values. 36

nsw no-signed-wrap flag. 39

nuw no-unsigned-wrap flag. 39

offseta the offset of an element in a structuren on an architecture. 82

pointerwidtha the bitwidth of pointers on an architecture. 79

succB successor relation of instructions in a basic block. 45

termB basic block terminator. 43

undef undefined value. 38

void void type. 35

Instruction Patterns

. . . |. . . alternatives. 37

· ∼ J·K matching operator. 38

{. . . }+ one or more repetitions. 37

[. . .] optional element. 37

<. . . > value or type placeholder. 37

{. . . }* zero or more repetitions. 37

Term Rewriting

−→ term rewriting. 16

Symbols 197

SMT-LIB

ite if-then-else. 13

select read from array. 15

store write to array. 15

Temporal Logic

F finally. 15

G globally. 15

R release. 15

U until. 15

X next. 15

198 Symbols

Index

A
address space, 113
architectural layer, 30
Ariane 5, 2
axiom schema, 72

B
back edge, 65
back edge set, 65
basic block, 45

entry, 47
exit, 47

behavior
implementation-defined, 51
undefined, 40, 51
unspecified, 50

binary decision diagram, 23
binary encoding, 75
bit extraction, 75
bitwidth, 75, 82

allocation, 84
pointer, 82

BLAST, 144
Boeing 787 Dreamliner, 3

C
call graph

bounded, 69
context-sensitive, 67, 68
dynamic, 66
fully context-sensitive, 68
over-approximating, 66
precise, 66
static, 66
under-approximating, 66

call site, 69
clang, 52
compiler optimization pass, 61

component, 30
compound assignment, 57
context, 68
context-sensitivity, 67
control flow edge, 64
control flow graph, 64

bounded, 65
rooted, 64

counterexample, 139
CPAchecker, 144
CSeq, 144
cycle, 20

D
data layout, 48
decision procedure, 14
domain, 14

E
embedded system, 4
error

compile time, 4
functional, 5
runtime, 4

ESBMC, 144

F
falsification, 5
Floyd-Hoare logic, 22
formula, 14
Frankenbit, 144
FShell, 144
function, 47

intrinsic, 44

G
global variable, 38
graph, 20

199

200 INDEX

acyclic, 21
connected, 21
directed, 20
undirected, 20

I
ILR

reduced, 138
incremental solving, 140
innermost-first, 138
instruction, 38

arithmetic, 40
bitwise, 41
conversion, 41
failing, 108
memory-related, 42
shift, 41
unsafe, 108

instruction flag, 38
instruction pattern, 39
instrumentation, 54
integer, 74
integer constant, 38
Intermediate Logic Representation,

70
International Software Verification

Competition, 143

K
Kripke structure, 22

L
label, 45
language layer, 32
lifetime, 116
liveness property, 18
LLBMC, 29
LLVM, 30, 34
LLVM Intermediate Representation,

34
logic

first-order, 13
temporal, 17

lvalue, 116

M
memory

dynamically allocated, 113
statically allocated, 113

memory range, 118

model, 14
model checking, 22

bounded, 24
explicit state, 22
software bounded, 25
symbolic, 23

module, 48

O
object, 115
offset, 84
opcode, 38
operand, 38

P
parent context, 69
pointer, 75
pointer constant, 38
precision, 66
Predator, 144
program, 48

Q
QARMC-HSF, 144

R
remainder, 77
result, 38
root, 21
rvalue, 116

S
safety critical software, 4
safety property, 18
SATabs, 144
satisfiability module theories, 14
satisfiable, 14
sentence, 14
signature, 14
SMT-LIB, 15
software defect, 4
software error, 4
software failure, 4
software fault, 4
sort

aggregate, 72
native, 73
simple value, 72

sort placeholder, 72
state space explosion, 23
static single assignment form, 38

INDEX 201

storage duration, 115
structure, 14
structure type

identified, 37
Symbiotic, 144

T
term, 14
term rewriting, 18
term rewriting rule, 18

conditional, 19
term rewriting rule schema, 19
term rewriting system, 19
Term sharing, 85
terminator, 45
theory, 14
Therac-25, 1
Threader, 144
Toyota Camry, 2
trace, 139
tree

directed rooted, 21

undirected, 21
truncation, 76
two’s complement, 76
type, 37

U
UFO, 144
Ultimate, 144
unsatisfiable, 14

V
value, 35

poison, 40
undefined, 40

value class, 35
value object, 35
verification, 5
virtual register, 38

W
walk, 20
Wolverine, 144

202 INDEX

Publications1

2015
[1] Florian Merz, Carsten Sinz, Hendrik Post, Thomas Gorges, Thomas Kropf:

Bridging the Gap between Test Cases and Requirements by Abstract
Testing. In Innovations in System and Software Engineering, 11(4).
Springer, Heidelberg, 2015.
abstract. In this article we propose a technique, called Abstract Testing,
which replaces traditional test cases by abstract test cases. By doing
so, fewer test cases are needed, and they are linked more closely to the
requirements. Abstract tests can be considered as verification scenarios on
the source code level which are derived from the requirements. Checking
verification scenarios against the source code is done automatically using a
software model checker. We also suggest a migration path from traditional
tests to abstract test cases, which provides a smooth transition towards
this new technique. Finally we demonstrate feasibility of Abstract Testing
by a case study from the automotive systems domain.
2014

[2] David Faragó, Florian Merz, Carsten Sinz: Automatic Heavy-weight Static
Analysis Tools for Finding Bugs in Safety-critical Embedded C/C++
Code. In Softwaretechnik-Trends, 34(3). Springer, Heidelberg, 2014.
abstract. This paper motivates the use of automatic heavy-weight static
analysis tools to find bugs in C (and C++) code for safety-critical em-
bedded systems. By heavy-weight we mean tools that employ powerful
analysis to cover all cases. The paper introduces two automatic and rela-
tively heavy-weight tools that are currently employed in the automotive
industry, and depicts their underlying techniques, advantages, and disad-
vantages. Since their results are often imprecise (false positives or false
negatives), we advocate the use of alternative techniques such as software
bounded model checking (SBMC), which can achieve bit-precise results.
Finally, the tool LLBMC is described as an example of a tool implementing
SBMC, which makes use of satisfiability modulo theories (SMT) decision
procedures as well as the LLVM compiler framework.

1All publications have been peer reviewed.

203

204 PUBLICATIONS

2013
[3] Stephan Falke, Florian Merz, Carsten Sinz: The Bounded Model Checker

LLBMC. In Proceedings of the 28th International Conference on Auto-
mated Software Engineering (ASE ’13), pages 706–709. Silicon Valley,
USA, 2013.
abstract. This paper presents LLBMC, a tool for finding bugs and
runtime errors in sequential C/C++ programs. LLBMC employs bounded
model checking using an SMT-solver for the theory of bitvectors and
arrays and thus achieves precision down to the level of single bits. The
two main features of LLBMC that distinguish it from other bounded model
checking tools for C/C++ are (i) its bit-precise memory model, which
makes it possible to support arbitrary type conversions via stores and
loads; and (ii) that it operates on a compiler intermediate representation
and not directly on the source code.

[4] Stephan Falke, Florian Merz, Carsten Sinz: Extending the Theory of Ar-
rays: memset, memcpy, and Beyond. In Proceedings of the 5th Interna-
tional Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE ’13), pages 108–128. Atherton, USA, 2013.
abstract. The theory of arrays is widely used in program analysis, (de-
ductive) software verification, bounded model checking, and symbolic
execution to model arrays in programs or the computer’s main mem-
ory. Nonetheless, the theory as introduced by McCarthy is not expressive
enough in many cases since it only supports array updates at single lo-
cations. In programs, memory is often modified at multiple locations at
once using functions such as memset or memcpy. Furthermore, initial-
ization loops that store loop-counter-dependent values in an array are
commonly used. This paper presents an extension of the theory of arrays
with λ-terms which makes it possible to reason about such cases. We also
discuss how loops can be automatically summarized using such λ-terms.

[5] Stephan Falke, Florian Merz, Carsten Sinz: LLBMC: Improved Bounded
Model Checking of C Programs Using LLVM (Competition Contribution).
In Proceedings of the 19th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS ’13), pages
623–626. Rome, Italy, 2013.
abstract. LLBMC is a tool for detecting bugs and runtime errors in
C and C++ programs. It is based on bounded model checking using an
SMT solver and thus achieves bit-accurate precision. A distinguishing
feature of LLBMC in contrast to other bounded model checking tools for
C programs is that it operates on a compiler intermediate representation
and not directly on the source code.

205

2012
[6] Stephan Falke, Carsten Sinz, and Florian Merz: A Theory of Arrays with

Set and Copy Operations (Extended Abstract). In Proceedings of the
10th International Workshop on Satisfiability Modulo Theories (SMT ’12),
pages 97–106. Manchester, UK, 2012.
abstract. The theory of arrays is widely used in order to model main
memory in program analysis, software verification, bounded model check-
ing, symbolic execution, etc. Nonetheless, the basic theory as introduced
by McCarthy is not expressive enough for important practical cases, since
it only supports array updates at single locations. In programs, memory
is often modified using functions such as memset or memcpy/memmove,
which modify a user-specified range of locations whose size might not
be known statically. In this paper we present an extension of the theory
of arrays with set and copy operations which make it possible to reason
about such functions. We also discuss further applications of the theory.

[7] Florian Merz, Carsten Sinz, Stephan Falke: Challenges in Comparing Soft-
ware Verification Tools for C. In Proceedings of the 1st International
Workshop on Comparative Empirical Evaluation of Reasoning Systems
(COMPARE ’12), pages 60–65. Manchester, UK, 2012.
abstract. Comparing different software verification or bug-finding tools
for C programs can be a difficult task. Problems arise from different
kinds of properties that different tools can check, restrictions on the
input programs accepted, lack of a standardized specification language
for program properties, or different interpretations of the programming
language semantics. In this discussion paper we describe problem areas
and discuss possible solutions. The paper also reflects some lessons we
have learned from participating with our tool LLBMC in the TACAS 2012
Competition on Software Verification (SV-COMP 2012).

[8] Carsten Sinz, Florian Merz, and Stephan Falke: LLBMC: A Bounded
Model Checker for LLVM’s Intermediate Representation (Competition
Contribution). In Proceedings of the 18th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’12), pages 542–544. Tallinn, Estonia, 2012.
abstract. We present LLBMC, a bounded model checker for C programs.
LLBMC uses the LLVM compiler framework in order to translate C pro-
grams into LLVM’s intermediate representation (IR). The resulting code
is then converted into a logical representation and simplified using rewrite
rules. The simplified formula is finally passed to an SMT solver. In con-
trast to many other tools, LLBMC uses a flat, bit-precise memory model.
It can thus precisely model, e.g., memory-based re-interpret casts.

206 PUBLICATIONS

[9] Florian Merz, Stephan Falke, and Carsten Sinz: LLBMC: Bounded Model
Checking of C and C++ Programs Using a Compiler IR. In Proceedings
of the 4th International Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE ’12), pages 146–161. Philadelphia, USA, 2012.

abstract. Bounded model checking (BMC) of C and C++ programs is
challenging due to the complex and intricate syntax and semantics of
these programming languages. The BMC tool LLBMC presented in this
paper thus uses the LLVM compiler framework in order to translate C and
C++ programs into LLVM’s intermediate representation. The resulting
code is then converted into a logical representation and simplified using
rewrite rules. The simplified formula is finally passed to an SMT solver.
In contrast to many other tools, LLBMC uses a flat, bit-precise memory
model. It can thus precisely model, e.g., memory-based re-interpret casts
as used in C and static/dynamic casts as used in C++. An empirical
evaluation shows that LLBMC compares favorable to the related BMC
tools CBMC and ESBMC.
2011

[10] Bernhard Beckert, Thorsten Bormer, Florian Merz, and Carsten Sinz:
Integration of Bounded Model Checking and Deductive Verification. In
Proceedings of the 2nd International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS ’11), pages 86–104. Torino, Italy,
2011.
abstract. Modular deductive verification of software systems is a complex
task: the user has to put a lot of effort in writing module specifications
that fit together when verifying the system as a whole. In this paper, we
propose a combination of deductive verification and software bounded
model checking (SBMC), where SBMC is used to support the user in the
specification and verification process, while deductive verification provides
the final correctness proof. SMBC provides early – as well as precise –
feedback to the user. Unlike modular deductive verification, the SBMC
approach is able to check annotations beyond the boundaries of a single
module – even if other relevant modules are not annotated (yet). This
allows to test whether the different module specifications in the system
match the implementation at every step of the specification process.

[11] Stephan Falke, Florian Merz, and Carsten Sinz: A Theory of C-Style
Memory Allocations. In Proceedings of the 9th International Workshop
on Satisfiability Modulo Theories (SMT ’11), pages 98–108. Snowbird,
USA, 2011.
abstract. This paper introduces the theory for reasoning about the
correctness of memory access operations in the context of a C-style
heap memory. The proposed approach makes a clear distinction between
reasoning about the values stored in memory and checking whether access
to a specific memory location is allowed. The theory provides support
for malloc and free and is presented in the form of axioms that can be
converted into conditional rewrite rules. It is also shown how the theory
can be used in a bounded model checker for C programs.

207

2010
[12] Carsten Sinz, Stephan Falke, and Florian Merz: A Precise Memory Model

for Low-Level Bounded Model Checking. In Proceedings of the 5th Interna-
tional Workshop on Systems Software Verification (SSV ’10). Vancouver,
Canada, 2010.
abstract. Formalizing the semantics of programming languages like C
or C++ for bounded model checking can be cumbersome if complete
coverage of all language features is to be achieved. On the other hand,
low-level languages that occur during translation (compilation) have a
much simpler semantics since they are closer to the machine level. It
thus makes sense to use these low-level languages for bounded model
checking. In this paper we present a highly precise memory model suitable
for bounded model checking of such low-level languages. Our method also
takes memory protection (malloc/free) into account.

[13] Florian Merz, Carsten Sinz, Hendrik Post, Thomas Gorges, and Thomas
Kropf: Abstract Testing: Connecting Source Code Verification with Re-
quirements. In Proceedings of the 7th International Conference on the
Quality of Information and Communications Technology (QUATIC ’10),
pages 89–96. Porto, Portugal, 2010.
abstract. Traditionally, test cases are used to check whether a system
conforms to its requirements. However, to achieve good quality and cover-
age, large amounts of test cases are needed, and thus huge efforts have to
be put into test generation and maintenance. We propose a methodology,
called Abstract Testing, in which test cases are replaced by verification
scenarios. Such verification scenarios are more abstract than test cases,
thus fewer of them are needed and they are easier to create and maintain.
Checking verification scenarios against the source code is done automati-
cally using a software model checker. In this paper we describe the general
idea of Abstract Testing, and demonstrate its feasibility by a case study
from the automotive systems domain.

208 PUBLICATIONS

2009
[14] Hendrik Post, Carsten Sinz, Florian Merz, Thomas Gorges, and Thomas

Kropf: Linking Functional Requirements and Software Verification. In
Proceedings of the 17th IEEE International Requirements Engineering
Conference (RE ’09), pages 295–302. Atlanta, USA, 2009.
abstract. Synchronization between component requirements and imple-
mentation centric tests remains a challenge that is usually addressed by
requirements reviews with testers and traceability policies. The claim of
this work is that linking requirements, their scenario-based formalizations,
and software verification provides a promising extension to this approach.
Formalized scenarios, for example in the form of low-level assume/assert
statements in C, are easier to trace to requirements than traditional test
sets. For a verification engineer, they offer an opportunity to better par-
ticipate in requirements changes. Changes in requirements can be more
easily propagated because adapting formalized scenarios is often easier
than deriving and updating a large set of test cases. The proposed idea is
evaluated in a case study encompassing over 50 functional requirements
of an automotive software developed at Robert Bosch GmbH. Results
indicate that requirement formalization together with formal verification
leads to the discovery of implementation problems missed in a traditional
testing process.

	Introduction
	Motivation
	Challenges
	Contributions
	Overview of This Thesis

	Theoretical Background and State of the Art
	Theoretical Background and Foundations
	Related Work and State of The Art

	LLBMC: An Efficient Implementation of SBMC
	An Overview of LLBMC
	LLVM and Its Intermediate Representation
	Verification of Source Languages
	Compiler Optimization Passes in LLBMC
	Control Flow Graphs
	Call Graphs
	LLBMC's Intermediate Logic Representation
	Summary and Outlook

	Encoding LLVM-IR in ILR
	Sorts, Functions, and Instruction Patterns
	Symbolic Evaluation
	Control Flow and Execution Conditions
	Memory
	Safety
	A Term Rewriting System for Encoding LLVM-IR
	Summary and Outlook

	Dynamic Memory Allocation and Memory Access Safety
	Dynamic Memory Allocation in the C Standard
	Extending ILR
	A Partial Decision Procedure Based on Term Rewriting
	Encoding Dynamic Memory Allocation
	Encoding Memory Access Safety
	Summary and Outlook

	Simplification, Satisfiability Solving, and Evaluation
	Simplifications
	Solving ILR Formulæ
	Evaluation
	Summary and Outlook

	Conclusion
	Simplification Rules
	Constant Propagation
	Boolean
	Arithmetic
	Safety
	Bitwise Operations
	Shifts
	Comparison
	Miscellaneous
	Reduction

	Evaluation Results
	Participants of SV-COMP 2012
	Results of SV-COMP 2012
	Participants of SV-COMP 2013
	Results of SV-COMP 2013
	Participants of SV-COMP 2014
	Results of SV-COMP 2014

	Detailed Example
	LLVM-IR Code
	Call and Control Flow Graphs
	Encoding

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Symbols
	Index
	Publications

